Sample records for maximum depth reached

  1. There’s plenty of light at the bottom: statistics of photon penetration depth in random media

    PubMed Central

    Martelli, Fabrizio; Binzoni, Tiziano; Pifferi, Antonio; Spinelli, Lorenzo; Farina, Andrea; Torricelli, Alessandro

    2016-01-01

    We propose a comprehensive statistical approach describing the penetration depth of light in random media. The presented theory exploits the concept of probability density function f(z|ρ, t) for the maximum depth reached by the photons that are eventually re-emitted from the surface of the medium at distance ρ and time t. Analytical formulas for f, for the mean maximum depth 〈zmax〉 and for the mean average depth reached by the detected photons at the surface of a diffusive slab are derived within the framework of the diffusion approximation to the radiative transfer equation, both in the time domain and the continuous wave domain. Validation of the theory by means of comparisons with Monte Carlo simulations is also presented. The results are of interest for many research fields such as biomedical optics, advanced microscopy and disordered photonics. PMID:27256988

  2. Structural properties of H-implanted InP crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocchi, C.; Franzosi, P.; Lazzarini, L.

    1993-07-01

    H has been implanted in InP crystals at the energy E [equals] 100 keV and at different doses ranging from [sigma] [equals] 1 x 10[sup 13] to [sigma] [equals] 5 x 10[sup 16] cm[sup [minus]2]. The depth dependence of the elastic lattice strain has been investigated by high resolution X-ray diffractometry. The implantation produces a lattice dilation. The strain increases with increasing depth, reaches the maximum at about 0.75 [mu]m, and then decreases rapidly; moreover the maximum strain is proportional to the dose. No extended crystal defects have been detected by transmission electron microscopy up to [sigma] <1 x 10[supmore » 16] cm[sup [minus]2] a buried amorphous layer 28 nm in thickness has been observed at the same depth where the strain is maximum. The thickness of the amorphous layer increases by further increasing the dose and reaches a value of about 0.18 [mu]m for [sigma] [equals] 5 x 10[sup 16] cm[sup [minus]2].« less

  3. Abundance of adult saugers across the Wind River watershed, Wyoming

    USGS Publications Warehouse

    Amadio, C.J.; Hubert, W.A.; Johnson, K.; Oberlie, D.; Dufek, D.

    2006-01-01

    The abundance of adult saugers Sander canadensis was estimated over 179 km of continuous lotic habitat across a watershed on the western periphery of their natural distribution in Wyoming. Three-pass depletions with raft-mounted electrofishing gear were conducted in 283 pools and runs among 19 representative reaches totaling 51 km during the late summer and fall of 2002. From 2 to 239 saugers were estimated to occur among the 19 reaches of 1.6-3.8 km in length. The estimates were extrapolated to a total population estimate (mean ?? 95% confidence interval) of 4,115 ?? 308 adult saugers over 179 km of lotie habitat. Substantial variation in mean density (range = 1.0-32.5 fish/ha) and mean biomass (range = 0.5-16.8 kg/ha) of adult saugers in pools and runs was observed among the study reaches. Mean density and biomass were highest in river reaches with pools and runs that had maximum depths of more than 1 m, mean daily summer water temperatures exceeding 20??C, and alkalinity exceeding 130 mg/L. No saugers were captured in the 39 pools or runs with maximum water depths of 0.6 m or less. Multiple-regression analysis and the information-theoretic approach were used to identify watershed-scale and instream habitat features accounting for the variation in biomass among the 244 pools and runs across the watershed with maximum depths greater than 0.6 m. Sauger biomass was greater in pools than in runs and increased as mean daily summer water temperature, maximum depth, and mean summer alkalinity increased and as dominant substrate size decreased. This study provides an estimate of adult sauger abundance and identifies habitat features associated with variation in their density and biomass across a watershed, factors important to the management of both populations and habitat. ?? Copyright by the American Fisheries Society 2006.

  4. Spectroscopic wear detector

    NASA Technical Reports Server (NTRS)

    Madzsar, George C. (Inventor)

    1993-01-01

    The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.

  5. Estimation of tool wear compensation during micro-electro-discharge machining of silicon using process simulation

    NASA Astrophysics Data System (ADS)

    Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.

    2010-02-01

    A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.

  6. New scientific ocean drilling depth record extends study of subseafloor life

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The Japanese deep-sea drilling vessel Chikyu set a new depth record for scientific ocean drilling and core retrieval by reaching a depth of 2119.5 meters below the seafloor (mbsf) on 6 September. This is 8.5 meters deeper than the prior record, set 19 years ago. Three days later, on 9 September, Chikyu set another record by reaching a drilling depth of 2466 mbsf, the maximum depth that will be attempted during the current expedition. The 6 September record was set on day 44 of the Deep Coalbed Biosphere off Shimokita expedition, which is expedition 337 of the Integrated Ocean Drilling Program (IODP). It occurred at drilling site C0020 in the northwestern Pacific Ocean, approximately 80 kilometers northeast from Hachinohe, Japan. The expedition is scheduled to conclude on 30 September.

  7. On the Subsurface Chlorophyll Maximum layer in the Black Sea Romanian shelf waters

    NASA Astrophysics Data System (ADS)

    Vasiliu, Dan; Gomoiu, Marian-Traian; Secrieru, Dan; Caraus, Ioan; Balan, Sorin

    2013-04-01

    By analyzing data recorded in 38 sampling stations (bottom depths between 16 and 200 m) covering the entire Romanian shelf, from the Danube's mouths to the southern part of the coast, the authors study Subsurface Chlorophyll Maximum (SCM) from May 2009 to April 2011. Chlorophyll a (Chla), seawater temperature, salinity, sigma T, dissolved oxygen, ph, beam attenuation, were measured over the water column depth with the CTD probe and averaged over 1-db intervals (about 1 m depth). Nutrients and phytoplankton qualitative and quantitative parameters were recorded from different depths according to water masses stratification (inscribed in the research protocol of the cruise). In late winter/early spring, due to strong mixing processes of water masses, SCM was not observed in the Black Sea shelf waters. In spring (May), the Danube's increased discharges, characteristic to that period, strongly affected the vertical distribution of Chla, particularly in the area of the Danube's direct influence, where Chla reached maximum in the surface layer (19.76 - 30.39 µg.l-1). In the deeper sampling stations, a relatively weak SCM (Chla within 0.77 - 1.21 µg.l-1) was observed, mainly at the lower limit of the euphotic zone (between 30 and 40 m depths). Here, the position and magnitude of SCM seemed to be controlled mainly by the light conditions; the seasonal thermocline was not well contoured yet. In the warm season, once the stratification becomes stronger, the magnitude of SCM increased (Chla varies between 1.45 - 2.12 µg.l-1). The SCM was well pronounced below the upper boundary of thermocline, at depths between 20 and 25 m, where the dissolved oxygen concentrations have also reached the highest values (>10 mg.l-1 O2), thus suggesting strong photosynthetic processes, where both nutrient and light conditions are favorable. A particular situation was found in July 2010, when abnormally high discharges from the Danube led to a well pronounced SCM (3.23 - 6.87 µg.l-1 Chla) above thermocline (within 8 - 12 m depths) in the shallow waters, the nutrients being not limitative factors. Keywords Chlorophyll a, Subsurface Chlorophyll Maximum layer, the Black Sea, the Danube

  8. A case of rapid rock riverbed incision in a coseismic uplift reach and its implications

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Wan; Pan, Yii-Wen; Liao, Jyh-Jong

    2013-02-01

    During the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan, the coseismic displacement induced fault scarps and a pop-up structure in the Taan River. The fault scarps across the river experienced maximum vertical slip of 10 m, which disturbed the dynamic equilibrium of the fluvial system. As a result, rapid incision in the weak bedrock, with a maximum depth of 20 m, was activated within a decade after its armor layer was removed. This case provides an excellent opportunity for closely tracking and recording the progressive evolution of river morphology that is subjected to coseismic uplift. Based on multistaged orthophotographs and digital elevation model (DEM) data, the process of morphology evolution in the uplift reach was divided into four consecutive stages. Plucking is the dominant mechanism of bedrock erosion associated with channel incision and knickpoint migration. The astonishingly high rate of knickpoint retreat (KPR), as rapid as a few hundred meters per year, may be responsible for the rapid incision in the main channel. The reasons for the high rate of KPR are discussed in depth. The total length of the river affected by the coseismic uplift is 5 km: 1 km in the uplift reach and 4 km in the downstream reach. The downstream reach was affected by a reduction in sediment supply and increase in stream power. The KPR cut through the uplift reach within roughly a decade; further significant flooding in the future will mainly cause widening instead of deepening of the channel.

  9. Altimetry data and the elastic stress tensor of subduction zones

    NASA Technical Reports Server (NTRS)

    Caputo, Michele

    1987-01-01

    The maximum shear stress (mss) field due to mass anomalies is estimated in the Apennines, the Kermadec-Tonga Trench, and the Rio Grande Rift areas and the results for each area are compared to observed seismicity. A maximum mss of 420 bar was calculated in the Kermadec-Tonga Trench region at a depth of 28 km. Two additional zones with more than 300 bar mss were also observed in the Kermadec-Tonga Trench study. Comparison of the calculated mss field with the observed seismicity in the Kermadec-Tonga showed two zones of well correlated activity. The Rio Grande Rift results showed a maximum mss of 700 bar occurring east of the rift and at a depth of 6 km. Recorded seismicity in the region was primarily constrained to a depth of approximately 5 km, correlating well to the results of the stress calculations. Two areas of high mss are found in the Apennine region: 120 bar at a depth of 55 km, and 149 bar at the surface. Seismic events observed in the Apennine area compare favorably with the mss field calculated, exhibiting two zones of activity. The case of loading by seamounts and icecaps are also simulated. Results for this study show that the mss reaches a maximum of about 1/3 that of the applied surface stress for both cases, and is located at a depth related to the diameter of the surface mass anomaly.

  10. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    NASA Astrophysics Data System (ADS)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  11. Computational fluid dynamics-habitat suitability index (CFD-HSI) modelling as an exploratory tool for assessing passability of riverine migratory challenge zones for fish

    USGS Publications Warehouse

    Haro, Alexander J.; Chelminski, Michael; Dudley, Robert W.

    2015-01-01

    We developed two-dimensional computational fluid hydraulics-habitat suitability index (CFD-HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63-km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along-current length. Three river flows (low: 99.1 m3 sec-1; normal: 344.9 m3 sec-1; and high: 792.9 m3 sec-1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low-flow simulations of existing conditions for deeper-bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two-dimensional CFD-HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three-dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two-dimensional or three-dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours.

  12. Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes?

    PubMed

    González-Suárez, Ana; Pérez, Juan J; Berjano, Enrique

    2018-04-20

    Although accurate modeling of the thermal performance of irrigated-tip electrodes in radiofrequency cardiac ablation requires the solution of a triple coupled problem involving simultaneous electrical conduction, heat transfer, and fluid dynamics, in certain cases it is difficult to combine the software with the expertise necessary to solve these coupled problems, so that reduced models have to be considered. We here focus on a reduced model which avoids the fluid dynamics problem by setting a constant temperature at the electrode tip. Our aim was to compare the reduced and full models in terms of predicting lesion dimensions and the temperatures reached in tissue and blood. The results showed that the reduced model overestimates the lesion surface width by up to 5 mm (i.e. 70%) for any electrode insertion depth and blood flow rate. Likewise, it drastically overestimates the maximum blood temperature by more than 15 °C in all cases. However, the reduced model is able to predict lesion depth reasonably well (within 0.1 mm of the full model), and also the maximum tissue temperature (difference always less than 3 °C). These results were valid throughout the entire ablation time (60 s) and regardless of blood flow rate and electrode insertion depth (ranging from 0.5 to 1.5 mm). The findings suggest that the reduced model is not able to predict either the lesion surface width or the maximum temperature reached in the blood, and so would not be suitable for the study of issues related to blood temperature, such as the incidence of thrombus formation during ablation. However, it could be used to study issues related to maximum tissue temperature, such as the steam pop phenomenon.

  13. Descriptive parameter for photon trajectories in a turbid medium

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Weiss, George H.

    2000-06-01

    In many applications of laser techniques for diagnostic or therapeutic purposes it is necessary to be able to characterize photon trajectories to know which parts of the tissue are being interrogated. In this paper, we consider the cw reflectance experiment on a semi-infinite medium with uniform optical parameters and having a planar interface. The analysis is carried out in terms of a continuous-time random walk and the relation between the occupancy of a plane parallel to the surface to the maximum depth reached by the random walker is studied. The first moment of the ratio of average depth to the average maximum depth yields information about the volume of tissue interrogated as well as giving some indication of the region of tissue that gets the most light. We have also calculated the standard deviation of this random variable. It is not large enough to qualitatively affect information contained in the first moment.

  14. Radioactivities vs. depth in Apollo 16 and 17 soil

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; D'Amico, J.; Defelice, J.

    1973-01-01

    The radioactivities of Ar-37, Ar-39, and H-3 measured at a number of depths for Apollo 16 and 17 soil are reported. The Ar-37 activities vs depth in the Apollo 16 drill string increased with depth and reached a broad maximum in the neighborhood of 50 g per sq cm before decreasing. The Ar-39 activities in Apollo 17 soil were higher than in Apollo 16 soil, probably owing to the higher Fe and Ti contents. The H-3 activities in Apollo 16 and 17 soil were quite similar and indicate that the 4 August 1972 flare produced very little H-3 compared to the amount produced by solar flares during the previous 50 years.

  15. Estimation of River Bathymetry from ATI-SAR Data

    NASA Astrophysics Data System (ADS)

    Almeida, T. G.; Walker, D. T.; Farquharson, G.

    2013-12-01

    A framework for estimation of river bathymetry from surface velocity observation data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs) including bottom friction. We start with with a cost function defined by the error between observed and estimated surface velocities, and introduce the SWEs as a constraint on the velocity field. The constrained minimization problem is converted to an unconstrained minimization through the use of Lagrange multipliers, and an adjoint SWE model is developed. The adjoint model solution is used to calculate the gradient of the cost function with respect to river bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In applying the algorithm, the 2D depth-averaged flow is computed assuming a known, constant discharge rate and a known, uniform bottom-friction coefficient; a correlation relating surface velocity and depth-averaged velocity is also used. Observation data was collected using a dual beam squinted along-track-interferometric, synthetic-aperture radar (ATI-SAR) system, which provides two independent components of the surface velocity, oriented roughly 30 degrees fore and aft of broadside, offering high-resolution bank-to-bank velocity vector coverage of the river. Data and bathymetry estimation results are presented for two rivers, the Snohomish River near Everett, WA and the upper Sacramento River, north of Colusa, CA. The algorithm results are compared to available measured bathymetry data, with favorable results. General trends show that the water-depth estimates are most accurate in shallow regions, and performance is sensitive to the accuracy of the specified discharge rate and bottom friction coefficient. The results also indicate that, for a given reach, the estimated water depth reaches a maximum that is smaller than the true depth; this apparent maximum depth scales with the true river depth and discharge rate, so that the deepest parts of the river show the largest bathymetry errors.

  16. Experimental study on the sensitive depth of backwards detected light in turbid media.

    PubMed

    Zhang, Yunyao; Huang, Liqing; Zhang, Ning; Tian, Heng; Zhu, Jingping

    2018-05-28

    In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.

  17. Gravity survey of Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1983-01-01

    Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)

  18. The Relation Between Plate Spreading Rate, Crustal Thickness and Axial Relief at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Buck, W. R.

    2017-12-01

    Variations in axial valley relief and in faulting at plate spreading centers are clearly related to magma supply and axial lithospheric structure. Previous models that consider the interaction of magmatic dikes with lithospheric stretching do not successfully reproduce both of these trends. We present the first model that reproduces these trends by making simple assumptions about the partitioning of magma between dikes, gabbros and extrusives. A key concept is that dikes open not only in the brittle axial lithosphere but also into the underlying ductile crust, where they cool to form gabbro. The amount of gabbro so intruded depends on magma pressure that is related to axial relief. The deeper the valley the less magma goes into gabbros and the more magma is available for dikes to accommodate plate separation. We define the fraction of plate separation rate accommodated by dikes as M. If M<1 then part of the plate separation occurs as fault offset which deepens the axial valley. This axial deepening decreases the amount of magma go into gabbros and this increases M. If the valley reaches the depth where M =1 then the faulting ceases and the valley stays at that depth. However, even if M<1, the valley depth cannot increase without limit. Through a distributed pattern of tectonic faults, the valley depth reaches a maximum possible depth that depends on the thickness of the axial lithosphere. If M < 1, where the axial depth reaches this tectonic limit, then moderate to large offset faults can develop. If M = 1 before the depth reaches the tectonic limit, normal faults only develop in response to oscillations in magma supply and fault offset is proportional to the amount of extruded lava. We have derived analytic expressions relates axial lithospheric thickness (HL) and crustal thickness (Hc) to axial valley depth. We then used a 2D model numerical model with a fixed axial lithospheric structure to show that the analytic model predictions are reasonable. Finally, we describe themo-mechanical models that allow us to relate plate spreading rate and crustal thickness and to axial valley depth.

  19. Simulation results of influence of constricted arc column on anode deformation and melting pool swirl in vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli

    2017-11-01

    In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.

  20. A New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations

    PubMed Central

    Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum

    2015-01-01

    On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth’s surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 1018 Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment. PMID:26184210

  1. A New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations.

    PubMed

    Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum

    2015-07-10

    On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 10(18) Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment.

  2. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

    PubMed

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V; Backer, Marina V; Backer, Joseph M; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  3. Duration and Frequency Analysis of Lowland Flooding in Western Murfreesboro, Rutherford County, Tennessee, 1998-2000

    USGS Publications Warehouse

    Law, George S.

    2002-01-01

    Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.

  4. Seasonal variation in the flux of euthecosomatous pteropods collected in a deep sediment trap in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Almogi-Labin, A.; Hemleben, Ch.; Deuser, W. G.

    1988-03-01

    A 4-year series of sediment trap samples from a depth of 3.2 km in the Sargasso Sea (32°05'N, 64°15'W) has revealed seasonal variations in the flux of euthecosomatous pteropods. Total pteropod flux is related to seasonal variations of the total particulate and organic carbon flux with a lag of 1-1.5 months. High flux of pteropods (>200 specimens m -2 day -1) occurs in late winter to mid-summer. Shells of individual pteropod species arrive in deep water in a seasonal succession similar to that in the living assemblage. Peak fluxes of Styliola subula, Clio pyramidata and Limacina bulimoides were recorded from February to May. Limacina inflata, Limacina lesueuri and Cuvierina columnella entered the trap in maximum numbers from April to mid-August. Creseis virgula conica and C. acicula were most abundant from June to late August. The latter two are non-migrating, epipelagic pteropods and comprise <10% of the assemblage. Diel migrators dominate the pteropod assemblage (92%). During the summer months they appear to migrate at greater depth, without reaching the surface water. Although many young are produced, only a small fraction, about 4% in the case of L. inflata and L. bulimoides, survives and reaches maturity. Adult shell size of L. inflata and L. bulimoides varies seasonally, reaching maximum size during spring, probably in response to increasing food availability.

  5. Interacting Effects Induced by Two Neighboring Pits Considering Relative Position Parameters and Pit Depth

    PubMed Central

    Huang, Yongfang; Gang, Tieqiang; Chen, Lijie

    2017-01-01

    For pre-corroded aluminum alloy 7075-T6, the interacting effects of two neighboring pits on the stress concentration are comprehensively analyzed by considering various relative position parameters (inclination angle θ and dimensionless spacing parameter λ) and pit depth (d) with the finite element method. According to the severity of the stress concentration, the critical corrosion regions, bearing high susceptibility to fatigue damage, are determined for intersecting and adjacent pits, respectively. A straightforward approach is accordingly proposed to conservatively estimate the combined stress concentration factor induced by two neighboring pits, and a concrete application example is presented. It is found that for intersecting pits, the normalized stress concentration factor Ktnor increases with the increase of θ and λ and always reaches its maximum at θ = 90°, yet for adjacent pits, Ktnor decreases with the increase of λ and the maximum value appears at a slight asymmetric location. The simulations reveal that Ktnor follows a linear and an exponential relationship with the dimensionless depth parameter Rd for intersecting and adjacent cases, respectively. PMID:28772758

  6. Poor shape perception is the reason reaches-to-grasp are visually guided online.

    PubMed

    Lee, Young-Lim; Crabtree, Charles E; Norman, J Farley; Bingham, Geoffrey P

    2008-08-01

    Both judgment studies and studies of feedforward reaching have shown that the visual perception of object distance, size, and shape are inaccurate. However, feedback has been shown to calibrate feedfoward reaches-to-grasp to make them accurate with respect to object distance and size. We now investigate whether shape perception (in particular, the aspect ratio of object depth to width) can be calibrated in the context of reaches-to-grasp. We used cylindrical objects with elliptical cross-sections of varying eccentricity. Our participants reached to grasp the width or the depth of these objects with the index finger and thumb. The maximum grasp aperture and the terminal grasp aperture were used to evaluate perception. Both occur before the hand has contacted an object. In Experiments 1 and 2, we investigated whether perceived shape is recalibrated by distorted haptic feedback. Although somewhat equivocal, the results suggest that it is not. In Experiment 3, we tested the accuracy of feedforward grasping with respect to shape with haptic feedback to allow calibration. Grasping was inaccurate in ways comparable to findings in shape perception judgment studies. In Experiment 4, we hypothesized that online guidance is needed for accurate grasping. Participants reached to grasp either with or without vision of the hand. The result was that the former was accurate, whereas the latter was not. We conclude that shape perception is not calibrated by feedback from reaches-to-grasp and that online visual guidance is required for accurate grasping because shape perception is poor.

  7. Late Wisconsinan glaciation and postglacial relative sea-level change on western Banks Island, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Lakeman, Thomas R.; England, John H.

    2013-07-01

    The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.

  8. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  9. Temperature measurements at IODP 337 Expedition, off Shimokita, NE Japan.

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.

    2014-12-01

    Precise estimation of underground temperature is a challenging issue, since direct measurements require drill holes that disturb the original underground environment. During IODP 337 expedition, we have obtained in-situ temperature datasets for several times by using geophysical logging tools. A common procedure to estimate the undisturbed maximum underground temperature is by approximating that the 'build-up' pattern of measured values in the borehole should reach to the equilibrium temperature. At the Shimokita site, this was 63.7 oC at a depth of 2466 m. We have much more measurement dataset and all of these were used to analyze detailed in-site temperatures at various depths. The result shows a non-linear temperature profile to the depth and this may be reflected by the thermal properties of the surrounding rocks.

  10. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.

  11. Nonlinear attenuation of S-waves and Love waves within ambient rock

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  12. Basic studies on laser-assisted phacoemulsification using diode-pumped Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Hausladen, Florian; Wurm, Holger; Stock, Karl

    2016-03-01

    The aim of this study was to determine the potential of a novel diode-pumped Er:YAG laser for phacoemulsification in basic experimental investigations. An appropriate experimental setup was created, including a translation stage for sample movement, a sample holder, a water spray for sample humidification and a surgical microscope with a CCD camera for video documentation. The analysis of the laser cuts and histological sections was done by light microscopy. As samples porcine eye lenses hardened by formalin were used. In ablation experiments with different spot diameters and radiant powers and a constant repetition rate νr = 200 Hz the maximum ablation depths of (4.346 +/- 0.044) mm have reached at (Ø = 480 μm, Φ = 24.15 W) with a maximum extend of thermal damage of (0.165 +/- 0.030) mm. The average ablation efficiency is 0.241 mm3/J. With a spot diameter of 308 μm the maximum ablation depth is (4.238 +/- 0.040) mm at 24.65 W with a mean ablation efficiency of 0.293 mm3/J. The extend of the thermally damaged region is (0.171 +/- 0.024) mm at this laser power. Using a sapphire cylinder with a diameter of 412 μm (length 38.5 mm) in direct tissue contact with water spray for sample humidification the ablation depth reaches (1.017 +/- 0.074) mm at 4.93 W and (1.840 +/- 0.092) mm at 9.87 W with a mean efficiency of 0.261 mm3/J. A thermal damage zone of (0.064 +/-0.024) mm at 9.87 W was measured. Additionally, at this high power, a progressive contamination and destruction of the cylinder end facet was observed. In conclusion, the investigations show that the diode-pumped Er:YAG laser has considerable potential for cataract surgery.

  13. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  14. Expectation affects verbal judgments but not reaches to visually perceived egocentric distances.

    PubMed

    Pagano, Christopher C; Isenhower, Robert W

    2008-04-01

    Two response measures for reporting visually perceived egocentric distances-verbal judgments and blind manual reaches-were compared using a within-trial methodology. The expected range of possible target distances was manipulated by instructing the subjects that the targets would be between .50 and 1.00 of their maximum arm reach in one session and between .25 and .90 in another session. The actual range of target distances was always .50-.90. Verbal responses varied as a function of the range of expected distances, whereas simultaneous reaches remained unaffected. These results suggest that verbal responses are subject to a cognitive influence that does not affect actions. It is suggested that action responses are indicative of absolute perception, whereas cognitive responses may reflect only relative perception. The results also indicate that the dependant variable utilized for the study of depth perception will influence the obtained results.

  15. Factors driving spatial and temporal variation in production and production/biomass ratio of stream-resident brown trout (Salmo trutta) in Cantabrian streams

    USGS Publications Warehouse

    Lobon-Cervia, J.; Gonzalez, G.; Budy, P.

    2011-01-01

    1.The objective was to identify the factors driving spatial and temporal variation in annual production (PA) and turnover (production/biomass) ratio (P/BA) of resident brown trout Salmo trutta in tributaries of the Rio Esva (Cantabrian Mountains, Asturias, north-western Spain). We examined annual production (total production of all age-classes over a year) (PA) and turnover (P/BA) ratios, in relation to year-class production (production over the entire life time of a year-class) (PT) and turnover (P/BT) ratio, over 14years at a total of 12 sites along the length of four contrasting tributaries. In addition, we explored whether the importance of recruitment and site depth for spatial and temporal variations in year-class production (PT), elucidated in previous studies, extends to annual production. 2.Large spatial (among sites) and temporal (among years) variation in annual production (range 1.9-40.3gm-2 per year) and P/BA ratio (range 0.76-2.4per year) typified these populations, values reported here including all the variation reported globally for salmonids streams inhabited by one or several species. 3.Despite substantial differences among streams and sites in all production attributes, when all data were pooled, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios were tightly linked. Annual (PA) and year-class production (PT) were similar but not identical, i.e. PT=0.94 PA, whereas the P/BT ratios were 4+P/BA ratios. 4.Recruitment (Rc) and mean annual density (NA) were major density-dependent drivers of production and their relationships were described by simple mathematical models. While year-class production (PT) was determined (R2=70.1%) by recruitment (Rc), annual production (PA) was determined (R2=60.3%) by mean annual density (NA). In turn, variation in recruitment explained R2=55.2% of variation in year-class P/BT ratios, the latter attaining an asymptote at P/BT=6 at progressively higher levels of recruitment. Similarly, variations in mean annual density (NA) explained R2=52.1% of variation in annual P/BA, the latter reaching an asymptote at P/BA=2.1. This explained why P/BT is equal to P/BA plus the number of year-classes at high but not at low densities. 5.Site depth was a major determinant of spatial (among sites) variation in production attributes. All these attributes described two-phase trajectories with site depth, reaching a maximum at sites of intermediate depth and declining at shallower and deeper sites. As a consequence, at sites where recruitment and mean annual density reached minimum or maximum values, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios also reached minimum and maximum values. ?? 2011 Blackwell Publishing Ltd.

  16. Combining Gabor and Talbot bands techniques to enhance the sensitivity with depth in Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Marques, Manuel J.; Bouchal, Petr; Podoleanu, Adrian Gh.

    2013-03-01

    The purpose of this study was to show how to favorably mix two e_ects to improve the sensitivity with depth in Fourier domain optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by directing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By changing the lateral gap between the two beams in their path towards the spectrometer, the position for the maximum sensitivity versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a composite image is formed by edging together the parts of the five images that exhibited maximum brightness. The combined procedure, TB/GF is examined for four different values of the beam diameters of the two beams. Also we demonstrate volumetric FD-OCT images with mirror term attenuation and sensitivity profile shifted towards higher OPD values by applying a Talbot bands configuration.

  17. Seismotectonic Models of the Three Recent Devastating SCR Earthquakes in India

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Kayal, J.

    2007-12-01

    During the last decade, three devastating earthquakes, the Killari 1993 (Mb 6.3), Jabalpur 1997 (Mb 6.0) and the Bhuj 2001 (Mw 7.7) occurred in the Stable Continental Region (SCR), Peninsular India. First, the September 30, 1993 Killari earthquake (Mb 6.3) occurred in the Deccan province of central India, in the Latur district of Maharashtra state. The local geology in the area is obscured by the late Cretaceous-Eocene basalt flows, referred to as the Deccan traps. This makes it difficult to recognize the geological surface faults that could be associated with the Killari earthquake. The epicentre was reported at 18.090N and 76.620E, and the focal depth at 7 +/- 1 km was precisely estimated by waveform inversion (Chen and Kao, 1995). The maximum intensity reached to VIII and the earthquake caused a loss of about 10,000 lives and severe damage to property. The May 22, 1997 Jabalpur earthquake (Mb 6.0), epicentre at 23.080N and 80.060E, is a well studied earthquake in the Son-Narmada-Tapti (SONATA) seismic zone. A notable aspects of this earthquake is that it was the first significant event in India to be recorded by 10 broadband seismic stations which were established in 1996 by the India Meteorological Department (IMD). The focal depth was well estimated using the "converted phases" of the broadband seismograms. The focal depth was given in the lower crust at a depth of 35 +/- 1 km, similar to the moderate earthquakes reported from the Amazona ancient rift system in SCR of South America. Maximum MSK intensity of the Jabalpur earthquake reached to VIII in the MSK scale and this earthquake killed about 50 people in the Jabalpur area. Finally, the Bhuj earthquake (MW 7.7) of January 26, 2001 in the Gujarat state, northwestern India, was felt across the whole country, and killed about 20,000 people. The maximum intensity level reached X. The epicenter of the earthquake is reported at 23.400N and 70.280E, and the well estimated focal depth at 25 km. A total of about 3000 aftershocks (M> 1.0) were recorded until mid April, 2001. About 500 aftershocks (M>2.0) are well located; the epicenter map shows an aftershock cluster area, about 60 km x 30 km, between 70.0-70.60E and 23.3-23.60N; almost all the aftershocks occurred within the high intensity (IX) zone. The source area of the main shock and most of the aftershocks are at a depth range of 20-25 km. The fault-plane solutions suggest that the main shock originated at the base of the paleo-rift zone by a south dipping, hidden reverse fault; the rupture propagated both NE and NW. The aftershocks occurred by left-lateral strike-slip motion along the NE trending fault, compatible with the main shock solution, and by pure reverse to right-lateral, strike-slip motion along the NW trending conjugate fault. Understanding these earthquake sequences may shed new light in on the tectonics and active faults in the source regions.

  18. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system

    NASA Astrophysics Data System (ADS)

    Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.

    2008-01-01

    The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO < http://www.mar-eco.no>. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking terrigenous input of allochthonous organic carbon, increased demersal fish diversity and biomass over the MAR relative to the abyssal plains may be maintained by increased bathypelagic food resources. The aggregation of bathypelagic fishes with MAR topographic features was primarily a large adult phenomenon. Considering the immense areal extent of mid-ocean ridge systems globally, this strategy may have significant trophic transfer and reproductive benefits for deep-pelagic fish populations.

  19. Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.

    PubMed

    Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther

    2012-05-01

    In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.

  20. Scour at bridge sites in Delaware, Maryland, and Virginia

    USGS Publications Warehouse

    Hayes, Donald C.

    1996-01-01

    Scour data were obtained from discharge measure- ments to develop and evaluate the reliability of constriction-scour and local-scour equations for rivers in Delaware, Maryland, and Virginia. No independent constriction-scour or local-scour equations were developed from the data because no significant relation was deter-mined between measured scour and streamflow, streambed, and bridge characteristics. Two existing equations were evaluated for prediction of constriction scour and 14 existing equations were evaluated for prediction of local scour. Constriction-scour data were obtained from historical stream discharge measurements, field surveys, and bridge plans at nine bridge sites in the three-State area. Constriction scour was computed by subtracting the average-streambed elevation in the constricted reach from an uncontracted-channel reference elevation. Hydraulic conditions were estimated for the measurements with the greatest discharges by use of the Water-Surface Profile computation model. Measured and calculated constriction-scour data were used to evaluate the reliability of Laursen's clear-water constriction-scour equation and Laursen's live-bed constriction-scour equation. Laursen's clear-water constriction-scour equation underestimated 21 of 23 scour measure- ments made at three sites. A sensitivity analysis showed that the equation is extremely sensitive to estimates of the channel-bottom width. Reduction in estimates of bottom width by one-third resulted in predictions of constriction scour slightly greater than measured values for all scour measurements. Laursen's live-bed constriction- scour equation underestimated 10 of 14 scour measurements made at one site. The error between measured and predicted constriction scour was less than 1.0 ft (feet) for 12 measure-ments and less than 0.5 ft for 8 measurements. Local-scour data were obtained from stream discharge measurements, field surveys, and bridge plans at 15 bridge sites in the three-State area. The reliability of 14 local-scour equations were evaluated. From visual inspection of the plotted data, the Colorado State University, Froehlich design, Laursen, and Mississippi pier-scour equations appeared to be the best predictors of local scour. The Colorado State University equation underestimated 11 scour depths in clear-water scour conditions by a maximum of 2.4 ft, and underestimated 3 scour depth in live-bed scour conditions by a maximum of 1.3 ft. The Froehlich design equation under- estimated two scour depth in clear-water scour conditions by a maximum of 1.2 ft, and under- estimated one scour depth in live-bed scour conditions by a maximum of 0.4 ft. Laursen's equation overestimated the maximum scour depth in clear-water scour conditions by approximately one-half pier width or approximately 1.5 ft, and overestimated the maximum scour depth in live-bed scour conditions by approximately one-pier width or approximately 3 ft. The Mississippi equation underestimated six scour depths in clear-water scour conditions by a maximum of 1.2 ft, and underestimated one scour depth in live-bed scour conditions by 1.6 ft. In both clear-water and live-bed scour conditions, the upper limit for the depth of scour to pier-width ratio for all local scour measurements was 2.1. An accurate pier- approach velocity is necessary to use many local pier-scour equations for bridge design. Velocity data from all the discharge measurements reviewed for this investigation were used to develop a design curve to estimate pier-approach velocity from mean cross-sectional velocity. A least- squares regression and offset were used to envelop the velocity data.

  1. Water-table contours and depth to water in the southeastern part of the Sweetwater River basin, central Wyoming, 1982

    USGS Publications Warehouse

    Borchert, William B.

    1987-01-01

    This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)

  2. Duplex stainless steel fracture surface analysis using X-ray fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajanna, K.; Pathiraj, B.; Kolster, B.H.

    1997-02-01

    The fatigue fracture surface of a duplex stainless steel was analyzed using x-ray fractography. A lower than average austenite content was observed at the fracture surface due to the transformation of austenite into deformation-induced martensite. The influence of fatigue cycling on the transformation was confined to a depth of about 30 {micro}m below the fracture surface. X-ray analyses of both the ferrite-martensite and the austenite phases indicated residual stresses ({sigma}{sub r}) increasing with depth from the fracture surface and reaching a maximum some tens of microns below the fracture surface. The lower {sigma}{sub r} observed at the fracture surface hasmore » been attributed to the stress relaxation effects caused by the new fracture surfaces created in the crack growth process. The observed decrease in full width at half maximum (FWHM) in the ferrite-martensite phase was presumed to be due to the dynamic recovery effect that was likely to occur within the material close to the crack tip as a consequence of fatigue cycling.« less

  3. Allocentric information is used for memory-guided reaching in depth: A virtual reality study.

    PubMed

    Klinghammer, Mathias; Schütz, Immo; Blohm, Gunnar; Fiehler, Katja

    2016-12-01

    Previous research has demonstrated that humans use allocentric information when reaching to remembered visual targets, but most of the studies are limited to 2D space. Here, we study allocentric coding of memorized reach targets in 3D virtual reality. In particular, we investigated the use of allocentric information for memory-guided reaching in depth and the role of binocular and monocular (object size) depth cues for coding object locations in 3D space. To this end, we presented a scene with objects on a table which were located at different distances from the observer and served as reach targets or allocentric cues. After free visual exploration of this scene and a short delay the scene reappeared, but with one object missing (=reach target). In addition, the remaining objects were shifted horizontally or in depth. When objects were shifted in depth, we also independently manipulated object size by either magnifying or reducing their size. After the scene vanished, participants reached to the remembered target location on the blank table. Reaching endpoints deviated systematically in the direction of object shifts, similar to our previous results from 2D presentations. This deviation was stronger for object shifts in depth than in the horizontal plane and independent of observer-target-distance. Reaching endpoints systematically varied with changes in object size. Our results suggest that allocentric information is used for coding targets for memory-guided reaching in depth. Thereby, retinal disparity and vergence as well as object size provide important binocular and monocular depth cues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Morphologic contrasts between Nirgal and Auqakuh Valles, Mars: Evidence of different crustal properties

    NASA Technical Reports Server (NTRS)

    Mackinnon, David J.; Tanaka, Kenneth L.; Winchell, Philip J.

    1987-01-01

    Photoclinometric measurements were made of sidewall slopes in Nirgal and Auqakuh Valles and these results were interpreted in terms of the geologic setting and a simple geomorphic model to provide insights into the physical properties of crustal materials in these areas. Nirgal was interpreted to be a runoff channel and Auqakuh to be a fretted channel. Geomorphologic arguments for the sapping origin of Nirgal and Auqakuh Valles were presented. The morphologies of the channels, however, differ greatly: the tributaries of Nirgal end abruptly in theater-headed canyons, whereas the heads of tributaries of Auqakuh shallow gradually. The plateau surface surrounding both channels appears to be covered by smooth materials, presumably lava flows; they are continuous and uneroded in the Nirgal area, but at Auqakuh they are largely eroded and several layers are exposed that total about 200 m in thickness. For Nirgal Valles, the measurements show that sidewalls in the ralatively shallow upper reaches of the channel have average slopes near 30 degrees and, in the lower reaches, sidewall slopes exceed 50 degrees. Auqakuh, on the other hand, has maximum sidewall slopes of 14 degrees and an approximate maximum depth of 1000 m. Faint, horizontal layering in portions of the lower reaches of Nirgal may indicate inhomogeneity in either composition or topography.

  5. Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator.

    PubMed

    Thackray, Benjamin D; Thomas, Philip A; Auton, Gregory H; Rodriguez, Francisco J; Marshall, Owen P; Kravets, Vasyl G; Grigorenko, Alexander N

    2015-05-13

    We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 μm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

  6. Parameter uncertainty and nonstationarity in regional extreme rainfall frequency analysis in Qu River Basin, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Xu, Y. P.; Gu, H.

    2014-12-01

    Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management and risk management.

  7. Tsunami-induced morphological change of a coastal lake: comparing hydraulic experiment with numerical modeling

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Imai, K.; Mitobe, Y.; Takahashi, T.

    2016-12-01

    Coastal lakes are one of the promising environments to identify deposits of past tsunamis, and such deposits have been an important key to know the recurrence of tsunami events. In contrast to tsunami deposits on the coastal plains, however, relationship between deposit geometry and tsunami hydrodynamic character in the coastal lakes has poorly been understood. Flume experiment and numerical modeling will be important measures to clarify such relationship. In this study, data from a series of flume experiment were compared with simulations by an existing tsunami sediment transport model to examine applicability of the numerical model for tsunami-induced morphological change in a coastal lake. A coastal lake with a non-erodible beach ridge was modeled as the target geomorphology. The ridge separates the lake from the offshore part of the flume, and the lake bottom was filled by sand. Tsunami bore was generated by a dam-break flow, which is capable of generating a maximum near-bed flow speed of 2.5 m/s. Test runs with varying magnitude of the bore demonstrated that the duration of tsunami overflow controls the scouring depth of the lake bottom behind the ridge. The maximum scouring depth reached up to 7 cm, and sand deposition occurred mainly in the seaward-half of the lake. A conventional depth-averaged tsunami hydrodynamic model coupled with the sediment transport model was used to compare the simulation and experimental results. In the Simulation, scouring depth behind the ridge reached up to 6 cm. In addition, the width of the scouring was consistent between the simulation and experiment. However, sand deposition occurred mainly in a zone much far from the ridge, showing a considerable deviation from the experimental results. This may be associated with the lack of model capability to resolve some important physics, such as vortex generation behind the ridge and shoreward migration of hydraulic jump. In this presentation, the results from the flume experiment and the numerical modeling will be compared in detail, including temporal evolution of the morphological change. In addition, model applicability and future improvements will be discussed.

  8. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data

    NASA Astrophysics Data System (ADS)

    Lücke, O. H.; Arroyo, I. G.

    2015-10-01

    The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry in Costa Rica is presented based on 3-D density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. Contrary to commonly assumed, to the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a maximum depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth (> 75 km) intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.

  9. The biological pump: Profiles of plankton production and consumption in the upper ocean

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  10. Effects of cloud size and cloud particles on satellite-observed reflected brightness

    NASA Technical Reports Server (NTRS)

    Reynolds, D. W.; Mckee, T. B.; Danielson, K. S.

    1978-01-01

    Satellite observations allowed obtaining data on the visible brightness of cumulus clouds over South Park, Colorado, while aircraft observations were made in cloud to obtain the drop size distributions and liquid water content of the cloud. Attention is focused on evaluating the relationship between cloud brightness, horizontal dimension, and internal microphysical structure. A Monte Carlo cloud model for finite clouds was run using different distributions of drop sizes and numbers, while varying the cloud depth and width to determine how theory would predict what the satellite would view from its given location in space. Comparison of these results to the satellite observed reflectances is presented. Theoretical results are found to be in good agreement with observations. For clouds of optical thickness between 20 and 60, monitoring cloud brightness changes in clouds of uniform depth and variable width gives adequate information about a cloud's liquid water content. A cloud having a 10:1 width to depth ratio is almost reaching its maximum brightness for a specified optical thickness.

  11. Evolution of CO2 in lakes Monoun and Nyos, Cameroon, before and during controlled degassing

    USGS Publications Warehouse

    Kusakabe, M.; Ohba, T.; Issa,; Yoshida, Y.; Satake, H.; Ohizumi, T.; Evans, William C.; Tanyileke, G.; Kling, G.W.

    2008-01-01

    Evolution of CO2 in Lakes Monoun and Nyos (Cameroon) before and during controlled degassing is described using results of regular monitoring obtained during the last 21 years. The CO2(aq) profiles soon after the limnic eruptions were estimated for Lakes Monoun and Nyos using the CTD data obtained in October and November 1986, respectively. Based on the CO2(aq) profiles through time, the CO2 Content and its change over time were calculated for both lakes. The CO2 accumulation rate calculated from the pre-degassing data, was constant after the limnic eruption at Lake Nyos (1986-2001), whereas the rate appeared initially high (1986-1996) but later slowed down (1996-2003) at Lake Monoun. The CO2 concentration at 58 m depth in Lake Monoun in January 2003 was very close to saturation due to the CO2 accumulation. This situation is suggestive of a mechanism for the limnic eruption, because it may take place spontaneously without receiving an external trigger. The CO2 content of the lakes decreased significantly after controlled degassing started in March 2001 at Lake Nyos and in February 2003 at Lake Monoun. The current content is lower than the content estimated soon after the limnic eruption at both lakes. At Monoun the degassing rate increased greatly after February 2006 due to an increase of the number of degassing pipes and deepening of the pipe intake depth. The current CO2 content is ???40% of the maximum content attained just before the degassing started. At current degassing rates the lower chemocline will subside to the degassing pipe intake depth of 93 m in about one year. After this depth is reached, the gas removal rate will progressively decline because water of lower CO2(aq) concentration will be tapped by the pipes. To keep the CO2 content of Lake Monoun as small as possible, it is recommended to set up a new, simple device that sends deep water to the surface since natural recharge of CO2 will continue. Controlled degassing at Lake Nyos since 2001 has also reduced the CO2 content. It is currently slightly below the level estimated after the limnic eruption in 1986. However, the current CO2 content still amounts to 80% of the maximum level of 14.8 giga moles observed in January 2001. The depth of the lower chemocline may reach the pipe intake depth of 203 m within a few years. After this situation is reached the degassing rate with the current system will progressively decline, and it would take decades to remove the majority of dissolved gases even if the degassing system keeps working continuously. Additional degassing pipes must be installed to speed up gas removal from Lake Nyos in order to make the area safer for local populations. Copyright ?? 2008 by The Geochemical Society of Japan.

  12. Gas Chemistry of Submarine Hydrothermal Venting at Maug Caldera, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Lupton, J. E.; Butterfield, D. A.; Lilley, M. D.; Evans, L. J.; Olson, E. J.; Resing, J. A.; Buck, N.; Larson, B. I.; Young, C.

    2014-12-01

    Maug volcano consists of 3 islands that define the perimeter of a submerged caldera that was formed by an explosive eruption. The caldera reaches a depth of ~225 meters, and has a prominent central cone or pinnacle that ascends within 20 meters of the sea surface. Our exploration of Maug began in 2003, when a single hydrocast in the caldera detected a strong suspended particle and helium plume reaching a maximum of δ3He = 250% at ~180 meters depth, clearly indicating hydrothermal activity within the caldera. In 2004 we returned armed with the ROPOS ROV, and two ROPOS dives discovered and sampled low temperature (~4 °C) diffuse venting associated with bacterial mats on the NE flank of the central pinnacle at 145 m depth. Samples collected with titanium gas tight bottles were badly diluted with ambient seawater but allowed an estimate of end-member 3He/4He of 7.3 Ra. Four vertical casts lowered into the caldera in 2004 all had a strong 3He signal (δ3He = 190%) at 150-190 meters depth. A recent expedition in 2014 focused on the shallow (~10 m) gas venting along the caldera interior. Scuba divers were able to collect samples of the gas bubbles using evacuated SS bottles fitted with plastic funnels. The gas samples had a consistent ~170 ppm He, 8 ppmNe, 60% CO2, 40%N2, and 0.8% Ar, and an end-member 3He/4He ratio of 6.9 Ra. This 3He/4He ratio falls within the range for typical arc volcanoes. The rather high atmospheric component (N2, Ar, Ne) in these samples is not contamination but appears to be derived from subsurface exchange between the ascending CO2 bubbles and air saturated seawater. A single vertical cast in 2014 had a maximum δ3He = 55% at 140 m depth, much lower than in 2003 and 2004. This decrease is possibly due to recent flushing of the caldera by a storm event, or may reflect a decrease in the deep hydrothermal activity. This area of shallow CO2 venting in Maug caldera is of particular interest as a natural laboratory for studying the effects of ocean acidification on corals.

  13. Combined Gravimetric-Seismic Crustal Model for Antarctica

    NASA Astrophysics Data System (ADS)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24-28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20-22 km) and Ross Sea Ice Shelf (16-24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10-20 km).

  14. The maximum economic depth of groundwater abstraction for irrigation

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.

  15. The Vertical Dust Profile over Gale Crater

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.

    2017-12-01

    Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio in the vertical column of atmosphere over Gale Crater.

  16. Geophysical setting of western Utah and eastern Nevada between latitudes 37°45′ and 40°N

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.; Tripp, Bryce; Krahulec, Ken; Jordan, Lucy

    2009-01-01

    Gravity and aeromagnetic data refine the structural setting for the region of western Utah and eastern Nevada between Snake and Hamlin Valleys on the west and Tule Valley on the east. These data are used here as part of a regional analysis. An isostatic gravity map shows large areas underlain by gravity lows, the most prominent of which is a large semi-circular low associated with the Indian Peak caldera complex in the southwestern part of the study area. Another low underlies the Thomas caldera in the northeast, and linear lows elsewhere indicate low-density basin-fill in all major north-trending graben valleys. Gravity highs reflect pre-Cenozoic rocks mostly exposed in the mountain ranges. In the Confusion Range, however, the gravity high extends about 15 km east of the range front to Coyote Knolls, indicating a broad pediment cut on upper Paleozoic rocks and covered by a thin veneer of alluvium. Aeromagnetic highs sharply delineate Oligocene and Miocene volcanic rocks and intracaldera plutons associated with the Indian Peak caldera complex and the Pioche–Marysvale igneous belt. Jurassic to Eocene plutons and volcanic rocks elsewhere in the study area, however, have much more modest magnetic signatures. Some relatively small magnetic highs in the region are associated with outcrops of volcanic rock, and the continuation of those anomalies indicates that the rocks are probably extensive in the subsurface. A gravity inversion method separating the isostatic gravity anomaly into fields representing pre-Cenozoic basement rocks and Cenozoic basin deposits was used to calculate depth to basement and estimate maximum amounts of alluvial and volcanic fill within the valleys. Maximum depths within the Indian Peak caldera complex average about 2.5 km, locally reaching 3 km. North of the caldera complex, thickness of valley fill in most graben valleys ranges from 1.5 to 3 km thick, with Hamlin and Pine Valleys averaging ~3 km. The main basin beneath Tule Valley is relatively shallow (~0.6 km), reaching a maximum depth of ~1 km over a small area northeast of Coyote Knolls. Maximum horizontal gradients were calculated for both long-wavelength gravity and magnetic-potential data, and these were used to constrain major density and magnetic lineaments. These lineaments help delineate deep-seated crustal structures that separate major tectonic domains, potentially localizing Cenozoic tectonic features that may control regional ground-water flow.

  17. Sampling strategies to improve passive optical remote sensing of river bathymetry

    USGS Publications Warehouse

    Legleiter, Carl; Overstreet, Brandon; Kinzel, Paul J.

    2018-01-01

    Passive optical remote sensing of river bathymetry involves establishing a relation between depth and reflectance that can be applied throughout an image to produce a depth map. Building upon the Optimal Band Ratio Analysis (OBRA) framework, we introduce sampling strategies for constructing calibration data sets that lead to strong relationships between an image-derived quantity and depth across a range of depths. Progressively excluding observations that exceed a series of cutoff depths from the calibration process improved the accuracy of depth estimates and allowed the maximum detectable depth ($d_{max}$) to be inferred directly from an image. Depth retrieval in two distinct rivers also was enhanced by a stratified version of OBRA that partitions field measurements into a series of depth bins to avoid biases associated with under-representation of shallow areas in typical field data sets. In the shallower, clearer of the two rivers, including the deepest field observations in the calibration data set did not compromise depth retrieval accuracy, suggesting that $d_{max}$ was not exceeded and the reach could be mapped without gaps. Conversely, in the deeper and more turbid stream, progressive truncation of input depths yielded a plausible estimate of $d_{max}$ consistent with theoretical calculations based on field measurements of light attenuation by the water column. This result implied that the entire channel, including pools, could not be mapped remotely. However, truncation improved the accuracy of depth estimates in areas shallower than $d_{max}$, which comprise the majority of the channel and are of primary interest for many habitat-oriented applications.

  18. Horizontal well drilled into deep, hot Austin chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, D.; Johnson, M.; Godfrey, B.

    1995-04-03

    Bent-housing steerable downhole motors helped maintain course for a deep, hot, horizontal well in the Austin chalk. The Navasota Unit No. 1 was planned as a B zone, single downdip lateral, Austin chalk horizontal well with a maximum departure from vertical of 3,767 ft and a planned total depth (TD) of 17,342 ft measured depth (MD)/14,172 ft TVD. The Austin chalk was found significantly deeper in this well than planned, which resulted in an actual TD of 17,899 ft MD/14,993 ft TVD, the deepest (TVD) horizontal well in the Austin chalk to date. The well was spudded on August 6,more » 1994, and took 52 days to reach TD. The static bottom hole temperature was almost 350 F. The paper describes the well plan, drilling results, and the lateral section.« less

  19. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  20. Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.; Maurer, Douglas K.

    1981-01-01

    Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)

  1. Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission

    PubMed Central

    Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther

    2012-01-01

    Abstract In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5–12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples. Key Words: Space radiation—Dosimetry—Passive radiation detectors—Thermoluminescence—EXPOSE-E. Astrobiology 12, 387–392. PMID:22680685

  2. Neuromuscular responses during aquatic resistance exercise with different devices and depths.

    PubMed

    Colado, Juan C; Borreani, Sebastien; Pinto, Stephanie Santana; Tella, Victor; Martin, Fernando; Flandez, Jorge; Kruel, Luiz F

    2013-12-01

    Little research has been reported regarding the effects of using different devices and immersion depths during the performance of resistance exercises in a water environment. The purpose of this study was to compare muscular activation of upper extremity and core muscles during shoulder extensions performed at maximum velocity with different devices and at different depths. Volunteers (N = 24) young fit male university students performed 3 repetitions of shoulder extensions at maximum velocity using 4 different devices and at 2 different depths. The maximum amplitude of the electromyographic root mean square of the latissimus dorsi (LD), rectus abdominis, and erector lumbar spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction. No significant (p > 0.05) differences were found in the neuromuscular responses between the different devices used during the performance of shoulder extension at xiphoid process depth. Regarding the comparisons of muscle activity between the 2 depths analyzed in this study, only the LD showed a significantly (p ≤ 0.05) higher activity at the xiphoid process depth compared with that at the clavicle depth. Therefore, if maximum muscle activation of the extremities is required, the xiphoid depth is a better choice than clavicle depth, and the kind of device is not relevant. Regarding core muscles, neither the kind of device nor the immersion depth modifies muscle activation.

  3. Dust Storm Signatures in Global Ionosphere Map of GPS Total Electron Content

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Tse; Shih, Ai-Ling; Liu, Jann-Yenq; Kuo, Cheng-Ling; Lin, Tang-Huang; Lien, Wei-Hung

    2016-04-01

    In this paper both MODIS data and GIM (global ionosphere map) TEC (total electron content) as well as numerical simulations are used to study ionospheric dust storm effects in May 2008. The aerosol optical depth (AOD) and the LTT (latitude-time-TEC) along the Sahara longitude simultaneously reach their maximum values on 28 May 2008. The LLT (latitude-longitude-TEC) map specifically and significantly increases over the Sahara region on 28 May 2008. The simulation suggests that the dust storm may change the atmospheric conductivity, which in turn modifies the GIM TEC over the Sahara area.

  4. Sedimentation rates in the marshes of Sand Lake National Wildlife Refuge

    USGS Publications Warehouse

    Gleason, R.A.; Euliss, N.H.; Holmes, C.W.

    2003-01-01

    Impoundments located within river systems in the Northern Great Plains are vulnerable to sediment inputs because intensive agriculture in watersheds has increased soil erosion and sediments in rivers. At the request of the U.S. Fish and Wildlife Service (FWS), we evaluated the vertical accretion of sediment in the Mud Lake impoundment of Sand Lake National Wildlife Refuge (NWR), Brown County, South Dakota. The Mud Lake impoundment was created in 1936 by constructing a low-head dam across the James River. We collected sediment cores from the Mud Lake impoundment during August 2000 for determination of vertical accretion rates. Accretion rates were estimated using cesium-13 7 and lead-210 isotopic dating techniques to estimate sediment accretion over the past 100 years. Accretion rates were greatest near the dam (1.3 cm yr-1) with less accretion (0.2 cm yr-1) occurring in the upper reaches of Mud Lake. As expected, accretion was highest near the dam where water velocities and greater water depth facilitates sediment deposition. Higher rates of sedimentation (accretion> 2.0 cm year-1) occurred during the 1990s when river flows were especially high. Since 1959, sediment accretion has reduced maximum pool depth of Mud Lake near the dam by 55 cm. Assuming that sediment accretion rates remain the same in the future, we project Mud Lake will have a maximum pool depth of 77 and 51 cm by 2020 and 2040, respectively. Over this same time frame, water depths in the upper reaches of Mud Lake would be reduced to< 2 cm. Projected future loss of water depth will severely limit the ability of managers to manipulate pool levels in Mud Lake to cycle vegetation and create interspersion of cover and water to meet current wildlife habitat management objectives. As predicted for major dams constructed on rivers throughout the world, Mud Lake will have a finite life span. Our data suggests that the functional life span of Mud Lake since construction will be < 100 years. We anticipate that over the next 20 years, sediments entering Mud Lake will reduce water depths to the point that current wildlife management objectives cannot be achieved through customary water-level manipulations. Sedimentation impacts are not unique to the Sand Lake NWR. It is widely accepted that impoundments trap sediments and shallow impoundments, such as those managed by the FWS, are especially vulnerable. Given the ecological impacts associated with loss of water depths, we recommend that managers begin evaluating the long-term wildlife management goals for the refuge relative to associated costs and feasibility of options available to enhance and maximize the life span of existing impoundments, including upper watershed management.

  5. A comparative study of soil water movement under different vegetation covers

    NASA Astrophysics Data System (ADS)

    FERNANDO, A.; Tanaka, T.

    2002-05-01

    Vegetation, varying widely floristically, structurally, and in spatial distribution, is a complex phenomenon, delicately adjusted within itself and to its broader environment. To investigate the soil water movement of different vegetation covers, soil physical properties, and pressure head of soil water, have been analysed in a pine forest and adjacent disturbed grassland at the Terrestrial Environmental Research Centre (ERC) of Tsukuba University, Japan. Our results of the soil physical properties showed significant differences under different vegetation. At the forest site, the total porosity was nearly constant, i.e. 81% to 84%, from the ground surface to the depth of 70 cm, and decreased uniformly with the depth to reach 63.2% at 150 cm. At the grassland site, the total porosity was about 70% near the ground surface, however, expeditiously decreased to approximately 62% between the depths of 10 and 40 cm. Below these depths the total porosity increased to a maximum of about 77% between the depths of 50 and 80 cm, then decreased again to 54.9% at 150 cm. The total pressure head indicated that the evapotranspiration zone of the pine forest was 70 cm but was 50 cm in the grassland. KEY WORDS: Natural pine forest, Disturbed grassland, Soil water movement, Soil physical properties, Evaporation effective zone.

  6. Upper Ocean Profiles Measurements with ASIP

    NASA Astrophysics Data System (ADS)

    Ward, B.; Callaghan, A. H.; Fristedt, T.; Vialard, J.; Cuypers, Y.; Weller, R. A.; Grosch, C. E.

    2009-04-01

    This presentation describes results from the Air-Sea Interaction Profiler (ASIP), an autonomous profiling instrument for upper ocean measurements. The measurements from ASIP are well suited to enhancing research on air-sea interfacial and near surface processes. Autonomous profiling is accomplished with a thruster, which submerges ASIP to a programmed depth. Once this depth is reached the positively buoyant instrument will ascend to the surface acquiring data. ASIP can profile from a maximum depth of 100 m to the surface, allowing both mixed layer and near-surface measurements to be conducted. The sensor payload on ASIP include microstructure sensors (two shear probes and a thermistor); a slow response accurate thermometer; a pair of conductivity sensors; pressure for a record of depth; PAR for measurements of light absorption in the water column. Other non-environmental sensors are acceleration, rate, and heading for determination of vehicle motion. Power is provided with rechargable lithium-ion batteries, supplying 1000 Whr, allowing approximately 300 profiles. ASIP also contains an iridium/GPS system, which allows realtime reporting of its position. ASIP was deployed extensively during the Cirene Indian Ocean campaign and our results focus on the data from the temperature, salinity, light, and shear sensors.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.S.; Miyamoto, Y.

    The fracture behavior of graded Al{sub 2}O{sub 3}/TiC/Ni materials with a symmetric structure was investigated using single-edge notch-bend (SENB) specimens with surface compression. The fracture toughness of the graded materials was determined according to ASTM Standard E399. The results show that the effective fracture toughness increases with an increase in notch depth in the compressive stress zone, and reaches the maximum of 39.2 MPa m{sup 1/2} at the interface of compressive/tensile stress zones. Finite elements analysis reveals that the surface compression will be intensified at the notch root once the specimen is edge-notched because of the stress concentration, and themore » digress of the compressive stress intensification increases with an increase in notch depth. The dependence of the effective fracture toughness of the graded materials on the notch depth shows a behavior similar to the R-curve that is usually associated with microstructural toughening mechanisms. This toughening behavior is caused by the intensification of the compressive stress concentration with the increase of the notch depth. A theoretical analysis based on fracture mechanics verifies that the mechanical reliability of brittle ceramics can be improved effectively by tailoring and controlling the internal stresses.« less

  8. Does the Dual-Mobility Hip Prosthesis Produce Better Joint Kinematics During Extreme Hip Flexion Task?

    PubMed

    Catelli, Danilo S; Kowalski, Erik; Beaulé, Paul E; Lamontagne, Mario

    2017-10-01

    Total hip arthroplasty (THA) using dual-mobility (DM) design permits larger hip range of motion. However, it is unclear how it benefits the patients during activities of daily living. The purpose was to compare kinematic variables of the operated limb between THA patients using either DM or single-bearing (SB) implants during a squat task. Twenty-four THA patients were randomly assigned to either a DM or SB implant and matched to 12 healthy controls (CTRLs). They underwent 3-dimensional squat motion analysis before and 9 months after surgery. Sagittal and frontal plane angles of the pelvis and the hip were analyzed using statistical parametric mapping. Paired analyses compared presurgery and postsurgery squat depth. Peak sagittal pelvis angle of DM was closer to normal compared with that of SB. Both implant groups had similar hip angle patterns and magnitude but significantly lower than the CTRLs. SB reached a much large hip abduction compared with the other groups. Both surgical groups had significantly worst squat depth than the CTRLs. Neither THA implant groups were able to return pelvis and hip kinematics to the level of CTRLs. The deficit of DM implants at the pelvis combined with the poorer functional scores should caution clinicians to use this implant design in active patients. SB design causes a larger hip abduction to reach their maximum squat depth. Post-THA rehabilitation should focus on improving joint range of motion and strength. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  10. Undercuts by Laser Shock Forming

    NASA Astrophysics Data System (ADS)

    Wielage, Hanna; Vollertsen, Frank

    2011-05-01

    In laser shock forming TEA-CO2-laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. A challenge in forming technologies is the manufacturing of undercuts. By conventional forming methods these special forms are not feasible. In this article, it is presented that undercuts in the micro range can be produced by laser shock deep drawing. Different drawing die diameters, drawing die depths and the material aluminum in the thicknesses 20 and 50 μm were investigated. It will be presented that smaller die diameters facilitate undercuts compared to bigger die diameters. The phenomena can be explained by Barlow's formula. Furthermore, it is shown which maximum undercut depth at different die diameters can be reached. To this end, cross-sections of the different parameter combinations are displayed.

  11. Observed and Predicted Pier Scour in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lombard, Pamela J.

    2002-01-01

    Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.

  12. Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade

    NASA Astrophysics Data System (ADS)

    Chu, Sophie N.; Wang, Zhaohui Aleck; Doney, Scott C.; Lawson, Gareth L.; Hoering, Katherine A.

    2016-07-01

    In order to understand the ocean's role as a sink for anthropogenic carbon dioxide (CO2), it is important to quantify changes in the amount of anthropogenic CO2 stored in the ocean interior over time. From August to September 2012, an ocean acidification cruise was conducted along a portion of the P17N transect (50°N 150°W to 33.5°N 135°W) in the Northeast Pacific. These measurements are compared with data from the previous occupation of this transect in 2001 to estimate the change in the anthropogenic CO2 inventory in the Northeast Pacific using an extended multiple linear regression (eMLR) approach. Maximum increases in the surface waters were 11 µmol kg-1 over 11 years near 50°N. Here, the penetration depth of anthropogenic CO2 only reached ˜300 m depth, whereas at 33.5°N, penetration depth reached ˜600 m. The average increase of the depth-integrated anthropogenic carbon inventory was 0.41 ± 0.12 mol m-2 yr-1 across the transect. Lower values down to 0.20 mol m-2 yr-1 were observed in the northern part of the transect near 50°N and increased up to 0.55 mol m-2 yr-1 toward 33.5°N. This increase in anthropogenic carbon in the upper ocean resulted in an average pH decrease of 0.002 ± 0.0003 pH units yr-1 and a 1.8 ± 0.4 m yr-1 shoaling rate of the aragonite saturation horizon. An average increase in apparent oxygen utilization of 13.4 ± 15.5 µmol kg-1 centered on isopycnal surface 26.6 kg m-3 from 2001 to 2012 was also observed.

  13. Using tsunami deposits to determine the maximum depth of benthic burrowing

    PubMed Central

    Shirai, Kotaro; Murakami-Sugihara, Naoko

    2017-01-01

    The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254

  14. Using tsunami deposits to determine the maximum depth of benthic burrowing.

    PubMed

    Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko

    2017-01-01

    The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.

  15. Diffusion induced atomic islands on the surface of Ni/Cu nanolayers

    NASA Astrophysics Data System (ADS)

    Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán

    2018-05-01

    Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.

  16. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    PubMed

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.

  17. Effect of laser beam on temperature distribution on artificial cylindrical shaped hard tissue bones

    NASA Astrophysics Data System (ADS)

    Al-Akhras, M.-Ali H.; Qaseer, Mohammad-Khair; Albiss, B. A.; Gezawa, Umar S.

    2018-02-01

    Samples from fresh lamb chest bones were made in cylindrical shapes to study the time variation of temperature T as functions of the cylindrical radius and depth when its front surface exposed to a laser beam of 110Mw power and 642nm wavelength. The laser beam was directed at the center of the front surface of the horizontal cylinder. The measurements were done in vacuum and at atmospheric pressure. Our data reveal the linear variation of T with time, followed by a gradual increase before it reaches a plateau value at higher time. This sort of behavior independent of the radius or the depth where the temperature was measured. Moreover, the maximum variation occurs on the front surface where the laser beam was hitting and diminishes gradually with depth deep inside the cylinder. Data at atmospheric pressure showed less changes in temperature. The temperature distribution in bone due to laser irradiation is very important for a rational use of laser therapy as well as in the surgery to minimizes the thermal tissue damage.

  18. Real-time radiography of Titan 4 Solid Rocket Motor Upgrade (SRMU) static firing test QM-2

    NASA Astrophysics Data System (ADS)

    Dolan, K. W.; Curnow, G. M.; Perkins, D. E.; Schneberk, D. J.; Costerus, B. W.; Lachapell, M. J.; Turner, D. E.; Wallace, P. W.

    1994-03-01

    Real-time radiography was successfully applied to the Titan-4 Solid Rocket Motor Upgrade (SRMU) static firing test QM-2 conducted February 22, 1993 at Phillips Laboratory, Edwards AFB, CA. The real-time video data obtained in this test gave the first incontrovertible evidence that the molten slag pool is low (less than 5 to 6 inches in depth referenced to the bottom of the aft dome cavity) before T + 55 seconds, builds fairly linearly from this point in time reaching a quasi-equilibrium depth of 16 to 17 inches at about T + 97 seconds, which is well below the top of the vectored nozzle, and maintains that level until T + 125 near the end motor burn. From T + 125 seconds to motor burn-out at T + 140 seconds the slag pool builds to a maximum depth of about 20 to 21 inches, still well below the top of the nozzle. The molten slag pool was observed to interact with motions of the vectored nozzle, and exhibit slosh and wave mode oscillations. A few slag ejection events were also observed.

  19. Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates

    PubMed Central

    2014-01-01

    Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance. PACS 81.07.-b; 42.79.Wc; 81.16.Rf; 81.15.Cd PMID:24808799

  20. Soil thermal properties at two different sites on James Ross Island in the period 2012/13

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Láska, Kamil

    2015-04-01

    James Ross Island (JRI) is the largest island in the eastern part of the Antarctic Peninsula. Ulu Peninsula in the northern part of JRI is considered the largest ice free area in the Maritime Antarctica region. However, information about permafrost on JRI, active layer and its soil properties in general are poorly known. In this study, results of soil thermal measurements at two different sites on Ulu Peninsula are presented between 1 April 2012 and 30 April 2013. The study sites are located (1) on an old Holocene marine terrace (10 m a. s. l.) in the closest vicinity of Johann Gregor Mendel (JGM) Station and (2) on top of a volcanic plateau named Johnson Mesa (340 m a. s. l.) about 4 km south of the JGM Station. The soil temperatures were measured at 30 min interval using platinum resistance thermometers Pt100/8 in two profiles up to 200 cm at JGM Station and 75 cm at Johnson Mesa respectively. Decagon 10HS volumetric water content sensors were installed up 30 cm at Johnson Mesa to 50 cm at JGM Station, while Hukseflux HFP01 soil heat flux sensors were used for direct monitoring of soil physical properties at 2.5 cm depth at both sites. The mean soil temperature varied between -5.7°C at 50 cm and -6.3°C at 5 cm at JGM Station, while that for Johnson Mesa varied between -6.9°C at 50 cm and -7.1°C at 10 cm. Maximum active layer thickness estimated from 0 °C isotherm reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively which corresponded with maximum observed annual temperature at 50 cm at both sites. The warmest part of both profiles detected at 50 cm depth corresponded with maximum thickness of active layer, estimated from 0°C isotherm, reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively. Volumetric water content at 5 cm varied around 0.25 m3m-3 at both sites. The slight increase to 0.32 m3m-3 was observed at JGM Station at 50 cm and at Johnson Mesa at 30 cm depth. Soil texture analysis showed distinctly higher share of coarser fraction >2 mm at Johnson Mesa than at JGM Station. Comparison of both sites indicated that mean ground temperature at 50 cm depth was higher by 1.2 °C at JGM station, although the active layer was thicker by 2 cm only. It can therefore be concluded that soil physical properties like texture and moisture may significantly affect thermal regime at boundary between AL and permafrost table during individual thawing seasons.

  1. Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal

    NASA Astrophysics Data System (ADS)

    Wronna, M.; Omira, R.; Baptista, M. A.

    2015-11-01

    In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.

  2. Active layer monitoring at CALM-S site near J.G.Mendel Station, James Ross Island, eastern Antarctic Peninsula.

    PubMed

    Hrbáček, Filip; Kňažková, Michaela; Nývlt, Daniel; Láska, Kamil; Mueller, Carsten W; Ondruch, Jakub

    2017-12-01

    The Circumpolar Active Layer Monitoring - South (CALM-S) site was established in February 2014 on James Ross Island as the first CALM-S site in the eastern Antarctic Peninsula region. The site, located near Johann Gregor Mendel Station, is labelled CALM-S JGM. The grid area is gently sloped (<3°) and has an elevation of between 8 and 11ma.s.l. The lithology of the site consists of the muddy sediments of Holocene marine terrace and clayey-sandy Cretaceous sedimentary rocks, which significantly affect the texture, moisture content, and physical parameters of the ground within the grid. Our objective was to study seasonal and interannual variability of the active layer depth and thermal regime at the CALM-S site, and at two ground temperature measurement profiles, AWS-JGM and AWS-CALM, located in the grid. The mean air temperature in the period March 2013 to February 2016 reached -7.2°C. The mean ground temperature decreased with depth from -5.3°C to -5.4°C at 5cm, to -5.5°C to -5.9°C at 200cm. Active layer thickness was significantly higher at AWS-CALM and ranged between 86cm (2014/15) and 87cm (2015/16), while at AWS-JGM it reached only 51cm (2013/14) to 65cm (2015/16). The mean probed active layer depth increased from 66.4cm in 2013/14 to 78.0cm in 2014/15. Large differences were observed when comparing the minimum (51cm to 59cm) and maximum (100cm to 113cm) probed depths. The distribution of the active layer depth and differences in the thermal regime of the uppermost layer of permafrost at CALM-S JGM clearly show the effect of different lithological properties on the two lithologically distinct parts of the grid. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nanohardness and Residual Stress in TiN Coatings.

    PubMed

    Hernández, Luis Carlos; Ponce, Luis; Fundora, Abel; López, Enrique; Pérez, Eduardo

    2011-05-17

    TiN films were prepared by the Cathodic arc evaporation deposition method under different negative substrate bias. AFM image analyses show that the growth mode of biased coatings changes from 3D island to lateral when the negative bias potential is increased. Nanohardness of the thin films was measured by nanoindentation, and residual stress was determined using Grazing incidence X ray diffraction. The maximum value of residual stress is reached at -100 V substrate bias coinciding with the biggest values of adhesion and nanohardness. Nanoindentation measurement proves that the force-depth curve shifts due to residual stress. The experimental results demonstrate that nanohardness is seriously affected by the residual stress.

  4. The P wavespeed structure in the mantle to 800 km depth below the Philippines region: geodynamic implications

    NASA Astrophysics Data System (ADS)

    Wright, C.

    2009-03-01

    P waves from earthquakes south of Taiwan, recorded by the BATS seismic array and CWB seismic network, were used define the P wavespeed structure between depths of 100 and 800 km below the Philippines region. The presence of a low wavespeed zone in the upper mantle is inferred, although the details are unclear. Wavespeeds in the uppermost mantle are low, as expected for seismic energy propagating within an oceanic plate. The estimated depths of the 410- and 660-km discontinuities are 325 and 676 km respectively. The unusually shallow depth of the upper discontinuity below and to the east of Luzon is inferred by clearly resolving the travel-time branch produced by refraction through the transition zone. A possible explanation for the northern part of the region covered is that seismic energy reaches its maximum depth within or close to the cool, subducted oceanic South China Sea slab where subduction has been slow and relatively recent. Further south, however, the presence of a broken remnant of the South China Sea slab, formed during a period of shallower subduction, is suggested at depths below 300 km to explain the broad extent of the elevated 410-km discontinuity. The 660-km discontinuity is slightly deeper than usual, implying that low temperatures persist to lower mantle depths. The wavespeed gradients within the transition zone between depths of 450 and 610 km are higher than those predicted by both the pyrolite and piclogite models of the mantle, possibly due to the presence of water in the transition zone.

  5. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA.

    PubMed

    Lin, Xueju; Tfaily, Malak M; Steinweg, J Megan; Chanton, Patrick; Esson, Kaitlin; Yang, Zamin K; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher W; Kostka, Joel E

    2014-06-01

    This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.

  6. Vortex formation with a snapping shrimp claw.

    PubMed

    Hess, David; Brücker, Christoph; Hegner, Franziska; Balmert, Alexander; Bleckmann, Horst

    2013-01-01

    Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  7. Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements

    PubMed Central

    Mayo, Johnathan; Baur, Kilian; Wittmann, Frieder; Riener, Robert; Wolf, Peter

    2018-01-01

    Background Goal-directed reaching for real-world objects by humans is enabled through visual depth cues. In virtual environments, the number and quality of available visual depth cues is limited, which may affect reaching performance and quality of reaching movements. Methods We assessed three-dimensional reaching movements in five experimental groups each with ten healthy volunteers. Three groups used a two-dimensional computer screen and two groups used a head-mounted display. The first screen group received the typically recreated visual depth cues, such as aerial and linear perspective, occlusion, shadows, and texture gradients. The second screen group received an abstract minimal rendering lacking those. The third screen group received the cues of the first screen group and absolute depth cues enabled by retinal image size of a known object, which realized with visual renderings of the handheld device and a ghost handheld at the target location. The two head-mounted display groups received the same virtually recreated visual depth cues as the second or the third screen group respectively. Additionally, they could rely on stereopsis and motion parallax due to head-movements. Results and conclusion All groups using the screen performed significantly worse than both groups using the head-mounted display in terms of completion time normalized by the straight-line distance to the target. Both groups using the head-mounted display achieved the optimal minimum in number of speed peaks and in hand path ratio, indicating that our subjects performed natural movements when using a head-mounted display. Virtually recreated visual depth cues had a minor impact on reaching performance. Only the screen group with rendered handhelds could outperform the other screen groups. Thus, if reaching performance in virtual environments is in the main scope of a study, we suggest applying a head-mounted display. Otherwise, when two-dimensional screens are used, achievable performance is likely limited by the reduced depth perception and not just by subjects’ motor skills. PMID:29293512

  8. Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure.

    PubMed

    Tan, Wai Kiat; Teh, Su Yean; Koh, Hock Lye

    2017-07-01

    Submarine landslides, also known as submarine mass failures (SMFs), are major natural marine disasters that could critically damage coastal facilities such as nuclear power plants and oil and gas platforms. It is therefore essential to investigate submarine landslides for potential tsunami hazard assessment. Three-dimensional seismic data from offshore Brunei have revealed a giant seabed mass deposited by a previous SMF. The submarine mass extends over 120 km from the continental slope of the Baram Canyon at 200 m water depth to the deep basin floor of the Northwest Borneo Trough. A suite of in-house two-dimensional depth-averaged tsunami simulation model TUNA (Tsunami-tracking Utilities and Application) is developed to assess the vulnerability of coastal communities in Sabah and Sarawak subject to potential SMF tsunami. The submarine slide is modeled as a rigid body moving along a planar slope with the center of mass motion parallel to the planar slope and subject to external forces due to added mass, gravity, and dissipation. The nonlinear shallow water equations are utilized to simulate tsunami propagation from deepwater up to the shallow offshore areas. A wetting-drying algorithm is used when a tsunami wave reaches the shoreline to compute run up of tsunami along the shoreline. Run-up wave height and inundation maps are provided for seven densely populated locations in Sabah and Sarawak to highlight potential risks at each location, subject to two scenarios of slide slopes: 2° and 4°. The first wave may arrive at Kudat as early as 0.4 h after the SMF, giving local communities little time to evacuate. Over a small area, maximum inundated depths reaching 20.3 m at Kudat, 26.1 m at Kota Kinabalu, and 15.5 m at Miri are projected, while the maximum inundation distance of 4.86 km is expected at Miri due to its low-lying coast. In view of the vulnerability of some locations to the SMF tsunami, it is important to develop and implement community resilience program to reduce the potential damage that could be inflicted by SMF tsunamis.

  9. From SYNOP to AMOC: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at Line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.

    2016-02-01

    Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.

  10. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    NASA Astrophysics Data System (ADS)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic calcite precipitation in May leading to the monthly maximum in calcite deposition of 1.18 [g/m2d] (66.31

  11. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    NASA Astrophysics Data System (ADS)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  12. A comparison of hydrographically and optically derived mixed layer depths

    USGS Publications Warehouse

    Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.

    2005-01-01

    Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.

  13. Compositional characterization of asteroid (16) Psyche

    NASA Astrophysics Data System (ADS)

    Sanchez, Juan; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward

    2016-10-01

    We present near-infrared spectra (0.7-2.5 microns) of asteroid (16) Psyche obtained with the NASA Infrared Telescope Facility. Rotationally-resolved spectra were obtained during three nights between December 2015 and February 2016. These data have been combined with three-dimensional shape models of Psyche generated with the SHAPE software package (Magri et al. 2007). From each spectrum, the band center, band depth and spectral slope were measured. We found that the band center varies from 0.92 to 0.94 microns with rotation phase, with an average value of 0.932±0.006 microns. The band depth was found to vary from 1.0 to 1.5±0.1%. Spectral slope values range from 0.25 to 0.35±0.01 microns-1, with rotation phase. We observed a possible anti-correlation between band depth and radar albedo. Using the band depth along with a new laboratory spectral calibration we estimated that Psyche has an average orthopyroxene abundance of 6±1%. The mass-deficit region of Psyche (longitudes ~ 0°-40°), characterized by having the highest radar albedo of the asteroid, also shows the highest value for the spectral slope and the minimum band depth, while the antipode of this region (longitudes ~ 180°-230°), where the radar albedo reaches its lowest value, shows a maximum in band depth and less steep spectral slopes. These results could suggest that the metal-poor antipode region has thicker regolith rich in pyroxene compared to the mass-deficit region.

  14. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. Application to hyperspectral image data from the Platte River

    USGS Publications Warehouse

    Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.

    2011-01-01

    This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes. ?? 2011 by the American Geophysical Union.

  15. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. application to hyperspectral image data from the Platte River

    USGS Publications Warehouse

    Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.

    2011-01-01

    This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes.

  16. Mid-depth temperature maximum in an estuarine lake

    NASA Astrophysics Data System (ADS)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  17. Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats

    NASA Astrophysics Data System (ADS)

    Pasqueron de Fommervault, Orens; Perez-Brunius, Paula; Damien, Pierre; Camacho-Ibar, Victor F.; Sheinbaum, Julio

    2017-12-01

    Chlorophyll concentration is a key oceanic biogeochemical variable. In the Gulf of Mexico (GOM), its distribution, which is mainly obtained from satellite surface observations and scarce in situ experiments, is still poorly understood. In 2011-2012, eight profiling floats equipped with biogeochemical sensors were deployed for the first time in the GOM and generated an unprecedented dataset that significantly increased the number of chlorophyll vertical distribution measurements in the region. The analysis of these data, once calibrated, permits us to reconsider the spatial and temporal variability of the chlorophyll concentration in the water column. At a seasonal scale, results confirm the surface signal seen by satellites, presenting maximum concentrations in winter and low values in summer. It is shown that the deepening of the mixed layer is the primary factor triggering the chlorophyll surface increase in winter. In the GOM, a possible interpretation is that this surface increase corresponds to a biomass increase. However, the present dataset suggests that the basin-scale climatological surface increase in chlorophyll content results from a vertical redistribution of subsurface chlorophyll and/or photoacclimation processes, rather than a net increase of biomass. One plausible explanation for this is the decoupling between the mixed-layer depth and the deep nutrient reservoir since mixed-layer depth only reaches the nitracline in sporadic events in the observations. Float measurements also provide evidence that the depth and the magnitude of the deep chlorophyll maximum is strongly controlled by the mesoscale variability, with higher chlorophyll biomass generally observed in cyclones rather than anticyclones.

  18. Effect of wildfire and fireline construction on the annual depth of thaw in a black spruce permafrost forest in interior Alaska: a 36-year record of recovery

    Treesearch

    Leslie A. Viereck; Nancy R. Werdin-Pfisterer; Phyllis C. Adams; Kenji Yoshikawa

    2008-01-01

    Maximum thaw depths were measured annually in an unburned stand, a heavily burned stand, and a fireline in and adjacent to the 1971 Wickersham fire. Maximum thaw in the unburned black spruce stand ranged from 36 to 52 cm. In the burned stand, thaw increased each year to a maximum depth of 302 cm in 1995. In 1996, the entire layer of seasonal frost remained, creating a...

  19. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.).

    PubMed

    Liu, Xueying; Lv, Shanshan; Liu, Ran; Fan, Shuangxi; Liu, Chaojie; Liu, Renyi; Han, Yingyan

    2018-01-01

    A cool temperature is preferred for lettuce cultivation, as high temperatures cause premature bolting. Accordingly, exploring the mechanism of bolting and preventing premature bolting is important for agriculture. To explore this relationship in depth, morphological, physiological, and transcriptomic analyses of the bolting-sensitive line S39 at the five-leaf stage grown at 37°C were performed in the present study. Based on paraffin section results, we observed that S39 began bolting on the seventh day at 37°C. During bolting in the heat-treated plants, GA3 and GA4 levels in leaves and the indoleacetic acid (IAA) level in the stem reached a maximum on the sixth day, and these high contents were maintained. Additionally, bolting begins in the fifth day after GA3 treatment in S39 plants, GA3 and GA4 increased and then decreased, reaching a maximum on the fourth day in leaves. Similarly, IAA contents reached a maximum in the stem on the fifth day. No bolting was observed in the control group grown at 25°C, and significant changes were not observed in GA3 and GA4 levels in the controls during the observation period. RNA-sequencing data implicated transcription factors (TFs) in regulating bolting in lettuce, suggesting that the high GA contents in the leaves and IAA in the stem promote bolting. TFs possibly modulate the expression of related genes, such as those encoding hormones, potentially regulating bolting in lettuce. Compared to the control group, 258 TFs were identified in the stem of the treatment group, among which 98 and 156 were differentially up- and down-regulated, respectively; in leaves, 202 and 115 TFs were differentially up- and down-regulated, respectively. Significant changes in the treated group were observed for C2H2 zinc finger, AP2-EREBP, and WRKY families, indicating that these TFs may play important roles in regulating bolting.

  20. Apollo 14 and 16 Active Seismic Experiments, and Apollo 17 Lunar Seismic Profiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Seismic refraction experiments were conducted on the moon by Apollo astronauts during missions 14, 16, and 17. Seismic velocities of 104, 108, 92, 114 and 100 m/sec were inferred for the lunar regolith at the Apollo 12, 14, 15, 16, and 17 landing sites, respectively. These data indicate that fragmentation and comminution caused by meteoroid impacts has produced a layer of remarkably uniform seismic properties moonwide. Brecciation and high porosity are the probable causes of the very low velocities observed in the lunar regolith. Apollo 17 seismic data revealed that the seismic velocity increases very rapidly with depth to 4.7 km/sec at a depth of 1.4 km. Such a large velocity change is suggestive of compositional and textural changes and is compatible with a model of fractured basaltic flows overlying anorthositic breccias. 'Thermal' moonquakes were also detected at the Apollo 17 site, becoming increasingly frequent after sunrise and reaching a maximum at sunset. The source of these quakes could possibly be landsliding.

  1. The nest architecture of the ant Odontomachus brunneus.

    PubMed

    Cerquera, Lina M; Tschinkel, Walter R

    2010-01-01

    The architecture of the subterranean nests of the ant Odontomachus brunneus (Patton) (Hymenoptera: Formicidae) was studied by means of casts with dental plaster or molten metal. The entombed ants were later recovered by dissolution of plaster casts in hot running water. O. brunneus excavates simple nests, each consisting of a single, vertical shaft connecting more or less horizontal, simple chambers. Nests contained between 11 and 177 workers, from 2 to 17 chambers, and 28 to 340 cm(2) of chamber floor space and reached a maximum depth of 18 to 184 cm. All components of nest size increased simultaneously during nest enlargement, number of chambers, mean chamber size, and nest depth, making the nest shape (proportions) relatively size-independent. Regardless of nest size, all nests had approximately 2 cm(2) of chamber floor space per worker. Chambers were closer together near the top and the bottom of the nest than in the middle, and total chamber area was greater near the bottom. Colonies occasionally incorporated cavities made by other animals into their nests.

  2. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics.

    PubMed

    Kooi, Merel; Nes, Egbert H van; Scheffer, Marten; Koelmans, Albert A

    2017-07-18

    Recent studies suggest size-selective removal of small plastic particles from the ocean surface, an observation that remains unexplained. We studied one of the hypotheses regarding this size-selective removal: the formation of a biofilm on the microplastics (biofouling). We developed the first theoretical model that is capable of simulating the effect of biofouling on the fate of microplastic. The model is based on settling, biofilm growth, and ocean depth profiles for light, water density, temperature, salinity, and viscosity. Using realistic parameters, the model simulates the vertical transport of small microplastic particles over time, and predicts that the particles either float, sink to the ocean floor, or oscillate vertically, depending on the size and density of the particle. The predicted size-dependent vertical movement of microplastic particles results in a maximum concentration at intermediate depths. Consequently, relatively low abundances of small particles are predicted at the ocean surface, while at the same time these small particles may never reach the ocean floor. Our results hint at the fate of "lost" plastic in the ocean, and provide a start for predicting risks of exposure to microplastics for potentially vulnerable species living at these depths.

  3. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Aigong; Ma, Ping, E-mail: maping@semi.ac.cn; Zhang, Yonghui

    2014-12-22

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal couldmore » improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically.« less

  4. Red Sea Outflow Experiment (REDSOX): Descent and initial spreading of Red Sea Water in the northwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bower, A.; Johns, W.; Peters, H.; Fratantoni, D.

    2003-04-01

    Two comprehensive surveys were carried out during 2001 to investigate the dense overflow and initial spreading of Red Sea Water (RSW) in the Gulf of Aden. The cruises were timed to coincide with the climatological maximum (February) and minimum (August) periods of outflow transport. The surveys included high-resolution CTD/lowered ADCP/shipboard ADCP observations in the descending plume and in the western gulf, and trajectories from 50 acoustically-tracked RAFOS floats released at the center of the equilibrated RSW (650 m). The measurements reveal a complicated descending plume structure in the western gulf with three main pathways for the high salinity RSW. Different mixing intensities along these pathways lead to variable penetration depths of the Red Sea plume between 450-900 m in the Gulf of Aden. The observations also revealed the hydrographic and velocity structure of large, energetic, deep-reaching mesoscale eddies in the gulf that fundamentally impact the spreading rates and pathways of RSW. Both cyclones and anticyclones were observed, with horizontal scales up to 250 km and azimuthal speeds as high as 0.5 m/s. The eddies appear to reach nearly to the sea floor and entrain RSW from the western gulf at mid-depth. Post-cruise analysis of SeaWiffs imagery suggests that some of these eddies form in the Indian Ocean and propagate into the gulf.

  5. No support for Heincke's law in hagfish (Myxinidae): lack of an association between body size and the depth of species occurrence.

    PubMed

    Schumacher, E L; Owens, B D; Uyeno, T A; Clark, A J; Reece, J S

    2017-08-01

    This study tests for interspecific evidence of Heincke's law among hagfishes and advances the field of research on body size and depth of occurrence in fishes by including a phylogenetic correction and by examining depth in four ways: maximum depth, minimum depth, mean depth of recorded specimens and the average of maximum and minimum depths of occurrence. Results yield no evidence for Heincke's law in hagfishes, no phylogenetic signal for the depth at which species occur, but moderate to weak phylogenetic signal for body size, suggesting that phylogeny may play a role in determining body size in this group. © 2017 The Fisheries Society of the British Isles.

  6. Determination of the maximum-depth to potential field sources by a maximum structural index method

    NASA Astrophysics Data System (ADS)

    Fedi, M.; Florio, G.

    2013-01-01

    A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.

  7. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically active soil zone in the Hanford Central Plateau does not exceed 300 cm (9.8 ft), the maximum rooting depth for the deepest rooting plant. The maximum depth at which most other plant and animal species occur is substantially shallower. Spatial distribution and density of burrows and roots over depths were also evaluated. Although maximum excavation by harvester ants is 270 cm (8.9 ft), trivial volume of soil is excavated below 150 cm (∼5 ft). Maximum rooting depths for all grasses, forbs, and the most abundant and deepest rooting shrubs are 300 cm (9.8 ft) or less. Most root biomass (>50-80%) is concentrated in the top 100 cm (3.3 ft), whereas at the maximum depth (9.8 ft), only trace root biomass is present. Available data suggest a limited likelihood for significant transport of contaminants to the surface by plants at or below 244 cm (8 ft), and suggest that virtually all plants or animal species occurring on the Central Plateau have a negligible likelihood for transporting soil contaminants to the surface from depths at or below 305 cm (10 ft). © 2014 SETAC.

  8. Discharge and other hydraulic measurements for characterizing the hydraulics of Lower Congo River

    USGS Publications Warehouse

    Oberg, Kevin; Shelton, John M.; Gardiner, Ned; Jackson, P. Ryan

    2009-01-01

    The first direct measurements of discharge of the Lower Congo River below Malebo Pool and upstream from Kinganga, Democratic Republic of Congo (DRC) were made in July 2008 using acoustic Doppler current profilers, differential GPS, and echo sounders. These measurements were made in support of research that is attempting to understand the distribution of fish species in the Lower Congo River and reasons for separation of species within this large river. Analyses of these measurements show that the maximum depth in the Lower Congo River was in excess of 200 m and maximum water velocities were greater than 4 m/s. The discharge measured near Luozi, DRC was 35,800 m3/s, and decreased slightly beginning midway through the study. Local bedrock controls seem to have a large effect on the flow in the river, even in reaches without waterfalls and rapids. Dramatic changes in bed topography are evident in transects across the river.

  9. Influence of bedrock on river hydrodynamics and channel geometry

    NASA Astrophysics Data System (ADS)

    Rennie, C. D.; Church, M. A.; Venditti, J. G.; Bomhof, J.; Adderley, C.

    2013-12-01

    We present an acoustic Doppler current profiler (aDcp) survey of a 524 km long reach of Fraser River, British Columbia, Canada, as it passes through the Fraser Canyons. The channel alternates between gravel-bedded reaches that are incised into semi-consolidated glacial deposits and bedrock-bound reaches (7.7% of the reach between the towns of Quesnel and Hope). A continuous centreline aDcp survey was employed to measure longitudinal variation in slope, depth, depth-averaged velocity, and shear velocity. A total of 71 aDcp sectional surveys throughout the reach provided section widths (w), section-averaged depths (d), velocity distributions, and discharge (Q). Finally, air photo analysis using Google imagery provided channel widths at 0.5 km spacing. The survey reach was subdivided into 10 morphological sub-reaches, which ranged from alluvial gravel-bed reaches with relatively moderate slope to steep non-alluvial rock-walled canyons. The resulting data provide a unique opportunity to evaluate the influence of bedrock confinement on river hydrodynamics and channel geometry. Continuous centreline longitudinal aDcp data and the widths from air photo analysis were grouped within each sub-reach based on presence of bedrock confinement on both banks, either bank, or neither bank. The results demonstrate that river widths decreased and water depths, flow velocities, and shear velocities increased from the alluvial sub-reaches to the semi-alluvial reaches to the canyon reaches. Within each sub-reach, locations with bedrock encroachment on both banks were also narrower and deeper, but had lower depth-averaged velocity and shear velocity. Sectional geometry data were homogenized along the river (to compensate increasing flows at tributary junctions) by computing w/Q^{1/2} and d/Q^{1/3}, following commonly observed scaling relations. Alluvial reaches are 2.3x wider than rock-bound reaches (from the more abundant imagery data) and 0.60x as deep (from aDcp sections), implying that mean velocity is accelerated in rock reaches by 38%. There is also variation from reach to reach along the river controlled by variation in rock lithologies, with the narrowest canyons occurring in Fraser Canyon proper (w/Q^{1/2} = 0.083 compared with 1.4 elsewhere). The uppermost (';Marguerite') and lowermost (';Agassiz') alluvial reaches are considerably wider (w/Q^{1/2}= 3.9 and 7.1 respectively) than intervening ones ( 2.35). These reaches have lower gradients and exhibit wandering channels. Because of lithological control, the downstream hydraulic geometry of the river does not, in fact, conform with the common pattern, even when sections are analyzed according to boundary material. However, river gradient is well correlated with scaled width; inversely for gravel reaches and directly, but with little sensitivity, for rock-bound reaches.

  10. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith.

    PubMed

    Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan

    2008-12-15

    The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60cm) and flow rate (10-30ml min(-1)). At 0.05 C(t)/C(0), the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40mg cm(-3) or 137.91mg Cr(VI)g(-1) coir pith for the flow rates of 10ml min(-1) and 14.05mg cm(-3) or 118.20mg Cr(VI)g(-1) coir pith for the flow rates of 30ml min(-1). At the highest bed depth (60cm) and the lowest flow rate (10mlmin(-1)), the maximum adsorption reached 201.47mg Cr(VI)g(-1) adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2M HNO(3) after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, alpha-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR).

  11. Habitat use of juvenile pallid sturgeon and shovelnose sturgeon with implications for water-level management in a downstream reservoir

    USGS Publications Warehouse

    Gerrity, Paul C.; Guy, C.S.; Gardner, W.M.

    2008-01-01

    Natural recruitment of pallid sturgeon Scaphirhynchus albus has not been observed in the Missouri River above Fort Peck Reservoir, Montana, for at least 20 years. To augment the population, age-1 hatchery-reared juvenile pallid sturgeon were released in 1998. The objective of this study was to evaluate the habitat use of these fish and compare it with that of indigenous shovelnose sturgeon S. platorynchus. Twenty-nine juvenile pallid sturgeon and 21 indigenous shovelnose sturgeon were implanted with radio transmitters in 2003 and 2004. The two species showed no differences in habitat use in terms of mean depth, cross-sectional relative depth, longitudinal relative depth, column velocity, bottom velocity, and channel width. However, there were seasonal differences within both species for cross-sectional relative depth, column velocity, and channel width. Both shovelnose sturgeon and juvenile pallid sturgeon were primarily associated with silt and sand substrate. However, shovelnose sturgeon were associated with gravel and cobble substrate more than juvenile pallid sturgeon. Shovelnose sturgeon and juvenile pallid sturgeon both selected reaches without islands and avoided reaches with islands; the two species also selected main-channel habitat and avoided secondary channels. Mean home range was similar between juvenile pallid sturgeon (15 km; 90% confidence interval, ??5.0 km) and shovelnose sturgeon (16.5 km; ??4.7 km). Spatial distribution differed between the two species, with shovelnose sturgeon using upstream areas more often than juvenile pallid sturgeon. Twenty-eight percent of juvenile pallid sturgeon frequented 60 km of lotie habitat that would be inundated by Fort Peck Reservoir at maximum pool. Stocking juvenile pallid sturgeon can successfully augment the wild pallid sturgeon population in the Missouri River above Fort Peck Reservoir, which is crucial to the long-term recovery of the species. However, water-level management in downstream reservoirs such as Fort Peck can influence the amount of habitat available for pallid sturgeon. ?? Copyright by the American Fisheries Society 2008.

  12. Subsurface damage distribution in the lapping process.

    PubMed

    Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi

    2008-04-01

    To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.

  13. Design and optimization of a modal- independent linear ultrasonic motor.

    PubMed

    Zhou, Shengli; Yao, Zhiyuan

    2014-03-01

    To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.

  14. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  15. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  16. Investigation of features in radon soil dynamics and search for influencing factors

    NASA Astrophysics Data System (ADS)

    Yakovlev, Grigorii; Cherepnev, Maxim; Nagorskiy, Petr; Yakovleva, Valentina

    2018-03-01

    The features in radon soil dynamics at two depths were investigated and the main influencing factors were revealed. The monitoring of radon volumetric activity in soil air was performed at experimental site of Tomsk Observatory of Radioactivity and Ionizing Radiation with using radon radiometers and scintillation detectors of alpha-radiation with 10 min sampling frequency. The detectors were installed into boreholes of 0.5 and 1 m depths. The analysis of the soil radon monitoring data has allowed revealing some dependencies at daily and annual scales and main influencing factors. In periods with clearly defined daily radon variations in the soil were revealed the next: 1) amplitude of the daily variations of the soil radon volumetric activity damps with the depth, that is related with the influence of convective fluxes in the soil; 2) temporal shift between times of occurrence of radon volumetric activity maximum (or minimum) values at 0.5 m and 1 m depths can reach 3 hours. In seasonal dynamics of the soil radon the following dependences were found: 1) maximal values are observed in winter, but minimal - in summer; 2) spring periods of snow melting are accompanied by anomaly increasing of radon volumetric activity in the soil up to about 3 times. The main influencing factors are atmospheric precipitations, temperature gradient in the soil and the state of upper soil layer.

  17. Falling head ponded infiltration in the nonlinear limit

    NASA Astrophysics Data System (ADS)

    Triadis, D.

    2014-12-01

    The Green and Ampt infiltration solution represents only an extreme example of behavior within a larger class of very nonlinear, delta function diffusivity soils. The mathematical analysis of these soils is greatly simplified by the existence of a sharp wetting front below the soil surface. Solutions for more realistic delta function soil models have recently been presented for infiltration under surface saturation without ponding. After general formulation of the problem, solutions for a full suite of delta function soils are derived for ponded surface water depleted by infiltration. Exact expressions for the cumulative infiltration as a function of time, or the drainage time as a function of the initial ponded depth may take implicit or parametric forms, and are supplemented by simple asymptotic expressions valid for small times, and small and large initial ponded depths. As with surface saturation without ponding, the Green-Ampt model overestimates the effect of the soil hydraulic conductivity. At the opposing extreme, a low-conductivity model is identified that also takes a very simple mathematical form and appears to be more accurate than the Green-Ampt model for larger ponded depths. Between these two, the nonlinear limit of Gardner's soil is recommended as a physically valid first approximation. Relative discrepancies between different soil models are observed to reach a maximum for intermediate values of the dimensionless initial ponded depth, and in general are smaller than for surface saturation without ponding.

  18. Imaging Ruptured Lithosphere Beneath the Arabian Peninsula Using S-wave Receiver Functions

    NASA Astrophysics Data System (ADS)

    Hansen, S. E.; Rodgers, A. J.; Schwartz, S. Y.; Al-Amri, A. M.

    2006-12-01

    The lithospheric thickness beneath the Arabian Peninsula has important implications for understanding the tectonic processes associated with continental rifting along the Red Sea. However, estimates of the lithospheric thickness are limited by the lack of high-resolution seismic observations sampling the lithosphere- asthenosphere boundary (LAB). The S-wave receiver function technique allows point determinations of Moho and LAB depths by identifying S-to-P conversions from these discontinuities beneath individual seismic stations. This method is superior to P-wave receiver functions for identifying the LAB because P-to-S multiple reverberations from shallower discontinuities (such as the Moho) often mask the direct conversion from the LAB while S-to-P boundary conversions arrive earlier than the direct S phase and all multiples arrive later. We interpret crustal and lithospheric structure across the entire Arabian Peninsula from S-wave receiver functions computed at 29 stations from four different seismic networks. Generally, both the Moho and the LAB are shallowest near the Red Sea and become deeper towards the Arabian interior. Near the coast, the Moho increases from about 12 to 35 km, with a few exceptions showing a deeper Moho beneath stations that are situated on higher topography in the Asir Province. The crustal thickening continues until an average depth of about 40-45 km is reached over both the central Arabian Shield and Platform. The LAB near the coast is at a depth of about 50 km, increases rapidly, and reaches an average maximum depth of about 120 km beneath the Arabian Shield. At the Shield-Platform boundary, a distinct step is observed in the lithospheric thickness where the LAB depth increases to about 160 km. This step may reflect remnant lithospheric thickening associated with the Shield's accretion onto the Platform and has an important role in guiding asthenospheric flow beneath the eastern margin of the Red Sea. This work was performed in part under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

  19. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA

    PubMed Central

    Tfaily, Malak M.; Steinweg, J. Megan; Chanton, Patrick; Esson, Kaitlin; Yang, Zamin K.; Chanton, Jeffrey P.; Cooper, William; Schadt, Christopher W.

    2014-01-01

    This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland. PMID:24682300

  20. Pressure as a limit to bloater (Coregonus hoyi) vertical migration

    USGS Publications Warehouse

    TeWinkel, Leslie M.; Fleischer, Guy W.

    1998-01-01

    Observations of bloater vertical migration showed a limit to the vertical depth changes that bloater experience. In this paper, we conducted an analysis of maximum differences in pressure encountered by bloater during vertical migration. Throughout the bottom depths studied, bloater experienced maximum reductions in swim bladder volume equal to approximately 50-60% of the volume in midwater. The analysis indicated that the limit in vertical depth change may be related to a maximum level of positive or negative buoyancy for which bloater can compensate using alternative mechanisms such as hydrodynamic lift. Bloater may be limited in the extent of migration by either their depth of neutral buoyancy or the distance above the depth of neutral buoyancy at which they can still maintain their position in the water column. Although a migration limit for the bloater population was evident, individual distances of migration varied at each site. These variations in migration distances may indicate differences in depths of neutral buoyancy within the population. However, in spite of these variations, the strong correlation between shallowest depths of migration and swim bladder volume reduction across depths provides evidence that hydrostatic pressure limits the extent of daily vertical movement in bloater.

  1. Comparison of observed and predicted abutment scour at selected bridges in Maine.

    DOT National Transportation Integrated Search

    2008-01-01

    Maximum abutment-scour depths predicted with five different methods were compared to : maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a : median bridge age of 66 years. Prediction methods included the Froehli...

  2. Characterization of the oceanic light field within the photic zone: Fluctuations of downward irradiance and asymmetry of horizontal radiance

    NASA Astrophysics Data System (ADS)

    Gassmann, Ewa

    Two distinctive features of underwater light field in the upper ocean were examined: the wave-induced high-frequency light fluctuations within the near-surface layer under sunny skies, and the asymmetry of horizontal radiance within the photic layer of the ocean. To characterize the spatiotemporal statistical properties of the wave-induced light fluctuations, measurements of downward plane irradiance were made with novel instrumentation within the top 10 m layer of the ocean at depths as shallow as 10 cm under sunny skies, different solar zenith angles, and weak to moderate wind speeds. It was found that the maximum intensity of light fluctuations occurs at depths as shallow as 20 cm under the most favorable conditions for wave focusing, which correspond to high sun in a clear sky with weak wind. The strong frequency dependence of light fluctuations at shallow near-surface depths indicates dominant frequency range of 1 -- 3 Hz under favorable conditions that shifts toward lower frequencies with increasing depth. The light fluctuations were found to be spatially correlated over horizontal distances varying from few up to 10 -- 20 cm at temporal scales of 0.3 -- 1 sec (at the dominant frequency of 1 -- 3 Hz). The distance of correlation showed a tendency to increase with increasing depth, solar zenith angle, and wind speed. The observed variations in spatiotemporal statistical properties of underwater light fluctuations with depth and environmental conditions are driven largely by weakening of sunlight focusing which is associated with light scattering within the water column, in the atmosphere and at the air-sea interface. To investigate the underwater horizontal radiance field, measurements of horizontal spectral radiance in two opposite directions (solar and anti-solar azimuths) within the solar principal plane were made within the photic layer of the open ocean. The ratio of these two horizontal radiances represents the asymmetry of horizontal radiance field. In addition to measurements, the radiative transfer simulations were also conducted to examine variations in the asymmetry of horizontal radiance at different light wavelengths as a function of solar zenith angle at different depths within the water column down to 200 m. It was demonstrated that the asymmetry of horizontal radiance increases with increasing solar zenith angle, reaching a maximum at angles of 60° -- 80° under clear skies at shallow depths (1 -- 10 m). At larger depths the maximum of asymmetry occurs at smaller solar zenith angles. The asymmetry was also found to increase with increasing light wavelength. The results from radiative transfer simulations provided evidence that variations in the asymmetry with solar zenith angle are driven largely by the diffuseness of light incident upon the sea surface and the geometry of illumination of the sea surface, both associated with changing position of the sun. In addition to contributions to the field of ocean optics, the findings of this dissertation have relevance for oceanic animal camouflage and vision as well as photosynthesis and other photochemical processes.

  3. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements

    PubMed Central

    Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide. PMID:27907043

  4. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements.

    PubMed

    Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide.

  5. [Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in a Populus xeuramericana cv. 'Guariento' plantation].

    PubMed

    Dai, Teng-fei; Xi, Ben-ye; Yan, Xiao-li; Jia, Li-ming

    2015-06-01

    A field experiment was conducted to investigate the effects of fertilization methods, i.e., drip (DF) and furrow fertilization (GF), and nitrogen (N) application rates (25, 50, 75 g N · plant(-1) · time(-1)) on the dynamics of soil N vertical migration in a Populus x euramericana cv. 'Guariento' plantation. The results showed that soil NH4(+)-N and NO3(-)-N contents decreased with the increasing soil depth under different fertilization methods and N application rates. In the DF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-40 cm soil layer, and their contents ascended firstly and then descended, reaching their maximum values at the 5th day (211.1 mg · kg(-1)) and 10th day (128.8 mg · kg(-1)) after fertilization, respectively. In the GF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-20 cm layer, and the content of soil NO3(-)-N rose gradually and reached its maximum at the 20th day (175.7 mg · kg(-1)) after fertilization, while the NH4(+)-N content did not change significantly after fertilization. Overall, N fertilizer had an effect within 20 days in the DF treatment, and more than 20 days in the GF treatment. In the DF treatment, the content and migration depth of soil NH4(+)-N and NO3(-)-N increased with the N application rate. In the GF treatment, the NO3(-)-N content increased with the N application rate, but the NH4(+)-N content was not influenced. Under the DF treatment, the hydrolysis rate, nitrification rate and migration depth of urea were higher or larger than that under the GF treatment, and more N accumulated in deep soil as the N application rate increased. Considering the distribution characteristics of fine roots and soil N, DF would be a better fertilization method in P. xeuramericana cv. 'Guariento' plantation, since it could supply N to larger distribution area of fine roots. When the N application rate was 50 g · tree(-1) each time, nitrogen mainly distributed in the zone of fine roots and had no risk of deep leaching, consequently improving the fertilizer utilization efficiency.

  6. Means of determining extrusion temperatures

    DOEpatents

    McDonald, Robert E.; Canonico, Domenic A.

    1977-01-01

    In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.

  7. Reliability and comparison of trunk and pelvis angles, arm distance and center of pressure in the seated functional reach test with and without foot support in children.

    PubMed

    Radtka, Sandra; Zayac, Jacqueline; Goldberg, Krystyna; Long, Michael; Ixanov, Rustem

    2017-03-01

    This study determined test-retest reliability of trunk and pelvis joint angles, arm distance and center of pressure (COP) excursion for the seated functional reach test (FRT) and compared these variables during the seated FRT with and without foot support. Fifteen typically developing children (age 9.3±4.1years) participated. Trunk and pelvis joint angles, arm distance, and COP excursion were collected on two days using three-dimensional motion analysis and a force plate while subjects reached maximally with and without foot support in the anterior, anterior/lateral, lateral, posterior/lateral directions. Age, weight, height, trunk and arm lengths were correlated (p<0.01) with maximum arm distance reached. Maximum arm distance, trunk and pelvis joint angles, and COP with and without foot support were not significant (p<0.05) for the two test periods. Excellent reliability (ICCs>0.75) was found for maximum arm distance reached in all four directions in the seated FRT with and without foot support. Most trunk and pelvis joint angles and COP excursions during maximum reach in all four directions showed excellent to fair reliability (ICCs>0.40-0.75). Reaching with foot support in all directions was significantly greater (p<0.05) than without foot support; however, most COP excursions and trunk and pelvic angles were not significantly different. Findings support the addition of anterior/lateral and posterior/lateral reaching directions in the seated FRT. Trunk and pelvis movement analysis is important to examine in the seated FRT to determine the specific movement strategies needed for maximum reaching without loss of balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Forbearance for fluoxetine: do monoaminergic antidepressants require a number of years to reach maximum therapeutic effect in humans?

    PubMed

    Fitzgerald, Paul J

    2014-07-01

    It is of high clinical interest to better understand the timecourse through which psychiatric drugs produce their beneficial effects. While a rough estimate of the time lag between initiating monoaminergic antidepressant therapy and the onset of therapeutic effect in depressed subjects is two weeks, much less is known about when these drugs reach maximum effect. This paper briefly examines studies that directly address this question through long-term antidepressant administration to humans, while also putting forth a simple theoretical approach for estimating the time required for monoaminergic antidepressants to reach maximum therapeutic effect in humans. The theory invokes a comparison between speed of antidepressant drug response in humans and in rodents, focusing on the apparently greater speed in rodents. The principal argument is one of proportions, comparing earliest effects of these drugs in rodents and humans, versus their time to reach maximum effect in these organisms. If the proportionality hypothesis is even coarsely accurate, then applying these values or to some degree their ranges to the hypothesis, may suggest that monoaminergic antidepressants require a number of years to reach maximum effect in humans, at least in some individuals.

  9. Calculating maximum frost depths at Mn/ROAD : winters 1993-94, 1994-95 and 1995-96

    DOT National Transportation Integrated Search

    1997-03-01

    This effort involved calculating maximum frost penetration depths for each of the 40 test cells at Mn/ROAD, the Minnesota Department of Transportation's pavement testing facility, for the 1993-94, 1994-95, and 1995-96 winters. The report compares res...

  10. Maximum rooting depth of vegetation types at the global scale.

    PubMed

    Canadell, J; Jackson, R B; Ehleringer, J B; Mooney, H A; Sala, O E; Schulze, E-D

    1996-12-01

    The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.

  11. Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.

    PubMed

    Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P

    2017-03-01

    Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.

  12. Multileaf collimator tongue-and-groove effect on depth and off-axis doses: A comparison of treatment planning data with measurements and Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul

    2015-01-01

    To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less

  13. Groundwater flow modeling of periods with periglacial and glacial climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Vidstrand, Patrik; Follin, Sven; Selroos, Jan-Olof; Näslund, Jens-Ove

    2014-09-01

    The impact of periglacial and glacial climate conditions on groundwater flow in fractured crystalline rock is studied by means of groundwater flow modeling of the Forsmark site, which was recently proposed as a repository site for the disposal of spent high-level nuclear fuel in Sweden. The employed model uses a thermal-hydraulically coupled approach for permafrost modeling and discusses changes in groundwater flow implied by the climate conditions found over northern Europe at different times during the last glacial cycle (Weichselian glaciation). It is concluded that discharge of particles released at repository depth occurs very close to the ice-sheet margin in the absence of permafrost. If permafrost is included, the greater part discharges into taliks in the periglacial area. During a glacial cycle, hydraulic gradients at repository depth reach their maximum values when the ice-sheet margin passes over the site; at this time, also, the interface between fresh and saline waters is distorted the most. The combined effect of advances and retreats during several glaciations has not been studied in the present work; however, the results indicate that hydrochemical conditions at depth in the groundwater flow model are almost restored after a single event of ice-sheet advance and retreat.

  14. Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask

    PubMed Central

    2014-01-01

    A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) solution in sequence. Scanning Auger nanoprobe analysis indicated that the HF solution could selectively etch the scratched Si3N4 mask and then provide the gap for post-etching of silicon substrate in KOH solution. Experimental results suggested that the fabrication depth increased with the increase of the scratching load or KOH etching period. Because of the excellent masking ability of the Si3N4 film, the maximum fabrication depth of nanostructure on silicon can reach several microns. Compared to the traditional friction-induced selective etching technique, the present method can fabricate structures with lesser damage and deeper depths. Since the proposed method has been demonstrated to be a less destructive and flexible way to fabricate a large-area texture structure, it will provide new opportunities for Si-based nanofabrication. PMID:24940174

  15. Progress report on hot particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.; Kaurin, D.G.; Waligorski, M.

    1992-02-01

    NCRP Report 106 on the effects of hot particles on the skin of pigs, monkeys, and humans was critically reviewed and reassessed. The analysis of the data of Forbes and Mikhail on the effects from activated UC{sub 2} particles, ranging in diameter from 144 {mu}m to 328 {mu}m, led to the formulation of a new model to predict both the threshold for acute ulceration and for ulcer diameter. In this model, a point dose of 27 Gy at a depth of 1.33 mm in tissue will cause an ulcer with a diameter determined by the radius to which this dosemore » extends. Application of the model to the Forbes and Mikhail data obtained with mixed fission product beta particles yielded a threshold'' (5% probability) of 6 {times} 10{sup 9} beta particles from a point source of high energy (2.25 MeV maximum) beta particles on skin. The above model was used to predict that approximately 1.2 {times} 10{sup 10} beta particles from Sr-Y-90 would produce similar effects, since few Sr-90 beta particles reach 1.33 mm depth. These emissions correspond to doses at 70-{mu}m depth in tissue of approximately 5.3 to 5.5 Gy averaged over 1 cm{sup 2}, respectively.« less

  16. Progress report on hot particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.; Kaurin, D.G.; Waligorski, M.

    1992-02-01

    NCRP Report 106 on the effects of hot particles on the skin of pigs, monkeys, and humans was critically reviewed and reassessed. The analysis of the data of Forbes and Mikhail on the effects from activated UC{sub 2} particles, ranging in diameter from 144 {mu}m to 328 {mu}m, led to the formulation of a new model to predict both the threshold for acute ulceration and for ulcer diameter. In this model, a point dose of 27 Gy at a depth of 1.33 mm in tissue will cause an ulcer with a diameter determined by the radius to which this dosemore » extends. Application of the model to the Forbes and Mikhail data obtained with mixed fission product beta particles yielded a ``threshold`` (5% probability) of 6 {times} 10{sup 9} beta particles from a point source of high energy (2.25 MeV maximum) beta particles on skin. The above model was used to predict that approximately 1.2 {times} 10{sup 10} beta particles from Sr-Y-90 would produce similar effects, since few Sr-90 beta particles reach 1.33 mm depth. These emissions correspond to doses at 70-{mu}m depth in tissue of approximately 5.3 to 5.5 Gy averaged over 1 cm{sup 2}, respectively.« less

  17. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  18. The maximum depth of shower with E sub 0 larger than 10(17) eV on average characteristics of EAS different components

    NASA Technical Reports Server (NTRS)

    Glushkov, A. V.; Efimov, N. N.; Makarov, I. T.; Pravdin, M. I.; Dedenko, L. G.

    1985-01-01

    The extensive air shower (EAS) development model independent method of the determination of a maximum depth of shower (X sub m) is considered. X sub m values obtained on various EAS parameters are in a good agreement.

  19. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  20. Why do magmas stall? Insights from petrologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.; Freymueller, J.; Hauri, E. H.; Larsen, J. F.; Nye, C. J.

    2007-12-01

    Magmas stall at various depths in the crust due to their internal properties (magma viscosity, buoyancy) and external crustal controls (local stress regime, wallrock strength). Annen et al. (JPet 2006) propose a petrological model in which buoyant magma ascends through the crust until the depth of water saturation, after which it crystallizes catastrophically and stalls due to the large increase in magma viscosity. Magmas may erupt from this storage region, or viscous death may result in pluton formation. In order to test this model, and constrain magma storage depths, we combine petrological and geodetic data for several active volcanoes along the Aleutian-Alaska arc. We analyzed glassy, primarily olivine-hosted melt inclusions by SIMS in tephra samples for their pre-eruptive volatile contents, which can be related to the depth of entrapment via pressure-dependent H2O-CO2 solubility models (e.g., VolatileCalc). Melt inclusions are not in equilibrium with pure water vapor (all will contain S and C species), but >50% of the inclusion population are in equilibrium with a vapor containing >85% H2O. Geodetic data (InSAR, GPS) record surface deformation related to volcano inflation/deflation, and can be inverted to solve for the depths of volume change (magma storage) in the crust. In the Aleutians, we find that the maximum melt inclusion trapping depths and geodetic depths correlate, suggesting both techniques record crustal magma storage and crystallization. Melt inclusions from the 1997 Okmok eruption are trapped at ≤3 km; deformation during the eruption and subsequent inflation occurred at 3±0.5 km (Miyagi et al., EPSL 2004; Lu & Masterlark, JGR 2005). At Akutan, melt inclusions and GPS data indicate magma storage at ~5-7 km. Inclusions from flank cones of Makushin yield depths of 7 km, similar to inflation observed beneath the main edifice (6.8 km, Lu et al., JGR 2002). Pleistocene inclusions from Augustine volcano indicate magma storage at 10-18 km, in accord with a deep magma source proposed for the 2006 eruption. Melt inclusions from Shishaldin are trapped at depths up to 4 km, coincident with the base of the conduit (Vergnoille & Caplan Auerbach, BVolc 2006). Other volcanoes record similar depths of melt inclusion entrapment and deformation, including Mt. St. Helens, Irazú, Soufriere Hills, Vesuvius, and Etna. Clearly, crystallization will occur where magmas stall, cool, and degas, so it may not be surprising that the depths of deformation correlate with the depths of melt inclusion entrapment. But the question of why magmas stall at various depths remains. In the Aleutians, maximum H2O contents of melt inclusions (from 2 wt% at Shishaldin to 7 wt% at Augustine) negatively correlate with measures of the degree of mantle melting (Ti6.0 and Y6.0), which is expected if water drives mantle melting beneath arcs (e.g. Kelley et al. JGR 2006; Portnyagin et al EPSL 2007). Thus, if magmas stall near the depths where they reach H2O-saturation, as predicted by Annen et al. and observed here, then magma chamber and pluton depths may ultimately be controlled by the primary magmatic water contents set in the mantle.

  1. An improved method for predicting the evolution of the characteristic parameters of an information system

    NASA Astrophysics Data System (ADS)

    Dushkin, A. V.; Kasatkina, T. I.; Novoseltsev, V. I.; Ivanov, S. V.

    2018-03-01

    The article proposes a forecasting method that allows, based on the given values of entropy and error level of the first and second kind, to determine the allowable time for forecasting the development of the characteristic parameters of a complex information system. The main feature of the method under consideration is the determination of changes in the characteristic parameters of the development of the information system in the form of the magnitude of the increment in the ratios of its entropy. When a predetermined value of the prediction error ratio is reached, that is, the entropy of the system, the characteristic parameters of the system and the depth of the prediction in time are estimated. The resulting values of the characteristics and will be optimal, since at that moment the system possessed the best ratio of entropy as a measure of the degree of organization and orderliness of the structure of the system. To construct a method for estimating the depth of prediction, it is expedient to use the maximum principle of the value of entropy.

  2. Colonization and Disappearance of Mytilus galloprovincialisLam. on an Artificial Habitat in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ardizzone, G. D.; Belluscio, A.; Gravina, M. F.; Somaschini, A.

    1996-12-01

    A Mytilus galloprovincialispopulation, settled on a new artificial habitat at 12 m depth in the Central Tyrrhenian Sea, was investigated for 10 years. The new substratum, located at a depth lower than the preferential range of the species, was colonized temporarily by mussels which reached very high densities and dominated the benthic community from their colonization until the third year. The length-frequency distribution analysis showed a progressively complex population structure with up to three cohorts. The yearly recruitments were observed once a year in spring. The growth curve provided a maximum length higher than that reported for shallow waters. Nevertheless, the gregarious habits of mussels and the reduced water movement caused edaphic modifications of the substratum, which was covered progressively by sediments and biodeposits (pseudofaeces). Consequently, the population structure was affected by a reduction of the newly recruited cohorts, and mussels disappeared after 5 years of colonization. This may be explained by the reduction in the substratum available for the first settlement (hydroid covering), as well as by the modification of the surface required for final settlement.

  3. Log-Normal Distribution of Cosmic Voids in Simulations and Mocks

    NASA Astrophysics Data System (ADS)

    Russell, E.; Pycke, J.-R.

    2017-01-01

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  4. Distribution of Pb-210 in Spanish Soils: Study of the Atmospheric Contribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, M.; Romero, M. L.; Valino, F.

    The vertical distribution of activity and inventories of atmospheric Pb-210 is being studied in Spanish soils, aiming to establish the reference levels in the zone, based on the type of soil and the annual rainfall. A homogeneous distribution grid (approx. 150x150 km each cell) has been established covering the peninsular land, trying to combine the varying soil types (remaining undisturbed for the last 50 years) and the closeness to meteorological stations. Sampling has been performed by extracting undisturbed soil cylinders of 6 cm diameter and 120 cm length, with an impact penetrometer, and the soil cores have been sectioned inmore » slices of 3 cm thick. The analysis of Pb-210 has been performed using a gamma spectrometry system with coaxial HPGe detector sensitive at low energies (46.5 keV emission). The geometry of measured samples is thin enough (approx. 2 cm) to minimize self-absorption corrections. The work presents the results obtained so far. The Pb-210 activity profiles exhibit the characteristic decreasing shape with depth, showing maximum levels at the surface, and reaching the equilibrium activity with Ra-226 at a maximum depth depending on different environmental conditions. The unsupported Pb-210 inventory values are in the usual range (1000-5000 Bq/m{sup 2}), showing a positive correlation with the averaged annual rainfall. These reference levels could be used in posterior studies of anthropogenic alteration of soils, evaluation of erosion and desertification processes.« less

  5. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faddegon, B.A.; Villarreal-Barajas, J.E.; Mt. Diablo Regional Cancer Center, 2450 East Street, Concord, California

    2005-11-15

    The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for amore » particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10x10,2.5x2.5, and 2x8 cm{sup 2} inserts. Dose was calculated to 0.5% precision in 0.4x0.4x0.2 cm{sup 3} voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum of 5.6% at 21 MeV. Contributions from the collimator effect were largest for the large field size, high beam energy, and shallow depths, reaching a maximum of 4.7% at 21 MeV. Both shielding contributions and the collimator effect need to be taken into account to achieve an accuracy of 2%. FAST takes explicit account of the shielding contributions. With the collimator effect set to that of the largest field in the FAST calculation, the difference in dose on the central axis (product of ROF and PDD) between FAST and full simulation was generally under 2%. The maximum difference of 2.5% exceeded the statistical precision of the calculation by four standard deviations. This occurred at 18 MeV for the 2.5x2.5 cm{sup 2} field. The differences are due to the method used to account for the collimator effect.« less

  6. Estimating maximum depth distribution of seagrass using underwater videography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, J.G.; Wyllie-Echeverria, S.

    1997-06-01

    The maximum depth distribution of eelgrass (Zostera marina) beds in Willapa Bay, Washington appears to be limited by light penetration which is likely related to water turbidity. Using underwater videographic techniques we estimated that the maximum depth penetration in the less turbid outer bay was -5.85 ft (MILW) and in the more turbid inner bay was only -1.59 ft (MLLW). Eelgrass beds had well defined deepwater edges and no eelgrass was observed in the deep channels of the bay. The results from this study suggest that aerial photographs taken during low tide periods are capable of recording the majority ofmore » eelgrass beds in Willapa Bay.« less

  7. Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Jeliazkova, Ekaterina A; Schlegel, Vicki

    2012-01-01

    The objective of this study was to evaluate the effect of 15 distillation times (DT), ranging from 1.25 to 960 min, on oil yield, essential oil profiles, and antioxidant capacity of male J. scopulorum trees. Essential oil yields were 0.07% at 1.25 min DT and reached a maximum of 1.48% at 840 min DT. The concentrations of alpha-thujene (1.76-2.75%), alpha-pinene (2.9-8.7%), sabinene (45-74.7%), myrcene (2.4-3.4%), and para-cymene (0.8-3.1%) were highest at the shortest DT (1.5 to 5 min) and decreased with increasing DT. Cis-sabinene hydrate (0.5-0.97%) and linalool plus trans-sabinene (0.56-1.6%) reached maximum levels at 40 min DT. Maximum concentrations of limonene (2.3-2.8%) and pregeijerene-B (0.06-1.4%) were obtained at 360-480 min DT, and 4-terpinenol (0.7-5.7%) at 480 min DT. Alpha-terpinene (0.16-2.9%), gamma-terpinene (0.3-4.9%) and terpinolene (0.3-1.4%) reached maximum at 720 min DT. The concentrations of delta-cadinene (0.06-1.65%), elemol (0-6.0%), and 8-alpha-acetoxyelemol (0-4.4%) reached maximum at 840 min DT. The yield of the essential oil constituents increased with increasing DT. Only linalool/transsabinene hydrate reached a maximum yield at 360 min DT. Maximum yields of the following constituents were obtained at 720 min DT: alpha-thujene, alpha-pinene, camphene, sabinene, myrcene, alpha-terpinene, para-cimene, limonene, gamma-terpinene, terpinolene, and 4-terpinenol. At 840 min DT, cis-sabinene hydrate, prejeijerene-B, gamma muurolene, delta-cadinene, reached maximum. At 960 min DT, maximum yields of beta-pinene, elemol, alphaeudesmol/betaeudesmol, 8-alpha-acetoxyelemol were reached. These changes were adequately modeled by either the Michaelis-Menten or the Power (Convex) nonlinear regression models. Oils from the 480 min DT showed higher antioxidant activity compared to samples collected at 40, 160, or 960 min DT. These results show the potential for obtaining essential oils with various compositions and antioxidant capacity from male J. scopulorum by varying DT. This study can be used as a reference paper for comparing results of reports where different lengths of the DT were used.

  8. Maize and soybean root front velocity and maximum depth in the Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...

  9. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  10. Tracer signals of the intermediate layer of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Rhein, Monika; Stramma, Lothar; Plähn, Olaf

    In 1995, hydrographic and chlorofluorocarbon (CFCs, components F11, F12) measurements were carried out in the Gulf of Aden, in the Gulf of Oman, and in the Arabian Sea. In the Gulf of Oman, the F12 concentrations in the Persian Gulf outflow (PGW) at about 300m depth were significantly higher than in ambient surface water with saturations reaching 270%. These high values could not be caused by air-sea gas exchange. The outflow was probably contaminated with oil, and the lipophilic character of the CFCs could then lead to the observed supersaturations. The intermediate F12 maximum decreased rapidly further east and south. At the Strait of Bab el Mandeb in the Gulf of Aden, the Red Sea outflow (RSW) was saturated with F12 to about 65% at 400m depth, and decreased to 50% while descending to 800m depth. The low saturation is not surprising, because the outflow contains deep and intermediate water masses from the Red Sea which were isolated from the surface for some time. The tracer contributions to the Arabian Sea for Indian Central Water (ICW) and PGW are about equal, while below 500m depth the RSW contribution greatly exceeds ICW. Modeling the CFC budget of the Arabian Sea, the inflow of ICW north of 12°N is estimated to be 1-6 Sv, depending mainly on the strength of the flow of Red Sea Water into the Arabian Sea.

  11. Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries?

    PubMed

    Bailey, D M; Collins, M A; Gordon, J D M; Zuur, A F; Priede, I G

    2009-06-07

    A severe scarcity of life history and population data for deep-water fishes is a major impediment to successful fisheries management. Long-term data for non-target species and those living deeper than the fishing grounds are particularly rare. We analysed a unique dataset of scientific trawls made from 1977 to 1989 and from 1997 to 2002, at depths from 800 to 4800 m. Over this time, overall fish abundance fell significantly at all depths from 800 to 2500 m, considerably deeper than the maximum depth of commercial fishing (approx. 1600 m). Changes in abundance were significantly larger in species whose ranges fell at least partly within fished depths and did not appear to be consistent with any natural factors such as changes in fluxes from the surface or the abundance of potential prey. If the observed decreases in abundance are due to fishing, then its effects now extend into the lower bathyal zone, resulting in declines in areas that have been previously thought to be unaffected. A possible mechanism is impacts on the shallow parts of the ranges of fish species, resulting in declines in abundance in the lower parts of their ranges. This unexpected phenomenon has important consequences for fisheries and marine reserve management, as this would indicate that the impacts of fisheries can be transmitted into deep offshore areas that are neither routinely monitored nor considered as part of the managed fishery areas.

  12. Interference of Different Types of Seats on Postural Control System during a Forward-Reaching Task in Individuals with Paraplegia

    ERIC Educational Resources Information Center

    de Abreu, Daniela Cristina Carvalho; Takara, Kelly; Metring, Nathalia Lopes; Reis, Julia Guimaraes; Cliquet, Alberto, Jr.

    2012-01-01

    We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition…

  13. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  14. The nest architecture of the Florida harvester ant, Pogonomyrmex badius.

    PubMed

    Tschinkel, Walter R

    2004-01-01

    The architecture of the subterranean nests of the Florida harvester ant, Pogonomyrmex badius, was studied through excavation and casting. Nests are composed of two basic units: descending shafts and horizontal chambers. Shafts form helices with diameters of 4 to 6 cm, and descend at an angle of about 15-20 degrees near the surface, increasing to about 70 degrees below about 50 cm in depth. Superficial chambers (< 15 cm deep) appear to be modified shafts with low angles of descent, and are distinct from deeper chambers. In larger nests, they have a looping, connected morphology. Chambers begin on the outside of the helix as horizontal-floored, circular indentations, becoming multi-lobed as they are enlarged. Chamber height is about 1 cm, and does not change with area. Chamber area is greatest in the upper reaches of the nest, and decreases with depth. Vertical spacing between chambers is least in the upper reaches and increases to a maximum at about 70 to 80% of the maximum depth of the nest. The distribution of chamber area is top-heavy, with about half the total area occurring in the top quarter of the nest. Each 10% depth increment of the nest contains 25 to 40% less area than the decile above it, no matter what the size of the nest. Nests grow by simultaneous deepening, addition of new chambers and/or shafts and enlargement of existing chambers. As a result, the vertical spacing between chambers is similar at all nest sizes, and the relative distribution of chamber area with relative nest depth did not change during colony growth (that is, the size-free nest shape was the same at all colony sizes). Total chamber area increased somewhat more slowly than the population of workers excavating the nest. The branching of shafts was consistently shallow (< 40 cm), somewhat more so in large nests than small. Large colonies rarely had more than 4 shaft/chamber series. Each new series contributed less to the total chamber area because its chambers were smaller. Incipient colonies were usually 40 to 50 cm deep while mature colonies were commonly 2.5 to 3.0 m deep. Workers captured near the top of a mature nest (and therefore older) and penned in escape proof enclosures, excavated larger nests than did young workers captured from the bottom of the nest. Most of this difference was due to a larger fraction of older workers engaging in digging, rather than an increase in their rate of work. All ages of workers produced similar top-heavy nests. When different ages of workers from different levels of a mature colony were allowed to re-assort themselves in a vertical test apparatus buried in the soil, older workers moved upward to assume positions in the upper parts of the nest, much as in the colonies from which they were taken. The vertical organization of workers based on age is therefore the product of active movement and choice. A possible template imparting information on depth is a carbon dioxide gradient. Carbon dioxide concentrations increased 5-fold between the surface and the depths of the nest. A preference of young workers for high carbon dioxide concentrations, and a tendency for workers to dig more under low carbon dioxide concentrations could explain both the vertical age-distribution of workers, and the top-heaviness of the nest's architecture.

  15. Techniques for estimating flood-depth frequency relations for streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1987-01-01

    Multiple regression analyses are applied to data from 119 U.S. Geological Survey streamflow stations to develop equations that estimate baseline depth (depth of 50% flow duration) and 100-yr flood depth on unregulated streams in West Virginia. Drainage basin characteristics determined from the 100-yr flood depth analysis were used to develop 2-, 10-, 25-, 50-, and 500-yr regional flood depth equations. Two regions with distinct baseline depth equations and three regions with distinct flood depth equations are delineated. Drainage area is the most significant independent variable found in the central and northern areas of the state where mean basin elevation also is significant. The equations are applicable to any unregulated site in West Virginia where values of independent variables are within the range evaluated for the region. Examples of inapplicable sites include those in reaches below dams, within and directly upstream from bridge or culvert constrictions, within encroached reaches, in karst areas, and where streams flow through lakes or swamps. (Author 's abstract)

  16. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGES

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; ...

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  17. Substrate bias effects on composition and coercivity of CoCrTa/Cr thin films on canasite and glass

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Lambeth, D. N.; Sui, X.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    CoCrTa/Cr thin films were prepared by rf diode sputtering onto canasite and glass substrates at various bias voltages from two targets of different compositions (Co82.8Cr14.6Ta2.6 and Co86Cr12Ta2). While Auger depth profile analysis indicates that there is some broadening at the CoCrTa-Cr interface, x-ray fluorescence spectroscopy reveals that changes in alloy composition due to the resputtering processes are even more prominent. For both targets, as the substrate bias increases the Co content in the films declines, and the magnetization decreases. The maximum film coercivity appears to correlate to the final film composition. By investigating the results from both targets, it is concluded that the coercivity reaches a maximum when the film composition is in the neighborhood of Co84Cr13Ta3. Thus, to optimize the coercivity different bias voltages are required for each target. Excessive substrate bias, however, leads to films with low magnetization and coercivity.

  18. Mapping benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images

    NASA Astrophysics Data System (ADS)

    Casal, G.; Kutser, T.; Domínguez-Gómez, J. A.; Sánchez-Carnero, N.; Freire, J.

    2011-09-01

    The ecological importance of benthic macroalgal communities in coastal ecosystems has been recognised worldwide and the application of remote sensing to study these communities presents certain advantages respect to in situ methods. The present study used three CHRIS-PROBA images to analyse macroalgal communities distribution in the Seno de Corcubión (NW Spain). The use of this sensor represent a challenge given that its design, build and deployment programme is intended to follow the principles of the "faster, better, cheaper". To assess the application of this sensor to macroalgal mapping, two types of classifications were carried out: Maximum Likelihood and Spectral Angle Mapper (SAM). Maximum Likelihood classifier showed positive results, reaching overall accuracy percentages higher than 90% and kappa coefficients higher than 0.80 for the bottom classes shallow submerged sand, deep submerged sand, macroalgae less than 5 m and macroalgae between 5 and 10 m depth. The differentiation among macroalgal groups using SAM classifications showed positive results for green seaweeds although the differentiation between brown and red algae was not clear in the study area.

  19. Salp distribution and grazing in a saline intrusion off NW Spain

    NASA Astrophysics Data System (ADS)

    Huskin, Iñaki; Elices, Ma. José; Anadón, Ricardo

    2003-07-01

    Salp distribution and grazing were studied along three transects (19 stations) and a Lagrangian phase (7 stations) off Galician coast (NW Spain) in November 1999 during GIGOVI 99 cruise. A poleward saline intrusion was detected at the shelf-break, reaching salinity values above 35.90 u.p.s. at 100-m depth. The salp community was dominated by Salpa fusiformis, although Cyclosalpa bakeri, Thalia democratica and Iasis zonaria were also found in the study area. Total salp abundance ranged from 4 to 4500 ind m -2, representing biomass values between 0.2 and 2750 mg C m -2. Maximum densities were located in the frontal area separating the saline body from coastal waters. S. fusiformis pigment ingestion was estimated using the gut fluorescence method. Gut contents were linearly related to salp body size. Total pigment ingestion ranged from 0.001 to 15 mg Chl- a m -2 d -1, with maximum values at the coastal edge of the saline body. Estimated ingestion translates into an average daily grazing impact of 7% of chlorophyll standing stock, ranging from <1% to 77%.

  20. Obliquely Incident Solitary Wave onto a Vertical Wall

    NASA Astrophysics Data System (ADS)

    Yeh, Harry

    2012-10-01

    When a solitary wave impinges obliquely onto a reflective vertical wall, it can take the formation of a Mach reflection (a geometrically similar reflection from acoustics). The mathematical theory predicts that the wave at the reflection can amplify not twice, but as high as four times the incident wave amplitude. Nevertheless, this theoretical four-fold amplification has not been verified by numerical or laboratory experiments. We discuss the discrepancies between the theory and the experiments; then, improve the theory with higher-order corrections. The modified theory results in substantial improvement and is now in good agreement with the numerical as well as our laboratory results. Our laboratory experiments indicate that the wave amplitude along the reflective wall can reach 0.91 times the quiescent water depth, which is higher than the maximum of a freely propagating solitary wave. Hence, this maximum runup 0.91 h would be possible even if the amplitude of the incident solitary wave were as small as 0.24 h. This wave behavior could provide an explanation for local variability of tsunami runup as well as for sneaker waves.

  1. Dynamic Rupture Simulations of 11 March 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Dunham, E. M.

    2012-12-01

    There is strong observational evidence that the 11 March 2011 Tohoku earthquake rupture reached the seafloor. This was unexpected because the shallow portion of the plate interface is believed to be frictionally stable and thus not capable of sustaining coseismic rupture. In order to explore this seeming inconsistency we have developed a two-dimensional dynamic rupture model of the Tohoku earthquake. The model uses a complex fault, seafloor, and material interface structure as derived from seismic surveys. We use a rate-and-state friction model with steady state shear strength depending logarithmically on slip velocity, i.e., there is no dynamic weakening in the model. The frictional parameters are depth dependent with the shallowest portions of the fault beneath the accretionary prism being velocity strengthening. The total normal stress on the fault is taken to be lithostatic and the pore pressure is hydrostatic until a maximum effective normal stress is reached (40 MPa in our preferred model) after which point the pore pressure follows the lithostatic gradient. We also account for poroelastic buffering of effective normal stress changes on the fault. The off-fault response is linear elastic. Using this model we find that large stress changes are dynamically transmitted to the shallowest portions of the fault by waves released by deep slip that are reflected off the seafloor. These stress changes are significant enough to drive the rupture through a velocity strengthening region that is tens of kilometers long. Rupture to the trench is therefore consistent with standard assumptions about depth-dependence of subduction zone properties, and does not require extreme dynamic weakening, shallow high stress drop asperities, or other exceptional processes. We also make direct comparisons with measured seafloor deformation and onshore 1-Hz GPS data from the Tohoku earthquake. Through these comparisons we are able to determine the sensitivity of these data to several dynamic source parameters (prestress, seismogenic depth, and the extent and frictional properties of the shallow plate interface). We find that there is a trade-off between the near-trench frictional properties and effective normal stress, particularly for onshore measurements. That is, the data can be equally well fit by either a velocity strengthening or velocity weakening near-trench fault segment, provided that compensating adjustments are also made to the maximum effective normal stress on the fault. On the other hand, the seismogenic depth is fairly well constrained from the static displacement field, independent of effective normal stress and near-trench properties. Finally, we show that a water layer (modeled as an isotropic linear acoustic material) has a negligible effect on the rupture process. That said, the inclusion of a water layer allows us to make important predictions concerning hydroacoustic signals that were observed by ocean bottom pressure sensors.

  2. How well do we really know the timing and extent of glaciers during the Last Glacial Maximum in the Alps?

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Braakhekke, Jochem; Monegato, Giovanni; Gianotti, Franco; Forno, Gabriella; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian

    2017-04-01

    The Last Glacial Maximum (LGM) in the Alps saw much of the mountains inundated by ice. Several main accumulation areas comprising local ice caps and plateau icefields fit into a picture of transection glaciers flowing into huge valley glaciers. In the north the valley glaciers covered long distances (hundreds of kilometers) to reach the forelands where they spread out in fan-shaped piedmont lobes tens of kilometers across, e.g. the Rhine glacier. In the south travel distances to the mountain front were often shorter, the pathway steeper. Nevertheless, not all glaciers even reached beyond the front, as the temperatures were notably warmer in the south. For example at Orta the glacier snout remained within the mountains. Where glaciers reached the forelands they stopped abruptly and the moraine amphitheaters were constructed, e.g. at Ivrea and Rivoli-Avigliana. Sets of stacked moraines built-up as glacier advance was directly confined by the older moraines. We may temporally and spatially identify the culmination of the last glacial cycle by pinpointing the outermost moraines that date to the LGM (generally about 26-24 ka). On the other hand, the timing of abandonment of foreland positions is given by ages of the innermost, often lake-bounding, moraines (about 19-18 ka). Between the two, glacier fluctuations left the stadial moraines. In the Linth-Rhine system three stadials have been recognized: Killwangen, Schlieren and Zurich. Nevertheless, already in the Swiss sector correlation of the LGM stadials among the several foreland lobes is not unambiguous. Across the Alps, not only north to south but also west to east, how do the timing and extent of glaciers during the LGM vary? Recent glacier modelling by Seguinot et al. (2017) informs and suggests the possibility of differences in timing for reaching of the maximum extent and for the number of oscillations of individual lobes during the LGM. At present few sites in the Alps have detailed enough geomorphological constraints with well-dated ice-marginal positions for in depth discussion of outermost, innermost and in between moraines. Where locations of the LGM farthest extent are conflicting depending on author, we are trying to establish the precise location of the most extensive LGM position by directly dating moraine boulders with cosmogenic 10Be. Here we present 10Be data from the Orta and Rivoli-Avigliana amphitheatres. A key comparison is with the Tagliamento amphitheatre to the east, where dating testifies to a two-phase maximum (Monegato et al. 2007). Furthermore, comparison is made to sites north of the Alps including previously unpublished data. Monegato G. et al. 2007. Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68: 284-302. Seguinot J. et al. 2017. Modelling last glacial cycle ice dynamics in the Alps. EGU2017-8982

  3. Contact mechanics of reverse total shoulder arthroplasty during abduction: the effect of neck-shaft angle, humeral cup depth, and glenosphere diameter.

    PubMed

    Langohr, G Daniel G; Willing, Ryan; Medley, John B; Athwal, George S; Johnson, James A

    2016-04-01

    Implant design parameters can be changed during reverse shoulder arthroplasty (RSA) to improve range of motion and stability; however, little is known regarding their impact on articular contact mechanics. The purpose of this finite element study was to investigate RSA contact mechanics during abduction for different neck-shaft angles, glenosphere sizes, and polyethylene cup depths. Finite element RSA models with varying neck-shaft angles (155°, 145°, 135°), sizes (38 mm, 42 mm), and cup depths (deep, normal, shallow) were loaded with 400 N at physiological abduction angles. The contact area and maximum contact stress were computed. The contact patch and the location of maximum contact stress were typically located inferomedially in the polyethylene cup. On average for all abduction angles investigated, reducing the neck-shaft angle reduced the contact area by 29% for 155° to 145° and by 59% for 155° to 135° and increased maximum contact stress by 71% for 155° to 145° and by 286% for 155° to 135°. Increasing the glenosphere size increased the contact area by 12% but only decreased maximum contact stress by 2%. Decreasing the cup depth reduced the contact area by 40% and increased maximum contact stress by 81%, whereas increasing the depth produced the opposite effect (+52% and -36%, respectively). The location of the contact patch and maximum contact stress in this study matches the area of damage seen frequently on clinical retrievals. This finding suggests that damage to the inferior cup due to notching may be potentiated by contact stresses. Increasing the glenosphere diameter improved the joint contact area and did not affect maximum contact stress. However, although reducing the neck-shaft angle and cup depth can improve range of motion, our study shows that this also has some negative effects on RSA contact mechanics, particularly when combined. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Evaluation of solitary waves as a mechanism for oil transport in poroelastic media: A case study of the South Eugene Island field, Gulf of Mexico basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Ajit; Appold, Martin S.; Nunn, Jeffrey A.

    Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30more » Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E-12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1-25 to 1-24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 105 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1-3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves. Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1-12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1-25 to 1-24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 100,000 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1-3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves.« less

  5. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands

    PubMed Central

    Jagodzinski, Andrzej M.; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert

    2016-01-01

    There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9–140 years old), oak (11–140 years) and alder (4–76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0–15 cm and 16–30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0–30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha-1, 3.71 Mg ha-1 and 1.53 Mg ha-1, for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0–30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0–30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands. PMID:26859755

  6. Is applicable thermodynamics of negative temperature for living organisms?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  7. Assessment of Lower Missouri River physical aquatic habitat and its use by adult sturgeon (Genus Scaphirhynchus), 2005-07

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; DeLonay, Aaron J.

    2009-01-01

    This report presents an exploratory analysis of habitat availability and use by adult Scaphirhynchus sturgeon on the Lower Missouri River from Gavins Point Dam, South Dakota, to the junction with the Mississippi River. The analysis is based on two main data sources collected from 2005 to 2007: (1) a compilation of 153 reach-scale habitat maps (mean reach length, 2.4 kilometers) derived from boat-collected hydroacoustic data and (2) a sturgeon location dataset from which 378 sturgeon telemetry locations are associated with the maps (within 7 days of the mapping and within 10 percent of the discharge). The report focuses on: (1) longitudinal patterns of geomorphic and hydraulic characteristics revealed by the collection of reach maps; (2) assessment of environmental characteristics at sturgeon locations in the context of the mapped reaches; and (3) consideration of spatial distribution of habitat conditions that sturgeon appear to select. Longitudinal patterns of geomorphology, hydraulics, and associated habitats relate strongly to the engineered state of the river. Reaches within each of the following river sections tended to share similar geomorphic, hydrologic, and hydraulic characteristics: the Minimally Engineered section (Gavins Point Dam to Sioux City, Iowa), the Upstream Channelized section (Sioux City, Iowa, to the junction with the Kansas River), and the Downstream Channelized section (Kansas River to the junction with the Mississippi River). Adult sturgeon occupy nearly the full range of available values for each continuous variable assessed: depth, depth slope, depth-averaged velocity, velocity gradient, and Froude number (a dimensionless number relating velocity to depth). However, in the context of habitat available in a reach, sturgeon tend to select some areas over others. Reproductive female shovelnose sturgeon (Scaphirhynchus platorynchus), in particular, were often found in parts of the reach with one or more of the following characteristics: high velocity gradient, high depth slope, low Froude number, and low (though not necessarily the lowest) depth-averaged velocity. Depths used by sturgeon varied considerably. We explored spatial patterns representing the variable ranges that reproductive female shovelnose sturgeon most strongly and consistently selected by mapping areas within reaches meeting the following criteria: greater than the 80th percentile of depth slope, greater than the 80th percentile of velocity gradient, and less than the 20th percentile of Froude number. Our data exploration indicates that areas meeting these criteria have some predictive value regarding sturgeon habitat selection. Of all sturgeon locations that fall on maps from the same year (sample size = 2,013), about 63 percent fall within about 35 percent of the area where at least one variable meets the above criteria and 18 percent of locations fall within 4 percent of the area where all three variables meet the above criteria. The spatial patterns of these mapped areas show distinct differences among the sections of the Lower Missouri River. For example, the areas of predicted selection exhibit a relatively complex mosaic with multiple interconnected pathways in reaches of the Minimally Engineered section. In contrast, areas of predicted selection are concentrated along the channel margins in reaches of the Upstream Channelized section. Because the patterns described in this report represent habitat use in the context of the available habitat in a highly altered river system, selection may not necessarily indicate preferred habitats or habitats sufficient for reproduction and survival of sturgeon species.

  8. An initial investigation of multidimensional flow and transverse mixing characteristics of the Ohio River near Cincinnati, Ohio

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.

  9. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.

  10. Mid-term variation of vertical distribution of acid volatile sulphide and simultaneously extracted metals in sediment cores from Lake Albufera (Valencia, Spain).

    PubMed

    Hernández-Crespo, Carmen; Martín, Miguel

    2013-11-01

    Lake Albufera is one of the most eutrophic bodies of water in Spain due to point and diffuse pollution over past decades, and its sediments are likely to be anoxic because of high organic matter flux. Hence, sulphides can play an important role in limiting the mobility of heavy metals. This study aimed to study the vertical variation of acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) in sediment cores collected from Lake Albufera; other sediment characteristics, such as organic matter, biochemical oxygen, demand or total metals, were also studied. Three sites were selected, and four sampling campaigns were performed to study spatial and temporal variation as well as to obtain information regarding historical variation in the composition of sediments. AVS and SEM were analysed by the purge-and-trap method. The vertical distribution of AVS and SEM varied depending on the sampling site-concentrations of AVS and SEM were higher at sites close to mouths of inflowing channels. A decreasing trend of AVS has been found at these sites over time: In the two first samplings, AVS increased with depth reaching maximum concentrations of 40 and 21 μmol g(-1), but from then on AVS were lower and decreased with depth. SEM decreased with depth from 3 μmol g(-1) in surface layers to approximately 1 μmol g(-1) at deeper segments at these sites. However, the central site was more uniform with respect to depth as well as with time; it presented lower values of SEM and AVS (mean 0.9 and 2.0 μmol g(-1) respectively), and the maximum value of AVS (7 μmol g(-1)) was found at the top layer (0-3 cm). According to the (SEM-AVS)/fOC approach, every site, and throughout the cores, can be classified as containing nontoxic metals because the values were <130 μmol g(-1).

  11. On the determination of the depth of EAS development maximum using the lateral distribution of Cerenkov light at distances 150 m from EAS axis

    NASA Technical Reports Server (NTRS)

    Aliev, N.; Alimov, T.; Kakhkharov, M.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Kalmykov, N. N.; Khristiansen, G. B.; Prosin, V. V.

    1985-01-01

    The Samarkand extensive air showers (EAS) array was used to measure the mean and individual lateral distribution functions (LDF) of EAS Cerenkov light. The analysis of the individual parameters b showed that the mean depth of EAS maximum and the variance of the depth distribution of maxima of EAS with energies of approx. 2x10 to the 15th power eV can properly be described in terms of Kaidalov-Martirosyan quark-gluon string model (QGSM).

  12. Experimental investigation of the Peregrine Breather of gravity waves on finite water depth

    NASA Astrophysics Data System (ADS)

    Dong, G.; Liao, B.; Ma, Y.; Perlin, M.

    2018-06-01

    A series of laboratory experiments were performed to study the Peregrine Breather (PB) evolution in a wave flume of finite depth and deep water. Experimental cases were selected with water depths k0h (k0 is the wave number and h is the water depth) varying from 3.11 to 8.17 and initial steepness k0a0 (a0 is the background wave amplitude) in the range 0.06 to 0.12, and the corresponding initial Ursell number in the range 0.03 to 0.061. Experimental results indicate that the water depth plays an important role in the formation of the extreme waves in finite depth; the maximum wave amplification of the PB packets is also strongly dependent on the initial Ursell number. For experimental cases with the initial Ursell number larger than 0.05, the maximum crest amplification can exceed three. If the initial Ursell number is nearly 0.05, a shorter propagation distance is needed for maximum amplification of the height in deeper water. A time-frequency analysis using the wavelet transform reveals that the energy of the higher harmonics is almost in-phase with the carrier wave. The contribution of the higher harmonics to the extreme wave is significant for the cases with initial Ursell number larger than 0.05 in water depth k0h < 5.0. Additionally, the experimental results are compared with computations based on both the nonlinear Schrödinger (NLS) equation and the Dysthe equation, both with a dissipation term. It is found that both models with a dissipation term can predict the maximum amplitude amplification of the primary waves. However, the Dysthe equation also can predict the group horizontal asymmetry.

  13. In Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamics

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Wallmann, K.; Berndt, C.; Pape, T.; Freudenthal, T.; Bergenthal, M.; Bünz, S.; Bohrmann, G.

    2018-04-01

    During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ˜400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ˜30 km seaward in ˜760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ˜38°C km-1 at the deepest site (446 m) and ˜41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ˜60 mbsf); however, coring did not encounter any gas hydrates.

  14. Intraspecific variability in the life histories of endemic coral-reef fishes between photic and mesophotic depths across the Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Winston, M. S.; Taylor, B. M.; Franklin, E. C.

    2017-06-01

    Mesophotic coral ecosystems (MCEs) represent the lowest depth distribution inhabited by many coral reef-associated organisms. Research on fishes associated with MCEs is sparse, leading to a critical lack of knowledge of how reef fish found at mesophotic depths may vary from their shallow reef conspecifics. We investigated intraspecific variability in body condition and growth of three Hawaiian endemics collected from shallow, photic reefs (5-33 m deep) and MCEs (40-75 m) throughout the Hawaiian Archipelago and Johnston Atoll: the detritivorous goldring surgeonfish, Ctenochaetus strigosus, and the planktivorous threespot chromis, Chromis verater, and Hawaiian dascyllus, Dascyllus albisella. Estimates of body condition and size-at-age varied between shallow and mesophotic depths; however, these demographic differences were outweighed by the magnitude of variability found across the latitudinal gradient of locations sampled within the Central Pacific. Body condition and maximum body size were lowest in samples collected from shallow and mesophotic Johnston Atoll sites, with no difference occurring between depths. Samples from the Northwestern Hawaiian Islands tended to have the highest body condition and reached the largest body sizes, with differences between shallow and mesophotic sites highly variable among species. The findings of this study support newly emerging research demonstrating intraspecific variability in the life history of coral-reef fish species whose distributions span shallow and mesophotic reefs. This suggests not only that the conservation and fisheries management should take into consideration differences in the life histories of reef-fish populations across spatial scales, but also that information derived from studies of shallow fishes be applied with caution to conspecific populations in mesophotic coral environments.

  15. Variations in Depth and Chemical Composition of Groundwater During an Interval in Intermittent Water Delivery.

    PubMed

    Yongjin, Chen; Weihong, Li; Jiazhen, Liu; Ming, Lu; Mengchen, Xu; Shengliang, Liu

    2015-08-01

    Based on monitoring data collected from 2006 to 2009 at the lower reaches of the Tarim River, tempo-spatial variations in groundwater depth and chemistry during an approximately 3-year interval of intermittent water delivery were studied. Results indicate that as the groundwater depth increased at the upper sector of the river's lower reaches from March 2007 to September 2009, so too did the main chemical composition of groundwater. Groundwater depth at the intermediate sector also increased, but major ions in groundwater declined. The groundwater depth at the lower sector started to decrease in August 2008, and the concentrations of main ions in the groundwater generally rose and fell along with the variations in groundwater depth. The groundwater depth and chemistry in the monitoring wells located at a distance from the aqueduct expressed complex changes at different sections. For instance, at the section near the Daxihaizi Reservoir Section B, groundwater depth increased gradually, but chemical composition changed little. In contrast, the groundwater depth of monitoring wells far from the Daxihaizi Reservoir (Section I) decreased and salt content in the groundwater increased. In sectors at a moderate distance from the reservoir, groundwater depth decreased and concentrations of main ions significantly increased.

  16. Geodetic slip solutions for the Mw=7.4 Champerico (Guatemala) subduction earthquake of November 7 2012

    NASA Astrophysics Data System (ADS)

    Ellis, Andria; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2014-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past 50 years, the 7 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. Processing of continuous GPS measurements at 19 stations in Guatemala, El Salvador, and southern Mexico, and at 7 campaign points in Guatemala defines a highly consistent pattern of coseismic offsets during the earthquake, ranging from 47±5 mm of SW movement just inland from the earthquake epicenter to a few mm at sites located in northern Guatemala. Inversions of these offsets to find their best-fitting fault-slip solution in an elastic half space give a geodetic earthquake moment ranging between 0.75 and 1.1 x 1020 Nm, slightly smaller than the seismic estimates that range between 1.2 and 1.45 x 1020 Nm. Slip inversion using a constant slip model, assuming 293° and 29° for the fault azimuth and dip angle, indicates a nearly reverse slip of 2.8 m (rake 78°) on a fault plane 42 km-long and 20 km-wide, centered at 26 km depth. A variable slip inversion indicates that slip concentrated above depths of 40 km may have extended updip to the trench and reached a maximum of only 0.8 m, less than one-sixth the maximum slip indicated by a recent slip solution (5.3 m) obtained from waveform inversion of seismological data. Detailed model comparisons will be discussed. Transient postseismic displacements have been recorded at the nearby continuous GPS sites with amplitudes reaching 20-25 mm at some stations. The duration of the phenomenon is short: using an exponential-decay model, the estimated decay time is 90 ± 10 days. This postseismic signal is consistent with afterslip along a significantly broader area (+50%) of the subduction interface than ruptured coseismically. These results will be discussed in the tectonic framework of the area.

  17. Spectrally resolved chromatic confocal interferometry for one-shot nano-scale surface profilometry with several tens of micrometric depth range

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih

    2013-01-01

    In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.

  18. Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas

    2012-07-30

    The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping,more » n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.« less

  19. Electromagnetic Radiation Efficiency of Body-Implanted Devices

    NASA Astrophysics Data System (ADS)

    Nikolayev, Denys; Zhadobov, Maxim; Karban, Pavel; Sauleau, Ronan

    2018-02-01

    Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d ≳3 cm ) lies in the (108- 109 )-Hz range and can be approximated as f =2.2 ×107/d . For a subcutaneous case (d ≲3 cm ), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2 ×108 to 3 ×109 Hz ), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.

  20. Estimation of depth to magnetic source using maximum entropy power spectra, with application to the Peru-Chile Trench

    USGS Publications Warehouse

    Blakely, Richard J.

    1981-01-01

    Estimations of the depth to magnetic sources using the power spectrum of magnetic anomalies generally require long magnetic profiles. The method developed here uses the maximum entropy power spectrum (MEPS) to calculate depth to source on short windows of magnetic data; resolution is thereby improved. The method operates by dividing a profile into overlapping windows, calculating a maximum entropy power spectrum for each window, linearizing the spectra, and calculating with least squares the various depth estimates. The assumptions of the method are that the source is two dimensional and that the intensity of magnetization includes random noise; knowledge of the direction of magnetization is not required. The method is applied to synthetic data and to observed marine anomalies over the Peru-Chile Trench. The analyses indicate a continuous magnetic basement extending from the eastern margin of the Nazca plate and into the subduction zone. The computed basement depths agree with acoustic basement seaward of the trench axis, but deepen as the plate approaches the inner trench wall. This apparent increase in the computed depths may result from the deterioration of magnetization in the upper part of the ocean crust, possibly caused by compressional disruption of the basaltic layer. Landward of the trench axis, the depth estimates indicate possible thrusting of the oceanic material into the lower slope of the continental margin.

  1. A Cadaveric Analysis of the Optimal Radiographic Angle for Evaluating Trochlear Depth.

    PubMed

    Weinberg, Douglas Stanley; Gilmore, Allison; Guraya, Sahejmeet S; Wang, David M; Liu, Raymond W

    2017-02-01

    Disorders of the patellofemoral joint are common. Diagnosis and management often involves the use tangential imaging of the patella and trochlear grove, with the sunrise projection being the most common. However, imaging protocols vary between institutions, and limited data exist to determine which radiographic projections provide optimal visualization of the trochlear groove at its deepest point. Plain radiographs of 48 cadaveric femora were taken at various beam-femur angles and the maximum trochlear depth was measured; a tilt-board apparatus was used to elevate the femur in 5-degree increments between 40 and 75 degrees. A corollary experiment was undertaken to investigate beam-femur angles osteologically: digital representations of each bone were created with a MicroScribe digitizer, and trochlear depth was measured on all specimens at beam-femur angles from 0 to 75 degrees. The results of the radiographic and digitizer experiments showed that the maximum trochlear grove depth occurred at a beam-femur angle of 50 degrees. These results suggest that the optimal beam-femur angle for visualizing maximum trochlear depth is 50 degrees. This is significantly lower than the beam-femur angle of 90 degrees typically used in the sunrise projection. Clinicians evaluating trochlear depth on sunrise projections may be underestimating maximal depth and evaluating a nonarticulating portion of the femur. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Dissolved lead in the deep Southeast Pacific Ocean: results of the 2013 US GEOTRACES cruise

    NASA Astrophysics Data System (ADS)

    Boyle, E. A.; Lee, J. M.; Zhang, J.; Echegoyen, Y.

    2014-12-01

    Lead (Pb) in the modern ocean is dominated by anthropogenic Pb, which has been evidenced by highly elevated seawater Pb concentrations and Pb stable isotope ratios (204Pb, 206Pb, 207Pb, and 208Pb) altered from pre-anthropogenic values. A number of studies have shown the human impact on oceanic Pb in many parts of the world ocean, but little Pb data has been available for the Southeast Pacific Ocean. In this presentation, we will show the dissolved Pb (<0.2µm) results from the US GEOTRACES cruise in October - December 2013, which sailed from Manta, Ecuador, to Tahiti along around 12 degrees south. Dissolved Pb concentrations from all 36 surface stations and deep (>1000m) Pb profiles from 18 stations will be presented, and the results will be also compared to our unpublished data from the BiG RAPA cruise in 2010, whose cruise track from Arica, Peru, to Easter Island is slightly south of the US GEOTRACES cruise. The BiG RAPA data showed that dissolved Pb concentrations of the southeast Pacific Ocean are relatively low, varying in the range of 8-20 pmol/kg at the surface with a slight maximum (14-22 pmol/kg) at around 400m depth, and 2-10 pmol/kg in deep waters below 1000m depth. The Pb concentrations were found to be higher at a marginal station off Peru, reaching 45 pmol/kg at the surface and 65 pmol/kg in the subsurface maximum at 150m depth, and varying between 17 and 23 pmol/kg in deep waters. Our dataset, along with the results from the BiG RAPA cruise, will provide the first overview on the dissolved Pb distribution of the southeast Pacific Ocean, which will further our understanding on the human impact on the global ocean.

  3. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    NASA Astrophysics Data System (ADS)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  4. A high-resolution land model coupled with groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zeng, Y.; Liu, S.; Gao, J.; Jia, B.; Qin, P.

    2017-12-01

    Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. And the movement of frost and thaw fronts (FTFs) affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere. In this study, schemes describing groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts were developed and incorporated into the Community Land Model 4.5. Then the model was applied in Heihe River Basin(HRB), an arid and semiarid region, northwest China. High resolution ( 1 km) numerical simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the HRB and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions. In addition, the simulated FTFs depth compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen ground). Over the HRB, the upstream area is permafrost region with maximum thawed depth at 2.5 m and lower region is seasonal frozen ground region with maximum frozen depth at 3 m.

  5. Shallow depth of seismogenic coupling in southern Mexico: implications for the maximum size of earthquakes in the subduction zone

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Sánchez, Osvaldo

    1996-01-01

    Studies of locally recorded microearthquakes and the centroidal depths of the largest earthquakes analyzed using teleseismic data show that the maximum depth of thrust faulting along the Mexican subduction zone is anomalously shallow. This observed maximum depth of about 25 ± 5 km is about half of that observed in most subduction zones of the world. A leveling line that crosses the rupture zone of the 19 September 1985 Michoacan event was revisited after the earthquake and it shows anomalously low deformation during the earthquake. The comparison between the observed coseismic uplift and dislocation models of the seismogenic interplate contact that extend to depths ranging from 20 to 40 km shows that the maximum depth at which seismic slip took place is about 20 km. This unusually shallow and narrow zone of seismogenic coupling apparently results in the occurrence of thrust events along the Mexican subduction zone that are smaller than would be expected for a trench where a relatively young slab subducts at a rapid rate of relative motion. A comparison with the Chilean subduction zone shows that the plate interface in Mexico is half that in Chile, not only in the down-dip extent of the seismogenic zone of plate contact, but also in the distance of the trench from the coast and in the thickness of the upper continental plate. It appears that the narrow plate contact produced by this particular plate geometry in Mexico is the controlling variable defining the size of the largest characteristic earthquakes in the Mexican subduction zone.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less

  7. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ander, M.E.; Heiken, G.; Eichelberger, J.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed.more » The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.« less

  8. Detailed Sections from Auger Holes in the Emporia 1:100,000-Scale Quadrangle, North Carolina and Virginia

    USGS Publications Warehouse

    Weems, Robert E.; Schindler, J. Stephen; Lewis, William C.

    2010-01-01

    The Emporia 1:100,000-scale quadrangle straddles the Tidewater Fall Line in southern Virginia and includes a small part of northernmost North Carolina. Sediments of the coastal plain underlie the eastern three-fifths of this area. These sediments onlap crystalline basement rocks toward the west and dip gently to the east, reaching a maximum known thickness of 821 feet in the extreme southeastern part of the map area. The gentle eastward dip is disrupted in several areas due to faulting delineated during the course of mapping. In order to produce a new geologic map of the Emporia 1:100,000-scale quadrangle, the U.S. Geological Survey drilled one corehole to a depth of 223 feet and augered 192 shallow research test holes (maximum depth 135 feet) to supplement sparse outcrop data available from the coastal plain part of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented coastal plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Emporia geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, the locations and detailed descriptions of the auger test holes and one corehole are provided in this open-file report for geologists, hydrologists, engineers, and community planners in need of a detailed shallow-subsurface stratigraphic framework for much of the Emporia map region.

  9. How High Do Sandbars Grow?

    NASA Astrophysics Data System (ADS)

    Alexander, J. S.; McElroy, B. J.

    2015-12-01

    Bar forms in wide sandy rivers store sediment, control channel hydraulics, and are fundamental units of riverine ecosystems. Bar form height is often used as a measure of channel depth in ancient fluvial deposits and is also a crucially important measure of habitat quality in modern rivers. In the Great Plains of North America, priority bird species use emergent bars to nest, and sandbar heights are a direct predictor of flood hazard for bird nests. Our current understanding of controls on bar height are limited to few datasets and ad hoc observations from specific settings. We here examine a new dataset of bar heights and explore models of bar growth. We present bar a height dataset from the Platte and Niobrara Rivers in Nebraska, and an unchannelized reach of the Missouri River along the Nebraska-South Dakota border. Bar height data are normalized by flow frequency, and we examine parsimonious statistical models between expected controls (depth, stage, discharge, flow duration, work etc.) and maximum bar heights. From this we generate empirical-statistical models of maximum bar height for wide, sand-bedded rivers in the Great Plains of the United States and rivers of similar morphology elsewhere. Migration of bar forms is driven by downstream slip-face additions of sediment sourced from their stoss sides, but bars also sequester sediment and grow vertically and longitudinally. We explore our empirical data with a geometric-kinematic model of bar growth driven by sediment transport from smaller-scale bedforms. Our goal is to understand physical limitations on bar growth and geometry, with implications for interpreting the rock record and predicting physically-driven riverine habitat variables.

  10. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less

  11. Stress Study on Southern Segment of Longmenshan Fault Constrained by Focal Mechanism Data

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Liang, C.; Su, J.; Zhou, L.

    2016-12-01

    The Longmenshan fault (LMSF) lies at the eastern margin of Tibetan plateau and constitutes the boundary of the active Bayankala block and rigid Sichuan basin. This fault was misinterpreted as an inactive fault before the great Wenchuan earthquake. Five years after the devastating event, the Lushan MS 7.0 stroke the southern segment of the LMSF but fractured in a very limited scale and formed a seismic gap between the two earthquakes. In this study, we determined focal mechanisms of earthquakes with magnitude M≥3 from Jan 2008 to July 2014 in the southern segment of LMSF, and then applied the damped linear inversion to derive the regional stress field based on the focal mechanisms. Focal mechanisms of 755 earthquakes in total were determined. We further used a damped linear inversion technique to produce a 2D stress map in upper crust in the study region. A dominant thrust regime is determined south of the seismic gap, with a horizontal maximum compression oriented in NWW-SEE. But in the area to the north of the seismic gap is characterized as a much more complex stress environment. To the west of the Dujiangyan city, there appear to be a seismic gap in the Pengguan complex. The maximum compressions show the anti-clockwise and clockwise patterns to the south and north of this small gap. Thus the small gap seems to be an asperity that causes the maximum compression to rotate around it. While combined the maximum compression pattern with the focal solutions of strong earthquakes (Mw≥5) in this region, two of those strong earthquakes located near the back-range-fault have strikes parallel to the Miyaluo fault. Considering a large amount of earthquakes in Lixian branch, the Miyaluo fault may be extended to LMSF following the great Wenchuan earthquake. Investigations on the stress field of different depths indicate complex spatial variations. The Pengguan complex is almost aseismic in shallow depth in its central part. In deeper depth, the maximum compressions show the NNW-SSE and NE-SW directions to the north and south of the seismic gap respectively, this are surprisingly different from that of the shallower depth. Thus the maximum compressions vary with depth may imply the movement in depth is decoupled from the movement in shallow depth. This work was partially supported by National Natural Science Foundation of China (41340009).

  12. Testing pop-up satellite tags as a tool for identifying critical habitat for Pacific halibut (Hippoglossus stenolepis) in the Gulf of Alaska

    USGS Publications Warehouse

    Seitz, Andrew C.; Wilson, Derek; Nielsen, Jennifer L.

    2002-01-01

    To maintain healthy commercial and sport fisheries for Pacific halibut (Hippoglossus stenolepis), critical habitat must be defined by determining life history patterns on a daily and seasonal basis. Pop-up satellite archival transmitting (PSAT) tags provide a fisheries-independent method of collecting environmental preference data (depth and ambient water temperature) as well as daily geolocation estimates based on ambient light conditions. In this study, 14 adult halibut (107-165 cm FL) were tagged and released with PSAT tags in and around Resurrection Bay, Alaska. Commercial fishermen recovered two tags, while five tags transmitted data to ARGOS satellites. Horizontal migration was not consistent among fish as three halibut remained in the vicinity of release while four traveled up to 358 km from the release site. Vertical migration was not consistent among fish and over time, but they spent most their time between 150-350 m. The minimum and maximum depths reached by any of the halibut were 2m and 502m, respectively. The fish preferred water temperatures of roughly 6 °C while experiencing ambient temperatures between 4.3 °C and 12.2 °C. Light attenuation with depth prevented existing geolocation software and light sensing hardware from accurately estimating geoposition, however, information from temperature, depth, ocean bathymetry, and pop-off locations provided inference on fish movement in the study area. PSAT tags were a viable tool for determining daily and seasonal behavior and identifying critical halibut habitat, which will aid fisheries managers in future decisions regarding commercial and sport fishing regulations.

  13. Effects of prescribed fire for pasture management on soil organic matter and biological properties: A 1-year study case in the Central Pyrenees.

    PubMed

    Girona-García, Antonio; Badía-Villas, David; Martí-Dalmau, Clara; Ortiz-Perpiñá, Oriol; Mora, Juan Luis; Armas-Herrera, Cecilia M

    2018-03-15

    Prescribed burning has been readopted in the last decade in the Central Pyrenees to stop the regression of subalpine grasslands in favour of shrublands, dominated among others by Echinospartum horridum (Vahl) Rothm. Nevertheless, the effect of this practice on soil properties is uncertain. The aim of this work was to analyse the effects of these burnings on topsoil organic matter and biological properties. Soil sampling was carried out in an autumnal prescribed fire in Buisán (NE-Spain, November 2015). Topsoil was sampled at 0-1cm, 1-2cm and 2-3cm depth in triplicate just before (U), ~1h (B0), 6months (B6) and 12months (B12) after burning. We analysed soil total organic C (TOC), total nitrogen (TN), microbial biomass C (C mic ), soil respiration (SR) and β-D-glucosidase activity. A maximum temperature of 438°C was recorded at soil surface while at 1cm depth only 31°C were reached. Burning significantly decreased TOC (-52%), TN (-44%), C mic (-57%), SR (-72%) and β-D-glucosidase (-66%) at 0-1cm depth while SR was also reduced (-45%) at 1-2cm depth. In B6 and B12, no significant changes in these properties were observed as compared to B0. It can be concluded that the impact of prescribed burning has been significant and sustained over time, although limited to the first two topsoil centimetres. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Is Ammonification Rate in Marine Sediment Related to Plankton Composition and Abundance? A Time-series Study in Villefranche Bay (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Fernex, François E.; Braconnot, Jean-Claude; Dallot, Serge; Boisson, Michel

    1996-09-01

    Observations were made near Cap Ferrat (Station B, about 80 m in water depth) France, in the water column and in the sediment, in order to evaluate to what extent variations in the ammonia and nitrate concentrations of the sediments are related to plankton population abundance and composition. Nitrate, nitrite, ammonia and chlorophyll awere measured several times during 1987 to 1989, at two depths (1 and 40 m). Copepods and salps in the upper 75 m of the water column were counted several times a week from 1987 to 1990. Ammonia and nitrate concentrations and ammonification rate were determined in the underlying sediments. During Spring 1987, phytoplankton biomass showed a maximum at the end of March; copepod populations increased regularly till the end of April, and salps increased from this time to the end of May. These populations were not so well developed during Spring 1988 and 1989. During the blooms, salp were mainly represented by Thalia democratica. The biomass of phytoplankton and zooplankton was low in summer. The sequence suggests that the copepod decline was related to reduced food levels after the phytoplankton decline. Salp population growth was not at the expense of phytoplankton and it can be assumed that the salp fed on other material. In 1987 and 1988, maximum organic nitrogen concentration in the bottom sediment and maximum ammonification rate directly followed the salp spring bloom. In 1987, the highest ammonification rate measured in the surficial sediment (0-2 cm) reached 0·05 μ M cm 3day -1(in June). In 1990, the rate exceeded 0·1 μM cm -3 day -1during an important salp bloom. Therefore, it seems that the sinking of salp fecal pellets plays an important part in the transfer of organic matter to the bottom, and microbial activity in the surficial sediment leads to mineralization of a great part of the organic nitrogen quickly after its deposition.

  15. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    USGS Publications Warehouse

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.

  16. SAR studies in the Yuma Desert, Arizona: Sand penetration, geology, and the detection of military ordnance debris

    USGS Publications Warehouse

    Schaber, G.G.

    1999-01-01

    Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).

  17. The impact of flood variables on riparian vegetation

    NASA Astrophysics Data System (ADS)

    Dzubakova, Katarina; Molnar, Peter

    2016-04-01

    The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be the most significant variables impacting vegetation response. Generally, maximal flood attributes had more significant impacts than integrated attributes over the flood duration. Additional explanatory variables in the model should account for vegetation heterogeneity, groundwater conditions and different effects of lateral and surface erosion.

  18. Scour around vertical wall abutment in cohesionless sediment bed

    NASA Astrophysics Data System (ADS)

    Pandey, M.; Sharma, P. K.; Ahmad, Z.

    2017-12-01

    At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.

  19. Surveying Small Streams with COTS UAVs

    NASA Astrophysics Data System (ADS)

    McKean, J. A.; Wright, C. W.; Tonina, D.

    2017-12-01

    We tested the ability to make high resolution surveys of stream bathymetry and exposed banks using a commercial off-the-shelf unmanned quadcopter equipped with a 12 megapixel, gimbal stabilized, RGB camera, and L1-code-only GPS.Our study site is a canyon-wall confined gravel bed river with pool-riffle morphology. The survey reach was 15 m wide and on average 0.3 m deep with a maximum water depth during survey of approximately 1.2 m. Streambed material ranged between pea gravel to boulders. For accuracy comparison we field-surveyed the reach with an RTK GPS. The survey mapped large boulders and cobbles, stream banks and bed morphology, as well as the center of each of 9 black/white photo targets with a surface area of 22" x 16" that were placed around the perimeter of the reach. The water was clear, and the bottom substrate reflectivity was highly variable and rich in texture Nearly 1,000 photos were captured, many with sub-centimeter pixels. The photos were processed using Agisoft Photoscan and the resulting point cloud linked to the GPS coordinate system via the surveyed photo targets. The submerged portion of the data was separated from the sub-aerial data, corrected for refraction using external software and then rejoined to produce a seamless point cloud. Comparison between the merged results and ground-survey point shows good agreement with less than 10cm rmse.

  20. Simulation Analysis of Wireless Power Transmission System for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Wei, Zhiqiang; Chi, Haokun; Yin, Bo; Cong, Yanping

    2018-03-01

    In recent years, more and more implantable medical devices have been used in the medical field. Some of these devices, such as brain pacemakers, require long-term power support. The WPT(wireless power transmission) technology which is more convenient and economical than replacing the battery by surgery, has become the first choice of many patients. In this paper, we design a WPT system that can be used in implantable medical devices, simulate the transmission efficiency of the system in the air and in the head model, and simulate the SAR value when the system working in the head model. The results show that when implantation depth of the secondary coil is 3 mm, the efficiency of the system can reach 45%, and the maximum average SAR value is 2.19 W / kg, slightly higher than the standard of IEEE.

  1. Natural ventilation without air breathing in the top openings of highway tunnels

    NASA Astrophysics Data System (ADS)

    Jin, Sike; Jin, Jiali; Gong, Yanfeng

    2017-05-01

    A number of urban shallow-buried highway tunnels have been built in China. Despite much better internal air quality compared to the traditional tunnels, there is no sufficient theoretical ground or experimental support for the construction of such tunnels. Most researchers hold that natural ventilation in such tunnels depends on air breathing in the top openings, but some others are skeptical about this conclusion. By flow visualization technology on a tunnel experiment platform, we tested the characteristics of airflow in the top openings of highway tunnels. The results showed that air always flowed from outside to inside in all top openings above a continuous traffic stream, and the openings did not breathe at all. In addition, intake air in the top openings reached its maximum velocity at the tunnel entrance, and then gradually slowed down with tunnel depth increasing.

  2. Developing an event-tree probabilistic tsunami inundation model for NE Atlantic coasts: Application to case studies

    NASA Astrophysics Data System (ADS)

    Omira, Rachid; Baptista, Maria Ana; Matias, Luis

    2015-04-01

    This study constitutes the first assessment of probabilistic tsunami inundation in the NE Atlantic region, using an event-tree approach. It aims to develop a probabilistic tsunami inundation approach for the NE Atlantic coast with an application to two test sites of ASTARTE project, Tangier-Morocco and Sines-Portugal. Only tsunamis of tectonic origin are considered here, taking into account near-, regional- and far-filed sources. The multidisciplinary approach, proposed here, consists of an event-tree method that gathers seismic hazard assessment, tsunami numerical modelling, and statistical methods. It presents also a treatment of uncertainties related to source location and tidal stage in order to derive the likelihood of tsunami flood occurrence and exceedance of a specific near-shore wave height during a given return period. We derive high-resolution probabilistic maximum wave heights and flood distributions for both test-sites Tangier and Sines considering 100-, 500-, and 1000-year return periods. We find that the probability that a maximum wave height exceeds 1 m somewhere along the Sines coasts reaches about 55% for 100-year return period, and is up to 100% for 1000-year return period. Along Tangier coast, the probability of inundation occurrence (flow depth > 0m) is up to 45% for 100-year return period and reaches 96% in some near-shore costal location for 500-year return period. Acknowledgements: This work is funded by project ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV.2013.6.4-3).

  3. Identification and temporal decrease of 137Cs and 134Cs in groundwater in Minami-Soma City following the accident at the Fukushima Dai-ichi nuclear power plant.

    PubMed

    Shizuma, Kiyoshi; Fujikawa, Yoko; Kurihara, Momo; Sakurai, Yushi

    2018-03-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on March 11, 2011, caused severe radioactive contamination in Fukushima Prefecture. In order to clarify the safety of drinking water, we have conducted radiocesium monitoring of public tap water and groundwater in Minami-Soma City, which is 10-40 km north of the nuclear power plant. The source of tap water for Minami-Soma City is groundwater, which is treated by rapid filtration before distribution in two of the three treatment plants. The tap water was collected from six stations during 2012-2016 and groundwater was collected from 11 stations with wells between 5 and 100 m deep during 2014-2016. Radiocesium contamination of groundwater has been considered unlikely in Japan because of the small vertical migration velocity of radiocesium in Japanese soil. However, radiocesium was detected in public tap water after 2012, and the maximum 137 Cs concentration of 292 mBq L -1 was observed in 2013. In all the well water, radiocesium was detected between 2014 and 2015, at concentrations similar to those observed in tap water in the same period. In tap water and groundwater, radiocesium was decreased to below the detection limit in 2016 except for four stations. Radiocesium concentration in shallow water reached a maximum between 2013 and 2015, 2-4 years after the FDNPP accident, and then decreased. The results are interpreted that dissolved 137 Cs migrated in the soil and reached aquifers of various depth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.

    PubMed

    Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne

    2017-02-15

    In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    USGS Publications Warehouse

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  6. Oceanic adults, coastal juveniles: tracking the habitat use of whale sharks off the Pacific coast of Mexico.

    PubMed

    Ramírez-Macías, Dení; Queiroz, Nuno; Pierce, Simon J; Humphries, Nicolas E; Sims, David W; Brunnschweiler, Juerg M

    2017-01-01

    Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14-134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity.

  7. Numerical Study of Mechanical Response of Pure Titanium during Shot Peening

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Cheng, J. P.; Yang, H. P.; Zhang, C. H.

    2018-05-01

    Mechanical response of pure titanium impacted by a steel ball was simulated using finite element method to investigate stress and strain evolution during shot peening. It is indicated that biaxial residual stress was obtained in the surface layer while in the interior triaxial residual stress existed because the S33 was comparable to S11 and S22. With decreasing the depth from the top surface, the stress was higher during impacting, but the stress relief extent became more significant when the ball rebounded. Therefore the maximum residual stress was formed in the subsurface layer with depth of 130 μm. As for the residual strain, it is shown that the maximum residual strain LE33 was obtained at the depth of 60 μm corresponding to the maximum shear stress during impacting.

  8. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat

    USGS Publications Warehouse

    O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.

    2005-01-01

    Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ~12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.

  9. Application of Radar-Rainfall Estimates to Probable Maximum Precipitation in the Carolinas

    NASA Astrophysics Data System (ADS)

    England, J. F.; Caldwell, R. J.; Sankovich, V.

    2011-12-01

    Extreme storm rainfall data are essential in the assessment of potential impacts on design precipitation amounts, which are used in flood design criteria for dams and nuclear power plants. Probable Maximum Precipitation (PMP) from National Weather Service Hydrometeorological Report 51 (HMR51) is currently used for design rainfall estimates in the eastern U.S. The extreme storm database associated with the report has not been updated since the early 1970s. In the past several decades, several extreme precipitation events have occurred that have the potential to alter the PMP values, particularly across the Southeast United States (e.g., Hurricane Floyd 1999). Unfortunately, these and other large precipitation-producing storms have not been analyzed with the detail required for application in design studies. This study focuses on warm-season tropical cyclones (TCs) in the Carolinas, as these systems are the critical maximum rainfall mechanisms in the region. The goal is to discern if recent tropical events may have reached or exceeded current PMP values. We have analyzed 10 storms using modern datasets and methodologies that provide enhanced spatial and temporal resolution relative to point measurements used in past studies. Specifically, hourly multisensor precipitation reanalysis (MPR) data are used to estimate storm total precipitation accumulations at various durations throughout each storm event. The accumulated grids serve as input to depth-area-duration calculations. Individual storms are then maximized using back-trajectories to determine source regions for moisture. The development of open source software has made this process time and resource efficient. Based on the current methodology, two of the ten storms analyzed have the potential to challenge HMR51 PMP values. Maximized depth-area curves for Hurricane Floyd indicate exceedance at 24- and 72-hour durations for large area sizes, while Hurricane Fran (1996) appears to exceed PMP at large area sizes for short-duration, 6-hour storms. Utilizing new methods and data, however, requires careful consideration of the potential limitations and caveats associated with the analysis and further evaluation of the newer storms within the context of historical storms from HMR51. Here, we provide a brief background on extreme rainfall in the Carolinas, along with an overview of the methods employed for converting MPR to depth-area relationships. Discussion of the issues and limitations, evaluation of the various techniques, and comparison to HMR51 storms and PMP values are also presented.

  10. Determination of threshold value of soil water content for field and vegetable plants with lysimeter measurements

    NASA Astrophysics Data System (ADS)

    Knoblauch, S.

    2009-04-01

    Both the potential water consumption of plants and their ability to withdraw soil water are necessary in order to estimate actual evapotranspiration and to predict irrigation timing and amount. In relating to root water uptake the threshold value at which plants reducing evapotranspiration is an important parameter. Since transpiration is linearly correlated to dry matter production, under the condition that the AET/PET-Quotient is smaller than 1.0 (de Wit 1958, Tanner & Sinclair 1983), the dry matter production begins to decline too. Plants respond to drought with biochemical, physiological and morphological modifications in order to avoid damages, for instance by increasing the root water uptake. The objective of the study is to determine threshold values of soil water content and pressure head respectively for different field and vegetable plants with lysimeter measurements and to derive so called reduction functions. Both parameter, potenzial water demand in several growth stages and threshold value of soil water content or pressure head can be determined with weighable field lysimeter. The threshold value is reached, when the evapotranspiration under natural rainfall condition (AET) drop clearly (0.8 PET) below the value under well watered condition (PET). Basis for the presented results is the lysimeter plant Buttelstedt of the Thuringian State Institute of Agriculture. It consist of two lysimeter cellars, each with two weighable monolithic lysimeters. The lysimeter are 2.5 m deep with a surface area of 2 m2 to allow a non-restrictive root growth and to arrange a representative number of plants. The weighing accuracy amounts to 0.05 mm. The percolating water is collected by ceramic suction cups with suction up to 0.3 MPa at a depth of 2.3 m. The soil water content is measured by using neutron probe. One of the two lysimeter cellars represents the will irrigated, the other one the non irrigated and/or reduced irrigated part of field. The soil is a Haplic Phaeozem with silt-loamy texture developed from loess (water content at wilting point amounts between 0.167 and 0.270 cm3/cm3 and at field capacity (0.03 MPa) between 0.286 and 0.342 cm3/cm3). The mean annual temperature is 8.2°C and the mean annual precipitation is 550 mm. Results are as follows: Winter wheat begins to reduce evapotranspiration when the water content in the root zone to a depth of 2.0 m is smaller than 25 % of the available water holding capacity (AWC). That is equal to an amount of soil water of 171 mm. The threshold value of potatoes is 40 % of the AWC to a rooting depth of 0.6 m (49 mm soil water amount). The corresponding value for cabbage is 40 % of the AWC relating to a rooting depth of 1.2 m, for cauli flower 60 % of the AWC relating to a depth of 1.0 m and for onion 80 % of the AWC to a rooting depth of 0.3 m (90, 50 and 5 mm soil water amount). Nevertheless onion attain a maximum rooting depth of 0.9 m. The maximum rooting depths of winter wheat, potatoes, cabbage and cawli flower are 2.0, 1.0, 1.5 und 1.5 m. The date on which the threshold is reached is different, for winter wheat and cabbage just before harvest and for onion in a few days after 8-leaf-stage. However, it is assumed that these values are also the influence of weather reflect, particulary with regard to the transpiration demand of the atmosphere and the amount of rain fall during earlier growth stages which can prefer the development of adaptation mechanism. Although there are great differences between the plant species concerning root water uptake to avoid a decline of biomass production due to drought.

  11. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    NASA Astrophysics Data System (ADS)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  12. Quantification of in vitro produced wear sites on composite resins using contact profilometry and CCD microscopy: a methodological investigation.

    PubMed

    Koottathape, Natthavoot; Takahashi, Hidekazu; Finger, Wernerj; Kanehira, Masafumi; Iwasaki, Naohiko; Aoyagi, Yujin

    2012-06-01

    Although attritive and abrasive wear of recent composite resins has been substantially reduced, in vitro wear testing with reasonably simulating devices and quantitative determination of resulting wear is still needed. Three-dimensional scanning methods are frequently used for this purpose. The aim of this trial was to compare maximum depth of wear and volume loss of composite samples, evaluated with a contact profilometer and a non-contact CCD camera imaging system, respectively. Twenty-three random composite specimens with wear traces produced in a ball-on-disc sliding device, using poppy seed slurry and PMMA suspension as third-body media, were evaluated with the contact profilometer (TalyScan 150, Taylor Hobson LTD, Leicester, UK) and with the digital CCD microscope (VHX1000, KEYENCE, Osaka, Japan). The target parameters were maximum depth of the wear and volume loss.Results - The individual time of measurement needed with the non-contact CCD method was almost three hours less than that with the contact method. Both, maximum depth of wear and volume loss data, recorded with the two methods were linearly correlated (r(2) > 0.97; p < 0.01). The contact scanning method and the non-contact CCD method are equally suitable for determination of maximum depth of wear and volume loss of abraded composite resins.

  13. The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah

    USGS Publications Warehouse

    Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.

    1999-01-01

    A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks for the White Rim oil. The most attractive potential sources for White Rim oil include beds within one or more of the following formations: the Proterozoic Chuar Group, which is present in the subsurface southwest of the Tar Sand triangle; the Mississippian Delle Phosphatic Member of the Deseret Limestone and equivalent formations, the Permian Kaibab Limestone, the Sinbad Limestone Member of the Triassic Moenkopi Formation, and the Jurassic Arapien Shale, Twin Creek Limestone, and Carmel Formation, which are present west of the Tar Sand triangle; the Pennsylvanian Paradox Formation in the Paradox basin east of the Tar Sand triangle; and the Permian Park City Formation northwest of the Tar Sand triangle. Each formation has a high total organic carbon content and is distributed over a wide enough geographic area to have provided a huge volume of oil. Source beds in all of the formations reached thermal maturity at times prior to or during the time that migration into the White Rim is interpreted to have occurred. Based on all available data, the most likely source for the Tar Sand triangle appears to be the Mississippian Delle Phosphatic Member of the Deseret Limestone. Secondary migration out of the Delle is interpreted to have occurred during the Cretaceous, during Sevier thrusting. Subsequent tertiary migration into the Tar Sand triangle reservoir is interpreted to have occurred later, during middle Tertiary Laramide deformation.

  14. Electron fluence correction factors for various materials in clinical electron beams.

    PubMed

    Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P

    2001-08-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.

  15. Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing

    PubMed Central

    Mahmoud, Shereif H.; Alazba, A. A.

    2015-01-01

    The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712

  16. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  17. Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes

    NASA Astrophysics Data System (ADS)

    Anderssohn, J.; Motagh, M.; Walter, T. R.; Rosenau, M.; Kaufmann, H.; Oncken, O.

    2009-12-01

    The variable spatio-temporal scales of Earth's surface deformation in potentially hazardous volcanic areas pose a challenge for observation and assessment. Here we used Envisat data acquired in Wide Swath Mode (WSM) and Image Mode (IM) from ascending and descending geometry, respectively, to study time-dependent ground uplift at the Lazufre volcanic system in Chile and Argentina. A least-squares adjustment was performed on 65 IM interferograms that covered the time period of 2003-2008. We obtained a clear trend of uplift reaching 15-16 cm in this 5-year interval. Using a joint inversion of ascending and descending interferograms, we evaluated the geometry and time-dependent progression of a horizontally extended pressurized source beneath the Lazufre volcanic system. Our results hence indicate that an extended magma body at a depth between 10 and 15 km would account for most of the ground uplift. The maximum inflation reached up to ~40 cm during 2003-2008. The lateral propagation velocity of the intrusion was estimated to be nearly constant at 5-10 km/yr during the observation time, which has important implications for the physical understanding of magma intrusion processes.

  18. The July 11, 1995 Myanmar-China earthquake: A representative event in the bookshelf faulting system of southeastern Asia observed from JERS-1 SAR images

    NASA Astrophysics Data System (ADS)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Ji, Cunwei

    2017-03-01

    On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar-China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW-SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar-China earthquake is one of the largest recorded earthquakes that has occurred around the "bookshelf faulting" system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.

  19. Channel geometry change of a first-order stream after a small debris flow in Ashio Mountains of central Japan

    NASA Astrophysics Data System (ADS)

    Hattanji, T.; Wasklewicz, T.

    2006-12-01

    We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.

  20. An entropy-based method for determining the flow depth distribution in natural channels

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Corato, Giovanni; Melone, Florisa; Singh, Vijay P.

    2013-08-01

    A methodology for determining the bathymetry of river cross-sections during floods by the sampling of surface flow velocity and existing low flow hydraulic data is developed . Similar to Chiu (1988) who proposed an entropy-based velocity distribution, the flow depth distribution in a cross-section of a natural channel is derived by entropy maximization. The depth distribution depends on one parameter, whose estimate is straightforward, and on the maximum flow depth. Applying to a velocity data set of five river gage sites, the method modeled the flow area observed during flow measurements and accurately assessed the corresponding discharge by coupling the flow depth distribution and the entropic relation between mean velocity and maximum velocity. The methodology unfolds a new perspective for flow monitoring by remote sensing, considering that the two main quantities on which the methodology is based, i.e., surface flow velocity and flow depth, might be potentially sensed by new sensors operating aboard an aircraft or satellite.

  1. Influence of perched groundwater on base flow

    USGS Publications Warehouse

    Niswonger, Richard G.; Fogg, Graham E.

    2008-01-01

    Analysis with a three‐dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine‐sediment unit and the hydraulic conductivity of the fine‐sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000‐m stream reach. Generally, the rate of perched‐groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine‐sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine‐sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched‐groundwater discharge nearly 75%.

  2. An Observational Study of the Kuroshio in the East China Sea: Local, Regional, and Basin-Wide Perspectives on a Western Boundary Current

    DTIC Science & Technology

    2008-01-01

    a seamount (summit ~320 m depth); the northern section reaches ~460 m depth while the southern section reaches ~1400 m (Oka and Kawabe, 2003). East...AN OBSERVATIONAL STUDY OF THE KUROSHIO IN THE EAST CHINA SEA: LOCAL, REGIONAL, AND BASIN-WIDE PERSPECTIVES ON A WESTERN BOUNDARY CURRENT...BY MAGDALENA ANDRES A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

  3. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.

  4. Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions

    PubMed Central

    Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  5. Dynamic push-pull characteristics at three hand-reach envelopes: applications for the workplace.

    PubMed

    Calé-Benzoor, Maya; Dickstein, Ruth; Arnon, Michal; Ayalon, Moshe

    2016-01-01

    Pushing and pulling are common tasks in the workplace. Overexertion injuries related to manual pushing and pulling are often observed, and therefore the understanding of work capacity is important for efficient and safe workstation design. The purpose of the present study was to describe workloads obtained during different reach envelopes during a seated push-pull task. Forty-five women performed an isokinetic push-pull sequence at two velocities. Strength, work and agonist/antagonist muscle ratio were calculated for the full range of motion (ROM). We then divided the ROM into three reach envelopes - neutral, medium, and maximum reach. The work capacity for each direction was determined and the reach envelope work data were compared. Push capability was best at medium reach envelope and pulling was best at maximum reach envelope. Push/pull strength ratio was approximately 1. A recommendation was made to avoid strenuous push-pull tasks at neutral reach envelopes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  7. Mass composition results from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Riggi, Simone; Pierre Auger Collaboration

    2011-03-01

    The present paper reports the recent composition results obtained by the Pierre Auger Observatory using both hybrid and surface detector data. The reconstruction of the shower longitudinal profile and depth of maximum with the fluorescence detector is described. The measured average depth of maximum and its fluctuations as function of the primary energy is presented. The sensitivity of rise time parameters measured with the ground stations and the obtained composition results are discussed.

  8. Performance Evaluation of Bluetooth Low Energy: A Systematic Review.

    PubMed

    Tosi, Jacopo; Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto; Formica, Domenico

    2017-12-13

    Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits.

  9. Performance Evaluation of Bluetooth Low Energy: A Systematic Review

    PubMed Central

    Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto

    2017-01-01

    Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits. PMID:29236085

  10. Screw-in forces during instrumentation by various file systems.

    PubMed

    Ha, Jung-Hong; Kwak, Sang Won; Kim, Sung-Kyo; Kim, Hyeon-Cheol

    2016-11-01

    The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS- k , DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest ( p < 0.05). Geometrical differences rather than shaping motion and alloys may affect the screw-in force during canal instrumentation. To reduce screw-in forces, the use of NiTi files with smaller cross-sectional area for higher flexibility is recommended.

  11. [Left ventricular volume determination by first-pass radionuclide angiocardiography using a semi-geometric count-based method].

    PubMed

    Kinoshita, S; Suzuki, T; Yamashita, S; Muramatsu, T; Ide, M; Dohi, Y; Nishimura, K; Miyamae, T; Yamamoto, I

    1992-01-01

    A new radionuclide technique for the calculation of left ventricular (LV) volume by the first-pass (FP) method was developed and examined. Using a semi-geometric count-based method, the LV volume can be measured by the following equation: CV = CM/(L/d). V = (CT/CV) x d3 = (CT/CM) x L x d2. (V = LV volume, CV = voxel count, CM = the maximum LV count, CT = the total LV count, L = LV depth where the maximum count was obtained, and d = pixel size.) This theorem was applied to FP LV images obtained in the 30-degree right anterior oblique position. Frame-mode acquisition was performed and the LV end-diastolic maximum count and total count were obtained. The maximum LV depth was obtained as the maximum width of the LV on the FP end-diastolic image, using the assumption that the LV cross-section is circular. These values were substituted in the above equation and the LV end-diastolic volume (FP-EDV) was calculated. A routine equilibrium (EQ) study was done, and the end-diastolic maximum count and total count were obtained. The LV maximum depth was measured on the FP end-diastolic frame, as the maximum length of the LV image. Using these values, the EQ-EDV was calculated and the FP-EDV was compared to the EQ-EDV. The correlation coefficient for these two values was r = 0.96 (n = 23, p less than 0.001), and the standard error of the estimated volume was 10 ml.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Sorting Out Effects of Active Stream Restoration: Channel Morphology, Channel Change Processes and Potential Controls

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2017-12-01

    In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed significant re-arrangement of bed morphology. The spatial context of processes and controls allows some separation of the effectiveness of different management actions. Active restoration directly increased pool depth, but passive restoration apparently had more impact on aggradation/degradation and width.

  13. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.

  14. 31 CFR 29.342 - Computed annuity exceeds the statutory maximum.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) In cases in which the total computed annuity exceeds the statutory maximum: (1) Federal Benefit... sufficient service as of June 30, 1997, to reach the statutory maximum benefit, but has sufficient service at...

  15. Preliminary studies of the effect of thinning techniques over muon production profiles

    NASA Astrophysics Data System (ADS)

    Tomishiyo, G.; Souza, V.

    2017-06-01

    In the context of air shower simulations, thinning techniques are employed to reduce computational time and storage requirements. These techniques are tailored to preserve locally mean quantities during shower development, such as the average number of particles in a given atmosphere layer, and to not induce systematic shifts in shower observables, such as the depth of shower maximum. In this work we investigate thinning effects on the determination of the depth in which the shower has the maximum muon production {X}\\max μ -{sim}. We show preliminary results in which the thinning factor and maximum thinning weight might influence the determination of {X}\\max μ -{sim}

  16. Mid-Crustal Stress Magnitude and Rotation Transients Related to the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Ellis, S.

    2008-12-01

    Seismic slip causes a stress drop in the upper crust, and a major stress increase at the lower termination of the fault in the middle crust. Previous numerical models show how these stresses relax during an episode of postseismic creep. Natural evidence for postseismic stress and strain transients at depth is provided by 1) the geological record of exhumed metamorphic rocks, and 2) from postseismic surface deformation transients. In the present study, we use numerical models to investigate the changes in the geometry of the mid-crustal stress field caused by seismic slip along normal faults within an extensional tectonic setting. We model a 100x30km crustal section, with a fault reaching down to 20km and dipping at 60°. A non-linear thermal gradient and constant elastic parameters are applied. Thermally activated creep is described by values derived from laboratory creep experiments on wet quartzite. The crust is loaded by horizontal extension at a constant rate, and earthquakes are triggered by a short term decrease in the frictional coefficient of the fault. During the interseismic period, this coefficient is set to high values to lock the fault. A sequence of 30 earthquakes with a constant recurrence interval of 500y is simulated, and the results for the last seismic cycle are analyzed. In such a tectonic setting, the Anderson theory predicts that the maximum principal stress is vertical. A stress field consistent to this theory is reached after an initial stage of 15ka extension without earthquake activity. The results for the 30th seismic cycle imply that seismic slip causes a major stress increase of at least 50MPa at a depth level below the brittle ductile transition, which is in accordance to reports on seismic stress increase derived from the record of metamorphic rocks. In the hanging wall, the stress increase results mainly from an increase in the maximum principal stress and the stress tensor rotates counter-clockwise by 10-30°. In the footwall the stress increase results mainly from a drop in the minimum principal stress, and the stress tensor rotates clockwise by 45-60°. A change in the magnitude of differential stress can be addressed by the addition of an incremental stress tensor resulting from elastic strain to the preexisting stress tensor. In an isotropic medium, the orientation of the maximum and the minimum principal stress changes are controlled by the directions of maximum compression and maximum extension, respectively. The magnitude and the orientation of the resulting stress tensor depend: 1) on the absolute magnitudes and on the ratio of the magnitudes of pre-existing stress and incremental change in the stress tensor; and 2) on the mis-orientation between existing stress and stress change principal directions. The zone of coseismic loading correlates to the interval in which seismic slip tapers off with depth. For a normal fault, the crust here is subjected to fault-parallel compression in the hanging wall, and to extension in the footwall. The resulting orientation of the seismic principal compressive stress change parallel to the fault in the hanging wall and normal to the fault in the footwall causes the particular deflection of the resulting stress tensor . During the interseismic period, the stress peak relaxes by thermally activated creep, while the deflection of the stress tensor is persistent. We show that significant mis- orientations of the stress tensor can be preserved over timescales typical for a seismic cycle, in dependence on the far field extension rate. We conclude that seismic activity causes 1) a non-steady state mid-crustal stress field, and 2) a persistent deflection of the stress tensor orientation from the predictions of the Anderson theory.

  17. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    PubMed

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.

  18. Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?

    USGS Publications Warehouse

    Lidz, B.H.

    2006-01-01

    Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.

  19. The effects of tropical cyclone characteristics on the surface wave fields in Australia's North West region

    NASA Astrophysics Data System (ADS)

    Drost, Edwin J. F.; Lowe, Ryan J.; Ivey, Greg N.; Jones, Nicole L.; Péquignet, Christine A.

    2017-05-01

    The numerical wave model SWAN (Simulating WAves Nearshore) and historical wave buoy observations were used to investigate the response of surface wave fields to tropical cyclone (TC) wind forcing on the Australian North West Shelf (NWS). Analysis of historical wave data during TC events at a key location on the NWS showed that an average of 1.7 large TCs impacted the region each year, albeit with high variability in TC track, intensity and size, and also in the surface wave field response. An accurately modeled TC wind field resulted in a good prediction of the observed extreme wave conditions by SWAN. Results showed that the presence of strong background winds during a TC and a long TC lifetime (with large variations in translation speed) can provide additional energy input. This potentially enhances the generated swell waves and increases the spatial extent of the TC generated surface wave fields. For the TC translation speeds in this study, a positive relationship between TC translation speed and the resulting maximum significant wave height and wave field asymmetry was observed. Bottom friction across the wide NWS limited the amount of wave energy reaching the coastal region; consistently reducing wave energy in depths below 50 m, and in the case of the most extreme conditions, in depths up to 100 m that comprise much of the shelf. Nevertheless, whitecapping was still the dominant dissipation mechanism on the broader shelf region. Shelf-scale refraction had little effect on the amount of wave energy reaching the nearshore zone; however, refraction locally enhanced or reduced wave energy depending on the orientation of the isobaths with respect to the dominant wave direction during the TC.

  20. Life history and feeding biology of the deep-sea pycnogonid Nymphon hirtipes

    NASA Astrophysics Data System (ADS)

    Mercier, Annie; Baillon, Sandrine; Hamel, Jean-François

    2015-12-01

    Pycnogonids (sea spiders) are commonly collected at bathyal and abyssal depths all around the world; however, little is known about species from deep-water habitats. The present study explores the life history of Nymphon hirtipes collected in northeastern Newfoundland between 700 and 1450 m depth and monitored in mesocosms for over 2 years. The pycnogonids were found in association with octocorals, hydrozoans and sea anemones. Adult females developed mature oocytes between June and August. Paired mating followed by oviposition occurred between early July and mid-October. Up to three egg masses were brooded by each male. It took a maximum of 4 months for the propagules to hatch from the egg mass. Offspring developed from walking leg-bearing larvae to early juveniles over the next ~5 months before leaving the male's protection. Mating and oviposition coincided with the highest water temperatures of the annual cycle and dispersal of juveniles occurred in spring, when phytodetritus deposition was high and as ocean temperature rose markedly. All the females died after oviposition and the males ~9 months later, after juvenile dispersal. The sex ratio of mature individuals (~55-60 mm leg span) was 2 males for 3 females. Fecundity was estimated to be 184-288 eggs per adult female. Adults of N. hirtipes were seen feeding on hydrozoan polyps, small sea anemones (Stephanauge nexilis) and nudibranchs. Larvae and early juveniles did not feed while brooded by the male. Upon dispersal, their feeding apparatus became functional and they began feeding on hydrozoan polyps. After 13 months of growth post hatching, the juveniles reached ~21 mm leg span. Curve fitting estimated that ~7 years are required to reach the adult size of 55 mm leg span.

  1. Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the Red Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalenderski, S.; Stenchikov, G.; Zhao, Chun

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, andmore » mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.« less

  2. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE PAGES

    Shimada, Masashi; Cao, G.; Otsuka, T.; ...

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  3. Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin

    2017-03-01

    Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.

  4. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    PubMed

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  5. Fine Sediment Residency in Streambeds in Southeastern Australia.

    NASA Astrophysics Data System (ADS)

    Croke, J. C.; Thompson, C. J.; Rhodes, E.

    2007-12-01

    A detailed understanding of channel forming and maintenance processes in streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are often problematic due to the high discharge characteristics of upland streams. In part to compensate for such difficulties, empirical flow competence equations have also been developed to predict armour or bedform stabilising grain mobility. These equations have been applied to individual reaches to predict the entrainment of a threshold grain size and the vertical extent of flushing. In cobble- and boulder-bed channels the threshold grain size relates to the size of the bedform stabilising grains (eg. D84, D90). This then allows some prediction of when transport of the matrix material occurs. The application of Optically Stimulated Luminescence (OSL) dating is considered here as an alternative and innovative way to determine fine sediment residency times in stream beds. Age estimates derived from the technique are used to assist in calibrating sediment entrainment models to specific channel types and hydrological regimes. The results from a one-dimensional HEC-RAS model indicate that recurrence interval floods exceeding bankfull up to 13 years are competent to mobilise the maximum overlying surface grain sizes at the sites. OSL minimum age model results of well bleached quartz in the fine matrix particles are in general agreement with selected competence equation predictions. The apparent long (100-1400y) burial age of most of the mineral quartz suggests that competent flows are not able to flush all subsurface fine-bed material. Maximum bed load exchange (flushing) depth was limited to twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of matrix material storage and flushing in mountain streams.

  6. Microbial degradation at a shallow coastal site: Long-term spectra and rates of exoenzymatic activities in the NE Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Celussi, Mauro; Del Negro, Paola

    2012-12-01

    The degradation of organic matter along the water column is mediated by enzymes released into the environment by planktonic organisms. Variations in enzymes profiles (types and levels of activity) reflect the trophic status of the environment and could be caused by shifts in the dominant species or in the level of enzyme expression by the same species in response to changes in the spectrum of organic substrates. To explore this issue, we examined the maximum rates of hydrolysis of 6 different enzymes (protease, α-glucosidase, β-glucosidase, β-galactosidase, alkaline phosphatase and lipase) along the water column (4 depths) at a coastal station in the Gulf of Trieste (northern Adriatic Sea), from 2000 to 2005. Most of the studied enzymes exhibited a pronounced seasonal variability with winter minima and maxima from April to October. During summer, alkaline phosphatase, lipase and protease reached the highest activities, while polysaccharide degradation prevailed in spring and autumn, associated to phytoplankton blooms. Phosphatase/protease activities ratio was generally low, indicating that microbial communities were rarely P-limited, possibly because of the use of organic P sources. A pronounced interannual variability of degradation patterns was found, with maximum rates of protease being the highest in most of the samples, followed by the alkaline phosphatase's ones. Water column features greatly affected hydrolysis rates, being degradation of linear polysaccharides, lipids, phosphorilated compounds and polypeptides significantly different at different depths during stratified condition. Mixing processes affected especially α-glucosidase activity, possibly as a consequence of resuspension of organic matter from the seabed. Large-impact phenomena such as the 2003 heat wave and mucilage influenced the degradation of specific substrates. Mucilage enhanced lipase, phosphatase and protease, whereas a pronounced inhibition characterised phosphatase and protease during summer 2003.

  7. Batch and fixed-bed biosorption of Cd(II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate.

    PubMed

    Jin, Yu; Teng, Chunying; Yu, Sumei; Song, Tao; Dong, Liying; Liang, Jinsong; Bai, Xin; Liu, Xuesheng; Hu, Xiaojing; Qu, Juanjuan

    2018-01-01

    To prevent the blockage in a continuous fix-bed system, Pleurotus Ostreatus spent substrate (POSS), a composite agricultural waste, was immobilized into granular adsorbents (IPOSS) with polymeric matrix, and used to remove Cd(II) from synthetic wastewater in batch experiment as well as in continuous fixed-bed column system. In batch experiment, higher pH, temperature and Cd(II) initial concentration were conducive to a higher biosorption capacity, and the maximum biosorption capacity reached up to 87.2 mg/g at Cd(II) initial concentration of 200 mg/L, pH 6 and 25 °C. The biosorption of Cd(II) onto IPOSS followed the Langmuir isotherm model with the maximum adsorption capacity(q max ) of 100 mg/g. The biosorption was an endothermic reaction and a spontaneous process based on positive value of ΔH 0 and negative value of ΔG 0 . In fixed-bed column system, higher bed depth, lower flow rate and influent Cd(II) concentration led to a longer breakthrough and exhaustion time, and the best performance (equilibrium uptake (q e ) of 14.4 mg, breakthrough time at 31 h and exhaustion time at 78 h) was achieved at a bed depth of 110 cm, a flow rate of 1.2 L/h and an influent concentration of 100 mg/L. Furthermore, regeneration experiment revealed a good reusability of IPOSS with 0.1 M HNO 3 as eluting agent during three cycles of adsorption and desorption. Cd(II) biosorption onto IPOSS mainly relied on a chemical process including ion exchange and complexation or coordination revealed by SEM-EDX, FTIR and XRD analysis. Copyright © 2017. Published by Elsevier Ltd.

  8. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less

  9. Theoretical study of liquid droplet dispersion in a venturi scrubber.

    PubMed

    Fathikalajahi, J; Talaie, M R; Taheri, M

    1995-03-01

    The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.

  10. Salinification in the South China Sea Since Late 2012: A Reversal of the Freshening Since the 1990s

    NASA Astrophysics Data System (ADS)

    Zeng, Lili; Chassignet, Eric P.; Schmitt, Raymond W.; Xu, Xiaobiao; Wang, Dongxiao

    2018-03-01

    Salinification has occurred in the South China Sea from late 2012 to the present, as shown by satellite Aquarius/Soil Moisture Active Passive data and Argo float data. This salinification follows a 20 year freshening trend that started in 1993. The salinification signal is strongest near the surface and extends downward under the seasonal thermocline to a depth of 150 m. The salinification occurs when the phase of the Pacific Decadal Oscillation switches from negative to positive. Diagnosis of the salinity budget suggests that an increasing net surface freshwater loss and the horizontal salt advection through the Luzon Strait driven by the South China Sea throughflow contributed to this ongoing salinification. In particular, a decrease in precipitation and enhanced Luzon Strait transport dominated the current intense salinification. Of particular interest is whether this salinification will continue until it reaches the previous maximum recorded in 1992.

  11. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range

    PubMed Central

    Sola, Daniel; Peña, Jose I.

    2013-01-01

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated. PMID:28788391

  12. UHECR mass composition measurement at Telescope Array via stereoscopic observation

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Telescope Array Collaboration

    2015-04-01

    The masses of primary ultra-high-energy cosmic-ray (UHECR) nuclei cannot be measured directly on an individual basis, but constraints on the chemical composition can be inferred from the distributions of observable properties. The atmospheric slant depth at which a UHECR-induced extensive air shower reaches its maximum number of particles, Xmax, is particularly sensitive to the mass of the incident nucleus, occurring earlier in the shower's longitudinal development for heavier nuclei at a given energy. The Telescope Array in west-central Utah, the northern hemisphere's largest UHECR detector, is equipped for accurate Xmax and energy measurements via stereoscopic fluorescence observation. Using data from seven years of operation, we will present Xmax distributions at several energies E >10 18 . 2eV , and compare them to distributions predicted by detailed detector simulations under an assortment of assumed UHECR compositions and high-energy hadronic interaction models.

  13. Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Peiguo; Yang, Cheng; Bian, Lian

    2017-11-01

    A new design of terahertz (THz) metamaterial is proposed for modulating and sensing purposes. The metamaterial consists of two resonators based on periodical arrays of graphene rings with different radii. For each small ring, it is surrounded by four large rings, and vice versa. By varying the Fermi level through electrostatically gating, the transmission of the graphene metamaterial can be controlled dynamically and the maximum modulation depths can reach up to 86% and 73%. Especially, an electromagnetically induced transparency (EIT)-like phenomenon can be generated, which results from the weak hybridization between two nearest neighbor rings performed as bright modes induced by electric dipole. Consequently, frequency sensitivity of 830 GHz per refractive index unit and figure-of-merit of 17 can be realized at the transparency peak. Our work offers an additional opportunity to achieve an EIT-like effect and potential applications in designing active THz modulators and sensors.

  14. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  15. Response of a Circular Tunnel Through Rock to a Harmonic Rayleigh Wave

    NASA Astrophysics Data System (ADS)

    Kung, Chien-Lun; Wang, Tai-Tien; Chen, Cheng-Hsun; Huang, Tsan-Hwei

    2018-02-01

    A factor that combines tunnel depth and incident wavelength has been numerically determined to dominate the seismic responses of a tunnel in rocks that are subjected to harmonic P- and S-waves. This study applies the dynamic finite element method to investigate the seismic response of shallow overburden tunnels. Seismically induced stress increments in the lining of a circular tunnel that is subjected to an incident harmonic R-wave are examined. The determination of R-wave considers the dominant frequency of acceleration history of the 1999 Chi-Chi earthquake measured near the site with damage to two case tunnels at specifically shallow depth. An analysis reveals that the normalized seismically induced axial, shear and flexural stress increments in the lining of a tunnel reach their respective peaks at the depth h/ λ = 0.15, where the ground motion that is generated by an incident of R-wave has its maximum. The tunnel radius has a stronger effect on seismically induced stress increments than does tunnel depth. A greater tunnel radius yields higher normalized seismically induced axial stress increments and lower normalized seismically induced shear and flexural stress increments. The inertia of the thin overburden layer above the tunnel impedes the propagation of the wave and affects the motion of the ground around the tunnel. With an extremely shallow overburden, such an effect can change the envelope of the normalized seismically induced stress increments from one with a symmetric four-petal pattern into one with a non-symmetric three-petal pattern. The simulated results may partially elucidate the spatial distributions of cracks that were observed in the lining of the case tunnels.

  16. Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance.

    PubMed

    Frossard, Victor; Verneaux, Valérie; Millet, Laurent; Magny, Michel; Perga, Marie-Elodie

    2015-06-01

    Stable C isotope ratio (δ(13)C) values of chironomid remains (head capsules; HC) were used to infer changes in benthic C sources over the last 150 years for two French sub-Alpine lakes. The HCs were retrieved from a series of sediment cores from different depths. The HC δ(13)C values started to decrease with the onset of eutrophication. The HC δ(13)C temporal patterns varied among depths, which revealed spatial differences in the contribution of methanotrophic bacteria to the benthic secondary production. The estimates of the methane (CH4)-derived C contribution to chironomid biomass ranged from a few percent prior to the 1930s to up to 30 % in recent times. The chironomid fluxes increased concomitantly with changes in HC δ(13)C values before a drastic decrease due to the development of hypoxic conditions. The hypoxia reinforced the implication for CH4-derived C transfer to chironomid production. In Lake Annecy, the HC δ(13)C values were negatively correlated to total organic C (TOC) content in the sediment (Corg), whereas no relationship was found in Lake Bourget. In Lake Bourget, chironomid abundances reached their maximum with TOC contents between 1 and 1.5 % Corg, which could constitute a threshold for change in chironomid abundance and consequently for the integration of CH4-derived C into the lake food webs. Our results indicated that the CH4-derived C contribution to the benthic food webs occurred at different depths in these two large, deep lakes (deep waters and sublittoral zone), and that the trophic transfer of this C was promoted in sublittoral zones where O2 gradients were dynamic.

  17. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    PubMed

    Alabdoaburas, Mohamad M; Mege, Jean-Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Atilla; de Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-11-08

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.

  18. Experimental assessment of out‐of‐field dose components in high energy electron beams used in external beam radiotherapy

    PubMed Central

    Alabdoaburas, Mohamad M.; Mege, Jean‐Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Attila; de Vathaire, Florent; Lefkopoulos, Dimitri

    2015-01-01

    The purpose of this work was to experimentally investigate the out‐of‐field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off‐axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD‐700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel‐plane ionization chamber measurements. Also, out‐of‐field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12–15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10×10cm2 applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10×10cm2 applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out‐of‐field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long‐term effects. PACS number(s): 87.53.Bn, 87.56.bd, 87.56.J‐ PMID:26699572

  19. 23 October 2011 (Mw=7.2) Van Earthquake (Turkey): Revised Coseismic and Postseismic Models from New GPS Observations

    NASA Astrophysics Data System (ADS)

    Dogan, U.; Demir, D. O.; Cakir, Z.; Ergintav, S.; Cetin, S.; Ozdemir, A.; Reilinger, R. E.

    2017-12-01

    The 23 October 2011, Mw=7.2 Van Earthquake occurred in eastern Turkey on a thrust fault trending NE-SW and dipping to the north. We use GPS time series from the survey and continuous stations to determine coseismic deformation and to identify spatial and temporal changes in the near and far field due to postseismic processes (2011-2017). The coseismic deformation in the near field is derived from GPS data collected at 25 cadastral GPS survey sites. The coseismic horizontal displacements reach nearly 50 cm close to the surface trace of the fault that ruptured at depth during the earthquake. The density and distribution of the GPS sites allow us to better constrain the extent of the coseismic rupture using elastic dislocations on triangular faults embedded in a homogeneous, elastic half space. Modeling studies suggest that the coseismic rupture stopped west of the Erçek Lake before veering to the north. Estimated seismic moment is in good agreement with the seismologically and geodetically estimated seismic moment, estimated from the finite-fault model. Our preferred coseismic model consists of a simple elliptical slip patch centered at around 8 km depth with a maximum slip of about 2.5 m, consistent with the previous estimates based on InSAR measurements. The postseismic deformation field is derived from far field continuous GPS observations (10.2011 - 11.2017) and near field GPS campaigns (10.2011 - 09.2015). The postseismic time-series are fit better with a logarithmic than an exponential function, suggesting that the postseismic deformation is due to afterslip. Then, we modified our published postseismic model, using the coseismic model and data sets, extended until the end of 2017. The results show that during 6 years following the earthquake, after slip of up to 65 cm occurred at relatively shallow (< 10 km) depths, mostly above the deep coseismic slip that reaches depths > 15 km. New interpretations of the shallow afterslip, also, adds further evidence that the surface break observed after the earthquake was caused by coseismic stress changes rather than representing the coseismic fault. (This study is supported by TUBITAK no: 112Y109 project). Keywords: Van earthquake, GPS, coseismic, postseismic, deformation, elastic modeling

  20. Computational technique and performance of Transient Inundation Model for Rivers--2 Dimensional (TRIM2RD) : a depth-averaged two-dimensional flow model

    USGS Publications Warehouse

    Fulford, Janice M.

    2003-01-01

    A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.

  1. Complex N-S variations in Moho depth and Vp/Vs ratio beneath the western Tibetan Plateau as revealed by receiver function analysis

    NASA Astrophysics Data System (ADS)

    Murodov, Davlatkhudzha; Zhao, Junmeng; Xu, Qiang; Liu, Hongbing; Pei, Shunping

    2018-04-01

    We present herein detailed images of the Moho depth and Vp/Vs ratio along ANTILOPE-1 profile beneath the western Tibetan Plateau derived from receiver function analysis. Along the ANTILOPE -1 profile, a rapidly northward dipping Moho extends from ˜50 km below the Himalaya to ˜80 km across the Indus-Yarlung suture (IYS), shallowing to ˜66 km under the central Lhasa terrane. The Moho depth shows a dramatic increase from ˜66 km north of the Bangong-Nujiang suture (BNS) to ˜93 km beneath central Qiangtang terrane where it reaches the maximum depth observed along this profile before steeply rising to ˜73 km. We interpret both the 15 km and 20 km offsets of Moho depth occurring beneath the central Lhasa and central Qiangtang terranes as being related to the northern frontiers of the decoupled underthrusting Indian lower crust and lithospheric mantle, respectively. The Moho remains at a depth of ˜70 km with a slight undulation beneath the northern Qiangtang and Songpan-Ganzi terranes, and then abruptly shallows to ˜45 km near the Altyn Tagh Fault. The ˜25 km Moho offset observed at the conjunction of the Tarim Basin and the Altyn Tagh mountain range suggests that the crustal shortening is achieved by pure shear thickening without much underthrusting. The average crustal Vp/Vs ratio changes from 1.66 to 1.80 beneath the Himalaya, the Lhasa terrane and the Tarim Basin indicating a felsic-to-intermediate composition. However, higher Vp/Vs ratios between 1.76 and 1.83 (except for a few outlying low values) are found beneath the Qiangtang and Songpan-Ganzi terranes, which could be attributed to the joint effects of the more mafic composition and partial melt within the crust. The Moho depth and Vp/Vs ratio exhibit complex N-S variations along this profile, which can be attributed to the joint effects of Indian lower crust underthrusting, the low velocity zone of the mid-upper crust, crustal shortening and thickening and other involved dynamic mechanisms.

  2. Evidence for Coseismic Rupture Beyond the Base of the Seismogenic Layer

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Wesnousky, S.

    2010-12-01

    For scientific reasons and hazard assessment it is important to better understand the physics and rupture characteristics of large, destructive earthquakes. However, those events occur infrequently, severely obstructing their analysis. Smaller but more frequent earthquakes are usually studied and their characteristics are extrapolated to assess large earthquake behavior, assuming that small and large events are associated with the same physical processes and parameters. For small and moderate size earthquakes it was observed and independently derived from elastic models that coseismic stress drop is independent of earthquake size and that slip is proportional to the smallest rupture dimension. It is therefore assumed that large earthquake stress drops are essentially equal to the stress drop of their smaller size siblings. It is further assumed that the slip amount of large events does not further increase once it ruptures the full seismogenic layer--the base of the seismogenic layer is commonly thought to limit the earthquake down-dip rupture extend and thus defines the smallest rupture dimension. However, slip observations for many large strike-slip events show how offset gradually increases with rupture length. Two explanations have been formulated: If the rupture width of those events were indeed limited by the base of the seismogenic layer, the observations would imply larger stress drops and possibly other processes involved in large earthquake rupture, questioning the validity of the aforementioned extrapolation from small to large earthquakes. On the other hand, if rupture width of large earthquakes were not limited by the base of the seismogenic layer but were allowed to extend further down (as suggested by recent studies), the increased slip amount may be explained without an increase in stress drop or additional rupture mechanisms for large earthquakes. For the study we present here, we analyzed seismic data constraining the depth extent of large earthquakes relative to the depth of the seismogenic base. We utilized time series data of aftershock depths for a number of large strike-slip earthquakes, generating aftershock time vs. depth histograms to investigate the temporal variation in depth distribution. Based on hypocenter depth of small earthquakes along the Landers fault (causing the 1992 M7.3 Landers earthquake), we identified the base of the seismogenic layer at ~10km. Aftershocks that occurred only days after the Landers earthquake had maximum depths of ~18km, suggesting that rupture of the main shock extended this far down and therefore went well below the base of the seismogenic layer. Maximum aftershock depth then decayed roughly logarithmically, reaching the previous value of ~10km after about 5.5years. We argue that these observations are a logical consequence of the visco-elastic rheology of crustal rocks: Coseismically highly increased strains elevate the crustal stiffness, temporarily lowering the base of the seismogenic layer and permitting initiation of slip instabilities at depths that are otherwise characterized by viscous behavior. Extrapolation from small to large earthquakes is therefore permitted. No additional stress drop or rupture mechanism is required to explain the data.

  3. GIS Well Temperature Data from the Roosevelt Hot Springs, Utah FORGE Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwynn, Mark; Hill, Jay; Allis, Rick

    This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching onemore » or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.« less

  4. Modeling Peat Ages Using 7Be Data to Account for Downwash of 210Pb

    NASA Astrophysics Data System (ADS)

    Manies, K.; Fuller, C.; Jones, M.

    2016-12-01

    In order to determine the amount of peat, and thus carbon, which has accumulated since the last thaw event, we are interested in dating the surface layers of boreal thermokarst bogs. However, there can often be a mismatch by several decades between dates obtained using 210Pb, 14C, or 137Cs. We found that 210Pb-based dates were almost always younger than 14C-based dates. One of the limitations often cited regarding the use of 210Pb dating for peatlands is the potential for this radionuclide to be transported down the soil profile, biasing the mean accumulation rate (MAR) towards higher values which, in turn, results in younger ages at a specific horizon. 7Be, which has similar depositional behaviors as 210Pb but a much shorter half-life (53.22 days), can be used to help determine if there is movement of 210Pb through surface layers and the depths to which 210Pb-bearing particles are transported (over the mean life of 7Be). These data can then be used in new models, such as the Linked Radionuclide aCcumulation model (LRC; Landis et al., 2016, http://dx.doi.org/10.1016/ j.gca.2016.02.2013), which account for 210Pb downwash when calculating soil horizon ages. To this end, we measured 7Be within a bog four times over the growing season. 7Be was found to 4 cm in May, reached its maximum depth of penetration in July (7 cm), and then receded again to 4 cm. The maximum integrated 7Be activity was also found in July. This pattern is similar to other studies which found 7Be deposition decreased over the rainy season. Next, we will calculate peat ages with models that include downwash of 210Pb, the depths of which will be based on the penetration depth of 7Be. These ages will be compared to 210Pb ages obtained with both the Constant Rate of Supply (CRS) and Constant Flux - Constant Sedimentation (CF:CS) models and to 137Cs- and 14C-derived ages. We anticipate that dates based on models that include some transport of 210Pb into the soil profile will provide more accurate peat formation dates and allow for more accurate carbon accumulation rates.

  5. Characteristics of wind waves in shallow tidal basins and how they affect bed shear stress, bottom erosion, and the morphodynamic evolution of coupled marsh and mudflat landforms

    NASA Astrophysics Data System (ADS)

    Tommasini, Laura; Carniello, Luca; Goodwin, Guillaume; Mudd, Simon M.; Matticchio, Bruno; D'Alpaos, Andrea

    2017-04-01

    Wind-wave induced erosion is one of the main processes controlling the morphodynamic evolution of shallow tidal basins, because wind waves promote the erosion of subtidal platforms, tidal flats and salt marshes. Our study considered zero-, one-and two-dimensional wave models. First, we analyzed the relations between wave parameters, depth and bed shear stress with constant and variable wave period considering two zero-dimensional models based on the Young and Verhagen (1996), and Carniello et al. (2005, 2011) approaches. The first one is an empirical method that computes wave height and the variable wave period from wind velocity, fetch and water depth. The second one is based on the solution of wave action conservation equation, we use this second approach for computing the bottom shear stress and wave height, considering variable and constant (t=2s) wave period. Second, we compared the wave spectral model SWAN with a fully coupled Wind-Wave Tidal Model applied to a 1D rectangular domain. These models describe both the growth and propagation of wind waves. Finally, we applied the two-dimensional Wind Wave Tidal Model (WWTM) to six different configurations of the Venice lagoon considering the same boundary conditions and we evaluated the spatial variation of mean wave power density. The analysis with zero-dimensional models show that the effects of the different model assumptions on the wave period and on the wave height computation cannot be neglected. In particular, the relationships between bottom shear stress and water depth have different shapes. Two results emerge: first, the differences are higher for small depths, and then the maximum values reached with the Young and Verhagen (1996) approach are greater than the maximum values obtained with WWTM approach. The results obtained with two-dimensional models suggest that the wave height is different in particular for small fetch, this could be due to the different formulation of the wave period. Finally, the application of WWTM for the entire Lagoon basin underlines an increase of the mean power density in the last four centuries, in particular in the central-southern part of the lagoon between Chioggia and Malamocco inlets.

  6. Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.

    2017-07-19

    The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water year 2011), runoff was greatest, and gaged streamflow, measured as discharge, peaked at 875 cubic meters per second in the lower San Joaquin River. Also during that year, water velocity was generally between 0.6 and 0.9 meters per second, and depth was typically between 2.5 and 4.5 meters, but water depth exceeded 6 meters in several pools. Water year 2011 was classified as a “wet” year. Later water years were classified as either “dry” (water year 2012) or “critical” (water years 2013 and 2014). During the drier years, water was shallower, and velocities were slower. The streambed aggraded in several areas during the study. At Sturgeon Bend, for example, which had the deepest pool measured in 2011 (maximum depth was 14 meters), about 8 meters of sediment was deposited by 2014.The bed of the lower San Joaquin River was predominately sand, except in areas downstream from the mouth of Del Puerto Creek. A large amount of sand, gravel, and cobble was deposited at the mouth of Del Puerto Creek, and in the 9.5 kilometers downstream from the mouth of Del Puerto Creek, we encountered several gravel bars and patches of gravel-size (8–64 millimeters) bed material. Del Puerto and Orestimba Creeks drain from the Coast Ranges on the west side of the river. Only small quantities of gravel-size bed material were observed in the reach downstream from Orestimba Creek, indicating Orestimba Creek does not deliver much coarse sediment to the lower San Joaquin River. Del Puerto Creek appeared to be the primary source of gravels suitable for white sturgeon spawning in the lower San Joaquin River, and thus, it is important for the long-term spawning success of sturgeon in the San Joaquin River.

  7. Fall and winter microhabitat use and suitability for spring chinook salmon parr in a U.S. Pacific Northwest River

    USGS Publications Warehouse

    Favrot, Scott D.; Jonasson, Brian C.; Peterson, James T.

    2018-01-01

    Habitat degradation has been implicated as a primary threat to Pacific salmon Oncorhynchus spp. Habitat restoration and conservation are key toward stemming population declines; however, winter microhabitat use and suitability knowledge are lacking for small juvenile salmonids. Our objective was to characterize microhabitat use and suitability for spring Chinook Salmon Oncorhynchus tshawytscha parr during fall and winter. Using radiotelemetry techniques during October–February (2009–2011), we identified fall and winter microhabitat use by spring Chinook Salmon parr in Catherine Creek, northeastern Oregon. Tagged fish occupied two distinct gradient reaches (moderate and low). Using a mixed‐effects logistic regression resource selection function (RSF) model, we found evidence that microhabitat use was similar between free‐flowing and surface ice conditions. However, habitat use shifted between seasons; most notably, there was greater use of silt substrate and areas farther from the bank during winter. Between gradients, microhabitat use differed with greater use of large wood (LW) and submerged aquatic vegetation in the low‐gradient reach. Using a Bayesian RSF approach, we developed gradient‐specific habitat suitability criteria. Throughout the study area, deep depths and slow currents were most suitable, with the exception of the low‐gradient reach where moderate depths were optimal. Near‐cover coarse and fine substrates were most suitable in the moderate‐ and low‐gradient reaches, respectively. Near‐bank LW was most suitable throughout the study area. Multivariate principal component analyses (PCA) indicated co‐occurring deep depths supporting slow currents near cover were intensively occupied in the moderate‐gradient reach. In the low‐gradient reach, PCA indicated co‐occurring moderate depths, slow currents, and near‐bank cover were most frequently occupied. Our study identified suitable and interrelated microhabitat combinations that can guide habitat restoration for fall migrant and overwintering Chinook Salmon parr in Catherine Creek and potentially the Pacific Northwest.

  8. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  9. Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.

    2016-12-01

    We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.

  10. New Data on Vegetation and Climate Reconstruction in the Baikal-Patom Highland (Eastern Siberia) in the Last Glacial Maximum and Early Holocene

    NASA Astrophysics Data System (ADS)

    Henry, A.; Bezrukova, E. V.; Teten'kin, A. V.; Kuz'min, M. I.

    2018-02-01

    The first results of anthracological investigation for Eastern Siberia on the carbonaceous remains of woody and shrubby plants at the archaeological sites Kovrizhka III and IV in the lower reaches of the Vitim River are presented. The results of anthracological studies enabled us to obtain new data on changes in vegetation and climate along the lower reaches of the Vitim River. As a result, new data on human habitation in the lower reaches of the Vitim River in the last glacial maximum and early Holocene were obtained.

  11. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.

    PubMed

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-02-08

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.

  12. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination

    PubMed Central

    2018-01-01

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods. PMID:29419759

  13. Children's Visual Processing of Egocentric Cues in Action Planning for Reach

    ERIC Educational Resources Information Center

    Cordova, Alberto; Gabbard, Carl

    2011-01-01

    In this study the authors examined children's ability to code visual information into an egocentric frame of reference for planning reach movements. Children and adults estimated reach distance via motor imagery in immediate and response-delay conditions. Actual maximum reach was compared to estimates in multiple locations in peripersonal and…

  14. Modeling of depth to base of Last Glacial Maximum and seafloor sediment thickness for the California State Waters Map Series, eastern Santa Barbara Channel, California

    USGS Publications Warehouse

    Wong, Florence L.; Phillips, Eleyne L.; Johnson, Samuel Y.; Sliter, Ray W.

    2012-01-01

    Models of the depth to the base of Last Glacial Maximum and sediment thickness over the base of Last Glacial Maximum for the eastern Santa Barbara Channel are a key part of the maps of shallow subsurface geology and structure for offshore Refugio to Hueneme Canyon, California, in the California State Waters Map Series. A satisfactory interpolation of the two datasets that accounted for regional geologic structure was developed using geographic information systems modeling and graphics software tools. Regional sediment volumes were determined from the model. Source data files suitable for geographic information systems mapping applications are provided.

  15. Monte-Carlo based Uncertainty Analysis For CO2 Laser Microchanneling Model

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Nitish; Kumar, Subrata

    2016-09-01

    CO2 laser microchanneling has emerged as a potential technique for the fabrication of microfluidic devices on PMMA (Poly-methyl-meth-acrylate). PMMA directly vaporizes when subjected to high intensity focused CO2 laser beam. This process results in clean cut and acceptable surface finish on microchannel walls. Overall, CO2 laser microchanneling process is cost effective and easy to implement. While fabricating microchannels on PMMA using a CO2 laser, the maximum depth of the fabricated microchannel is the key feature. There are few analytical models available to predict the maximum depth of the microchannels and cut channel profile on PMMA substrate using a CO2 laser. These models depend upon the values of thermophysical properties of PMMA and laser beam parameters. There are a number of variants of transparent PMMA available in the market with different values of thermophysical properties. Therefore, for applying such analytical models, the values of these thermophysical properties are required to be known exactly. Although, the values of laser beam parameters are readily available, extensive experiments are required to be conducted to determine the value of thermophysical properties of PMMA. The unavailability of exact values of these property parameters restrict the proper control over the microchannel dimension for given power and scanning speed of the laser beam. In order to have dimensional control over the maximum depth of fabricated microchannels, it is necessary to have an idea of uncertainty associated with the predicted microchannel depth. In this research work, the uncertainty associated with the maximum depth dimension has been determined using Monte Carlo method (MCM). The propagation of uncertainty with different power and scanning speed has been predicted. The relative impact of each thermophysical property has been determined using sensitivity analysis.

  16. Climatic variability of the column ozone over the Iranian plateau

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyyed Shafi; Farajzadeh, Manuchehr; Rahimi, Yousef Ghavidel; Bidokhti, Abbasali Aliakbari

    2017-06-01

    This study analyzes the total ozone column (TOC) variability over the Iranian plateau (Esfahan) from 1978 to 2011. Results show that the annual average of TOC in Esfahan tends to decrease with time, which is strongly dependent on the season, with maximum values during the winter-spring months (more than 2.2 %/decade). By applying a defined threshold that includes the TOC monthly -2 σ, it is found that the maximum occurrence of low ozone events (LOEs) tends to be more frequent in the second half of year with about four-fifth of the observed LOEs (last summer, autumn, and early winter). During two cases of LOE, the tropopause height (TH) was uplifted 2-4 km with temperature of 10 °C colder than the long-term mean, and the synoptic pattern was characterized by high-pressure systems in UTLS region. The extreme LOEs were consistent with the horizontal transport of ozone-poor air toward the Iranian plateau and vertical advection in UTLS region. The former mechanism plays a primary role in formation of extreme LOEs based on the observed TOC reductions during previous days over the source regions (Sahara desert and Himalaya region). Day-to-day variations of maximum UV index during LOEs show that by a decrease in TOC 14 %, while the aerosol optical depth (AOD) in the cloudless condition reach their lowest rates (lower than 0.3), UV radiation exceeds very high and extreme levels in late winter and mid-spring, respectively.

  17. Where is the 1-million-year-old ice at Dome A?

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Moore, John C.; Sun, Bo; Tang, Xueyuan; Guo, Xiaoran

    2018-05-01

    Ice fabric influences the rheology of ice, and hence the age-depth profile at ice core drilling sites. To investigate the age-depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, we use the depth-varying anisotropic fabric suggested by the recent polarimetric measurements around Dome A along with prescribed fabrics ranging from isotropic through girdle to single maximum in a three-dimensional, thermo-mechanically coupled full-Stokes model of a 70 × 70 km2 domain around Kunlun station. This model allows for the simulation of the near basal ice temperature and age, and ice flow around the location of the Chinese deep ice coring site. Ice fabrics and geothermal heat flux strongly affect the vertical advection and basal temperature which consequently control the age profile. Constraining modeled age-depth profiles with dated radar isochrones to 2/3 ice depth, the surface vertical velocity, and also the spatial variability of a radar isochrones dated to 153.3 ka BP, limits the age of the deep ice at Kunlun to between 649 and 831 ka, a much smaller range than previously inferred. The simple interpretation of the polarimetric radar fabric data that we use produces best fits with a geothermal heat flux of 55 mW m-2. A heat flux of 50 mW m-2 is too low to fit the deeper radar layers, and 60 mW m-2 leads to unrealistic surface velocities. The modeled basal temperature at Kunlun reaches the pressure melting point with a basal melting rate of 2.2-2.7 mm a-1. Using the spatial distribution of basal temperatures and the best fit fabric suggests that within 400 m of Kunlun station, 1-million-year-old ice may be found 200 m above the bed, and that there are large regions where even older ice is well above the bedrock within 5-6 km of the Kunlun station.

  18. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE PAGES

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; ...

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  19. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  20. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea

    NASA Astrophysics Data System (ADS)

    Eisenbarth, Simone; Zettler, Michael L.

    2016-03-01

    In late summer 2011, shortly after an upwelling event, 17 stations ranging from 30 to 2513 m water depth have been sampled at 20° south in the northern part of the Benguela Current Large Marine Ecosystem (BCLME) for the investigation of the benthic macrofauna. Sediments of this area are dominated by silt. At the time of sampling, oxygen conditions on the shelf were poor (between 0.42 and 0.68 ml l- 1) but not hypoxic. Below 400 m, however, concentrations rose steadily up to 5.28 ml l- 1. Macrozoobenthic communities along this depth gradient are described, revealing among others the community structure for the continental margin area and the deep sea off northern Namibia for the first time. Cluster analysis revealed 5 different communities along the depth gradient with three shelf communities, one continental margin community and one deep-sea community. All in all, 314 different taxa were found with polychaetes being the most abundant group. Diversity index (Shannon) was lowest for the shallow water community with 2.21 and highest for the deep-sea community with 4.79, showing a clear trend with increasing water depth. Species richness, however, reached its maximum with 187 taxa along the continental margin between 400 and 1300 m water depth. Dominant species for each community are named with the two Cumacea, Iphinoeafricana and Upselaspis caparti, being characteristic for the shallow water community. On the shelf, we found surprisingly high biomass values (23-123 g m- 2), mainly caused by polychaetes, the bivalve Sinupharus galatheae and the gastropod Nassarius vinctus. In terms of composition, the remaining communities were dominated by polychaetes with members of the Paraonidae dominating along the continental margin where we also found surprisingly high abundances of the bivalves Pecten sp. and Dosinia sp. Spionid polychaetes and some representatives of the genus Paraonis were the most common organisms for the deep-sea community.

  1. Predictions and Observations of Munitions Burial Under Intense Storm Waves at Duck, NC

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Klammer, H.; Sheremet, A.

    2017-12-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and surrogate munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability strongly suggests that the munitions sank into the bed, which would suggest an extreme state of sand agitation during the storm. We explore existing analytical solutions for the dynamic interaction between waves and sediment to predict munitions burial depths. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses were then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  2. Weighing the Oligocene extensional event in the Salar de Atacama Basin by analysis of depth-converted sections and geophysical data.

    NASA Astrophysics Data System (ADS)

    Bascunan, S. A.; Maksymowicz, A.; Martínez, F.; Becerra, J.; Rubilar, J. F.; Arriagada, C.; Peña Gomez, M. A.; Gómez, I.

    2016-12-01

    Multiple studies of industry seismic lines across the Salar de Atacama Basin, in the Central Andes of northern Chile (22°-24°S), have led to opposite interpretations regarding its internal architecture, particularly for the Cenozoic successions. These differences can be attributed to the yet uncertain stratigraphy of the 5425 m-deep Toconao-1 well, its relation to outcrops around the El Bordo Escarpment, the tie between the well and the seismic lines, and the lack of a depth conversion of these lines. An analysis of these data allows for the proper location in the depth domain of the most important reflectors found in line Z-1G010, which intersects the borehole. The vertical seismic profile and the density log show that the most significant change in lithological properties occurs at ca. 1 s TWT (1580 m), at the transition from mainly evaporitic deposits to more clastic units, presumably belonging to the Loma Amarilla Formation. This modification in velocity and density can be seen in the seismic line as a major west-dipping surface, dubbed the San Pedro Reflector (SPR). The use of 3D software and the depth conversion allow following the SPR along most of the basin. The surface shows an east-to-west, south-to-north increase in depth, reaching a maximum close to 8 km. The geometry of the surface closely follows the trend of the El Bordo Escarpment. Based on paleomagnetic data, recent mapping and geochronology data, the reflector is estimated to have formed during the Oligocene. Additional extensional features confirm its origin due to small-scale collapse of the Cordillera de Domeyko after the Eocene Incaic Event, after which the deformation front migrated eastwards, thus explaining the presence of extension and compression along the margin at the same time. This change in stress state also affected other parts of the range, such as the Calama Basin.

  3. Stemflow: A literature review and the challenges ahead

    NASA Astrophysics Data System (ADS)

    José, Návar

    2013-04-01

    Stemflow is the rainfall portion that flows down to the ground via trunks or stems. It is a localized point source input of precipitation and solutes at the stem base, creating islands of soil moisture and fertility. It accounts on average for less than 5% of the gross rainfall but maximum figures can reach 3.5%, 11.3%, and 19% in tropical, temperate and semi-arid plant communities, respectively. However, recent research has shown these statistics could be twice as large in overstocked semi-arid, subtropical and temperate forest stands. Tree and shrub species funnel different stemflow depths and canopy features; diameter at breast height, top height, canopy area and volume, branch number and position; bark smoothness, etc. are the most frequent independent variables employed to explain the large intrinsic variation. The funneling ratio evaluates the hydro-pedological importance; calculated by the division of stemflow volume by the stem base area and by the rainfall depth. Statistics quite often show funneling ratios >> 1. Assessments of the stemflow infiltration area quite frequently show the islands of soil moisture are at least twice as large as the soil depth wetted by rainfall in the open and calculations are in agreement with several visual observations. Empirical evaluations quite often also show the potential contribution of stemflow to groundwater recharge and streamflow generation. However, assessments of the infiltration area and depth quite frequently deviate from visual observations conducted by dying pathways, showing roots are the most frequent sources of stemflow transport within soils. Should this be the case for most trees, then the number of roots and their position within the soil profile would help to better forecast the stemflow (rootflow) infiltration depth and the potential triggering of other hydrological processes. Current mathematical approaches challenge future research on stemflow and rootflow to better understand the hydro-eco-pedological importance of point source inputs of plant communities.

  4. Effects of increasing aerosol on regional climate change in China: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Leung, L.; Ghan, S. J.

    2002-12-01

    We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, which are exceptions to the large scale warming trend in the northern hemisphere, are at least partly related to the cooling induced by atmospheric aerosol loading that has been increasing since the middle of the last century.

  5. New efforts using helicopter-borne and ground based electromagnetics for mineral exploration

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; Noell, U.; Gutzmer, J.; Spitzer, K.; Becken, M.

    2014-12-01

    Throughout the last decades mineral resources, especially rare earth elements, gained a steadily growing importance in industry and therefore as well in exploration. New targets for mineral investigations came into focus and known sources have been and will be revisited. Since most of the mining for mineral resources in the past took place in the upper hundred metres below surface new techniques made deeper mining economically feasible. Consequently, mining engineers need the best possible knowledge about the full spatial extent of prospective geological structures, including their maximum depths. Especially in Germany and Europe, politics changed in terms not to rely only on the global mineral trade market but on national resources, if available. BGR and partners therefore started research programs on different levels to evaluate and develop new technologies on environmental friendly, non-invasive spatial exploration using airborne and partly ground-based electromagnetic methods. Mining waste heaps have been explored for valuable residual minerals (research project ROBEHA), a promising tin bearing ore body is being explored by airborne electromagnetics (research project E3) and a new airborne technology is aimed at to be able to reach investigation depths of about 1 km (research project DESMEX). First results of the projects ROBEHA and E3 will be presented and the project layout of DESMEX will be discussed.

  6. Seasonal variation of pteropods from the Western Arabian Sea sediment trap

    NASA Astrophysics Data System (ADS)

    Mohan, R.; Verma, K.; Mergulhao, L. P.; Sinha, D. K.; Shanvas, S.; Guptha, M. V. S.

    2006-11-01

    Sediment trap samples collected from the Western Arabian Sea yielded a rich assemblage of intact and non-living (opaque white) pteropod tests from a water depth of 919 m during January to September 1993. Nine species of pteropods were recorded, all (except one) displaying distinct seasonality in abundance, suggesting their response to changing hydrographical conditions influenced by the summer/winter monsoon cycle. Pteropod fluxes increased during the April-May peak of the intermonsoon, and reached maximum levels in the late phase of the southwest summer monsoon, probably due to the shallowing of the mixed layer depth. This shallowing, coupled with enhanced nutrient availability, provides ideal conditions for pteropod growth, also reflected in corresponding fluctuations in the flux of the foraminifer Globigerina bulloides. Pteropod/planktic foraminifer ratios displayed marked seasonal variations, the values increasing during the warmer months of April and May when planktic foraminiferal fluxes declined. The variation in fluxes of calcium carbonate, organic carbon and biogenic opal show positive correlations with fluxes of pteropods and planktic foraminifers. Calcium carbonate was the main contributor to the total particulate flux, especially during the SW monsoon. In the study area, pteropod flux variations are similar to the other flux patterns, indicating that they, too could be used as a potential tool for palaeoclimatic reconstruction of the recent past.

  7. Nitrate-nitrogen contamination in groundwater: Spatiotemporal variation and driving factors under cropland in Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Jiang, L. H.; Zhang, C. J.; Li, P.; Zhao, T. K.

    2017-08-01

    High groundwater nitrate-N is a serious problem especially in highly active agricultural areas. In study, the concentration and spatialtemporal distribution of groundwater nitrate-N under cropland in Shandong province were assessed by statistical and geostatistical techniques. Nitrate-N concentration reached a maximum of 184.60 mg L-1 and 29.5% of samples had levels in excess of safety threshold concentration (20 mg L-1). The median nitrate-N contents after rainy season were significantly higher than those before rainy season, and decreased with increasing groundwater depth. Nitrate-N under vegetable and orchard area are significantly higher than ones under grain. The kriging map shows that groundwater nitrate-N has a strong spatial variability. Many districts, such as Weifang, Linyi in Shandong province are heavily contaminated with nitrate-N. However, there are no significant trends of NO3 --N for most cities. Stepwise regression analysis showed influencing factors are different for the groundwater in different depth. But overall, vegetable yield per unit area, percentages of orchard area, per capita agricultural production, unit-area nitrogen fertilizer, livestock per unit area, percentages of irrigation areas, population per unit area and annual mean temperature are significant variables for groundwater nitrate-N variation.

  8. Oceanic adults, coastal juveniles: tracking the habitat use of whale sharks off the Pacific coast of Mexico

    PubMed Central

    Pierce, Simon J.; Humphries, Nicolas E.; Sims, David W.

    2017-01-01

    Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14–134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity. PMID:28484673

  9. Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Schofield, Oscar

    2017-01-01

    Mixed-layer depth (MLD) has been widely linked to phytoplankton dynamics in Antarctica's coastal regions; however, inconsistent definitions have made intercomparisons among region-specific studies difficult. Using a data set with over 20,000 water column profiles corresponding to 32 Slocum glider deployments in three coastal Antarctic regions (Ross Sea, Amundsen Sea, and West Antarctic Peninsula), we evaluated the relationship between MLD and phytoplankton vertical distribution. Comparisons of these MLD estimates to an applied definition of phytoplankton bloom depth, as defined by the deepest inflection point in the chlorophyll profile, show that the maximum of buoyancy frequency is a good proxy for an ecologically relevant MLD. A quality index is used to filter profiles where MLD is not determined. Despite the different regional physical settings, we found that the MLD definition based on the maximum of buoyancy frequency best describes the depth to which phytoplankton can be mixed in Antarctica's coastal seas.

  10. Bathymetric and hydraulic survey of the Matanuska River near Circle View Estates, Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2008-01-01

    An acoustic Doppler current profiler interfaced with a differentially corrected global positioning system was used to map bathymetry and multi-dimensional velocities on the Matanuska River near Circle View Estates, Alaska. Data were collected along four spur dikes and a bend in the river during a period of active bank erosion. These data were collected as part of a larger investigation into channel processes being conducted to aid land managers with development of a long-term management plan for land near the river. The banks and streambed are composed of readily erodible material and the braided channels frequently scour and migrate. Lateral channel migration has resulted in the periodic loss of properties and structures along the river for decades.For most of the survey, discharge of the Matanuska River was less than the 25th percentile of long-term streamflow. Despite this relatively low flow, measured water velocities were as high as 15 feet per second. The survey required a unique deployment of the acoustic Doppler current profiler in a tethered boat that was towed by a small inflatable raft. Data were collected along cross sections and longitudinal profiles. The bathymetric and velocity data document river conditions before the installation of an additional spur dike in 2006 and during a period of bank erosion. Data were collected along 1,700 feet of river in front of the spur dikes and along 1,500 feet of an eroding bank.Data collected at the nose of spur dikes 2, 3, and 4 were selected to quantify the flow hydraulics at the locations subject to the highest velocities. The measured velocities and flow depths were greatest at the nose of the downstream-most spur dike. The maximum point velocity at the spur dike nose was 13.3 feet per second and the maximum depth-averaged velocity was 11.6 feet per second. The maximum measured depth was 12.0 feet at the nose of spur dike 4 and velocities greater than 10 feet per second were measured to a depth of 10 feet.Data collected along an eroding bank provided details of the spatial distribution and variability in magnitude of velocities and flow depths while erosion was taking place. Erosion was concentrated in an area just downstream of the apex of a river bend. Measured velocities and flow depths were greater in the apex of the bend than in the area of maximum bank erosion. The maximum measured velocity was 12.9 feet per second at the apex and 11.2 feet per second in front of the eroding bank. The maximum measured depth was 10.2 feet at the apex and 5.2 feet in front of the eroding bank.

  11. Optimisation of tool path for improved formability of commercial pure aluminium sheets during the incremental forming process

    NASA Astrophysics Data System (ADS)

    Prasad, Moyye Devi; Nagarajan, D.

    2018-05-01

    An axisymmetric dome of 70 mm in diameter and 35 mm in depth was formed using the ISF process using varying proportions (25, 50 and 75%) of spiral (S) and helical (H) tool path combinations as a single tool path strategy, on a 2 mm thickness commercially pure aluminium sheets. A maximum forming depth of ˜30 mm was observed on all the components, irrespective of the different tool path combinations employed. None of the components were fractured for the different tool path combinations used. The springback was also same and uniform for all the tool path combinations employed, except for the 75S25H which showed slightly larger springback. The wall thickness reduced drastically up to a certain forming depth and increased with the increase in forming depth for all the tool path combinations. The maximum thinning occurred near the maximum wall angle region for all the components. The wall thickness improved significantly (around 10-15%) near the maximum wall angle region for the 25S75H combination than that of the complete spiral and other tool path strategies. It is speculated that this improvement in wall thickness may be mainly due to the combined contribution of the simple shear and uniaxial dilatation deformation modes of the helical tool path strategy in the 25S75H combination. This increase in wall thickness will greatly help in reducing the plastic instability and postpone the early failure of the component.

  12. Traitement de surface par explosif du cuivre polycristallin : caractérisation microstructurale et comportement en fatigue plastique

    NASA Astrophysics Data System (ADS)

    Gerland, M.; Dufour, J. P.; Presles, H. N.; Violan, P.; Mendez, J.

    1991-10-01

    A new surface treatment technique with a primary explosive deposited in thin layer was applied to a polycrystalline pure copper. After treatment, surface roughness remains of high quality especially when compared to shot peened surfaces. The treated zone extends over several hundreds microns in depth and the microhardness profile exhibits a significant increasing of hardness with a maximum reaching 100% at the surface. The transmission electron microscopy shows a microstructure which changes with depth : below the surface, there is a thin recrystallized layer with very small grains followed by a region with numerous mechanical twins the density of which decreases when depth increases. Tested in fatigue with a constant plastic strain amplitude, the treated copper specimens exhibit a strong hardening from the first cycles compared to the untreated specimen ; however this initial hardening erases after 2% of the fatigue life. The fatigue resistance is not modified by the treatment. Une nouvelle technique de traitement de surface à l'aide d'un explosif primaire déposé en couche mince a été utilisée sur du cuivre pur polycristallin. L'état de surface après traitement reste de très bonne qualité, surtout comparé aux surfaces grenaillées. La zone traitée s'étend sur une profondeur de quelques centaines de microns et le profil de microdureté montre une importante augmentation de dureté avec un maximum en surface pouvant atteindre 100%. La micrcrostructure, observée par microscopie électronique en transmission, est caractérisée par une fine recristallisation en surface, puis par un abondant maclage dont la densité décroît lorsque la profondeur augmente. Testé en fatigue à déformation plastique imposée, le cuivre traité présente un fort écrouissage initial dès les premiers cycles, mais qui s'efface progressivement au cours du cyclage après 2% de la durée de vie, cette dernière n'étant pas modifiée par le traitement.

  13. A three-step maximum a posteriori probability method for InSAR data inversion of coseismic rupture with application to the 14 April 2010 Mw 6.9 Yushu, China, earthquake

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Bürgmann, Roland; Wang, Min; Chen, Lichun; Xu, Xiwei

    2013-08-01

    develop a three-step maximum a posteriori probability method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic deformation solutions of earthquake rupture. The method originates from the fully Bayesian inversion and mixed linear-nonlinear Bayesian inversion methods and shares the same posterior PDF with them, while overcoming difficulties with convergence when large numbers of low-quality data are used and greatly improving the convergence rate using optimization procedures. A highly efficient global optimization algorithm, adaptive simulated annealing, is used to search for the maximum of a posterior PDF ("mode" in statistics) in the first step. The second step inversion approaches the "true" solution further using the Monte Carlo inversion technique with positivity constraints, with all parameters obtained from the first step as the initial solution. Then slip artifacts are eliminated from slip models in the third step using the same procedure of the second step, with fixed fault geometry parameters. We first design a fault model with 45° dip angle and oblique slip, and produce corresponding synthetic interferometric synthetic aperture radar (InSAR) data sets to validate the reliability and efficiency of the new method. We then apply this method to InSAR data inversion for the coseismic slip distribution of the 14 April 2010 Mw 6.9 Yushu, China earthquake. Our preferred slip model is composed of three segments with most of the slip occurring within 15 km depth and the maximum slip reaches 1.38 m at the surface. The seismic moment released is estimated to be 2.32e+19 Nm, consistent with the seismic estimate of 2.50e+19 Nm.

  14. Vertical Structure of Ice Cloud Layers From CloudSat and CALIPSO Measurements and Comparison to NICAM Simulations

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki

    2013-01-01

    The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.

  15. [Up-conversion luminescent materials of Y2O3: RE(RE=Er or Er/Yb) prepared by sol-gel combustion synthesis].

    PubMed

    Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu

    2010-11-01

    Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

  16. Depth Estimates for Slingram Electromagnetic Anomalies from Dipping Sheet-like Bodies by the Normalized Full Gradient Method

    NASA Astrophysics Data System (ADS)

    Dondurur, Derman

    2005-11-01

    The Normalized Full Gradient (NFG) method was proposed in the mid 1960s and was generally used for the downward continuation of the potential field data. The method eliminates the side oscillations which appeared on the continuation curves when passing through anomalous body depth. In this study, the NFG method was applied to Slingram electromagnetic anomalies to obtain the depth of the anomalous body. Some experiments were performed on the theoretical Slingram model anomalies in a free space environment using a perfectly conductive thin tabular conductor with an infinite depth extent. The theoretical Slingram responses were obtained for different depths, dip angles and coil separations, and it was observed from NFG fields of the theoretical anomalies that the NFG sections yield the depth information of top of the conductor at low harmonic numbers. The NFG sections consisted of two main local maxima located at both sides of the central negative Slingram anomalies. It is concluded that these two maxima also locate the maximum anomaly gradient points, which indicates the depth of the anomaly target directly. For both theoretical and field data, the depth of the maximum value on the NFG sections corresponds to the depth of the upper edge of the anomalous conductor. The NFG method was applied to the in-phase component and correct depth estimates were obtained even for the horizontal tabular conductor. Depth values could be estimated with a relatively small error percentage when the conductive model was near-vertical and/or the conductor depth was larger.

  17. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    PubMed

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  18. Modeling hydraulic and sediment transport processes in white sturgeon spawning habitat on the Kootenai River, Idaho

    USGS Publications Warehouse

    McDonald, Richard R.; Nelson, Jonathan M.; Vaughn Paragamian,; Barton, Gary J.

    2017-01-01

    The Kootenai River white sturgeon currently spawn (2005) in an 18-kilometer reach of the Kootenai River, Idaho. Since completion of Libby Dam upstream from the spawning reach, there has been only one successful year of recruitment of juvenile fish. Where successful in other rivers, white sturgeon spawn over clean coarse material of gravel size or larger. The channel substrate in the current spawning reach is composed primarily of sand and some buried gravel; within a few kilometers upstream there is clean gravel. We used a 2-dimensional flow and sediment-transport model and the measured locations of sturgeon spawning from 1994-2002 to gain insight into the paradox between the current spawning location and the absence of suitable substrate. Spatial correlations between spawning locations and the model simulations of velocity and depth indicate the white sturgeon tend to select regions of highest velocity and depth within any river cross-section to spawn. These regions of high velocity and depth are independent of pre- or post-dam flow conditions. A simple sediment-transport simulation suggests that high discharge and relatively long duration flow associated with pre-dam flow events might be sufficient to scour the sandy substrate and expose existing lenses of gravel and cobble as lag deposits in the current spawning reach.

  19. Consequences of the river valley bottom transformation after extreme flood (on the example of the Niida River, Japan)

    NASA Astrophysics Data System (ADS)

    Botavin, D.; Golosov, V.; Konoplev, A.; Wakiyama, Y.

    2018-01-01

    Detailed study of different sections of floodplain was undertaken in the Niida River basin (Fukushima Prefecture) after an extreme flood event which occurred in the middle of September 2015. The upstream part of the basin is located in the area with very high level of radionuclide contamination after the accident at Fukushima Dai-ichi NPP. Field and GIS methods were used, including direct measurement of the depth of fresh sediment and its area, with soil descriptions for the typical floodplain sections, measurement of dose rates, interpretation of space images for a few time intervals (before and after flood event) with the following evaluation of spatial changes in deposition for different floodplain sections. In addition, results of quantitative assessment of sedimentation rates and soil radionuclide contamination were applied for understanding the effect of extreme flood on alluvial soils of the different sections. It was established that the maximum sedimentation rates (20-50 cm/event) occurred in the middle part of the lower reach of the Niida River and in some locations of the upper reaches. Dose rates had reduced considerably for all the areas with high sedimentation because the top soil layers with high radionuclide contamination were buried under fresh sediments produced mostly due to bank erosion and mass movements.

  20. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  1. Formation and maintenance of a forced pool-riffle couplet following loading of large wood

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Fixler, S. A.

    2017-11-01

    Pool-riffle maintenance has been documented in numerous studies, but it has been almost impossible to characterize detailed natural pool-riffle formation mechanisms because of the lack of baseline data prior to pool establishment. In 2013, a study was conducted on the Blackledge River in Connecticut to document the formation of a new pool-riffle couplet on a section of river that had previously been studied from 1999 to 2001. In 2001, the study reach contained a scour hole with a residual depth of 0.08 ± 0.09 m downstream of a 1930s paired deflector with no identifiable riffle immediately downstream. At this time, a large, severely undercut, hemlock tree was noted along the left bank. Sometime between fall 2001 and 2004, the tree fell perpendicular to flow across the channel and formed a large wood (LW) jam and new pool-riffle couplet several meters downstream of the old scour hole. Pool spacing along the reach decreased from 4.47 bankfull widths (BFW) in 1999 to 3.83 BFW after the new pool-riffle couplet formed. The new pool has a residual depth, the water depth of the streambed depression below the elevation of the immediate downstream hydraulic control, of 1.36 ± 0.075 to 1.59 ± 0.075 m, which resulted from a combination of 1.32 ± 0.09 m or less of incision below the old scour hole (95.6% or less of the depth increase) and up to 0.18 ± 0.09 m of downstream deposition and associated backwater formation (13.2% or less of the depth increase). To assess dynamic stability of the pool-riffle couplet over several flood cycles, surficial fine-sediment and organic material along the reach were quantified. The 23-m-long pool stores 25.7% of the surficial fine grained sediments and 15.4% of organic material along a 214-m-long reach that includes one additional artificially created pool. An adjacent 50-m-long secondary channel impacted by the LW jam stores 65.3% of the surficial fine-grained sediments and 54.8% of organic material along the full reach.

  2. Complex vertical migration of larvae of the ghost shrimp, Nihonotrypaea harmandi, in inner shelf waters of western Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo

    2010-01-01

    The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV and V descended continuously. Zoeae III had behaviors that were intermediate to those of the earlier- and later-stage zoeae. Postlarvae underwent a normal diel migration (nocturnal ascent) regardless of tides, with the deepest position (below 60 m and/or on the bottom) during the day. These findings give a new perspective towards how complex vertical migration patterns in meroplanktonic larvae enable their retention in inner shelf waters before the final entry of postlarvae into their natal populations.

  3. Tool Enlarges Hard-to-Reach Holes

    NASA Technical Reports Server (NTRS)

    Geddes, J. P.

    1984-01-01

    Tool centers itself and cuts precise depth. Tool consists of crosscut carbide bur; sleeve that serves as depth stop and pilot; length of flexible, strong piano wire; and standard drive socket. Parts brazed together. Piano wire transmits torque and axial force to cutting tool.

  4. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  5. Modelling coupled turbulence - dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell.

    PubMed

    Chatelain, Mathieu; Guizien, Katell

    2010-03-01

    A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (

  6. Morphology of the Lesser Tuberosity and Intertubercular Groove in Patients With Arthroscopically Confirmed Subscapularis and Biceps Tendon Pathology.

    PubMed

    Shah, Shaan H; Small, Kirstin M; Sinz, Nathan J; Higgins, Laurence D

    2016-06-01

    To evaluate for an association between the morphology of the lesser tuberosity and intertubercular groove and subscapularis tendon tears and biceps tendon pathology. Sixty-six patients with arthroscopically confirmed subscapularis tendon tears were compared with 59 demographically matched control patients who underwent magnetic resonance imaging or computed tomography arthrography examination of the shoulder. Measurements of the lesser tuberosity and intertubercular groove included maximum depth of the intertubercular groove, intertubercular groove depth at the midpoint of the glenoid, lesser tuberosity length, length from the top of the humeral head to the point of maximum depth of the intertubercular groove, length from the top of the humeral head to the top of the lesser tuberosity, and medial wall angle and depth. Patients with subscapularis tears showed a significantly decreased depth of the intertubercular groove at the mid glenoid (P = .01), shorter length of the lesser tuberosity (P = .002), and greater distance from the top of the humeral head to the top of the lesser tuberosity (P = .02). There was a trend toward a decreased medial wall angle (P = .07) and greater distance from the top of the humeral head to the point of maximum intertubercular groove depth (P = .06). Patients with biceps tendon pathology showed a significantly decreased depth of the intertubercular groove at the mid glenoid (P = .001), shorter length of the lesser tuberosity (P = .0003), greater distance from the top of the humeral head to the top of the lesser tuberosity (P = .01), and decreased medial wall angle (P = .01) and depth (P = .03). There are several morphologic factors related to the lesser tuberosity and intertubercular groove that are associated with both subscapularis tendon tears and biceps tendon pathology. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1983-01-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  8. Observations of internal waves in the Gulf of California by SEASAT SAR

    NASA Astrophysics Data System (ADS)

    Fu, L. L.; Holt, B.

    1983-07-01

    Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.

  9. A favorable course of palliative sedation: searching for indicators using caregivers' perspectives.

    PubMed

    Brinkkemper, Tijn; Rietjens, Judith A C; Deliens, Luc; Ribbe, Miel W; Swart, Siebe J; Loer, Stephan A; Zuurmond, Wouter W A; Perez, Roberto S G M

    2015-03-01

    Comparing characteristics of a favorable sedation course during palliative sedation to a less favorable course based on the reports Dutch physicians and nurses. Cases identified as having a favorable sedation course less often concerned a male patient (P = .019 nurses' cases), reached the intended sedation depth significantly quicker (P < .05 both nurses and physicians' cases), reached a deeper level of sedation (P = .015 physicians' cases), and had a shorter total duration of sedation compared (P < .001 physicians' cases) to patients with a less favorable sedation course. A favorable course during palliative sedation seems more probable when health care professionals report on a (relatively) shorter time to reach the required depth of sedation and when a deeper level of sedation can be obtained. © The Author(s) 2013.

  10. Tuning in to Another Person's Action Capabilities: Perceiving Maximal Jumping-Reach Height from Walking Kinematics

    ERIC Educational Resources Information Center

    Ramenzoni, Veronica; Riley, Michael A.; Davis, Tehran; Shockley, Kevin; Armstrong, Rachel

    2008-01-01

    Three experiments investigated the ability to perceive the maximum height to which another actor could jump to reach an object. Experiment 1 determined the accuracy of estimates for another actor's maximal reach-with-jump height and compared these estimates to estimates of the actor's standing maximal reaching height and to estimates of the…

  11. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream

    Treesearch

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    1. Decomposition of red maple (Acer rubrum) and rhododendron (Rhododendron maximum) leaves and activity of associated microorganisms were compared in two reaches of a headwater stream in Coweeta Hydrologic Laboratory, NC, U.S.A. The downstream reach was enriched with ammonium, nitrate, and phosphate whereas the upstream reach was not altered.2. Decomposition...

  12. Simulating stream response to floodplain connectivity, reforestation and wetland restoration from reach to catchment scales

    NASA Astrophysics Data System (ADS)

    Singh, N.; Bomblies, A.; Wemple, B. C.; Ricketts, T.

    2017-12-01

    Natural infrastructure (e.g., floodplains, forests) can offer multiple ecosystem services (ES), including flood resilience and water quality improvement. In order to maintain these ES, state, federal and non-profit organizations may consider various interventions, such as increased floodplain connectivity, reforestation, and wetland restoration to minimize flood peaks and erosion during events. However, the effect of these interventions on hydro-geomorphic responses of streams from reach to catchment scales (>100 km2) are rarely quantified. We used stream geomorphic assessment datasets with a hydraulic model to investigate the influence of above mentioned interventions on stream power (SP), water depth (WD) and channel velocity (VEL) during floods of 2yr and 100yr return periods for three catchments in the Lake Champlain basin, Vermont. To simulate the effect of forests and wetlands, we changed the Manning's coefficient in the model, and to simulate the increased connectivity of the floodplain, we edited the LIDAR data to lower bank elevations. We find that the wetland scenario resulted in the greatest decline in WD and SP, whereas forested scenario exhibited maximum reduction in VEL. The connectivity scenario showed a decline in almost all stream responses, but the magnitude of change was relatively smaller. On average, 35% (2yr) and 50% (100yr) of altered reaches demonstrated improvement over baseline, and 39% (2yr) and 31% (100yr) of altered reaches showed degradation over baseline, across all interventions. We also noted changes in stream response along unaltered reaches (>30%), where we did not make interventions. Overall, these results point to the complexity related to stream interventions and suggest careful evaluation of spatially explicit tradeoffs of these interventions on river-floodplain ecosystem. The proposed approach of simulating and understanding stream's response to interventions, prior to the implementation of restoration activities, may lead to more effective and efficient management of rivers.

  13. Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.

    2017-12-01

    The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.

  14. The mechanism performance of improved oil pump with micro-structured vanes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Xie, Jin; Qi, Dongtao; Li, Houbu

    2017-09-01

    The wear of oil pump vanes easily leads to the noise and vibration, even results the decrease of volume efficiency and total efficiency. In order to reduce the friction and improve the lubrication between the vane and the pump inner wall, the micro-machining of micro-structure on the oil pump vanes is proposed. First, the micro-V-grooves with the depth ranging from 500μm to 50μm were micro-grinding on the top of the vanes by a diamond grinding wheel. Secondly, the experiments were conducted to test the actual flow rate, the output power and the overall efficiency of the oil pump with and without the micro-groove vanes. Then, the computational fluid dynamics (CFD) method was adopted to simulate the pump internal flow field. Finally, the micro-flow field between the internal wall of the oil pump and the top of micro-grooved vanes was analyzed. The results shows that the pump overall efficiency increased as the decrease of micro-groove depth from 500 μm to 50μm and not be affected by the rotate speed and working frequency of the pump rotator. Especially the micro-groove with depth of 50μm, the actual flow rate, the output power and the overall efficiency reached to the maximum. From CFD simulation, the velocity of the micro-flow between the surfaces of the vane and inner wall was larger than the pump linear velocity when the microstructure depth is larger than 50μm, leading to an internal leakage. When the micro-groove depth is between10-50μm, the velocity of the micro-flow was less than the pump linear velocity and no internal leakage was found, but the oil film thickness is too small to be beneficial to lubrication according to the fluid dynamic characteristics. Thus, for the oil pump equipping with micro-grooved vane with the depth of 50 μm, the internal leakage not only is avoided but the lubrication efficiency is improved and the oil pump efficiency is also enhanced.

  15. Prediction and observation of munitions burial in energetic storms

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Sheremet, Alexandru; Calantoni, Joseph

    2017-04-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may be transported in uncontrolled ways to create potentially dangerous situations at places like beaches or ports. Alternatively, they may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and (surrogate) munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability excludes the possibility of burial by a migrating bed form or by sediment deposition, and strongly indicates that the munitions sank into the bed. The depth of burial also suggest an extreme state of sand agitation during the storm. For predicting munitions burial depths, we explore existing analytical solutions for the dynamic interaction between waves and sediment. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses are then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  16. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-06-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear model of critical shear stress and eroded mass is proposed to simulate small-depth erosion, assuming that the applied and critical shear stresses quickly reach equilibrium.

  17. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear model of critical shear stress and eroded mass is proposed to simulate small-depth erosion, assuming that the applied and critical shear stresses quickly reach equilibrium.

  18. 75 FR 18107 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Oregon Chub...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... ``maximum water depth'' and ``average water depth'' were rendered incorrect or impossible to read in several.... 1073; Scheerer and McDonald 2003, p. 69). The second paragraph under the heading ``Food, Water, Air...

  19. Experimental investigation of 150-KG-scale corium melt jet quenching in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magallon, D.; Hohmann, H.

    This paper compares and discusses the results of two large scale FARO quenching tests known as L-11 and L-14, which involved, respectively, 151 kg of W% 76.7 UO{sub 2} + 19.2 ZrO{sub 2} + 4.1 Zr and 125 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melts poured into 600-kg, 2-m-depth water at saturation at 5.0 MPa. The results are further compared with those of two previous tests performed using a pure oxidic melt, respectively 18 and 44 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melt quenched in 1-m-depth water at saturation at 5.0 MPa.more » In all the tests, significant breakup and quenching took place during the melt fall through the water. No steam explosion occurred. In the tests performed with a pure oxide UO{sub 2}-ZrO{sub 2} melt, part of the corium (from 1/6 to 1/3) did not breakup and reached the bottom plate still molten whatever the water depth was. Test L-11 data suggest that full oxidation and complete breakup of the melt occurred during the melt fall through the water. A proportion of 64% of the total energy content of the melt was released to the water during this phase ({approximately}1.5 s), against 44% for L-14. The maximum temperature increase of the bottom plate was 330 K (L-14). The mean particle size of the debris ranged between 2.5 and 4.8mm.« less

  20. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    USGS Publications Warehouse

    ten Brink, Uri S.; Taylor, M.H.

    2002-01-01

    The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.

  1. Fate of Polycyclic Aromatic Hydrocarbons in Seawater from the Western Pacific to the Southern Ocean (17.5°N to 69.2°S) and Their Inventories on the Antarctic Shelf.

    PubMed

    Cai, Minggang; Liu, Mengyang; Hong, Qingquan; Lin, Jing; Huang, Peng; Hong, Jiajun; Wang, Jun; Zhao, Wenlu; Chen, Meng; Cai, Minghong; Ye, Jun

    2016-09-06

    Semivolatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have the potential to reach pristine environments through long-range transport. To investigate the long-range transport of the PAHs and their fate in Antarctic seawater, dissolved PAHs in the surface waters from the western Pacific to the Southern Ocean (17.5°N to 69.2°S), as well as down to 3500 m PAH profiles in Prydz Bay and the adjacent Southern Ocean, were observed during the 27th Chinese National Antarctic Research Expedition in 2010. The concentrations of Σ9PAH in the surface seawater ranged from not detected (ND) to 21 ng L(-1), with a mean of 4.3 ng L(-1); and three-ring PAHs were the most abundant compounds. Samples close to the Australian mainland displayed the highest levels across the cruise. PAHs originated mainly from pyrogenic sources, such as grass, wood, and coal combustion. Vertical profiles of PAHs in Prydz Bay showed a maximum at a depth of 50 m and less variance with depth. In general, we inferred that the water masses as well as the phytoplankton were possible influencing factors on PAH surface-enrichment depth-depletion distribution. Inventory estimation highlighted the contribution of intermediate and deep seawater on storing PAHs in seawater from Prydz Bay, and suggested that climate change rarely shows the rapid release of the PAHs currently stored in the major reservoirs (intermediate and deep seawater).

  2. Thermal maturity and petroleum kitchen areas of Liassic Black Shales (Lower Jurassic) in the central Upper Rhine Graben, Germany

    NASA Astrophysics Data System (ADS)

    Böcker, Johannes; Littke, Ralf

    2016-03-01

    In the central Upper Rhine Graben (URG), several major oil fields have been sourced by Liassic Black Shales. In particular, the Posidonia Shale (Lias ɛ, Lower Toarcian) acts as excellent and most prominent source rock in the central URG. This study is the first comprehensive synthesis of Liassic maturity data in the URG area and SW Germany. The thermal maturity of the Liassic Black Shales has been analysed by vitrinite reflectance (VRr) measurements, which have been verified with T max and spore coloration index (SCI) data. In outcrops and shallow wells (<600 m), the Liassic Black Shales reached maturities equivalent to the very early or early oil window (ca. 0.50-0.60 % VRr). This maturity is found in Liassic outcrops and shallow wells in the entire URG area and surrounding Swabian Jura Mountains. Maximum temperatures of the Posidonia Shale before graben formation are in the order of 80-90 °C. These values were likely reached during Late Cretaceous times due to significant Upper Jurassic and minor Cretaceous deposition and influenced by higher heat flows of the beginning rift event at about 70 Ma. In this regard, the consistent regional maturity data (VRr, T max, SCI) of 0.5-0.6 % VRr for the Posidonia Shale close to surface suggest a major burial-controlled maturation before graben formation. These consistent maturity data for Liassic outcrops and shallow wells imply no significant oil generation and expulsion from the Posidonia Shale before formation of the URG. A detailed VRr map has been created using VRr values of 31 wells and outcrops with a structure map of the Posidonia Shale as reference map for a depth-dependent gridding operation. Highest maturity levels occur in the area of the Rastatt Trough (ca. 1.5 % VRr) and along the graben axis with partly very high VRr gradients (e.g. well Scheibenhardt 2). In these deep graben areas, the maximum temperatures which were reached during upper Oligocene to Miocene times greatly exceed those during the Cretaceous.

  3. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    USGS Publications Warehouse

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  4. Nearshore coastal mapping. [in Lake Michigan and Puerto Rico

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Lyzenga, D. R.

    1975-01-01

    Two test sites of different water quality and bottom topography were used to test for maximum water depth penetration using the Skylab S-192 MSS for measurement of nearshore coastal bathymetry. Sites under investigation lie along the Lake Michigan coastline where littoral transport acts to erode sand bluffs and endangers developments along 1,200 miles of shore, and on the west coast of Puerto Rico where unreliable shoal location and depth information constitutes a safety hazard to navigation. The S-192 and S-190A and B provide data on underwater features because of water transparency in the blue/green portion of the spectrum. Depth of 20 meters were measured with the S-192 in the Puerto Rico test site. The S-190B photography with its improved spatial resolution clearly delineates the triple sand bar topography in the Lake Michigan test site. Several processing techniques were employed to test for maximum depth measurement with least error. The results are useful for helping to determine an optimum spectral bandwidth for future space sensors that will increase depth measurements for different water attenuation conditions where a bottom reflection is detectable.

  5. Shear wave velocity structure in the lithosphere and asthenosphere across the Southern California continent and Pacific plate margin using inversion of Rayleigh wave data from the ALBACORE project.

    NASA Astrophysics Data System (ADS)

    Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.

    2015-12-01

    The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.

  6. Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary

    USGS Publications Warehouse

    Carter, V.; Rybicki, N.B.

    1990-01-01

    Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985-1986 growing seasons, light attenuation and chlorophyll a and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophyll a concentration controlled light availability in reaches A and B in 1985, whereas both chlorophyll a and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system. ?? 1990 Estuarine Research Federation.

  7. [Study on good agricultural practice for Tulipa edulis--planting density and sowing depth tests].

    PubMed

    Bing, Qi-Zhong; Zhang, Ben-Gang; Zhang, Zhao; Chen, Zi-Hong

    2008-11-01

    To study optimum planting density and sowing depth of Tulipa edulis. The effects of different planting densities, sowing depth and thin plastic film cover were studied on yield, rate of increase, bulb weight increased multiples, and proliferation rate of bulb. Under 30-200 bulbs per squremeter density range, the yield increased with the density increasing, and reached significance level. In 5-20 centimeter depth range, the yield and the number of harvested bulbs enhanced along with the sowing depth increasing, and the best sowing depth was 20 cm. Thin plastic film cover showed no effect on the growth.

  8. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu

    USGS Publications Warehouse

    Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.

    1999-01-01

    Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess  penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess  activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both  and  penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess  profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of  and  profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum  and  activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess  activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess  profile.

  9. Downstream Variation of Bankfull Geometry for the Continental and Overseas Hydro-Eco-Regions of France.

    NASA Astrophysics Data System (ADS)

    Tamisier, V.; Gob, F.; Thommeret, N.; Bilodeau, C.; Raufaste, S.; Kreutzenberger, K.

    2016-12-01

    Bankfull channel geometry is a fundamental and widely used concept in hydrology, fluvial geomorphology, and ecosystem studies. We develop and compare downstream hydraulic geometry relationships for bankfull channel width (w) and depth (d) as a function of drainage area A, respectively w=aAb (DHGwA) and d=cAf (DHGdA), for the 12 of the 21 French Hydro-Eco-Regions which are defined in terms of climate, topography and geology. The models have been built from a database (CARHYCE) that includes 1500 river reaches for which a unique standardized field protocol was used. River reach morphology was described based on a survey of 15 cross-sections spaced at intervals of one bankfull width. Sediment size and riverine vegetation were also measured and characterized. This database covers a wide range of French river diversity in terms of geomorphic types and anthropogenic impacts. Sampled stream reaches range from 1 to 70 000 km² in drainage area, 1 to 320 m in bankfull width and 0.3 to 8.5 m in bankfull depth. Approximately 500 poorly disturbed reaches were identified from several indices of disturbance at reach and basin scale (large dams, urbanization, channelization, etc.). For these reference sites, drainage areas display strong power-law relationships with both the width and the depth in most Hydro-Eco-Regions, with coefficients of determination (R²) ranging from 0.73 to 0.91 for DHGwA and from 0.57 to 0.77 for DHGdA (p-value < 0.001, t-test). The DHG exponent b and f ranges from 0.36 to 0.5 for DHGwA and from 0.21 to 0.3 for DHGdA. This implies that widths increase more strongly than depths with increasing drainage areas. The relative position of the models are compared to the national model and discussed with regard to the geologic, climatic and topographic characteristics. In Hydro-Eco-Regions which exhibit poor DHG relationships, the role of spatial variability in natural controls (climate, topography and geology) is discussed. Finally, reaches identified as potentially disturbed by human activities are compared to the reference models.

  10. A prospective comparison of performance during back-to-back, anterograde manual spiral enteroscopy and double-balloon enteroscopy.

    PubMed

    Despott, Edward J; Murino, Alberto; Bourikas, Leonidas; Nakamura, Masanao; Ramachandra, Vino; Fraser, Chris

    2015-05-01

    Spiral enteroscopy is a recently introduced technology alternative to balloon-assisted enteroscopy for examination of the small bowel. To compare small bowel insertion depths and procedure duration by spiral enteroscopy and double-balloon enteroscopy performed in the same cohort of patients, in immediate succession, using the same method of insertion depth estimation. A prospective, back-to-back comparative study was performed in 15 patients. Spiral enteroscopy procedures were performed first and a tattoo was placed to mark the most distal point. Double-balloon enteroscopy passed the tattoo placed at spiral enteroscopy in 14/15 cases (93%). Median insertion depths for double-balloon enteroscopy and spiral enteroscopy were 265cm and 175cm, respectively (P=0.004). Median time to achieve maximal depth of insertion was significantly shorter for spiral enteroscopy compared with double-balloon enteroscopy (24min vs. 45min, respectively; P=0.0005). However, in 14 patients no differences were found in median time to reach the same insertion depth (P=0.28). Double-balloon enteroscopy achieved significantly greater small bowel insertion depth than spiral enteroscopy. Although overall double-balloon enteroscopy procedure duration was longer, the time taken to reach the same small bowel insertion depth by both spiral enteroscopy and double-balloon enteroscopy was similar. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  12. The development of cold-water coral mounds along the Moroccan Atlantic and Mediterranean margins revealed by MeBo drillings

    NASA Astrophysics Data System (ADS)

    Hebbeln, Dierk; Wienberg, Claudia; Frank, Norbert

    2015-04-01

    Cold-water corals (CWC) mostly occur in intermediate water depths between 200 m and 1000 m and are capable of forming substantial seafloor structures, so-called coral carbonate mounds. These mounds can reach heights from a few meters up to >300 m and are composed of a mixture of CWC (and other shell) fragments and hemipelagic sediments, that both individually serve as distinct paleo-archives. IODP Leg 307 drilled through Challenger Mound at the Irish margin and revealed for the first time the full life history of a coral mound. However, although CWC occur almost worldwide, the 155 m long Challenger Mound record was for many years the only record from a coral mound exceeding 10 m in length. During expedition MSM36 with the German R/V MARIA S. MERIAN in spring 2014, several coral mounds along the Moroccan margin, both in the Atlantic Ocean and in the Mediterranean Sea, were drilled (actually: push-cored) by applying the Bremen Seafloor Drill Rig MeBo. The MeBo is a remotely controlled drilling system that is lowered from the vessel to the seafloor. Energy supply and video control are secured by an umbilical linking the MeBo to the vessel. The scientific foci of expedition MSM36 were to investigate (1) the long-term development of CWC mounds in both areas over the last several 100,000 years in relation to changes in the ambient environmental conditions in the respective intermediate waters, (2) the life time history of these mounds, and (3) the forcing factors for the initiation and decease of individual mounds. In both working areas, a total amount of 11 sites were successfully drilled with MeBo. Eight drillings were conducted at CWC mounds (on-mound sites) and 3 drillings in the direct vicinity of the mounds (off-mound sites) in order to obtain continuous paleoceanographic records. Drilling depths ranged between 17 m and 71 m with the latter corresponding to the maximum drilling depth of MeBo. The core recoveries varied between the sites and ranged between 47% and 96%. The coral-bearing on-mound cores were frozen and opened (i.e., cut lengthwise) with a stone saw to avoid a destruction of the original sediment texture with the embedded coral fragments. After opening, it became obvious that the quality of the MeBo cores is excellent and that it allows detailed post-cruise analyses at the MARUM laboratories in Bremen. By obtaining on-mound records reaching lengths of >70 m (focus #1), supplemented by the full penetration of three coral mounds (foci #2 and #3) and by a >45-m-long double drilling at an off-mound site located between numerous fossil and buried mounds (allowing to put their full life history into a wider paleoceanographic context; foci #1 to #3), the major technical goals of this MeBo expedition were fully accomplished. The critical factor in applying MeBo is the sea state as during deployment and recovery dynamic loads on the umbilical might reach critical limits. Although during expedition MSM36 several MeBo deployments were done by wind speeds of 6 Bft, the sea state especially in the Mediterranean Sea allowed MeBo operations without any restrictions. On the Atlantic side, a high swell, which actually exceeded the operational limit given for secured MeBo operations, could be overcome by reducing the payload (i.e. reducing the maximum drill depth). Hence, the operational window could be widened allowing for almost continuous MeBo operations also in this area.

  13. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    USGS Publications Warehouse

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  14. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.

  15. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    PubMed

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  < Q max  < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r  < Q min  < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  16. Development of a novel scoring system for identifying emerging chemical risks in the food chain.

    PubMed

    Oltmanns, J; Licht, O; Bitsch, A; Bohlen, M-L; Escher, S E; Silano, V; MacLeod, M; Serafimova, R; Kass, G E N; Merten, C

    2018-02-21

    The European Food Safety Authority (EFSA) is responsible for risk assessment of all aspects of food safety, including the establishment of procedures aimed at the identification of emerging risks to food safety. Here, a scoring system was developed for identifying chemicals registered under the European REACH Regulation that could be of potential concern in the food chain using the following parameters: (i) environmental release based on maximum aggregated tonnages and environmental release categories; (ii) biodegradation in the environment; (iii) bioaccumulation and in vivo and in vitro toxicity. The screening approach was tested on 100 data-rich chemicals registered under the REACH Regulation at aggregated volumes of at least 1000 tonnes per annum. The results show that substance-specific data generated under the REACH Regulation can be used to identify potential emerging risks in the food chain. After application of the screening procedure, priority chemicals can be identified as potentially emerging risk chemicals through the integration of exposure, environmental fate and toxicity. The default approach is to generate a single total score for each substance using a predefined weighting scenario. However, it is also possible to use a pivot table approach to combine the individual scores in different ways that reflect user-defined priorities, which enables a very flexible, iterative definition of screening criteria. Possible applications of the approaches are discussed using illustrative examples. Either approach can then be followed by in-depth evaluation of priority substances to ensure the identification of substances that present a real emerging chemical risk in the food chain.

  17. Physiological preparedness and performance of Atlantic salmon Salmo salar smolts in relation to behavioural salinity preferences and thresholds

    USGS Publications Warehouse

    Stich, D.S.; Zydlewski, G.B.; Zydlewski, Joseph D.

    2015-01-01

    This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salarsmolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na+, K+-ATPase (NKA) activity and osmoregulatory performance in full-strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low-salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival.

  18. Modeling the dynamics of metabolism in montane streams using continuous dissolved oxygen measurements

    NASA Astrophysics Data System (ADS)

    Birkel, Christian; Soulsby, Chris; Malcolm, Iain; Tetzlaff, Doerthe

    2013-09-01

    We inferred in-stream ecosystem processes in terms of photosynthetic productivity (P), system respiration (R), and reaeration capacity (RC) from a five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, and stream depth. This was calibrated to high-resolution (15 min), long-term (2.5 years) dissolved oxygen (DO) time series for moorland and forest reaches of a third-order montane stream in Scotland. The model was multicriteria calibrated to continuous 24 h periods within the time series to identify behavioral simulations representative of ecosystem functioning. Results were evaluated using a seasonal regional sensitivity analysis and a colinearity index for parameter sensitivity. This showed that >95 % of the behavioral models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for around 40% and 32% of the time period, respectively. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). We conclude that such process-based oxygen mass balance models may be transferable tools for investigating other systems; specifically, well-oxygenated upland channels with high hydraulic roughness and lacking reaeration measurements.

  19. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials.

    PubMed

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zając, Małgorzata; Czajczyńska-Waszkiewicz, Agnieszka; Piesiak-Pańczyszyn, Dagmara; Kosior, Piotr; Dobrzyński, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  20. Occurrence, distribution, and volume of metals-contaminated sediment of selected streams draining the Tri-State Mining District, Missouri, Oklahoma, and Kansas, 2011–12

    USGS Publications Warehouse

    Smith, D. Charlie

    2016-12-14

    Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek, Tar Creek, and Spring River in order to characterize the vertical extent of mine waste in select streams in the TSMD. The largest concentrations of lead, zinc, and cadmium in gravel bar-sediment samples generally were detected in Turkey Creek and Tar Creek and the smallest concentrations were detected in Shoal Creek followed by the Spring River. Gravel bar-sediment samples from Turkey Creek exceeded the CPEC for cadmium (minimum of 70 percent of samples), lead (94 percent), and zinc (99 percent) at a slightly higher frequency than similar samples from Tar Creek (69 percent, 88 percent, and 96 percent, respectively). Gravel bar-sediment samples from Turkey Creek also contained the largest concentrations of cadmium (174 milligrams per kilogram [mg/kg]) and lead (7,520 mg/kg) detected; however, the largest zinc concentration (46,600 mg/kg) was detected in a gravel bar-sediment sample from Tar Creek. In contrast, none of the 65 gravel bar-sediment samples from Shoal Creek contained cadmium above the x-ray fluorescence reporting level of 12 mg/kg, and lead and zinc exceeded the CPEC in only 12 percent and 74 percent of samples, respectively. In most cases, concentrations of lead and zinc above the CPEC or TPEC were present at the maximum depth of boring, which indicated that nearly the entire thickness of sediment in the stream has been contaminated by mine wastes. Approximately 284,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the CPEC and approximately 236,000 cubic yards of channel sediment from land surface to the maximum depth that exceeded the TPEC were estimated along 37.6 of the 55.1 miles of Center Creek, Turkey Creek, Shoal Creek, and Tar Creek examined in this study. Mine-waste contamination reported along additional reaches of these streams is beyond the scope of this study. Flood-plain cores collected in the TSMD generally only had exceedances of the CPEC and TPEC for lead and zinc in the top 1 or 2 feet of soil with a few exceptions, such as cores in low areas near the stream or cores in areas disturbed by past mining.

  1. Erosion of aluminum 6061-T6 under cavitation attack in mineral oil and water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1985-01-01

    Studies of the erosion of aluminum 6061-T6 under cavitation attack in distilled water, ordinary tap water and a viscous mineral oil are presented. The mean depth of penetration for the mineral oil was about 40 percent of that for water at the end of a 40 min test. The mean depth of penetration and its rate did not differ significantly for distilled and tap water. The mean depth of penetration rate for both distilled and tap water increased to a maximum and then decreased with test duration, while that for mineral oil had a maximum during the initial period. The ratio h/2a of the pit depth h to the pit diameter 2a varied from 0.04 to 0.13 in water and from 0.06 to 0.20 in mineral oil. Scanning electron microscopy indicates that the pits are initially formed over the grain boundaries and precipitates while the surface grains are deformed under cavitation attack.

  2. DWH MC 252: Subsurface Oil Transport

    NASA Astrophysics Data System (ADS)

    Beegle-Krause, C. J.; Boyer, T.; Murray, D.

    2010-12-01

    Before reaching the ocean surface, the oil and gas released from the DWH MC 252 blowout at 1500 m moves as a buoyant plume until the trapping depth and plume transition point are reached (Zheng et al 2002). At the transition point, the oil droplets and bubbles move independently of each other, and rise at a rate related to their diameter. The oil density, droplet size distribution and currents primarily determine the distribution of the oil between: Large droplets that rise quickly and create a surface expression of the oil. Moderate size droplets that rise over the course of days, and so spread out quite differently than the surface oil, and commonly do not reach the surface in large enough quantities to create a surface sheen. These droplets separate in the currents, particularly in the strong current shear in upper 500 m currents. Very tiny droplets that rise very slowly, over the course or weeks to months, and may be removed by dissolution, biodegradation or marine snow before ever reaching the surface. Modeling and observations (Joint Analysis Group, 2010) confirm the presence of a deep layer of oil and gas between approximately 1100 and 1300 m over the release location and spreading out along the isopycnal surfaces. Later in the event, a small oxygen depression was a proxy for where oil and gas had been. The DWH MC252 well is located at intermediate depth in the Gulf of Mexico (GoM). The water mass is Antarctic Intermediate Water, which enters and exits the GoM through the Yucatan Straits. Surface influences, such as Loop Current Frontal Eddies (e.g. Berger et al 2000) can reach down to these depths, and alter the flow within De Soto Canyon. The water mass containing the deep layer of oil droplets changes depth within the GoM, but does not reach above a depth of about 900 m. There are no physical processes that could cause this deep layer of oil to reach the continental shelf or the Florida Straits. Observed and historical hydrographic data, observations, previous research and modeling were combined to tell the story of the DWH MC 252 from the subsurface perspective. The Comprehensive Deepwater Oil and Gas model (CDOG, Yapa and Xie, 2005), and the General NOAA Operational Modeling Environment (GNOME, Beegle-Krause, 1999) were used with the NOAA Gulf of Mexico Model nowcast/forecast model to understand the 3D evolution of the subsurface spill. Model/observational comparisons are favorable, though limitations of the available models are apparent. Historical perspective on Thunder Horse (a deepwater well incident that was a dress-rehearsal for the DWH MC 252, Beegle-Krause and Walton, 2004), transitioning models from research to operations, and research needs will also be discussed.

  3. Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi

    2012-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.

  4. Six-month-old infants' perception of the hollow face illusion: evidence for a general convexity bias.

    PubMed

    Corrow, Sherryse L; Mathison, Jordan; Granrud, Carl E; Yonas, Albert

    2014-01-01

    Corrow, Granrud, Mathison, and Yonas (2011, Perception, 40, 1376-1383) found evidence that 6-month-old infants perceive the hollow face illusion. In the present study we asked whether 6-month-old infants perceive illusory depth reversal for a nonface object and whether infants' perception of the hollow face illusion is affected by mask orientation inversion. In experiment 1 infants viewed a concave bowl, and their reaches were recorded under monocular and binocular viewing conditions. Infants reached to the bowl as if it were convex significantly more often in the monocular than in the binocular viewing condition. These results suggest that infants perceive illusory depth reversal with a nonface stimulus and that the infant visual system has a bias to perceive objects as convex. Infants in experiment 2 viewed a concave face-like mask in upright and inverted orientations. Infants reached to the display as if it were convex more in the monocular than in the binocular condition; however, mask orientation had no effect on reaching. Previous findings that adults' perception of the hollow face illusion is affected by mask orientation inversion have been interpreted as evidence of stored-knowledge influences on perception. However, we found no evidence of such influences in infants, suggesting that their perception of this illusion may not be affected by stored knowledge, and that perceived depth reversal is not face-specific in infants.

  5. Tree-Ring Widths and Snow Cover Depth in High Tauern

    NASA Astrophysics Data System (ADS)

    Falarz, Malgorzata

    2017-12-01

    The aim of the study is to examine the correlation of Norway spruce tree-ring widths and the snow cover depth in the High Tauern mountains. The average standardized tree-ring widths indices for Nowary spruce posted by Bednarz and Niedzwiedz (2006) were taken into account. Increment cores were collected from 39 Norway spruces growing in the High Tauern near the upper limit of the forest at altitude of 1700-1800 m, 3 km from the meteorological station at Sonnblick. Moreover, the maximum of snow cover depth in Sonnblick (3105 m a.s.l.) for each winter season in the period from 1938/39 to 1994/95 (57 winter seasons) was taken into account. The main results of the research are as follows: (1) tree-ring widths in a given year does not reveal statistically significant dependency on the maximum snow cover depth observed in the winter season, which ended this year; (2) however, the tested relationship is statistically significant in the case of correlating of the tree-ring widths in a given year with a maximum snow cover depth in a season of previous year. The correlation coefficient for the entire period of the study is not very high (r=0.27) but shows a statistical significance at the 0.05 level; (3) the described relationship is not stable over time. 30-year moving correlations showed no significant dependencies till 1942 and after 1982 (probably due to the so-called divergence phenomenon). However, during the period of 1943-1981 the values of correlation coefficient for moving 30-year periods are statistically significant and range from 0.37 to 0.45; (4) the correlation coefficient between real and calibrated (on the base of the regression equation) values of maximum snow cover depth is statistically significant for calibration period and not significant for verification one; (5) due to a quite short period of statistically significant correlations and not very strict dependencies, the reconstruction of snow cover on Sonnblick for the period before regular measurements seems to be not reasonable.

  6. Predicting geomorphic stability in low-order streams of the western Lake Superior basin

    EPA Science Inventory

    Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second and third order stream reaches in the western Lake Superior basin, and stream reaches were assigned a Rosgen geomorphic classification. Over 700 measurements ...

  7. Regional curve development and selection of a reference reach in the non-urban, lowland sections of the Piedmont physiographic province, Pennsylvania and Maryland

    USGS Publications Warehouse

    White, Kirk E.

    2001-01-01

    Stream-restoration projects utilizing naturalstream designs frequently are based on the bankfull- channel characteristics of a stream reach that is accommodating streamflow and sediment transport without excessive erosion or deposition. The bankfull channel is identified by the use of field indicators and confirmed with tools such as regional curves. Channel dimensions were surveyed at six streamflow-measurement stations operated by the U.S. Geological Survey in the Gettysburg-Newark Lowlands Section and Piedmont Lowlands Section of the Piedmont Physiographic Province in Pennsylvania and Maryland. Regional curves were developed from regression analyses of the relation between drainage area and cross-sectional area, mean depth, width, and streamflow of the bankfull channel. Regional curves were used to confirm the identification of the bankfull channel at a reference reach. Stream dimensions and characteristics of the reference reach were measured for extrapolation into the design of a steam-restoration project on Bermudian Creek in Adams County, Pa.Dimensions for cross-sectional area, mean depth, width, and computed streamflow of the bankfull channel in all surveyed riffle cross sections in the reference reach were within the 95-percent confidence interval bounding the regression line representing bankfull channel geometry in the Lowland Sections of the Piedmont Physiographic Province. The average bankfull cross-sectional area, bankfull mean depth, and computed bankfull discharge for riffle cross sections in the reference reach ranged from 15.4 to 16.5 percent less than estimates determined from the lowland regional curves. Average bankfull channel width was about 2 percent greater than estimates. Cross-sectional area, mean depth, and computed streamflow corresponding to the bankfull stage at the reference reach were 31.4, 44.4, and 9.6 percent less, respectively, than estimates derived from the regional curves developed by Dunne and Leopold in 1978. Average bankfull channel width at the reference reach was 16.7 percent greater than the Dunne and Leopold estimate.The concepts of regional curves and reference reaches can be valuable tools to support efforts in stream restoration. Practitioners of stream restoration need to recognize them as such and realize their limitations. The small number of stations available for analysis is a major limiting factor in the strength of the results of this investigation. Subjective selection criteria may have unnecessarily eliminated streamflow-measurement stations that could have been included in the regional curves. A bankfull discharge with a recurrence interval within the 1- to 2-year range was used as a criteria for confirmation of the bankfull stage at each streamflow-measurement station. Many researchers accept this range for recurrence interval of the bankfull discharge; however, literature provides contradictory evidence. The use of channel-characteristics data from a reference reach without any monitoring data to document the stability of the reference reach over time is a topic of debate.

  8. EAS development curve at energy of 10(16) - 10(18) eV measured by optical Cerenkov light

    NASA Technical Reports Server (NTRS)

    Hara, T.; Daigo, M.; Honda, M.; Kamata, K.; Kifune, T.; Mizumoto, Y.; Nagano, M.; Ohno, Y.; Tanahasni, G.

    1985-01-01

    The data of optical Cerenkov light from extensive air shower observed at the core distance more than 1 Km at Akeno are reexamined. Applying the new simulated results, the shower development curves for the individual events were constructed. For the showers of 10 to 17th power eV the average depth at the shower maximum is determined to be 660 + or - 40 gcm/2. The shower curve of average development is found to be well described by a Gaisser-Hillas shower development function with above shower maximum depth.

  9. X-Ray Fluorescence to Estimate the Maximum Temperature Reached at Soil Surface during Experimental Slash-and-Burn Fires.

    PubMed

    Melquiades, Fábio L; Thomaz, Edivaldo L

    2016-05-01

    An important aspect for the evaluation of fire effects in slash-and-burn agricultural system, as well as in wildfire, is the soil burn severity. The objective of this study is to estimate the maximum temperature reached in real soil burn events using energy dispersive X-ray fluorescence (EDXRF) as an analytical tool, combined with partial least square (PLS) regression. Muffle-heated soil samples were used for PLS regression model calibration and two real slash-and-burn soils were tested as external samples in the model. It was possible to associate EDXRF spectra alterations to the maximum temperature reached in the heat affected soils with about 17% relative standard deviation. The results are promising since the analysis is fast, nondestructive, and conducted after the burn event, although local calibration for each type of burned soil is necessary. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Comparison of three systems of solar water heating by thermosiphon

    NASA Astrophysics Data System (ADS)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  11. Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.

    PubMed

    Lin, Ching-Ho

    2008-04-01

    The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.

  12. [Effect of gap size between tooth and restorative materials on microbiolism based caries in vitro].

    PubMed

    Lu, Wen-bin; Li, Yun

    2012-05-01

    To evaluate the effect of gap size between tooth and restorative materials on microbiolism based caries in vitro. Tooth blocks made of human molars without caries and the same size composite resin blocks were selected and prepared. Tooth-resin matrix was mounted on resin base with a gap size of 0, 25, 50, 100, 190, 250 µm and a control group was dealed with adhesive system. Six experimental groups and one control group were included, with 8 samples in one group and a total of 56 samples. The samples were cultured by a 14-day sequential batch culture technique. The development of outer surface lesion and wall lesion was assessed with confocal laser scanning microscope (CLSM) by measuring the maximum lesion depth, fluorescence areas and average fluorescence value. The data were collected and statistically analyzed. The deposits of the tooth-restoration interface and the development of the carious lesion were observed by scanning electron microscope (SEM). Most groups showed outer surface lesion and wall surface lesions observed by CLSM and SEM except 2 samples in control group. There was no significant difference on the outer surface lesion (P > 0.05). The maximum lesion depth [(1145.37 ± 198.98), (1190.12 ± 290.80) µm respectively], the maximum lesion length, fluorescence areas and average fluorescence value of 190 and 250 µm groups' wall lesions were significantly higher than the 0, 25, 50 and 100 µm groups [the maximum lesion depth was (205.25 ± 122.61), (303.87 ± 118.80), (437.75 ± 154.88), (602.87 ± 269.13) µm respectively], P < 0.01. With the increase of the gap size, the demineralization developed more seriously. While the maximum lesion depth, the maximum lesion length and fluorescence areas of 0, 25, 50 µm groups' wall lesions were of no significant difference. There was close relationship between gap size and wall lesion when the gap was above 100 µm at tooth-composite resin interface. The existence of gap was the main influencing factor on the development of microbiolism based caries lesion.

  13. Flood damage curves for consistent global risk assessments

    NASA Astrophysics Data System (ADS)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra-national scale flood damage assessments, and guide assessment in countries where no damage model is currently available.

  14. Viewer-centered and body-centered frames of reference in direct visuomotor transformations.

    PubMed

    Carrozzo, M; McIntyre, J; Zago, M; Lacquaniti, F

    1999-11-01

    It has been hypothesized that the end-point position of reaching may be specified in an egocentric frame of reference. In most previous studies, however, reaching was toward a memorized target, rather than an actual target. Thus, the role played by sensorimotor transformation could not be disassociated from the role played by storage in short-term memory. In the present study the direct process of sensorimotor transformation was investigated in reaching toward continuously visible targets that need not be stored in memory. A virtual reality system was used to present visual targets in different three-dimensional (3D) locations in two different tasks, one with visual feedback of the hand and arm position (Seen Hand) and the other without such feedback (Unseen Hand). In the Seen Hand task, the axes of maximum variability and of maximum contraction converge toward the mid-point between the eyes. In the Unseen Hand task only the maximum contraction correlates with the sight-line and the axes of maximum variability are not viewer-centered but rotate anti-clockwise around the body and the effector arm during the move from the right to the left workspace. The bulk of findings from these and previous experiments support the hypothesis of a two-stage process, with a gradual transformation from viewer-centered to body-centered and arm-centered coordinates. Retinal, extra-retinal and arm-related signals appear to be progressively combined in superior and inferior parietal areas, giving rise to egocentric representations of the end-point position of reaching.

  15. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study

    NASA Astrophysics Data System (ADS)

    Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.

    Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ˜150 m and σθ's close to the core value (˜25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σθ's>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. Persian Gulf Water (PGW) with a core σθ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ˜39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ˜36.8 at stations near the Gulf, falling to values as low as ˜35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea's oxygen minimum zone. The salinity maximum associated with Red Sea Water (RSW, core σθ=27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10'N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σθ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1-16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (˜2/1) than the ˜1/1 ratio often assumed as the ratio of uptake during diatom growth. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August-September 1995. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.

  16. Upper crustal structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II)

    USGS Publications Warehouse

    Lutter, W.J.; Fuis, G.S.; Ryberg, T.; Okaya, D.A.; Clayton, R.W.; Davis, P.M.; Prodehl, C.; Murphy, J.M.; Langenheim, V.E.; Benthien, M.L.; Godfrey, N.J.; Christensen, N.I.; Thygesen, K.; Thurber, C.H.; Simila, G.; Keller, Gordon R.

    2004-01-01

    In 1999, the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) collected refraction and low-fold reflection data along a 150-km-long corridor extending from the Santa Monica Mountains northward to the Sierra Nevada. This profile was part of the second phase of the Los Angeles Region Seismic Experiment (LARSE II). Chief imaging targets included sedimentary basins beneath the San Fernando and Santa Clarita Valleys and the deep structure of major faults along the transect, including causative faults for the 1971 M 6.7 San Fernando and 1994 M 6.7 Northridge earthquakes, the San Gabriel Fault, and the San Andreas Fault. Tomographic modeling of first arrivals using the methods of Hole (1992) and Lutter et al. (1999) produces velocity models that are similar to each other and are well resolved to depths of 5-7.5 km. These models, together with oil-test well data and independent forward modeling of LARSE II refraction data, suggest that regions of relatively low velocity and high velocity gradient in the San Fernando Valley and the northern Santa Clarita Valley (north of the San Gabriel Fault) correspond to Cenozoic sedimentary basin fill and reach maximum depths along the profile of ???4.3 km and >3 km , respectively. The Antelope Valley, within the western Mojave Desert, is also underlain by low-velocity, high-gradient sedimentary fill to an interpreted maximum depth of ???2.4 km. Below depths of ???2 km, velocities of basement rocks in the Santa Monica Mountains and the central Transverse Ranges vary between 5.5 and 6.0 km/sec, but in the Mojave Desert, basement rocks vary in velocity between 5.25 and 6.25 km/sec. The San Andreas Fault separates differing velocity structures of the central Transverse Ranges and Mojave Desert. A weak low-velocity zone is centered approximately on the north-dipping aftershock zone of the 1971 San Fernando earthquake and possibly along the deep projection of the San Gabriel Fault. Modeling of gravity data, using densities inferred from the velocity model, indicates that different velocity-density relationships hold for both sedimentary and basement rocks as one crosses the San Andreas Fault. The LARSE II velocity model can now be used to improve the SCEC Community Velocity Model, which is used to calculate seismic amplitudes for large scenario earthquakes.

  17. Research on the welding process of aluminum alloy based on high power fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Wei; Pan, Xiaoming; Huang, Shanshi; Liu, Wenwen

    2017-08-01

    To research the formation and variation principle of the weld seam and molten pool for aluminum alloy high power fiber laser welding, the welding experiments for 5052 aluminum alloy were carried out. The influences of laser power, scanning velocity and protection gas on the welding process were systematically researched. The results show that with the increase of power and scanning velocity, the depth to width ratio first increases and then decreases. The ratio reaches the maximum value at 2.6 KW and 30 mm/s, respectively. When the power located at 2.6 KW to 2.8 KW or the velocity located at 25 mm/s to 30 mm/s, stable deep penetration welding can be obtained. The weld seam shows relative flat appearance and the molten pool presents typical "T shape" topography. Moreover, the protection gas also influences the appearance of the weld seam. Using the independently designed fixture, the quality of the weld seam can be well improved.

  18. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  19. Atypical soil hardening during the Tohoku earthquake of March 11, 2011 ( M w = 9.0)

    NASA Astrophysics Data System (ADS)

    Pavlenko, O. V.

    2017-10-01

    Based on the records of KiK-net vertical arrays, models of soil behavior down to depths of 100-200 m in the near-fault zones during the Tohoku earthquake are examined. In contrast to the regular pattern observed during strong earthquakes, soft soils have not broadly demonstrated nonlinear behavior, or a reduction (with the onset of strong motions) and recovery (after strong motions finished) of the shear modulus in soil layers. At the stations where anomalously high peak ground accelerations were recorded (PGA > 1g), the values of the shear modulus in soil layers increased with the onset of strong motions and reached a maximum when motions were the most intensive, which indicated hardening of soils. Soil behavior was close to linear, here. The values of the shear moduli decrease along with a decrease in intensity of strong ground motions, and at soft soil stations, this was accompanied by a stepwise decrease in the frequency of motion.

  20. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mishra, Ashok K.; Yu, Zhongbo

    2016-07-01

    This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).

  1. FORGE Milford Triaxial Test Data and Summary from EGI labs

    DOE Data Explorer

    Joe Moore

    2016-03-01

    Six samples were evaluated in unconfined and triaxial compression, their data are included in separate excel spreadsheets, and summarized in the word document. Three samples were plugged along the axis of the core (presumed to be nominally vertical) and three samples were plugged perpendicular to the axis of the core. A designation of "V"indicates vertical or the long axis of the plugged sample is aligned with the axis of the core. Similarly, "H" indicates a sample that is nominally horizontal and cut orthogonal to the axis of the core. Stress-strain curves were made before and after the testing, and are included in the word doc.. The confining pressure for this test was 2800 psi. A series of tests are being carried out on to define a failure envelope, to provide representative hydraulic fracture design parameters and for future geomechanical assessments. The samples are from well 52-21, which reaches a maximum depth of 3581 ft +/- 2 ft into a gneiss complex.

  2. Low-aberration beamline optics for synchrotron infrared nanospectroscopy.

    PubMed

    Freitas, Raul O; Deneke, Christoph; Maia, Francisco C B; Medeiros, Helton G; Moreno, Thierry; Dumas, Paul; Petroff, Yves; Westfahl, Harry

    2018-04-30

    Synchrotron infrared nanospectroscopy is a recently developed technique that enables new possibilities in the broadband chemical analysis of materials in the nanoscale, far beyond the diffraction limit in this frequency domain. Synchrotron infrared ports have exploited mainly the high brightness advantage provided by electron storage rings across the whole infrared range. However, optical aberrations in the beam produced by the source depth of bending magnet emission at large angles prevent infrared nanospectroscopy to reach its maximum capability. In this work we present a low-aberration optical layout specially designed and constructed for a dedicated synchrotron infrared nanospectroscopy beamline. We report excellent agreement between simulated beam profiles (from standard wave propagation and raytracing optics simulations) with experimental measurements. We report an important improvement in the infrared nanospectroscopy experiment related to the improved beamline optics. Finally, we demonstrate the performance of the nanospectroscopy endstation by measuring a hyperspectral image of a polar material and we evaluate the setup sensitivity by measuring ultra-thin polymer films down to 6 nm thick.

  3. Seasonal gametogenesis of host sea anemone ( Entacmaea quadricolor) inhabiting Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Bi, Ying; Zhang, Bin; Zhang, Zhifeng; Qiu, Jianwen

    2015-02-01

    Studying gonadal development of annual cycle can reveal the process of gametogenesis and reproductive period, and evaluate fertility and source utilization of a species. Host sea anemones are conspicuous members of tropical and subtropical reef ecosystems, but little is known about its biology including reproductive seasonality. Here we reported a one-year study on the gametogenesis and reproduction of host sea anemone ( Entacmaea quadricolor) inhabiting Hong Kong waters. E. quadricolor tissues were sampled in 12 occasions from 5 m and 15 m depths of water, respectively. Histological sectioning of the tissues showed that E. quadricolor was dioecious, and populational ratio of female to male was 1:1.6. The gonadal development was asynchronous within an annual cycle, which included proliferating, growing, maturing, spawning, and resting stages. The spawning occurred between August and October when surface seawater temperature reached the annual maximum (28°C), suggesting that temperature is an important factor modulating the gonadal development and mature of E. quadricolor.

  4. Reviving a neglected celestial underwater polarization compass for aquatic animals.

    PubMed

    Waterman, Talbot H

    2006-02-01

    Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.

  5. Flood of September 3, 1972, in Hillsboro, New Mexico

    USGS Publications Warehouse

    Waite, Loyd A.

    1973-01-01

    Four deaths, two persons seriously injured, and property damage estimated at $846,500 resulted from a flood that struck the village of Hillsboro, N. Mex. during the early morning hours of September 3, 1972. Hillsboro is situated at the confluence of Percha Creek and its main tributary, North Percha Creek. Heavy rainfall in the drainage basin upstream from Hillsboro occurred during the night of September 2-3. Peak discharge computed by slope-area measurements indicated that Percha Creek carried a maximum flow of 12,200 cubic feet per second (346 cubic meters per second) and that North Percha Creek carried a flow of 20,900 cubic feet per second (592 cubic meters per second) at points just upstream from Hillsboro. Flood-control facilities in Hillsboro consisting of levees on the south bank of Percha Creek failed and flood waters reached depths of 6 feet (1.8 meters) in Hillsboro. Hillsboro was declared a disaster area by Governor Bruce King and by President Richard Nixon.

  6. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries

    NASA Astrophysics Data System (ADS)

    Sayyed, M. I.; AlZaatreh, M. Y.; Matori, K. A.; Sidek, H. A. A.; Zaid, M. H. M.

    2018-06-01

    In the present study, the exposure buildup factors (EBF) have been investigated using geometric progression (G-P) fitting method for different types of smart polymers (DMSO, PDMS, PES, PMA, PVDC, and PVDF) in the energy range of 0.015-15 MeV. From the calculations, the values of the EBF were depended on the incident photon energy, penetration depth as well as chemical composition of the polymers. In the intermediate energy region, the EBF values were reached at maximum point while in low and high energy regions, the EBF values were decreased at minimum point. The obtained results of the selected polymers have been compared in terms of EBF with Al2O3 and other common polymers such as PAN, Teflon and SR. The shielding effectiveness of the selected polymers is found to be comparable to the common polymers. The results of this work should be useful in radiation shielding applications such as in industry, medical and nuclear engineering.

  7. Parametric study on single shot peening by dimensional analysis method incorporated with finite element method

    NASA Astrophysics Data System (ADS)

    Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang

    2012-06-01

    Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.

  8. Prediction of lake depth across a 17-state region in the United States

    USGS Publications Warehouse

    Oliver, Samantha K.; Soranno, Patricia A.; Fergus, C. Emi; Wagner, Tyler; Winslow, Luke A.; Scott, Caren E.; Webster, Katherine E.; Downing, John A.; Stanley, Emily H.

    2016-01-01

    Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States.

  9. Maximum imaging depth comparison in porcine vocal folds using 776-nm vs. 1552-nm excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Yildirim, Murat; Ferhanoglu, Onur; Kobler, James B.; Zeitels, Steven M.; Ben-Yakar, Adela

    2013-02-01

    Vocal fold scarring is one of the major causes of voice disorders and may arise from overuse or post-surgical wound healing. One promising treatment utilizes the injection of soft biomaterials aimed at restoring viscoelasticity of the outermost vibratory layer of the vocal fold, superficial lamina propria (SLP). However, the density of the tissue and the required injection pressure impair proper localization of the injected biomaterial in SLP. To enhance treatment effectiveness, we are investigating a technique to image and ablate sub-epithelial planar voids in vocal folds using ultrafast laser pulses to better localize the injected biomaterial. It is challenging to optimize the excitation wavelength to perform imaging and ablation at depths suitable for clinical use. Here, we compare maximum imaging depth using two photon autofluorescence and second harmonic generation with third-harmonic generation imaging modalities for healthy porcine vocal folds. We used a home-built inverted nonlinear scanning microscope together with a high repetition rate (2 MHz) ultrafast fiber laser (Raydiance Inc.). We acquired both two-photon autofluorescence and second harmonic generation signals using 776 nm wavelength and third harmonic generation signals using 1552 nm excitation wavelength. We observed that maximum imaging depth with 776 nm wavelength is significantly improved from 114 μm to 205 μm when third harmonic generation is employed using 1552 nm wavelength, without any observable damage in the tissue.

  10. Shallow-Water Nitrox Diving, the NASA Experience

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel T.

    2009-01-01

    NASA s Neutral Buoyancy Laboratory (NBL) contains a 6.2 million gallon, 12-meter deep pool where astronauts prepare for space missions involving space walks (extravehicular activity EVA). Training is conducted in a space suit (extravehicular mobility unit EMU) pressurized to 4.0 - 4.3 PSI for up to 6.5 hours while breathing a 46% NITROX mix. Since the facility opened in 1997, over 30,000 hours of suited training has been completed with no occurrence of decompression sickness (DCS) or oxygen toxicity. This study examines the last 5 years of astronaut suited training runs. All suited runs are computer monitored and data is recorded in the Environmental Control System (ECS) database. Astronaut training runs from 2004 - 2008 were reviewed and specific data including total run time, maximum depth and average depth were analyzed. One hundred twenty seven astronauts and cosmonauts completed 2,231 training runs totaling 12,880 exposure hours. Data was available for 96% of the runs. It was revealed that the suit configuration produces a maximum equivalent air depth of 7 meters, essentially eliminating the risk of DCS. Based on average run depth and time, approximately 17% of the training runs exceeded the NOAA oxygen maximum single exposure limits, with no resulting oxygen toxicity. The NBL suited training protocols are safe and time tested. Consideration should be given to reevaluate the NOAA oxygen exposure limits for PO2 levels at or below 1 ATA.

  11. Hydraulic alterations resulting from hydropower development in the Bonneville Reach of the Columbia River

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.

    2010-01-01

    We used a two-dimensional (2D) hydrodynamic model to simulate and compare the hydraulic characteristics in a 74-km reach of the Columbia River (the Bonneville Reach) before and after construction of Bonneville Dam. For hydrodynamic modeling, we created a bathymetric layer of the Bonneville Reach from single-beam and multi-beam echo-sounder surveys, digital elevation models, and navigation surveys. We calibrated the hydrodynamic model at 100 and 300 kcfs with a user-defined roughness layer, a variable-sized mesh, and a U.S. Army Corps of Engineers backwater curve. We verified the 2D model with acoustic Doppler current profiler (ADCP) data at 14 transects and three flows. The 2D model was 88% accurate for water depths, and 77% accurate for velocities. We verified a pre-dam 2D model run at 126 kcfs using pre-dam aerial photos from September 1935. Hydraulic simulations indicated that mean water depths in the Bonneville Reach increased by 34% following dam construction, while mean velocities decreased by 58%. There are numerous activities that would benefit from data output from the 2D model, including biological sampling, bioenergetics, and spatially explicit habitat modeling.

  12. Interactions between river channel processes and riparian vegetation - an example from the Lužnice River, Czech Republic

    NASA Astrophysics Data System (ADS)

    Krejci, Lukas; Macka, Zdenek

    2010-05-01

    Riparian vegetation responds to hydrogemorphic processes and environmental changes and also controls these processes. Our study focuses on the interactions between woody riparian vegetation (live and dead trees) and river channel morphology on the example of three 1 km long reaches of the Lužnice River in southern Czech Republic. Here, we propose that despite spatial proximity, identical hydrological and sedimentological controls, three river reaches have different geomorphology due to varying character of riparian woody vegetation and different character and abundance of large in-stream wood (LW). Upstream, middle and downstream reaches vary markedly in channel dimensions (width, depth) and the present day rate of lateral erosion. Three reaches also show the different in-stream wood loads which are dependent mainly on the character of the riparian vegetation, and on the lateral activity of the channel. The highest wood load was recorded at the downstream reach with 102,162 m3/ha, the lowest at the middle reach 37,041 m3/ha, the upstream reach has load 81,370 m3/ha. Upper reach woody vegetation is the mixture of willow, alder, chokecherry and oak. The reach is only slightly sinuous with the moderate rate of incision and lateral erosion. The channel width and depth are 13 m and 2,1 m respectively, the mean cross section area is 27,3 m2. Erosion in the reach is slightly enhanced by the river training works upstream (canalisation, weir construction). Middle reach woody vegetation mostly consist of willow. Tree-tops often incline into the channel, thus, dissipating effectively the energy of the river flow. The reach is moderately sinuous and rather laterally stable. The channel width and depth are 10 m and 2,5 m respectively, the mean cross section area is 25 m2. The reach approximates the natural condition of the pristine river. The impact of river training works is minor only with the road bridge upstream. This reach in the most natural condition shows the lowest in-stream wood load and lowest rate of the present day bank erosion. Downstream reach woody vegetation is discontinuous, alternating with pastures. Riparian trees are the mixture of poplar, willow, alder and oak. The reach is highly sinuous with distinct meanders and laterally very dynamic. The channel width and depth are 15 m and 3,7 m respectively, the mean cross section area is 55,5 m2. The highest bank erosion was noted at the locations with pastures. The specific feature of this reach are fossil oak logs, which are exhumed from the alluvial sediments by the rapid lateral erosion. The enhanced incision and lateral erosion is the combined effect of riparian forest clearance and river training works (canalisation) downstream. The planform changes of the river since 1952 have been studied by analysis of the aerial images. It was derived that floodplain area of 12 450 m2, 16 318 m2 and 20 687 m2 was eroded, of which 10 465 m2, 8496 m2 and 10 733 m2 was wooded land at the upstream, middle and downstream reaches. We estimated that this rate of bank erosion delivered 644, 510 and 628 trees to the river channel since 1952. These numbers represent 390%, 1130% and 285% of the present day number of LW pieces in the river channel. Approximate turnover rates of LW can be estimated from these data. Present day rate of bank erosion and LW input is monitored at selected concave banks by repeated geodetic surveying. The Lužnice River has a sandy bed and LW modifies bed and bank morphology profoundly. We found that 33%, 29% and 36% of LW pieces caused localized erosion (pool formation) and 37%, 24% and 21 % caused local deposition at upstream, middle and downstream river reaches. The research was supported by Czech Science Foundation, grant no. 205/08/0926.

  13. Clinical peri-implant sounding accuracy in the presence of chronic inflammation of peri-implant tissues. Clinical observation study.

    PubMed

    Romeo, E; Lops, D; Storelli, S; Ghisolfi, M

    2009-03-01

    The aim of this study was to assess if the probing pocket depth is a reliable clinical parameter in the evaluation of the depth of the peri-implant sulci. In case of chronic inflamed peri-implant tissues, this evaluation is useful for understanding the level of bone resorption. The study enrolled 22 patients. All of them were diagnosed for a peri-implantitis and were scheduled for a resective surgery with implantoplasty. During the surgery, a full thickness flap was raised and resective surgery was performed as well as an implantoplasty procedure. Peri-implant probing values before the surgery (PAL) were recorded, as were values of bone resorption after flap elevation (DIB), at all four sites around each implant (88 sites). The mean value of PAL calculated for all 88 sites was 5.67 mm (+/-1.46); the correspondent value of DIB was 6.37 mm (+/-1.81). In 52 sites out of 88 (59.1%) the values of PAL and DIB were exactly the same (maximum difference 0.5 mm). In only 10 cases (11.3%) the difference between PAL and DIB was >2 mm. The mean values for PAL and DIB were not statistically different. Authors have concluded that in case of chronic inflammation of peri-implant tissues, the probe reaches the bone pick, allowing the clinician to have reliable information on the actual bone resorption.

  14. Seabirds as samplers of the marine environment - a case study of northern gannets

    NASA Astrophysics Data System (ADS)

    Garthe, Stefan; Peschko, Verena; Kubetzki, Ulrike; Corman, Anna-Marie

    2017-04-01

    Understanding distribution patterns, activities, and foraging behaviours of seabirds requires interdisciplinary approaches. In this paper, we provide examples of the data and analytical procedures from a new study in the German Bight (North Sea) tracking northern gannets (Morus bassanus) at their breeding colony on the island of Heligoland. Individual adult northern gannets were equipped with different types of data loggers for several weeks, measuring geographic positions and other parameters mostly at 3-5 min intervals. Birds flew in all directions from the island to search for food, but most flights targeted areas to the (N)NW (north-northwest) of Heligoland. Foraging trips were remarkably variable in duration and distance; most trips lasted 1-15 h and extended from 3 to 80 km from the breeding colony on Heligoland. Dives of gannets were generally shallow, with more than half of the dives only reaching depths of 1-3 m. The maximum dive depth was 11.4 m. Gannets showed a clear diurnal rhythm in their diving activity, with dives being almost completely restricted to the daylight period. Most flight activity at sea occurred at an altitude between the sea surface and 40 m. Gannets mostly stayed away from the wind farms and passed around them much more frequently than flying through them. Detailed information on individual animals may provide important insights into processes that are not detectable at a community level.

  15. INTERACTION OF LASER RADIATION WITH MATTER: Calculation of the kinetics of heating and structural changes in the cartilaginous tissue under the action of laser radiation

    NASA Astrophysics Data System (ADS)

    Sobol', E. N.; Kitai, M. S.

    1998-07-01

    A theoretical model is developed for the calculation of the temperature fields and determination of the size of a zone with structural changes in the cartilaginous tissue. The model is based on a simultaneous analysis of the heat and mass transfer processes and it takes into account the bulk absorption of laser radiation by the tissue, surface evaporation of water, and temperature dependences of the diffusion coefficients. It is assumed that under the influence of a phase transition between free and bound water, caused by heating of the cartilage to 70°C, the proteoglycans of the cartilage matrix become mobile and, as a result of such mass transfer, structural changes are induced in the cartilaginous tissue causing relaxation of stresses or denaturation. It is shown that the maximum temperature is then reached not on the irradiated surface but at some distance from it, and that the size of the zones of structural changes (denaturation depth) depends strongly on the energy density of the laser radiation and its wavelength, on the duration of the irradiation, and on the cartilage thickness. This model makes it possible to calculate the temperature fields and the depth of structural changes in laser-induced relaxation of stresses and changes in the shape of the cartilaginous tissue.

  16. Quantitative structural markers of colorectal dysplasia in a cross sectional study of ex vivo murine tissue using label-free multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Prieto, Sandra P.; Greening, Gage J.; Lai, Keith K.; Muldoon, Timothy J.

    2016-03-01

    Two-photon excitation of label-free tissue is of increasing interest, as advances have been made in endoscopic clinical application of multiphoton microscopy, such as second harmonic generation (SHG) scanning endoscopy used to monitor cervical collagen in mice1. We used C57BL mice as a model to investigate the progression of gastrointestinal structures, specifically glandular area and circularity. We used multiphoton microscopy to image ex-vivo label-free murine colon, focusing on the collagen structure changes over time, in mice ranging from 10 to 20 weeks of age. Series of images were acquired within the colonic and intestinal tissue at depth intervals of 20 microns from muscularis to the epithelium, up to a maximum depth of 180 microns. The imaging system comprised a two-photon laser tuned to 800nm wavelength excitation, and the SHG emission was filtered with a 400/40 bandpass filter before reaching the photomultiplier tube. Images were acquired at 15 frames per second, for 200 to 300 cumulative frames, with a field of view of 261um by 261um, and 40mW at sample. Image series were compared to histopathology H&E slides taken from adjacent locations. Quantitative metrics for determining differences between murine glandular structures were applied, specifically glandular area and circularity.

  17. Surface Morphology of Active Normal Faults in Hard Rock: Implications for the Mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Mignan, A.; King, G. C.

    2009-12-01

    Mechanical stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localized magma injection, with normal faults accommodating extension and subsidence above the maximum reach of the magma column. In these magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Using mechanical and kinematics concepts and vertical profiles of normal fault scarps from an Asal Rift campaign, where normal faults are sub-vertical on surface level, we discuss the creation and evolution of normal faults in massive fractured rocks (basalt). We suggest that the observed fault scarps correspond to sub-vertical en echelon structures and that at greater depth, these scarps combine and give birth to dipping normal faults. Finally, the geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  18. The implementation of rare events logistic regression to predict the distribution of mesophotic hard corals across the main Hawaiian Islands.

    PubMed

    Veazey, Lindsay M; Franklin, Erik C; Kelley, Christopher; Rooney, John; Frazer, L Neil; Toonen, Robert J

    2016-01-01

    Predictive habitat suitability models are powerful tools for cost-effective, statistically robust assessment of the environmental drivers of species distributions. The aim of this study was to develop predictive habitat suitability models for two genera of scleractinian corals (Leptoserisand Montipora) found within the mesophotic zone across the main Hawaiian Islands. The mesophotic zone (30-180 m) is challenging to reach, and therefore historically understudied, because it falls between the maximum limit of SCUBA divers and the minimum typical working depth of submersible vehicles. Here, we implement a logistic regression with rare events corrections to account for the scarcity of presence observations within the dataset. These corrections reduced the coefficient error and improved overall prediction success (73.6% and 74.3%) for both original regression models. The final models included depth, rugosity, slope, mean current velocity, and wave height as the best environmental covariates for predicting the occurrence of the two genera in the mesophotic zone. Using an objectively selected theta ("presence") threshold, the predicted presence probability values (average of 0.051 for Leptoseris and 0.040 for Montipora) were translated to spatially-explicit habitat suitability maps of the main Hawaiian Islands at 25 m grid cell resolution. Our maps are the first of their kind to use extant presence and absence data to examine the habitat preferences of these two dominant mesophotic coral genera across Hawai'i.

  19. Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest.

    PubMed

    Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling

    2017-09-01

    Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.

  20. Does small-scale vertical distribution of juvenile schooling fish affect prey availability to surface-feeding seabirds in the Wadden Sea?

    NASA Astrophysics Data System (ADS)

    Dänhardt, Andreas; Becker, Peter H.

    2011-02-01

    Food availability is a key variable influencing breeding performance and demography of marine top predators. Due to methodological problems, proportionality between fish abundance and availability is often assumed without being explicitly tested. More specifically, better breeding performance of surface-feeding seabirds at times of large prey stocks suggests that prey availability is also a function of prey abundance. Using vertically resolved stow net sampling we tested whether local abundance and length composition of pelagic fish are reliable predictors of the availability of these fish to surface-feeding Common Terns ( Sterna hirundo) breeding in the German Wadden Sea. Prey fish were found to concentrate below the maximum diving depth of the terns. Individuals caught close to the surface were in most cases smaller than conspecifics caught at greater depth. Correlations between fish abundance within and out of reach of the terns appeared to be both species- and site-specific rather than driven by overall fish abundance. Vertical distribution patterns of the terns' main prey fish could be explained as anti-predator behavior, reducing prey availability to the terns. In 2007, when breeding performance was much better than in 2006, herring and whiting were much more abundant, suggesting that overall prey abundance may also increase prey availability in habitats other than those represented by the stow net sampling.

  1. Varying effects of geomorphic change on floodplain inundation and forest communities

    NASA Astrophysics Data System (ADS)

    Keim, R.; Johnson, E. L.; Edwards, B. L.; King, S. L.; Hupp, C. R.

    2015-12-01

    Overbank flooding in floodplains is an important control on vegetation, but effects of changing flooding are difficult to predict because sensitivities of plant communities to multidimensional flooding (frequency, depth, duration, and timing) are not well understood. We used HEC-RAS to model the changing flooding regime in the lower White River floodplain, Arkansas, in response to rapid incision of the Mississippi River in the 1930s, and quantified flood frequency, depth, and duration by forest community type. Incision has decreased flooding especially in terms of frequency, which is one of the most important variables for ecological processes. Modeled depth-duration curves varied more among floodplain reaches than among forest communities within the same reach, but forest communities are now arranged in accordance with new flood regimes in place after river incision. Forest responses to subtle geomorphic change are slower than other vegetation communities, so detection of the full ramifications of ecohydrologic change may require decades.

  2. Impact Tsunami Calculations: Hydrodynamical Simulations vs. Linear Theory

    NASA Technical Reports Server (NTRS)

    Korycansky, E.; Asphaug, E.; Ward, S. N.

    2003-01-01

    Tsunamis generated by the impacts of asteroids and comets into the Earth oceans are widely recognized as a potential catastrophic hazard to the Earth s population. Our general conclusion is that linear theory is a reasonably accurate guide to behavior of tsunamis generated by impactors of moderate size, where the initial transient impact cavity is of moderate depth compared to the ocean depth. This is particularly the case for long wavelength waves that propagate fastest and would reach coastlines first. Such tsunamis would be generated in the open ocean by impactors of 300 meters in diameter, which might be expected to strike the Earth once every few thousand years, on the average. Larger impactors produce cavities deep enough to reach the ocean floor; even here, linear theory is applicable if the starting point is chosen at a later phase in the calculation when the impact crater has slumped back to produce a cavity of moderate depth and slope.

  3. A Meta-analysis of Interannual Changes and the Influencing Factors of Soil Water and Organic Carbon in Apple Orchard of Southern Loess Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liu, W.; LI, G.

    2017-12-01

    The Loess Plateau is located in the upper and middle reaches of the Yellow River basin, its southern part is a world famous production area for high quality apple. In recent years, as an agricultural mainstay industry, the region apple planting area and total output reach 1.3 million ha and 15 million tons respectively, which account for about 60% and 55% of the country. In the 1980s, an apple producing base on the Shannxi Weibei Plateau was established, and its planting area accounted for more than50% of arable land in recent years. Due to lack of irrigation conditions in the region, the apple cultivation depends mainly on rain water resources. In the backdrop of a large scale project of grain to green and with constantly expanding of farmland into orchard in the region, soil water balance and soil environments have changed considerably under the new agro-fruit production system. This paper presents an integrative analysis of the related researches regarding the variation characteristics of soil water, organic carbon and their influencing factors of apple orchard. Results on soil hydrology are summarized as: (i) for young orchards, depth of soil moisture depleted by root system extended downward with orchard age increasing; (ii) because the water consumption of fruit trees exceeded the recharged water from precipitation in a year, soil moisture of orchard decreased continuously and reached the minimum in the full fruit period, followed by a certain degree of recovery; (iii) depth distribution of dry soil layer (DSL)showed a trend of increasing year by year, which existed in 3.5-10 m in the full fruit period. The presence of DSL blocks the recharging of groundwater by rainwater infiltration. Results on soil organic carbon (SOC) show that: the SOC content increased gradually with time when orchard was under 15 years old, reached to the maximum SOC content, 6.66g/kg of 0-100cm for the 15 year old orchard, and then slightly decreased. The SOC content in 0-20cm soil accounted for a large proportion in the soil profile. Our results suggest that apple tree planting density should be reduced to have an appropriate productivity level in the orchard, and a reasonable ratio of farmland to orchard area should be maintained to achieve the sustainable use of regional water resources, food security and economic development in the region.

  4. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years because of the low nitrate concentrations in recharge beneath the urban area and the increasing proportion of urban-derived ground water reaching the well. The apparent lag time between peak input concentrations and peak concentrations in the well is about 20 to 30 years. Measured uranium concentrations were also highest (45 micrograms per liter) in shallow ground water, and decreased with depth to background concentrations of about 0.5 microgram per liter. Naturally-occurring uranium adsorbed to aquifer sediments is mobilized by oxygen-rich, high-alkalinity water. Alkalinity increased in shallow ground water in response to agricultural development. As ground-water pumping increased in the 1940s and 1950s, this alkaline water moved downward through the ground-water flow system, mobilizing the uranium adsorbed to aquifer sediments. Ground water with high alkalinity and high uranium concentrations is expected to continue to move deeper in the system, resulting in increased uranium concentrations with depth in ground water. Because alkalinity (and correspondingly uranium) concentrations were high in shallow ground water beneath both the urban and the agricultural land, long-term uranium concentrations in the public-supply well are expected to increase as the proportion of uranium-affected water contributed to the well increases. Assuming that the alkalinity near the water table remains the same, the simulation of long-term alkalinity in the public-supply well indicates that uranium concentrations in the public-supply well will likely approach the maximum contaminant level; however, the time to reach this level is more than 100 years because of the significant proportion of old, unaffected water at depth that is contributed to the public-supply well.

  5. Three-dimensional Characterization of Resorption Cavity Size and Location in Human Vertebral Trabecular Bone

    PubMed Central

    Goff, M.G.; Slyfield, C.R.; Kummari, S.R.; Tkachenko, E.V.; Fischer, S. E.; Yi, Y.H.; Jekir, M.; Keaveny, T.M.; Hernandez, C.J.

    2012-01-01

    The number and size of resorption cavities in cancellous bone are believed to influence rates of bone loss, local tissue stress and strain and potentially whole bone strength. Traditional two-dimensional approaches to measuring resorption cavities in cancellous bone report the percent of the bone surface covered by cavities or osteoclasts, but cannot measure cavity number or size. Here we use three-dimensional imaging (voxel size 0.7 × 0.7 × 5.0 μm) to characterize resorption cavity location, number and size in human vertebral cancellous bone from nine elderly donors (7 male, 2 female, ages 47–80 years). Cavities were 30.10 ± 8.56 μm in maximum depth, 80.60 ± 22.23 *103 μm2 in surface area and 614.16 ± 311.93 *103 μm3 in volume (mean ± SD). The average number of cavities per unit tissue volume (N.Cv/TV) was 1.25 ± 0.77 mm−3. The ratio of maximum cavity depth to local trabecular thickness was 30.46 ± 7.03 % and maximum cavity depth was greater on thicker trabeculae (p < 0.05, r2 = 0.14). Half of the resorption cavities were located entirely on nodes (the intersection of two or more trabeculae) within the trabecular structure. Cavities that were not entirely on nodes were predominately on plate-like trabeculae oriented in the cranial-caudal (longitudinal) direction. Cavities on plate-like trabeculae were larger in maximum cavity depth, cavity surface area and cavity volume than cavities on rod-like trabeculae (p < 0.05). We conclude from these findings that cavity size and location are related to local trabecular microarchitecture. PMID:22507299

  6. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    USGS Publications Warehouse

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  7. Pigments, size and distribution of Synechococcus spp. in the Black Sea

    NASA Astrophysics Data System (ADS)

    Uysal, Zahit

    2000-03-01

    Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April-May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×10 2 and 1.45×10 5 cells/ml at the surface, between 2×10 3 and 1.23×10 5 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×10 2 and 3.5×10 2 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (˜60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (˜578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll- a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0-10 m) were larger in cell size than the cells at lower depths (20-60 m).

  8. Balancing lake ecological condition and agriculture irrigation needs in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.

    2017-01-01

    The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.

  9. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization

    EPA Science Inventory

    The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...

  10. Horizon Brightness Revisited: Measurements and a Model of Clear-Sky Radiances

    DTIC Science & Technology

    1994-07-20

    Clear daytime skies persistently display a subtle local maximum of radiance near the astronomical horizon. Spectroradiometry and digital image analysis confirm this maximum’s reality, and they show that its angular width and elevation vary with solar elevation, azimuth relative to the Sun, and aerosol optical depth. Many existing models of atmospheric scattering do not generate this near-horizon radiance maximum, but a simple second-order scattering model does, and it reproduces many of the maximum’s details.

  11. Feeding flights of breeding double-crested cormorants at two Wisconsin colonies

    USGS Publications Warehouse

    Custer, T.W.; Bunck, C.

    1992-01-01

    Unmarked Double-crested Cormorants (Phalacrocorax auritus ) were followed by airplane from Cat Island and Spider Island, two nesting colonies in Wisconsin, to their first landing site. Cormorants flew an average of 2.0 km from Cat Island (maximum 40 km) and 2.4 km from Spider Island (maximum 12 km). The mean direction of landing sites differed seasonally for flights from Spider Island, but not from Cat Island, Cormorants generally landed in Green Bay or Lake Michigan and rarely landed in inland lakes or ponds. The most frequent water depth at landing sites for each colony was < 9.1 m. Water depths greater than or equal to 9.1 m were used less frequently than available within the maximum observed flight distance for each colony. The average flight speed for cormorants was 61 km/h.

  12. Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana

    2018-02-01

    Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.

  13. Anomalous δ13C in POC at the chemoautotrophy maximum in the Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Scranton, M. I.; Taylor, G. T.; Thunell, R.; Tappa, E.; benitez-Nelson, C. R.; Muller-Karger, F. E.; Lorenzoni, L.; Astor, Y. M.

    2016-02-01

    The Cariaco Basin is the world's largest truly marine, permanently anoxic basin and is located on the continental shelf of Venezuela which experiences strong seasonal upwelling. The CARIACO program has been studying the hydrography, biogeochemistry and properties of sinking flux of the Cariaco Basin since 1995. One of the major puzzles of CARIACO has been the nature of the chemoautotrophic maximum which is seen at depths just below the appearance of hydrogen sulfide ( 250-300 m). The identity and sources of oxidants and reductants to this active microbial community, and the identity of the chemoautotrophic organisms themselves, are still only partially known. Below about 50m (the euphotic zone), δ13C values of suspended particulates range from -23 to -26‰, typical of marine phytoplankton. However we have observed both enrichments (values of up to -16‰) and depletions (values of -28‰) near the redox interface. We had expected to see isotopically light POC in the chemoautotrophy maximum, since DIC δ13C should decrease with depth as organic carbon is remineralized. However both positive and negative isotopic excursions in POC occur at depths where dark carbon fixation is at a maximum, and at or near the transition from micro-oxic to sulfidic water. We postulate that this signal may help to define carbon fixation pathways (and dominant chemoautotrophic populations) in the oxic/sulfidic transition region.

  14. Pre-Restoration Geomorphic Characteristics of Minebank Run, Baltimore County, Maryland, 2002-04

    USGS Publications Warehouse

    Doheny, Edward J.; Starsoneck, Roger J.; Mayer, Paul M.; Striz, Elise A.

    2007-01-01

    Data collected from 2002 through 2004 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to its physical restoration in 2004 and 2005. Longitudinal profiles of the channel bed, water surface, and bank features were developed from field surveys. Changes in cross-section geometry between field surveys were documented. Grain-size distributions for the channel bed and banks were developed from pebble counts and laboratory analyses. Net changes in the elevation of the channel bed over time were documented at selected locations. Rosgen Stream Classification was used to classify the stream channel according to morphological measurements of slope, entrenchment ratio, width-to-depth ratio, sinuosity, and median-particle diameter of the channel materials. An analysis of boundary shear stress in the vicinity of the streamflow-gaging station was conducted by use of hydraulic variables computed from cross-section surveys and slope measurements derived from crest-stage gages in the study reach. Analysis of the longitudinal profiles indicated noticeable changes in the percentage and distribution of riffles, pools, and runs through the study reach between 2002 and 2004. Despite major changes to the channel profile as a result of storm runoff events, the overall slope of the channel bed, water surface, and bank features remained constant at about 1 percent. The cross-sectional surveys showed net increases in cross-sectional area, mean depth, and channel width at several locations between 2002 and 2004, which indicate channel degradation and widening. Two locations were identified where significant amounts of sediment were being stored in the study reach. Data from scour chains identified several locations where maximum scour ranged from 1.0-1.4 feet during storm events. Bank retreat varied widely throughout the study reach and ranged from 0.2 feet to as much as 7.9 feet. Sequential measurements of bed elevation in selected locations indicated as much as 2 feet of channel degradation in one location during a storm event in May 2004 and identified pulses of sediment that were gradually transported through the study reach during the monitoring period. Particle-size analyses of channel bed materials indicated a median particle diameter of 20.5 millimeters (coarse gravel) for the study reach, with more than 24 percent being sand particles (greater than 0.062 millimeters). Analyses of bank samples showed finer-grained material composing the channel banks, predominantly silt/clay or a mixture of silt/clay (less than 0.062 millimeters) and very fine to coarse sand. The Minebank Run stream channel was classified as a B4c channel, based on morphological descriptions from the Rosgen Stream Classification System. The B4c classification describes a single-thread stream channel with a moderate entrenchment ratio of 1.4 to 2.2; a width-to-depth ratio greater than 12; moderate sinuosity of 1.2 or greater; a water-surface slope of less than 2 percent; and a median-particle diameter in the gravel range of 2 to 64 millimeters. Analysis of boundary shear stress indicated larger mean velocities and boundary shear stress values for Minebank Run when compared to relations for non-urban B channel types developed by Rosgen. The slope of the regression line for mean velocity versus boundary shear stress at Minebank Run was considerably less than slopes developed by Rosgen for non-urban channel types. This indicates that relatively small increases in mean velocity can result in large increases in boundary shear stress in stream channels with highly developed watersheds, such as Minebank Run.

  15. Monitoring of active layer thermal regime and depth on CALM-S site, James Ross Island, Eastern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Kňažková, Michaela; Nývlt, Daniel; Láska, Kamil; Mueller, Carsten W.; Ondruch, Jakub

    2017-04-01

    Active layer thickness and its dynamic are considered one of the key parameters of permafrost-affected ground. They variability are very sensitive to specific local conditions, especially climate, vegetation, snow cover or soil texture and moisture. To better understand the local variability of active layer thickness in Antarctica, the original Circumpolar Active Layer Monitoring protocol (CALM) was adapted as its southern form (CALM-S) with respect to specific conditions of Antarctica. To date, almost 40 CALM-S sites were registered across the Antarctic continent with the highest density on western Antarctic Peninsula (South Shetlands) and Victoria Land in East Antarctica (McMurdo region). On James Ross Island, CALM-S site was established in February 2014 as the first CALM-S in the eastern Antarctic Peninsula region. The CALM-S site is located near the Johann Gregor Mendel Station on the northern coast of James Ross Island. The area delimited to 80 × 70 m is elevated at 8 to 11 m asl. Geologically it consists of a Holocene marine terrace ( 80% of CALM-S area) with typical sandy material and passes to lithified to poorly disintegrated sedimentary rocks of Cretaceous Whisky Bay Formation ( 20% of CALM-S area) with a more muddy material and a typical bimodal composition. For both geologically different parts of CALM-S site, ground temperature was measured at two profiles at several levels up to 200 cm depth using resistance thermometers Pt100/8 (accuracy ± 0.15 °C). The air temperature at 2 m above surface was monitored at the automatic weather station near Johann Gregor Mendel Station using resistance thermometer Pt100/A (accuracy ± 0.15 °C). Data used in this study were obtained during the period from 1 March 2013 to 6 February 2016. Mechanical probing of active layer depth was performed in 72 grid points at the end of January, or beginning of February in 2014 to 2016. During the whole study period, mean annual air temperature varied between -7.0 °C (2013) and -6.7 °C (2015), while the mean annual ground temperature at 5 cm ranged from -5.6 °C (2013) to -5.3 °C (2014). Thawing season started in mid-November between 17th (2013/14) and 24th (2014/15) and ended at the end of February (22nd in 2014/15) and beginning of March (7th in 2013/14). The maximum active layer thickness determined from 0°C isotherm varied from 86 to 87 cm at profile 1, while it reached only 51 to 65 cm at profile 2. The mean probed active layer depth varied between 66 cm (2013/4) and 78 cm (2014/15). The maximum probed active layer depth increased from 100 cm in 2014 to 113 cm in 2016. High variability of active layer depth across CALM-S site was caused by different ground thermal properties of Holocene marine terrace sand and Cretaceous clayey sandstones. These results differ significantly from another CALM-S sites in Antarctica, where the main factors affecting thawing depth variability were snow cover and topography. These results confirmed previous observation from James Ross Island, where variability of active layer depth was related primarily to different ground properties (texture, moisture, physical characteristic) then local climate or snow cover.

  16. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    PubMed

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Soil weathering agents are limited where deep tree roots are removed, even after decades of forest regeneration

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Richter, D. D., Jr.; Hirmas, D.; Lehmeier, C.; Bagchi, S.; Brecheisen, Z.; Sullivan, P. L.; Min, K.; Hauser, E.; Stair, R.; Flournoy, R.

    2017-12-01

    Deep roots pump reduced C deep into Earth's critical zone (CZ) as they grow and function. This action generates acid-forming CO2 and organic acids (OA) and fosters microbes that also produce these weathering agents. This phenomenon results in a regolith-weathering reaction front that propagates down with vertical root extension and water infiltration. Across old-growth hardwood, younger pine, and annual crop plots at the Calhoun Critical Zone Observatory, we tested the hypothesis that persistent absence of deep roots, a widespread anthropogenic phenomenon, reduces root- and microbially-mediated biogeochemical pools and fluxes important for weathering, even well below maximum root density. We also hypothesized that land use effects on deep soil biogeochemistry is evident even after decades of forest regeneration. Root abundance to 2 m declined with depth, and was greater in old-growth and regenerating forests than in crop plots at most depths. Old-growth soils also contain more roots than younger pine soils: between 30-45 and 70-80 cm depth, old-growth root abundances were greater than in regenerating forests, and old-growth soils exhibited root distributions with less severe declines with depth and harbored more root-associated bacteria than younger forests. Changing root abundances influenced concentrations of weathering agents. At 3 m, in situ soil [CO2] reached 6%, 4%, and 2% in old-growth, regenerating, and crop soils, respectively. Soil organic C (SOC) and extractable OC (EOC, an OA proxy) did not differ across land use, but at 4-5 m EOC/SOC was higher in old-growth compared to regenerating forests and crop soils (20.0±2.6 vs. 2.0±1.0%). We suggest that biogeochemistry deep beneath old-growth forests reflects greater root prevalence and propensity for generation of weathering agents, and that disturbance regimes inducing deep root mortality impose top-down signals relevant to weathering processes deep in Earth's CZ even after decades of forest regeneration.

  18. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): Data from three baited lander systems

    NASA Astrophysics Data System (ADS)

    Linley, T. D.; Lavaleye, M.; Maiorano, P.; Bergman, M.; Capezzuto, F.; Cousins, N. J.; D'Onghia, G.; Duineveld, G.; Shields, M. A.; Sion, L.; Tursi, A.; Priede, I. G.

    2017-11-01

    Autonomous photographic landers are a low-impact survey method for the assessment of mobile fauna in situations where methods such as trawling are not feasible or ethical. Three institutions collaborated through the CoralFISH project, each using differing lander systems, to assess the effects of cold-water corals on fish diversity and density. The Biogenic Reef Ichthyofauna Lander (BRIL, Oceanlab), Autonomous Lander for Biological Experiments (ALBEX, NIOZ) and the Marine Environment MOnitoring system (MEMO, CoNISMa) were deployed in four CoralFISH European study regions covering the Arctic, NE Atlantic and Mediterranean, namely Northern Norway (275-310 m depth), Belgica Mound Province (686-1025 m depth), the Bay of Biscay (623-936 m depth), and Santa Maria di Leuca (547-670 m depth). A total of 33 deployments were carried out in the different regions. Both the time of first arrival (Tarr) and the maximum observed number of fish (MaxN) were standardised between the different lander systems and compared between coral and reference stations as indicators of local fish density. Fish reached significantly higher MaxN at the coral stations than at the reference stations. Fish were also found to have significantly lower Tarr in the coral areas in data obtained from the BRIL and MEMO landers. All data indicated that fish abundance is higher within the coral areas. Fish species diversity was higher within the coral areas of Atlantic Ocean while in Northern Norway and Santa Maria di Leuca coral areas, diversity was similar at coral and reference stations but a single dominant species (Brosme brosme and Conger conger respectively) showed much higher density within the coral areas. Indicating that, while cold-water coral reefs have a positive effect on fish diversity and/or abundance, this effect varies across Europe's reefs.

  19. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma

    NASA Astrophysics Data System (ADS)

    Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.

    2016-06-01

    A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.

  20. Stabilization of kerogen thermal maturation: Evidence from geothermometry and burial history reconstruction, Niobrara Limestone, Berthoud oil field, western Denver Basin, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, C.E.; Crysdale, B.L.

    1990-05-01

    The burial history of this fractured Niobrara Limestone reservoir and source rock offers a setting for studying the stabilization of thermal maturity because soon after peak temperature of approximately 100{degree}C was reached, exhumation lowered temperature to about 60-70{degree}C. Vitrinite reflectance (Rm = 0.6-0.7%) and published clay mineralogy data from the Niobrara Limestone indicate that peak paleotemperature was approximately 100{degree}C. Fluid inclusion data also indicate oil migration occurred at 100{degree}C. Burial history reconstruction indicates 100{degree}C was reached in the Niobrara Limestone only during minimum burial, which occurred at 70 Ma and 8000 ft depth. However, erosion beginning at 70 Ma andmore » continuing until 50 Ma removed over 3,000 ft of rock. This depth of erosion agrees with an Rm of 0.4% measured in surface samples of the Pierre Shale. The exhumation of the reservoir decreased temperature by about 30{degree}C to near the corrected bottom-hole temperature of 50-70{degree}C. Lopatin time-temperature index (TTI) analysis suggests the Niobrara Limestone as a source rock matured to the oil generation stage (TTI = 10) about 25 Ma, significantly later than maximum burial, and after exhumation caused cooling. The Lopatin TTI method in this case seems to overestimate the influence of heating time. If time is an important factor, thermal maturity should continue to increase after peak burial and temperature so that vitrinite reflectance will not be comparable to peak paleotemperatures estimated from geothermometers set at near-peak temperature and those estimated from burial history reconstruction. The agreement between geothermometry and the burial history reconstruction in Berthoud State 4 suggests that the influence of heating time must be small. The elapsed time available at near peak temperatures was sufficient to allow stabilization of thermal maturation in this case.« less

  1. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    NASA Technical Reports Server (NTRS)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X-ray pulsars and supergiant fast X ray transients.

  2. Specificity of learning: why infants fall over a veritable cliff.

    PubMed

    Adolph, K E

    2000-07-01

    Nine-month-old infants were tested at the precipice of safe and risky gaps in the surface of support. Their reaching and avoidance responses were compared in two postures, an experienced sitting posture and a less familiar crawling posture. The babies avoided reaching over risky gaps in the sitting posture but fell into risky gaps while attempting to reach in the crawling posture. This dissociation between developmental changes in posture suggests that (a) each postural milestone represents a different, modularly organized control system and (b) infants' adaptive avoidance responses are based on information about their postural stability relative to the gap size. Moreover, the results belie previous accounts suggesting that avoidance of a disparity in depth of the ground surface depends on general knowledge such as fear of heights, associations between depth information and falling, or knowledge that the body cannot be supported in empty space.

  3. Cytidine 5'-diphosphate reductase activity in phytohemagglutinin stimulated human lymphocytes.

    PubMed Central

    Tyrsted, G; Gamulin, V

    1979-01-01

    The optimal conditions and the effect of deoxyribonucleoside triphosphates were determined for CDP reductase activity in PHA-stimulated lymphocytes. The enzymatic reaction showed an absolute requirement for ATP. In the absence of ATP, only dATP showed a minor stimulation of the reduction of CDP to dCDP. During transformation the CDP reductase activity reached a maximum at the same time as the four deoxyribonucleoside triphosphate pools, corresponding to mid S-phase at about 50 h after PHA addition. The DNA polymerase activity reached a maximum at 57 h. PMID:424294

  4. Influence of intermittent water releases on groundwater chemistry at the lower reaches of the Tarim River, China.

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun

    2009-11-01

    Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.

  5. Resolution limits of ultrafast ultrasound localization microscopy

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael

    2015-11-01

    As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20 000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size of capillaries are achievable at several centimeter depths.

  6. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California

    NASA Astrophysics Data System (ADS)

    Coria-Monter, Erik; Monreal-Gómez, María Adela; Salas de León, David Alberto; Durán-Campos, Elizabeth; Merino-Ibarra, Martín

    2017-09-01

    Nutrient and chlorophyll-a distributions in the Bay of La Paz, Gulf of California, Mexico were analyzed during the late spring of 2004 to assess their relations to hydrography and circulation patterns. The results show the presence of both Gulf of California Water and Subtropical Subsurface Water. Water circulation was dominated by wind stress driven cyclonic circulation along f / H contours (f is planetary vorticity and H is depth), and upwelling resulting from the divergence shows a vertical velocity of ∼0.4 m d-1. Nutrient concentrations were higher in the center of the cyclonic pattern, where a rise in the nutricline contributed nutrients to the euphotic layer as a result of Ekman pumping. The vertical section showed the presence of a chlorophyll-a maximum at the thermocline shoaling to a depth of only 12 m. Along the surface, two peaks of chlorophyll-a were observed, one at Boca Grande and another off San Juan de la Costa, associated with upwelling and mixing derived from current interactions with abrupt topographies. The chlorophyll-a maximum increased from 0.8 mg m-3 in the external part of the cyclonic pattern to 2.0 mg m-3 in its center. The vertically integrated chlorophyll-a concentrations followed a similar pattern, rising from 10 to 20 mg m-2 and reaching their highest values in the center of the cyclonic circulation pattern. A schematic model was developed to describe processes that occur in late spring: the wind stress driven cyclonic structure promotes upward nutrient flux, which in turn drives an enhancement of chlorophyll-a. Upwelling was found to be the main mechanism of fertilization responsible for the enhancement of productivity levels by means of nutrient transport into the euphotic zone during spring. Other chlorophyll enhancement areas point to the occurrence of additional fertilization processes that may derive from interactions between cyclonic circulation patterns and the topography off of San Juan de la Costa, where phosphate mining occurs.

  7. Direct evidence of warm water access to the Totten Glacier sub-ice shelf cavity

    NASA Astrophysics Data System (ADS)

    Orsi, A. H.; Rintoul, S. R.; Silvano, A.; van Wijk, E.; Pena-Molino, B.; Rosenberg, M. A.

    2015-12-01

    The Totten Glacier holds enough ice to raise global sea level by 3.5 m, is thinning according to (some) satellite data, and is grounded well below sea level on a retrograde bed and hence is potentially unstable. Basal melt driven by ocean heat flux has been linked to ice shelf thinning elsewhere in Antarctica, but no oceanographic measurements had been made near the Totten. In January 2015 the RSV Aurora Australis was the first ship to reach the Totten calving front. Observations from ship-board CTD, moorings and profiling floats provide direct confirmation that warm water reaches the ice shelf cavity. Warm water is present near the sea floor at every station deeper than 300 m depth, with maximum temperatures at mid-shelf >0.5°C. Mooring data confirm that the warm water is present year-round. A deep (>1100 m) channel at the calving front allows warm water (-0.4°C, >2°C above the local freezing point) to access the ice shelf cavity. The contrast between the oceanographic conditions near the Totten and near the Mertz Glacier is stark, although they are separated by only 30 degrees of longitude. East Antarctic ice shelves have often been assumed to behave in a similar manner and to be invulnerable to ocean change; these measurements suggest these assumptions need to be reconsidered.

  8. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita

    NASA Astrophysics Data System (ADS)

    Rego, JoãO. L.; Li, Chunyan

    2010-06-01

    This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for tides and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high tide. For low- and high-tide landfalls, nonlinear effects due to tide-surge coupling were constructive and destructive to total storm tide, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. Tide-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, tides, and landfall timings (relative to tide). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 tide and up to 47% with a K1 tide. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of tide (both with a K1 tide). The nonlinear effect was greatest for landfalls at low tide, followed by landfalls at high tide and then by landfalls at midebb or midflood.

  9. Experimental study on the stability and failure of individual step-pool

    NASA Astrophysics Data System (ADS)

    Zhang, Chendi; Xu, Mengzhen; Hassan, Marwan A.; Chartrand, Shawn M.; Wang, Zhaoyin

    2018-06-01

    Step-pools are one of the most common bedforms in mountain streams, the stability and failure of which play a significant role for riverbed stability and fluvial processes. Given this importance, flume experiments were performed with a manually constructed step-pool model. The experiments were carried out with a constant flow rate to study features of step-pool stability as well as failure mechanisms. The results demonstrate that motion of the keystone grain (KS) caused 90% of the total failure events. The pool reached its maximum depth and either exhibited relative stability for a period before step failure, which was called the stable phase, or the pool collapsed before its full development. The critical scour depth for the pool increased linearly with discharge until the trend was interrupted by step failure. Variability of the stable phase duration ranged by one order of magnitude, whereas variability of pool scour depth was constrained within 50%. Step adjustment was detected in almost all of the runs with step-pool failure and was one or two orders smaller than the diameter of the step stones. Two discharge regimes for step-pool failure were revealed: one regime captures threshold conditions and frames possible step-pool failure, whereas the second regime captures step-pool failure conditions and is the discharge of an exceptional event. In the transitional stage between the two discharge regimes, pool and step adjustment magnitude displayed relatively large variabilities, which resulted in feedbacks that extended the duration of step-pool stability. Step adjustment, which was a type of structural deformation, increased significantly before step failure. As a result, we consider step deformation as the direct explanation to step-pool failure rather than pool scour, which displayed relative stability during step deformations in our experiments.

  10. Bathymetry & Geomorphology - A New Seafloor Mapping of the Israeli Exclusive Economic Zone

    NASA Astrophysics Data System (ADS)

    Tibor, G.; Hall, J. K.; Kanari, M.; Sade, R. A.; Sade, H.; Amit, G.; Gur-Arie, L.; Ketter, T.

    2017-12-01

    Recent extensive activities of oil and gas exploration and production companies in the Israeli Exclusive Economic Zone (EEZ) raised the need for an up-to-date baseline mapping of the seafloor to assist policy makers. The baseline mapping focused on bathymetry, geomorphology, geology, biodiversity, infauna and habitat in order to compile a sensitivity map for the Petroleum Commissioner in the Ministry of Energy in the bid for opening the sea to new natural gas and oil explorations. The Israeli EEZ covers an area of 25,950 sq. km. and reaches a maximum water depth of 2,100 m. It is located within the Levantine Basin, a zone of compression and strike-slip tectonics as Africa pushes into Eurasia. These forces operate on a half kilometer thick of Messinian evaporates and over a dozen kilometers of Pliocene and Pleistocene sediments to produce a complex seafloor morphology. The margin is cut by numerous slumps and canyons, while the basin is traversed by deep sea channels emptying into the moat around Eratosthenes Seamount farther north. The bathymetric and geomorphological mapping was done in three phases using Kongsberg and Elac multibeam sonars installed on different research vessels. The last phase (Aug.-Sept., 2016) covering depths from 1,400 to 2,100 m used the Kongsberg EM302 sonar installed on our new governmental research vessel Bat Galim. It has "state of the art" capabilities to map, sample and analyze the water column, seafloor and sub-bottom from water depths of 10m to 7,000 m. These mapping capabilities are unique in our region, the Eastern Mediterranean and the Red Sea, so we hope to promote research collaborations with our neighbors.

  11. Micro-tidal coastal reed beds: Hydro-morphological insights and observations on wave transformation from the southern Baltic Sea

    NASA Astrophysics Data System (ADS)

    I.; | J., Möller; | T., Mantilla-Contreras; | A., Spencer; Hayes

    2011-05-01

    This paper investigates the hydro-morphological controls on incident wind-generated waves at, and the transformation of such waves within, two Phragmites australis reed beds in the southern Baltic Sea. Meteorological conditions in combination with geomorphological controls result, over short (<2 km) distances, in significant differences in water level and wave climate to which fringing reed beds are exposed. Significant wave height attenuation reached a maximum of 2.6% m -1 and 11.8% m -1 at the transition from open water into the reed vegetation at the sheltered and exposed sites respectively. Wave attenuation through the emergent reed vegetation was significantly lower in greater water depths, suggesting (1) a reduced influence of bed friction by small shoots/roots and/or (2) drag reduction due to flexing of plants when the wave motion is impacting stems at a greater height above the bed. For a given water depth, wave dissipation increased with increasing incident wave height, however, suggesting that, despite their ability to flex, reed stems may be rigid enough to cause increased drag under greater wave forcing. The higher frequency part of the wave spectrum (>0.5 Hz) was preferentially reduced at the reed margin, confirming the theoretical wave frequency dependence of bottom friction. The possibility of physiological adaptation (differences in reed stem diameter) to water depth and wave exposure differences is discussed. The results have implications for the possible impact of environmental changes, both acute (e.g. storm surges) or chronic (e.g. sea level rise) in character, and for the appropriate management of reed bed sites and delivery of ecological goods and services.

  12. Variations in pesticide leaching related to land use, pesticide properties, and unsaturated zone thickness

    USGS Publications Warehouse

    Webb, R.M.T.; Wieczorek, M.E.; Nolan, B.T.; Hancock, T.C.; Sandstrom, M.W.; Barbash, J.E.; Bayless, E.R.; Healy, R.W.; Linard, J.

    2008-01-01

    Pesticide leaching through variably thick soils beneath agricultural fields in Morgan Creek, Maryland was simulated for water years 1995 to 2004 using LEACHM (Leaching Estimation and Chemistry Model). Fifteen individual models were constructed to simulate five depths and three crop rotations with associated pesticide applications. Unsaturated zone thickness averaged 4.7 m but reached a maximum of 18.7 m. Average annual recharge to ground water decreased from 15.9 to 11.1 cm as the unsaturated zone increased in thickness from 1 to 10 m. These point estimates of recharge are at the lower end of previously published values, which used methods that integrate over larger areas capturing focused recharge in the numerous detention ponds in the watershed. The total amount of applied and leached masses for five parent pesticide compounds and seven metabolites were estimated for the 32-km2 Morgan Creek watershed by associating each hectare to the closest one-dimensional model analog of model depth and crop rotation scenario as determined from land-use surveys. LEACHM parameters were set such that branched, serial, first-order decay of pesticides and metabolites was realistically simulated. Leaching is predicted to be greatest for shallow soils and for persistent compounds with low sorptivity. Based on simulation results, percent parent compounds leached within the watershed can be described by a regression model of the form e−depth (a ln t½−b ln KOC) where t 1/2 is the degradation half-life in aerobic soils, K OC is the organic carbon normalized sorption coefficient, and a and b are fitted coefficients (R 2 = 0.86, p value = 7 × 10−9).

  13. Sediment Dating With 210Pb and 137Cs In Monterey Canyon, California Reveal the extent of recent sediment movement down canyon

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Maier, K. L.; Gwiazda, R.; Paull, C. K.; McGann, M.

    2017-12-01

    Submarine canyons are major vectors of sediment transport off the continent into the deep sea. Recent results from the Monterey Coordinated Canyon Experiment document fifteen sediment transport events occurred during an 18-month period from 2015 to 2017, and three of them reached at least to 1850m. In an attempt to constrain the timing and rate in which sediments were transported down canyons in these and earlier events we have collected sediment cores and measured the sedimentation rates using 210Pb and 137Cs dating techniques along the axis of Monterey Canyon. We employed transects of precisely located ROV collected push cores and vibracores collected at water depths ranging from 300m to 2900m perpendicular to the canyon axis using a remotely operated vehicle (ROV). Some cores were taken in 2013 and compared with those taken in 2017. We focused on cores from terraces that are between 60m and 75m above the canyon thalweg in water depths between 300 and 1500 m and in cores collected form the canyon's axial channel between 1800 and 2900 m water depths where the canyon widens considerably. Generally sedimentation rates vary with depth, with the highest sedimentation rate closest to land, but vary substantially across successive terraces. Sawtooth-shaped excess 210Pb and 137Cs profiles with depth at almost all sites at least to 1500m imply several episodes of deposition and reworking of sediment on the terraces suggesting multiple sediment transport events. The excess 210Pb in many cores reach depths of up to 1m implying sedimentation rates greater than 10mm per year. At the deepest site (2900m) about 10 cm of fine hemipelagic sediment overlies sand indicating a high-energy sediment flow event. In 2014 the measured 210Pb sedimentation rate of 0.6 to 0.8mm per year indicates that the last 10 cm of sediment have been deposited and undisturbed since about the year 1910 showing that recent events have not reached this depth. Measurements are on going to determine if the 2015-2017 sediment transport events have travelled down to 2900m [RG1] and if the timing of these sediment flow events were triggered by external factors, like earthquakes, winter storms, or by seafloor failures within the Canyon. [RG1]This seem to contradict the previous sentence where it says that it did not reach 2900 m

  14. Impacts of peatland forestation on regional climate conditions in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Backman, Leif; Henttonen, Helena M.; Pietikäinen, Joni-Pekka; Laaksonen, Ari

    2014-05-01

    Climate response to anthropogenic land cover change happens more locally and occurs on a shorter time scale than the global warming due to increased GHGs. Over the second half of last Century, peatlands were vastly drained in Finland to stimulate forest growth for timber production. In this study, we investigate the biophysical effects of peatland forestation on near-surface climate conditions in Finland. For this, the regional climate model REMO, developed in Max Plank Institute (currently in Climate Service Center, Germany), provides an effective way. Two sets of 15-year climate simulations were done by REMO, using the historic (1920s; The 1st Finnish National Forest Inventory) and present-day (2000s; the 10th Finnish National Forest Inventory) land cover maps, respectively. The simulated surface air temperature and precipitation were then analyzed. In the most intensive peatland forestation area in Finland, the differences in monthly averaged daily mean surface air temperature show a warming effect around 0.2 to 0.3 K in February and March and reach to 0.5 K in April, whereas a slight cooling effect, less than 0.2 K, is found from May till October. Consequently, the selected snow clearance dates in model gridboxes over that area are advanced 0.5 to 4 days in the mean of 15 years. The monthly averaged precipitation only shows small differences, less than 10 mm/month, in a varied pattern in Finland from April to September. Furthermore, a more detailed analysis was conducted on the peatland forestation area with a 23% decrease in peatland and a 15% increase in forest types. 11 day running means of simulated temperature and energy balance terms, as well as snow depth were averaged over 15 years. Results show a positive feedback induced by peatland forestation between the surface air temperature and snow depth in snow melting period. This is because the warmer temperature caused by lower surface albedo due to more forest in snow cover period leads to a quicker and earlier snow melting. Meanwhile, surface albedo is reduced and consequently surface air temperature is increased. Additionally, the maximum difference from individual gridboxes in this area over 15 years of 11 day running means of daily mean surface air temperature reaches 2 K, which is four times as much as the maximum difference of 15-year regional average of that. This illustrates that the spring warming effect from peatland forestation in Finland is highly heterogeneous spatially and temporally.

  15. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Xie, Chengliang; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Zhang, Letian; Dong, Hao; Yin, Yaotian

    2017-10-01

    In the southern Tibetan plateau, which is considered to be the ongoing India-Eurasia continental collision zone, tracing of the Indian crustal front beneath Tibet is still controversial. We conducted deep subsurface electrical modeling in southern Tibet and discuss the geometry of the front of the Indian crust. Three areas along the Yarlung-Zangbo river zone for which previous magnetotelluric (MT) data are available were inverted independently using a three-dimensional MT inversion algorithm ModEM. Electrical horizontal slices at different depths and north-south oriented cross sections at different longitudes were obtained to provide a geoelectrical perspective for deep processes beneath the Tethyan Himalaya and Lhasa terrane. Horizontal slices at depths greater than - 15 km show that the upper crust is covered with resistive layers. Below a depth of - 20 km, discontinuous conductive distributions are primarily concentrated north of the Yarlung-Zangbo sutures (YZS) and could be imaged from mid- to lower crust. The results show that the maximum depth to which the resistive layers extend is over - 20 km, while the mid- to lower crustal conductive zones extend to depths greater than - 50 km. The results indicate that the conductive region in the mid- to lower crust can be imaged primarily from the YZS to south of the Bangong-Nujiang sutures in western Tibet and to 31°N in eastern Tibet. The northern front of the conductive zones appears as an irregular barrier to the Indian crust from west to east. We suggest that a relatively less conductive subsurface in the northern portion of the barrier indicates a relatively cold and strong crust and that the front of the Indian crust might be halted in the south of the barrier. We suggest that the Indian crustal front varies from west to east and has at least reached: 33.5°N at 80°E, 31°N at 85°E, and 30.5°N at 87°E and 92°E.[Figure not available: see fulltext.

  16. Digital Technology in Teaching International Business: Is a Tradeoff between Richness and Reach Required?

    ERIC Educational Resources Information Center

    Wymbs, Cliff; Kijne, Hugo

    2003-01-01

    This analysis extends the traditional marketing tradeoffs between richness (depth of knowledge) and reach (geographic area coverage) to the emerging technology-mediated education industry, and then specifically evaluates their effect on the teaching of international business. It asserts that interactive learning, particularly as it applies to team…

  17. Rip currents and alongshore flows in single channels dredged in the surf zone

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-05-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  18. Batch and fixed-bed column study for p-nitrophenol, methylene blue, and U(VI) removal by polyvinyl alcohol-graphene oxide macroporous hydrogel bead.

    PubMed

    Chen, Dan; Zhou, Jun; Wang, Hongyu; Yang, Kai

    2018-01-01

    There is an increasing need to explore effective and clean approaches for hazardous contamination removal from wastewaters. In this work, a novel bead adsorbent, polyvinyl alcohol-graphene oxide (PVA-GO) macroporous hydrogel bead was prepared as filter media for p-nitrophenol (PNP), dye methylene blue (MB), and heavy metal U(VI) removal from aqueous solution. Batch and fixed-bed column experiments were carried out to evaluate the adsorption capacities of PNP, MB, and U(VI) on this bead. From batch experiments, the maximum adsorption capacities of PNP, MB, and U(VI) reached 347.87, 422.90, and 327.55 mg/g. From the fixed-bed column experiments, the adsorption capacities of PNP, MB, and U(VI) decreased with initial concentration increasing from 100 to 400 mg/L. The adsorption capacities of PNP, MB, and U(VI) decreased with increasing flow rate. Also, the maximum adsorption capacity of PNP decreased as pH increased from 3 to 9, while MB and U(VI) presented opposite tendencies. Furthermore, the bed depth service Time (BDST) model showed good linear relationships for the three ions' adsorption processes in this fixed-bed column, which indicated that the BDST model effectively evaluated and optimized the adsorption process of PVA-GO macroporous hydrogel bead in fixed-bed columns for hazardous contaminant removal from wastewaters.

  19. Rip currents and alongshore flows in single channels dredged in the surf zone

    USGS Publications Warehouse

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  20. STUDY OF THE SUITABILITY OF ISRAELI HOUSEHOLD SALT FOR RETROSPECTIVE DOSIMETRY.

    PubMed

    Datz, Hanan; Druzhyna, Sofia; Oster, Leonid; Orion, Itzhak; Horowitz, Yigal

    2016-09-01

    The first results of an in-depth evaluation of the practical potential of common household Israeli salt as a retrospective dosemeter in the event of a nuclear accident or terror attack are presented. Ten brands of salt were investigated with emphasis on four of the bestselling brands that constitute 76 % of the total consumer market. Eight of the ten brands show similar glow curves with two main glow peaks at maximum temperatures of ∼176°C and ∼225°C measured at a heating rate of 1°C s(-1) Chemical analysis of three major brands indicates substantial impurity levels of 200-500 ppm of Ca, K, Mg and S and significant differences of additional ppm trace impurities, which lead to an ∼50 % difference in the TL response of the three major brands. Fading in the dark is in significant but under room light is of the order of 35 % per day. The dose response is linear/supralinear with the threshold of supralinearity at ∼0.01 Gy reaching maximum value of ∼4 at 0.5-1 Gy for two of the major brands. The precision of repeated measurements is ∼10 % (1 SD), but the accuracy of dose assessment under field conditions requires further study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Temperature-driven groundwater convection in cold climates

    NASA Astrophysics Data System (ADS)

    Engström, Maria; Nordell, Bo

    2016-08-01

    The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven convection in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was <4 °C. The effects of soil permeability and groundwater temperature (i.e. viscosity and density) were determined. The influence of impermeable obstacles in otherwise homogeneous ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the convection. Transient solutions describe the development of convective cells in the groundwater and it took 22 days before fully developed convection patterns were formed. The thermal convection reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the convection cells was reduced. Small stones or frost lenses in the ground slightly affect the convective flow, while larger obstacles change the size and shape of the convection cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.

  2. Predicted variation of stress orientation with depth near an active fault: application to the Cajon Pass Scientific Drillhole, southern California

    USGS Publications Warehouse

    Wesson, R.L.

    1988-01-01

    Preliminary measurements of the stress orientation at a depth of 2 km interpreted to indicate that the regional orientation of the maximum compression is normal to the fault, and taken as evidence for a very weak fault. The orientation expected from plate tectonic arguments is about 66?? NE from the strike of the fault. Geodetic data indicate that the orientation of maximum compressive strain rate is about 43?? NE from the strike of the fault, and show nearly pure right-lateral shear acting parallel to the fault. These apparent conflicts in the inferred orientation of the axis of maximum compression may be explained in part by a model in which the fault zone is locked over a depth interval in the range of 2-5 to 15 km, but is very weak above and below that interval. This solution does require, however, a few mm/yr of creep at the surface on the San Andreas or nearby sub-parallel faults (such as the San Jacinto), which has not yet been observed, or a shallow zone near the faults of distributed deformation. -from Author

  3. Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Radyk, J.; Michel, R.L.

    2000-01-01

    Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, showy that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downward movement of water. Seasonal changes in water vapor composition underneath the wash are consistent with the rapid infiltration of a small quantity of water to great depths and subsequent equilibration of vapor with water in the surrounding material. It may be possible to supplement natural recharge from the wash with imported water. Recharge to the wash may be advantageous because the unsaturated zone is not as dry as most areas in the desert and concentrations of soluble salts are generally lower underneath the wash.Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, show that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downwa

  4. Substantiation of the ratio of the sample thickness to the indentation depth in hardness measurements

    NASA Astrophysics Data System (ADS)

    Matyunin, V. M.; Marchenkov, A. Yu.; Terent'ev, E. V.; Demidov, A. N.

    2016-12-01

    The depths to which plastic deformation occurs under ball indentation of a steel plate at various loads is determined. It is established that the ratio of the depth that plastic deformation reaches to the indentation depth is constant (approximately 15) independently of the indentation load. This finding allows us to conclude that this ratio should be held no less than 15 in hardness measurements. Experiments demonstrate that the lower the hardness of the metal substrate, the larger the decrease in the measured hardness when the ratio is lower than 15.

  5. Diving behavior and movements of juvenile hawksbill turtles Eretmochelys imbricata on a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Blumenthal, J. M.; Austin, T. J.; Bothwell, J. B.; Broderick, A. C.; Ebanks-Petrie, G.; Olynik, J. R.; Orr, M. F.; Solomon, J. L.; Witt, M. J.; Godley, B. J.

    2009-03-01

    As historically abundant spongivores, hawksbill turtles Eretmochelys imbricata likely played a key ecological role on coral reefs. However, coral reefs are now experiencing global declines and many hawksbill populations are critically reduced. For endangered species, tracking movement has been recognized as fundamental to management. Since movements in marine vertebrates encompass three dimensions, evaluation of diving behavior and range is required to characterize marine turtle habitat. In this study, habitat use of hawksbill turtles on a Caribbean coral reef was elucidated by quantifying diel depth utilization and movements in relation to the boundaries of marine protected areas. Time depth recorders (TDRs) and ultrasonic tags were deployed on 21 Cayman Islands hawksbills, ranging in size from 26.4 to 58.4 cm straight carapace length. Study animals displayed pronounced diel patterns of diurnal activity and nocturnal resting, where diurnal dives were significantly shorter, deeper, and more active. Mean diurnal dive depth (±SD) was 8 ± 5 m, range 2-20 m, mean nocturnal dive depth was 5 ± 5 m, range 1-14 m, and maximum diurnal dive depth was 43 ± 27 m, range 7-91 m. Larger individuals performed significantly longer dives. Body mass was significantly correlated with mean dive depth for nocturnal but not diurnal dives. However, maximum diurnal dive depth was significantly correlated with body mass, suggesting partitioning of vertical habitat by size. Thus, variable dive capacity may reduce intraspecific competition and provide resistance to degradation in shallow habitats. Larger hawksbills may also represent important predators on deep reefs, creating a broad ecological footprint over a range of depths.

  6. Accurate Depth of Radiofrequency-Induced Lesions in Renal Sympathetic Denervation Based on a Fine Histological Sectioning Approach in a Porcine Model

    PubMed Central

    Terao, Hisako; Nakamura, Shintaro; Hagiwara, Hitomi; Furukawa, Toshihito; Matsumura, Kiyoshi; Sakakura, Kenichi

    2018-01-01

    Background— Ablation lesion depth caused by radiofrequency-based renal denervation (RDN) was limited to <4 mm in previous animal studies, suggesting that radiofrequency-RDN cannot ablate a substantial percentage of renal sympathetic nerves. We aimed to define the true lesion depth achieved with radiofrequency-RDN using a fine sectioning method and to investigate biophysical parameters that could predict lesion depth. Methods and Results— Radiofrequency was delivered to 87 sites in 14 renal arteries from 9 farm pigs at various ablation settings: 2, 4, 6, and 9 W for 60 seconds and 6 W for 120 seconds. Electric impedance and electrode temperature were recorded during ablation. At 7 days, 2470 histological sections were obtained from the treated arteries. Maximum lesion depth increased at 2 to 6 W, peaking at 6.53 (95% confidence interval, 4.27–8.78) mm under the 6 W/60 s condition. It was not augmented by greater power (9 W) or longer duration (120 seconds). There were statistically significant tendencies at 6 and 9 W, with higher injury scores in the media, nerves, arterioles, and fat. Maximum lesion depth was positively correlated with impedance reduction and peak electrode temperature (Pearson correlation coefficients were 0.59 and 0.53, respectively). Conclusions— Lesion depth was 6.5 mm for radiofrequency-RDN at 6 W/60 s. The impedance reduction and peak electrode temperature during ablation were closely associated with lesion depth. Hence, these biophysical parameters could provide prompt feedback during radiofrequency-RDN procedures in the clinical setting. PMID:29440276

  7. An Experimental Study of Dependence of Optimum TBM Cutter Spacing on Pre-set Penetration Depth in Sandstone Fragmentation

    NASA Astrophysics Data System (ADS)

    Han, D. Y.; Cao, P.; Liu, J.; Zhu, J. B.

    2017-12-01

    Cutter spacing is an essential parameter in the TBM design. However, few efforts have been made to study the optimum cutter spacing incorporating penetration depth. To investigate the influence of pre-set penetration depth and cutter spacing on sandstone breakage and TBM performance, a series of sequential laboratory indentation tests were performed in a biaxial compression state. Effects of parameters including penetration force, penetration depth, chip mass, chip size distribution, groove volume, specific energy and maximum angle of lateral crack were investigated. Results show that the total mass of chips, the groove volume and the observed optimum cutter spacing increase with increasing pre-set penetration depth. It is also found that the total mass of chips could be an alternative means to determine optimum cutter spacing. In addition, analysis of chip size distribution suggests that the mass of large chips is dominated by both cutter spacing and pre-set penetration depth. After fractal dimension analysis, we found that cutter spacing and pre-set penetration depth have negligible influence on the formation of small chips and that small chips are formed due to squeezing of cutters and surface abrasion caused by shear failure. Analysis on specific energy indicates that the observed optimum spacing/penetration ratio is 10 for the sandstone, at which, the specific energy and the maximum angle of lateral cracks are smallest. The findings in this paper contribute to better understanding of the coupled effect of cutter spacing and pre-set penetration depth on TBM performance and rock breakage, and provide some guidelines for cutter arrangement.

  8. Accurate Depth of Radiofrequency-Induced Lesions in Renal Sympathetic Denervation Based on a Fine Histological Sectioning Approach in a Porcine Model.

    PubMed

    Sakaoka, Atsushi; Terao, Hisako; Nakamura, Shintaro; Hagiwara, Hitomi; Furukawa, Toshihito; Matsumura, Kiyoshi; Sakakura, Kenichi

    2018-02-01

    Ablation lesion depth caused by radiofrequency-based renal denervation (RDN) was limited to <4 mm in previous animal studies, suggesting that radiofrequency-RDN cannot ablate a substantial percentage of renal sympathetic nerves. We aimed to define the true lesion depth achieved with radiofrequency-RDN using a fine sectioning method and to investigate biophysical parameters that could predict lesion depth. Radiofrequency was delivered to 87 sites in 14 renal arteries from 9 farm pigs at various ablation settings: 2, 4, 6, and 9 W for 60 seconds and 6 W for 120 seconds. Electric impedance and electrode temperature were recorded during ablation. At 7 days, 2470 histological sections were obtained from the treated arteries. Maximum lesion depth increased at 2 to 6 W, peaking at 6.53 (95% confidence interval, 4.27-8.78) mm under the 6 W/60 s condition. It was not augmented by greater power (9 W) or longer duration (120 seconds). There were statistically significant tendencies at 6 and 9 W, with higher injury scores in the media, nerves, arterioles, and fat. Maximum lesion depth was positively correlated with impedance reduction and peak electrode temperature (Pearson correlation coefficients were 0.59 and 0.53, respectively). Lesion depth was 6.5 mm for radiofrequency-RDN at 6 W/60 s. The impedance reduction and peak electrode temperature during ablation were closely associated with lesion depth. Hence, these biophysical parameters could provide prompt feedback during radiofrequency-RDN procedures in the clinical setting. © 2018 The Authors.

  9. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey

    PubMed Central

    Yalcin, Seda Karasu; Yesim Ozbas, Z.

    2008-01-01

    The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225

  10. Body density affects stroke patterns in Baikal seals.

    PubMed

    Watanabe, Yuuki; Baranov, Eugene A; Sato, Katsufumi; Naito, Yasuhiko; Miyazaki, Nobuyuki

    2006-09-01

    Buoyancy is one of the primary external forces acting on air-breathing divers and it can affect their swimming energetics. Because the body composition of marine mammals (i.e. the relative amounts of lower-density lipid and higher-density lean tissue) varies individually and seasonally, their buoyancy also fluctuates widely, and individuals would be expected to adjust their stroke patterns during dives accordingly. To test this prediction, we attached acceleration data loggers to four free-ranging Baikal seals Phoca sibirica in Lake Baikal and monitored flipper stroking activity as well as swimming speed, depth and inclination of the body axis (pitch). In addition to the logger, one seal (Individual 4) was equipped with a lead weight that was jettisoned after a predetermined time period so that we had a set of observations on the same individual with different body densities. These four data sets revealed the general diving patterns of Baikal seals and also provided direct insights into the influence of buoyancy on these patterns. Seals repeatedly performed dives of a mean duration of 7.0 min (max. 15.4 min), interrupted by a mean surface duration of 1.2 min. Dive depths were 66 m on average, but varied substantially, with a maximum depth of 324 m. The seals showed different stroke patterns among individuals; some seals stroked at lower rates during descent than ascent, while the others had higher stroke rates during descent than ascent. When the lead weight was detached from Individual 4, the seal increased its stroke rate in descent by shifting swimming mode from prolonged glides to more stroke-and-glide swimming, and decreased its stroke rate in ascent by shifting from continuous stroking to stroke-and-glide swimming. We conclude that seals adopt different stroke patterns according to their individual buoyancies. We also demonstrate that the terminal speed reached by Individual 4 during prolonged glide in descent depended on its total buoyancy and pitch, with higher speeds reached in the weighted condition and at steeper pitch. A simple physical model allowed us to estimate the body density of the seal from the speed and pitch (1,027-1,046 kg m(-3), roughly corresponding to 32-41% lipid content, for the weighted condition; 1,014-1,022 kg m(-3), 43-47% lipid content, for the unweighted condition).

  11. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest one is 160 m high, 1.3 km in diameter and tops at 67 m water depth. This high-resolution data set illustrates a wide set of geohazards in the recent lively geological history of Aysén fjord.

  12. Kootenai River velocities, depth, and white sturgeon spawning site selection – A mystery unraveled?

    USGS Publications Warehouse

    Paragamian, V.L.; McDonald, R.; Nelson, G.J.; Barton, G.

    2009-01-01

    The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18-km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two-step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post-Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post-Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post-Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre-dam, but post-Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.

  13. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years

    NASA Astrophysics Data System (ADS)

    Veres, D.; Bazin, L.; Landais, A.; Toyé Mahamadou Kele, H.; Lemieux-Dudon, B.; Parrenin, F.; Martinerie, P.; Blayo, E.; Blunier, T.; Capron, E.; Chappellaz, J.; Rasmussen, S. O.; Severi, M.; Svensson, A.; Vinther, B.; Wolff, E. W.

    2012-12-01

    The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 time scale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al., (2012) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a new timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the see-saw mechanism, with maximum differences of about 500 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before.

  14. Leading Wave Amplitude of a Tsunami

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)

  15. Species diversity: Benthonic Foraminifera in Western North Atlantic

    USGS Publications Warehouse

    Buzas, M.A.; Gibson, T.G.

    1969-01-01

    Maximum species diversity occurs at abyssal depths of greater than 2500 meters. Other diversity peaks occur at depths of 35 to 45 meters and 100 to 200 meters. The peak at 35 to 45 meters is due to species equitability, whereas the other two peaks correspond to an increase in the number of species.

  16. Analysis of permafrost depths on Mars

    NASA Technical Reports Server (NTRS)

    Crescenti, G. H.

    1984-01-01

    The Martian surface thermal characteristics as they effect the thickness and distribution of the permafrost are discussed. Parameters such as temperature mean, maximum, and minimum, heat flow values, and damping depths are derived and applied to a model of the Martian cryosphere. A comparison is made between the permafrost layers of Earth and Mars.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ming; Albrecht, Bruce A.; Ghate, Virendra P.

    This study first illustrates the utility of using the Doppler spectrum width from millimetrewavelength radar to calculate the energy dissipation rate and then to use the energy dissipation rate to study turbulence structure in a continental stratocumulus cloud. It is shown that the turbulence kinetic energy dissipation rate calculated from the radar-measured Doppler spectrum width agrees well with that calculated from the Doppler velocity power spectrum. During the 16-h stratocumulus cloud event, the small-scale turbulence contributes 40%of the total velocity variance at cloud base, 50% at normalized cloud depth=0.8 and 70% at cloud top, which suggests that small-scale turbulence playsmore » a critical role near the cloud top where the entrainment and cloud-top radiative cooling act. The 16-h mean vertical integral length scale decreases from about 160 m at cloud base to 60 m at cloud top, and this signifies that the larger scale turbulence dominates around cloud base whereas the small-scale turbulence dominates around cloud top. The energy dissipation rate, total variance and squared spectrum width exhibit diurnal variations, but unlike marine stratocumulus they are high during the day and lowest around sunset at all levels; energy dissipation rates increase at night with the intensification of the cloud-top cooling. In the normalized coordinate system, the averaged coherent structure of updrafts is characterized by low energy dissipation rates in the updraft core and higher energy dissipation rates surround the updraft core at the top and along the edges. In contrast, the energy dissipation rate is higher inside the downdraft core indicating that the downdraft core is more turbulent. The turbulence around the updraft is weaker at night and stronger during the day; the opposite is true around the downdraft. This behaviour indicates that the turbulence in the downdraft has a diurnal cycle similar to that observed in marine stratocumuluswhereas the turbulence diurnal cycle in the updraft is reversed. For both updraft and downdraft, the maximum energy dissipation rate occurs at a cloud depth=0.8 where the maximum reflectivity and air acceleration or deceleration are observed. Resolved turbulence dominates near cloud base whereas unresolved turbulence dominates near cloud top. Similar to the unresolved turbulence, the resolved turbulence described by the radial velocity variance is higher in the downdraft than in the updraft. The impact of the surface heating on the resolved turbulence in the updraft decreases with height and diminishes around the cloud top. In both updrafts and downdrafts, the resolved turbulence increases with height and reaches a maximum at cloud depth=0.4 and then decreases to the cloud top; the resolved turbulence near cloud top, just as the unresolved turbulence, is mostly due to the cloud-top radiative cooling.« less

  18. Estimating potency for the Emax-model without attaining maximal effects.

    PubMed

    Schoemaker, R C; van Gerven, J M; Cohen, A F

    1998-10-01

    The most widely applied model relating drug concentrations to effects is the Emax model. In practice, concentration-effect relationships often deviate from a simple linear relationship but without reaching a clear maximum because a further increase in concentration might be associated with unacceptable or distorting side effects. The parameters for the Emax model can only be estimated with reasonable precision if the curve shows sign of reaching a maximum, otherwise both EC50 and Emax estimates may be extremely imprecise. This paper provides a solution by introducing a new parameter (S0) equal to Emax/EC50 that can be used to characterize potency adequately even if there are no signs of a clear maximum. Simulations are presented to investigate the nature of the new parameter and published examples are used as illustration.

  19. Influence of Environmental Factors on the Germination of Urena lobata L. and Its Response to Herbicides

    PubMed Central

    Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.

    2014-01-01

    Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99%) seed germination. Germination was slightly stimulated when seeds were placed in light (65%) compared with when seeds were kept in the dark (46%). Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to −1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was −0.1 MPa; however, some seeds germinated at −0.8 MPa, but none germinated at −1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha−1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%), which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93%) at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%), glyphosate (97%), and thiobencarb + 2,4-D (98%). These herbicides reduced shoot and root biomass by 99–100%. PMID:24658143

  20. Exploring seismicity using geomagnetic and gravity data - a case study for Bulgaria

    NASA Astrophysics Data System (ADS)

    Trifonova, P.; Simeonova, S.; Solakov, D.; Metodiev, M.

    2012-04-01

    Seismicity exploration certainly requires comprehensive analysis of location, orientation and length distribution of fault and block systems with a variety of geophysical methods. In the present research capability of geomagnetic and gravity anomalous field data are used for revealing of buried structures inside the earth's upper layers. Interpretation of gravity and magnetic data is well known and often applied to delineate various geological structures such as faults, flexures, thrusts, borders of dislocated blocks etc. which create significant rock density contrast in horizontal planes. Study area of the present research covers the territory of Bulgaria which is part of the active continental margin of the Eurasian plate. This region is a typical example of high seismic risk area. The epicentral map shows that seismicity in the region is not uniformly distributed in space. Therefore the seismicity is described in distributed geographical zones (seismic source zones). Each source zone is characterized by its specific tectonic, seismic, and geological particulars. From the analysis of the depth distribution it was recognized that the earthquakes in the region occurred in the Earth's crust. Hypocenters are mainly located in the upper crust, and only a few events are related to the lower crust. The maximum depth reached is about 50 km in southwestern Bulgaria; outside, the foci affect only the surficial 30-35 km. Maximum density of seismicity involves the layer between 5 and 25 km. This fact determines the capability of potential fields data to reveal crustal structures and to examine their parameters as possible seismic sources. Results showed that a number of geophysically interpreted structures coincide with observed on the surface dislocations and epicenter clusters (well illustrated in northern Bulgaria) which confirms the reliability of the applied methodology. The complicated situation in southern Bulgaria is demonstrated by mosaics structure of geomagnetic field, complex configuration of gravity anomalies and spatial seismicity distribution. Well defined (confirmed by geophysical, geological and seismological data) are the known earthquake source zones (such as Sofia, Kresna, Maritsa, Yambol ) in this part of the territory of Bulgaria. Worth while are the results where no surface structures are present (e.g. Central Rhodope zone and East Rhodope zone, where the 2006 Kurdzhali earthquake sequence is realized). In those cases, gravity and magnetic interpretations proved to be a suitable enough technique which allows determining of position and parameters of the geological structures in depth.

  1. Physiological and biomechanical responses to walking underwater on a non-motorised treadmill: effects of different exercise intensities and depths in middle-aged healthy women.

    PubMed

    Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco

    2014-01-01

    Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.

  2. Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei

    2009-10-01

    The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.

  3. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid.

    PubMed

    Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2015-06-01

    Fermentation of CO or syngas offers an attractive route to produce bioethanol. However, during the bioconversion, one of the challenges to overcome is to reduce the production of acetic acid in order to minimize recovery costs. Different experiments were done with Clostridium autoethanogenum. With the addition of 0.75 μM tungsten, ethanol production from carbon monoxide increased by about 128% compared to the control, without such addition, in batch mode. In bioreactors with continuous carbon monoxide supply, the maximum biomass concentration reached at pH 6.0 was 109% higher than the maximum achieved at pH 4.75 but, interestingly, at pH 4.75, no acetic acid was produced and the ethanol titer reached a maximum of 867 mg/L with minor amounts of 2,3-butanediol (46 mg/L). At the higher pH studied (pH 6.0) in the continuous gas-fed bioreactor, almost equal amounts of ethanol and acetic acid were formed, reaching 907.72 mg/L and 910.69 mg/L respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The summit part of Mount Etna revealed by High Resolution DC Electrical Resistivity Tomography coupled with complementary geophysical and soil gas techniques

    NASA Astrophysics Data System (ADS)

    Finizola, Anthony; Ricci, Tullio; Antoine, Raphael; Delcher, Eric; Peltier, Aline; Bernard, Julien; Brothelande, Elodie; Fargier, Yannick; Fauchard, Cyrille; Foucart, Brice; Gailler, Lydie; Gusset, Rachel; Lazarte, Ivonne; Martin, Erwan; Mézon, Cécile; Portal, Angélie; Poret, Matthieu; Rossi, Matteo

    2016-04-01

    In the framework of the EC FP7 project "MEDiterranean SUpersite Volcanoes", one profile coupling DC electrical resistivity tomography (Pole-Dipole configuration with a remote electrode located between 8-10 km from the middle of the different acquisitions, 64 electrodes and 40 m spacing between the electrodes), self-potential, soil CO2 degassing, Radon measurements and sub-surface (30cm depth) temperature have been performed between June 25th and July 13th 2015. This profile, NE-SW direction, crossed the summit part of Mount Etna. A total 5720m of profile was performed, with a roll along protocol of 1/4 of the dispositive, for each new acquisitions. A total of 6 acquisitions was made to complete the entire profile. For the first time in the world, a multi-electrodes DC ERT profile, of high resolution (40 m of spacing between the electrodes) reached, thanks to a pole-dipole configuration, 900m for the depth of investigation. The ERT profile clearly evidences the hydrothermal system of Mount Etna: the lowest resistivity values are associated with a large scale positive self-potential anomaly, and smaller wavelength anomalies for temperature, CO2 concentration and Radon, in the area where the electrical conductor reach the surface. Structural discontinuities such as the Elliptic crater, was clearly evidenced by a sharp decrease of the self-potential values in the inner part of this crater. The striking result of this profile is the presence of a resistive body located just below the NE crater. This structure displays the highest degassing values of the entire profile. We interpret this resistive body as a consequence of the thermic over-heated plume rising from the top of the shallow feeding system. Indeed, above several hundred of degrees Celsuis, it is impossible to consider rain water infiltration and the presence of a wet hydrothermal system. The consequence would be therefore to obtain this resistive body, centred on the area of main heat transfer. Above this resistive body, we clearly note a preferential hydrothermal fluid flow, associated with maximum of self-potential anomaly, temperature and radon, and reaching the surface on the highest elevation area along the profile.

  5. Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients.

    PubMed

    Rand, M K; Shimansky, Y; Stelmach, G E; Bracha, V; Bloedel, J R

    2000-11-01

    Reach-to-grasp movements of patients with pathology restricted to the cerebellum were compared with those of normal controls. Two types of paradigms with different accuracy constraints were used to examine whether cerebellar impairment disrupts the stereotypic relationship between arm transport and grip aperture and whether the variability of this relationship is altered when greater accuracy is required. The movements were made to either a vertical dowel or to a cross bar of a small cross. All subjects were asked to reach for either target at a fast but comfortable speed, grasp the object between the index finger and thumb, and lift it a short distance off the table. In terms of the relationship between arm transport and grip aperture, the control subjects showed a high consistency in grip aperture and wrist velocity profiles from trial to trial for movements to both the dowel and the cross. The relationship between the maximum velocity of the wrist and the time at which grip aperture was maximal during the reach was highly consistent throughout the experiment. In contrast, the time of maximum grip aperture and maximum wrist velocity of the cerebellar patients was quite variable from trial to trial, and the relationship of these measurements also varied considerably. These abnormalities were present regardless of the accuracy requirement. In addition, the cerebellar patients required a significantly longer time to grasp and lift the objects than the control subjects. Furthermore, the patients exhibited a greater grip aperture during reach than the controls. These data indicate that the cerebellum contributes substantially to the coordination of movements required to perform reach-to-grasp movements. Specifically, the cerebellum is critical for executing this behavior with a consistent, well-timed relationship between the transport and grasp components. This contribution is apparent even when accuracy demands are minimal.

  6. Physiological preparedness and performance of Atlantic salmon Salmo salar smolts in relation to behavioural salinity preferences and thresholds.

    PubMed

    Stich, D S; Zydlewski, G B; Zydlewski, J D

    2016-02-01

    This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salar smolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na(+), K(+)-ATPase (NKA) activity and osmoregulatory performance in full-strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low-salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival. © 2015 The Fisheries Society of the British Isles.

  7. Reconstruction and modelling of the 1977 Glacial Lake Outburst Flood (GLOF) of the Engaño Lake, Chilean Patagonia.

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, Pablo; Norton, Kevin; Mackintosh, Andrew

    2015-04-01

    Floods from moraine-dammed lake failures can result in severe damage to mountain communities. GLOFs can also cause long-standing effects in riverine landscapes, due to the high intensity (i.e. great depth and high velocities) and long reach capacity of these events. GLOFs may increase in frequency as glaciers retreat and new lakes develop, highlighting the need for a better understanding of GLOF dynamics and the measures to reduce their negative outcomes. In Patagonia at least 16 moraine-dammed lakes have failed in historic time, however, data about GLOF dynamics and impacts are limited since GLOFs have mainly affected uninhabited areas and ungauged rivers. In March 1977, however, a GLOF flooded a small village (~130 inhabitants) in Chilean Patagonia. We reconstruct the dynamics of this event by semi-structured interviews, interpretation of satellite images (Landsat MSS) and two dimensional (2D) hydraulic modelling (using HEC-RAS 5.0 BETA and the SRTM v4 DEM). This reconstruction provides insights into GLOF behaviour, as well as the planning issues that led to socioeconomic consequences, which included relocation of the village. We mapped the flood extent and compiled data of flood depth and timing to constrain the 2D GLOF simulations. Modelling shows that the water released by the GLOF was in the order of 12-13 million cubic metres and that the flood reached Bahía Murta Viejo, located ~26 km from the failed lake, 2-3 hours after the moraine dam was breached. The flood lasted for about ten hours (at the village), although the peak discharge occurred after only one hour at this site. The maximum water depth at Bahía Murta Viejo was 1.5 m, however, water depths of up to 20 metres were simulated in upstream constricted reaches. The overall flood dynamics suggested by interviews and geomorphic mapping, including hydraulic ponding upstream of bedrock gorges, was well represented in the 2D simulations in spite of the coarse resolution (~80 m) of the DEM used. The simulated flood intensity and the damage to buildings reported by Bahía Murta inhabitants also showed a good correspondence. The Engaño Lake had several characteristics in common with other failed lakes in Patagonia. For example, it was dammed by a narrow and steep moraine, and the lake was in contact with a retreating glacier at the time of breaching. However, the GLOF hazard was not identified prior the 1977 flood. Thus, lack of awareness and planning amplified the negative socioeconomic consequences of the GLOF. The 1977 GLOF contributed to the village's gradual relocation to a higher and safer place a few kilometres from the original settlement. The Río Engaño GLOF shows the utility of the HEC-RAS 5.0 2D capabilities in GLOF modelling and illustrates a small-scale and short-distance migration as a coping strategy to a natural hazard which may increase in frequency as atmospheric temperature rise and glaciers retreat.

  8. Imaging the Variscan suture at the KTB deep drilling site, Germany

    NASA Astrophysics Data System (ADS)

    Bianchi, Irene; Bokelmann, Götz

    2018-03-01

    The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last thirty years. In this study we explore the crustal structure of the KTB area through the application of the receiver function (RF) technique to a new data set recorded by 9 temporary seismic stations and 1 permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the receiver functions technique, for future studies, in order to get clear images of the deep structure, and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites, metamorphic rocks). At around 10 km depth we observe a strong velocity increase beneath all stations. For the stations located in the center of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along an West-to-East extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.

  9. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    NASA Astrophysics Data System (ADS)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling influence in the upper tens of meters of the conduit in all runs.

  10. Incorporation of cooling-induced crystallisation into a 2-dimensional axisymmetric conduit heat flow model

    NASA Astrophysics Data System (ADS)

    Heptinstall, D. A.; Neuberg, J. W.; Bouvet de Maisonneuve, C.; Collinson, A.; Taisne, B.; Morgan, D. J.

    2015-12-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic systems. We shall investigate the thermal processes and timescales in a crystallizing, static magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/°C (runs 1 & 3) and 0.2MPa/°C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69e5 J/kg*K, 9.32e5 J/kg*K, and 9.49e5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the center of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10 m depth, it takes 4.1-9.2 years for the magma column to cool over 108-130oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and dominant latent heat producing crystallizing phases (Quartz), where run 1 cools fastest and run 3 cools slowest. Surface cooling by comparison has the strongest influence on the upper tens of meters in all runs.

  11. Imaging the Variscan suture at the KTB deep drilling site, Germany

    NASA Astrophysics Data System (ADS)

    Bianchi, Irene; Bokelmann, Götz

    2018-06-01

    The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in the Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last 30 yr. In this study, we explore the crustal structure of the KTB area through the application of the Receiver Function (RF) technique to a new data set recorded by nine temporary seismic stations and one permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the RF technique, for future studies, in order to get clear images of the deep structure and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites and metamorphic rocks). At around 10 km depth, we observe a strong velocity increase beneath all stations. For the stations located in the centre of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along a west-to-east extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.

  12. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont

    USGS Publications Warehouse

    Shanley, J.B.; Chalmers, A.

    1999-01-01

    Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid-elevation open site, the annual maximum frost depth varied from 70 to 390 mm. We empirically tested the hypothesis that frozen soil prevents infiltration and recharge, thereby causing an increased runoff ratio (streamflow/(rain + snowmelt)) during the snowmelt hydrograph rise and a decreased runoff ratio during snowmelt recession. The hypothesis was not supported at the 111 km2 W-5 catchment; there was no significant correlation of the runoff ratio with the seasonal maximum frost depth for either the pre-peak or post-peak period. In an analysis of four events, however, the presence of frost promoted a large and somewhat quicker response to rainfall relative to the no-frost condition, although snow cover caused a much greater time-to-peak regardless of frost status. For six years of flow and frost depth measured at the 59 ha agricultural basin W-2, the hypothesis appeared to be supported. The enhancement of runoff due to soil frost is evident on small plots and in extreme events, such as rain on frozen snow-free soil. In the northeastern USA and eastern Canada, the effect is often masked in larger catchments by several confounding factors, including storage of meltwater in the snowpack, variability in snowmelt timing due to elevational and aspect differences, interspersed forested land where frost may be absent, and the timing of soil thawing relative to the runoff peak.Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies greatly from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid-elevation open site, the annual maximum frost depth varied from 70 to 390 mm. We empirically tested the hypothesis that frozen soil prevents infiltration and recharge, thereby causing an increased runoff ratio (streamflow/(rain + snowmelt)) during the snowmelt hydrograph rise and a decreased runoff ratio during snowmelt recession. The hypothesis was not supported at the 111 km2 W-5 catchment; there was no significant correlation of the runoff ratio with the seasonal maximum frost depth for either the pre-peak or post-peak period. In an analysis of four events, however, the presence of frost promoted a large and somewhat quicker response to rainfall relative to the no-frost condition, although snow cover caused a much greater time-to-peak regardless of frost status. For six years of flow and frost depth measured at the 59 ha agricultural basin W-2, the hypothesis appeared to be supported. The enhancement of runoff due to soil frost is evident on small plots and in extreme events, such as rain of frozen snow-free soil. In the northeastern USA and eastern Canada, the effect is often masked in larger catchments by several confounding factors, including storage of meltwater in the snowpack, variability in snowmelt timing due to elevational and aspect differences, interspersed forested land where frost may be absent, and the timing of soil thawing relative to the runoff peak.

  13. Energetic Residues and Crater Geometries from the Firing of 120-mm High-Explosive Mortar Projectiles into Eagle River Flats, June 2007

    DTIC Science & Technology

    2008-07-01

    samples. ERDC/CRREL TR-08-10 15 c. US DH-48 isokinetic sampler. Figure 7 (cont’d). The second activity was the collection of soil at the...3 0.28 Mc1/3 0.3 Mc1/3 Ra Apparent radius of the crater in meters Mc Mass of the explosive charge in kilograms Da Apparent depth of the crater in... meters The apparent depth and radius of a crater will increase with the depth of explosive charge below the surface down to a maximum depth called

  14. Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Piao, Yan

    2018-04-01

    The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.

  15. Community-Based Education in San Juan La Laguna, Solola, Guatemala

    ERIC Educational Resources Information Center

    Abreo, Christina

    2010-01-01

    Indigenous education in Guatemala is currently undergoing a massive overhaul in the depth and breadth of its reach in Maya areas. Although much can be said about the re-evaluation and incorporation of indigenous culture, language and worldview into the schools' curricula, it is still failing to reach the country's adult population. As a result of…

  16. The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.

    PubMed

    Lagier, Aude; Legou, Thierry; Galant, Camille; Amy de La Bretèque, Benoit; Meynadier, Yohann; Giovanni, Antoine

    2017-12-01

    The objective was to study the behavior of the larynx during shouted voice production, when the larynx is exposed to extremely high subglottic pressure. The study involved electroglottographic, acoustic, and aerodynamic analyses of shouts produced at maximum effort by three male participants. Under a normal speaking voice, the voice sound pressure level (SPL) is proportional to the subglottic pressure. However, when the subglottic pressure reached high levels, the voice SPL reached a maximum value and then decreased as subglottic pressure increased further. Furthermore, the electroglottographic signal sometimes lost its periodicity during the shout, suggesting irregular vocal fold vibration.

  17. Research on disposal of copper(II)-containing wastewater by secondary strontium residue

    NASA Astrophysics Data System (ADS)

    Qing, Duowen; Xu, Longjun; Cui, Caixi

    2018-01-01

    Secondary strontium residue (SSR) was used as absorbent to remove Cu2+ in solution and the effects of experimental conditions on absorption of Cu2+ were investigated. The results showed that the absorption process reached balance in around 40 min. The absorption capacity achieved the maximum when PH value reached 6, and the maximum adsorption of Cu2+-containing wastewater by secondary strontium residue was 5.46 mg/g. Removal ratio of Cu2+ was in relation to initial concentration of Cu2+ in solution. Adsorptive process tallied with Langmuir Isothermal adsorption model.

  18. Emission of a Dual-Fuel Turbocharged Compression Ignition Engine

    NASA Astrophysics Data System (ADS)

    Rózycki, Andrzej

    2012-02-01

    The paper describes the results of a four-cylinder dual fuel turbocharged compression ignition engine. The aim of the study was to determine the maximum CNG share in thefuel mixture delivered into the cylinder. Analysis of the investigation results showed that the CNG energy share in the fuel charge delivered into the cylinder can reach 45%. At that level of CNG energy share a 15% reduction in maximum torque is achieved in comparison with the standard fuelling. The unburnt hydrocarbon emission increases significantly. Emissions of other principal pollutants reach values comparable with those obtained at standard fuelling.

  19. Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.

    1981-01-01

    Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)

  20. Effect of a virtual reality-enhanced exercise protocol after coronary artery bypass grafting.

    PubMed

    Chuang, Tien-Yow; Sung, Wen-Hsu; Chang, Hwa-Ann; Wang, Ray-Yau

    2006-10-01

    Virtual reality (VR) technology has gained importance in many areas of medicine. Knowledge concerning the application and the influence of VR-enhanced exercise programs is limited for patients receiving coronary artery bypass grafting. The purpose of this study was to evaluate the effect of a virtual "country walk" on the number of sessions necessary to reach cardiac rehabilitation goals in patients undergoing coronary artery bypass grafting. Twenty subjects who were seen for cardiac rehabilitation between January and June 2004 comprised the study sample. The protocol for this study included an initial maximum graded exercise tolerance test, given to determine the subsequent training goals for the subject, followed by biweekly submaximal endurance training sessions. All subjects were assigned by lot to 1 of 2 submaximal endurance training programs, one (group 2) with and the other (group 1) without the added VR environment. In all other respects, the 2 programs were identical. Each training session lasted for 30 minutes and was carried out twice per week for about 3 months. The primary outcome measures were maximum load during the work sessions, target oxygen consumption, target heart rate (beats per minute), and number of training sessions required to reach rehabilitation goals. By the end of 20 training sessions, only 4 of the 10 control subjects had reached the heart rate target goal of 85% their maximum heart rate. In contrast, 9 of the 10 subjects in the VR program had attained this goal by 9 or fewer training sessions. When target metabolic cost (75% peak oxygen consumption) was used as the training goal, all 10 subjects in the VR program had reached this target after 2 training sessions (or, in some cases, 1 training session), but not until training session 15 did a cumulative number of 9 control subjects reach this goal. These study outcomes clearly support the notion that incorporating a VR environment into cardiac rehabilitation programs will accelerate maximum recovery of patients' cardiovascular function.

  1. Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion

    ERIC Educational Resources Information Center

    Poljak, Nikola

    2016-01-01

    The problem of determining the angle ? at which a point mass launched from ground level with a given speed v[subscript 0] will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of ? = p/4, producing a maximum range of D[subscript max] = v[superscript…

  2. The Reddy maker

    NASA Astrophysics Data System (ADS)

    Nof, Doron; Paldor, Nathan; Gorder, Stephen Van

    2002-09-01

    A new mechanism for the formation of high-amplitude anticyclonic eddies (lenses) from outflows emptying into the ocean at mid-depth is proposed. The essence of the new mechanism is that, in order for an inviscid outflow to exist as a continuous (uninterrupted) current, the condition g' S/ f> α( g' H) 1/2 [where g' is the "reduced gravity", S the bottom slope, f the Coriolis parameter, α a coefficient of order unity whose value depends on the outflow's potential vorticity (it is 2 for a zero potential vorticity outflow and unity for a uniform potential vorticity) and H the maximum thickness] must hold. When the above condition is not met, i.e., when g' S/ f< α( g' H) 1/2, the outflow can only exist as a chain of propagating lenses. Nonlinear analytical considerations leading to the above conclusion are (successfully) compared to numerical simulations which we have conducted (using a reduced gravity layer-and-a-half model). The experiments show that an outflow situated on a bottom whose (uniform) slope gradually varies in the downstream direction is continuous (i.e., is not broken into eddies) where the slope is supercritical [ g' S/ f> α( g' H) 1/2] and discontinuous (i.e., constitutes a chain of eddies) where the slope is subcritical [ g' S/ f< α( g' H) 1/2]. Hence, the eddies are generated by the gradual reduction in the bottom slope rather than by an instability process. Namely, the eddies are not formed by the breakdown of a known steady solution because such a steady solution does not exist. We note that after reaching its "balanced depth", an outflow usually continues to (slowly) descend toward the bottom of the ocean due to frictional effects associated with an energy loss. [Note that the "balanced depth" is the depth at which the outflow has completed its initial adjustment in the sense that it has adjusted to a state where it no longer flows primarily offshore but rather propagates primarily along the isobaths. This depth needs to be distinguished from the (sometimes significantly greater) equilibrium depth corresponding to the point where the outflow's density equals the environmental density.] Most of the time, the outflow descent is accompanied by a reduction in the bottom slope S, and an entrainment which causes both a reduction in g' and an increase in H. All of these alterations bring the outflow closer and closer to the critical condition and it is, therefore, argued that all outflows ultimately reach the critical point (unless diffusion and mixing destroy them prior to that stage). It is suggested that Reddies (i.e., isolated lenses containing Red Sea water) are formed by the above processes. Namely, we propose that the "Reddy maker" is a combination of three processes, the natural reduction in the bottom slope which the outflow senses as it approaches the bottom of the ocean, the entrainment-induced increase in the outflow's thickness, and the entrainment-induced decrease in the outflow's density. An animation of the eddy generation process can be viewed at http://doronnof.net/features.html#video (click on "Reddy maker video").

  3. Effect of elevation on extreme precipitation of short durations: evidences of orographic signature on the parameters of Depth-Duration-Frequency curves

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; De Michele, Carlo; Gabriele, Salvatore; Ghezzi, Antonio; Rosso, Renzo

    2015-04-01

    Here, we show how atmospheric circulation and topography rule the variability of depth-duration-frequency (DDF) curves parameters, and we discuss how this variability has physical implications on the formation of extreme precipitations at high elevations. A DDF is a curve ruling the value of the maximum annual precipitation H as a function of duration D and the level of probability F. We consider around 1500 stations over the Italian territory, with at least 20 years of data of maximum annual precipitation depth at different durations. We estimated the DDF parameters at each location by using the asymptotic distribution of extreme values, i.e. the so-called Generalized Extreme Value (GEV) distribution, and considering a statistical simple scale invariance hypothesis. Consequently, a DDF curve depends on five different parameters. A first set relates H with the duration (namely, the mean value of annual maximum precipitation depth for unit duration and the scaling exponent), while a second set links H to F (namely, a scale, position and shape parameter). The value of the shape parameter has consequences on the type of random variable (unbounded, upper or lower bounded). This extensive analysis shows that the variability of the mean value of annual maximum precipitation depth for unit duration obeys to the coupled effect of topography and modal direction of moisture flux during extreme events. Median values of this parameter decrease with elevation. We called this phenomenon "reverse orographic effect" on extreme precipitation of short durations, since it is in contrast with general knowledge about the orographic effect on mean precipitation. Moreover, the scaling exponent is mainly driven by topography alone (with increasing values of this parameter at increasing elevations). Therefore, the quantiles of H(D,F) at durations greater than unit turn to be more variable at high elevations than at low elevations. Additionally, the analysis of the variability of the shape parameter with elevation shows that extreme events at high elevations appear to be distributed according to an upper bounded probability distribution. These evidences could be a characteristic sign of the formation of extreme precipitation events at high elevations.

  4. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    NASA Astrophysics Data System (ADS)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30°C throughout the year.

  5. Reproductive patterns in demersal crustaceans from the upper boundary of the OMZ off north-central Chile

    NASA Astrophysics Data System (ADS)

    Gallardo, María de los Ángeles; González López, Andrés E.; Ramos, Marcel; Mujica, Armando; Muñoz, Praxedes; Sellanes, Javier; Yannicelli, Beatriz

    2017-06-01

    Pleuroncodes monodon (Crustacea: Munididae) supports one of the main trawling fisheries over the continental shelf off Chile between 25°S and 37°S within the upper boundary of the oxygen minimum zone (OMZ). Although the reproductive cycle of P. monodon has been described, the relationship between this key biological process and the variability of the OMZ has not been comprehensibly addressed neither for P. monodon nor for other OMZ resident species. In this study a set of 14 quasi-monthly oceanographic cruises carried out between June 2010 and November 2011 were conducted over the continental shelf off Coquimbo (30°S) to investigate the temporal variability of: i) dissolved oxygen concentration, temperature and chlorophyll-a at relevant depths ii) the presence and proportion of occurrence of P. monodon ovigerous females and juveniles from benthic trawls; iii) the presence of different stage larvae in the plankton, and iv) similar biological data for other species from the OMZ and shallower depths crustaceans. During summer months oxygen levels and bottom temperature were lower than in winter, while chlorophyll-a concentration was maximum in summer coinciding with an active (but not maximum) upwelling season. P. monodon maximum egg carrying occurred in winter during periods of increased oxygenation. Egg carrying females were never found at depths where oxygen concentration was below 0.5 ml L-1, while over 50% of the autumn and spring cohorts of juveniles occurred at oxygen concentrations below that level. The depth range occupied by ovigerous females was more restricted than the rest of the population and their depth of occurrence followed the variability of the upper OMZ. The larval release period of OMZ resident species extends over late winter and spring, and its main peak precedes that of coastal species (spring) and the spring-summer chlorophyll-a maximum. We propose that for OMZ resident species, brood carrying during warmer and more oxygenated conditions in the adult benthic environment, might favor embryonic development, so OMZ seasonal variability could be acting as a selective pressure to synchronize reproductive periods.

  6. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  7. Characteristics of a p-Si detector in high energy electron fields.

    PubMed

    Rikner, G

    1985-01-01

    Comparison of depth ionization distributions from a silicon semiconductor detector and depth dose curves from a plane parallel ionization chamber show that a semiconductor detector of p-type is well suited for relative electron dosimetry in the energy range of 6 to 20 MeV in Ep,0. Maximum deviations of the order of 1.5 per cent and of 1 mm were obtained down to a phantom depth of about 1 mm. The directional dependence of the detector was about 4 per cent.

  8. [Characteristics of soil water infiltration in sub-alpine dark coniferous ecosystem of upper reaches of Yangtze River].

    PubMed

    Yu, Xinxiao; Zhao, Yutao; Zhang, Zhiqiang; Cheng, Genwei

    2003-01-01

    Dark coniferous forest is the predominant type of vegetation in the upper reaches of Yangtze River. Difference among different types of soil exists. The sand content of soil is higher and the soil texture is coarser in the early stage of forest succession. The sand content of soil decreases with the advancement of the forest succession while that of soil in Abies fabri over-mature forest is the lowest. In slope wash soil, the sand content of soil decreases with the increasing soil depth. The soil porosity and soil water-holding capacity increases and soil bulk density decreases with the advancement of forest succession and decrease of soil depth. The deeper soil depth or the smaller soil water content are, the smaller the unsaturated hydraulic conductivity of soil measured by CGA method. Moreover, the correlation of soil water content with unsaturated hydraulic conductivity of soil can be simulated by an exponential function. The saturated hydraulic conductivity of soil decreases exponentially with the increasing soil depth. The time to attain the stable infiltration rate is different among different soil depth, while the deeper the soil depth is, the longer the time needs. The variation in soil texture, soil physical properties and the high infiltration rate of soil there implicated that there are scarce surface runoff, but abundant in subsurface flow, return flow and seepage, which is the result of regulation by dark coniferous forest on hydrological processes.

  9. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite precipitation in the mixolimnion and metalimnion, but the absence of calcareous sediments at depth suggests dissolution and recycling during winter months. Dissolved carbon concentrations [dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)] increased with depth, reaching ∼0.04 mol/L at the metalimnion-monimolimnion boundary. DIC concentrations were seasonally variable in the mixolimnion and metalimnion, and were influenced by calcium carbonate precipitation. DOC concentrations mimicked those of conservative salts (e.g., Na+-Cl-) in the mixolimnion and metalimnion, but decreased in the monimolimnion where mass loss by anaerobic microbial processes is implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) were biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. With its extreme geochemical and thermal regime, Hot Lake functions as analog of early earth and extraterrestrial life environments.

  10. MRI Anatomy of the Tibial ACL Attachment and Proximal Epiphysis in a Large Population of Skeletally Immature Knees: Reference Parameters for Planning Anatomic Physeal-Sparing ACL Reconstruction.

    PubMed

    Swami, Vimarsha Gopal; Mabee, Myles; Hui, Catherine; Jaremko, Jacob Lester

    2014-07-01

    To aid in performing anatomic physeal-sparing anterior cruciate ligament (ACL) reconstruction, it is important for surgeons to have reference data for the native ACL attachment positions and epiphyseal anatomy in skeletally immature knees. To characterize anatomic parameters of the ACL tibial insertion and proximal tibial epiphysis at magnetic resonance imaging (MRI) in a large population of skeletally immature knees. Cross-sectional study; Level of evidence, 3. The ACL tibial attachment site and proximal epiphysis were examined in 570 skeletally immature knees with an intact ACL (age, 6-15 years) using 1.5-T proton density-weighted sagittal MRI; also measured were the tibial anteroposterior diameter; anterior, central, and posterior ACL attachment positions; vertical height of the epiphysis; and maximum oblique epiphyseal depth extending from the ACL tibial attachment center to the tibial tuberosity. In adolescents (11-15 years of age), the center of the ACL's tibial attachment was 51.5% ± 5.7% of the anteroposterior diameter of the tibia, with no significant differences between sexes or age groups (P > .05 in all cases). Mean vertical epiphyseal height was 15.9 ± 1.7 mm in the adolescent group, with significant differences between 11-year-olds (15.2 ± 1.5 mm) and 15-year-olds (16.6 ± 1.6 mm), P < .001, and between males (16.6 ± 1.5 mm) and females (14.8 ± 1.4), P < .001. Mean maximum oblique depth was 30.0 ± 5.3 mm, with a significant difference between 11-year-olds (26.7 ± 4.9 mm) and 15-year-olds (32.7 ± 5.1 mm), P < .001, and between males (29.7 ± 6.4 mm) and females (27.8 ± 5.2 mm), P < .001. The maximum oblique depth occurred at a mean angle of ~50°, and this angle did not change with age or sex. There was a significant moderate correlation (r = 0.39, P < .001) between epiphyseal vertical height and maximum oblique depth. The center of the ACL tibial attachment was consistently near 51% of the anteroposterior diameter, regardless of age or sex. The vertical depth of the tibial epiphysis was ~16 mm in adolescents. Maximum oblique depth from ACL attachment was ~30 mm, occurring at a mean angle ~50° regardless of age or sex. The normative values for tibial ACL attachment and epiphyseal anatomy presented here may be helpful in selecting candidates for surgery and in planning surgical approaches for pediatric ACL reconstruction. © 2014 The Author(s).

  11. Program helps quickly calculate deviated well path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, M.P.

    1993-11-22

    A BASIC computer program quickly calculates the angle and measured depth of a simple directional well given only the true vertical depth and total displacement of the target. Many petroleum engineers and geologists need a quick, easy method to calculate the angle and measured depth necessary to reach a target in a proposed deviated well bore. Too many of the existing programs are large and require much input data. The drilling literature is full of equations and methods to calculate the course of well paths from surveys taken after a well is drilled. Very little information, however, covers how tomore » calculate well bore trajectories for proposed wells from limited data. Furthermore, many of the equations are quite complex and difficult to use. A figure lists a computer program with the equations to calculate the well bore trajectory necessary to reach a given displacement and true vertical depth (TVD) for a simple build plant. It can be run on an IBM compatible computer with MS-DOS version 5 or higher, QBasic, or any BASIC that does no require line numbers. QBasic 4.5 compiler will also run the program. The equations are based on conventional geometry and trigonometry.« less

  12. Accessible Buildings for People with Walking and Reaching Limitations.

    ERIC Educational Resources Information Center

    Steinfeld, Edward; And Others

    Research was reviewed and conducted regarding the accessibility of buildings for physically disabled persons. Data was produced regarding anthropometrics (eye level and reach limits for ambulant, semiambulant, and wheelchair bound persons); wheelchair maneuvers; speed and distance (maximum travel distances for people with limitations of stamina);…

  13. Exploring the Application of Optical Remote Sensing as a Method to Estimate the Depth of Backwater Nursery Habitats of the Colorado Pikeminnow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; LaGory, Kirk E.

    2016-02-01

    Low-velocity channel-margin habitats serve as important nursery habitats for the endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of information on backwater characteristics and the factors that influence inter-annual variability in those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of backwater surface area from aerial and satellite imagery. An approach is neededmore » to bridge the gap between these detailed surveys, which estimate surface area, volume, and depth, and the reach-wide assessment of surface area to enable an assessment of the amount of habitat that meets the minimum depth requirements for suitable habitat.« less

  14. Growth and Maximum Size of Tiger Sharks (Galeocerdo cuvier) in Hawaii

    PubMed Central

    Meyer, Carl G.; O'Malley, Joseph M.; Papastamatiou, Yannis P.; Dale, Jonathan J.; Hutchinson, Melanie R.; Anderson, James M.; Royer, Mark A.; Holland, Kim N.

    2014-01-01

    Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13′17″N 109°52′14″W), in the southern Gulf of California (minimum distance between tag and recapture sites  =  approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates. PMID:24416287

  15. Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii.

    PubMed

    Meyer, Carl G; O'Malley, Joseph M; Papastamatiou, Yannis P; Dale, Jonathan J; Hutchinson, Melanie R; Anderson, James M; Royer, Mark A; Holland, Kim N

    2014-01-01

    Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites  =  approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.

  16. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    NASA Astrophysics Data System (ADS)

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  17. The effect of depth of step on the water performance of a flying-boat hull model

    NASA Technical Reports Server (NTRS)

    Bell, Joe W

    1935-01-01

    NACA model 11-C was tested with four different depths of step to obtain information as to the effect of the depth of step on the water performance. The depths of step were selected to cover the practicable range of depths and in each case the included angle between the forebody and afterbody keels was kept the same 6-1/2 degrees. Small depths of step were found to give lower resistance at speeds below and at the hump speed of the model and greater depths of step lower resistance at high speeds. For low resistance throughout the speed range of the model investigated the most desirable depth of step is from 2.5 to 4.0 percent of the beam. The change of the best trim angle caused by variation of the depth of step was not appreciable. Increased depth of step caused increases in the maximum positive trimming moments at all trim angles investigated.

  18. Youth Baseball Pitching Mechanics: A Systematic Review.

    PubMed

    Thompson, Samuel F; Guess, Trent M; Plackis, Andreas C; Sherman, Seth L; Gray, Aaron D

    Pitching injuries in youth baseball are increasing in incidence. Poor pitching mechanics in young throwers have not been sufficiently evaluated due to the lack of a basic biomechanical understanding of the "normal" youth pitching motion. To provide a greater understanding of the kinetics and kinematics of the youth baseball pitching motion. PubMed, MEDLINE, and SPORTDiscus databases were searched from database inception through February 2017. A total of 10 biomechanical studies describing youth pitching mechanics were included. Systematic review. Level 3. Manual extraction and compilation of demographic, methodology, kinetic, and kinematic variables from the included studies were completed. In studies of healthy youth baseball pitchers, progressive external rotation of the shoulder occurs throughout the start of the pitching motion, reaching a maximum of 166° to 178.2°, before internally rotating throughout the remainder of the cycle, reaching a minimum of 13.2° to 17°. Elbow valgus torque reaches the highest level (18 ± 4 N·m) just prior to maximum shoulder external rotation and decreases throughout the remainder of the pitch cycle. Stride length is 66% to 85% of pitcher height. In comparison with a fastball, a curveball demonstrates less elbow varus torque (31.6 ± 15.3 vs 34.8 ± 15.4 N·m). Multiple studies show that maximum elbow valgus torque occurs just prior to maximum shoulder external rotation. Forces on the elbow and shoulder are greater for the fastball than the curveball.

  19. Tight swimming trunks to prevent post scrotal surgery: an experimental justification.

    PubMed

    Al-Abed, Yahya A; Carr, Thomas W

    2013-01-01

    To conduct a study to measure the pressure effects of the different scrotal supports applied on a simulated expanding scrotal hematoma. We created a model of an expanding hematoma with simultaneous pressure recording using a urodynamics system. Pressures were recorded independently first without application of any support. Then, three types of scrotal supports were tested, including Euron Net Knickers, scrotal suspensory bandage, and tight swimming trunks brand Speedo® brief and shorts. Subsequent pressures were recorded using the model created, which was applied inside the supports worn by two male volunteers A and B. Without any external compression, the pressure inside the simulated expanding hematoma "balloon" reached a maximum of 15 cmH2O. The pressures measured whilst wearing "Netelast knickers" in both subjects A and B reached a maximum of 15 cmH2O suggesting that this garment exerted no measurable compression. The suspensory scrotal support was then tested in both subjects. As the balloon started to fill with saline, the simulated hematoma pushed the scrotal support forward resulting in falling of the balloon outside the scrotal support. Subsequently, Speedo® briefs and shorts were tested. With Speedo® briefs, maximum filling pressures of 49 cmH2O and 40 cmH2O were reached in subjects A and B, respectively. When using Speedo® shorts, however, maximum pressures of 55 cmH2O in subject A and 54 cmH2O in subject B were reached at the end of the balloon filling to 300 mL of saline. The use of tight swimming trunks (Speedo®) has led to satisfactory results in the prevention of hematoma post scrotal surgery.

  20. Hydraulic and substrate maps of reaches used by sturgeon (Genus Scaphirhynchus) in the Lower Missouri River, 2005-07

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.; DeLonay, Aaron J.

    2008-01-01

    This report is a repository of reach-scale maps of hydraulic and substrate characteristics generated for the habitat-use portion of an interdisciplinary sturgeon research project on the Lower Missouri River (from Gavins Point Dam to the junction with the Mississippi River). The maps were derived from hydroacoustic data sets that were collected for the purpose of assessing physical aquatic habitat in the vicinity of locations of adult shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus). Hydroacoustic data sets were collected at the reach scale (mean reach length, 2.4 kilometers) in order to include the immediate vicinity of a targeted sturgeon location as well as the full range of habitat available at the bend and crossover scale. Reaches typically were surveyed on the day following the relocation of a telemetered sturgeon and at a discharge within 10 percent of the discharge on the sturgeon relocation date in order to characterize as closely as possible the channel morphology and flow-field conditions at the time that the sturgeon was present. One hundred fifty-three reaches were mapped during April–September in the years 2005 through 2007, with the majority of data collection occurring in the months of May and June (coinciding with the period of sturgeon migration and spawning in the Lower Missouri River). Interpolated maps (grid cell size, 5 meters) depict depth, generalized substrate, and depth-averaged velocity. Side-scan sonar imagery is also available for a subset of reaches. Collectively, the maps represent more than 20 percent of the length of the Lower Missouri River.

  1. Linking Incoming Plate Faulting and Intermediate Depth Seismicity

    NASA Astrophysics Data System (ADS)

    Kwong, K. B.; van Zelst, I.; Tong, X.; Eimer, M. O.; Naif, S.; Hu, Y.; Zhan, Z.; Boneh, Y.; Schottenfels, E.; Miller, M. S.; Moresi, L. N.; Warren, J. M.; Wiens, D. A.

    2017-12-01

    Intermediate depth earthquakes, occurring between 70-350 km depth, are often attributed to dehydration reactions within the subducting plate. It is proposed that incoming plate normal faulting associated with plate bending at the trench may control the amount of hydration in the plate by producing large damage zones that create pathways for the infiltration of seawater deep into the subducting mantle. However, a relationship between incoming plate seismicity, faulting, and intermediate depth seismicity has not been established. We compiled a global dataset consisting of incoming plate earthquake moment tensor (CMT) solutions, focal depths, bend fault spacing and offset measurements, along with plate age and convergence rates. In addition, a global intermediate depth seismicity dataset was compiled with parameters such as the maximum seismic moment and seismicity rate, as well as thicknesses of double seismic zones. The maximum fault offset in the bending region has a strong correlation with the intermediate depth seismicity rate, but a more modest correlation with other parameters such as convergence velocity and plate age. We estimated the expected rate of seismic moment release for the incoming plate faults using mapped fault scarps from bathymetry. We compare this with the cumulative moment from normal faulting earthquakes in the incoming plate from the global CMT catalog to determine whether outer rise fault movement has an aseismic component. Preliminary results from Tonga and the Middle America Trench suggest there may be an aseismic component to incoming plate bending faulting. The cumulative seismic moment calculated for the outer rise faults will also be compared to the cumulative moment from intermediate depth earthquakes to assess whether these parameters are related. To support the observational part of this study, we developed a geodynamic numerical modeling study to systematically explore the influence of parameters such as plate age and convergence rate on the offset, depth, and spacing of outer rise faults. We then compare these robust constraints on outer rise faulting to the observed widths of intermediate depth earthquakes globally.

  2. What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients?

    PubMed

    Stiell, Ian G; Brown, Siobhan P; Nichol, Graham; Cheskes, Sheldon; Vaillancourt, Christian; Callaway, Clifton W; Morrison, Laurie J; Christenson, James; Aufderheide, Tom P; Davis, Daniel P; Free, Cliff; Hostler, Dave; Stouffer, John A; Idris, Ahamed H

    2014-11-25

    The 2010 American Heart Association guidelines suggested an increase in cardiopulmonary resuscitation compression depth with a target >50 mm and no upper limit. This target is based on limited evidence, and we sought to determine the optimal compression depth range. We studied emergency medical services-treated out-of-hospital cardiac arrest patients from the Resuscitation Outcomes Consortium Prehospital Resuscitation Impedance Valve and Early Versus Delayed Analysis clinical trial and the Epistry-Cardiac Arrest database. We calculated adjusted odds ratios for survival to hospital discharge, 1-day survival, and any return of circulation. We included 9136 adult patients from 9 US and Canadian cities with a mean age of 67.5 years, mean compression depth of 41.9 mm, and a return of circulation of 31.3%, 1-day survival of 22.8%, and survival to hospital discharge of 7.3%. For survival to discharge, the adjusted odds ratios were 1.04 (95% CI, 1.00-1.08) for each 5-mm increment in compression depth, 1.45 (95% CI, 1.20-1.76) for cases within 2005 depth range (>38 mm), and 1.05 (95% CI, 1.03-1.08) for percentage of minutes in depth range (10% change). Covariate-adjusted spline curves revealed that the maximum survival is at a depth of 45.6 mm (15-mm interval with highest survival between 40.3 and 55.3 mm) with no differences between men and women. This large study of out-of-hospital cardiac arrest patients demonstrated that increased cardiopulmonary resuscitation compression depth is strongly associated with better survival. Our adjusted analyses, however, found that maximum survival was in the depth interval of 40.3 to 55.3 mm (peak, 45.6 mm), suggesting that the 2010 American Heart Association cardiopulmonary resuscitation guideline target may be too high. http://www.clinicaltrials.gov. Unique identifier: NCT00394706. © 2014 American Heart Association, Inc.

  3. Standards for the classification of public coal lands

    USGS Publications Warehouse

    Bass, N. Wood; Smith, Henry L.; Horn, George Henry

    1970-01-01

    In order to provide uniformity in the classification of coal lands in the public domain, certain standards have been prepared from time to time by the U.S. Geological Survey. The controlling factors are the depth, quality, and thickness of the coal beds. The first regulations were issued April 8, 1907; others followed in 1908, 1909, and 1913. Except for minor changes in 1959, the regulations of 1913, which were described in U.S. Geological Survey Bulletin 537, have been the guiding principles for coal-land classification. Changes made herein from the standards previously used are: (1) a maximum depth of 6,000 feet instead of 5,000 feet, (2) a maximum depth of 1,000 feet instead of 500 feet for coals of minimum thickness, (3) use of Btu (British thermal unit) values for as-received foal instead of air-dried, and (4) a minimum Btu value of 4,000 for as-received coal instead of 8,000 for air-dried. An additional modification is that the maximum thickness of 8 feet which was designated in the Classification Chart for Coal Lands in 1959 is changed to 6 feet. The effect of these changes will be the classification of a greater amount of the withdrawn land as coal land than was done under earlier regulations.

  4. Depth image super-resolution via semi self-taught learning framework

    NASA Astrophysics Data System (ADS)

    Zhao, Furong; Cao, Zhiguo; Xiao, Yang; Zhang, Xiaodi; Xian, Ke; Li, Ruibo

    2017-06-01

    Depth images have recently attracted much attention in computer vision and high-quality 3D content for 3DTV and 3D movies. In this paper, we present a new semi self-taught learning application framework for enhancing resolution of depth maps without making use of ancillary color images data at the target resolution, or multiple aligned depth maps. Our framework consists of cascade random forests reaching from coarse to fine results. We learn the surface information and structure transformations both from a small high-quality depth exemplars and the input depth map itself across different scales. Considering that edge plays an important role in depth map quality, we optimize an effective regularized objective that calculates on output image space and input edge space in random forests. Experiments show the effectiveness and superiority of our method against other techniques with or without applying aligned RGB information

  5. Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d'Alene River, Idaho

    USGS Publications Warehouse

    Berenbrock, Charles; Tranmer, Andrew W.

    2008-01-01

    A one-dimensional sediment-transport model and a multi-dimensional hydraulic and bed shear stress model were developed to investigate the hydraulic, sediment transport, and sediment mobility characteristics of the lower Coeur d?Alene River in northern Idaho. This report documents the development and calibration of those models, as well as the results of model simulations. The one-dimensional sediment-transport model (HEC-6) was developed, calibrated, and used to simulate flow hydraulics and erosion, deposition, and transport of sediment in the lower Coeur d?Alene River. The HEC-6 modeled reach, comprised of 234 cross sections, extends from Enaville, Idaho, on the North Fork of the Coeur d?Alene River and near Pinehurst, Idaho, on the South Fork of the river to near Harrison, Idaho, on the main stem of the river. Bed-sediment samples collected by previous investigators and samples collected for this study in 2005 were used in the model. Sediment discharge curves from a previous study were updated using suspended-sediment samples collected at three sites since April 2000. The HEC-6 was calibrated using river discharge and water-surface elevations measured at five U.S. Geological Survey gaging stations. The calibrated HEC-6 model allowed simulation of management alternatives to assess erosion and deposition from proposed dredging of contaminated streambed sediments in the Dudley reach. Four management alternatives were simulated with HEC-6. Before the start of simulation for these alternatives, seven cross sections in the reach near Dudley, Idaho, were deepened 20 feet?removing about 296,000 cubic yards of sediments?to simulate dredging. Management alternative 1 simulated stage-discharge conditions from 2000, and alternative 2 simulated conditions from 1997. Results from alternatives 1 and 2 indicated that about 6,500 and 12,300 cubic yards, respectively, were deposited in the dredged reach. These figures represent 2 and 4 percent, respectively, of the total volume of dredged sediments removed before the start of simulation. In alternatives 3 and 4, the incoming total sediment discharges from the South Fork of the river were decreased by one-half. Management alternative 3 simulated stage-discharge conditions from 2000, and alternative 4 simulated conditions from 1997. Reducing incoming sediment discharge from the South Fork did not affect the streambed and deposition in the Dudley and downstream reaches, probably because the distance between the South Fork and the Dudley reach is long enough for sediment supply, transport capacity, and channel geometry to be balanced before reaching the Dudley and downstream reaches. Development and calibration of a multi-dimensional hydraulic and bed shear stress model (FASTMECH) allowed simulation of water-surface elevation, depth, velocity, bed shear stress, and sediment mobility in the Dudley reach (5.3 miles). The computational grid incorporated bathymetric and Light Detection and Ranging (LIDAR) data, with a node spacing of about 2.5 meters. With the exception of the fourth FASTMECH calibration simulation, results from the FASTMECH calibration simulations indicated that flow depths, flow velocities, and bed shear stresses increased as river discharge increased. Water-surface elevations in the fourth calibration simulation were about 2 feet higher than those in the other simulations because high lake levels in Coeur d?Alene Lake caused backwater conditions. Average simulated velocities along the thalweg ranged from about 3 to 5.3 feet per second, and maximum simulated velocities ranged from 3.9 to 7 feet per second. In the dredged reach, average simulated velocity along the thalweg ranged from 3.5 to 6 feet per second. The model also simulated several back-eddies (flow reversal); the largest eddy encompassed about one-third of the river width. Average bed shear stresses increased more than 200 percent from the first to the last simulation. Simulated sediment mobility, asses

  6. Determining suitable dimensions for dairy goat feeding places by evaluating body posture and feeding reach.

    PubMed

    Keil, Nina M; Pommereau, Marc; Patt, Antonia; Wechsler, Beat; Gygax, Lorenz

    2017-02-01

    Confined goats spend a substantial part of the day feeding. A poorly designed feeding place increases the risk of feeding in nonphysiological body postures, and even injury. Scientifically validated information on suitable dimensions of feeding places for loose-housed goats is almost absent from the literature. The aim of the present study was, therefore, to determine feeding place dimensions that would allow goats to feed in a species-appropriate, relaxed body posture. A total of 27 goats with a height at the withers of 62 to 80 cm were included in the study. Goats were tested individually in an experimental feeding stall that allowed the height difference between the feed table, the standing area of the forelegs, and a feeding area step (difference in height between forelegs and hind legs) to be varied. The goats accessed the feed table via a palisade feeding barrier. The feed table was equipped with recesses at varying distances to the feeding barrier (5-55 cm in 5-cm steps) at angles of 30°, 60°, 90°, 120°, or 150° (feeding angle), which were filled with the goats' preferred food. In 18 trials, balanced for order across animals, each animal underwent all possible combinations of feeding area step (3 levels: 0, 10, and 20 cm) and of difference in height between feed table and standing area of forelegs (6 levels: 0, 5, 10, 15, 20, and 25 cm). The minimum and maximum reach at which the animals could reach feed on the table with a relaxed body posture was determined for each combination. Statistical analysis was performed using mixed-effects models. The animals were able to feed with a relaxed posture when the feed table was at least 10 cm higher than the standing height of the goats' forelegs. Larger goats achieved smaller minimum reaches and minimum reach increased if the goats' head and neck were angled. Maximum reach increased with increasing height at withers and height of the feed table. The presence of a feeding area step had no influence on minimum and maximum reach. Based on these results, the goats' feeding place can be designed to ensure that the animals are able to reach all of the feed in the manger or on the feed table with a relaxed posture, thus avoiding injuries and nonphysiological stress on joints and hooves. A feeding area step up to a maximum of 20 cm need not be taken into account in terms of feeding reach. However, the feed table must be raised at least 10 cm above the standing area to allow the goats to feed in a species-appropriate, relaxed posture. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Kinematic predictors of star excursion balance test performance in individuals with chronic ankle instability.

    PubMed

    Hoch, Matthew C; Gaven, Stacey L; Weinhandl, Joshua T

    2016-06-01

    The Star Excursion Balance Test has identified dynamic postural control deficits in individuals with chronic ankle instability. While kinematic predictors of Star Excursion Balance Test performance have been evaluated in healthy individuals, this has not been thoroughly examined in individuals with chronic ankle instability. Fifteen individuals with chronic ankle instability completed the anterior reach direction of the Star Excursion Balance Test and weight-bearing dorsiflexion assessments. Maximum reach distances on the Star Excursion Balance Test were measured in cm and normalized to leg length. Three-dimensional trunk, hip, knee, and ankle motion of the stance limb were recorded during each anterior reach trial using a motion capture system. Sagittal, frontal, and transverse plane displacement observed from trial initiation to the point of maximum reach was calculated for each joint or segment and averaged for analysis. Pearson product-moment correlations were performed to examine the relationships between kinematic variables, maximal reach, and weight-bearing dorsiflexion. A backward multiple linear regression model was developed with maximal reach as the criterion variable and kinematic variables as predictors. Frontal plane displacement of the trunk, hip, and ankle and sagittal plane knee displacement were entered into the analysis. The final model (p=0.004) included all three frontal plane variables and explained 81% of the variance in maximal reach. Maximal reach distance and several kinematic variables were significantly related to weight-bearing dorsiflexion. Individuals with chronic ankle instability who demonstrated greater lateral trunk displacement toward the stance limb, hip adduction, and ankle eversion achieved greater maximal reach. Copyright © 2016. Published by Elsevier Ltd.

  8. Influence of wheel load shape on vertical stress reaching subgrade through an aggregate layer

    DOT National Transportation Integrated Search

    2001-03-01

    The U.S. Army design procedure to stabilize low-bearing capacity soil with geotextiles is based on the assumption that the applied surface load (the wheel load) is in the shape of a circle. The maximum vertical stress that reaches the subgrade throug...

  9. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin

    PubMed Central

    Yang, Bin; Wen, Xuefa; Sun, Xiaomin

    2015-01-01

    Agricultural irrigation in the middle reaches of the Heihe River Basin consumes approximately 80% of the total river water. Whether the irrigation depth matches the water uptake depth of crops is one of the most important factors affecting the efficiency of irrigation water use. Our results indicated that the influence of plastic film on soil water δ18O was restricted to 0–30 cm soil depth. Based on a Bayesian model (MixSIR), we found that irrigated maize acquired water preferentially from 0–10 cm soil layer, with a median uptake proportion of 87 ± 15%. Additionally, maize utilised a mixture of irrigation and shallow soil water instead of absorbing the irrigation water directly. However, only 24.7 ± 5.5% of irrigation water remained in 0–10 cm soil layer, whereas 29.5 ± 2.8% and 38.4 ± 3.3% of the irrigation water infiltrated into 10–40 cm and 40–80 cm layers. During the 4 irrigation events, approximately 39% of the irrigation and rainwater infiltrated into soil layers below 80 cm. Reducing irrigation amount and developing water-saving irrigation methods will be important strategies for improving the efficiency of irrigation water use in this area. PMID:26463010

  10. Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)

    USGS Publications Warehouse

    Granja, Bruna J.L.; Muñoz-Martín, A.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Llanes, Estrada P.; Martín-Dávila, J.; Cordoba-Barba, D.; Catalan, Morollon M.

    2010-01-01

    The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N-S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8?? to 30?? reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin. ?? 2010 Springer Science+Business Media B.V.

  11. Ecological factors influencing growth of the endangered Hawaiian fern Marsilea villosa (Marsileaceae) and implications for conservation management.

    PubMed

    Chau, Marian M; Reyes, Whitney R; Ranker, Tom A

    2013-08-01

    Conserving endangered plants is a complex task, and practitioners must often use a "triage" approach, addressing only immediate needs. Ecologists can improve this process by conducting sound science upon which to base management. Marsilea villosa is an endangered, endemic Hawaiian fern with seven remaining populations in ephemerally flooding drylands. Among its uncommon traits are long-lived sporocarps, requiring flood and drought to complete its sexual life cycle, and extensive vegetative growth. We conducted a 3-yr ecological field study, measuring percent cover of M. villosa and associated species, flooding depth, and canopy cover, to identify ecological factors with the greatest impact on M. villosa growth. Maximum flooding depth and canopy cover had strong positive relationships with M. villosa growth, and all plots with >50% threshold of either variable reached 100% cover of M. villosa by the end of the study. Interaction effects explained nuances of these relationships, including synergy between the two variables. Percent cover of nonnative functional groups (graminoids and nongraminoids) each had negative relationships with M. villosa growth, but interactions showed that nongraminoid cover was driven by particular species, and that time since flooding had greater influence on M. villosa growth than graminoid cover. We recommend planting reintroduced populations in flood-prone areas with moderate shade, experimental outplanting of native plants with M. villosa, and management of graminoids as a functional group, while nongraminoid management should be species-specific. These practices will promote self-sustaining populations and reduce the need for labor-intensive management.

  12. Neo-Deterministic Seismic Hazard Assessment at Watts Bar Nuclear Power Plant Site, Tennessee, USA

    NASA Astrophysics Data System (ADS)

    Brandmayr, E.; Cameron, C.; Vaccari, F.; Fasan, M.; Romanelli, F.; Magrin, A.; Vlahovic, G.

    2017-12-01

    Watts Bar Nuclear Power Plant (WBNPP) is located within the Eastern Tennessee Seismic Zone (ETSZ), the second most naturally active seismic zone in the US east of the Rocky Mountains. The largest instrumental earthquakes in the ETSZ are M 4.6, although paleoseismic evidence supports events of M≥6.5. Events are mainly strike-slip and occur on steeply dipping planes at an average depth of 13 km. In this work, we apply the neo-deterministic seismic hazard assessment to estimate the potential seismic input at the plant site, which has been recently targeted by the Nuclear Regulatory Commission for a seismic hazard reevaluation. First, we perform a parametric test on some seismic source characteristics (i.e. distance, depth, strike, dip and rake) using a one-dimensional regional bedrock model to define the most conservative scenario earthquakes. Then, for the selected scenario earthquakes, the estimate of the ground motion input at WBNPP is refined using a two-dimensional local structural model (based on the plant's operator documentation) with topography, thus looking for site amplification and different possible rupture processes at the source. WBNNP features a safe shutdown earthquake (SSE) design with PGA of 0.18 g and maximum spectral amplification (SA, 5% damped) of 0.46 g (at periods between 0.15 and 0.5 s). Our results suggest that, although for most of the considered scenarios the PGA is relatively low, SSE values can be reached and exceeded in the case of the most conservative scenario earthquakes.

  13. Axial resolution improvement in spectral domain optical coherence tomography using a depth-adaptive maximum-a-posterior framework

    NASA Astrophysics Data System (ADS)

    Boroomand, Ameneh; Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka

    2015-03-01

    The axial resolution of Spectral Domain Optical Coherence Tomography (SD-OCT) images degrades with scanning depth due to the limited number of pixels and the pixel size of the camera, any aberrations in the spectrometer optics and wavelength dependent scattering and absorption in the imaged object [1]. Here we propose a novel algorithm which compensates for the blurring effect of these factors of the depth-dependent axial Point Spread Function (PSF) in SDOCT images. The proposed method is based on a Maximum A Posteriori (MAP) reconstruction framework which takes advantage of a Stochastic Fully Connected Conditional Random Field (SFCRF) model. The aim is to compensate for the depth-dependent axial blur in SD-OCT images and simultaneously suppress the speckle noise which is inherent to all OCT images. Applying the proposed depth-dependent axial resolution enhancement technique to an OCT image of cucumber considerably improved the axial resolution of the image especially at higher imaging depths and allowed for better visualization of cellular membrane and nuclei. Comparing the result of our proposed method with the conventional Lucy-Richardson deconvolution algorithm clearly demonstrates the efficiency of our proposed technique in better visualization and preservation of fine details and structures in the imaged sample, as well as better speckle noise suppression. This illustrates the potential usefulness of our proposed technique as a suitable replacement for the hardware approaches which are often very costly and complicated.

  14. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    PubMed

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  15. Spring habitat use by stocked one year old European sturgeon Acipenser sturio in the freshwater-oligohaline area of the Gironde estuary

    NASA Astrophysics Data System (ADS)

    Acolas, M. L.; Le Pichon, C.; Rochard, E.

    2017-09-01

    Post release habitat selection was studied on forty eight 10-month-old hatchery reared European sturgeon (mean fork length 31.0 cm ± 3.0) in the tidal part of their native catchment using acoustic telemetry. Most of the fish reached the oligohaline estuary within 2-4 days (70 km downstream the release site). Seventy four percent of the fish migrated rapidly downstream of the estuary into mesohaline waters while 26% selected habitat in the freshwater/oligohaline part of the estuary based on their linearity and residency indices. We focused on individual habitat use of these fish. The home range size (HR) was calculated using two methods: the kernel utilization distribution (KUD) which is driven by the maximum detection location density, and the Brownian Bridge (BB) approach which allows the time component of the trajectory path to be taken into account. The average 50% HR KUD was 5.6 ± 2.7 km2 (range 1.1-10.3 km2) and it was estimated to be 6 times larger using the 50% HR BB method (average reaching 31.9 ± 20.7 km2, range 5.2-77.8 km2). Habitat characterization (available prey, substrate and depth) in the studied area was described and the Ivlev electivity index was calculated using the habitat within the 50% HR BB for each individual. Despite the spatial use of different core areas among the fish tagged, we observed a convergence in habitat preference. For substrates, sturgeons showed avoidance of gravel and large rocks as well as fine and medium gravel. There was a significant preference for sand, silts and clay. For depth, they exhibited a preference firstly for the 5-8 m depth range and secondly for the 2-5 m range, a strong avoidance of depth range 8-20 m and a slight avoidance of shallow (0-2 m) and intertidal areas. For prey, individual variability was high. The most homogenous results were found for annelid polychaeta, with a slight preference for areas with this group of preys which are abundant in the saline estuary. For some individuals, a preference for areas with crustacea or nematodea and avoidance for areas with mollusks, insects or oligochaeta occured. We explain our results in light of foraging behavior and adaptation to the wild environment after captivity. For sturgeon population restoration projects in western Europe, these habitat preferences are key-features needed to evaluate the essential habitat availability for A. sturio juveniles in the tidal area at the front of the freshwater/saline transition waters.

  16. Preliminary synthesis and assessment of environmental flows in the middle Verde River watershed, Arizona

    USGS Publications Warehouse

    Paretti, Nicholas; Brasher, Anne M. D.; Pearlstein, Susanna L.; Skow, Dena M.; Gungle, Bruce W.; Garner, Bradley D.

    2018-05-15

    A 3-year study was undertaken to evaluate the suitability of the available modeling tools for characterizing environmental flows in the middle Verde River watershed of central Arizona, describe riparian vegetation throughout the watershed, and estimate sediment mobilization in the river. Existing data on fish and macroinvertebrates were analyzed in relation to basin characteristics, flow regimes, and microhabitat, and a pilot study was conducted that sampled fish and macroinvertebrates and the microhabitats in which they were found. The sampling for the pilot study took place at five different locations in the middle Verde River watershed. This report presents the results of this 3-year study. The Northern Arizona Groundwater Flow Model (NARGFM) was found to be capable of predicting long-term changes caused by alteration of regional recharge (such as may result from climate variability) and groundwater pumping in gaining, losing, and dry reaches of the major streams in the middle Verde River watershed. Over the period 1910 to 2006, the model simulated an increase in dry reaches, a small increase in reaches losing discharge to the groundwater aquifer, and a concurrent decrease in reaches gaining discharge from groundwater. Although evaluations of the suitability of using the NARGFM and Basin Characteristic Model to characterize various streamflow intervals showed that smallerscale basin monthly runoff could be estimated adequately at locations of interest, monthly stream-flow estimates were found unsatisfactory for determining environmental flows.Orthoimagery and Moderate Resolution Imaging Spectroradiometer data were used to quantify stream and riparian vegetation properties related to biotic habitat. The relative abundance of riparian vegetation varied along the main channel of the Verde River. As would be expected, more upland plant species and fewer lowland species were found in the upper-middle section compared to the lower-middle section, and vice-versa. Vegetation changes within the upper-middle and lower-middle reaches are related to differences in climate and hydrology. In general, the riparian vegetation of the middle Verde River watershed is that of a healthy ecosystem’s mixed age, mixed patch structure, likely a result of the mostly unaltered disturbance regime.The frequency of in-river hydrogeomorphic features (pool, riffle, run) varied along the middle Verde River channel. There was a greater abundance of riffle habitat in the upper-middle reach; the lower-middle reach included more pool habitat. The Oak Creek tributary was more homogenous in geomorphic stream habitat composition than West Clear Creek, where runs dominated the upper reaches and pools dominated many of the lower reaches.On the basis of the period of record and discharges recorded at 15-minute intervals, five flows were found to reach the gravel-transport threshold. Sediment mobilization computed with flows averaged over daily time steps yielded just three flows that reached the gravel-transport threshold, and monthly averaged flows yielded none. In the middle Verde River watershed, 15-minute data should be used when possible to evaluate sediment transport in the river system.Data from more than 300 fish surveys conducted from 1992 to 2011 were analyzed using two schemes, one that divided the river into five reaches based on basin characteristics, and a second that divided the river into five reaches based on degree of flow alteration (specifically, diversions). Fish community metrics and assemblage data were used to analyze patterns of species composition and abundance in the two approaches. Overall, native and non-native species were regularly interacting and probably competing for similar resources. Fish abundances were also analyzed in response to floods and other flow metrics. Although the data are limited, native fish abundances increased more rapidly than non-native fish abundances in response to large floods. The basin-characteristic reach analysis showed native fish in greater abundance in the upper-middle reaches of the Verde River watershed and generally decreasing with downstream distance. The median relative abundance of native fish decreased by 50 percent from reach 1 to reach 5. Using the reach scheme based on degree of flow alteration, nondiverted reaches were found to have a greater abundance of native fish than diverted reaches. In heavily diverted reaches, non-native species outnumbered native species.Fish metrics and stream-flow metrics for the 30, 90, and 365-day periods before collection were computed and the results analyzed statistically. Only abundance of all fish species was associated with the 30-day flow metrics. The 90-day flow metrics were generally positively associated with fish metrics, whereas the 365-day flow metrics had more negative correlations. In particular, significant relations were found between fish metrics and the magnitude and frequency of high flows, including maximum monthly flow, median annual number of high-flow events, and median annual maximum streamflow. Native sucker (Catostomidae) populations tended to decrease in periods of extended base flow, and fish in the non-native sunfish family (Centrarchidae) decreased in periods of flashy, high magnitude flows.A pilot study surveyed fish at five locations in the upper part of the middle Verde River watershed as a means to measure microhabitat availability and quantify native and non-native fish use of that available microhabitat. Results indicated that native and non-native species exhibit some clear differences in microhabitat use. Although at least some native and non-native fish were found in each velocity, depth, and substrate category, preferential microhabitat use was common. On a percentage basis, non-native species had a strong preference for slow-moving and deeper water with silt and sand substrate, with a secondary preference for faster moving and very shallow water and a coarse gravel substrate. Native species showed a general preference for somewhat faster, moderate depth water over coarse gravel and had no clear secondary preference.Macroinvertebrate-variables index period, high-flow year, and collection location (upper-middle Verde River, lowermiddle Verde River, or Verde River tributaries) were found to be important explanatory variables in differentiating among community metrics. Overall richness (number of unique taxa), Shannon’s diversity index, and the percent of the most dominant taxa were all highly correlated, but their response to each macroinvertebrate variable was different. The percentage of mayfly (order Ephemeroptera) taxa was significantly higher in Oak Creek and the upper-middle and lower-middle Verde River reaches, locations which have higher flows and more urbanization than other reaches. When community metrics were related to hydrologic metrics, caddisfly (order Trichoptera) populations appeared to increase and mayfly populations to decrease in response to less flashy and more stable streamflows. Conversely, caddisfly populations appeared to decrease and mayfly populations to increase in response to greater flow variability.Six locations along the Verde River were sampled for macroinvertebrates as part of a pilot study associated with this report—(1) below Granite Creek, (2) near Campbell Ranch, (3) at the U.S. Geological Survey Paulden gage, (4) at the Perkinsville Bridge, (5) at the USGS Clarkdale gage, and (6) near the Reitz Ranch property. A nonmetric multidimensional scaling ordination of macroinvertebrate assemblages showed that the Verde River below Granite Creek site was different from the five other sites and that the Perkinsville Bridge and near Reitz Ranch samples had similar community structure. The near Campbell Ranch and Paulden gage locations had similar microhabitat characteristics, with the exception of riparian cover, yet the assemblage structure was very different. The different community composition at Verde River below Granite Creek was likely due to it having the smallest substrate sizes, lowest velocities, shallowest depths, and most riparian cover of the six sites.

  17. The effect of motorcycle helmet fit on estimating head impact kinematics from residual liner crush.

    PubMed

    Bonin, Stephanie J; Gardiner, John C; Onar-Thomas, Arzu; Asfour, Shihab S; Siegmund, Gunter P

    2017-09-01

    Proper helmet fit is important for optimizing head protection during an impact, yet many motorcyclists wear helmets that do not properly fit their heads. The goals of this study are i) to quantify how a mismatch in headform size and motorcycle helmet size affects headform peak acceleration and head injury criteria (HIC), and ii) to determine if peak acceleration, HIC, and impact speed can be estimated from the foam liner's maximum residual crush depth or residual crush volume. Shorty-style helmets (4 sizes of a single model) were tested on instrumented headforms (4 sizes) during linear impacts between 2.0 and 10.5m/s to the forehead region. Helmets were CT scanned to quantify residual crush depth and volume. Separate linear regression models were used to quantify how the response variables (peak acceleration (g), HIC, and impact speed (m/s)) were related to the predictor variables (maximum crush depth (mm), crush volume (cm 3 ), and the difference in circumference between the helmet and headform (cm)). Overall, we found that increasingly oversized helmets reduced peak headform acceleration and HIC for a given impact speed for maximum residual crush depths less than 7.9mm and residual crush volume less than 40cm 3 . Below these levels of residual crush, we found that peak headform acceleration, HIC, and impact speed can be estimated from a helmet's residual crush. Above these crush thresholds, large variations in headform kinematics are present, possibly related to densification of the foam liner during the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Controlled research utilizing a basic all-metal detector in the search for buried firearms and miscellaneous weapons.

    PubMed

    Rezos, Mary M; Schultz, John J; Murdock, Ronald A; Smith, Stephen A

    2010-02-25

    Incorporating geophysical technologies into forensic investigations has become a growing practice. Oftentimes, forensic professionals rely on basic metal detectors to assist their efforts during metallic weapons searches. This has created a need for controlled research in the area of weapons searches, specifically to formulate guidelines for geophysical methods that may be appropriate for locating weapons that have been discarded or buried by criminals attempting to conceal their involvement in a crime. Controlled research allows not only for testing of geophysical equipment, but also for updating search methodologies. This research project was designed to demonstrate the utility of an all-metal detector for locating a buried metallic weapon through detecting and identifying specific types of buried metal targets. Controlled testing of 32 buried targets which represented a variety of sizes and metallic compositions included 16 decommissioned street-level firearms, 6 pieces of assorted scrap metals, and 10 blunt or bladed weapons. While all forensic targets included in the project were detected with the basic all-metal detector, the size of the weapon and surface area were the two variables that affected maximum depth of detection, particularly with the firearm sample. For example, when using a High setting the largest firearms were detected at a maximum depth of 55 cm, but the majority of the remaining targets were only detected at a maximum depth of 40 cm or less. Overall, the all-metal detector proved to be a very good general purpose metal detector best suited for detecting metallic items at shallow depths. 2009 Elsevier Ireland Ltd. All rights reserved.

  19. In Flight Performance of a Six Ampere-hour Nickel-cadmium Battery in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Mcdermott, J. K.

    1984-01-01

    Flight data for 17,000 orbital cycles are reviewed and summarized. The nickel cadmium battery system operated without failure or abnormality. Battery trend analysis used in determining the feasibility of extending mission life is discussed. The life test data for 20% depth of discharge indicates design life requirements would be reached even at a deeper depth of discharge.

  20. Performance analysis of air-water quantum key distribution with an irregular sea surface

    NASA Astrophysics Data System (ADS)

    Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian

    2018-05-01

    In the air-water quantum key distribution (QKD), the irregular sea surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular sea surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.

Top