New scientific ocean drilling depth record extends study of subseafloor life
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-09-01
The Japanese deep-sea drilling vessel Chikyu set a new depth record for scientific ocean drilling and core retrieval by reaching a depth of 2119.5 meters below the seafloor (mbsf) on 6 September. This is 8.5 meters deeper than the prior record, set 19 years ago. Three days later, on 9 September, Chikyu set another record by reaching a drilling depth of 2466 mbsf, the maximum depth that will be attempted during the current expedition. The 6 September record was set on day 44 of the Deep Coalbed Biosphere off Shimokita expedition, which is expedition 337 of the Integrated Ocean Drilling Program (IODP). It occurred at drilling site C0020 in the northwestern Pacific Ocean, approximately 80 kilometers northeast from Hachinohe, Japan. The expedition is scheduled to conclude on 30 September.
Comparison of heat generation during implant drilling using stainless steel and ceramic drills.
Sumer, Mahmut; Misir, A Ferhat; Telcioglu, N Tuba; Guler, Ahmet U; Yenisey, Murat
2011-05-01
The purpose of this study was to compare the heat generated from implant drilling using stainless steel and ceramic drills. A total of 40 fresh bovine femoral cortical bone samples were used in this study. A constant drill load of 2.0 kg was applied throughout the drilling procedures via a drilling rig at a speed of 1,500 rpm. Two different implant drill types (stainless steel and ceramic) were evaluated. Heat was measured with type K thermocouple from 3 different depths. Data were subjected to the independent-sample t test and Pearson correlation analysis. The α level was set a priori at 0.05. The mean maximum temperatures at the depths of 3 mm, 6 mm, and 9 mm with the stainless steel drill were 32.15°C, 35.94°C, and 37.05°C, respectively, and those with the ceramic drill were 34.49°C, 36.73°C, and 36.52°C, respectively. A statistically significant difference was found at the depth of 3 mm (P = .014) whereas there was no significant difference at the depths of 6 and 9 mm (P > .05) between stainless steel and ceramic drills. Within the limitations of the study, although more heat was generated in the superficial part of the drilling cavity with the ceramic drill, heat modifications seemed not to be correlated with the drill type, whether stainless steel or ceramic, in the deep aspect of the cavity. Further clinical studies are required to determine the effect of drill type on heat generation. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Jagwani, Devaanshi; Kulkarni, Atul; Shukla, Parth; Ramteke, Dilip S; Juneja, Harjeet D
2011-11-01
As a consequence of offshore drilling, used Water Based Drilling Muds (WBMs) are typically disposed off, by discharging into the sea; such a disposal does not fully eliminate the environmental hazards. Hence, in this study, 2, 3, 4 and 5 ringed polycyclic aromatic hydrocarbons (PAHs i.e. naphthalene, fluorene, phenanthrene, fluoranthene, chrysene and benzo (a) pyrene) were determined from the WBMs and associated drill cuttings obtained from varying depths(viz. 150, 300 and 600 m) from three offshore wells present in East coast of India. In both WBMs and drill cuttings, concentration of naphthalene was maximum i.e. 81.59 ± 2.73 and 39.87 ± 2.40 mg/kg respectively, while benzo (a) pyrene was minimum i.e. 0.19 ± 0.07 and 0.12 ± 0.03 mg/kg respectively. The WBMs contained significantly (p < 0.05) higher PAH concentration than drill cuttings. The individual PAH concentration significantly (p < 0.01) increased with increasing depth in each well.
Hawaii Geothermal Project. Phase II: final report on well HGP-A extension to Contract E(04-3)-1093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shupe, J.W.
1976-07-01
Drilling was completed on HGP-A to a depth of 6445 feet on April 27, 1976. A final core was taken; a series of logging runs performed, both with Gearhart-Owen equipment and with the Kuster temperature gauge; and the drill stem was withdrawn and laid down on the side adjacent to the rig - as a safety measure against possible volcanic tremors. A maximum temperature to date of 288/sup 0/C (550/sup 0/F) was recorded on May 13 at 4500 feet. The weighted temperature probe would penetrate no deeper into the drilling mud, which apparently is stiffening. The temperature depth relationship developedmore » in HGP-A is illustrated.« less
Burke, Lauri A.; Kinney, Scott A.; Kola-Kehinde, Temidayo B.
2011-01-01
This document provides the digital archive of in-situ temperature and drilling mud weight pressure data that were compiled from several historical sources. The data coverage includes the states of Texas and Louisiana in the Gulf of Mexico basin. Data are also provided graphically, for both Texas and Louisiana, as plots of temperature as a function of depth and pressure as a function of depth. The minimum, arithmetic average, and maximum values are tabulated for each 1,000-foot depth increment for temperature as well as pressure in the Texas and Louisiana data.
On-line depth measurement for laser-drilled holes based on the intensity of plasma emission
NASA Astrophysics Data System (ADS)
Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung
2014-09-01
The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.
40 CFR 147.2918 - Permit application information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... location, depth, date drilled, and record of plugging and/or completion. (3) Operating data: (i) Maximum... logging and testing data on the well (for existing wells, i.e., wells to be converted or wells previously...
Effectiveness of a Low-Cost Drilling Module in Orthopaedic Surgical Simulation.
Ruder, John A; Turvey, Blake; Hsu, Joseph R; Scannell, Brian P
Financial pressures and resident work hour regulations have led to adjunct means of resident education such as surgical simulation. The purpose of this study is to determine the effectiveness of a hands-on training session in orthopaedic drilling technique educational model during a surgical simulation on reducing drill plunging depth and to determine the effectiveness of senior residents teaching a hands-on training session in orthopaedic drilling technique. A total of 13 participants (5 orthopaedic interns and 8 medical students) drilled until they penetrated the far cortex of a synthetic bone model and the plunging depth (PD) was measured. They were then randomized and underwent an education session with an attending orthopaedic surgeon or a senior resident. Next, the subjects drilled again with the PD being calculated. The preeducational and posteducational session were compared to determine if there was any improvement in PD and if there was a difference between educators. The cost of the model was also determined. The mean maximum PD and mean PD before the education session was 1.58 (1.40-2.10) and 1.50cm (1.36-1.76), respectively. Following the educational session, the mean maximum PD and mean PD were 0.53 (0.42-0.75) and 0.50cm (0.40-0.72), respectively. These were both significantly lower than before the education session (p <0.05). After the educational session taught by the attending versus the session taught by the resident, the mean maximum PD was 0.59 (0.42-0.75) and 0.49cm. (0.45-0.75), respectively (p = 0.44). After the educational session taught by the attending versus the session taught by the resident, the mean PD was 0.54 (0.40-0.72) and 0.47cm. (0.40-0.65), respectively (p = 0.44). The cost of the station per participant was $5.44. This study demonstrated a significant reduction in drilling PD with use of a low-cost training model and a formal didactic and skills session on proper drilling technique that can effectively be led by senior residents. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Thermal Changes During Guided Flapless Implant Site Preparation: A Comparative Study.
Sannino, Gianpaolo; Gherlone, Enrico F
To compare intrabony thermal changes induced by two different protocols for guided implant surgery during the whole drilling procedure. Two protocols for guided implant placement were evaluated in vitro using artificial bone cylinders. The control protocol provided traditional metal sleeves and a standard drilling sequence composed of four cylindrical triflute drills (cutting surface length = 16 mm). The test protocol provided a three-slot polyurethane sleeve and two cylindrical drills (second drill cutting surface length = 4 mm). Forty automated intermittent and graduated osteotomies (depth = 14 mm) were performed under external irrigation. Temperatures were measured in real time by three sensors at different depths (2, 8, and 13 mm). The temperature changes generated by the final drill of each protocol during the shearing and withdrawing processes were recorded as experimental results and subjected to the Student t test. Maximum temperature increases were recorded during the process of withdrawing in both protocols. In the control group, the mean thermal changes were 10.18°C, 8.61°C, and 5.78°C at depths of 2, 8, and 13 mm, respectively. In the test group, the mean thermal changes were 1.44°C, 4.46°C, and 3.58°C at depths of 2, 8, and 13 mm, respectively. The control group revealed statistically significantly (P < .0001) higher thermal changes than the test group, both in the superficial and deeper bone areas. An appropriate irrigation system could be crucial for thermal lowering during a guided implant osteotomy mainly in the coronal and middle third of the implant site. Copious irrigation should be provided during the withdrawing process since greater thermal increases could be expected. Lower temperature increases could be achieved, reducing drill-to-bone contact, ie, cutting surface length, due to short frictional force exposure.
NASA Astrophysics Data System (ADS)
Görlitz, Marco; Abratis, Michael; Wiersberg, Thomas
2014-05-01
Online monitoring and sampling of drill mud gas (OLGA) was conducted during standard rotary drilling and core drilling of the INFLUINS borehole EF-FB 1/12 to gain information on the composition of gases and their distribution at depth within the Thuringian Syncline (Germany). The method can help to identify areas of enhanced permeability and/or porosity, open fractures, and other strata associated with gases at depth. The gas-loaded drill mud was continuously degassed in a modified gas-water separator, which was installed in the mud ditch in close distance to the drill mud outlet. The extracted gas phase was pumped in a nearby field laboratory for continuous on-line analysis. First information on the gas composition (H2, He, N2, O2, CO2, CH4, Ar, Kr) was available only few minutes after gas extraction. More than 40 gas samples were taken from the gas line during drilling and pumping tests for further laboratory studies. Enhanced concentration of methane, helium, hydrogen and carbon dioxide were detected in drill mud when the drill hole encountered gas-rich strata. Down to a depth of 620 m, the drill mud contained maximum concentration of 55 ppmv He, 1400 ppmv of CH4, 400 ppmv of hydrogen and 1.1 vol-% of CO2. The drilling mud gas composition is linked with the drilled strata. Buntsandstein and Muschelkalk show different formation gas composition and are therefore hydraulically separated. Except for helium, the overall abundance of formation gases in drilling mud is relatively low. We therefore consider the INFLUINS borehole to be dry. The correlation between hydrogen and helium and the relatively high helium abundance rules out any artificial origin of hydrogen and suggest a radiolytic origin of hydrogen. Values CH4/(C2H6/C3H8)
Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah
Nelson, P.H.
2002-01-01
High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.
Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic.
Qin, Feng; Zheng, Shucan; Luo, Zufeng; Li, Yong; Guo, Ling; Zhao, Yunfeng; Fu, Qiang
2009-10-01
To evaluate the machinability and flexural strength of a novel dental machinable glass-ceramic (named PMC), and to compare the machinability property with that of Vita Mark II and human enamel. The raw batch materials were selected and mixed. Four groups of novel glass-ceramics were formed at different nucleation temperatures, and were assigned to Group 1, Group 2, Group 3 and Group 4. The machinability of the four groups of novel glass-ceramics, Vita Mark II ceramic and freshly extracted human premolars were compared by means of drilling depth measurement. A three-point bending test was used to measure the flexural strength of the novel glass-ceramics. The crystalline phases of the group with the best machinability were identified by X-ray diffraction. In terms of the drilling depth, Group 2 of the novel glass-ceramics proves to have the largest drilling depth. There was no statistical difference among Group 1, Group 4 and the natural teeth. The drilling depth of Vita MK II was statistically less than that of Group 1, Group 4 and the natural teeth. Group 3 had the least drilling depth. In respect of the flexural strength, Group 2 exhibited the maximum flexural strength; Group 1 was statistically weaker than Group 2; there was no statistical difference between Group 3 and Group 4, and they were the weakest materials. XRD of Group 2 ceramic showed that a new type of dental machinable glass-ceramic containing calcium-mica had been developed by the present study and was named PMC. PMC is promising for application as a dental machinable ceramic due to its good machinability and relatively high strength.
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
Analysis and design of trial well mooring in deepwater of the South China Sea
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Ji, Shaojun; Tang, Changquan; Li, Jiansong; Zhong, Huiquan; Ian, Ong Chin Yam
2012-06-01
Mooring systems play an important role for semi-submersible rigs that drill in deepwater. A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009. The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m. Following the mooring analysis, a mooring design was given that requires upgrading of the rig's original mooring system. The upgrade included several innovations, such as installing eight larger anchors, i.e. replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains. All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m. The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea. This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.
A new scientific drilling infrastructure in Sweden
NASA Astrophysics Data System (ADS)
Rosberg, J.-E.; Lorenz, H.
2012-04-01
A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer (BOP). Deviation tools. Wireline packers. And more.
Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H.; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas
2017-01-01
Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450–1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700–2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030–2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025296
Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas
2017-02-13
Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H.; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas
2017-02-01
Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet. This article is part of the themed issue 'Microdynamics of ice'.
Morin, R.H.; Wilkens, R.H.
2005-01-01
As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.
Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.
2001-01-01
A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.
Drilling, sampling, and sample-handling system for China's asteroid exploration mission
NASA Astrophysics Data System (ADS)
Zhang, Tao; Zhang, Wenming; Wang, Kang; Gao, Sheng; Hou, Liang; Ji, Jianghui; Ding, Xilun
2017-08-01
Asteroid exploration has a significant importance in promoting our understanding of the solar system and the origin of life on Earth. A unique opportunity to study near-Earth asteroid 99942 Apophis will occur in 2029 because it will be at its perigee. In the current work, a drilling, sampling, and sample-handling system (DSSHS) is proposed to penetrate the asteroid regolith, collect regolith samples at different depths, and distribute the samples to different scientific instruments for in situ analysis. In this system, a rotary-drilling method is employed for the penetration, and an inner sampling tube is utilized to collect and discharge the regolith samples. The sampling tube can deliver samples up to a maximum volume of 84 mm3 at a maximum penetration depth of 300 mm to 17 different ovens. To activate the release of volatile substances, the samples will be heated up to a temperature of 600 °C by the ovens, and these substances will be analyzed by scientific instruments such as a mass spectrometer, an isotopic analyzer, and micro-cameras, among other instruments. The DSSHS is capable of penetrating rocks with a hardness value of six, and it can be used for China's asteroid exploration mission in the foreseeable future.
NASA Astrophysics Data System (ADS)
Ito, T.; Funato, A.; Tamagawa, T.; Tezuka, K.; Yabe, Y.; Abe, S.; Ishida, A.; Ogasawara, H.
2017-12-01
When rock is cored at depth by drilling, anisotropic expansion occurs with the relief of anisotropic rock stresses, resulting in a sinusoidal variation of core diameter with a period of 180 deg. in the core roll angle. The circumferential variation of core diameter is given theoretically as a function of rock stresses. These new findings can lead various ideas to estimate the rock stress from circumferential variation of core diameter measured after the core retrieving. In the simplest case when a single core sample is only available, the difference between the maximum and minimum components of rock stress in a plane perpendicular to the drilled hole can be estimated from the maximum and minimum core diameters (see the detail in, Funato and Ito, IJRMMS, 2017). The advantages of this method include, (i) much easier measurement operation than those in other in-situ or in-lab estimation methods, and (ii) applicability in high stress environment where stress measurements need pressure for packers or pumping system for the hydro-fracturing methods higher than their tolerance levels. We have successfully tested the method at deep seismogenic zones in South African gold mines, and we are going to apply it to boreholes collared at 3 km depth and intersecting a M5.5 rupture plane several hundred meters below the mine workings in the ICDP project of "Drilling into Seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines" (DSeis) (e.g., http://www.icdp-online.org/projects/world/africa/orkney-s-africa/details/). If several core samples with different orientation are available, all of three principal components of 3D rock stress can be estimated. To realize this, we should have several boreholes drilled in different directions in a rock mass where the stress field is considered to be uniform. It is commonly carried out to dill boreholes in different directions from a mine gallery. Even in a deep borehole drilled vertically from the ground surface, the downhole tool of rotary sidewall coring allows us to take core samples with different orientations at depths of interest from the sidewall of the vertically-drilled borehole. The theoretical relationship between the core expansion and rock stress has been verified through the examination of core samples prepared in laboratory experiments and retrieved field cores.
Microcomponents manufacturing for precise devices by copper vapor laser
NASA Astrophysics Data System (ADS)
Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.
2001-06-01
This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.
NASA Astrophysics Data System (ADS)
Riedel, M.; Wallmann, K.; Berndt, C.; Pape, T.; Freudenthal, T.; Bergenthal, M.; Bünz, S.; Bohrmann, G.
2018-04-01
During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ˜400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ˜30 km seaward in ˜760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ˜38°C km-1 at the deepest site (446 m) and ˜41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ˜60 mbsf); however, coring did not encounter any gas hydrates.
The maximum economic depth of groundwater abstraction for irrigation
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.
2017-12-01
Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
Horizontal well drilled into deep, hot Austin chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, D.; Johnson, M.; Godfrey, B.
1995-04-03
Bent-housing steerable downhole motors helped maintain course for a deep, hot, horizontal well in the Austin chalk. The Navasota Unit No. 1 was planned as a B zone, single downdip lateral, Austin chalk horizontal well with a maximum departure from vertical of 3,767 ft and a planned total depth (TD) of 17,342 ft measured depth (MD)/14,172 ft TVD. The Austin chalk was found significantly deeper in this well than planned, which resulted in an actual TD of 17,899 ft MD/14,993 ft TVD, the deepest (TVD) horizontal well in the Austin chalk to date. The well was spudded on August 6,more » 1994, and took 52 days to reach TD. The static bottom hole temperature was almost 350 F. The paper describes the well plan, drilling results, and the lateral section.« less
Phelps, Geoffrey A.; Jachens, Robert C.; Moring, Barry C.; Roberts, Carter W.
2004-01-01
Two models of the Climax and Gold Meadows stocks were generated using a new method of magnetic inversion modeling based on the pseudogravity anomaly. The first model examined the shape of the two stocks and their connection at depth, concluding that the stocks are connected -4000 m below the ground surface. The second model re-examined the shape and depth of the Climax stock using a two-layer model and new magnetic data collected from drill hole ER-8-1. Existing and new magnetic data support a model of a zoned pluton with increasing magnetization with depth. A model of a zoned pluton was generated and adjusted to fit the magnetic anomaly measured over the stock. The model has an upper layer that extends to a depth of 1,700 m and is magnetized at 0.06 A/m, and a lower layer that extends to a maximum depth of 7,600 m and is magnetized at 0.17 A/m. The model matches the outcrop data, but was unable to match the intercept of the Climax stock from drill hole ER-8-1.
Counter-Rotating Tandem Motor Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent Perry
2009-04-30
Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.« less
Bedrock Geology of the DFDP-2 Drill-Site
NASA Astrophysics Data System (ADS)
Toy, V.; Sutherland, R.; Townend, J.
2015-12-01
Bedrock was encountered in DFDP-2B at drilled depths (MD) of 238.50-893.18 m (vertical depths of 238.40-818.00 m). Continuous sampling of cuttings revealed the bedrock is composed predominantly of ductilely sheared mylonite-series lithologies exhumed from the roots of the Alpine Fault zone. The protolith is interpreted to be amphibolite facies metasediments classified as part of the Aspiring Subdivision of the Torlesse Supergroup. Onsite description of whole cuttings and thin sections made within a few hours of sample recovery allowed identification of progressive structural changes. Fabrics were schistose in the upper part of the hole, but at greater depths we observed increasing indications that the rocks had been subjected to simple shear deformation. These macro-and micro-structural features are consistent with those that typify the Alpine Fault mylonite sequence previously described, and were used as input to drilling decisions. The structural features found to be the most useful indicators of ductile simple shear strain accommodated by the recovered rocks were the occurrence of shear bands; changes in mean quartz grain size; changes in maximum mica grain size; and redistribution of or changes in microstructural setting of accessory phases (e.g. graphite). The quartz:mica ratio based on mass was also determined but the extent to which this reflects true lithologic variations is unclear, as washing and winnowing of the samples (both by circulating drill fluids and during the sample collection process) probably modified bulk mineralogy in different particle size domains. Nevertheless, the quartz:mica dataset suggests a dramatic change in mineralogy at 730 m MD (vertical depth of 695 m). This coincides with a pronounced step in the temperature gradient, possibly related to large changes in hydrogeology.
BIOMECHANICAL EVALUATION OF THE INFLUENCE OF CERVICAL SCREWS TAPPING AND DESIGN.
Silva, Patricia; Rosa, Rodrigo César; Shimano, Antonio Carlos; Albuquerque de Paula, Francisco José; Volpon, José Batista; Aparecido Defino, Helton Luiz
2009-01-01
To assess if the screw design (self-drilling/self-tapping) and the pilot hole tapping could affect the insertion torque and screw pullout strength of the screw used in anterior fixation of the cervical spine. Forty self-tapping screws and 20 self-drilling screws were inserted into 10 models of artificial bone and 10 cervical vertebrae of sheep. The studied parameters were the insertion torque and pullout strength. The following groups were created: Group I-self-tapping screw insertion after pilot hole drilling and tapping; Group II-self-tapping screw insertion after pilot hole drilling without tapping; Group III-self-drilling screw insertion without drilling and tapping. In Groups I and II, the pilot hole had 14.0 mm in depth and was made with a 3mmn drill, while tapping was made with a 4mm tap. The insertion torque was measured and the pullout test was performed. The comparison between groups was made considering the mean insertion torque and the maximum mean pullout strength with the variance analysis (ANOVA; p≤ 0.05). Previous drilling and tapping of pilot hole significantly decreased the insertion torque and the pullout strength. The insertion torque and pullout strength of self-drilling screws were significantly higher when compared to self-tapping screws inserted after pilot hole tapping.
Radioactivities vs. depth in Apollo 16 and 17 soil
NASA Technical Reports Server (NTRS)
Fireman, E. L.; D'Amico, J.; Defelice, J.
1973-01-01
The radioactivities of Ar-37, Ar-39, and H-3 measured at a number of depths for Apollo 16 and 17 soil are reported. The Ar-37 activities vs depth in the Apollo 16 drill string increased with depth and reached a broad maximum in the neighborhood of 50 g per sq cm before decreasing. The Ar-39 activities in Apollo 17 soil were higher than in Apollo 16 soil, probably owing to the higher Fe and Ti contents. The H-3 activities in Apollo 16 and 17 soil were quite similar and indicate that the 4 August 1972 flare produced very little H-3 compared to the amount produced by solar flares during the previous 50 years.
Characterization and depositional and evolutionary history of the Apollo 17 deep drill core
NASA Technical Reports Server (NTRS)
Morris, R. V.; Lauer, H. V., Jr.; Gose, W. A.
1979-01-01
With a depth resolution of about 0.5 cm, the stratigraphy of the approximately 3 m Apollo 17 deep drill core by measurement of the total FeO concentration is characterized along with the FMR surface exposure (maturity) index Is/FeO, the metallic iron concentration Fe-vsm, and the FMR linewidth delta-H. For stratigraphic characterization, the first two parameters are the most important. Most of the core is characterized by a FeO concentration of approximately 15.5 wt. %; there is a more mafic zone in the upper approximately 75 cm where the maximum FeO concentration is approximately 18.5 wt. %, and a more felsic zone between approximately 225 and 260 cm where the minimum FeO concentration is approximately 14.0%. As indicated by Is/FeO, most of the soil in the core is submature to mature; the only immature zone is located between approximately 20 and 60 cm and is one of the most distinctive features in the core. A two stage model for the depositional and evolutionary history of the Apollo 17 deep drill core is proposed: (1) deposition by one event approximately 110 m.y. ago or deposition by a sequence of closely spaced events initating a maximum of approximately 200 m.y. ago and terminating approximately 110 m.y. ago, (2) in situ reworking (gardening) to a depth of approximately 26 cm in the period between approximately 110 m.y. ago and the present day.
Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.
2001-01-01
Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.
NASA Astrophysics Data System (ADS)
Hebbeln, Dierk; Wienberg, Claudia; Frank, Norbert
2015-04-01
Cold-water corals (CWC) mostly occur in intermediate water depths between 200 m and 1000 m and are capable of forming substantial seafloor structures, so-called coral carbonate mounds. These mounds can reach heights from a few meters up to >300 m and are composed of a mixture of CWC (and other shell) fragments and hemipelagic sediments, that both individually serve as distinct paleo-archives. IODP Leg 307 drilled through Challenger Mound at the Irish margin and revealed for the first time the full life history of a coral mound. However, although CWC occur almost worldwide, the 155 m long Challenger Mound record was for many years the only record from a coral mound exceeding 10 m in length. During expedition MSM36 with the German R/V MARIA S. MERIAN in spring 2014, several coral mounds along the Moroccan margin, both in the Atlantic Ocean and in the Mediterranean Sea, were drilled (actually: push-cored) by applying the Bremen Seafloor Drill Rig MeBo. The MeBo is a remotely controlled drilling system that is lowered from the vessel to the seafloor. Energy supply and video control are secured by an umbilical linking the MeBo to the vessel. The scientific foci of expedition MSM36 were to investigate (1) the long-term development of CWC mounds in both areas over the last several 100,000 years in relation to changes in the ambient environmental conditions in the respective intermediate waters, (2) the life time history of these mounds, and (3) the forcing factors for the initiation and decease of individual mounds. In both working areas, a total amount of 11 sites were successfully drilled with MeBo. Eight drillings were conducted at CWC mounds (on-mound sites) and 3 drillings in the direct vicinity of the mounds (off-mound sites) in order to obtain continuous paleoceanographic records. Drilling depths ranged between 17 m and 71 m with the latter corresponding to the maximum drilling depth of MeBo. The core recoveries varied between the sites and ranged between 47% and 96%. The coral-bearing on-mound cores were frozen and opened (i.e., cut lengthwise) with a stone saw to avoid a destruction of the original sediment texture with the embedded coral fragments. After opening, it became obvious that the quality of the MeBo cores is excellent and that it allows detailed post-cruise analyses at the MARUM laboratories in Bremen. By obtaining on-mound records reaching lengths of >70 m (focus #1), supplemented by the full penetration of three coral mounds (foci #2 and #3) and by a >45-m-long double drilling at an off-mound site located between numerous fossil and buried mounds (allowing to put their full life history into a wider paleoceanographic context; foci #1 to #3), the major technical goals of this MeBo expedition were fully accomplished. The critical factor in applying MeBo is the sea state as during deployment and recovery dynamic loads on the umbilical might reach critical limits. Although during expedition MSM36 several MeBo deployments were done by wind speeds of 6 Bft, the sea state especially in the Mediterranean Sea allowed MeBo operations without any restrictions. On the Atlantic side, a high swell, which actually exceeded the operational limit given for secured MeBo operations, could be overcome by reducing the payload (i.e. reducing the maximum drill depth). Hence, the operational window could be widened allowing for almost continuous MeBo operations also in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C.V.; Lockwood, G.J.; Normann, R.A.
1999-06-01
The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less
Jiang, Hua; Luo, Yi; McQuerrey, Joe
2018-02-01
Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.
Development of lunar drill to take core samples to 100-foot depths
NASA Technical Reports Server (NTRS)
1967-01-01
Lunar drill takes lunar surface cores to depths of 100 feet and is being developed to the samples at greater depths. The wireline drill system has been adapted to operate in the lunar environment by providing a sealed dc motor and solid metallic base lubricants.
NASA Technical Reports Server (NTRS)
Basu, Abhijit
1988-01-01
Lunar experiences show that unmanned sample return missions, despite limitations on sample size, can produce invaluable data to infer crustal processes, regolith processes, regolith-atmosphere/ionosphere interaction processes, etc. Drill cores provide a record of regolith evolution as well as a more complete sample of the regolith than small scoops and/or rakes. It is proposed that: (1) a hole be drilled in a sand body to obtain continuous oriented cores; a depth of about 10 m would be compatible with what we know of bed form hierarchy of terrestrial stream deposits; (2) two trenches, at right angles to each other and close to the drill-hole, be dug and the walls scraped lightly such that primary/internal sedimentary structures of the sand body become visible; (3) the walls of the trenches be made gravitationally stable by impregnation techniques; (4) acetate or other peels of a strip on each wall be taken; and (5) appropriately scaled photographs of the walls be taken at different sun-angles to ensure maximum ease of interpretation of sedimentary structures; and, to correlate these structural features with those in the core at different depth levels of the core.
NASA Astrophysics Data System (ADS)
Paulsen, T. S.; Wilson, T. J.; Jarrard, R. D.; Millan, C.; Saddler, D.; Läufer, A.; Pierdominici, S.
2010-12-01
Seismic studies indicate that the West Antarctic rift system records at least two distinct periods of Cenozoic rifting (Paleogene and Neogene) within the western Ross Sea. Natural fracture data from ANDRILL and Cape Roberts drill cores are revealing a picture of the geodynamic patterns associated with these rifting episodes. Kinematic indicators along faults recovered in drill cores document dominant normal faulting, although reverse and strike-slip faults are also present. Ongoing studies of mechanically twinned calcite in veins recovered in the drill cores yield predominantly vertical shortening strains with horizontal extension, consistent with a normal fault regime. In the Cape Roberts Project drill core, faults of inferred Oligocene age document a dominant NNE maximum horizontal stress associated with Paleogene rifting within the Victoria Land Basin. The NNE maximum horizontal stress at Cape Roberts is at an oblique angle to Transantarctic Mountain front, and consistent with previous interpretations invoking Cenozoic dextral transtensional shear along the boundary. In the ANDRILL SMS (AND-2A) drill core, faults and veins presumably associated with Neogene rifting document a dominant NNW to NE faulting of an expanded Lower Miocene section, although subsidiary WNW faulting is also present within the upper sections of oriented core. In the ANDRILL MIS (AND-1B) drill core, natural fractures are consistently present through the core below c. 450 mbsf, the estimated depth of the ‘B-clino’ seismic reflector. This is consistent with the presence of seismically-detectable faults below this horizon, which record the major faulting episode associated with Neogene rifting in the Terror Rift. Sedimentary intrusions and steep veins folded by compaction indicate that deformation occurred prior to complete lithification of the strata, suggesting that deformation was at least in part coeval with deposition. Faults and associated veins intersected in the AND-1B drill core also cut Pliocene and Pleistocene strata, suggesting that deformation has continued to the recent or may perhaps ongoing.
NASA Astrophysics Data System (ADS)
Pierdominici, S.; Schleicher, A.; Kueck, J.; Rodbell, D. T.; Abbott, M. B.
2017-12-01
The lake Junin drilling project, co-funded by the International Continental Drilling Program (ICDP), is located at 4000 m a.s.l. in the tropical Andes of Peru. Several boreholes were drilled with the goal to obtain both high-resolution paleoclimate records from lacustrine sediments and to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is characterized by a thick package of lacustrine sediments (> 125 m) deposited at a high rate (0.2 to 1.0 mm yr-1), and it is one of the few lakes in the tropical Andes that is hundreds of thousands of years old with a continuous sedimentation rate preserving a very long and continuous record of past ice age cycles. The boreholes reached a maximum depth of 110.08 m and continuous coring was performed at three sites with 11 boreholes. Additionally, an extensive geophysical downhole logging campaign was performed on five boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. Downhole logging measurements comprise total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic p-wave velocity. In order to fit the downhole logging depths to the composite profile depths, each borehole was depth-matched with the core data. Interpreting the downhole logging data permits to establish a complete lithological log, to characterize the in-situ physical properties of drilled lacustrine sediments, to determine sedimentary structures and to obtain evidences about palaeoclimatic conditions during up to 200 ka. Th and K values are used as a proxy for a first estimate and characterization of clay content in the sediments, which are present as montmorillonite, smectite, illite, and kaolinite in different amounts. Linking the clay minerals that occur in the core material with the downhole logging data allows assessing the geological history of the lake and the relationship to climate change processes. Additional laboratory analysis will be carried out to understand fluid-rock interaction processes, transport processes, and porosity-permeability changes.
Effect of bit wear on hammer drill handle vibration and productivity.
Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David
2017-08-01
The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s 2 (ISO weighted) and from 42.7-47.6 m/s 2 (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. [1] Construction contractors should implement a bit replacement program based on these findings.
Valley fill in the Roswell-Artesia area, New Mexico
Lyford, Forest P.
1973-01-01
Drill samples from 225 water and oil wells in an area 70 miles long and 20 miles wide in the Roswell-Artesia area, southeastern New Mexico were examined. A thickness map and a saturated thickness map of the valley-fill sediments were constructed. Maximum depth of valley fill is about 300 feet in large closed depressions near Roswell, Hagerman, and Artesia. The depressions were formed by the solution of carbonates and evaporites that underlie the fill. Maximum saturated thickness is about 250 feet in depressions near Hagerman and Artesia and about 300 feet in a depression near Roswell.
NASA Astrophysics Data System (ADS)
Freudenthal, Tim; Bergenthal, Markus; Bohrmann, Gerhard; Pape, Thomas; Kopf, Achim; Huhn-Frehers, Katrin; Gohl, Karsten; Wefer, Gerold
2017-04-01
The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for a drilling depth of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2016 it was deployed on 17 research expeditions and drilled about 3 km into different types of geology including carbonate and crystalline rocks, gas hydrates, glacial tills, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of about 70 %. We used the development and operational experiences of MARUM-MeBo70 for the development of a second generation drill rig MARUM-MeBo200. This drill rig is dedicated for conducting core drilling down to 200 m below sea floor. After successful sea trials in the North Sea in October 2014 the MeBo200 was used on a scientific expedition on the research vessel RV SONNE (SO247) in March/April 2016. During 12 deployments we drilled altogether 514 m in hemipelagic sediments with volcanic ashes as well as in muddy and sandy slide deposits off New Zealand. The average core recovery was about 54%. The maximum drilling depth was 105 m below sea floor. Developments for the MeBo drilling technology include the development of a pressure core barrel that was successfully deployed on two research expeditions so far. Bore hole logging adds to the coring capacity. Several autonomous logging probes have been developed in the last years for a deployment with MeBo in the logging while tripping mode - a sonic probe measuring in situ p-wave velocity being the latest development. Various bore hole monitoring systems where developed and deployed with the MeBo system. They allow for long-term monitoring of pressure variability within the sealed bore holes. References: Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013
NASA Astrophysics Data System (ADS)
Baker, P. A.; Fritz, S. C.; Seltzer, G. O.; Rigsby, C. A.; Lowenstein, T. K.; Ku, R.
2003-12-01
Seven drill cores were recovered from Lake Titicaca during the NSF/ICDP/DOSECC drilling expedition of 2001. Sub-lake floor drilling depths ranged from 53 to 139 m; water depths ranged from 40 to 232 m; recoveries ranged from 75 to 112 percent. Our most detailed multi-proxy analyses to date have been done on Core 2B raised from the central basin of the lake from 232 m water depth, drilled to 139.26 m sub-lakefloor with 140.61 m of total sediment recovered (101 percent). A basal age of 200 Ka is estimated by linear extrapolation from radiocarbon measurements in the upper 25 m of core; Ar-Ar dating of interbedded ashes and U/Th dating of abiogenic aragonites are underway. The volume and lake level of Lake Titicaca have undergone large changes several times during the late Quaternary. Proxies for these water level changes (each of different fidelity) include the ratio of planktonic-to-benthic diatoms, sedimentary carbonate content, and stable isotopic content of organic carbon. The most recent of these changes, has been described previously from earlier piston cores. In the early and middle Holocene the lake fell below its outlet to 85 m below modern level, lake salinity increased several-fold, and the Salar de Uyuni, which receives overflow from Titicaca, dessicated. In contrast, Lake Titicaca was deep, fresh, and overflowing (southward to the Salar de Uyuni) throughout the last glacial maximum from prior to 25,000 BP to at least 15,000 BP. According to extrapolated ages, the penultimate major lowstand of Lake Titicaca occurred prior to 60,000 BP, when seismic evidence indicates that lake level was about 200 m lower than present. Near the end of this lowstand, the lake also became quite saline. There are at least three, and possibly more, older lowstands, each separated temporally by periods in which the lake freshened dramatically and overflowed. These results will be compared with results from previous drilling in the Salar de Uyuni.
Drill System Development for the Lunar Subsurface Exploration
NASA Astrophysics Data System (ADS)
Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson
Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.
NASA Astrophysics Data System (ADS)
Slotnick, B. S.; Lauretano, V.; Backman, J.; Dickens, G. R.; Sluijs, A.; Lourens, L.
2015-03-01
Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene - early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and 215 drops to <5% shortly after the first occurrence of Discoaster lodoensis and the early Eocene rise in δ13C (~52 Ma). This reflects a rapid shoaling of the CCD, and likely a major decrease in the net flux of 13C-depleted carbon to the ocean. Our results support ideas that major changes in net fluxes of organic carbon to and from the exogenic carbon cycle occurred during the early Paleogene. Moreover, we conclude that excellent early Paleogene carbonate accumulation records might be recovered from the central Indian Ocean with future scientific drilling.
Li, Xin; Gao, Deli; Chen, Xuyue
2017-06-08
Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min ≤ Q r ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min < Q max < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r < Q min < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.
Tait, R D; Maxon, C L; Parr, T D; Newton, F C
2016-09-15
The effects of linear alpha olefin (LAO) nonaqueous drilling fluid on benthic macrofauna were assessed over a six year period at a southern Caspian Sea petroleum exploration site. A wide-ranging, pre-drilling survey identified a relatively diverse shelf-depth macrofauna numerically dominated by amphipods, cumaceans, and gastropods that transitioned to a less diverse assemblage dominated by hypoxia-tolerant annelid worms and motile ostracods with increasing depth. After drilling, a similar transition in macrofauna assemblage was observed with increasing concentration of LAO proximate to the shelf-depth well site. Post-drilling results were consistent with a hypothesis of hypoxia from microbial degradation of LAO, supported by the presence of bacterial mats and lack of oxygen penetration in surface sediment. Chemical and biological recoveries at ≥200m distance from the well site were evident 33months after drilling ceased. Our findings show the importance of monitoring recovery over time and understanding macrofauna community structure prior to drilling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Healy, J.H.; Urban, T.C.
1985-01-01
Short-term earthquake prediction requires sensitive instruments for measuring the small anomalous changes in stress and strain that precede earthquakes. Instruments installed at or near the surface have proven too noisy for measuring anomalies of the size expected to occur, and it is now recognized that even to have the possibility of a reliable earthquake-prediction system will require instruments installed in drill holes at depths sufficient to reduce the background noise to a level below that of the expected premonitory signals. We are conducting experiments to determine the maximum signal-to-noise improvement that can be obtained in drill holes. In a 592 m well in the Mojave Desert near Hi Vista, California, we measured water-level changes with amplitudes greater than 10 cm, induced by earth tides. By removing the effects of barometric pressure and the stress related to earth tides, we have achieved a sensitivity to volumetric strain rates of 10-9 to 10-10 per day. Further improvement may be possible, and it appears that a successful earthquake-prediction capability may be achieved with an array of instruments installed in drill holes at depths of about 1 km, assuming that the premonitory strain signals are, in fact, present. ?? 1985 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Konrad, C.; Walther, W.; Reimann, T.; Rogge, A.; Stengel, P.; Well, R.
2008-03-01
Comparison of hydraulic and chemical properties of sediments from flush- and core drillings in the area of Peine (Germany). Because of financial constraints, investigations of nitrate metabolism are often based on disturbed borehole samples. It is arguable, however, whether disturbed samples are suitable for these types of investigations. Disadvantages of disturbed samples in comparison to undisturbed core samples are well known and include possible contamination of the sample by mud additives, destruction of the sediment formation and the insecurity concerning the correct depth allocation. In this study, boreholes were drilled at three locations to a maximum depth of 50 m. The extracted samples, as intact sediment cores and drill cuttings, were studied with regard to chemical and hydraulic parameters of the aquifer sediments. The results show: 1. hydraulic parameters are not affected by clay-based mud; 2. disturbed samples contain less fine grain material relative to the core samples, and the hydraulic conductivity can only be estimated from catch samples; 3. catch samples contain fewer reducing agents (sulphides, organic carbon) than core samples in hydraulically passive zones (defined as K < 10 6 m · s 1); 4. the results of analyses of disturbed and undisturbed core samples are in good agreement for hydraulically active zones (K ≥ 10 6 m · s 1).
NASA Astrophysics Data System (ADS)
Toy, V. G.; Maeda, L.; Toczko, S.; Eguchi, N.; Chester, F. M.; Mori, J. J.; Sawada, I.; Saruhashi, T.
2014-12-01
During IODP Expedition 343: The Japan Trench Fast Drilling Project (JFAST), two main boreholes were drilled from the D/V Chikyu in ~7000 m water depth. An uncored hole that penetrated to 850.5 meters below seafloor (mbsf) (total depth [TD] = 7740 meters below sea level [mbsl]) was documented using logging while drilling (LWD) tools. From an adjacent partially cored hole drilled to 844.5 mbsf (TD = 7734 mbsl) 21 cores were acquired that spanned the two main fault targets. The operations lasted 88 days. The drilling operation was very technically challenging. The drill string had to be withdrawn a number of times due to high seas, and technical issues; five holes were drilled (one abandoned after spud-in) and reoccupied in >6800 m water depth. A simple observatory was deployed in the wellhead installed during Exp 343 during the follow-up Exp 343T. In certain intervals during coring we mostly recovered loose, subrounded fine gravel clasts of the two major lithologies penetrated to those depths (silt and mudstones). We have performed particle shape and size analysis on these gravel aggregates. Particle shape variations apparent visually are not clearly quantified by conventional 'shape descriptors'. Variations in particle size distributions are apparent and we will discuss whether these relate to variations in drilling parameters.
Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics
NASA Astrophysics Data System (ADS)
Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.
2018-06-01
Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2-D seismic reflection data processing flow focused on pre-stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching, to estimate the uncertainties of the depths of key horizons near the Deep Sea Drilling Project (DSDP) borehole 258 (DSDP-258) located in the Mentelle Basin, southwest of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ±2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent to the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program, leg 369.
Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years
Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,
2011-01-01
The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.
Paillet, Frederick; Duncanson, Russell
1994-01-01
The most extensive data base for fractured bedrock aquifers consists of drilling reports maintained by various state agencies. We investigated the accuracy and reliability of such reports by comparing a representative set of reports for nine wells drilled by conventional air percussion methods in granite with a suite of geophysical logs for the same wells designed to identify the depths of fractures intersecting the well bore which may have produced water during aquifer tests. Production estimates reported by the driller ranged from less than 1 to almost 10 gallons per minute. The moderate drawdowns maintained during subsequent production tests were associated with approximately the same flows as those measured when boreholes were dewatered during air percussion drilling. We believe the estimates of production during drilling and drawdown tests were similar because partial fracture zone dewatering during drilling prevented larger inflows otherwise expected from the steeper drawdowns during drilling. The fractures and fracture zones indicated on the drilling report and the amounts of water produced by these fractures during drilling generally agree with those identified from the geophysical log analysis. Most water production occurred from two fractured and weathered zones which are separated by an interval of unweathered granite. The fractures identified in the drilling reports show various depth discrepancies in comparison to the geophysical logs, which are subject to much better depth control. However, the depths of the fractures associated with water production on the drilling report are comparable to the depths of the fractures shown to be the source of water inflow in the geophysical log analysis. Other differences in the relative contribution of flow from fracture zones may by attributed to the differences between the hydraulic conditions during drilling, which represent large, prolonged drawdowns, and pumping tests, which consisted of smaller drawdowns maintained over shorter periods. We conclude that drilling reports filed by experienced well drillers contain useful information about the depth, thickness, degree of weathering, and production capacity of fracture zones supplying typical domestic water wells. The accuracy of this information could be improved if relatively simple and inexpensive geophysical well logs such as gamma, caliper, and normal resistivity logs were routinely run in conjunction with bedrock drilling projects.
NASA Astrophysics Data System (ADS)
Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.
2017-12-01
1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the water isotope. Na+ is maximal immediately after the local maximum of the water isotope. The deepest age was estimated to be around 1940 AD. 4. Example of results In the inland area, the annual average surface mass balance decreased from 1450 to 1850 AD, but it has increased since 1850 AD. The annual mass balance of coastal H15 is consistent with the result of snow stake measurement.
Temperature measurements at IODP 337 Expedition, off Shimokita, NE Japan.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.
2014-12-01
Precise estimation of underground temperature is a challenging issue, since direct measurements require drill holes that disturb the original underground environment. During IODP 337 expedition, we have obtained in-situ temperature datasets for several times by using geophysical logging tools. A common procedure to estimate the undisturbed maximum underground temperature is by approximating that the 'build-up' pattern of measured values in the borehole should reach to the equilibrium temperature. At the Shimokita site, this was 63.7 oC at a depth of 2466 m. We have much more measurement dataset and all of these were used to analyze detailed in-site temperatures at various depths. The result shows a non-linear temperature profile to the depth and this may be reflected by the thermal properties of the surrounding rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phetteplace, D.R.; Kunze, J.F.
The Geothermal Exploratory Well Project for the City of Alamosa, Colorado is summarized. In September, 1980, the City of Alamosa made application to the US Department of Energy for a program which, in essence, provided for the Department of Energy to insure that the City would not risk more than 10% of the total cost in the well if the well was a failure. If the well was a complete success, such as 650 gpm and 230/sup 0/F temperature, the City was responsible for 80% of the costs for drilling the well and there would be no further obligation frommore » the Department of Energy. The well was drilled in November and early December, 1981, and remedial work was done in May and June 1982. The total drilled depth was 7118 ft. The well was cased to 4182 ft., with a slotted liner to 6084 ft. The maximum down hole temperature recorded was 190/sup 0/F at 6294 ft. Testing immediately following the remedial work indicated the well had virtually no potential to produce water.« less
Bargar, K.E.; Fournier, R.O.
1988-01-01
Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.
Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer.
Malard, Florian; Datry, Thibault; Gibert, Janine
2005-10-01
Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.
Method and apparatus for optimizing determination of the originating depth of borehole cuttings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mc Auley, J.A.; Eppler, S.G.
1987-11-24
This patent describes a method for determining the arrival at the surface of an identifiable material from a predetermined drilling depth independent of pump stroke rate and intermittent operations during the utilization of at least a drill bit, a positive displacement mud pump and drilling mud during the drilling of a well. The method comprises the steps of: adding identifiable material to the drilling mud as the drilling mud is being pumped downwardly into the well; initiate count of the pump strokes of the positive displacement mud pump as the previous step occurs; observe arrival of the identifiable material atmore » the surface of the earth as the drilling mud exits from the well; observe the accumulated count of the pump strokes of the positive displacement mud pump which occur between step one and step three; subtract, from the accumulated count of the previous step, the number of pump strokes of the positive displacement mud pump required to pump the identifiable material down to the drill bit to establish a number of lag strokes; and utilize the number obtained in the previous step to identify the arrival of drill cuttings from a predetermined depth.« less
ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.
The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less
ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars
Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.; ...
2016-05-13
The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less
Alawattegama, Shyama K; Kondratyuk, Tetiana; Krynock, Renee; Bricker, Matthew; Rutter, Jennifer K; Bain, Daniel J; Stolz, John F
2015-01-01
Reports of ground water contamination in a southwestern Pennsylvania community coincided with unconventional shale gas extraction activities that started late 2009. Residents participated in a survey and well water samples were collected and analyzed. Available pre-drill and post-drill water test results and legacy operations (e.g., gas and oil wells, coal mining) were reviewed. Fifty-six of the 143 respondents indicated changes in water quality or quantity while 63 respondents reported no issues. Color change (brown, black, or orange) was the most common (27 households). Well type, when known, was rotary or cable tool, and depths ranged from 19 to 274 m. Chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, manganese and strontium were commonly found, with 25 households exceeding the secondary maximum contaminate level (SMCL) for manganese. Methane was detected in 14 of the 18 houses tested. The 26 wells tested for total coliforms (2 positives) and E. coli (1 positive) indicated that septic contamination was not a factor. Repeated sampling of two wells in close proximity (204 m) but drawing from different depths (32 m and 54 m), revealed temporal variability. Since 2009, 65 horizontal wells were drilled within a 4 km (2.5 mile) radius of the community, each well was stimulated on average with 3.5 million gal of fluids and 3.2 million lbs of proppant. PA DEP cited violations included an improperly plugged well and at least one failed well casing. This study underscores the need for thorough analyses of data, documentation of legacy activity, pre-drill testing, and long term monitoring.
HOLEGAGE 1.0 - Strain-Gauge Drilling Analysis Program
NASA Technical Reports Server (NTRS)
Hampton, Roy V.
1992-01-01
Interior stresses inferred from changes in surface strains as hole is drilled. Computes stresses using strain data from each drilled-hole depth layer. Planar stresses computed in three ways: least-squares fit for linear variation with depth, integral method to give incremental stress data for each layer, and/or linear fit to integral data. Written in FORTRAN 77.
New Clues on the Source of the Central Magnetic Anomaly at Haughton Impact Structure, Canada
NASA Astrophysics Data System (ADS)
Quesnel, Y.; Rochette, P.; Gattacceca, J.; Osinski, G. R.
2013-12-01
The 23 km-diameter Haughton impact structure, located on Devon Island, Nunavut, Canada, is one of the best-preserved medium-size complex impact structures on Earth. The impact occurred ~39 Ma ago into a target formation composed of an ~2-km thick sequence of Lower Paleozoic sedimentary rocks of the Arctic Platform overlying Precambrian metamorphic basement of the Canadian Shield (Osinski et al., 2005). Clast-rich carbonate impact melt rocks fill the crater and impact-generated hydrothermal activity took place, but since then no significant geological event has affected the area. A 900 nT-amplitude magnetic anomaly with a wavelength of about 3 km is observed at the center of the crater (Pohl et al., 1988). Using high-resolution ground magnetic survey and magnetic property measurements on rock samples from inside and outside the structure, Quesnel et al. (2013) concluded that the source for this anomaly may correspond to uplifted and hydrothermally-aletered basement rocks. Hydrothermal activity can increase rock magnetization intensity by crystallization of magnetic minerals, such as magnetite and/or pyrrhotite. Here, we present the results of a new ground magnetic survey and electrical resistivity soundings conducted around the maximum of the magnetic anomaly. Drilling, with depths ranging from 5 m to 13 m was also conducted at three locations in the same area to ground truth the interpretation of geophysical data. The maximum of the magnetic anomaly is characterized by a ~50 m2 area of strong vertical magnetic gradient and low electrical resistivity, while the surroundings show weak gradient and large resistivity. Two drill holes into this localized area show about 6 m of sandy material with some more magnetic layers at about 5 m depth overlying a greenish impact melt breccia with very abundant and large clasts. Recovery in the first 9 meters is very poor, but down hole magnetic gradient measurement confirms the near 6 meter magnetic layer. A third hole was drilled outside the local area with strong magnetic gradients and shows, starting at 2 m depth a porous gray clast-rich impact melt rock that is very similar to the impact melt rock extensively cropping out in the crater. Therefore, the three drill holes confirm that the geophysical contrast at the crater center corresponds to a geological contrast and suggest a link with hydrothermal activity. The results of laboratory measurements (magnetic properties in particular) made on the drill cores will also be presented. References : Osinski, G. R. et al. 2005. MPS, 40:1759-1776 ; Pohl, J. et al. 1988. Meteoritics, 23:235-238 ; Quesnel, Y. et al. 2013. EPSL, 367:116-122.
Initial results from the ICDP SCOPSCO drilling project, Lake Ohrid (Macedonia, Albania)
NASA Astrophysics Data System (ADS)
Francke, A.; Wagner, B.; Krastel, S.; Lindhorst, K.; Wilke, T.; Zanchetta, G.; Sulpizio, R.; Grazhdani, A.; Reicherter, K. R.
2013-12-01
Lake Ohrid (Macedonia, Albania) is about 30 km long and 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe, providing a high-resolution, continuous archive of environmental change and tectonic and tephrostratigraphic history in the Eastern Mediterranean Region. The deep drilling campaign at Lake Ohrid in spring 2013 within the scope of the ICDP project SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the 'DEEP' site in the center of the lake, seismic data implied a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Coarse-grained gravel and pebbles underlying clay and shallow water facies sediments hampered deeper penetration. 6 boreholes at the 'DEEP' site resulted in a total of 1526 m of sediment cores and a composite field recovery of 544 m (95%). Initial geochemical and magnetic susceptibility data imply that the sediments from 'DEEP' site are highly sensitive to climate and environmental variations in the Balkan area probably over the last 1.5 Mio years. Long-term climate oscillations on a glacial/interglacial timescale and also short-term events such as Dansgaard-Oescher cycles during the last glacial period can be inferred from the initial data. Although a high amount of greigite complicates the paleomagnetic dating of the recovered sediments, a robust age model can likely be inferred from numerous tephras and cryptotephras, which are indicated by spikes in the magnetic susceptibility data. Three additional sites at lateral parts of Lake Ohrid were drilled to un-ravel lake level fluctuations, catchment dynamics, biodiversity and evolution processes ('Cerava', deepest drilled depth: 90 m), active tectonics and spring dynamics ('Gradiste', deepest drilled depth: 123 m), and the early development of the Ohrid Basin ('Pestani', deepest drilled depth: 194 m). The composite field recovery is >90% at each site. The initial results obtained from the field campaign indicate that Lake Ohrid provides an extraordinary record of environmental change in the northern Mediterranean and will become a key site for a better understanding of speciation triggers.
NASA Astrophysics Data System (ADS)
Lin, W.; Masago, H.; Yamamoto, K.; Kawamura, Y.; Saito, S.; Kinoshita, M.
2007-12-01
By means of introduction of the drilling vessel 'CHIKYU', riser drilling operations using mud fluid will be carried out in NanTroSEIZE Stage 2 for the first time as an oceanic scientific-drilling. For determining drilling operation parameter such as a mud density, a downhole experiment, leak-off test (LOT) or extended leak-off test (XLOT), is going to be implemented next to casing and cementing at each casing shoe during the drilling process. Data of the downhole experiment aimed for operation can also be used for an important scientific application to obtain in-situ stress information which is necessary for various cases of scientific drillings such as seismogenic zone drillings etc. In order to examine feasibility of the application of the LOT or XLOT data, we analyzed an example of XLOT conducted by the riser vessel CHIKYU during its Shimokita shakedown cruise, 2006; and then estimated magnitude of minimum principal stress in horizontal plane, Shmin. Moreover, we will propose the test procedures to possibly improve the quality of stress result from the applications of LOT or XLOT. The XLOT of Shimokita cruise was conducted under following conditions; 1180 m water depth, 525 mbsf (meter below seafloor) depth, 1030 kg/m3 fluid density (seawater) and 80 litter/min injection flow-rate. Estimated magnitude of the Shmin is equal to 18.3 MPa based on the assumption that fracture closure pressure balances with the minimum principal stress perpendicular to the fracture plane. For comparison, the vertical stress magnitude at the depth was estimated from density profile of core samples retrieved from the same borehole; and was equal to 20 MPa approximately. These two values can be considered to be not disagreement. Therefore, we can say that the XLOT data is valuable and practical for estimating the magnitude of minimum horizontal stress. From the viewpoint of determining stress magnitude, the XLOT is more essential rather than the LOT because it might be hardly to obtain reliable Shmin magnitude only by leak-off pressure which is exclusive stress-related parameter obtained from the latter. In addition, implementation of the LOT/XLOT multi-cycles (3 cycles) is preferable if possible. The first cycle with a lower maximum injection pressure is for knowing permeable property of the formation and for examining whether there is pre-existing fracture(s). The second cycle is a normal XLOT; and the third one is the repeat of the second one for confirm the pressure values obtained from the XLOTs.
Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.
2001-05-01
Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of earth sciences questions.
Santamaría-Arrieta, Gorka; Brizuela-Velasco, Aritza; Fernández-González, Felipe J.; Chávarri-Prado, David; Chento-Valiente, Yelko; Solaberrieta, Eneko; Diéguez-Pereira, Markel; Yurrebaso-Asúa, Jaime
2016-01-01
Background This study evaluated the influence of implant site preparation depth on primary stability measured by insertion torque and resonance frequency analysis (RFA). Material and Methods Thirty-two implant sites were prepared in eight veal rib blocks. Sixteen sites were prepared using the conventional drilling sequence recommended by the manufacturer to a working depth of 10mm. The remaining 16 sites were prepared using an oversize drilling technique (overpreparation) to a working depth of 12mm. Bone density was determined using cone beam computerized tomography (CBCT). The implants were placed and primary stability was measured by two methods: insertion torque (Ncm), and RFA (implant stability quotient [ISQ]). Results The highest torque values were achieved by the conventional drilling technique (10mm). The ANOVA test confirmed that there was a significant correlation between torque and drilling depth (p<0.05). However, no statistically significant differences were obtained between ISQ values at 10 or 12 mm drilling depths (p>0.05) at either measurement direction (cortical and medullar). No statistical relation between torque and ISQ values was identified, or between bone density and primary stability (p >0.05). Conclusions Vertical overpreparation of the implant bed will obtain lower insertion torque values, but does not produce statistically significant differences in ISQ values. Key words:Implant stability quotient, overdrilling, primary stability, resonance frequency analysis, torque. PMID:27398182
NASA Astrophysics Data System (ADS)
Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas
2017-04-01
The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.
Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics
NASA Astrophysics Data System (ADS)
Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.
2018-03-01
Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2D seismic reflection data processing flow focused on pre - stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching (BHM), to estimate the uncertainties of the depths of key horizons near the borehole DSDP-258 located in the Mentelle Basin, south west of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ± 2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program (IODP), leg 369.
Geothermal observation wells, Mt. Hood, Oregon. Final report, October 4, 1977-July 9, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, W.F.; Meyer, H.J.
1979-11-01
Exploration drilling operations were conducted which included the deepening of an existing hole, designated as Old Maid Flat No. 1, from 1850 ft (564 m) to 4002 (1220 m) on the western approaches to Mt. Hood and the drilling of three new holes ranging from 940 ft (287 m) to 1340 ft (409 m). The Clear Fork hole, located in Old Maid Flat, was drilled to 1320 ft (402 m). The Zigzag hole was drilled to 940 ft (287 m) at the southwestern base of Mt. Hood in the Zigzag River valley. The remaining hole was drilled on the Timberlinemore » Lodge grounds which is on the south flank of Mt. Hood at an elevation of about 6000 ft (1829 m) above sea level. The deepening project designated as Old Maid Flat No. 1 encountered a maximum bottom hole temperature of about 180/sup 0/F (82/sup 0/C) and is to this date the deepest exploratory hole in the Mt. Hood vicinity. No significant drilling problems were encountered. The Clear Fork and Zigzag River holes were completed without significant problems. The Timberline Lodge hole encountered severe drilling conditions, including unconsolidated formations. Two strings of tools were left in the hole from structural collapse of the hole. The hole was scheduled as a 2000 ft (610 m) test. Drilling did not proceed beyond 1350 ft (412 m) and due to junk it was unobstructed to a depth of 838 ft (255 m). Observation pipe was installed to 735 ft (224 m) due to further disintegration of the hole. The work was prematurely terminated due to weather conditions.« less
NASA Astrophysics Data System (ADS)
DeBlois, Elisabeth M.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory
2014-12-01
This paper describes sediment composition at the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland, Canada, at an approximate water depth of 100 m. Surface sediment samples (upper 3 cm) were collected for chemical and particle size analyses at the site pre-development (1997) and in 2000-2002, 2004, 2006, 2008 and 2010. Approximately 50 stations have been sampled in each program year, with stations extending from less than 1 km to a maximum of 20 km from source (drill centres) along five gradients, extending to the southeast, southwest, northeast, northwest and east of Terra Nova. Results show that Terra Nova sediments were contaminated with >C10-C21 hydrocarbons and barium-the two main constituents of synthetic-based drilling muds used at the site. Highest levels of contamination occurred within 1 to 2 km from source, consistent with predictions from drill cuttings dispersion modelling. The strength of distance gradients for >C10-C21 hydrocarbons and barium, and overall levels, generally increased as drilling progressed but decreased from 2006 to 2010, coincident with a reduction in drilling. As seen at other offshore oil development sites, metals other than barium, sulphur and sulphide levels were elevated and sediment fines content was higher in the immediate vicinity (less than 0.5 km) of drill centres in some sampling years; but there was no strong evidence of project-related alterations of these variables. Overall, sediment contamination at Terra Nova was spatially limited and only the two major constituents of synthetic-based drilling muds used at the site, >C10-C21 hydrocarbons and barium, showed clear evidence of project-related alternations.
Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.
2017-12-01
The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.
NASA Astrophysics Data System (ADS)
Handler, Sabine M.; Albano, Paolo G.; Bentlage, Rudolf; Drummond, Hannah; García-Ramos, Diego A.; Zuschin, Martin
2016-04-01
Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf Sabine Maria Handler1, Paolo G. Albano1, Rudolf Bentlage2, Hannah Drummond2, D.A. García-Ramos1, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Austria 2 St. Lawrence University, Canton, New York 13617, USA Trace fossils left by predators in the skeleton of their prey are arguably one of the most powerful sources of direct data on predator-prey interactions available in the fossil record. Drill holes, especially those attributed to naticid and muricid gastropods, are unambiguous marks of predation and allow discriminating between successful and unsuccessful predation attempts (complete and incomplete holes, respectively). Latitude and water depth influence drilling frequency. We inspected death assemblages of an intertidal flat and of two subtidal (water depth between 6 and 20 m) sandy sites in the Persian (Arabian) Gulf, off the coast of the United Arab Emirates, to determine the patterns of predation on shelled molluscs along the depth gradient. The study is based on ~7,000 and ~60,000 shells from the intertidal and subtidal, respectively. Drilling Frequency (DF, the number of drilled individuals), Incomplete Drilling Frequency (IDF, number of incomplete drill holes), and Prey Effectiveness (ratio between the number of incomplete drill holes and the total number of drilling attempts) were used as metrics of drilling intensity. We observed major differences between the intertidal and subtidal study areas. Drilling frequencies were generally remarkably low and intertidal flats showed a much lower drilling frequency than the subtidal (1.4% and 6.7%, respectively). In the subtidal, we observed significant differences of drilling intensity among bivalve species and between the two sites. However, predation metrics did not correlate with environmental factors such as substrate type and depth, nor with species life habits such as infaunal vs. epifaunal and death assemblage indices such as diversity, abundance and evenness. The abundance of naticid and muricid predators in the living and death assemblage also did not correlate with predation intensities, with the single exception of muricid abundance in the LA at one of the two subtidal sites. The study shows that bivalve predation intensity in the studied area is highly variable among prey species and depth zones (intertidal vs subtidal), but poorly dependant upon other environmental and community structure factors. Results for gastropods are currently being analysed.
NASA Astrophysics Data System (ADS)
Saffer, D. M.; Flemings, P. B.; Boutt, D.; Doan, M.-L.; Ito, T.; McNeill, L.; Byrne, T.; Conin, M.; Lin, W.; Kano, Y.; Araki, E.; Eguchi, N.; Toczko, S.
2013-05-01
situ stress and pore pressure are key parameters governing rock deformation, yet direct measurements of these quantities are rare. During Integrated Ocean Drilling Program (IODP) Expedition #319, we drilled through a forearc basin at the Nankai subduction zone and into the underlying accretionary prism. We used the Modular Formation Dynamics Tester tool (MDT) for the first time in IODP to measure in situ minimum stress, pore pressure, and permeability at 11 depths between 729.9 and 1533.9 mbsf. Leak-off testing at 708.6 mbsf conducted as part of drilling operations provided a second measurement of minimum stress. The MDT campaign included nine single-probe (SP) tests to measure permeability and in situ pore pressure and two dual-packer (DP) tests to measure minimum principal stress. Permeabilities defined from the SP tests range from 6.53 × 10-17 to 4.23 × 10-14 m2. Pore fluid pressures are near hydrostatic throughout the section despite rapid sedimentation. This is consistent with the measured hydraulic diffusivity of the sediments and suggests that the forearc basin should not trap overpressures within the upper plate of the subduction zone. Minimum principal stresses are consistently lower than the vertical stress. We estimate the maximum horizontal stress from wellbore failures at the leak-off test and shallow MDT DP test depths. The results indicate a normal or strike-slip stress regime, consistent with the observation of abundant active normal faults in the seaward-most part of the basin, and a general decrease in fault activity in the vicinity of Site C0009.
Hamada, Yohei; Kitamura, Manami; Yamada, Yasuhiro; Sanada, Yoshinori; Sugihara, Takamitsu; Saito, Saneatsu; Moe, Kyaw; Hirose, Takehiro
2018-02-14
A new method for evaluating the in situ rock strength beneath the seafloor is proposed and applied to the Nankai Trough accretionary prism. The depth-continuous in situ rock strength is a critical parameter for numerous studies in earth science, particularly for seismology and tectonics at plate convergence zones; yet, measurements are limited owing to a lack of drilled cores. Here, we propose a new indicator of strength, the equivalent strength (EST), which is determined only by drilling performance parameters such as drill string rotational torque, bit depth, and string rotational speed. A continuous depth profile of EST was drawn from 0 to 3000 m below the seafloor (mbsf) across the forearc basin and accretionary prism in the Nankai Trough. The EST did not show a significant increase around the forearc basin-accretionary prism boundary, but it did show a clear increase within the prism, ca. below 1500 mbsf. This result may indicate that even the shallow accretionary prism has been strengthened by horizontal compression derived from plate subduction. The EST is a potential parameter to continuously evaluate the in situ rock strength during drilling, and its accuracy of the absolute value can be improved by combining with laboratory drilling experiments.
Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.
1986-01-01
The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous factors that may be relevant to this interpretation also is presented. (Lantz-PTT)
Wireline Deep Drill for the Exploration of Icy Bodies
NASA Technical Reports Server (NTRS)
Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.
2013-01-01
One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.
Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound
Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.
1996-01-01
During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.
Dental hard tissue drilling by longitudinally excited CO2 laser
NASA Astrophysics Data System (ADS)
Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa
2017-07-01
We developed a longitudinally excited CO2 laser with a long optical cavity and investigated the drilling characteristics of dental hard tissue. The CO2 laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 13 mm, a pulse power supply, a step-up transformer, a storage capacitance, a spark gap, and a long optical cavity with a cavity length of 175 cm. The CO2 laser produced a short pulse that had a spike pulse with the width of 337 ns and the energy of 1.9 mJ, a pulse tail with the length of 180 μs and the energy of 37.6 mJ, and a doughnut-like beam. In the investigation, a sample was a natural drying human tooth (enamel and dentine). In a processing system, a ZnSe focusing lens with the focal length of 50 mm was used and the location of the focal plane was that of the sample surface. In 1 pulse irradiation, the drilling characteristics depended on the fluence was investigated. In the enamel and dentin drilling, the drilling depth increased with the fluence. The 1 pulse irradiation with the fluence of 21.5 J/cm2 produced the depth of 79.3 μm in the enamel drilling, and the depth of 152.7 μm in the dentin drilling. The short-pulse CO2 laser produced a deeper drilling depth at a lower fluence than long-pulse CO2 lasers in dental hard tissue processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubb, M.
1981-02-01
Friede and Goldman Ltd. of New Orleans, Louisiana has a successful drilling rig, the L-780 jack-up series. The triangular-shaped drilling vessel measures 180 x 176 ft. and is equipped with three 352 ft legs including spud cans. It is designed to work in up to 250 ft waters and drill to 20,000 ft depths. The unit is scheduled to begin initial drilling operations in the Gulf of Mexico for Arco. Design features are included for the unit. Davie Shipbuilding Ltd. has entered the Mexican offshore market with the signing of a $40,000,000 Canadian contract for a jack-up to work inmore » 300 ft water depths. Baker Marine Corporation has contracted with the People's Republic of China for construction of two self-elevating jack-ups. The units will be built for Magnum Marine, headquartered in Houston. Details for the two rigs are given. Santa Fe International Corporation has ordered a new jack-up rig to work initially in the Gulf of Suez. The newly ordered unit, Rig 136, will be the company's fourth offshore drilling rig now being built in the Far East. Temple Drilling Company has signed a construction contract with Bethlehem Steel for a jack-up to work in 200 ft water depths. Penrod Drilling Company has ordered two additional cantilever type jack-ups for Hitachi Shipbuilding and Engineering Co. Ltd. of Japan. Two semi-submersibles, capable of working in up to 2000 ft water depths, have been ordered by two Liberian companies. Details for these rigs are included. (DP)« less
Curiosity Conducting Mini-Drill Test at Mojave
2015-01-14
This view NASA Curiosity Mars Rover shows the rover drill in position for a mini-drill test to assess whether a rock target called Mojave is appropriate for full-depth drilling to collect a sample. It was taken on Jan. 13, 2015.
Ejector subassembly for dual wall air drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolle, J.J.
1996-09-01
The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less
Observing Ice Sublimation From Water-Doped Lunar Simulant at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Roush, T. L.; Teodoro, L. F. A.; Colaprete, A.; Cook, A. M.; Elphic, R.
2018-01-01
NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar and permanently shadowed regions. The Near-Infrared Volatile Spectrometer System (NIRVSS) observes while a drill penetrates to a maximum depth of 1 m. Any 10 cm increment of soil identified as containing water ice can be delivered to a heating crucible with the evolved gas delivered to a gas chromatograph / mass spectrometer. NIRVSS consists of two components; a spectrometer box (SB) and bracket assembly (BA), connected by two fiber optic cables. The SB contains separate short- and long-wavelength spectrometers, SW and LW respectively, that collectively span the 1600-3400 nm range. The BA contains an IR emitter (lamp), drill observation camera (DOC, 2048 x 2048 CMOS detector), 8 different wavelength LEDs, and a longwave calibration sensor (LCS) measuring the surface emissivity at four IR wavelengths. Tests of various RP sub-systems have been under-taken in a large cryo-vacuum chamber at Glenn Re-search Center. The chamber accommodates a tube (1.2 m high x 25.4 cm diameter) filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. Thermocouples are embedded at different depths, and also across the surface of the soil tube. In the chamber the tube is cooled with LN2 as the pressure is reduced to approx. 5-6x10(exp -6) Torr. For the May 2016 tests two soil tubes were prepared with initially 2.5 Wt.% water. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment. Table 1 provides a summary of experimental conditions and Figure 1 shows the nominal view of the NIRVSS components, the drill foot, and the top of the soil tube. Once the average soil temperature reached approx. 178 K, drilling commenced. During drilling activities NIRVSS was alternating between obtaining spectra and obtaining images. Here we discuss NIRVSS spectral data obtained during controlled drill percussions.
A new thermal model for bone drilling with applications to orthopaedic surgery.
Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak
2011-12-01
This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.
2017-12-01
Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.
NASA Astrophysics Data System (ADS)
Kim, Y.; Chun, J. H.; Bahk, J. J.; Ryu, B. J.; Um, I. K.
2016-12-01
The second Ulleung Basin Gas hydrate Drilling Expedition (UBGH2) was conducted in the Ulleung Basin, East Sea of Korea in 2010. Gas hydrates were observed in depth interval from 140 mbsf (meter below seafloor) to 160 mbsf in core sediment taken from UBGH2-6 drilling site, located in the north-western part of the basin (2,164 m water depth). To characterize the geochemical process for UBGH2-6 core sediments, pore fluid samples and headspace gas samples were extracted from core sediments and analyzed SO42- and CH4 concentrations. Based on SO42- and CH4 concentrations, sulfate-methane transition zone (SMTZ), where SO42- is depleted to zero and CH4 starts to increase was defined at a depth of approximately 6.50 mbsf in 2010. And in order to identify the variations in the depths of SMTZ at UBGH2-6 drilling site since 2010 (UBGH2), whole-round piston cores were collected from UBGH2-6 drilling site from 2013 to 2015. We analyzed SO42- and CH4 concentrations and identified the SMTZ for the last 3 years. The depths of SMTZ for the cores obtained from 2013, 2014 and 2015 are approximately 3.50 mbsf, 5.00 mbsf, and 5.00 mbsf respectively. The analysis results indicate that the SMTZ in 2013, 2014, and 2015 are shallower than the SMTZ of 2010.
Calvo-Guirado, José Luis; Delgado-Peña, Jorge; Maté-Sánchez, Jose E; Mareque Bueno, Javier; Delgado-Ruiz, Rafael Arcesio; Romanos, Georgios E
2015-07-01
To evaluate a new hybrid drilling protocol, by the analysis of thermal changes in vitro, and their effects in the crestal bone loss and bone-to-implant contact in vivo. Temperature changes during simulated osteotomies with a hybrid drilling technique (biologic plus simplified) (test) versus an incremental drilling technique (control) were investigated. One hundred and twenty random osteotomies were performed (60 by group) in pig ribs up to 3.75-mm-diameter drill to a depth of 10 mm. Thermal changes and time were recorded by paired thermocouples. In a parallel experiment, bilateral mandibular premolars P2, P3, P4, and first molar M1 were extracted from six dogs. After 2-month healing, implant sites were randomly prepared using either of the drilling techniques. Forty eight implants of 3.75 mm diameter and 10 mm length were inserted. The dogs were euthanized at 30 and 90 days, and crestal bone loss (CBL) and bone-to-implant contact (BIC) were evaluated. The control group showed maximum temperatures of 35.3 °C ± 1.8 °C, ΔT of 10.4 °C, and a mean time of 100 s/procedure; meanwhile, the test group showed maximum temperatures of 36.7 °C ± 1.2 °C, ΔT of 8.1 °C, and a mean time of 240 s/procedure. After 30 days, CBL values for both groups (test: 1.168 ± 0.194 mm; control: 1.181 ± 0.113 mm) and BIC values (test: 43 ± 2.8%; control: 45 ± 1.3%) were similar, without significant differences (P > 0.05). After 90 days, CBL (test: 1.173 ± 0.187 mm; control: 1.205 ± 0.122 mm) and BIC (test: 64 ± 3.3%; control: 64 ± 2.4%) values were similar, without significant differences (P > 0.05). The BIC values were increased at 90 days in both groups compared with the 30-day period (P < 0.05). Within the limitations of this study, the new hybrid protocol for the preparation of the implant bed without irrigation, increase the temperature similarly to the incremental conventional protocol, and requires twice the time for the completion of the drilling procedure in vitro. Crestal bone loss and bone-to-implant contact in the hybrid drilling protocol are comparable with the conventional drilling protocol and do not affect the osseointegration process in vivo. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-11-01
The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.
ERIC Educational Resources Information Center
Kaneps, Ansis
1977-01-01
Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)
Drilling systems for extraterrestrial subsurface exploration.
Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C
2008-06-01
Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbett, B.S.; Nielson, D.L.; Adams, M.C.
This technical report on the Phase II geothermal exploration of Ascension Island documents the data collected during thermal gradient drilling and the subsequent thermal and fluid chemical investigations. It also documents the completion of the Phase II exploration strategy which was proposed at the end of the Phase I--Preliminary Examination of Ascension Island. The thermal gradient drilling resulted in seven holes which range from 206 to 1750 ft (53-533 m) deep, with a cumulative footage of 6563 ft (2000 m). The drilling procedure and the problems encountered during the drilling have been explained in detail to provide information valuable formore » any subsequent drilling program on the island. In addition, the subsurface geology encountered in the holes has been documented and, where possible, correlated with other holes or the geology mapped on the surface of the island. Temperatures measured in the holes reach a maximum of 130 F (54.4 C) at 1285 ft (391.7 m) in hole GH-6. When the temperatures of all holes are plotted against elevation, the holes can be classed into three distinct groups, those which have no thermal manifestations, those with definite geothermal affinities, and one hole which is intermediate between the other two. From consideration of this information, it is clear that the highest geothermal potential on the island is in the Donkey Flat area extending beneath Middleton Ridge, and in the Cricket Valley area. Because of the greater drilling depths and the remote nature of the Cricket Valley area, it is recommended that future exploration concentrate in the area around Middleton Ridge.« less
Drill cuttings mount formation study
NASA Astrophysics Data System (ADS)
Teh, Su Yean; Koh, Hock Lye
2014-07-01
Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.
NASA Astrophysics Data System (ADS)
Stewart, H. A.; Stevenson, A.; Wilson, M.; Pheasant, I.
2014-12-01
The British Geological Survey (BGS) have developed a number of coring and drilling systems for use in science projects in the UK and internationally. These include 3m and 6m vibrocoring systems; a 5m combined rockdrill and vibrocorer system; an oriented drill designed specifically to recover samples for use in palaeomagnetic studies; and a 55m rockdrill (RockDrill2). Recently, BGS have developed an autonomous, battery-operated vibrocoring system compatible with both the 3m and 6m vibrocorers, which can be used in water depths up to 6000m. Use of a battery system negates the use of an umbilical power cable to operate the vibrocorer, which instead can be deployed using the vessels A-frame and winch. The autonomous battery system comprises six 48V 19Ah batteries connected in series to give a 288V power source, a microprocessor and real-time clock. Data from the sensors are recorded with a time-stamp, giving diagnostic information that can be downloaded once the system is returned to the deck. The vibrocorer is operated via a pre-set program which is set up before deployment.The new system not only allows vibrocoring in greater water depths, but can also be used on smaller vessels where deck space is limited as a separate winch and umbilical is not required. The autonomous system was used for the first time in June 2014 on-board the RV Belgica to acquire samples from 20 sites in the Dangeard and Explorer canyon heads, off the southwest of England in 430m water depth.Another development is the BGS 55m rockdrill (RockDrill2), a remotely operated sampling system capable of coring up to 55m below sea floor in water depths up to 4000m. The rockdrill can be operated via its own launch and recovery system and can be outfitted with additional sensors such as gas flow meters, which have been designed by the BGS for assessing volume of gas hydrate, and down-hole logging tools. The 55m rockdrill has recently been used to sample hydrate-entrained sediments in the Sea of Japan. The maximum coring depth achieved was 32m below sea floor and the system can operate for more than 50 hours on a single deployment. The BGS system will be used in conjunction with the Bremen University (MARUM) MeBo sea-floor rockdrill on future International Ocean Discovery Program (IODP) expeditions.
NASA Astrophysics Data System (ADS)
Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.
2017-04-01
The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of rock strength with temperature. This is different from oven treatments, where an initial increase of strength is typically observed, followed by a steep decrease upon further (slow) oven-heating. Thus, the weakening of sandstone and granite samples due to flame treatments indicates the feasibility of a combined mechanical-thermal drilling system. These results suggest that the new combined method enables improved rates of penetration in hard rocks while reducing the rate of drill tool wear. We also present possible implementations of this combined drilling system in the field. From field test results, advantages and limitations of the proposed new technology are presented, with an emphasis on accessing geothermal energy resources in crystalline basement rocks.
The evaluation of maximum horizontal in-situ stress using the wellbore imagers data
NASA Astrophysics Data System (ADS)
Dubinya, N. V.; Ezhov, K. A.
2016-12-01
Well drilling provides a number of possibilities to improve the knowledge of stress state of the upper layers of the Earth crust. The data obtained from drilling, well logging, core experiments and special tests is used to evaluate the principal stresses' directions and magnitudes. Although the values of vertical stress and minimum horizontal stress may be decently estimated, the maximum horizontal stress remains a major problem. In this study a new method to estimate this value is proposed. The suggested approach is based on the concept of hydraulically conductive and non-conductive fractures near a wellbore (Barton, Zoback and Moos, 1995). It was stated that all the fractures which properties may be acquired from well logging data can be divided into two groups regarding hydraulic conductivity. The fracture properties and the in-situ stress state are put in relationship via the Mohr diagram. This approach was later used by Ito and Zoback (2000) to estimate the magnitude of the maximum horizontal stress from the temperature profiles. In the current study ultrasonic and resistivity borehole imaging are used to estimate the magnitude of maximum horizontal stress in rather precise way. After proper interpretation one is able to obtain orientation and hydraulic conductivity for each fracture appeared at the images. If the proper profiles of vertical and minimum horizontal stresses are known all the fractures may be analyzed at the Mohr diagram. Alteration of maximum horizontal stress profile grants an opportunity to adjust it so the conductive fractures at the Mohr diagram fit the data from imagers' interpretation. The precision of the suggested approach was evaluated for several oil production wells in Siberia with decent wellbore stability models. It appeared that the difference between maximum horizontal stress estimated in a suggested approach and the values obtained from drilling reports did not exceed 0.5 MPa. Thus the proposed approach may be used to evaluate the values of maximum horizontal stress using the wellbore imagers' data. References Barton, C.A., Zoback, M.D., Moos, D. Fluid flow along potentially active faults in crystalline rock - Geology, 1995. T. Ito, M. Zoback, Fracture permeability and in situ stress to 7 km depth in the KTB Scientific Drillhole, Geophysical Research Letters, 2000.
Rapid ice drilling with continual air transport of cuttings and cores: General concept
NASA Astrophysics Data System (ADS)
Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.
2017-12-01
This article describes the investigation of the feasibility of rapid drilling in ice sheets and glaciers to depths of up to 600 m, with cuttings and cores continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and cores from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long ice core should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and cores transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through ice, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.
Do increased drilling speed and depth affect bone viability at implant site?
Tabrizi, Reza; Nazhvanai, Ali Dehghani; Farahmand, Mohammad Mahdi; Pourali, Sara Yasour; Hosseinpour, Sepanta
2017-01-01
The aim of this study was to assess the effect of increasing the drilling speed and depth during implant site preparation on bone viability. In this prospective cohort study, participants were divided into four groups based on the speed and depth of drilling at the first molar site in the mandible. Participants underwent drilling at Group 1: 1000 rpm and 10 mm depth, Group 2: 1500 rpm and 10 mm, Group 3: 1000 rpm and 13 mm, and Group 4: 1500 rpm and 13 mm. Obtained specimens were assessed histologically to the qualitative measurement of bone viability, and the percentage of vital bone were evaluated by histomorphometric analysis. ANOVA was used to compare age and the mean percentage of vital bone and Tukey's test as post hoc was applied for pairwise comparison of groups. A total of 100 participants were studied in four groups (25 subjects in each group). Histological evaluation revealed a low level of bone viability maintenance in all groups. Histomorphometric analysis showed the mean percentage of vital bone was 9.5 ± 3.91% in Group 1, 8.86 ± 3.84% in Group 2, 8.32 ± 3.80% in Group 3, and 4.27 ± 3.22% in Group 4. A significant difference was noted in the mean percentage of bone viability among the four groups ( P = 0.001). It seems that increasing the drilling speed or depth during dental implant site preparation does not affect the mean percentage of cell viability, while the increase in both depth and speed may decrease the percentage of viable cells.
Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.
Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Kotev, Vladimir; Delchev, Kamen; Zagurski, Kazimir; Vitkov, Vladimir
2013-12-01
Many orthopaedic operations involve drilling and tapping before the insertion of screws into a bone. This drilling is usually performed manually, thus introducing many problems. These include attaining a specific drilling accuracy, preventing blood vessels from breaking, and minimizing drill oscillations that would widen the hole. Bone overheating is the most important problem. To avoid such problems and reduce the subjective factor, automated drilling is recommended. Because numerous parameters influence the drilling process, this study examined some experimental methods. These concerned the experimental identification of technical drilling parameters, including the bone resistance force and temperature in the drilling process. During the drilling process, the following parameters were monitored: time, linear velocity, angular velocity, resistance force, penetration depth, and temperature. Specific drilling effects were revealed during the experiments. The accuracy was improved at the starting point of the drilling, and the error for the entire process was less than 0.2 mm. The temperature deviations were kept within tolerable limits. The results of various experiments with different drilling velocities, drill bit diameters, and penetration depths are presented in tables, as well as the curves of the resistance force and temperature with respect to time. Real-time digital indications of the progress of the drilling process are shown. Automatic bone drilling could entirely solve the problems that usually arise during manual drilling. An experimental setup was designed to identify bone drilling parameters such as the resistance force arising from variable bone density, appropriate mechanical drilling torque, linear speed of the drill, and electromechanical characteristics of the motors, drives, and corresponding controllers. Automatic drilling guarantees greater safety for the patient. Moreover, the robot presented is user-friendly because it is simple to set robot tasks, and process data are collected in real time. Copyright © 2013 John Wiley & Sons, Ltd.
Osteosynthesis for clavicle fractures: How close are we to penetration of neurovascular structures?
Stillwell, A; Ioannou, C; Daniele, L; Tan, S L E
2017-02-01
Risks associated with drill plunging are well recognised in clavicle osteosynthesis. To date no studies have described plunge depth associated with clavicle osteosynthesis. To determine whether plunge depth associated with clavicle osteosynthesis is great enough to penetrate neurovascular structures and whether surgical experience reduces the risk of neurovascular injury METHOD: Cadaveric clavicles were pressed into spongy phenolic foam to allow measurement of drill bit penetration beyond the far cortex (plunge depth). 15 surgeons grouped according to experience were asked to drill a single hole in the medial, middle and lateral clavicle in 2 specimens each. Each surgeon used fully a charged standard Stryker drill with a new 2.6mm drill bit and guide. Plunge depths were measured in 0.5mm increments. Depth measurements were compared amongst groups and to previously documented distances to neurovascular structures as outlined by Robinson et al. Kruskal-Wallis test was used for overall comparison and Mann-Whitney U test was used for comparing the groups individually. Mean plunge depth across all groups was 3.4mm, (0.5-6.5), 4.0mm (1mm-8.5mm) and 4.0mm (0.5mm-15mm) in the medial, middle and lateral clavicle. Plunge depths were greater than previously documented distances to the subclavian vein at the medial clavicle on nine occasions. Plunge depths in the middle and lateral clavicle were well within the previously documented distances from neurovascular structures. There was no correlation between level of experience and median plunge depth (p=0.18). However, inexperienced surgeons plunged 1mm greater than intermediate and experienced surgeons (p=0.026). There was one significant outlier; a 15mm plunge depth by an inexperienced surgeon in the lateral clavicle. Clavicle osteosynthesis has a relatively high risk of neurovascular injury. Plunge depths through the clavicle often exceed the distance of neurovascular structures, especially in the medial clavicle. A thorough understanding of the anatomy of these neurovascular structures and methods to prevent excessive plunging is important prior to undertaking clavicle osteosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Daniels, J.J.; Olhoeft, G.R.; Scott, J.H.
1984-01-01
Laboratory and well log physical property measurements show variations in the mineralogy with depth in UPH-3. Gamma ray values generally decrease with depth in the drill hole, corresponding to a decrease in the felsic mineral components of the granite. Correspondingly, an increase with depth in mafic minerals in the granite is indicated by the magnetic susceptibility, and gamma ray measurements. These mineralogic changes indicated by the geophysical well logs support the hypothesis of fractionation during continuous crystallization of the intrusive penetrated by UPH-3. Two fracture zones, and an altered zone within the granite penetrated by drill hole UPH-3 are defined by the physical property measurements. An abnormally low magnetic susceptibility response in the upper portion of the drill hole can be attributed to alteration of the rock adjacent to the sediments overlying the granite. Fracture zones can be identified from the sonic velocity, neutron, and resistivity measurements. A fracture zone, characterized by low resistivity values and low neutron values, is present in the depth interval from 1150 to 1320 m. Low magnetic susceptibility and high gamma ray values indicate the presence of felsic-micaceous pegmatites within this fracture zone. An unfractured region present from a depth of 1380 m to the bottom of the hole is characterized by an absence of physical property variations. The magnetic susceptibility and gamma ray measurements indicate a change in the amount of mafic minerals at the base of this otherwise homogenous region of the drilled interval. Abrupt changes and repeated patterns of physical properties within the drill hole may represent interruptions in the crystallization process of the melt or they may be indicative of critical temperatures for specific mineral assemblages within the intrusive.
43 CFR 3286.1 - Model Unit Agreement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... continue such drilling diligently until the ___ formation has been tested or until at a lesser depth... Operator shall not in any event be required to drill said well to a depth in excess of ___ feet. 11.5The... assert any legal or constitutional right or defense pertaining to the validity or invalidity of any law...
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,
1994-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, S.H.; Younker, L.W.; Zoback, M.D.
1995-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.
NASA Astrophysics Data System (ADS)
Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang
2014-05-01
SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.
NASA Astrophysics Data System (ADS)
Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.
2017-12-01
The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (< 200 m water depth) developed along the northwestern Australian margin is influenced by the Australian Monsoon and Leeuwin Current (one of branch of the Indonesian Throughflow). The International Ocean Discovery Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.
Kocaoglu, Baris; Ulku, Tekin Kerem; Sayilir, Safiye; Ozbaydar, Mehmet Ugur; Bayramoglu, Alp; Karahan, Mustafa
2017-10-01
The aim of our study was to evaluate the risk of medial glenoid perforation and possible injury to suprascapular nerve during arthroscopic SLAP repair using lateral transmuscular portal. Ten cadaveric shoulder girdles were isolated and drilled at superior glenoid rim from both anterior-superior portal (1 o'clock) and lateral transmuscular portal (12 o'clock) for SLAP repairs. Drill hole depth was determined by the manufacturer's drill stop (20 mm), and any subsequent drill perforations through the medial bony surface of the glenoid were directly confirmed by dissection. The bone tunnel depth and subsequent distance to the suprascapular nerve, scapular height and width, were compared for investigated locations. Four perforations out of ten (40 %) occurred through anterior-superior portal with one associated nerve injury. One perforation out of ten (10 %) occurred through lateral transmuscular portal without any nerve injury. The mean depth was calculated as 17.6 mm (SD 3) for anterior-superior portal and 26.5 mm (SD 3.6) for lateral transmuscular portal (P < 0.001). It is anatomically possible that suprascapular nerve could sustain iatrogenic injury during labral anchor placement during SLAP repair. However, lateral transmuscular portal at 12 o'clock drill entry location has lower risk of suprascapular nerve injury compared with anterior-superior portal at 1 o'clock drill entry location.
NASA Astrophysics Data System (ADS)
Hamada, Y.; Kitamura, M.; Yamada, Y.; Sanada, Y.; Moe, K.; Hirose, T.
2016-12-01
In-situ rock properties in/around seismogenic zone in an accretionary prism are key parameters to understand the development mechanisms of an accretionary prism, spatio-temporal variation of stress state, and so on. For the purpose of acquiring continuous-depth-profile of in-situ formation strength in an accretionary prism, here we propose the new method to evaluate the in-situ rock strength using drilling performance property. Drilling parameters are inevitably obtained by any drilling operation even in the non-coring intervals or at challenging environment where core recovery may be poor. The relationship between the rock properties and drilling parameters has been proposed by previous researches [e.g. Teale 1964]. We introduced the relationship theory of Teale [1964], and developed a converting method to estimate in-situ rock strength without depending on uncertain parameters such as weight on bit (WOB). Specifically, we first calculated equivalent specific toughness (EST) which represents gradient of the relationship between Torque energy and volume of penetration at arbitrary interval (in this study, five meters). Then the EST values were converted into strength using the drilling parameters-rock strengths correlation obtained by Karasawa et al. [2002]. This method was applied to eight drilling holes in the Site C0002 of IODP NanTroSEIZE in order to evaluate in-situ rock strength in shallow to deep accretionary prism. In the shallower part (0 - 300 mbsf), the calculated strength shows sharp increase up to 20 MPa. Then the strength has approximate constant value to 1500 mbsf without significant change even at unconformity around 1000 mbsf (boundary between forearc basin and accretionary prism). Below that depth, value of the strength gradually increases with depth up to 60 MPa at 3000 mbsf with variation between 10 and 80 MPa. Because the calculated strength is across approximately the same lithology, the increase trend can responds to the rock strength. This strength-depth curve correspond reasonably well with the strength data of core and cutting samples collected from hole C0002N and C0002P [Kitamura et al., 2016 AGU]. These results show the validity of the method evaluating in-situ strength from the drilling parameters.
Goldstein, F.J.; Weight, W.D.
1982-01-01
The Idaho National Engineering Laboratory (INEL) covers about 890 square miles of the eastern Snake River Plain, in southeastern Idaho. The eastern Snake River Plain is a structural basin which has been filled with thin basaltic lava flows, rhyolitic deposits, and interbedded sediments. These rocks form an extensive ground-water reservoir known as the Snake River Plain aquifer. Six wells were drilled and two existing wells were deepened at the INEL from 1969 through 1974. Interpretation of data from the drilling program confirms that the subsurface is dominated by basalt flows interbedded with layers of sediment, cinders, and silicic volcanic rocks. Water levels in the wells show cyclic seasonal fluctuations of maximum water levels in winter and minimum water levels in mid-summer. Water levels in three wells near the Big Lost River respond to changes in recharge to the Snake River Plain aquifer from the Big Lost River. Measured water levels in multiple piezometers in one well indicate increasing pressure heads with depth. A marked decline in water levels in the wells since 1977 is attributed to a lack of recharge to the Snake River Plain aquifer.
Preparatory Drilling Test on Martian Target Windjana
2014-04-30
NASA Curiosity Mars rover completed a shallow mini drill test April 29, 2014, in preparation for full-depth drilling at a rock target called Windjana. The hole results from the test is 0.63 inch across and about 0.8 inch deep.
Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun
2016-11-01
This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Timoshchuk, Mari-Alina; Zhang, Liang; Dickinson, Brian A.; Ridge, Jeremy S.; Kim, Amy S.; Baltuck, Camille T.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.
2014-02-01
The current rise in childhood caries worldwide has increased the demand for portable technologies that can quickly and accurately detect and diagnose early stage carious lesions. These lesions, if identified at an early stage, can be reversed with remineralization treatments, education, and improvements in home care. A multi-modal optical prototype for detecting and diagnosing occlusal caries demineralization in vivo has been developed and pilot tested. The device uses a 405-nm laser as a scanned illumination source to obtain high resolution and high surface contrast reflectance images, which allows the user to quickly image and screen for any signs of demineralized enamel. When a suspicious region is located, the device can be switched to perform dual laser fluorescence spectroscopy using 405-nm and 532-nm laser excitations. These spectra are used to compute an auto-fluorescence (AF) ratio of the suspicious region and the percent difference of AF ratios from a healthy region of the same tooth. The device was tested on 7 children's teeth in vivo with clinically diagnosed carious lesions. Lesion depth was then visually estimated from the video image using the 405-nm scanned light source, and within a month the maximum drill depth was assessed by a clinician. The researcher and clinicians were masked from previous measurements in a blinded study protocol. Preliminary results show that the ratiometric percent difference measurement of the AF spectrum of the tooth correlates with the severity of the demineralization as assessed by the clinician after drilling.
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
NASA Astrophysics Data System (ADS)
Riedel, M.; Collett, T. S.
2017-07-01
A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.
Riedel, Michael; Collett, Timothy S.
2017-01-01
A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.
Summary of moderate depth lunar drill development program from its conception to 1 July 1972
NASA Technical Reports Server (NTRS)
1972-01-01
The results are summarized of a program aimed at the development of a lunar drill capable of taking lunar surface cores to depths of at least 100 feet. The technologies employed in the program are described along with the accomplishments and problems encountered. Recommendations are included for future concept improvements and developments.
Mechanical specific energy versus depth of cut in rock cutting and drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
Mechanical specific energy versus depth of cut in rock cutting and drilling
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac; ...
2017-12-07
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon
Bargar, Keith E.; Keith, Terry E.
1999-01-01
Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.
NASA Astrophysics Data System (ADS)
Raziperchikolaee, S.; Kelley, M. E.; Burchwell, A.
2017-12-01
Understanding petrophysical and geomechanical parameters of shale formations and their variations across the basin are necessary to optimize the design of a hydraulic fracturing program aimed at enhancing long term oil/gas production from unconventional wells. Dipole sonic logging data (compressional-wave and shear-wave slowness) from multiple wells across the study area, coupled with formation bulk density log data, were used to calculate dynamic elastic parameters, including shear modulus, bulk modulus, Poisson's ratio, and Young's modulus for the shale formations. The individual-well data were aggregated into a single histogram for each parameter to gain an understanding of the variation in the properties (including brittleness) of the Utica Point-Pleasant formations across the entire study area. A crossplot of the compressional velocity and bulk density and a crossplot between the compressional velocity, the shear velocity, and depth of the measurement were used for a high level petrophysical characterization of the Utica Point-Pleasant. Detailed interpretation of drilling induced fractures recorded in image logs, and an analysis of shear wave anisotropy using multi-receiver sonic logs were also performed. Orientation of drilling induced fractures was measured to determine the maximum horizontal stress azimuth. Also, an analysis of shear wave anisotropy to predict stress anisotropy around the wellbore was performed to determine the direction of maximum horizontal stress. Our study shows how the detailed interpretation of borehole breakouts, drilling induced fractures, and sonic wave data can be used to reduce uncertainty and produce a better hydraulic fracturing design in the Utica Point Pleasant formations across the northern Appalachian Basin region of Ohio.
Real-time depth measurement for micro-holes drilled by lasers
NASA Astrophysics Data System (ADS)
Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung
2010-02-01
An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.
NASA Technical Reports Server (NTRS)
Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark
1989-01-01
The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.
The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)
NASA Technical Reports Server (NTRS)
Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.
2012-01-01
The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.
NASA Astrophysics Data System (ADS)
Robertson, R.; Bowman, T.; Eagle, J. L.; Fisher, L.; Mankowski, K.; McGrady, N.; Schrecongost, N.; Voll, H.; Zulfiqar, A.; Herman, R. B.
2016-12-01
Several small geophysical surveys were conducted on the Chukchi Sea ice just offshore from the Naval Arctic Research Laboratory near Barrow, Alaska, in March, 2016. The goal was to investigate a possible correlation between the surface temperature and the thickness of the sea ice, as well as to test a potential new method for more accurately determining ice thickness. Surveys were conducted using a capacitively coupled resistivity array, a custom built thermal sensor array sled, ground penetrating radar (GPR), and an ice drill. The thermal sensor array was based on an Arduino microcontroller. It used an infrared (IR) sensor to determine surface temperature, and thermistor-based sensors to determine vertical air temperatures at 6 evenly spaced heights up to a maximum of 1.5 meters. Surface temperature (IR) data show possible correlations with ice drill, resistivity, and GPR data. The vertical air sensors showed almost no variation for any survey line which we postulate is due to the constant wind during each survey. Ice drill data show ice thickness along one 200 meter line varied from 79-95 cm, with an average of 87 cm. The thickness appears to be inversely correlated to surface temperatures. Resistivity and IR data both showed abrupt changes when crossing from the shore to the sea ice along a 400 meter line. GPR and IR data showed similar changes along a separate 900 meter line, suggesting that surface temperature and subsurface composition are related. Resistivity data were obtained in two locations by using the array in an expanding dipole-dipole configuration with 2.5 meter dipoles. The depth to the ice/water boundary was calculated using a "cumulative resistivity" plot and matched the depths obtained via the ice drill to within 2%. This has initiated work to develop a microcontroller-based resistivity array specialized for thickness measurements of thin ice.
NASA Astrophysics Data System (ADS)
Tün, M.; Pekkan, E.; Özel, O.; Guney, Y.
2016-10-01
Amplification can occur in a graben as a result of strong earthquake-induced ground motion. Thus, in seismic hazard and seismic site response studies, it is of the utmost importance to determine the geometry of the bedrock depth. The main objectives of this study were to determine the bedrock depth and map the depth-to-bedrock ratio for use in land use planning in regard to the mitigation of earthquake hazards in the Eskişehir Basin. The fundamental resonance frequencies (fr) of 318 investigation sites in the Eskişehir Basin were determined through case studies, and the 2-D S-wave velocity structure down to the bedrock depth was explored. Single-station microtremor data were collected from the 318 sites, as well as microtremor array data from nine sites, seismic reflection data from six sites, deep-drilling log data from three sites and shallow drilling log data from ten sites in the Eskişehir Graben. The fundamental resonance frequencies of the Eskişehir Basin sites were obtained from the microtremor data using the horizontal-to vertical (H/V) spectral ratio (HVSR) method. The phase velocities of the Rayleigh waves were estimated from the microtremor data using the spatial autocorrelation (SPAC) method. The fundamental resonance frequency range at the deepest point of the Eskişehir Basin was found to be 0.23-0.35 Hz. Based on the microtremor array measurements and the 2-D S-wave velocity profiles obtained using the SPAC method, a bedrock level with an average velocity of 1300 m s-1 was accepted as the bedrock depth limit in the region. The log data from a deep borehole and a seismic reflection cross-section of the basement rocks of the Eskişehir Basin were obtained and permitted a comparison of bedrock levels. Tests carried out using a multichannel walk-away technique permitted a seismic reflection cross-section to be obtained up to a depth of 1500-2000 m using an explosive energy source. The relationship between the fundamental resonance frequency in the Eskişehir Basin and the results of deep drilling, shallow drilling, shear wave velocity measurement and sedimentary cover depth measurement obtained from the seismic reflection section was expressed in the form of a nonlinear regression equation. An empirical relationship between fr, the thickness of sediments and the bedrock depth is suggested for use in future microzonation studies of sites in the region. The results revealed a maximum basin depth of 1000 m, located in the northeast of the Eskişehir Basin, and the SPAC and HVSR results indicated that within the study area the basin is characterized by a thin local sedimentary cover with low shear wave velocity overlying stiff materials, resulting in a sharp velocity contrast. The thicknesses of the old Quaternary and Tertiary fluvial sediments within the basin serve as the primary data sources in seismic hazard and seismic site response studies, and these results add to the body of available seismic hazard data contributing to a seismic microzonation of the Eskişehir Graben in advance of the severe earthquakes expected in the Anatolian Region.
NASA Astrophysics Data System (ADS)
Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.
2011-12-01
The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.
Research into robotic automation of drilling equipment by the Institute of Mining, UB RAS
NASA Astrophysics Data System (ADS)
Regotunov, AS; Sukhov, RI
2018-03-01
The article discusses the issues connected with the development of instrumentation for the express-determination of strength characteristics of rocks during blasthole drilling in open pit mines. The trial results of the instrumentation are reported in terms of the drilling rate–energy content interrelation determined in the analyses of experimental drilling block data and by the digital model of rock distribution in depth versus drilling complexity index.
Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide
Ken Oglesby
2010-01-01
Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI
Condition assessment of timber bridges. 1, Evaluation of a micro-drilling resistance tool
Brian K. Brashaw; Robert J. Vatalaro; James P. Wacker; Robert J. Ross
2005-01-01
The research presented in this report was conducted to evaluate the accuracy and reliability of a commercially available micro-drilling resistance device, the IML RESI F300-S (Instrument Mechanic Labor, Inc., Kennesaw, Georgia), in locating deteriorated areas in timber bridge members. The device records drilling resistance as a function of drilling depth, which allows...
NASA Astrophysics Data System (ADS)
Quest, D.; Gayer, C.; Hering, P.
2012-01-01
Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.
NASA Astrophysics Data System (ADS)
Ya, Min; Dai, Fulong; Xie, Huimin; Lü, Jian
2003-12-01
Hole-drilling method is one of the most convenient methods for engineering residual stress measurement. Combined with moiré interferometry to obtain the relaxed whole-field displacement data, hole-drilling technique can be used to solve non-uniform residual stress problems, both in-depth and in-plane. In this paper, the theory of moiré interferometry and incremental hole-drilling (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation. An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented. Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.
Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.
1991-01-01
Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.
Frisardi, Gianni; Barone, Sandro; Razionale, Armando V; Paoli, Alessandro; Frisardi, Flavio; Tullio, Antonio; Lumbau, Aurea; Chessa, Giacomo
2012-05-29
A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry. In this work, a CT image-based approach, combined with the Finite Element Method (FEM), has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA=2.8 mm, DB=3.3 mm, and DC=3.8 mm) with depth L=12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L=11 mm and diameter D=4 mm. The maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ=2.46, 0.51 and 0.49 for the three models, respectively. This study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique.Further studies could aim at understanding how different drill shapes can determine the optimal press-fit condition with an equally distributed preload on both the cortical and trabecular structure around the implant.
2012-01-01
Background A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry. Methods In this work, a CT image-based approach, combined with the Finite Element Method (FEM), has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA = 2.8 mm, DB = 3.3 mm, and DC = 3.8 mm) with depth L = 12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L = 11 mm and diameter D = 4 mm. Results The maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ = 2.46, 0.51 and 0.49 for the three models, respectively. Conclusions This study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique. Further studies could aim at understanding how different drill shapes can determine the optimal press-fit condition with an equally distributed preload on both the cortical and trabecular structure around the implant. PMID:22642768
Template-guided vs. non-guided drilling in site preparation of dental implants.
Scherer, Uta; Stoetzer, Marcus; Ruecker, Martin; Gellrich, Nils-Claudius; von See, Constantin
2015-07-01
Clinical success of oral implants is related to primary stability and osseointegration. These parameters are associated with delicate surgical techniques. We herein studied whether template-guided drilling has a significant influence on drillholes diameter and accuracy in an in vitro model. Fresh cadaveric porcine mandibles were used for drilling experiments of four experimental groups. Each group consisted of three operators, comparing guide templates for drilling with free-handed procedure. Operators without surgical knowledge were grouped together, contrasting highly experienced oral surgeons in other groups. A total of 180 drilling actions were performed, and diameters were recorded at multiple depth levels, with a precision measuring instrument. Template-guided drilling procedure improved accuracy on a very significant level in comparison with free-handed drilling operation (p ≤ 0.001). Inaccuracy of free-handed drilling became more significant in relation to measurement depth. High homogenic uniformity of template-guided drillholes was significantly stronger than unguided drilling operations by highly experienced oral surgeons (p ≤ 0.001). Template-guided drilling procedure leads to significantly enhanced accuracy. Significant results compared to free-handed drilling actions were achieved, irrespective of the clinical experience level of the operator. Template-guided drilling procedures lead to a more predictable clinical diameter. It shows that any set of instruments has to be carefully chosen to match the specific implant system. The current in vitro study is implicating an improvement of implant bed preparation but needs to be confirmed in clinical studies.
Site Report for USGS Test Holes Drilled at Cape Charles, Northampton County, Virginia, in 2004
Gohn, Gregory S.; Sanford, Ward E.; Powars, David S.; Horton, J. Wright; Edwards, Lucy E.; Morin, Roger H.; Self-Trail, Jean M.
2007-01-01
The U.S. Geological Survey drilled two test holes near Cape Charles, Virginia, during May and June 2004, as part of an investigation of the buried, late Eocene Chesapeake Bay impact structure. The first hole is designated as the USGS-Sustainable Technology Park test hole #1 (USGS-STP1). This test hole was abandoned at a depth of 300 ft; cuttings samples were collected, but no cores or geophysical logs were acquired. The second hole is designated as the USGS-Sustainable Technology Park test hole #2 (USGS-STP2). This test hole was drilled to a depth of 2,699 ft. Cores were collected between depths of 1,401.7 ft and 1,420.7 ft and between 2,440.0 ft and 2,699.0 ft. Cuttings samples were collected from the uncored intervals below 280-ft depth. Interim sets of geophysical logs were acquired during the drilling operation, and one final set was acquired at the end of drilling. Two wells were installed in the USGS-STP2 test hole. The deep well (designated 62G-24) was screened between 2,260 ft and 2,280 ft, and the shallow well (designated 62G-25) was screened between 1,360 ft and 1,380 ft. Ground-water salinities stabilized at 40 parts per thousand for the deep well and 20 parts per thousand for the shallow well. The geologic section encountered in the test holes consists of three main units: (1) Eocene, Oligocene, Miocene, Pliocene, and Pleistocene sands and clays are present between land surface and a depth of 1,163 ft; (2) sediment-clast breccias of the impact structure are present between depths of 1,163 ft and 2,150 ft; and (3) crystalline-clast breccias and cataclastic gneiss of the impact structure are present between depths of 2,150 ft and 2,699 ft.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.
2008-12-01
The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.
AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)
Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...
Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana
2013-07-01
The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.
Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG.
Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan
2015-11-24
To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the "HYSY-981" ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results.
Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG
Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan
2015-01-01
To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the “HYSY-981” ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results. PMID:26610517
CT Scans of Cores Metadata, Barrow, Alaska 2015
Katie McKnight; Tim Kneafsey; Craig Ulrich
2015-03-11
Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.
Real Time Mud Gas Logging During Drilling of DFDP-2B
NASA Astrophysics Data System (ADS)
Mathewson, L. A.; Toy, V.; Menzies, C. D.; Zimmer, M.; Erzinger, J.; Niedermann, S.; Cox, S.
2015-12-01
The Deep Fault Drilling Project (DFDP) aims to improve our understanding of the Alpine Fault Zone, a tectonically active mature fault system in New Zealand known to rupture in large events, by deep scientific drilling. The borehole DFDP-2B approached the Alpine Fault at depth, reaching a final depth of 892 m (820 m true vertical depth). Online gas analysis (OLGA) while drilling tracked changes in the composition of gases extracted from the circulating drill mud. The composition of fluids from fault zones can provide information about their origins, flow rates and -paths, fluid-rock interactions along these paths, and the permeability structure of the faulted rock mass. Apart from an atmospheric input, the gases in drilling mud derive from the pore space of rock, crushed at the drill bit, and from permeable layers intersected by the borehole. The rapid formation of mud wall cake seals the borehole from further fluid inflow, hence formation-derived gases enter mostly at the depth of the drill bit. OLGA analyses N2, O2, Ar, CO2, CH4, He, and H2 on a mass spectrometer, hydrocarbons CH4, C2H6, C3H8, i-C4H10, and n-C4H10 on a gas chromatograph, and Rn using a lucas-cell detector. Gas was sampled for offline analyses on noble gas and stable isotopes to complement the OLGA dataset. The principle formation-derived gases found in drilling mud during drilling of DFDP-2 were CO2 and CH4, with smaller component of H2 and He2. High radon activity is interpreted to reflect intervals of active fluid flow through highly fractured and faulted rock. 3He/4He values in many samples were extremely air-contaminated, i.e. there was almost no excess of non-atmospheric He. The 3He/4He values measured at 236 m and 610 m, which are the only analyses with uncertainties <100%, are very similar to those measured in hot springs along the Alpine Fault, e.g. Fox River (0.64 Ra), Copland (0.42 Ra), Lower Wanganui (0.81 Ra). We will compare these data to those gathered using OLGA and discuss the implications.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., without regard to the drilling depth of the well producing the gas or oil. (b) If you have a royalty... qualified wells. Example to paragraph (b): You have two shallow oil wells on your lease. Then you drill a... suspension supplements from drilling one or two certified unsuccessful wells on my lease? 203.46 Section 203...
New Era of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.
2014-12-01
The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.
CHIP MORPHOLOGY AND HOLE SURFACE TEXTURE IN THE DRILLING OF CAST ALUMINUM ALLOYS. (R825370C057)
The effects of cutting fluid and other process variables on chip morphology when drilling cast aluminium alloys are investigated. The effects of workpiece material, speed, feed, hole depth, cutting-fluid presence and percentage oil concentration, workpiece temperature, drill t...
40 CFR 146.14 - Information to be considered by the Director.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., logging procedures, deviation checks, and a drilling, testing, and coring program; and (16) A certificate... information listed below which are current and accurate in the file. For a newly drilled Class I well, the..., construction, date drilled, location, depth, record of plugging and/or completion, and any additional...
Lateral capacity of rock sockets in limestone under cyclic and repeated loading : technical summary.
DOT National Transportation Integrated Search
2010-08-01
Drilled shafts are a type of deep foundation that is capable of supporting very large vertical and lateral loads. Drilled shafts are constructed by drilling a hole from the ground surface to the target depth or formation and filling the hole with rei...
Burns, W. Matthew; Hayba, Daniel O.; Rowan, Elisabeth L.; Houseknecht, David W.
2007-01-01
The reconstruction of burial and thermal histories of partially exhumed basins requires an estimation of the amount of erosion that has occurred since the time of maximum burial. We have developed a method for estimating eroded thickness by using porosity-depth trends derived from borehole sonic logs of wells in the Colville Basin of northern Alaska. Porosity-depth functions defined from sonic-porosity logs in wells drilled in minimally eroded parts of the basin provide a baseline for comparison with the porosity-depth trends observed in other wells across the basin. Calculated porosities, based on porosity-depth functions, were fitted to the observed data in each well by varying the amount of section assumed to have been eroded from the top of the sedimentary column. The result is an estimate of denudation at the wellsite since the time of maximum sediment accumulation. Alternative methods of estimating exhumation include fission-track analysis and projection of trendlines through vitrinite-reflectance profiles. In the Colville Basin, the methodology described here provides results generally similar to those from fission-track analysis and vitrinite-reflectance profiles, but with greatly improved spatial resolution relative to the published fission-track data and with improved reliability relative to the vitrinite-reflectance data. In addition, the exhumation estimates derived from sonic-porosity logs are independent of the thermal evolution of the basin, allowing these estimates to be used as independent variables in thermal-history modeling.
Muffly, Matthew; Winegar, Corbett; Miller, Mark Carl; Altman, Gregory
2018-05-03
Using fluoroptic thermography, temperature was measured during pin site drilling of intact cortical human cadaver bone with a combination of one-step drilling, graduated drilling, and one-step drilling with irrigation of 5.0 mm Schanz pins. A 1440 rpm constant force drilling was used to on tibial diaphyses while a sensor probe placed 0.5 mm adjacent to the drill hole measured temperature. Four drilling techniques on each of the tibial segments were performed: 3.5mm drill bit, 5.0mm Schanz pin, 5.0 mm Schanz pin in 3.5 mm pre-drilled entry site, 5.0 mm Schanz pin utilizing irrigation. One-step drilling using a 5.0 mm Schanz pin without irrigation produced a temperature that exceeded the threshold temperature for heat-induced injury in 5 of the 8 trials. With the other three drilling techniques, only one in24 trials produced a temperature that would result in thermal injury. This difference was found to be statistically significant (p = 0.003). The use of irrigation significantly reduced the maximum bone tissue temperature in one-step drilling of a 5.0 mm Schanz pin (p = 0.02). One-step drilling with a 3.5 mm drill bit achieved maximum temperature significantly faster than graduated drilling and drilling with irrigation using a 5.0 mm Schanz pin (p <0.01). One-step drilling with a 5.0 mm Schanz pin into cortical bone can produce temperatures that can lead to heat-induced injury. Irrigation alone can reduce the temperatures sufficiently to avoid damage. Pre-drilling can increase temperatures significantly but the extent of any injury should be small.
NASA Astrophysics Data System (ADS)
Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.
2007-12-01
Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (<5m) were drilled using Rockdrill 1 of the British Geological Survey 1 into the heavily sediment-covered deposit recovering 11 m of semi-massive to massive sulfides. Maximum recovery within a single core was 4.8 m of massive sulfides/sulfates with abundant late native sulfur overprint. The deposit is open to all sides and to depth since all drill holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the presence of an anhydrite seal to a larger hydrothermal system at depth. The aim of this study is to understand the role that magmatic volatiles and phase separation play in the formation of these precious and trace element-rich shallow water (<750m) hydrothermal systems in the volcanic arcs of the Tyrrhenian Sea.
Completion Report for Well ER-EC-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2004-10-01
Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to amore » total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.« less
PROMESS 1: Past Global Changes Investigated by Drilling Mediterranean Continental Margins
NASA Astrophysics Data System (ADS)
Berne, S.
2004-12-01
Between June, 24th and July, 22nd, 2004, a team of European scientists embarked from Brindisi (Italy) to Barcelona (Spain) onboard the Russian vessel "Bavenit", operated by the Dutch geotechnical company FUGRO, for a drilling expedition in the Adriatic Sea and the NW Mediterranean Sea. The purpose of this cruise was to collect long sediment sections and in situ measurements from two deltaic margins where the history of global changes during the last ca. 400 kyr is particularly well preserved. In the Adriatic, two boreholes were drilled at site PRAD1 (water depth 184 m), where the objective was to study the record of the last 4 glacial cycles. A pilot hole was first drilled for assessing the risk of shallow gases, a downhole logging was carried out in this borehole. A second site allowed continuous coring to the targeted depth (71m below sea-floor) with excellent recovery (better than 95%). Very preliminary interpretation indicates that seismic sequences previously identified correspond to 100 kyr glacial cycles. Downhole logging and physical properties of cores allow to identify magnetic events, and tephras. Site PRAD2 was devoted to the study of the recent most sediments (last 12,000 yrs) near the coastline, at a water depth of 56m. The targeted depth was 32 m below sea floor, sufficient to obtain a good record for the last ca 12,000 years. All together, six boreholes were drilled at PRAD2, including a pilot hole, one for continuous sediment recovery, and additional holes for in situ geotechnical tests and sampling. One of the objectives of these tests is to determine whether the wavy features shaping the sedimentary sequences are caused by near-bottom currents or result from liquefaction of unstable sediments triggered by earthquakes or storms. Site PRGL1 in the Gulf of Lion is at 298 m water depth, and the targeted depth below sea floor was 300 m, allowing to reach an expected age of about 430 kyr BP. A pilot hole was drilled down to 310 mbsf, and logged. Two geotechnical boreholes were drilled, allowing tests and measurements to a depth of 150 mbsf. Another borehole was drilled for continuous coring to the depth of 300 mbsf. The recovery was excellent (>95%). Preliminary estimations of coccolithophore assemblages provide a general time-frame for this site. Marine isotope stage (MIS) 12 was reached at the bottom of the hole. We have also good estimates of the position of the intervals corresponding to MIS 2-3, MIS 4, MIS 5a-d, and the transition between MIS 8 and 7. This shows that, as in the Adriatic Sea, seismic bounding surfaces are linked to 100 kyr cycles, that modify lithology and sedimentation rates on the upper slope. The presence of coarser sediment at the end of each "forced regression", and the occurrence of some biogenic gas, trapped by the overlying clayey sediments deposited during the ensuing warm period, is likely at the origin of seismic anomalies. Site PRGL2 is at 103 m water depth, an area where glacial shorelines that formed duringthe last ca. 500 kyr are the best preserved. A CPTU borehole was first drilled, followed by a sampling borehole, down to 100 mbsf. As expected, many sandy intervals were encountered, but the overall recovery was however quite good, in the order of 82%. Gamma ray downhole logging was performed in the drill pipe afterward. PROMESS 1 is an European Community funded project of the 5th framework programme (EVR1-2001-41). It belongs to the OMARC cluster of projects. It is a companion project of the joint Euro-US "EUROSTRATAFORM" project. The "PROMESS 1" shipboard party: S. Berne, M. Canals, A. Cattaneo, E. Colmenero, G. Floch, B. Dennielou, J. Frigola, R. Gelfort, J. Gravalosa, D. Ridente, T. Schoolmeester, N. Sultan, G. Tulloch, H.J. Wallrabe-Adams
Surface temperature and thermal penetration depth of Nd:YAG laser applied to enamel and dentin
NASA Astrophysics Data System (ADS)
White, Joel M.; Neev, Joseph; Goodis, Harold E.; Berns, Michael W.
1992-06-01
The determination of the thermal effects of Nd:YAG laser energy on enamel and dentin is critical in understanding the clinical applications of caries removal and surface modification. Recently extracted non-carious third molars were sterilized with gamma irradiation. Calculus and cementum were removed using scaling instruments and 600 grit sand paper. The smear layer produced by sanding was removed with a solution of 0.5 M EDTA (pH 7.4) for two minutes. Enamel and dentin surfaces were exposed to a pulsed Nd:YAG laser with 150 microsecond(s) pulse duration. Laser energy was delivered to the teeth with a 320 micrometers diameter fiberoptic delivery system, for exposure times of 1, 10 and 30 seconds. Laser parameters varied from 0.3 to 3.0 W, 10 to 30 Hz and 30 to 150 mJ/pulse. Other conditions included applications of hot coffee, carbide bur in a dental air-cooled turbine drill and soldering iron. Infrared thermography was used to measure the maximum surface temperature on, and thermal penetration distance into enamel and dentin. Thermographic data were analyzed with a video image processor to determine the diameter of maximum surface temperature and thermal penetration distance of each treatment. Between/within statistical analysis of variance (p
An experimental investigation on thermal exposure during bone drilling.
Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed
2012-12-01
This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje
2016-04-01
Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at 30 and 60 meters from the drill site, suggests that reestablishment of the foraminiferal fauna likely commenced shortly after cessation of drilling activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newcomer, Darrell R.
2007-09-30
Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).
Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias
NASA Astrophysics Data System (ADS)
Kim, Byunggi; Iida, Ryoichi; Doan, Duc Hong; Fushinobu, Kazuyoshi
2017-06-01
Role of optical parameters on nanosecond laser drilling of 4H-SiC was experimentally studied. Using ns pulsed Nd:YAG laser, parametric studies on effects of wavelength (1064 nm or 532 nm), beam profile (Gaussian or Bessel), and ambient condition (air or water) were conducted. The wavelengths which have large optical penetration depth were selected as wavefront has to propagate through materials to generate Bessel beam. The experimental results showed that carbonization of SiC surface accelerates thermal ablation of the materials with fluence under the lattice melting threshold. Especially, pattern of side lobes with small fluence was formed by irradiation of Bessel beam. The pattern disturbed penetration of wavefronts through materials. Implementation of water environment was not effective to suppress carbonization and had slight effect on improvement of drilling quality. For this reason, deep drilling with small entrance was not achieved using Bessel beam. Irradiation of 1064 nm Gaussian beam with large fluence led to formation of critical amount of re-solidified silicon due to the large optical penetration depth. Carbonization and silicon formation had a significant effect on unique fluence dependence of drilling depth. Absorption mechanism was studied as well to discuss effect of wavelength on processing characteristics.
Electrical Resistivity Technique for Groundwater Exploration in Quaternary Deposit
NASA Astrophysics Data System (ADS)
Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Fahmy, K. A.; Faizal, T. B. M.; Sabariah, M.; Ambak, K.; Ismail, M. A. M.
2018-04-01
The water security for University Tun Hussein Onn (UTHM) campus was initiated to find alternative sources of water supply. This research began with finding the soil profiles using the geophysical electrical resistivity method across UTHM campus. The resistivity results were calibrated with previous borehole data as well as via groundwater drilling. The drilling work was discovered the groundwater aquifer characterized by the fractured fresh igneous rock at a depth between 43 meter and 55 meter. Further drilling was continued until 100 meter in depth. However, due to not encounter a new rock fractured zone causes the groundwater quantity did not improve even was drilled up to 100 meter depth. In the perspective of water resources, it showed a good potential for water resources for local usages at 104 m3 per day. In addition, the groundwater quality showed the water treatment was required to fulfil the criterion of the national drinking water standards. This study concluded that the first layer of fractured bedrock at UTHM was able to produce significant amounts of groundwater for local consumption usage.
NASA Astrophysics Data System (ADS)
Song, I.; Huepers, A.; Olcott, K. A.; Saffer, D. M.; Dugan, B.; Strasser, M.
2013-12-01
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a long-term, multi-stage scientific drilling project launched for investigating fault mechanics and seismogenesis along subduction megathrusts. One main key to the mechanics of the plate boundary is understanding the absolute mechanical strength and the in situ stress along the megathrust. As part of efforts to access the Nankai Trough seismogenic zone, the NanTroSEIZE Integrated Ocean Drilling Program (IODP) project began riser-based drilling operations at Site C0002 (Hole C0002F) in 2010 during IODP Expedition 326, with the objective of reaching the plate interface at ~6800 meters below the seafloor (mbsf). The geology in this area is composed of the Kumano Forearc Basin sedimentary strata to ~940 mbsf, underlain by the inner accretionary wedge. IODP Expedition 326 drilled Hole C0002F to 872.5 mbsf, near the bottom of the Kumano Basin, and set a 20-inch casing string to 860.2 mbsf. During IODP Expedition 338 in 2012, the hole was extended to 2005.5 mbsf. At the beginning of the operation, a leak-off test (LOT) was conducted in the interval of 872.5-875.5 mbsf, to define the maximum mud weight for the next stage of logging-while-drilling (LWD). Drilling-out-cement (DOC) at the bottom of the hole prior to the LOT provided a 3-m long, 17-inch diameter open borehole for the LOT. For the LOT, this open hole interval was pressurized with the outer annulus closed by the blow out preventer (BOP) using drilling mud of density of 1100 kg/m3, and mud pressure was measured at the cement pumps. The bottom-hole pressure was calculated by the recorded pressure plus the static pressure of the mud column. The first cycle of pressurization was conducted with injection of drilling mud at 31.8 l/min. However, the leak-off pressure (LOP) was not clearly defined because a large volume of mud was lost. Therefore a second cycle was conducted with a higher drilling mud injection rate (47.7 l /min). The rapid increase in pressure with a lower volume of mud injected during the second cycle suggests that a good mud cake was formed around the borehole wall, possibly due to mud flowing into the formation during the first cycle. In the second cycle, we identify a LOP of ~32.0 MPa from the pressure-volume record, which we interpret as the least principal stress. The total vertical stress given by the integration of bulk density with respect to depth is 35.7 MPa, indicating that the LOP reflects the least horizontal stress. This result can be a solid basis to constrain the in situ state of stress from indirect stress indicators such as wellbore failures at other depths.
Physical properties of the WAIS Divide ice core
Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.
2014-01-01
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
Characterization of drilling waste from shale gas exploration in Central and Eastern Poland.
Mikos-Szymańska, Marzena; Rusek, Piotr; Borowik, Krzysztof; Rolewicz, Maciej; Bogusz, Paulina; Gluzińska, Joanna
2018-05-28
The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg -1 , respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg -1 for nickel and 1.5 mg kg -1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.
Salton Sea Scientific Drilling Program
Sass, J.H.
1988-01-01
The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation.
Vega is first offshore development for Montedison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-10-01
Montedison's Vega field, 15 miles off the southern tip of Sicily, has recoverable oil reserves of 400 million bbl. This is Montedison's first offshore development venture, although the operator has considerable onshore experience. It will be followed by a second field, the smaller Mila floating production system, also off Sicily. One platform will be placed on a template installed in 1983 with up to 18 pre-drilled wells in water depths of 480 ft. The field may hold up to 1 billion bbl of 16/sup 0/ crude, but geology is complex and heavily fractured. The template has 30 available drilling slots,more » and water injection is being considered. The Vega discovery well was drilled in 1980, with 5000 b/d tested from 1000-ft oil column in Strep-penosa shales. Subsequently five wells were drilled by the Glomar Biscay I semi. These wells were drilled to a depth of just over 8000 ft with a total deviation of 60/sup 0/. The template is the first in the Mediterranean.« less
Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, D.S.; Harrison, Roger
1978-10-01
Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less
NASA Astrophysics Data System (ADS)
Hoque, M. A.; McArthur, J. M.; Sikdar, P. K.
2014-05-01
Pollution of groundwater in the Bengal Basin (Bangladesh and West Bengal, India) by arsenic (As) puts at risk the health of more than 100 million consumers. Using 1,580 borehole lithological logs and published hydrochemistry on 2,387 wells, it was predicted that low-As (<10 μg/L) groundwater exists, in palaeo-interfluvial aquifers of brown sand capped by a protective palaeosol, beneath at least 45,000 km2 of the Bengal Basin. The aquifers were predicted to be at a depth of as little as 25 m below ground level (mbgl), and typically no more than 50 mbgl. The predictions were confirmed along an east-west traverse 115 km in length (i.e. across half of Bangladesh) by drilling 28 new boreholes to 91-m depth to reveal subsurface sedimentology, and by mapping As distribution in groundwater. The aquifers identified occur at typically <40 mbgl and so are accessible with local drilling methods. A protective palaeosol that caps the palaeo-interfluvial aquifers prevents downward movement into them of As-polluted groundwater present in shallower palaeo-channel aquifers and ensures that the palaeo-interfluvial aquifers will yield low-As groundwater for the foreseeable future. Their use, in place of the shallower As-polluted palaeo-channel aquifers, would rapidly mitigate the health risks from consumption of As-polluted groundwater.
Physical demand of seven closed agility drills.
Atkinson, Mark; Rosalie, Simon; Netto, Kevin
2016-11-01
The present study aimed to quantify the demand of seven generic, closed agility drills. Twenty males with experience in invasion sports volunteered to participate in this study. They performed seven, closed agility drills over a standardised 30-m distance. Physical demand measures of peak velocity, total foot contacts, peak impacts, completion time, and maximum heart rate were obtained via the use of wearable sensor technologies. A subjective rating of perceived exertion (RPE) was also obtained. All measures, with the exception of maximum heart rates and RPE were able to delineate drills in terms of physical and physiological demand. The findings of this study exemplify the differences in demand of agility-type movements. Drill demand was dictated by the type of agility movement initiated with the increase in repetitiveness of a given movement type also contributing to increased demand. Findings from this study suggest agility drills can be manipulated to vary physical and physiological demand. This allows for the optimal application of training principles such as overload, progression, and periodisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, J.A.
During the summer of 1975, the Department of Geology and Geophysics drilled nine drill thermal gradient/heat flow holes. Total footage drilled was 2125 feet. Seven holes were drilled with a Mayhew 1000 drill using various combinations of down the hole hammer drilling, rotary drilling, and NX diamond core drilling. Three of these were heat flow holes--one in the Mineral Range, one in the Tushar Range near Beaver, Utah, and one near Monroe, Utah. Two were alteration study holes in the Roosevelt KGRA and two were temperature gradient holes, in alluvium in the Roosevelt KGRA. The average depth of the holesmore » drilled with the Mayhew 1000 drill was 247 feet. Holes ranged from 135 feet to 492 feet. Cost per foot averaged $18.53. Two holes were core drilled with a Joy 12, BX-size drill. One was to 75 feet, in perlite. This hole was abandoned. The other was to 323 feet in granite.« less
Outokumpu Deep Drill Hole: Window to the Precambrian bedrock
NASA Astrophysics Data System (ADS)
Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo
2017-04-01
Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.
Seismic While Drilling Case Study in Shengli Oilfield, Eastern China
NASA Astrophysics Data System (ADS)
Wang, L.; Liu, H.; Tong, S.; Zou, Z.
2015-12-01
Seismic while drilling (SWD) is a promising borehole seismic technique with reduction of drilling risk, cost savings and increased efficiency. To evaluate the technical and economic benefits of this new technique, we carried out SWD survey at well G130 in Shengli Oilfield of Eastern China. Well G130 is an evaluation well, located in Dongying depression at depth more than 3500m. We used an array of portable seismometers to record the surface SWD-data, during the whole drilling progress. The pilot signal was being recorded continuously, by an accelerometer mounted on the top of the drill string. There were also two seismometers buried in the drill yard, one near diesel engine and another near derrick. All the data was being recorded continuously. According to mud logging data, we have processed and analyzed all the data. It demonstrates the drill yard noise is the primary noise among the whole surface wavefield and its dominant frequency is about 20Hz. Crosscorrelation of surface signal with the pilot signal shows its SNR is severely low and there is no any obvious event of drill-bit signals. Fortunately, the autocorrelation of the pilot signal shows clear BHA multiple and drill string multiple. The period of drill string multiple can be used for establishing the reference time (so-called zero time). We identified and removed different noises from the surface SWD-data, taking advantages of wavefield analysis. The drill-bit signal was retrieved from surface SWD-data, using seismic interferometry. And a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth was established. The subsurface images derived from these data compare well with the corresponding images of 3D surface seismic survey cross the well.
Hawaii Scientific Drilling Project: Objectives, Successes, Surprises and Frustrations
NASA Astrophysics Data System (ADS)
Depaolo, D. J.; Stolper, E.; Thomas, D. M.
2008-12-01
The Hawaii Scientific Drilling Project (HSDP) is a long-running project undertaken with the objective of studying a mantle plume by drilling an extended sequence of lavas from a single Hawaiian volcano. The project originated with a proposal to NSF in late 1986 with the idea of drilling to the Moho under Hilo; the target depth was estimated at 12km, commensurate with the depth reached by the drilling program then being pursued by the USSR and that proposed in the U.S. for the southern Appalachians, and in line with the aspirations of the nascent DOSECC program. Subsequently, due to limitations in funding and reorganization of the drilling program into what later became the NSF Continental Dynamics Program, HSDP was re-scoped with the objective of drilling deeply enough (ca. 4.5km) to recover most of the eruptive history of a single volcano. The project first went to a pilot stage, which resulted in coring to a depth of 1.1km in late 1993. The pilot stage was relatively inexpensive (1M including science) and productive. Funding was then obtained from NSF and ICDP in 1995 (ca. 12M) with the objective of drilling to 4.5km. Drilling was originally planned for a five-year period, in two campaigns. The first campaign, in 1999, resulted in efficient coring to a depth of 3.1km over a period of 6 months; it used about 40 percent of the funds and was also highly productive. Deepening the hole below 3.1km turned out to be both difficult and expensive, although for interesting reasons. To facilitate deeper drilling the hole needed to be reamed to a larger diameter; but when this was done the well unexpectedly started to flow. We now know that there are several deep pressurized aquifers, with varying salt content, but these hydrological phenomena were totally unanticipated. A key finding, also unanticipated, is that cold seawater circulates through the volcanic pile in volumes sufficient to refrigerate the entire section below 700m depth to temperatures about 25 degrees below a normal geothermal gradient. In early 1999 when the first drilling campaign was organized, the price of oil was 10 USD (rigs and drilling crews were available and reasonably priced); in early 2003 when hole opening was being arranged, the price of oil was 30 USD, and for the coring campaigns in 2005 and 2007 it was 50 to 70 USD. For these reasons, and because trip times were longer and deeply buried pillow basalts more difficult to drill, the remainder of the project funds (and then some) were needed to deepen the hole from 3.1 to 3.5km. Nevertheless, the project obtained a nearly continuous, and virtually unweathered, core consisting of lava flows, hyaloclastite, minor intrusives and sediment from a 3260m section of the Mauna Kea volcano, covering an age range from 200 to over 600 ka. It also recovered a 250m and a 280m section of the Mauna Loa volcano. A wealth of geological, volcanological, petrological, geochemical, geomagnetic, geodynamic, hydrological, and geobiological data have come from the core and the well, and more are coming in. The unprecedented geochemical-petrological data sets are a major success, as is the fact that geochemists can work together, but the hoped-for detailed geochronology for the core has proven difficult to obtain.
Depositional history of the Apollo 16 deep drill core
NASA Technical Reports Server (NTRS)
Gose, W. A.; Morris, R. V.
1977-01-01
Ferromagnetic resonance and magnetic hysteresis loop measurements were performed on 212 samples from the Apollo 16 deep drill core. The total iron content is generally uniform with a mean value of 5.7 plus or minus 0.9 wt%. The soils range in maturity from immature to mature. Two major contacts were observed. The contact at 13 cm depth represents a fossil surface whereas the contact at 190 cm depth has no time-stratigraphic significance. The data suggest that the core section below 13 cm depth was deposited in a single impact event and subjected to meteoritic gardening for about 450 m.y. However, our data do not preclude deposition by a series of closely spaced events. About 50 m.y. ago, the top 13 cm were added. Comparison with the Apollo 16 double drive tube 60009/60010 does not yield any evidence for a stratigraphic correlation with the deep drill core.
NASA Astrophysics Data System (ADS)
Zoback, M. D.; Hickman, S.; Ellsworth, W.
2005-12-01
In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at depth, including deployment of an 80-level, 240-component seismic array in SAFOD in the spring of 2005. With knowledge of P- and S-wave velocities obtained from the geophysical measurements in conjunction with downhole recordings of the SAFOD target earthquake, it appears that the seismically active main trace of the fault is on the order of 400 m SW of the surface trace, in proximity to several candidate zones of particularly anomalous geophysical properties. Observations of casing deformation to be made over the next several years, as well as monitoring of the microearthquakes using seismometers directly within the fault zone, will pinpoint the exact location of this and other active fault traces prior to continuous coring in Phase 3. As will be elaborated in detail by the presentations of the SAFOD science team at this meeting, the activities carried out as part of Phases 1 and 2 of SAFOD lay the ground work for years of exciting research in earthquake physics, fault-rock geology, rock mechanics and the role of fluids and gases in faulting and earthquake generation.
40 CFR 147.2902 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...
40 CFR 147.2902 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...
40 CFR 147.2902 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...
40 CFR 147.2902 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... aquifer. USDW—underground source of drinking water. Well—a bored, drilled, or driven shaft, or a dug hole... fluids through a bored, drilled, or driven well; or through a dug well, where the depth of the dug well...
Clow, Gary D.
2015-01-01
A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal drilling effects in rock or ice for a wide variety of drilling technologies. Numerical values for the required radial GFs GR are available through the Advanced Cooperative Arctic Data and Information Service at doi:10.5065/D64F1NS6.
Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant
2009-01-01
From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.
Core logs from five holes near Kramer, in the Mojave Desert, California
Benda, William K.; Erd, Richard C.; Smith, Ward C.
1958-01-01
In 1957, five test holes were drilled near Kramer, California, in =he western Mojave Desert. The drill sites are in topographic basins where gravimetric and geologic surveys indicated the presence, beneath alluvium, of a thick section of Quaternary and Tertiary sedimentary and volcanic rocks. Two holes which were deeper tests at sites drilled in 1954 cored only silts, sands and gravels: Four Corners test hole No. 1 was drilled in sec. 20, T. I0 N., R. 6 W., to a depth of 3,500 feet. Four Corners No. 2, in sec. 5, T. I0 N., R. 8 W., was drilled to 2,328 feet. Three holes which were drilled at new sites north of the intersection of U. S. Highways 395 and 466, locally known as Four Corners, encountered colemanite-bearing sediments. The locations and total depths of these holes are as follows: Four Corners No. 3, sec. T. 11 N., R. 6 W., depth 2,568 feet; Four Corners No. 4, near northern edge of sec. 30, T. ll N., R. 6 W., depth 3,500 feet; Four Corners No. 5, near southern edge of sec. 30, depth 1,604 feet. The sections of rocks encountered in these three holes are similar. In each, the colemanite is in fine-grained sediments that lie below sands and gravels, which are about 600 to 800 feet thick, and are underlain by sandstones and conglomerates. Colemanite is most abundant in the cores from Four Corners to hole No. 5, particularly in the 76 feet of core recovered between depths of 1,051 and 1,131 feet. Chemical analysis shows that in this section of core the average content of B203 is above 14 percent. In addition to colemanite, the cores contain sulfides of arsenic, an unusual iron sulfide, and zeolites. This mineralogy of the colemanite-bearing sediments north of Four Corners, together with the general lake bed lithology and the occurrence as a tilted section of beds below sands and gravels, supports correlation with the upper or marginal parts of the borate-bearin8 sediments at the Kramer borate mining district, which have similar features. There is, however, no evidence that any beds are exactly equivalent in age.
Resonance: The science behind the art of sonic drilling
NASA Astrophysics Data System (ADS)
Lucon, Peter Andrew
The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on the bit as the primary two control variables. The sonic drill can also be controlled using feedback from sensors mounted on the sonic drill head, which is the driver for the sonic drill located above ground
NASA Astrophysics Data System (ADS)
Cui, J.; Lin, W.; Wang, L.; Tang, Z.; Sun, D.; Gao, L.; Wang, W.
2010-12-01
A great and destructive earthquake (Ms 8.0; Mw 7.9), Wunchuan earthquake struck on the Longmen Shan foreland trust zone in Sichuan province, China on 12 May 2008 (Xu et al., 2008; Episodes, Vol.31, pp.291-301). As a rapid response scientific drilling project, Wenchuan earthquake Fault Scientific Drilling (WFSD) started on 6 November 2008 shorter than a half of year from the date of earthquake main shock. The first pilot borehole (hole-1) has been drilled to the target depth (measured depth 1201 m MD, vertical depth 1179 m) at Hongkou, Dujianyan, Sichuan and passed through the main fault of the earthquake around 589 m MD. We are trying to determine three dimensional in-situ stress states in the WFSD boreholes by a core-based method, anelastic strain recovery (ASR) method (Lin et al., 2006; Tectonophysics, Vol4.26, pp.221-238). This method has been applied in several scientific drilling projects (TCDP: Lin et al., 2007; TAO, Vol.18, pp.379-393; NanTtoSEIZE: Byrne et al., 2009; GRL, Vol.36, L23310). These applications confirm the validity of using the ASR technique in determining in situ stresses by using drilled cores. We collected total 15 core samples in a depth range from 340 m MD to 1180 m MD, approximately for ASR measurements. Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The data of the ASR tests conducted at hole-1 is still undergoing analysis. As a tentative perspective, more than 10 core samples showed coherent strain recovery over one - two weeks. However, 2 or 3 core samples cannot be re-orientated to the global system. It means that we cannot rink the stress orientation determined by the core samples to geological structure. Unfortunately, a few core samples showed irregular strain recovery and were not analyzed further. The preliminary results of ASR tests at hole-1 show the stress orientations and stress regime changes a lot with the depth.
Estimating the Probability of Elevated Nitrate Concentrations in Ground Water in Washington State
Frans, Lonna M.
2008-01-01
Logistic regression was used to relate anthropogenic (manmade) and natural variables to the occurrence of elevated nitrate concentrations in ground water in Washington State. Variables that were analyzed included well depth, ground-water recharge rate, precipitation, population density, fertilizer application amounts, soil characteristics, hydrogeomorphic regions, and land-use types. Two models were developed: one with and one without the hydrogeomorphic regions variable. The variables in both models that best explained the occurrence of elevated nitrate concentrations (defined as concentrations of nitrite plus nitrate as nitrogen greater than 2 milligrams per liter) were the percentage of agricultural land use in a 4-kilometer radius of a well, population density, precipitation, soil drainage class, and well depth. Based on the relations between these variables and measured nitrate concentrations, logistic regression models were developed to estimate the probability of nitrate concentrations in ground water exceeding 2 milligrams per liter. Maps of Washington State were produced that illustrate these estimated probabilities for wells drilled to 145 feet below land surface (median well depth) and the estimated depth to which wells would need to be drilled to have a 90-percent probability of drawing water with a nitrate concentration less than 2 milligrams per liter. Maps showing the estimated probability of elevated nitrate concentrations indicated that the agricultural regions are most at risk followed by urban areas. The estimated depths to which wells would need to be drilled to have a 90-percent probability of obtaining water with nitrate concentrations less than 2 milligrams per liter exceeded 1,000 feet in the agricultural regions; whereas, wells in urban areas generally would need to be drilled to depths in excess of 400 feet.
30 CFR 250.415 - What must my casing and cementing programs include?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...
30 CFR 250.415 - What must my casing and cementing programs include?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...
Code of Federal Regulations, 2011 CFR
2011-07-01
... RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep... take to obtain and use the royalty suspension supplement? (a) Before you start drilling a well on your... Supervisor for Production and Development of your intent to begin drilling operations and the depth of the...
30 CFR 250.415 - What must my casing and cementing programs include?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...
Stratigraphy in Apollo 16 drill section 60002
NASA Technical Reports Server (NTRS)
Blanford, G. E.; Morrison, D. A.
1976-01-01
Contacts in drill stem 60002 which indicate layers at least several centimeters thick and with one firm age of about 2.5 x 10 to the 7th yr are observed on the basis of characteristic patterns of track density variation with depth from the contact. The patterns can be observed primarily because the drill stem has a large immature component (path II soils).
Selective placement disposal of drilling fluids in west Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, M.L.
1988-01-01
Burial of spent drilling fluids used in petroleum and natural gas exploration was evaluated as an alternative disposal technique for reducing surface soil contamination in western Texas. Simulated reserve pits were constructed to provide burial depths of 30, 90, and 150 cm below the surface, with orderly replacement of stockpiled subsoil and topsoil. Movement of soluble salts and heavy metals from drilling fluids into the overlying soil was monitored over a 20-month period. The effects of depth of drilling fluid burial on establishment, yields, and chemical composition of transplanted fourwing saltbush (Atriplex canescens (Pursh) Nutt.) and buffalograss (Buchloe dactyloides (Nutt.)more » Engelm.) were determined for two growing seasons. Sodium, Ca{sup +2}, and Cl{sup {minus}} were the dominant mobile ions, while migration of Mg{sup +2}, K{sup +}, and SO{sub 4}{sup {minus}2} was observed to a lesser degree. Exchangeable sodium percentages in the 15-cm zone immediately above drilling fluid ranged from 1.9 to 19.0 after 20 months. Total concentrations of Ba, Cr, Cu, Ni, and Zn were greater in drilling fluids than in native soil, but there was no evidence of migration of these metals into overlying soil.« less
[Comparison of machinability of two types of dental machinable ceramic].
Fu, Qiang; Zhao, Yunfeng; Li, Yong; Fan, Xinping; Li, Yan; Lin, Xuefeng
2002-11-01
In terms of the problems of now available dental machinable ceramics, a new type of calcium-mica glass-ceramic, PMC-I ceramic, was developed, and its machinability was compared with that of Vita MKII quantitatively. Moreover, the relationship between the strength and the machinability of PMC-I ceramic was studied. Samples of PMC-I ceramic were divided into four groups according to their nucleation procedures. 600-seconds drilling tests were conducted with high-speed steel tools (Phi = 2.3 mm) to measure the drilling depths of Vita MKII ceramic and PMC-I ceramic, while constant drilling speed of 600 rpm and constant axial load of 39.2 N were used. And the 3-point bending strength of the four groups of PMC-I ceramic were recorded. Drilling depth of Vita MKII was 0.71 mm, while the depths of the four groups of PMC-I ceramic were 0.88 mm, 1.40 mm, 0.40 mm and 0.90 mm, respectively. Group B of PMC-I ceramic showed the largest depth of 1.40 mm and was statistically different from other groups and Vita MKII. And the strength of the four groups of PMC-I ceramic were 137.7, 210.2, 118.0 and 106.0 MPa, respectively. The machinability of the new developed dental machinable ceramic of PMC-I could meet the need of the clinic.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
NASA Astrophysics Data System (ADS)
Zhu, L.; Wang, J.; Daut, G.; Spiess, V.; Haberzettl, T.; Schulze, N.; Ju, J.; Lü, X.; Bergmann, F.; Haberkern, J.; Schwalb, A.; Mäusbacher, R.
2017-12-01
Lake Nam Co (ca. 2000 km2, 4718 m a.s.l., maximum depth: 100 m) is located at the interaction zone of the Westerlies and the Indian monsoon on the central Tibetan Plateau. It was part of a mega-lake during Marine Isotope Stage (MIS) 3 before the Last Glacial Maximum. A long term sedimentary record from Nam Co could therefore provide an excellent paleo-environmental sequence for regional and global comparative studies. This will to deepen our understanding of large scale atmospheric circulation shifts and the environmental links between the Tibetan Plateau at low latitudes and the North Atlantic region at high latitudes. A Nam Co deep drilling will fill the gap in two large scale ICDP/IODP drilling transects (N-S: Lake Baikal, Lake Qinghai, Bay of Bengal; W-E: Lake Van, Lake Issyk-Kul, South China Sea, Lake Towuti), which will show the great significance of monsoon dynamics on a long-term scale. Multidisciplinary researches have been conducted since 2005 by a Sino-German cooperative team. The progresses during the last decade are: 1) Detailed bathymetric surveying, including a shallow sediment profiler investigation (Innomar SES 2000 light, ca. 30 m sediment penetration); 2) Paleo-environmental reconstructions covering the past 24 ka; 3) Modern sediment distribution covering the entire lake; 4) Monitoring including water temperature profiles, sediment traps, seasonal airborne pollen collection; 5) Deep seismic survey penetrating up to 800 meters of lake sediments. Based on sediment rates from reference core NC08/01, seismic results show that an age of 500 ka may be reached at 500 m, and >1 Ma at the observed base. Faulting can be clearly detected in the seismic profiles, especially from MIS 5 to early Holocene, and shows the characteristics of normal faults or strike-slip faults. Both rotation of the layers and the close spacing, along with negative and positive offsets of the faults make a transtensional origin of the basin likely. An ICDP workshop proposal was approved this year (ID: ICDP-2017/10, http://www.icdp-online.org/projects/world/asia/lake-nam-co/). The workshop will likely be held in May 2018 in Beijing, where future scientific objectives, potential coring locations and logistics of a drilling campaign will be intensively discussed to ensure a successful drilling campaign in the near future.
30 CFR 250.469 - What other well records could I be required to submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... reports identifying microscopic fossils by depth and/or washed samples of drill cuttings that you normally...
A 600,000 year long continental pollen record from Lake Van, eastern Turkey
NASA Astrophysics Data System (ADS)
Litt, T.; Pickarski, N.; Heumann, G.
2014-12-01
Lake Van is the fourth largest terminal lake in the world (38.5°N, 43 °E, volume 607 km3, area 3570 km2, maximum water depth 460 m), extending for 130 km WSW-ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, obtains a long and continuous continental sequence that covers multiple interglacial-glacial cycles. Promoted by the potential of the sedimentary sequence for reconstructing the paleoecological and paleoclimate development of the Near East, a deep drilling operation was carried out in 2010 supported by the International Continental Scientific Drilling Program (ICDP). The 119 m long continental record is based on a well-dated composite profile drilled on the so-called Ahlat Ridge in water depth of 360 m encompassing the last 600,000 years. It contains the longest continuous continental pollen record of the Quaternary in the entire Near East and central Asia obtained to date. It documents glacial and interglacial stages as well as pronounced interstadials encompassing the entire 600 ka of the sedimentary record. The cold-adapted vegetation in the Lake Van region during glacial stages and stadial substages can be described as dwarf-shrub steppe and desert steppe very similar to each other. The climax vegetation of the interglacial stages in the Lake Van region is characterized by an oak steppe-forest with pistachio and juniper. It is interesting to note that, in contrast to the atmospheric CO2 concentration from Antarctic ice cores or marine isotope values based on benthic foraminifera, there is no clear subdivision in the Lake Van pollen record between low-amplitude interglacials (cooler cycles) prior the mid-Brunhes event (MBE) at 430 ka and high-amplitude, post MBE interglacials. Lower CO2 concentrations in the atmosphere might be compensated by stronger insolation forcing during Marine Isotope Stages (MIS) 13a and 15a. A similar pattern can be observed during the triplicate interglacial complex MIS 7 when AP and oak values reach maximum values during MIS 7c instead of MIS 7e. This underlines the different environmental response to global climate change in the continental Lake Van region compared to the global ice volume and/or greenhouse-gas amounts.
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Saffer, D. M.; Castillo, D. A.; Hirose, T.
2016-12-01
During IODP Expedition 348, borehole C0002F/N/P was advanced to a depth of 3058 m below the seafloor (mbsf) into the inner forearc accretionary wedge of the Nankai subduction zone (SW Japan), now the deepest scientific drilling ever into the ocean floor. The goals were to investigate the physical properties, structure, and state of stress deep within the hanging wall of a seismogenic subduction plate boundary. Mud pressure and gas monitoring, injection tests, leak-off tests (LOT), logging-while-drilling (LWD) measurements, and observations of mud losses and hole conditions provide both direct and indirect information about in situ pore pressure and stress state. The LOTs show that the minimum principal stress is consistently less than the vertical stress defined by the overburden, ruling out a thrust faulting stress state throughout the drilled section, and define a nearly linear gradient in Shmin from the seafloor to the base of the hole. Observations of mud loss and the lack of observed gas shows indicate that formation pore fluid pressure is not significantly (< 10 MPa) greater than hydrostatic. The maximum horizontal stress, estimated from borehole breakout width and pressure spikes during pack-off events, is close in magnitude to the vertical stress. Therefore the accretionary prism lies in either a normal or strike-slip faulting regime, or is transitional between the two, from 1 to 3 km depth. At 3002 mbsf we estimate that the effective stresses are: Sv' = 33 MPa; SHmax' = 25-36 MPa; and Shmin' = 18.5-21 MPa. Differential stresses are therefore low, on the order of 10-12 MPa, in the hanging wall of the subduction thrust. We conclude that (1) the inner wedge is not critically stressed in horizontal compression; (2) basal traction along the megathrust must be low in order to permit concurrent locking of the fault and low differential stresses deep within the upper plate; and (3) although low differential stresses may persist down to the plate boundary at 5000 mbsf, the maximum horizontal stress SHmax must transition to become greater than the vertical stress, either spatially below the base of the borehole, or temporally leading up to megathrust fault rupture, in order to drive slip on the megathrust.
Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core
NASA Technical Reports Server (NTRS)
Laul, J. C.; Smith, M. R.; Papike, J. J.; Simon, S. B.
1984-01-01
Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.
Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laul, J.C.; Smith, M.R.
1984-11-15
Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.
NASA Astrophysics Data System (ADS)
Schellenberg, S. A.; Nielsen, J. L.
2004-12-01
Ocean Drilling Program Leg 208 Science Party (D. Kroon, J. C. Zachos, P. Blum, J. Bowles, P. Gaillot, T. Hasegawa, E. C. Hawthorne, D. A. Hodell, D. C. Kelly, J. Jung, S. M. Keller, Y. Lee, D. C. Leuschner, Z. Liu, K. C. Lohmann, L. Lourens, S. Monechi, M. Nicolo, I. Raffi, C. Riesselman, U. Röhl, D. Schmidt, A. Sluijs, D. Thomas, E. Thomas, H. Vallius) Carbonate saturation profiles are complex and dynamic products of processes operating on temporospatial scales from the "short-term local" (e.g. carbonate export production) to the "long-term global" (e.g. carbonate-silicate weathering, shelf:basin carbonate partitioning). Established, if admittedly crude, proxies for reconstructing carbonate saturation from sediments include wt% carbonate, where values of 0-20% are typically attributed to deposition below the carbonate compensation depth (CCD), and planktonic foraminifer fragmentation, where enhanced fragmentation is typically attributed to deposition below the lysocline. Ocean Drilling Program Leg 208 successfully drilled a six-site Walvis Ridge depth-transect spanning modern water depths from 2,717 to 4,755 m. Exceptional core recovery, well-constrained biomagnetostratigraphy, and standard crustal subsidence corrections provide a working age-depth framework for contouring ship-board wt% carbonate determinations and identifying the following first-order features of the regional CCD: (1) >3.5 km position from 60-48 Ma punctuated by a major transient shoaling to <2 km during the Paleocene-Eocene Thermal Maximum at ˜55 Ma; (2) shoaling to ˜2.75 km from 48 to 44 Ma; (3) subsequent deepening to >4.25 km from 37 to 28 Ma; (4) marked high amplitude fluctuations from 28 to 20 Ma followed by deepening to >4.75 km; (5) transient shoaling to ˜4 km around 15 Ma followed by deepening to >4.75 km by ˜12 Ma. These first-order features are broadly congruent with classic Atlantic CCD reconstructions by van Andel (1975) and Berger and Roth (1975). A wealth of higher frequency variation in carbonate saturation is clearly preserved within the Leg 208 depth-transect. Ongoing shore-based analyses aim to transform cm-scale variations in core physical properties (i.e. magnetic susceptibility, color reflectance) into synthetic records of wt% carbonate. These data, combined with other proxies (e.g., planktonic foraminifer fragmentation, stable isotopes) and placed within the evolving post-cruise biomagnetostratigraphic and cyclostratigraphic age-model, will provide valuable constraints on cyclic and secular fluctuations in the South Atlantic carbonate saturation profile and their relation to other major components of the earth system (e.g. pCO2, eustacy).
Experimental analysis of drilling process in cortical bone.
Wang, Wendong; Shi, Yikai; Yang, Ning; Yuan, Xiaoqing
2014-02-01
Bone drilling is an essential part in orthopaedics, traumatology and bone biopsy. Prediction and control of drilling forces and torque are critical to the success of operations involving bone drilling. This paper studied the drilling force, torque and drilling process with automatic and manual drill penetrating into bovine cortical bone. The tests were performed on a drilling system which is used to drill and measure forces and torque during drilling. The effects of drilling speed, feed rate and drill bit diameter on force and torque were discussed separately. The experimental results were proven to be in accordance with the mathematic expressions introduced in this paper. The automatic drilling saved drilling time by 30-60% in the tested range and created less vibration, compared to manual drilling. The deviation between maximum and average force of the automatic drilling was 5N but 25N for manual drilling. To conclude, using the automatic method has significant advantages in control drilling force, torque and drilling process in bone drilling. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Mineralogy of Nicobar Fan turbidites (IODP Leg 362): Himalayan provenance and diagenetic control.
NASA Astrophysics Data System (ADS)
Limonta, M.; Garzanti, E.; Ando, S.; Carter, A.; Milliken, K. L.; Pickering, K. T.
2017-12-01
In this study we use quantitative petrographic and heavy-mineral data on silt-sized and sand-sized sediments from the Nicobar Fan turbiditic depositional system to unravel their provenance and discriminate between pre-depositional and post-depositional processes controlling sediment mineralogy. Eighteen samples from the two drill sites U1480 e U1481, collected down to a depth of 1400 m during International Ocean Discovery Expedition 362, were selected for analysis. A complete section of the sedimentary section overlying oceanic basaltic basement was recovered at the U1480 drill site, whereas the U1481 drill site, located 35 km to the southeast, focused on the deeper interval of the sedimentary section overlying oceanic basement. Here we illustrate the compositional trends observed throughout the recovered succession, and compare heavy-mineral suites characterizing sediments drilled at the two U1480 and U1481 sites to check for potential differences in sediment provenance over a relatively short distance in trench settings. Diagenetic control with increasing burial depth was also specifically investigated. In Pleistocene sediments at depths of a few tens of meters only, rich heavy-mineral assemblages include mainly hornblende, epidote, and garnet, associated with apatite, clinopyroxene, tourmaline, sillimanite, kyanite, zircon, titanite, and rare staurolite and rutile, testifying to long-distance provenance from the Himalayan range via the Ganga-Brahmaputra fluvio-deltaic-turbiditic system. Heavy-mineral concentration shows a progressive decrease with burial depth, pointing to selective diagenetic dissolution of less durable detrital minerals. Clinopyroxene becomes rare below 400 m depth and was not recorded below 500 m depth, where amphibole decreases notably in relative abundance. More durable heavy minerals, including zircon, tourmaline, apatite, garnet and epidote, consequently tend to be relatively enriched with increasing age and burial depth. Petrographic and heavy-mineral data, combined with biostratigraphic, paleomagnetic, and geochemical evidence, allow us to unravel the sedimentary history of the Nicobar Fan as related to Himalayan uplift, erosion, and monsoon development during the last 10 Ma.
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Hirose, T.; Saffer, D. M.; Toczko, S.; Maeda, L.
2014-12-01
International Ocean Discovery Program (IODP) Expedition 348, the latest advance of the NanTroSEIZE project, started on 13 September 2013 and was completed on 29 January 2014. During Expedition 348, the drilling vessel Chikyu advanced the ultra-deep riser hole at Site C0002, located 80 km offshore of the Kii Peninsula, from a depth of 860 meters below sea floor (mbsf) to 3058.5 mbsf, the world record for the deepest scientific ocean drilling, and cased it for future deepening. The drilling operation successfully obtained data on formation physical properties from logging while drilling (LWD) tools, as well as from lithological analyses of cuttings and core from the interior of the active accretionary prism at the Nankai Trough. IODP Site C0002 is the currently only borehole to access the deep interior of an active convergent margin. Preliminary scientific results of Expedition 348 are as follows: (1) Fine-grained turbiditic mudstones with coarser silty and sandy interbeds, exhibiting steep dips (between ~60 and 90 degrees) are predominant in the prism down to ~3000 mbsf. The biostratigraphic age of the sediments in the lowermost part of the hole is thought to be 9-11 Ma, with an assumed age of accretion of 3-5 Ma. (2) Slickenlined surfaces, deformation bands and mineral veins are present throughout the drilled interval, while well-developed scaly clay fabrics are increasingly observed below ~2200 mbsf. A substantial fault zone with well-developed foliation was successfully cored from the deep interior of the prism at ~2205 mbsf. (3) Porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf. However, physical properties including grain density, electrical conductivity and P-wave velocity suggest fairly homogeneous properties in the interior of the prism between ~2000 and 3000 mbsf. (4) Mud gas analysis during the riser drilling indicates that a source of methane gas shifts from microbial origin to thermogenic at around 2325 mbsf. (5) The maximum horizontal principal stress at ~2200 mbsf is in the NE-SW direction. The inner wedge at ~ 2000 mbsf is currently in a strike-slip stress regime.
NASA Technical Reports Server (NTRS)
Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.
2003-01-01
As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbraith, R.M.
1978-05-01
The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characcterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the accoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbraith, R.M.
1978-05-01
The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the acoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less
NASA Astrophysics Data System (ADS)
Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou
2014-12-01
Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.
Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah
2018-01-01
Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.
HOLEGAGE 1.0 - STRAIN GAGE HOLE DRILLING ANALYSIS PROGRAM
NASA Technical Reports Server (NTRS)
Hampton, R. W.
1994-01-01
There is no simple and perfect way to measure residual stresses in metal parts that have been welded or deformed to make complex structures such as pressure vessels and aircraft, yet these locked-in stresses can contribute to structural failure by fatigue and fracture. However, one proven and tested technique for determining the internal stress of a metal part is to drill a test hole while measuring the relieved strains around the hole, such as the hole-drilling strain gage method described in ASTM E 837. The program HOLEGAGE processes strain gage data and provides additional calculations of internal stress variations that are not obtained with standard E 837 analysis methods. The typical application of the technique uses a three gage rosette with a special hole-drilling fixture for drilling a hole through the center of the rosette to produce a hole with very small gage pattern eccentricity error. Another device is used to control the drilling and halt the drill at controlled depth steps. At each step, strains from all three strain gages are recorded. The influence coefficients used by HOLEGAGE to compute stresses from relieved hole strains were developed by published finite element method studies of thick plates for specific hole sizes and depths. The program uses a parabolic fit and an interpolating scheme to project the coefficients to other hole sizes and depths. Additionally, published experimental data are used to extend the coefficients to relatively thin plates. These influence coefficients are used to compute the stresses in the original part from the strain data. HOLEGAGE will compute interior planar stresses using strain data from each drilled hole depth layer. Planar stresses may be computed in three ways including: a least squares fit for a linear variation with depth, an integral method to give incremental stress data for each layer, or by a linear fit to the integral data (with some surface data points omitted) to predict surface stresses before strain gage sanding preparations introduced additional residual stresses. Options are included for estimating the effect of hole eccentricity on calculations, smoothing noise from the strain data, and inputting the program data either interactively or from a data file. HOLEGAGE was written in FORTRAN 77 for DEC VAX computers under VMS, and is transportable except for system-unique TIME and DATE system calls. The program requires 54K of main memory and was developed in 1990. The program is available on a 9-track 1600 BPI VAX BACKUP format magnetic tape (standard media) or a TK50 tape cartridge. The documentation is included on the tape. DEC VAX and VMS are trademarks of Digital Equipment Corporation.
Gates, Andrew R.; Jones, Daniel O. B.
2012-01-01
Recovery from disturbance in deep water is poorly understood, but as anthropogenic impacts increase in deeper water it is important to quantify the process. Exploratory hydrocarbon drilling causes physical disturbance, smothering the seabed near the well. Video transects obtained by remotely operated vehicles were used to assess the change in invertebrate megafaunal density and diversity caused by drilling a well at 380 m depth in the Norwegian Sea in 2006. Transects were carried out one day before drilling commenced and 27 days, 76 days, and three years later. A background survey, further from the well, was also carried out in 2009. Porifera (45% of observations) and Cnidaria (40%) dominated the megafauna. Porifera accounted for 94% of hard-substratum organisms and cnidarians (Pennatulacea) dominated on the soft sediment (78%). Twenty seven and 76 days after drilling commenced, drill cuttings were visible, extending over 100 m from the well. In this area there were low invertebrate megafaunal densities (0.08 and 0.10 individuals m−2) in comparison to pre-drill conditions (0.21 individuals m−2). Three years later the visible extent of the cuttings had reduced, reaching 60 m from the well. Within this area the megafaunal density (0.05 individuals m−2) was lower than pre-drill and reference transects (0.23 individuals m−2). There was a significant increase in total megafaunal invertebrate densities with both distance from drilling and time since drilling although no significant interaction. Beyond the visible disturbance there were similar megafaunal densities (0.14 individuals m−2) to pre-drilling and background surveys. Species richness, Shannon-Weiner diversity and multivariate techniques showed similar patterns to density. At this site the effects of exploratory drilling on megafaunal invertebrate density and diversity seem confined to the extent of the visible cuttings pile. However, elevated Barium concentration and reduced sediment grain size suggest persistence of disturbance for three years, with unclear consequences for other components of the benthic fauna. PMID:23056177
Advancing the dual reciprocating drill design for efficient planetary subsurface exploration
NASA Astrophysics Data System (ADS)
Pitcher, Craig
Accessing the subsurface of planetary bodies with drilling systems is vital for furthering our understanding of the solar system and in the search for life and volatiles. The extremely stringent mass and sizing mission constraints have led to the examination of novel low-mass drilling techniques. One such system is the Dual-Reciprocating Drill (DRD), inspired by the ovipositor of the sirex noctilio, which uses the reciprocation of two halves lined with backwards-facing teeth to engage with and grip the surrounding substrate. For the DRD to become a viable alternative technique, further work is required to expand its testing, improve its efficiency and evolve it from the current proof-of-concept to a system prototype. To do this, three areas of research were identified. This involved examining how the drill head design affects the drilling depth, exploring the effects of ice content in regolith on its properties and drilling performance, and determining the benefits of additional controlled lateral motions in an integrated actuation mechanism. The tests performed in this research revealed that the cross-sectional area of the drill head was by far the most significant geometrical parameter with regards to drilling performance, while the teeth shape had a negligible effect. An ice content of 5 +/- 1% in the regolith corresponded to an increase in drilling time and a clear change in the regolith's physical properties. Finally, it was demonstrated that the addition of lateral motions allowed the drill to achieve greater depths. This work has advanced both the understanding and design of the DRD considerably. It has continued the exploration of the geometrical and substrate parameters that affect drilling performance and provided the first characterisation of the properties of an icy lunar polar simulant. The construction and testing of the complex motion internal actuation mechanism has both evolved the DRD design and opened a new avenue through which the system can be further optimised.
Lane, Michael
2013-06-28
Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.
Sample-Collection Drill Hole on Martian Sandstone Target Windjana
2014-05-06
This image from the Navigation Camera Navcam on NASA Curiosity Mars rover shows two holes at top center drilled into a sandstone target called Windjana. The farther hole, with larger pile of tailings around it, is a full-depth sampling hole.
NASA Astrophysics Data System (ADS)
DeBlois, Elisabeth M.; Kiceniuk, Joe W.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.
2014-12-01
This paper presents results of analyses of body burdens of metals and hydrocarbons, and taste tests for taint, in Iceland scallop and American plaice performed as part of the Environmental Effects Monitoring (EEM) program for the Terra Nova offshore oil development (Grand Banks of Newfoundland, Canada). Scallop and plaice were collected in a Study Area located within approximately 1 km of drill centres at Terra Nova and in a Reference Area located approximately 20 km from the development. Samples were collected in 1997 to establish a baseline, and from 2000 to 2010, during drilling periods. Scallop adductor muscle tissue was contaminated with >C10-C21 aliphatic hydrocarbons resembling the drilling fluid in the synthetic drilling mud (SBM) used at Terra Nova in 2000, 2002 and 2004, but contamination of adductor muscle was not noted in 2006, 2008 and 2010. The maximum concentration in muscle was 28 mg/kg wet weight, noted in 2002. Scallop viscera was contaminated with hydrocarbons resembling drilling fluid in SBMs near drill centres in all EEM years except 2010. Viscera contamination with >C10-C21 hydrocarbons gradually decreased from a maximum of 150 mg/kg in 2000, to a maximum of 27 mg/kg in 2008; all values were below the laboratory reporting detection limit of 15 mg/kg in 2010. Therefore, evidence from both muscle and viscera indicates a decrease in tissue hydrocarbon contamination in recent years. Barium, another major constituent in drilling muds, has not been noted in scallop adductor muscles at concentrations above the reporting detection limit, but barium was detected in viscera in baseline and EEM years. The maximum concentration of barium in viscera during baseline sampling was 8 mg/kg. The maximum concentration in EEM years (29 mg/kg) was noted in 2000. The maximum concentration in 2010 was 25 mg/kg. The concentration of metals other than barium in scallop tissues was similar between the Terra Nova Study Area and the Reference Area. Hydrocarbons resembling the fluid in SBMs were noted in one American plaice liver sample collected near drill centres in 2000. Otherwise, there has been no evidence of project-related metals or hydrocarbon contamination in plaice liver or fillet samples. There has been no evidence of taint (off-taste) for scallop adductor muscle and plaice fillet tissue in baseline or EEM years. Combined with a parallel study on fish bioindicators at Terra Nova that showed that fish health at Terra Nova was similar to that at the Reference Area (Mathieu et al., 2011), these results indicate little to no detectable biological effects on Iceland scallop and American plaice as a result of Terra Nova activities.
Geothermal resources of the northern gulf of Mexico basin
Jones, P.H.
1970-01-01
Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.
Geotechnical Properties of Periplatform Carbonate Sediments
1990-07-01
and Atmospheric and geoacoustic parameters for similar sediments in Research Laboratory participated in Ocean Drilling other regions. Leg 101. During...this exercise sha’"w-water and midwater depth carbonate sediments from a few deep drill holes were studied extensively by Results and Recommendations...protected by the grains and are less Deep Sea Drilling Project Leg 86. In: Heath, G. R., affected by consolidation than they are in matrix- Bruckle, L. H
Hodges, Mary K.V.; Davis, Linda C.; Bartholomay, Roy C.
2018-01-30
In 1990, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Laboratory (INL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from subsurface investigations conducted at the INL, and to provide a location for researchers to examine, sample, and test these materials.The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the corehole names, corehole locations, and depth intervals available.Most cores and cuttings stored at the facility were drilled at or near the INL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose most cores and cuttings, most of which are continuous from land surface to their total depth. The deepest continuously drilled core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility and for examination, sampling, and return of materials.
Geologic and operational summary, COST No. G-2 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Simonis, Edvardas K.
1980-01-01
The Continental Offshore Stratigraphic Test (COST) No. G-2 well is the second deep well to be drilled in the Georges Bank Basin and the third in a series of COST wells on the Atlantic Outer Continental Shelf (OCS). The G-2 was drilled by Ocean Production Company, acting as the operator for 19 participating companies between January 6 and August 30, 1977. The semisubmersible rig Ocean Victory was used to drill the well to a depth of 21,874 feet at a location 132 statute miles east-southeast of Nantucket Island in 272 feet of water. An earlier deep Stratigraphic test, the COST No. G-l well, was drilled 42 statute miles west of the G-2 well, to a depth of 16,071 feet in 1976 (fig. 1). Geological and engineering data obtained from the well were used by companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for lease sale 42 held on December 18, 1979. The Stratigraphic test was intentionally drilled away from any potential petroleum-bearing feature, but in a block bordering several tracts that were included in the sale area.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Feng; Huang, Huey-Chu
2015-10-01
The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.
Building geomechanical characteristic model in Ilan geothermal area, NE Taiwan
NASA Astrophysics Data System (ADS)
Chiang, Yu-Hsuan; Hung, Jih-Hao
2015-04-01
National Energy Program-Phase II (NEPPII) was initiated to understand the geomechanical characteristic in Ilan geothermal area. In this study, we integrate well cores and logs (e.g. Nature Gamma-ray, Normal resistivity, Formation Micro Imager) which were acquired in HongChaiLin (HCL), Duck-Field (DF) and IC21 to determine the depth of fracture zone, in-situ stress state, the depth of basement and lithological characters. In addition, the subsurface in-situ stress state will be helpful to analyze the fault reactivation potential and slip tendency. By retrieved core from HCL well and the results of geophysical logging, indicated that the lithological character is slate (520m ~ 1500m) and the basement depth is around 520m. To get the minimum and maximum horizontal stress, several hydraulic fracturing tests were conducted in the interval of 750~765m on HCL well. The horizontal maximum and minimum stresses including the hydrostatic pressure are calculated as 15.39MPa and 13.57MPa, respectively. The vertical stress is decided by measuring the core density from 738m to 902m depth. The average core density is 2.71 g/cm3, and the vertical stress is 19.95 MPa (at 750m). From DF well, the basement depth is 468.9m. Besides, by analyzing the IC21 well logging data, we know the in-situ orientation of maximum horizontal stress is NE-SW. Using these parameters, the fault reactivation potential and slip tendency can be analyzed with 3DStress, Traptester software and demonstrated on model. On the other hand, we interpreted the horizons and faults from the nine seismic profiles including six N-S profiles, two W-E profiles and one NE-SW profile to construct the 3D subsurface structure model with GOCAD software. The result shows that Zhuosui fault and Kankou Formation are dip to north, but Hanxi fault and Xiaonanao fault are dip to south. In addition, there is a syncline-like structure on Nansuao Formation and the Chingshuihu member of the Lushan Formation. However, there is a conflict on Szeleng sandstone. We need to more drilling data to confirm the dip of Szeleng sandstone.
Controlling taphole depth in maple sap production research
Melvin R. Koelling; Barton M. Blum
1967-01-01
Because bark thickness of sugar maple trees varies considerably, the depth of tapholes for collecting maple sap should be varied accordingly to get the taphole depth that will produce the best sap flow. A system of removable collars on the drill bit is recommended as a means of regulating taphole depth in research studies.
Design of a multifiber light delivery system for photoacoustic-guided surgery.
Eddins, Blackberrie; Bell, Muyinatu A Lediju
2017-04-01
This work explores light delivery optimization for photoacoustic-guided minimally invasive surgeries, such as the endonasal transsphenoidal approach. Monte Carlo simulations were employed to study three-dimensional light propagation in tissue, comprising one or two 4-mm diameter arteries located 3 mm below bone, an absorbing metallic drill contacting the bone surface, and a single light source placed next to the 2.4-mm diameter drill shaft with a 2.9-mm diameter spherical drill tip. The optimal fiber distance from the drill shaft was determined from the maximum normalized fluence to the underlying artery. Using this optimal fiber-to-drill shaft distance, Zemax simulations were employed to propagate Gaussian beams through one or more 600 micron-core diameter optical fibers for detection on the bone surface. When the number of equally spaced fibers surrounding the drill increased, a single merged optical profile formed with seven or more fibers, determined by thresholding the resulting light profile images at 1 / e times the maximum intensity. We used these simulations to inform design requirements, build a one to seven multifiber light delivery prototype to surround a surgical drill, and demonstrate its ability to simultaneously visualize the tool tip and blood vessel targets in the absence and presence of bone. The results and methodology are generalizable to multiple interventional photoacoustic applications.
Design of a multifiber light delivery system for photoacoustic-guided surgery
NASA Astrophysics Data System (ADS)
Eddins, Blackberrie; Bell, Muyinatu A. Lediju
2017-04-01
This work explores light delivery optimization for photoacoustic-guided minimally invasive surgeries, such as the endonasal transsphenoidal approach. Monte Carlo simulations were employed to study three-dimensional light propagation in tissue, comprising one or two 4-mm diameter arteries located 3 mm below bone, an absorbing metallic drill contacting the bone surface, and a single light source placed next to the 2.4-mm diameter drill shaft with a 2.9-mm diameter spherical drill tip. The optimal fiber distance from the drill shaft was determined from the maximum normalized fluence to the underlying artery. Using this optimal fiber-to-drill shaft distance, Zemax simulations were employed to propagate Gaussian beams through one or more 600 micron-core diameter optical fibers for detection on the bone surface. When the number of equally spaced fibers surrounding the drill increased, a single merged optical profile formed with seven or more fibers, determined by thresholding the resulting light profile images at 1/e times the maximum intensity. We used these simulations to inform design requirements, build a one to seven multifiber light delivery prototype to surround a surgical drill, and demonstrate its ability to simultaneously visualize the tool tip and blood vessel targets in the absence and presence of bone. The results and methodology are generalizable to multiple interventional photoacoustic applications.
30 CFR 282.22 - Delineation Plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTINENTAL SHELF FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR Obligations and Responsibilities of Lessees... operation in the environment which will be encountered. (e) Maps showing the proposed locations of test drill holes, the anticipated depth of penetration of test drill holes, the locations where surficial...
Test-well drilling in the upper Satus Creek basin, Yakima Indian Reservation, Washington
Pearson, H.E.
1977-01-01
Two test wells were drilled in the upper Satus Creek basin of the Yakima Indian Reservation, Washington, using the air-rotary method. At site 1 the well penetrated a young basalt and 175 feet of the Yakima Basalt, and at site 2 the well penetrated the young basalt. The well at site 1 was drilled to a depth of 350 feet. Tests for drawdown and yield indicated a specific capacity of about 11 gallons per minute per foot of drawdown. The potential yield of this well may be about 1,000 gallons per minute. The well at site 2 was drilled to a depth of 500 feet. Only a small quantity of water was encountered and no test for yield was made. Data from these wells, including chemical analysis of the water from the well at site 1, will provide information useful in the development and management of the ground-water resources in this part of the Yakima Indian Reservation. (Woodard-USGS)
San Andreas drilling sites selected
NASA Astrophysics Data System (ADS)
Ellsworth, Bill; Zoback, Mark
A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramspott, L.D.; McArthur, R.D.
1977-02-18
Exploratory hole Ue5n was drilled to a depth of 514 m in central Frenchmam Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA) to determine the geologic and geophysical parameters of selected locations with anomalous seismic signals. The specific goal of drilling Ue5n was to provide the site characteristics for emplacement sites U5b and U5e. We present here data on samples, geophysical logs, lithology and stratigraphy, and depth to the water table. From an analysis of the measurements of the physical properties, a set of recommendedmore » values is given.« less
Exploration Criteria for Low Permeability Geothermal Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D
1977-03-01
The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results ofmore » the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005]« less
NASA Astrophysics Data System (ADS)
Schijns, H.; Duo, X.; Heinonen, S.; Schmitt, D. R.; Kukkonen, I. T.; Heikkinen, P.
2008-12-01
A high resolution seismic survey consisting of a multi-depth multi-azimuth VSP, a zero-offset VSP and a reflection/refraction survey was conducting in May, 2006, near the town of Outokumpu, Finland, using the International Continental Scientific Drilling Program 2.5 km deep fully cored scientific borehole. The survey was undertaken in order to create an anisotropic velocity model for future micro-seism studies as well as to provide a higher resolution reflection profile through the area than was previously available. The seismic survey high frequency seismic vibrator as a source, employing 8 s linear taper sweeps from 15-250 Hz at 20 m shot spacing. Receivers were 14 Hz single component geophones on the surface and a three component geophone downhole. The walk-away VSP included measurements over two azimuths with the receiver at depths of 1000, 1750 and 2500 m, while the zero-offset VSP used a 2 m depth increment. Surface geophones were located along the same seismic lines as employed in the walk-away VSP and were nominally 4 m apart. The survey area is located on the Fennoscandian shield, and the glacial history of the area required significant static corrections to account for the variable overburden overlying the mica-rich schist and pegmatitic granite composing the bedrock. These were calculated using travel-time inversion of the refraction data and were applied to the walk-away VSP and reflection profiles, significantly improving the quality of both. Anisotropic velocity analysis was performed using a plane-wave decomposition of the processed walk-away VSP. The maximum anisotropy was observed in the walk-away VSPs along the Southeastern azimuth, with the P-wave phase velocity ranging from 5330-5950 m/s between 50-1000 m in depth, and up to 6150 m/s between 1000-1750 m in depth. Shear wave splitting was observed in the Northeastern direction. Preliminary analysis of the zero-offset VSP has revealed shown good agreement with the relevant portions of the anisotropic velocity measurements and the reflection profile.
NASA Astrophysics Data System (ADS)
Jansen, D.; Llorens, M.-G.; Westhoff, J.; Steinbach, F.; Kipfstuhl, S.; Bons, P. D.; Griera, A.; Weikusat, I.
2016-02-01
Disturbances on the centimetre scale in the stratigraphy of the North Greenland Eemian Ice Drilling (NEEM) ice core (North Greenland) can be mapped by an optical line scanner as long as the ice has visual layering, such as, for example, cloudy bands. Different focal depths allow, to a certain extent, a three-dimensional view of the structures. In this study we present a detailed analysis of the visible folds, discuss their characteristics and frequency, and present examples of typical fold structures. We also analyse the structures with regard to the deformation boundary conditions under which they formed. The structures evolve from gentle waves at about 1500 m to overturned z folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their similar fold shape indicates that they are passive features and are probably not initiated by rheology differences between alternating layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. C axes orientation distributions for the corresponding core sections were analysed, where available, in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c axis orientations that deviate from that of the matrix, which shows a single maximum fabric at the depth where the folding occurs. Numerical modelling of crystal viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures during deformation. The modelling reproduces the development of bands of grains with a tilted-lattice orientation relative to the single maximum fabric of the matrix, and also the associated local deformation. We conclude from these results that the observed folding can be explained by formation of these tilted-lattice bands.
Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks.
Cong, W L; Pei, Z J; Treadwell, C
2014-08-01
Reported drilling methods for CFRP/Ti stacks include twist drilling, end milling, core grinding, and their derived methods. The literature does not have any report on drilling of CFRP/Ti stacks using rotary ultrasonic machining (RUM). This paper, for the first time, reports a study on drilling of CFRP/Ti stacks using RUM. It also compares results on drilling of CFRP/Ti stacks using RUM with reported results on drilling of CFRP/Ti stacks using other methods. When drilling CFRP/Ti stacks using RUM, cutting force, torque, and CFRP surface roughness were lower, hole size variation was smaller, CFRP groove depth was smaller, tool life was longer, and there was no obvious Ti exit burr and CFRP entrance delamination. Ti surface roughness when drilling of CFRP/Ti stacks using RUM was about the same as those when using other methods. Copyright © 2014 Elsevier B.V. All rights reserved.
The Newberry Deep Drilling Project (NDDP)
NASA Astrophysics Data System (ADS)
Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.
2017-12-01
We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.
NASA Astrophysics Data System (ADS)
Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj
2015-12-01
Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.
NASA Astrophysics Data System (ADS)
Chun, C. O.; Delaney, M. L.; Zachos, J. C.
2005-12-01
Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during the CIE with gradual return to pre-event values at the shallowest and deepest sites. We will compare the paleo-productivity and redox chemistry response at the Walvis Ridge sites across the PETM.
Code of Federal Regulations, 2013 CFR
2013-07-01
... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...
Code of Federal Regulations, 2014 CFR
2014-07-01
... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...
Code of Federal Regulations, 2012 CFR
2012-07-01
... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...
Voice Coil Percussive Mechanism Concept for Hammer Drill
NASA Technical Reports Server (NTRS)
Okon, Avi
2009-01-01
A hammer drill design of a voice coil linear actuator, spring, linear bearings, and a hammer head was proposed. The voice coil actuator moves the hammer head to produce impact to the end of the drill bit. The spring is used to store energy on the retraction and to capture the rebound energy after each impact for use in the next impact. The maximum actuator stroke is 20 mm with the hammer mass being 200 grams. This unit can create impact energy of 0.4 J with 0.8 J being the maximum. This mechanism is less complex than previous devices meant for the same task, so it has less mass and less volume. Its impact rate and energy are easily tunable without changing major hardware components. The drill can be driven by two half-bridges. Heat is removed from the voice coil via CO2 conduction.
Candela, Lucila; Caballero, Juan; Ronen, Daniel
2010-05-15
The transport of Glyphosate ([N-phosphonomethyl] glycine), AMPA (aminomethylphosphonic acid, CH(6)NO(3)P), and Bromide (Br(-)) has been studied, in the Mediterranean Maresme area of Spain, north of Barcelona, where groundwater is located at a depth of 5.5m. The unsaturated zone of weathered - granite soils was characterized in adjacent irrigated and non-irrigated experimental plots where 11 and 10 boreholes were drilled, respectively. At the non irrigated plot, the first half of the period was affected by a persistent and intense rainfall. After 69 days of application residues of Glyphosate up to 73.6 microgg(-1) were detected till a depth of 0.5m under irrigated conditions, AMPA, analyzed only in the irrigated plot was detected till a depth of 0.5m. According to the retardation coefficient of Glyphosate as compared to that of Br(-) for the topsoil and subsoil (80 and 83, respectively) and the maximum observed migration depth of Br(-) (2.9 m) Glyphosate and AMPA should have been detected till a depth of 0.05 m only. Such migration could be related to the low content of organic matter and clays in the soils; recharge generated by irrigation and heavy rain, and possible preferential solute transport and/or colloidal mediated transport. Copyright 2010 Elsevier B.V. All rights reserved.
NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, K.D.; Honeygan, S.; Moroz, T.H.
2008-12-01
The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less
Machinability of some dentin simulating materials.
Möllersten, L
1985-01-01
Machinability in low speed drilling was investigated for pure aluminium, Frasaco teeth, ivory, plexiglass and human dentin. The investigation was performed in order to find a suitable test material for drilling experiments using paralleling instruments. A material simulating human dentin in terms of cuttability at low drilling speeds was sought. Tests were performed using a specially designed apparatus. Holes to a depth of 2 mm were drilled with a twist drill using a constant feeding force. The time required was registered. The machinability of the materials tested was determined by direct comparison of the drilling times. As regards cuttability, first aluminium and then ivory were found to resemble human dentin most closely. By comparing drilling time variances the homogeneity of the materials tested was estimated. Aluminium, Frasaco teeth and plexiglass demonstrated better homogeneity than ivory and human dentin.
NASA Astrophysics Data System (ADS)
Orlando, J.; Comas, X.; Mount, G. J.; Brantley, S. L.
2012-12-01
Weathering processes in rapidly eroding systems such as humid tropical environments are complex and not well understood. The interface between weathered material (regolith) and non-weathered material (bedrock) is particularly important in these systems as it influences water infiltration and groundwater flow paths and movement. Furthermore, the spatial distribution of this interface is highly heterogeneous and difficult to image with conventional techniques such as direct coring and drilling. In this work we present results from a preliminary geophysical study in the Luquillo Critical Zone Observatory (LCZO) located in the rain forest in the Luquillo Mountains of northeastern Puerto Rico. The Luquillo Mountains are composed of volcaniclastic rocks which have been uplifted and metamorphosed by the Tertiary Rio Blanco quartz diorite intrusion. The Rio Blanco quartz diorite weathers spheroidally, creating corestones of relatively unweathered material that are surrounded by weathered rinds. A number of boreholes were drilled near the top of the Rio Icacos watershed, where the corestones are thought to be in the primary stages of formation, to constrain the regolith/bedrock interface and to provide an understanding of the depth to which corestones form. The depth of the water table was also a target goal in the project. Drilling reveals that corestones are forming in place, separated by fractures, even to depths of 10s of meters below ground surface. One borehole was drilled to a depth of about 25 meters and intersected up to 7 bedrock blocks (inferred to be incipient corestones) and the water table was measured at about 15 meters. Ground Penetrating Radar surveys were conducted in the same location to determine if GPR images variable thicknesses of saprolite overlying corestones. GPR common offset measurements and common midpoint surveys with 50, 100, and 200 MHz antenna frequencies were combined with borehole drillings in order to constrain geophysical results. We will compare drilling observations to GPR data to understand: 1) the lateral extent of the regolith-bedrock interface; 2) distribution of rindlets or spheroidal fracturing around corestones; and 3) presence and extent of corestones. This work has implications for understanding the rate of weathering advance and changes in permeability across rapidly eroding watersheds.
Completion Report for Well ER-4-1 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, Jeffrey; Rehfeldt, Ken
Well ER-4-1 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled and completed from March 23 to April 13, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Yucca Flat/Climax Mine Corrective Action Unit (CAU) 97. The primary purpose of the well was to collect hydrogeologic data to assist in validating concepts of the groundwater flow system within the Yucca Flat/Climax Mine CAU, and to test for potential radionuclides in groundwater from the STRAIT (U4a) underground test. The completedmore » well includes one piezometer (p1), to a depth of 663.16 meters (m) (2,175.71 feet [ft]) below ground surface (bgs) and open from the Alluvial aquifer (AA3) to the Oak Spring Butte confining unit (OSBCU) hydrostratigraphic units; and a main completion (m1), which includes 6.625-inch (in.) casing with slotted interval (m1) installed to 906.80 m (2,975.05 ft) bgs in the Lower carbonate aquifer (LCA). A 13.375-in. diameter surface casing was installed from the surface to a depth of 809.00 m (2,654.21 ft) bgs. Well ER-4-1 experienced a number of technical issues during drilling, including borehole instability and sloughing conditions. An intermediate, 10.75-in./9.625-in. casing string was installed to 856.94 m (2,811.48 ft) bgs to control these issues. Borehole stability and erosion problems appear to be associated with the Tunnel Formation (Tn) and the Older tunnel beds (Ton). Overall efforts to stabilize the borehole were successful. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), a partial suite of geophysical logs to a maximum depth of 766.57 m (2,515 ft) bgs, water-quality measurements (including tritium), water-level measurements, and two depth-discrete bailer samples collected at 538.89 m and 646.18 m (1,768 ft and 2,120 ft) bgs respectively. The well penetrated 187.45 m (615 ft) of Quaternary/Tertiary alluvium (QTa), 671.47 m (2,203 ft) of Tertiary Volcanic rocks (Tv), and 66.20 m (217.19 ft) of Paleozoic rocks (|). The stratigraphy and lithology were generally as expected with some exceptions. The top of Paleozoic rocks (|) was predicted to occur at 822.35 m (2,698 ft) bgs and was intercepted at 858.93 m (2,818 ft), a difference of 36.58 m (120 ft). As expected, the Paleozoic rocks (|) are the principal water producing formation in Well ER-4-1. Depth to water was measured after drilling as follows: In the piezometers: p1 at 320.39 m (1,051.16 ft) bgs, (measured January 4, 2017); and in the main production casing interval: m1 at 539.17 m (1,768.92 ft) bgs, (measured December 12, 2016) Geophysical logs and depth-discrete bailer sample analytical results suggest likely zones of prompt injection (underground-test-related) fission products from 472.44 to 481.48 m (1,550 to 1,580 ft) bgs and at approximately 539.50 m (1,770 ft) bgs. Subsequent work at Well ER-4-1 will be included in future reports. Field measurements for tritium were mostly below the Safe Drinking Water Act limit (20,000 picocuries per liter) with the exception of two zones showing elevated tritium concentrations. The first zone is located at approximately 365.76 to 390.14 m (1,200 to 1,280 ft) bgs and a second zone at approximately 542.54 to 566.93 m (1,780 to 1,860 ft) bgs. All Fluid Management Plan requirements were met.« less
Sedimentary basins reconnaissance using the magnetic Tilt-Depth method
Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.
2010-01-01
We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to basement). The method is especially valuable as a reconnaissance tool in regions where drillhole or seismic information are either scarce, lacking, or ambiguous.
Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.
2009-01-01
Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Glombitza, C.; Inagaki, F.; Lever, M. A.; Jørgensen, B. B.
2013-12-01
Integrated Ocean Drilling Program (IODP) Expedition 337 aboard the drilling vessel Chikyu in summer 2012 was the first IODP expedition to drill into a deeply buried hydrocarbon system by riser drilling and, in the process, extended the depth record of scientific ocean drilling to 2466 meters below seafloor (mbsf). A main scientific goal of Expedition 337 was to explore microbial communities associated with deeply buried coalbeds 2 km below the seafloor at Site C0020 off the Shimokita Peninsula of Japan, northwestern coast of the Pacific Ocean. Four lithological units were defined according to sedimentological observations (Inagaki et al. 2012). Temperature measurements during wireline logging revealed in-situ temperatures in the range habitable for life, with ~40-45°C in 2km-deep coalbeds and 60°C at the bottom of the hole. To determine potential sulfate reduction rates (pSRRs) throughout the lower half of the borehole (1200-2466 mbsf; Units II - IV), we prepared slurries from fresh core material in artificial seawater medium containing 1 mM of sulfate and incubated these onboard with 35S-labeled sulfate at approximate in-situ temperatures (i.e., 25, 35, and 45°C). A duplicate set of incubations was started from each sample, one with only N2 in the headspace, and one with N2 + CH4 in the headspace. We incubated samples with 3.7 MBq 35S for a period of 10 days to achieve a detection limit of ca. 10 fmol sulfate cm-3 d-1. pSRRs were close to the detection limit in Unit II and increased by two orders of magnitude up to 2 pmol cm-3 d-1 in the coal-bearing strata (Unit III), decreasing again below in Unit IV. Maximum rates in Unit III reached values similar to those determined during the Chikyu shakedown cruise at 350 mbsf at the same site in 2006. In contrast to the pSRRs determined previously, however, addition of methane did not stimulate pSRRs, suggesting that potential sulfate reduction was supported by electron donors other than methane. The increase of pSRR in the coal-bearing unit is in accordance with other indicators of increased microbial activity in this depth interval, such as high C1/C2 ratios with low 13C/12C isotope ratios of methane observed by real-time mud gas logging during riser drilling. Inagaki, F., K.-U. Hinrichs, Y. Kubo, and the Expedition 337 Scientists (2012), Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean, IODP Prel. Rept., 337, doi: 10.2204/iodp.pr.337.2012
NASA Astrophysics Data System (ADS)
Ómar Friðleifsson, Guðmundur; Elders, Wilfred A.; Zierenberg, Robert; Steafánsson, Ari; Sigurðsson, Ómar; Gíslason, Þór; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-04-01
The Iceland Deep Drilling Project (IDDP) is exploring the technical and economic feasibility of producing supercritical geothermal resources. The IDDP-2 well is located in the Reykjanes saline geothermal system in SW Iceland, on the landward extension of the Mid-Atlantic Ridge, where we are probing the analog of the root zone of a black smoker. In 2009, Phase 1 of the IDDP was unsuccessful in reaching supercritical conditions in the Krafla volcanic caldera in NE Iceland, when the IDDP-1 drill hole unexpectedly encountered 900°C rhyolite magma at only 2.1 km depth. The completed well produced superheated steam with a well head temperature of 453°C with an enthalpy and flow rate sufficient to generate 35 MWe. Drilling the IDDP-2 began by deepening an existing 2.5 km deep production well (RN-15) to 3 km depth, casing it to 2941m depth and drilling it to 4626m. Total circulation losses which were encountered below 3 km depth, could not be cured by LCM and multiple cement jobs. Accordingly, drilling continued "blind" to total depth, without return of drill cuttings. We attempted 12 core runs below 3 km depth, half of which recovered some core. The cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting formation temperatures >450°C. After a final report from the on-site science team, expected mid-year 2017, detailed petrological, petrophysical, and geochemical analyses of cores will be undertaken by the IDDP science team and collaborators and published in a special issue of a main-stream scientific journal. The drilling of the IDDP-2 was funded by the field operator HS Orka, and by Statoil, and the IDDP industry consortium. The coring was funded by ICDP and the science program of the IDDP. Deepening the RN-15 began 11th August 2016, and was completed to 4626m, 17th December 2016. A perforated liner was inserted to 4,571m and the well subsequently logged for temperature, pressure and injectivity, after 6 days partial heating-up. The injectivity index proved to be 1.7 (kg/s)/bar. Supercritical conditions were measured at the bottom, 427°C at 340 bar pressure. The T-log showed the main permeable zones to be at around 3360m, 4200m, 4370m and 4550m depth. Estimates suggest that 30% of 40 L/s injected into the well are received by the three deepest feed zones. This can possibly be enhanced by massive soft stimulation, which is a part of the DEEPEGS plan to be executed later this year. The DEEPEGS project is a demonstration project, supported by the European Commission, Horizon 2020. The goal is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. It is a four-year project coordinated by HS Orka, Iceland, in cooperation with partners from Iceland, France, Germany, Italy, and Norway. The project will demonstrate advanced technologies in three types of geothermal reservoirs, (i) in high enthalpy resource beneath existing hydrothermal field at Reykjanes with temperature up to 550°C, and (ii) in two very deep hydrothermal reservoirs in France with temperatures up to 220°C.
Wu, H.-Y.; Ma, K.-F.; Zoback, M.; Boness, N.; Ito, H.; Hung, J.-H.; Hickman, S.
2007-01-01
The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole to investigate the structure and mechanics of the Chelungpu Fault that ruptured in the 1999 Mw 7.6 Chi-Chi earthquake. Geophysical logs of the TCDP were carried out over depths of 500-1900 in, including Dipole Sonic Imager (DSI) logs and Formation Micro Imager (FMI) logs in order to identify bedding planes, fractures and shear zones. From the continuous core obtained from the borehole, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chinshui Shale, which extends from 1013 to 1300 meters depth. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore. These data show an overall stress direction (???N115??E) that is essentially parallel to the regional stress field and parallel to the convergence direction of the Philippine Sea plate with respect to the Eurasian plate. Variability in the average stress direction is seen at various depths. In particular there is a major stress orientation anomaly in the vicinity of the Chelungpu fault. Abrupt stress rotations at depths of 1000 in and 1310 in are close to the Chinshui Shale's upper and lower boundaries, suggesting the possibility that bedding plane slip occurred during the Chi-Chi earthquake. Copyright 2007 by the American Geophysical Union.
Effects of bone drilling on local temperature and bone regeneration: an in vivo study.
Karaca, Faruk; Aksakal, Bünyamin; Köm, Mustafa
2014-01-01
The aim of this study was to examine the influence of bone drilling on local bone temperature and bone regeneration and determine optimal drilling speed and pressure in an animal model. The study included 12 skeletally mature New Zealand white rabbits, weighing between 2.8 to 3.2 kg. Rabbits were divided into 2 groups and euthanized at the end of Day 21 (Group A) and Day 42 (Group B). The same drilling protocol was used in both groups. Three drill holes with different pressure (5, 10 and 20 N) were made in each rabbit tibias using 3 different rotational drill speeds (230, 370 and 570 rpm). During drilling, local temperature was recorded. Rabbit tibia underwent histopathological exam for bone regeneration. Bone temperature was affected by drilling time and depth. Lower drill speeds reduced the bone temperature and revealed better bone regeneration when compared to the drilled bones at higher drill speeds. Titanium boron nitride coating on the drill bits had no significant effects on bone temperature and structure. Bone regeneration was superior in Group B rabbits that had drilling at 230 rpm and 20 N. Our results suggested that lower drilling speed with higher pressure is necessary for better bone regeneration. The optimal drilling speed is 230 rpm and optimal drilling pressure 20 N.
NASA Astrophysics Data System (ADS)
Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.
2015-11-01
Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.
Fossil Coral Records of ENSO during the Last Glacial Period
NASA Astrophysics Data System (ADS)
Partin, J. W.; Taylor, F. W.; Shen, C. C.; Edwards, R. L.; Quinn, T. M.; DiNezro, P.
2017-12-01
Only a handful of paleoclimate records exist that can resolve interannual changes, and hence El Nino/Southern Oscillation (ENSO) variability, during the last glacial period, a time of altered mean climate. The few existing data suggest reduced ENSO variability compared to the Holocene, possibly due to a weaker zonal sea surface temperature gradient across the tropical Pacific and/or a deeper thermocline in the eastern tropical Pacific. Our goal is to add crucial data to this extremely limited subset using sub-annually resolved fossil corals that grew during this time period to reconstruct ENSO. We seek to recover fossil corals from Vanuatu, SW Pacific (16°S, 167°E) with the objective of using coral δ18O to reconstruct changes in the ENSO during and near the Last Glacial Maximum (LGM). Modern δ18O coral records from Vanuatu show a high degree of skill in capturing ENSO variability, making it a suitable site for reconstructing ENSO variability. We have custom designed and are building a drill system that can rapidly core many 0-25 m holes resulting in much more meters of penetration than achieved by previous land-based reef drilling. As the new drill system is extremely portable and can be quickly relocated by workers without landing craft or vehicles, it is time and cost efficient. Because the proposed drilling sites have uplifted extremely fast, 7 mm/year, the LGM shoreline has been raised from 120-140 m depth to within a depth range of 10 below to 20 m above present sea level. This enables all the drilling to be within the time range of interest ( 15-25 ka). A last advantage is that the LGM corals either are still submersed in seawater or emerged only within the last 2000 years at the uplift rate of 7 mm/yr. This greatly reduces the chances of disruption of the original climate signal because sea water is less diagenetically damaging than meteoric water in the mixed, phreatic, or vadose zones. LGM coral records will enable us to compare the proxy variability to climate model simulations in order to elucidate the mechanisms driving the changes in ENSO. The proposed research activities will shed light on the sensitivity of ENSO to external forcings, a highly critical issue given that climate model projections used for future climate projection do not agree if ENSO will strengthen or weaken as the Earth warms.
The effect of low-speed drilling without irrigation on heat generation: an experimental study.
Oh, Ji-Hyeon; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho
2016-02-01
In this study we evaluated heat generation during the low-speed drilling procedure without irrigation. Ten artificial bone blocks that were similar to human D1 bone were used in this study. The baseline temperature was 37.0℃. We drilled into 5 artificial bone blocks 60 times at the speed of 50 rpm without irrigation. As a control group, we drilled into an additional 5 artificial bone blocks 60 times at the speed of 1,500 rpm with irrigation. The temperature changes during diameter 2 mm drilling were measured using thermocouples. The mean maximum temperatures during drilling were 40.9℃ in the test group and 39.7℃ in the control group. Even though a statistically significant difference existed between the two groups, the low-speed drilling did not produce overheating. These findings suggest that low-speed drilling without irrigation may not lead to overheating during drilling.
Depth indicator and stop aid machining to precise tolerances
NASA Technical Reports Server (NTRS)
Laverty, J. L.
1966-01-01
Attachment for machine tools provides a visual indication of the depth of cut and a positive stop to prevent overcutting. This attachment is used with drill presses, vertical milling machines, and jig borers.
The Marysville, Montana Geothermal Project
NASA Technical Reports Server (NTRS)
Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.
1974-01-01
Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.
NASA Astrophysics Data System (ADS)
Glass, B. J.; Cannon, H.; Bonaccorsi, R.; Zacny, K.
2006-12-01
The Drilling Automation for Mars Exploration (DAME) project's purpose is to develop and field-test drilling automation and robotics technologies for projected use in missions in the 2011-15 period. DAME includes control of the drilling hardware, and state estimation of both the hardware and the lithography being drilled and the state of the hole. A sister drill was constructed for the Mars Analog Río Tinto Experiment (MARTE) project and demonstrated automated core handling and string changeout in 2005 drilling tests at Rio Tinto, Spain. DAME focused instead on the problem of drill control while actively drilling while not getting stuck. Together, the DAME and MARTE projects demonstrate a fully automated robotic drilling capability, including hands-off drilling, adjustment to different strata and downhole conditions, recovery from drilling faults (binding, choking, etc.), drill string changeouts, core acquisition and removal, and sample handling and conveyance to in-situ instruments. The 2006 top-level goal of DAME drilling in-situ tests was to verify and demonstrate a capability for hands-off automated drilling, at an Arctic Mars-analog site. There were three sets of 2006 test goals, all of which were exceeded during the July 2006 field season. The first was to demonstrate the recognition, while drilling, of at least three of the six known major fault modes for the DAME planetary-prototype drill, and to employ the correct recovery or safing procedure in response. The second set of 2006 goals was to operate for three or more hours autonomously, hands-off. And the third 2006 goal was to exceed 3m depth into the frozen breccia and permafrost with the DAME drill (it had not gone further than 2.2m previously). Five of six faults were detected and corrected, there were 43 hours of hands-off drilling (including a 4 hour sequence with no human presence nearby), and 3.2m was the total depth. And ground truth drilling used small commercial drilling equipment in parallel in order to obtain cores and ice profiles at the drilling site. In the course of DAME drilling automation testing, the drilling-induced temperature gradients and their effects on encountered subsurface permafrost and ice layers were observed while drilling in frozen impact breccia at Haughton Crater. In repeated tests of robotic core removal processing and handling in the MARTE project, including field tests, cross-contamination issues arose between successive cores and samples, and procedures and metrics were developed for minimizing the cross-contamination. The MARTE core processing cross-contamination aspects were tested by analyzing a set of pristine samples (those stratigraphically known) vs. cuttings (loose clays) or artifacts from the robotic drilling (indurated clay layers). MARTE ground truth drilling, in parallel with the automated tests, provided control information on the discontinuity/continuity of the stratigraphic record (i.e., texture, color and structure of loose and consolidated materials).
Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson
2013-03-01
The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The teammore » identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson
The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possiblemore » sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.« less
Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindstrom, Jason
2010-01-31
Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less
Imaging the Variscan suture at the KTB deep drilling site, Germany
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Bokelmann, Götz
2018-03-01
The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last thirty years. In this study we explore the crustal structure of the KTB area through the application of the receiver function (RF) technique to a new data set recorded by 9 temporary seismic stations and 1 permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the receiver functions technique, for future studies, in order to get clear images of the deep structure, and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites, metamorphic rocks). At around 10 km depth we observe a strong velocity increase beneath all stations. For the stations located in the center of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along an West-to-East extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.
Imaging the Variscan suture at the KTB deep drilling site, Germany
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Bokelmann, Götz
2018-06-01
The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in the Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last 30 yr. In this study, we explore the crustal structure of the KTB area through the application of the Receiver Function (RF) technique to a new data set recorded by nine temporary seismic stations and one permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the RF technique, for future studies, in order to get clear images of the deep structure and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites and metamorphic rocks). At around 10 km depth, we observe a strong velocity increase beneath all stations. For the stations located in the centre of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along a west-to-east extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, M.D.; Waddell, S.J.; Vick, G.S.
1986-12-31
Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less
Hickman, Stephen H.; Healy, John H.; Zoback, Mark D.
1985-01-01
Hydraulic fracturing stress measurements and a borehole televiewer survey were conducted in a 1.6‐km‐deep well at Auburn, New York. This well, which was drilled at the outer margin of the Appalachian Fold and Thrust Belt in the Appalachian Plateau, penetrates approximately 1540 m of lower Paleozoic sedimentary rocks and terminates 60 m into the Precambrian marble basement. Analysis of the hydraulic fracturing tests indicates that the minimum horizontal principal stress increases in a nearly linear fashion from 9.9±0.2 MPa at 593 m to 30.6±0.4 MPa at 1482 m. The magnitude of the maximum horizontal principal stress increases in a less regular fashion from 13.8±1.2 MPa to 49.0±2.0 MPa over the same depth range. The magnitudes of the horizontal principal stresses relative to the calculated overburden stress are somewhat lower than is the norm for this region and are indicative of a strike‐slip faulting regime that, at some depths, is transitional to normal faulting. As expected from the relative aseismicity of central New York State, however, analysis of the magnitudes of the horizontal principal stresses indicates, at least to a depth of 1.5 km, that frictional failure on favorably oriented preexisting fault planes is unlikely. Orientations of the hydraulic fractures at 593 and 919 m indicate that the azimuth of the maximum horizontal principal stress at Auburn is N83°E±15°, in agreement with other stress field indicators for this region. The borehole televiewer log revealed a considerable number of planar features in the Auburn well, the great majority of which are subhorizontal (dips < 5°) and are thought to be bedding plane washouts or drill bit scour marks. In addition, a smaller number of distinct natural fractures were observed on the borehole televiewer log. Of these, the distinct steeply dipping natural fractures in the lower half of the sedimentary section at Auburn tend to strike approximately east‐west, while those in the upper part of the well and in the Precambrian basement exhibit no strong preferred orientation. The origin of this east‐west striking fracture set is uncertain, as it is parallel both to the contemporary direction of maximum horizontal compression and to a late Paleozoic fracture set that has been mapped to the south of Auburn. In addition to these planar features the borehole televiewer log indicates paired dark bands on diametrically opposite sides of the borehole throughout the Auburn well. Processing of the borehole televiewer data in the time domain revealed these features to be irregular depressions in the borehole wall. As these depressions were consistently oriented in a direction at right angles to the direction of maximum horizontal compression, we interpret them to be the result of stress‐induced spalling of the borehole wall (breakouts).
NASA Astrophysics Data System (ADS)
Kitagawa, H.; Nakamura, T.; Neugebauer, I.; Schwab, M. J.; Brauer, A.; Goldstein, S. L.; Stein, M.
2014-12-01
To reconstruct environmental, climatic and tectonic histories of the Levant, a deep drilling has been accomplished in the northern basin of the Dead Sea during the fall winter of 2010-2011 by the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. The sediment cores from site 5017-1 (water depth of ~300 m) recorded the paleoenvironmental and paleohydrological changes in the Dead Sea and the Levant during the last two glacial-interglacial cycles (Neugebauer et al., QSR in press). To provide precise timing of sedimentological - limnological events in the lake and its watershed, and more critically the relative timing of these events, radiocarbon dating of >70 well-preserved terrestrial plants and some carbonate deposits from the upper 150 m long section of the sediment core were performed. Based on the high-resolution radiocarbon dating, a statistical age-depth model was constructed with assumptions on the deposition condition and the radiocarbon age offset of carbonate samples. We discuss the practicality and the limitation of the age-depth model toward interpreting the high-resolution records of environmental, climatic and tectonic events recorded in the long sediment cores from site 5017-1.
NASA Astrophysics Data System (ADS)
Tak, Heewon; Choi, Jaewon; Jo, Sohyun; Hwang, Sukyeon
2017-04-01
Stress anisotropy analysis is important for estimating both stress regime and fracture geometry for the efficient development of unconventional resources. Despite being within the same play, different areas can have different stress regimes, which can affect drilling decisions. The Montney play is located in Canada between British Columbia and Alberta. In British Columbia it is known for its ductile shale and high horizontal stress anisotropy because of the Rocky Mountains; however, in Alberta, it has different geological characteristics with some studies finding weak horizontal stress anisotropy. Therefore, we studied the horizontal stress anisotropy using full azimuth seismic and well data in the Kakwa area in order to establish a drilling plan. Minimal horizontal anisotropy was discovered within the area and the direction of maximum horizontal anisotropy corresponded with the regional scale (i.e., NE-SW). The induced fractures were assumed to have a normal stress regime because of the large depth (> 3000 m). Additionally, because of the very high brittleness (Young's modulus > 9) and relatively weak horizontal stress anisotropy, the fracture geometry in the Kakwa area was estimated as complex or complex planar, as opposed to simply planar.
NASA Astrophysics Data System (ADS)
Mohan, Kapil; Chaudhary, Peush; Patel, Pruthul; Chaudhary, B. S.; Chopra, Sumer
2018-02-01
The Kachchh Mainland Fault (KMF) is a major E-W trending fault in the Kachchh region of Gujarat extending >150 km from Lakhpat village in the west to the Bhachau town in the east. The Katrol Hill Fault (KHF) is an E-W trending intrabasinal fault located in the central region of Kachchh Basin and the south of KMF. The western parts of both of the faults are characterized, and the sediment thickness has been estimated in the region using a Magnetotelluric (MT) survey at 17 sites along a 55 km long north-south profile with a site spacing of 2-3 km. The analysis reveals that the maximum sediment thickness is 2.3 km (Quaternary, Tertiary, and Mesozoic) in the region, out of which, the Mesozoic sediments feature a maximum thickness of 2 km. The estimated sediment thickness is found consistent with the thickness suggested by a deep borehole (depth approx. 2.5 km) drilled by Oil and Natural Gas Corporation (ONGC) at Nirona (Northern part of the study area). From 2-D inversion of the MT data, three conductive zones are identified from north to south. The first conductive zone is dipping nearly vertical down to 7-8 km depth. It becomes north-dipping below 8 km depth and is inferred as KMF. The second conductive zone is found steeply dipping into the southern limbs near Manjal village (28 km south of Nirona), which is inferred as the KHF. A vertical-dipping (down to 20 km depth) conductive zone has also been observed near Ulat village, located 16 km north of Manjal village and 12 km south of Nirona village. This conductive zone becomes listric north-dipping beyond 20 km depth. It is reported first time by a Geophysical survey in the region.
NASA Astrophysics Data System (ADS)
Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Wang, Ruyue; Yin, Shuai; Li, Ang; Fu, Fuquan
2017-08-01
An analysis of the in-situ state of stress in a shale reservoir was performed based on comprehensive information about the subsurface properties from wellbores established during the development of an oil and gas field. Industrial-level shale gas production has occurred in the Niutitang formation of the lower Cambrian Cen'gong block, South China. In this study, data obtained from hydraulic fracturing, drilling-induced fractures, borehole breakout, global positioning system (GPS), and well deviation statistics have been used to determine the orientation of the maximum horizontal principal stress. Additionally, hydraulic fracturing and multi-pole array acoustic logging (XMAC) were used to determine the vertical variations in the in-situ stress magnitude. Based on logging interpretation and mechanical experiments, the spatial distributions of mechanical parameters were obtained by seismic inversion, and a 3D heterogeneous geomechanical model was established using a finite element stress analysis approach to simulate the in-situ stress fields. The effects of depth, faults, rock mechanics, and layer variations on the principal stresses, horizontal stress difference (Δσ), horizontal stress difference coefficient (Kh), and stress type coefficient (Sp) were determined. The results show that the direction of the maximum principal stress is ESE 120°. Additionally, the development zones of natural fractures appear to correlate with regions with high principal stress differences. At depths shallower than 375 m, the stress type is mainly a thrust faulting stress regime. At depths ranging from 375 to 950 m, the stress type is mainly a strike-slip faulting stress regime. When the depth is > 950 m, the stress type is mainly a normal faulting stress regime. Depth, fault orientation, and rock mechanics all affect the type of stress. The knowledge regarding the Cen'gong block is reliable and can improve borehole stability, casing set point determination, well deployment optimization, and fracturing area selection.
Aerated drilling cutting transport analysis in geothermal well
NASA Astrophysics Data System (ADS)
Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar
2017-12-01
Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.
Characterization of Seismogenic Faults of Central Japan by Geophysical Survey and Drilling
NASA Astrophysics Data System (ADS)
Ikeda, R.; Omura, K.; Matsuda, T.
2004-12-01
Integrated investigations on seismogenic faults by geophysical survey and drilling are indispensable to better understand deep structure and physical properties of a fault fracture zone. In central Japan, three large active faults, Neodani, Atotsugawa and Atera faults, exist and are remarkable for research because of the potentiality of a scale of magnitude 7 to 8 class earthquake and the different characteristics of the seismogenic activities in these faults. Each individual fault shows its own characteristic features, which may reflect different stages in an earthquake cycle. High seismicity is concentrated with a clear lineation on and around the Atotsugawa fault, which is recognized as aftershocks from the latest event of the 1858 Hida earthquake (M=7.0). On the other hand, extremely low seismicity is found around the Atera fault, of which some parts seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9). As an example of the results of study at the Atera fault, we obtained a wide variety of fault structures, composed materials, states of crustal stress and strengths of the fault from the geophysical survey (resistivity and gravity) and in-situ borehole experiments. Our findings are as follows: (1) The fracture zone around the Atera fault shows a very wide and complex fracture structure, from approximately 1 km to 4 km wide. (2) The average slip rate was estimated to be 5.3 m /1000 yr by the distribution of basalt in the age of 1.5 Ma as determined by radioactive dating. We inferred that the Atera fault has been repeatedly active in recent geologic time; however, it is in a very weak state at present. (3) Stress magnitude decreases in the area closer to the center of the fracture zone. These are important results to evaluate fault activity. Recent in-situ downhole measurements and coring through active faults have provided us with new insights into the physical properties of fault zones. In the vicinity of the epicenter of the 1995 Hyogo-ken Nanbu (Kobe) earthquake, we have conducted an integrated study by using 1,000 m to 1,800 m deep drilling wells. In particular, the Nojima-Hirabayashi borehole was drilled to a depth of 1,838 m and directly intersected the Nojima fault. Three possible fault strands were detected at depths of 1,140 m, 1,313 m and 1,800 m. Major results obtained from this study include the following: (1) Shear stress around the fault zone is very small, and the orientation of the maximum horizontal compression is perpendicular to the surface trace of faults. (2) From the results of a heat flow study, the lower cut-off depth of the aftershocks was estimated to be roughly 300 _E#8249;C. (3) Cores were classified into several types of fault rocks, and an asymmetric distribution pattern of these fault rocks in the fracture zones was identified. (4) Country rock is characterized by very low permeability and high strength. (5) Resistivity structure can be explained by a model of a fault extending to greater depths but with low resistivity. The integrated study by geophysical survey, drilling and core analyses, downhole measurements and long-term monitoring directly within these fault zones, provide us with characteristic features and dynamics of active faults.
Exploration geothermal gradient drilling, Platanares, Honduras, Central America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.
1988-01-01
This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi
2012-01-01
The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.
NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, K.D.; Honeygan, S.; Moroz, T
2007-06-01
The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less
In-situ test site at the International Geothermal Centre Bochum
NASA Astrophysics Data System (ADS)
Bracke, Rolf; Wittig, Volker; Güldenhaupt, Jonas; Duda, Mandy; Stöckhert, Ferdinand; Bussmann, Gregor; Tünte, Henry; Saenger, Erik H.; Eicker, Timm; Löer, Katrin; Schäfers, Klaus; Macit, Osman; Jagert, Felix
2017-04-01
The in-situ test site at the International Geothermal Centre (GZB) is located on the campus of the Bochum University of Applied Sciences. The area represents a 10.000 m2 drill site with existing research, observation and production wells and allows further drill tests and drilling down to depths of 5.000 m - also in conjunction with the approved authorized 50 km2 mining area "Future Energies" and the GZB's own mobile dual drive drilling rig Bo.Rex capable of drilling down to depths of 1000 m. The site allows for a comprehensive characterization of the subsurface underneath the university's campus in terms of a case study in Bochum pursuing the objective to provide an in-situ test field to researchers from geosciences and other disciplines. The local geology comprises folded and fractured carboniferous sediments including sandstones, siltstones, claystones and coal seams with low matrix permeabilies. Currently, one research well, 29 production wells, and seven monitoring wells are available. The research well reaching to a depth of about 500 m with an open-hole section between 450 m and 500 m has been fully cored down to 200 m, selected sections were additionally cored down to 450 m. Production wells with depths of up to 200 m are equipped with borehole heat exchangers providing heating and cooling for the GZB and a new lecture building. Monitoring wells vary in depth and reach down to 200 m. The majority of wells were comprehensively characterized using the GZB's borehole geophysical logging system with deviation, caliper, gamma ray and acoustic imaging, but also full waveform sonic, flowmeter and electrical conductivity. Cuttings were collected, documented and partly stored. The in-situ test site will be complemented by a seismic and hydrogeological observatory comprising borehole seismometers at depths of up to 200 m. The seismic network will ensure permanent observation of natural and potential anthropogenic seismicity. Additionally, drilling activities interpreted as seismic source can be used to develop a better understanding of the geological and geophysical structure of the subsurface. Hydrogeological monitoring wells will be used for field experiments such as flowmeter tests, pumping tests or chemical analysis of groundwater. Synergies arise from linking the field-scale infrastructure with laboratory equipment at the GZB covering basic and advanced physicochemical characterization as well as high resolution 3D imaging technologies under high pressure and high temperature reservoir conditions at various scales from mm to m. The GZB invites students, researchers and interested parties to participate in and shape the GZB's in-situ research infrastructure activities by addressing fundamental and applied questions related to geothermal energy provision and georesources in general.
Perturbation of seafloor bacterial community structure by drilling waste discharge.
Nguyen, Tan T; Cochrane, Sabine K J; Landfald, Bjarne
2018-04-01
Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored. Copyright © 2017 Elsevier Ltd. All rights reserved.
PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geslin, H.E.; Bromley, C.P.
1957-06-01
On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less
30 CFR 550.297 - What information must a CID contain?
Code of Federal Regulations, 2014 CFR
2014-07-01
... drilled before your CID submittal that define the extent of the reservoirs. You must notify BOEM of any well that is drilled to total depth during the CID evaluation period and you may be required to update..., caliper curves) curves in an acceptable digital format; (4) Sidewall core/whole core and pressure-volume...
30 CFR 550.297 - What information must a CID contain?
Code of Federal Regulations, 2013 CFR
2013-07-01
... drilled before your CID submittal that define the extent of the reservoirs. You must notify BOEM of any well that is drilled to total depth during the CID evaluation period and you may be required to update..., caliper curves) curves in an acceptable digital format; (4) Sidewall core/whole core and pressure-volume...
30 CFR 550.297 - What information must a CID contain?
Code of Federal Regulations, 2012 CFR
2012-07-01
... drilled before your CID submittal that define the extent of the reservoirs. You must notify BOEM of any well that is drilled to total depth during the CID evaluation period and you may be required to update..., caliper curves) curves in an acceptable digital format; (4) Sidewall core/whole core and pressure-volume...
30 CFR 250.427 - What are the requirements for pressure integrity tests?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.427 What are the requirements for... setting depth. You must conduct each pressure integrity test after drilling at least 10 feet but no more...
30 CFR 250.427 - What are the requirements for pressure integrity tests?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.427 What are the requirements for... setting depth. You must conduct each pressure integrity test after drilling at least 10 feet but no more...
30 CFR 250.427 - What are the requirements for pressure integrity tests?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.427 What are the requirements for... setting depth. You must conduct each pressure integrity test after drilling at least 10 feet but no more...
30 CFR 250.427 - What are the requirements for pressure integrity tests?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.427 What are the... planned casing setting depth. You must conduct each pressure integrity test after drilling at least 10...
Project scientists discover magnetic phenomenon under Bermuda Rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-05-01
Drilling results in water depths of 18,000 ft between Puerto Rico and Bermuda indicate strong magnetic reverses occur in the rocks underlying the seabed. These and other findings during a cruise of the Glomar Challenger are reported. Information is included on the location of magnetic anomalies, sedimentation, and open-sea drilling. (JRD)
New approaches to subglacial bedrock drilling technology
NASA Astrophysics Data System (ADS)
Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail
2013-04-01
Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.
2007-10-01
max 175 m) Thermo-electric point “Elektroigla ETI-1” Sukhanov et al., 1974 113 Thermal drill LKTBM-1 1973 50.7 Thermal Coring drill...Glacier (West Caucasus), #C3 IGAS, Moscow State University 20 m (?) Thermo-electric point Sukhanov et al., 1974 1970, 1971 Five holes with...total depth of 405 m (max 111 m) Thermo-electric point Elektroigla ETI-1 Sukhanov , 1973; Sukhanov et al., 1974 1972 A few holes with total
Bargar, Keith E.; ,
1993-01-01
The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.
NASA Astrophysics Data System (ADS)
Motagh, M.; Lubitz, C.
2014-12-01
Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to regularly performed leveling measurements and shows indications of significant symmetric horizontal motions, which were further investigated by a combined analysis of SAR imagery from ascending and descending orbits. Moreover, InSAR observations were inverted using geophysical models to derive first order characteristics of deformation source at depth.
Engineering report on drilling in the San Rafael Swell area, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, L.I.
1980-05-01
The San Rafael Swell drilling project was conducted by Bendix Field Engineering Corporation in support of the US Department of Energy National Uranium Resource Evaluation (NURE) program. This project consisted of 27 drill holes ranging in depth from 120.0 ft (36.5 m) to 3,700.0 ft (1,127.7 m). A total of 41,716 ft (12,715 m) was drilled, of which 3,099.8 ft (944.8 m) were cored. Geophysical logging was supplied by Century Geophysical Corporation and Bendix Field Engineering Corporation. The objective of the project was to test the uranium potential of the Triassic and Jurassic sandstone units and to investigate areas wheremore » industry was unlikely to drill in the near future. Drilling commenced September 24, 1978, and was finished on December 17, 1979.« less
Drill Bit Noise Illuminates the San Andreas Fault
NASA Astrophysics Data System (ADS)
Vasconcelos, Ivan; Snieder, Roel; Sava, Paul; Taylor, Tom; Malin, Peter; Chavarria, Andres
2008-09-01
Extracting the vibration response of the subsurface from noise is a rapidly growing field of research [Curtis et al., 2006; Larose et al., 2006]. We carried out broadside imaging of the San Andreas fault zone (SAFZ) using drill bit noise created in the main hole of the San Andreas Fault Observatory at Depth (SAFOD), near Parkfield, Calif. Imaging with drill bit noise is not new, but it traditionally requires the measurement of the vibrations of the drill stem [Rector and Marion, 1991]; such measurements provide the waves radiated by the drill bit. At SAFOD, these measurements were not available due to the absence of an accelerometer mounted on the drill stem. For this reason, the new technique of deconvolution interferometry was used [Vasconcelos and Snieder, 2008]. This technique extracts the waves propagating between seismometers from recordings of incoherent noise.
Glombitza, Clemens; Stockhecke, Mona; Schubert, Carsten J.; Vetter, Alexandra; Kallmeyer, Jens
2013-01-01
As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. PMID:23908647
Ellis, William L.; Swolfs, Henri S.
1983-01-01
Observations made during drilling and subsequent testing of the USW G-1 drill hole, Yucca Mountain, Nevada, provide qualitative insights into the in- situ geomechanical characteristics of the layered tuff units penetrated by the hole. Substantial drilling-fluid losses, and the occurrence of drilling-induced fracturing, are understandable in terms of the low, minimum horizontal stress magnitudes interpreted from six hydraulic-fracturing stress measurements conducted between hole depths of 640 and 1,300 meters. Although not confirmed directly by the hydraulic-fracturing data, other observations suggest that the minimum stress magnitudes in the more densely welded and brittle tuff layers may be even smaller than in the less welded and more ductile rocks. Stress-induced borehole ellipticity observed along most of the length of USW G-1 indicates that the horizontal stress components are not equal, and that the concentration of these stresses around the hole is sufficient to locally exceed the yield strength of the rock. The low, minimum horizontal stress magnitudes, perhaps variable with lithology, and the indications from borehole ellipticity of a high in-situ stress/strength ratio, indicate the need for further studies to characterize the structural and geomechanical properties of the rocks at depth in Yucca Mountain.
Development of direct dating methods of fault gouges: Deep drilling into Nojima Fault, Japan
NASA Astrophysics Data System (ADS)
Miyawaki, M.; Uchida, J. I.; Satsukawa, T.
2017-12-01
It is crucial to develop a direct dating method of fault gouges for the assessment of recent fault activity in terms of site evaluation for nuclear power plants. This method would be useful in regions without Late Pleistocene overlying sediments. In order to estimate the age of the latest fault slip event, it is necessary to use fault gouges which have experienced high frictional heating sufficient for age resetting. It is said that frictional heating is higher in deeper depths, because frictional heating generated by fault movement is determined depending on the shear stress. Therefore, we should determine the reliable depth of age resetting, as it is likely that fault gouges from the ground surface have been dated to be older than the actual age of the latest fault movement due to incomplete resetting. In this project, we target the Nojima fault which triggered the 1995 Kobe earthquake in Japan. Samples are collected from various depths (300-1,500m) by trenching and drilling to investigate age resetting conditions and depth using several methods including electron spin resonance (ESR) and optical stimulated luminescence (OSL), which are applicable to ages later than the Late Pleistocene. The preliminary results by the ESR method show approx. 1.1 Ma1) at the ground surface and 0.15-0.28 Ma2) at 388 m depth, respectively. These results indicate that samples from deeper depths preserve a younger age. In contrast, the OSL method dated approx. 2,200 yr1) at the ground surface. Although further consideration is still needed as there is a large margin of error, this result indicates that the age resetting depth of OSL is relatively shallow due to the high thermosensitivity of OSL compare to ESR. In the future, we plan to carry out further investigation for dating fault gouges from various depths up to approx. 1,500 m to verify the use of these direct dating methods.1) Kyoto University, 2017. FY27 Commissioned for the disaster presentation on nuclear facilities (Drilling borehole survey at the Nojima fault), Technical Report. (in Japanese)2) T. Fukuchi, 2001, Assessment of fault activity by ESR dating of fault gouge; an example of the 500m core samples drilled into the Nojima Earthquake Fault in Japan. Quaternary Science Reviews, 20, 1005-1008.
HOT WATER DRILL FOR TEMPERATE ICE.
Taylor, Philip L.
1984-01-01
The development of a high-pressure hot-water drill is described, which has been used reliably in temperate ice to depths of 400 meters with an average drill rate of about 1. 5 meters per minute. One arrangement of the equipment weighs about 500 kilograms, and can be contained on two sleds, each about 3 meters long. Simplified performance equations are given, and experiments with nozzle design suggest a characteristic number describing the efficiency of each design, and a minimum bore-hole diameter very close to 6 centimeters for a hot water drill. Also discussed is field experience with cold weather, water supply, and contact with englacial cavities and the glacier bed.
The Final Phase of Drilling of the Hawaii Scientific Drilling Project
NASA Astrophysics Data System (ADS)
Stolper, E.; Depaolo, D.; Thomas, D.; Garcia, M.; Haskins, E.; Baker, M.
2008-12-01
The principal goal of the Hawaii Scientific Drilling Project (HSDP) was to core continuously deep into the flank of a Hawaiian volcano and to investigate the petrology, geochemisty, geochronology, magnetics, etc. of the recovered samples. Drilling in Hilo, on the island of Hawaii proceeded in three phases. A 1.06 km pilot hole was core-drilled in 1993; a second hole was core-drilled to 3,098 meters below sea level (mbsl) in 1999, then deepened in 2004-2007 to 3,509 mbsl. Although the final phase of drilling was at times technically challenging, core recovery was close to 100%. All rocks from the final phase of drilling were emplaced below sea level and are from the Mauna Kea volcano. On-site core logging identified 45 separate units (the 1999 phase of drilling yielded 345 units). Five lithologies were identified: pillows (~60%); pillow breccias (~10%); massive lavas (~12%); hyaloclastites (~17%); intrusives (~1%; these are mostly multiple thin (down to cm scale) fingers of magma with identical lithologies occurring over narrow depth intervals). The rocks are primarily tholeiitic, ranging from aphyric to highly olivine-phyric lavas (up to ~25% olivine phenocrysts), with considerable fresh glass and olivine; clays and zeolites are present throughout the core. Forty whole-rock samples were collected as a reference suite and sent to multiple investigators for study. Additionally, glass was collected at roughly 3 m intervals for electron microprobe analysis. Although continuous and consistent with the shallower rocks from the previous phase of coring, there are several noteworthy features of the deepest core: (1) Glasses from shallower portions of the core exhibited bimodal silica contents, a low SiO2 group (~48-50 wt.%) and a high SiO2 group (~50.5- 52 wt.%). Glasses from the last phase of drilling are essentially all in the high-silica group and are somewhat more evolved than the high-silica glasses from the shallower portion of the core (5.1-7.6 vs. 5.1-10.4 wt.% MgO). (2) The expected sequence of lithologies with depth in the core is subaerial lava flows, hyaloclastites (formed by debris flows carrying glass and lithic fragments from the shoreline down the submarine flanks of the volcano), and finally pillow lavas. This sequence was generally observed in the earlier phases of drilling, and it appeared that the deepest rocks from the 1999 phase of drilling were essentially all formed from pillow lavas (i.e., there were no more hyaloclastites). However, thick hyaloclastites reflecting long distance transport from the ancient shoreline reappear in the bottom ~100 m of the drill hole. Although it may be coincidence, pillow breccias occur in the shallower parts of the core from the final phase of drilling, but not in the deeper parts in which the hyaloclastites reappear. (3) Intrusive rocks make up a lower fraction (~1%) of samples from the final phase of coring than in the deeper parts of the section from the 1999 phase of drilling (3.8%). It had been suggested that intrusives might become more common the deeper the drilling, but this is not the case at depths down to 3.5 km. (4) There are three units classified as "massive" including one relatively thick (~40 m), featureless (no internal boundaries, no evidence of mixing or internal differentiation), moderately olivine-phyric basalt.
Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.
2012-01-01
The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44′49.34″N. and long 76°00′25.09″W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and hydrology of the Maryland Eastern Shore.
Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.P. McGrail; E. C. Sullivan; F. A. Spane
2009-12-01
The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less
NASA Technical Reports Server (NTRS)
Onstott, T. C.; Moser, D. P.; Fredrickson, J. K.; Pfiffner, S. M.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R. B.; Krumholz, L.;
2002-01-01
The concentration and distribution of microbial biomass within deep subsurface rock strata is not well known To date, most analyses are from water samples and a few cores. Hand samples, block samples and cores from an actively mined Carbon Leader ore zone at 3.2 kilometers depth were collected for microbial analyses. The Carbon Leader was comprised of quartz, S-bearing aromatic hydrocarbons, Fe(III) oxyhydroxides, sulfides, uraninite, Au and minor amounts of sulfate. The porosity of the ore was 1% and the maximum pore throat diameter was less than 0.1 microns; whereas, the porosity of the adjacent quartzite was .02 to .9% with a maximum pore throat diameter of 0.9 microns. Rhodamine dye, fluorescent microspheres, microbial enrichments, autoradiography, phospholipid fatty acid (PLEA) and 16S rDNA analyses were performed on these rock samples and the mining water. The date indicate that the levels of solute contamination less than 0.01% for pared rock samples. Despite this low level of contamination, PLEA, microbial enrichment, DNA and tracer analyses and calculations indicate that most of the viable microorganisms in the Carbon Leader represent gram negative aerobic heterotrophs and ammonia oxidizers that are phylogenetically identical or closely related to service water microorganisms. These microbial contaminants probably infiltrated the low permeability rock through mining-induced microfractures. Geochemical data also detected drilling water in a fault zone approx. 1 meter behind the rock face encountered during coring. The mining induced macrofractures that are common at these great depths act as pathways for the drilling water borne microorganisms into the lower temperature zone that extends several meters into rock strata from the rock face. Combined PLEA and T- RFLP analyses of the service water and Carbon Leader samples indicate that the concentration of indigenous microorganisms was less than 10(exp 2) cells/gram. Such a low concentrations result from the submicron pore throat diameters. PLFA. SO4-35 autoradiography and tracer analyses indicate that the bounding quartzite contains thermophilic sulfate reducing bacteria at 10(exp 3) cells/gram that are not attributable to drilling water contamination. The microorganisms may be surviving on sulfate generated by oxidation of sulfide by radiolytic reactions resulting from the high U concentration in the ore zone. The presence of up to 8,000 ppm of Fe(III) oxyhydroxides in the host rock will also act to recycle sulfide generated by the sulfate reducing bacteria into sulfate. The activity of these sulfate-reducing bacteria may be enhanced by mining induced fracturing which can propagate up to 40 meters into virgin rock where the temperatures are ca. 50 C, and decrepitate of sulfate rich fluid inclusions. In ultra deep mines, judicious application of tracers and multiple microbial characterization techniques can distinguish microbial contamination caused by the near field fracturing and drilling water migration from the indigenous microbial communities in rock strata. The importance of far field fracturing on indigenous microbial communities, however, remains unknown.
Underground storage systems for high-pressure air and gases
NASA Technical Reports Server (NTRS)
Beam, B. H.; Giovannetti, A.
1975-01-01
This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.
NASA Astrophysics Data System (ADS)
Gohl, K.; Freudenthal, T.; Hillenbrand, C.-D.; Klages, J.; Larter, R.; Bickert, T.; Bohaty, S.; Ehrmann, W.; Esper, O.; Frederichs, T.; Gebhardt, C.; Küssner, K.; Kuhn, G.; Pälike, H.; Ronge, T.; Simões Pereira, P.; Smith, J.; Uenzelmann-Neben, G.; van de Flierdt, C.
2017-11-01
A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves.
Building an open-source robotic stereotaxic instrument.
Coffey, Kevin R; Barker, David J; Ma, Sisi; West, Mark O
2013-10-29
This protocol includes the designs and software necessary to upgrade an existing stereotaxic instrument to a robotic (CNC) stereotaxic instrument for around $1,000 (excluding a drill), using industry standard stepper motors and CNC controlling software. Each axis has variable speed control and may be operated simultaneously or independently. The robot's flexibility and open coding system (g-code) make it capable of performing custom tasks that are not supported by commercial systems. Its applications include, but are not limited to, drilling holes, sharp edge craniotomies, skull thinning, and lowering electrodes or cannula. In order to expedite the writing of g-coding for simple surgeries, we have developed custom scripts that allow individuals to design a surgery with no knowledge of programming. However, for users to get the most out of the motorized stereotax, it would be beneficial to be knowledgeable in mathematical programming and G-Coding (simple programming for CNC machining). The recommended drill speed is greater than 40,000 rpm. The stepper motor resolution is 1.8°/Step, geared to 0.346°/Step. A standard stereotax has a resolution of 2.88 μm/step. The maximum recommended cutting speed is 500 μm/sec. The maximum recommended jogging speed is 3,500 μm/sec. The maximum recommended drill bit size is HP 2.
Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian
2018-01-16
Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.
Ghasemi, Amir Hossein; Khorasani, Amir Mahyar
2018-01-01
Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy. PMID:29337858
NASA Astrophysics Data System (ADS)
Matsuda, T.; Omura, K.; Ikeda, R.
2003-12-01
National Research Institute for Earth Science and Disaster Prevention (NIED) has been conducting _gFault zone drilling_h. Fault zone drilling is especially important in understanding the structure, composition, and physical properties of an active fault. In the Chubu district of central Japan, large active faults such as the Atotsugawa (with 1858 Hietsu earthquake) and the Atera (with 1586 Tensho earthquake) faults exist. After the occurrence of the 1995 Kobe earthquake, it has been widely recognized that direct measurements in fault zones by drilling. This time, we describe about the Atera fault and the Nojima fault. Because, these two faults are similar in geological situation (mostly composed of granitic rocks), so it is easy to do comparative study of drilling investigation. The features of the Atera fault, which have been dislocated by the 1586 Tensho earthquake, are as follows. Total length is about 70 km. That general trend is NW45 degree with a left-lateral strike slip. Slip rate is estimated as 3-5 m / 1000 years. Seismicity is very low at present and lithologies around the fault are basically granitic rocks and rhyolite. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes (Hatajiri, Fukuoka, Ueno and Kawaue) are located on a line crossing in a direction perpendicular to the Atera fault. In the Kawaue well, mostly fractured and alternating granitic rock continued from the surface to the bottom at 630 m. X-ray fluorescence analysis (XRF) is conducted to estimate the amount of major chemical elements using the glass bead method for core samples. The amounts of H20+ are about from 0.5 to 2.5 weight percent. This fractured zone is also characterized by the logging data such as low resistivity, low P-wave velocity, low density and high neutron porosity. The 1995 Kobe (Hyogo-ken Nanbu) earthquake occurred along the NE-SW-trending Rokko-Awaji fault system, and the Nojima fault appeared on the surface on Awaji Island when this rupture occurred. It is more than 10 km long with 1-2 m offset along the Nojima fault. About one year after the earthquake, NIED drilled a borehole (the Hirabayashi NIED borehole) and penetrated the Nojima fault. The Hirabayashi NIED borehole was drilled to a depth of 1838 m and recovered the drill core. The main types of rock intersected by the borehole are granodiorite and cataclastic fault rocks. Three fracture zones were recognized in cores at approximate depth of 1140 m, 1300 m and 1800 m. There is remarkable foliated blue-gray gouge at a depth of 1140 m. We investigate chemical compositions by XRF analysis in the fracture zone. The amounts of H20+ are about from 1.0 to 15.0 weight percent. We investigate mineral assemblage in both drilling cores by X-ray powder diffraction analysis. From the results, we can_ft recognize so difference between the two faults. But the amount of H2O+ is very different. In the Hirabayashi NIED core at a depth of 1140 m, there is about ten times as much as the average of the Kawaue core. This is probably due to the greater degree of wall-rock fracturing in the fracture zone. We suggest that this characteristic is associated with the fault activity at the time of the 1995 Kobe earthquake and the nature of fluid-rock interactions in the fracture zone.
Semantic Approaches Applied to Scientific Ocean Drilling Data
NASA Astrophysics Data System (ADS)
Fils, D.; Jenkins, C. J.; Arko, R. A.
2012-12-01
The application of Linked Open Data methods to 40 years of data from scientific ocean drilling is providing users with several new methods for rich-content data search and discovery. Data from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have been translated and placed in RDF triple stores to provide access via SPARQL, linked open data patterns, and by embedded structured data through schema.org / RDFa. Existing search services have been re-encoded in this environment which allows the new and established architectures to be contrasted. Vocabularies including computed semantic relations between concepts, allow separate but related data sets to be connected on their concepts and resources even when they are expressed somewhat differently. Scientific ocean drilling produces a wide range of data types and data sets: borehole logging file-based data, images, measurements, visual observations and the physical sample data. The steps involved in connecting these data to concepts using vocabularies will be presented, including the connection of data sets through Vocabulary of Interlinked Datasets (VoID) and open entity collections such as Freebase and dbPedia. Demonstrated examples will include: (i) using RDF Schema for inferencing and in federated searches across NGDC and IODP data, (ii) using structured data in the data.oceandrilling.org web site, (iii) association through semantic methods of age models and depth recorded data to facilitate age based searches for data recorded by depth only.
49 CFR 230.72 - Testing main reservoirs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... drilled over its entire surface with telltale holes that are 3/16 of an inch in diameter. The holes shall...)) Where: D = Extreme depth of telltale holes in inches but in no case less than one-sixteenth inch; P...; and R = inside radius of the reservoir in inches. (2) One row of holes shall be drilled lengthwise of...
30 CFR 250.469 - What other well records could I be required to submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Modify and Well Records § 250.469 What other well...) Paleontological interpretations or reports identifying microscopic fossils by depth and/or washed samples of drill...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2010 CFR
2010-07-01
... hazards, and water depthsSet casing immediately before drilling into formations known to contain oil or..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the casing and cementing...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the... Cementing requirements (a) Drive or Structural Set by driving, jetting, or drilling to the minimum depth as...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the... Cementing requirements (a) Drive or Structural Set by driving, jetting, or drilling to the minimum depth as...
30 CFR 250.421 - What are the casing and cementing requirements by type of casing string?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.421 What are the... Cementing requirements (a) Drive or Structural Set by driving, jetting, or drilling to the minimum depth as...
30 CFR 250.469 - What other well records could I be required to submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Modify and Well Records § 250.469 What other well...) Paleontological interpretations or reports identifying microscopic fossils by depth and/or washed samples of drill...
30 CFR 250.469 - What other well records could I be required to submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Modify and Well Records § 250.469 What other well...) Paleontological interpretations or reports identifying microscopic fossils by depth and/or washed samples of drill...
Sensors Increase Productivity in Harsh Environments
NASA Technical Reports Server (NTRS)
2008-01-01
California's San Juan Capistrano-based Endevco Corporation licensed three patents covering high-temperature, harsh-environment silicon carbide (Si-C) pressure sensors from Glenn Research Center. The company is exploring their use in government markets, as well as in commercial markets, including commercial jet testing, deep well drilling applications where pressure and temperature increase with drilling depth, and in automobile combustion chambers.
NASA Astrophysics Data System (ADS)
Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.
2010-12-01
The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.
Drilling electrode for real-time measurement of electrical impedance in bone tissues.
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2014-03-01
In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.
IceBreaker: Mars Drill and Sample Delivery System
NASA Astrophysics Data System (ADS)
Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.
2012-12-01
We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling and sample transfer on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in dis-crete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khin, J.A.
Since reopening to foreign operators in 1989, companies have secured concessions and begun active exploration programs. This paper reports on: Yukong Oil (Block C) spudded well Indaw YK-1 last December and continued drilling below 8,500 ft. Well encountered frequent gas cut mud as well as lost circulation. BHP (Block H) spudded the Kawliya-1 in March this year and drilled to 6,500 ft. The well was dry and abandoned BHP plans to drill another well this year. Unocal (Block F) spudded its first well, the Kandaw-1, in May and plans to drill to 14,500 ft. Shell (Block G) began its firstmore » well in June. Shell's drilling program will consist of drilling four to six wells. Idemitsu (Block D) also spudded its first well in June. PetroCanada (Block E) plans to spud a well by December. Target depth is 12,000 ft.« less
Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill
NASA Technical Reports Server (NTRS)
Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)
2014-01-01
A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.
The Marskhod Egyptian Drill Project
NASA Astrophysics Data System (ADS)
Shaltout, M. A. M.
We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.
Research on high speed drilling technology and economic integration evaluation in Oilfield
NASA Astrophysics Data System (ADS)
Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo
2018-01-01
The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.
NASA Astrophysics Data System (ADS)
März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah
2014-05-01
Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening of pore waters in continental margin settings has been reported in association with dissociating gas hydrate deposits (Hesse, 2003), but neither seismic profiles nor sediment records showed any indications for the presence of gas hydrates at the Gulf of Alaska sites. An alternative and intriguing explanation for these almost brackish waters in the glaciomarine shelf and slope deposits is the presence of glacial meltwater that could either be "fossil" (stored in the glaciomarine sediments since the last glacial termination) or "recent" (i.e., actively flowing from currently melting glaciers of the St. Elias Mountain Range along permeable layers within the shelf deposits). As these relatively fresh waters are found at three distinct drill sites, it can be assumed that they are distributed all along the Gulf of Alaska shelf and slope, and similar findings have been reported at other glaciated continental margins, e.g., off East Greenland (DeFoor et al., 2011) and Antarctica (Mann and Gieskes, 1975; Chambers, 1991; Lu et al., 2010). While a recent review has highlighted the importance of fresh and brackish water reservoirs in continental shelf deposits worldwide (Post et al., 2013), we suggest that climatic and depositional processes affecting glaciated continental margins (e.g., the release of huge amounts of fresh water from ice sheets and glaciers during glacial terminations, and the rapid deposition of unconsolidated sediments on the adjacent shelf) are particularly favourable for the storage and/or flow of meltwater below the present sea floor. Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and d18O of the glacial deep ocean. Science 298, 1769-1773. Chambers SR (1991) Solute distributions and stable isotope chemistry of interstitial waters from Prydz Bay, Antarctica. Proceedings of the Ocean Drilling Program 119, 375-392. DeFoor W, Person M, Larsen HC, Lizarralde D, Cohen D, Dugam B (2011) Ice sheet-derived submarine groundwater discharge on Greenland's continental shelf. Water Resources Research 47, W07549. Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade? Earth-Science Reviews 61, 149-179. Lu Z, Rickaby REM, Wellner J, Georg B, Charnley N, Anderson JB, Hensen C (2010) Pore fluid modeling approach to identify recent meltwater signals on the West Antarctic Peninsula. Geochemistry, Geophysics, Geosystems 11, doi: 10.1029/2009GC002949. Mann R, Gieskes JM (1975) Interstitial water studies, Leg 28. Deep Sea Drilling Project Initial Reports 28, 805-814. Post VEA, Groen J, Kooi H, Person M, Ge S, Edmunds M (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71-78.
McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009
Richard Zehner
2009-01-01
This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.
Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California
French, J.J.; Page, R.W.; Bertoldi, G.L.
1982-01-01
Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)
The 1500m South Pole Ice Core: Recovering a 40 Ka Environmental Record
NASA Technical Reports Server (NTRS)
Casey, Kimberly Ann; Neumann, Thomas Allen; Fudge, T. J.; Neumann, T. A.; Steig, E. J.; Cavitte, M. G. P.; Blankenship, D. D.
2014-01-01
Supported by the US National Science Foundation, a new 1500 m, approximately 40 ka old ice core will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US Intermediate Depth Drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of ice chemistry and trace atmospheric gases. The South Pole ice core will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic ice sheet. The ice at South Pole flows at approximately 10m a(exp-1) and the South Pole ice-core site is a significant distance from an ice divide. Therefore, ice recovered at depth originated progressively farther upstream of the coring site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past approximately 50 years or upper 15 m. Depth-age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500m near the ice-core drill site.
Western USA groundwater drilling
NASA Astrophysics Data System (ADS)
Jasechko, S.; Perrone, D.
2016-12-01
Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.
NASA Astrophysics Data System (ADS)
Inagaki, Fumio; Hinrichs, Kai-Uwe; Kubo, Yusuke; IODP Expedition 337 Scientists
2016-06-01
The Integrated Ocean Drilling Program (IODP) Expedition 337 was the first expedition dedicated to subseafloor microbiology that used riser-drilling technology with the drilling vessel Chikyu. The drilling Site C0020 is located in a forearc basin formed by the subduction of the Pacific Plate off the Shimokita Peninsula, Japan, at a water depth of 1180 m. Primary scientific objectives during Expedition 337 were to study the relationship between the deep microbial biosphere and a series of ˜ 2 km deep subseafloor coalbeds and to explore the limits of life in the deepest horizons ever probed by scientific ocean drilling. To address these scientific objectives, we penetrated a 2.466 km deep sedimentary sequence with a series of lignite layers buried around 2 km below the seafloor. The cored sediments, as well as cuttings and logging data, showed a record of dynamically changing depositional environments in the former forearc basin off the Shimokita Peninsula during the late Oligocene and Miocene, ranging from warm-temperate coastal backswamps to a cool water continental shelf. The occurrence of small microbial populations and their methanogenic activity were confirmed down to the bottom of the hole by microbiological and biogeochemical analyses. The factors controlling the size and viability of ultra-deep microbial communities in those warm sedimentary habitats could be the increase in demand of energy and water expended on the enzymatic repair of biomolecules as a function of the burial depth. Expedition 337 provided a test ground for the use of riser-drilling technology to address geobiological and biogeochemical objectives and was therefore a crucial step toward the next phase of deep scientific ocean drilling.
Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland
NASA Astrophysics Data System (ADS)
Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.
2017-12-01
Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.
2011-10-01
through 0.25-in composite in about 23 s. The blade can be used with a standard handheld drill so no special equipment is needed. A firefighter was able...coated reciprocating and circular saw blades, and a drill motor with a diamond coated hole saw to use in responding to emergencies involving...American made blade of that size was not found. The hole saw measured 6 in outside diameter and could drill to a depth of 1 ⅜ in. The hole saw had a ½ in
Drilling report: State Nursery test well No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan, J.; Sonderegger, J.
1982-08-27
A geothermal test well was sited and drilled approximately 0.8 miles (1.3 km) east of Broadwater Hot Springs, near Helena, Montana. The site is on the property of the State Nursery, along the north side of Ten Mile Creek. The purpose of the drilling was to test a thermal infrared imagery anomaly and to evaluate whether a source of warm water for space heating of a series of new greenhouses could be developed to replace ones destroyed in the spring 1981 flooding of Ten Mile Creek. The well was drilled to 280 feet total depth, with no success in obtainingmore » hot or even warm water.« less
NASA Astrophysics Data System (ADS)
Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.
2017-12-01
Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.
Precision of computer-assisted core decompression drilling of the femoral head.
Beckmann, J; Goetz, J; Baethis, H; Kalteis, T; Grifka, J; Perlick, L
2006-08-01
Osteonecrosis of the femoral head is a local destructive disease with progression into devastating stages. Left untreated it mostly leads to severe secondary osteoarthrosis and early endoprosthetic joint replacement. Core decompression by exact drilling into the ischemic areas can be performed in early stages according to Ficat or ARCO. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. Twenty sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany) and 10 sawbones by fluoroscopic control only. No gypsum sphere was missed. There was a statistically significant difference regarding the three-dimensional deviation (Euclidian norm) as well as maximum deviation in x-, y- or z-direction (maximum norm) to the desired mid-point of the lesion, with a mean of 0.51 and 0.4 mm in the navigated group and 1.1 and 0.88 mm in the control group, respectively. Furthermore, significant difference was found in the number of drilling corrections as well as the radiation time needed: no second drilling or correction of drilling direction was necessary in the navigated group compared to 1.4 in the control group. The radiation time needed was less than 1 s compared to 3.1 s, respectively. The fluoroscopy-based VectorVision navigation system shows a high feasibility of computer-guided drilling with a clear reduction of radiation exposure time and can therefore be integrated into clinical routine. The additional time needed is acceptable regarding the simultaneous reduction of radiation time.
Spectral analysis of the 1976 aeromagnetic survey of Harrat Rahat, Kingdom of Saudi Arabia
Blank, H. Richard; Sadek, Hamdy S.
1983-01-01
Harrat Rahat, an extensive plateau of Cenozoic mafic lava on the Precambrian shield of western Saudi Arabia, has been studied for its water resource and geothermal potential. In support of these investigations, the thickness of the lava sequence at more than 300 points was estimated by spectral analysis of low-level aeromagnetic profiles utilizing the integral Fourier transform of field intensity along overlapping profile segments. The optimum length of segment for analysis was determined to be about 40 km or 600 field samples. Contributions from two discrete magnetic source ensembles could be resolved on almost all spectra computed. The depths to these ensembles correspond closely to the flight height (300 m), and, presumably, to the mean depth to basement near the center of each profile segment. The latter association was confirmed in all three cases where spectral estimates could be directly compared with basement depths measured in drill holes. The maximum thickness estimated for the lava section is 380 m and the mean about 150 m. Data from an isopach map prepared from these results suggest that thickness variations are strongly influenced by pre-harrat, north-northwest-trending topography probably consequent on Cenozoic faulting. The thickest zones show a rough correlation with three axially-disposed volcanic shields.
Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah
Daniels, J.J.
1984-01-01
Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.
NASA Astrophysics Data System (ADS)
Ogasawara, H.; Manzi, M. S.; Durrheim, R. J.; Ogasawara, H.
2017-12-01
In August 2014, the largest seismic event (M5.5) to occur in a South African gold mining district took place near Orkney. The M5.5 event and aftershocks were recorded by strainmeters installed at 3 km depth hundreds of meters above the M5.5 fault, 46 in-mine 4.5Hz triaxial geophone stations at depths of 2-3 km within a hypocentral radius of 2-3 km, and 17 surface strong motion stations (South African Seismograph Network; SANSN) within an epicentral radius of 25 km. Aftershocks were distributed on a nearly vertical plane striking NNW-SSE. The upper edge of this fault was hundreds of meters below the deepest level of the mine. ICDP approved a project "Drilling into seismogenic zones of M2.0-5.5 earthquakes in South African gold mines" to elucidate the details of the events (DSeis; Yabe et al. invited talk in S020 in this AGU). On 1 August 2017 drilling was within a few hundreds of meters of intersecting the M5.5 fault zone. To locate the drilling target accurately it is very important to determine the velocity structure between the seismic events and sensors. We do this by using the interval velocities used to migrate 3D-reflection seismic data that was previously acquired by a mining company to image the gold-bearing reef and any fault structures close to the mining horizon. Less attention was given to the velocities below the mining horizon, as accurate imaging of the geological structure was not as important and very little drilling information was available. We used the known depths of prominent reflectors above the mining horizon to derive the interval velocities needed to convert two-way-travel-time to depth. We constrain the velocity below the mining horizon by comparing the DSeis drilling results with the 3D seismic cube. The geometric data is crucial for the kinematic modeling that Ogasawara et al. (S018 in this AGU) advocates. The efforts will result in a better understanding of the main rupture and aftershocks.
Drilling resistance: A method to investigate bone quality.
Lughmani, Waqas A; Farukh, Farukh; Bouazza-Marouf, Kaddour; Ali, Hassan
2017-01-01
Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. The results show that drilling data can be used to indicate bone quality during orthopaedic surgery.
Effects of drilling parameters in numerical simulation to the bone temperature elevation
NASA Astrophysics Data System (ADS)
Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan
2018-04-01
Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, C.
1993-12-31
Using several combinations of speeds and feeds, a series of 6.37-mm diameter holes were drilled through a 19-mm thick plate of DURALCAN F3S.20S-T6 (A359/SiC/20p-T6). Every 50th hole was drilled in a gage block to measure the following: torque, thrust, drill flank wear, hole diameter, hole roundness, and hole surface finish. Maximum tool life was attained using feed rates of 0.25 mm/revolution. Speed had little effect on tool forces or life. Under optimum conditions, PCD-veined drills can produce over 6000 diameters of through holes in this type of composite with tolerances of 0.01 mm and flank wear of only 0.1 mm.
Research Drilling on the Mid-Atlantic Ridge: IDDP Wells of Opportunity at Reykjanes, Iceland
NASA Astrophysics Data System (ADS)
Fridleifsson, G. O.; Franzson, H.; Thorhallsson, S.; Elders, W. A.
2005-12-01
There are some 10 new geothermal wells at Reykjanes, in SW-Iceland, being considered by the Iceland Deep Drilling Project (IDDP) as potential candidate wells of opportunity to explore for deep (4-5 km) supercritical fluids. The drill field is located where the Mid-Atlantic Ridge emerges from the Atlantic ocean at the tip of the Reykjanes Peninsula. The site is an ideal locality for a combined study on the evolution of a rifted oceanic crust and an active black smoker-type geothermal system. However, the oceanic pillow basaltic crust at Reykjanes is some 2-3 times thicker than normal ocean floor crust, which undoubtedly relates to it being part of the Icelandic Large Igneous Province. The deepest of the geothermal wells at Reykjanes is Drillhole RN-17, that was completed to 3082 m depth in February 2005. It is currently the prime candidate for deepening by the IDDP. The plan is to deepen it to 4 km in 2006, and to 5 km depth in 2007, with funding coming from Icelandic energy companies (Hitaveita Sudurnesja, Landsvirkjun and Orkuveita Reykjavikur), the Government of Iceland, the International Scientific Continental Drilling Program (ICDP) and the US National Science Foundation (NSF). The well RN-17 was drilled as a conventional production well with a 12 ¼ inch drillbit to 3082 m depth, and left barefoot, with a 13 3/8 inch production casing cemented down to 900 m. It will be flow tested this autumn. If the RN-17 well is selected by the IDDP for deepening, a 9 5/8 inch in casing will be cemented to 3081 m and drilling will be continued with an 8 ½ inch tricone bit to 4 km in the autumn of 2006. The ICDP and NSF will fund spot coring for scientific studies in this depth interval and a second flow test would be performed in winter 2007. The following autumn, a 7 inch casing would be cemented to 4 km depth and then a 5 inch retrievable liner would be inserted to support a hybrid coring system to continuously core down to 5 km depth, retrieving HQ sized core. A third flow test would be carried out in 2008-2009. In RN-17 high-grade hydrothermal alteration occurs at shallower depth than in any other well at Reykjanes. This is revealed by the presence of widespread epidote, starting at only 312 m depth, that formed at temperature of ~ 250°C. Near the bottom of the well, lower greenschist facies rock replacement of pillow basalts is locally complete, indicating alteration temperatures in the 300°C to 350°C range. On-going studies on hydrothermal minerals such as amphiboles, and on fluid inclusions, are adding details to these estimates. Direct temperature logging of the borehole has so far been hampered by an obstruction at 2100 m, a problem that is currently being dealt with. In the next few months, studies of the other wells on the Reykjanes Peninsula will be concluded and the candidate best suited for deepening will be selected. The operating company, Hitaveita Sudurnesja, is contracted to deliver some 100 MWe of new electric power to the market by mid-year 2006, a situation of primary concern at the moment. Three new production wells will be drilled at Reykjanes this autumn and early winter, adding 3 new potential wells of opportunity for IDDP to consider. As all the production wells at Reykjanes are of identical design, the technical planning for deepening a borehole to 4 km autumn 2006 is more or less independent of which of the available wells is selected for deepening. http://www.icdp-online.org/sites/iceland/news/
Clean subglacial access: prospects for future deep hot-water drilling
Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John
2016-01-01
Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913
NASA Technical Reports Server (NTRS)
Harvey, Jill (Editor)
1989-01-01
A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... less than 400 meters. $100.00 per acre or fraction thereof for blocks in water depths of 400 meters or... less than 400 meters, and $100.00 per acre or fraction thereof for blocks in water depths of 400 meters... leases in 0 to less than 400 meters of water depth completed to a drilling depth of 20,000 feet TVD SS or...
NASA Technical Reports Server (NTRS)
1981-01-01
The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.
Ege, J.R.; Carroll, R.D.; Welder, F.A.
1967-01-01
Approximately 1,400 feet of continuous core was taken .between 800-2,214 feet in depth from USBM/AEC Colorado core hole No. 2. The drill, site is located in the Piceance Creek basin, Rio Blanco County, Colorado. From ground surface the drill hole penetrated 1,120 feet of the Evacuation Creek Member and 1,094 feet of oil shale in the Parachute Creek Member of the Green River Formation. Oil shale yielding more than 20 gallons per ton occurs between 1,260-2,214 feet in depth. A gas explosion near the bottom of the hole resulted in abandonment of the exploratory hole which was still in oil shale. The top of the nahcolite zone is at 1,693 feet. Below this depth the core contains common to abundant amounts of sodium bicarbonate salt intermixed with oil shale. The core is divided into seven structural zones that reflect changes in joint intensity, core loss and broken core due to natural causes. The zone of poor core recovery is in the Interval between 1,300-1,450 feet. Results of preliminary geophysical log analyses indicate that oil yields determined by Fischer assay compare favorably with yields determined by geophysical log analyses. There is strong evidence that analyses of complete core data from Colorado core holes No. 1 and No. 2 reveal a reliable relationship between geophysical log response and oil yield. The quality of the logs is poor in the rich shale section and the possibility of repeating the logging program should be considered. Observations during drilling, coring, and hydrologic testing of USBM/AEC Colorado core hole No. 2 reveal that the Parachute Creek Member of the Green River Formation is the principal aquifer water in the Parachute Creek Member is under artesian pressure. The upper part of the aquifer has a higher hydrostatic head than, and is hydrologically separated from the lower part of the aquifer. The transmissibility of the aquifer is about 3500 gpd per foot. The maximum water yield of the core hole during testing was about 500 gpm. Chemical analyses of water samples indicate that the content of dissolved solids is low, the principal ions being sodium and bicarbonate. Although the hole was originally cored, to a depth of 2,214 feet, ,the present depth is about 2,100 feet. This report presents a preliminary evaluation of core examination, geophysical log interpretation and hydrological tests from the USBM/AEC Colorado core hole No. 2. The cooperation of the U.S. Bureau of Mines is gratefully acknowledged. The reader is referred to Carroll and others (1967) for comparison of USBM/AEC Col0rado core hole No. 1 with USBM/AEC Colorado core hole No. 2.
New mud gas monitoring system aboard D/V Chikyu
NASA Astrophysics Data System (ADS)
Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki
2013-04-01
Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
Analysis of the rate of wildcat drilling and deposit discovery
Drew, L.J.
1975-01-01
The rate at which petroleum deposits were discovered during a 16-yr period (1957-72) was examined in relation to changes in a suite of economic and physical variables. The study area encompasses 11,000 mi2 and is located on the eastern flank of the Powder River Basin. A two-stage multiple-regression model was used as a basis for this analysis. The variables employed in this model were: (1) the yearly wildcat drilling rate, (2) a measure of the extent of the physical exhaustion of the resource base of the region, (3) a proxy for the discovery expectation of the exploration operators active in the region, (4) an exploration price/cost ratio, and (5) the expected depths of the exploration targets sought. The rate at which wildcat wells were drilled was strongly correlated with the discovery expectation of the exploration operators. Small additional variations in the wildcat drilling rate were explained by the price/cost ratio and target-depth variables. The number of deposits discovered each year was highly dependent on the wildcat drilling rate, but the aggregate quantity of petroleum discovered each year was independent of the wildcat drilling rate. The independence between these last two variables is a consequence of the cyclical behavior of the exploration play mechanism. Although the discovery success ratio declined sharply during the initial phases of the two exploration plays which developed in the study area, a learning effect occurred whereby the discovery success ratio improved steadily with the passage of time during both exploration plays. ?? 1975 Plenum Publishing Corporation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...
Morin, R.H.; Flamand, R.
1999-01-01
Deep Sea Drilling Project (DSDP) Hole 504B is located in the eastern equatorial Pacific Ocean and extends to a total depth of 2111 m beneath the seafloor (mbsf). Several acoustic televiewer logs have been obtained in this well during successive stages of drilling, and the resulting digital images have revealed numerous oval-shaped fractures seemingly etched into the borehole wall. A theoretical examination of these stress-induced features identifies a unique and ephemeral set of stress distributions and magnitudes that are necessary for their production. Consequently, the ovals provide a basis for quantifying the magnitudes and orientations of the maximum and minimum horizontal principal stresses, SH and Sh, at this site. Vertical, truncated breakouts and horizontal tensile fractures define the spatial boundaries of the ovals. Explicit criteria for their occurrence are combined with estimates for various physical properties of the rock to yield a range of possible values for the horizontal principal stresses. The conspicuous oval geometry is completed by a curved fracture that joins the vertical and horizontal components. Its degree of curvature is delineated by the modified Griffith failure criterion and is directly related to the principal stress difference (SH - Sh). Matching a series of type curves corresponding to specific values for (SH - Sh) with the actual undistorted well bore images allows the magnitude of the stress difference to be further constrained. With a value for (SH - Sh) of 45 ?? 5 MPa the individual magnitudes of SH and Sh are determined more precisely. Final estimates for the horizontal principal stresses in DSDP Hole 504B at a depth of 1200 mbsf are 141 MPa ??? SH ??? 149 MPa and 91 MPa ??? Sh ??? 109 MPa. Stress magnitudes derived from this approach rely heavily upon the values of a variety of physical properties, and complementary laboratory measurements performed on relevant rock samples provide critical information. Uncertainties in estimating these properties translate into less precise predictions of principal stresses. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Ijiri, A.; Inagaki, F.
2015-12-01
During the Integrated Ocean Drilling Program (IODP) Expedition 337 in 2012, the riser-drilling vessel Chikyu extended the previous world depth record of scientific ocean drilling and made one of the deepest scientific borehole down to 2466 m below the seafloor (mbsf) at Site C0020 Hole A off the Shimokita Peninsula, Japan. The sedimentary sequence consists of 17 lignite layers below 1.5 km bellow the seafloor. Microbiological and geochemical data consistently showed evidence for the existence of microbial communities associated with lignite coal beds in the coal-bearing sediments (Inagaki and Hinrichs et al., Science, 2015). Since lignite coals produce substantial dissolved organic compounds during the burial alternation process, volatile fatty acids may play important roles for microbial life and its activity in the deep sedimentary environment. To address this hypothesis, we measured methanogenic and acetate-oxidation activities by radiotracer incubation experiments using 14C-labelled substrate ([2-14C]-acetate) immediately after core recovery. Activity of aceticlastic methanogenesis was observed in the sediment above the coal-baring layers (>1990 mbsf), ranging from 0.2 to 1.2 pmol cm-3 d-1. The highest activity was observed in a coal-bed horizon at 1990 mbsf. However, aceticlastic methanogenesis was below the detection limit in sediment samples below the 2 km-coal layers. Activity of acetate oxidation to CO2 was measured by 14CO2 production rate from [2-14C]-acetate. Interestingly, the acetate-oxidation activity was observed in sediments above the coal beds, which values were generally higher than those of methanogenesis with the maximum value of 33 pmol cm-3 d-1 at 1800 mbsf. The rates gradually decreased with increasing depth from 1800 mbsf and reached below the detection limit (i.e., 0.05 pmol cm-3 d-1) in 2 km-deep coal-bed samples. The occurrence of relatively high acetate oxidation at ~1800 mbsf above the coal formation suggests that microbes respire acetate with available electron acceptors such as glauconitic iron oxides in the deep sedimentary environment.
A new statistical model to find bedrock, a prequel to geochemical mass balance
NASA Astrophysics Data System (ADS)
Fisher, B.; Rendahl, A. K.; Aufdenkampe, A. K.; Yoo, K.
2016-12-01
We present a new statistical model to assess weathering trends in deep weathering profiles. The Weathering Trends (WT) model is presented as an extension of the geochemical mass balance model (Brimhall & Dietrich, 1987), and is available as an open-source R library on GitHub (https://github.com/AaronRendahl/WeatheringTrends). WT uses element concentration data to determine the depth to fresh bedrock by assessing the maximum extent of weathering for all elements and the model applies confidence intervals on the depth to bedrock. WT models near-surface features and the shape of the weathering profile using a log transformation of data to capture the magnitude of changes that are relevant to geochemical kinetics and thermodynamics. The WT model offers a new, enhanced opportunity to characterize and understand biogeochemical weathering in heterogeneous rock types. We apply the model to two 21-meter drill cores in the Laurels Schist bedrock in the Christina River Basin Critical Zone Observatory in the Pennsylvania Piedmont. The Laurels Schist had inconclusive weathering indicators prior to development and application of WT model. The model differentiated between rock variability and weathering to delineate the maximum extent of weathering at 12.3 (CI 95% [9.2, 21.3]) meters in Ridge Well 1 and 7.2 (CI 95% [4.3, 13.0]) meters in Interfluve Well 2. The modeled extent to weathering is decoupled from the water table at the ridge, but coincides with the water table at the interfluve. These depths were applied as the parent material for the geochemical mass balance for the Laurels Schist. We test statistical approaches to assess the variability and correlation of immobile elements to facilitate the selection of the best immobile element for use in both models. We apply the model to other published data where the geochemical mass balance was applied, to demonstrate how the WT model provides additional information about weathering depth and weathering trends.
NASA Astrophysics Data System (ADS)
McChesney, C. L.; Ford, H. L.; McManus, J. F.
2016-12-01
The Eastern Equatorial Pacific (EEP) is an important region of study due to its dynamic nature and role in El Niño-Southern Oscillation (ENSO), which is the biggest source of global interannual variability. The EEP is characterized by cool sea surface temperatures that are tightly coupled to a shallow thermocline. Variability in the depth of the EEP thermocline is important in initiating and propagating El Niño events. Here, we investigate changes in thermocline depth during the Last Glacial Maximum (LGM) to gain insight into how conditions within the EEP changed in the context of different boundary conditions (e.g., low CO2, greater ice volume). Using the stable oxygen isotope values of planktonic foraminifera from a range of calcification depths in the water column, we show that the thermocline was deep during the LGM relative to the Holocene at Ocean Drilling Program Site 849 (0°N, 110°W, 3839 m water depth). In comparison to previous studies that have been done in the region, site 849 has the smallest change of δ18O surface values, indicating less glacial cooling. However, site 849 displays even less apparent cooling in subsurface isotopic values, with a difference of -0.39 ‰ when comparing the LGM to the Holocene, suggesting little temperature change. The δ18O values of site 849 during the LGM had a smaller range between subsurface and surface foraminifera of 1.64‰ compared to the Holocene range of 2.11‰. This difference indicates that the thermocline was deeper in the equatorial cold tongue during the LGM. A deep thermocline may have inhibited some of the thermocline related feedbacks in ENSO variability and led to reduced ENSO during the LGM. Future Mg/Ca data will be incorporated to verify temperature.
Considerations, constraints and strategies for drilling on Mars
NASA Astrophysics Data System (ADS)
Zacny, K.; Cooper, G.
2006-04-01
The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.
Nichols, Thomas C.; Collins, Donley S.; Davidson, Richard R.
1986-01-01
A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U. S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities.
NASA Astrophysics Data System (ADS)
Downing, R. A.; Allen, D. J.; Burgess, W. G.; Smith, I. E.; Edmunds, W. M.
1982-05-01
The Southampton No 1 (Western Esplanade) geothermal well which was drilled for the development of hot brines in the Triassic sandstones was tested. The aquifer was intersected at a depth of 1729 m. The upper 24 m contained thin, medium to coarse grained sandstones which are the main water bearing horizons. The static water level is about 80 m below ground level. Gas lifting with nitrogen indicate that the sandstones contain a brine with a salinity of 125 g/l at a temperature of 76 deg C. The maximum yield of the well was 30 l/s for a pressure reduction of 4.2 MN/sq m. The transmissivity of the aquifer is about 5 Dm. A hydraulic barrier, probably a fault, occurs close to the well.
Stress state and its anomaly observations in the vicinity of a fault in NanTroSEIZE Expedition 322
NASA Astrophysics Data System (ADS)
Wu, Hung-Yu; Saito, Saneatsu; Kinoshita, Masataka
2015-12-01
To better understand the stress state and geological properties within the shallow Shikoku Basin, southwest of Japan, two sites, C0011A and C0011B, were drilled in open-ocean sediments using Logging While Drilling (LWD) and coring, respectively. Resistivity image logging was performed at C0011A from sea floor to 950 m below sea floor (mbsf). At C0011B, the serial coring was obtained in order to determine physical properties from 340 to 880 mbsf. For the LWD images, a notable breakout anomaly was observed at a depth of 615 m. Using resistivity images and a stress polygon, the potential horizontal principal stress azimuth and its magnitude within the 500-750 mbsf section of the C0011A borehole were constrained. Borehole breakout azimuths were observed for the variation by the existence of a fault zone at a depth of 615 mbsf. Out of this fracture zone, the breakout azimuth was located at approximately 109° ± 12°, subparallel to the Nankai Trough convergence vector (300-315°). Our calculations describe a stress drop was determined based on the fracture geometry. A close 90° (73° ± 12°) rotation implied a 100% stress drop, defined as a maximum shear stress drop equal to 1 MPa. The magnitude of the horizontal principal stresses near the fracture stress anomaly ranged between 49 and 52 MPa, and the bearing to the vertical stress (Sv = 52 MPa) was found to be within the normal-faulting stress regime. Low rock strength and a low stress level are necessary to satisfy the observations.
Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautman, Christopher Arthur
Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacingsmore » are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling, consisting of cored drill holes to 100-ft (33-m) depth, confirmed both the specific surface geophysical measurements and the more general geophysical model of the subsurface lake facies. Good agreement of conductive regions with drill holes containing little to no coarse-grained sediments was observed, and vice-versa. A second phase of grid drilling on approximately 300-ft (100-m) centers was targeted a delineating a region of sufficient size containing essentially no coarse-grained ''hard'' material. Such a region was identified in the southwestern portion of Antelope Lake.« less
Buckwalter, T.F.; Squillace, P.J.
1995-01-01
Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan
2018-04-01
Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.
Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results
Goff, S.J.; Goff, F.; Janik, C.J.
1992-01-01
Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.
Drilling into seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines (DSeis)
NASA Astrophysics Data System (ADS)
Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Cichowicz, Artur; Onstott, Tullis; Kieft, Tom; Boettcher, Margaret; Wiemer, Stefan; Ziegler, Martin; Janssen, Christoph; Shapiro, Serge; Gupta, Harsh; Dight, Phil
2016-04-01
Several times a year, mining-induced earthquakes with magnitudes equal to or larger than 2 take place only a few tens of meters away from active workings in South African gold mines at depths of up to 3.4 km. The largest event recorded in mining regions, a M5.5 earthquake, took place near Orkney, South Africa on 5 August 2014, with the upper edge of the activated fault being only some hundred meters below the nearest mine workings (3.0 km depth). This is one of the rare events for which detailed seismological data are available, both from surface and underground seismometers and strainmeters, allowing for a detailed seismological analysis and comparison with in-situ observed data. Therefore, this earthquake calls for drilling to investigate the seismogenic zones before aftershocks diminish. Such a project will have a significantly better spatial coverage (including nuclei of ruptures, strong motion sources, asperities, and rupture edges) than drilling in seismogenic zones of natural large earthquakes and will be possible with a lower risk and at much smaller costs. In seismogenic zones in a critical state of stress, it is difficult to delineate reliably the local spatial variation in both directions and magnitudes of principal stresses (3D full stress tensor) reliably. However, we have overcome this problem. We are able to numerically model stress better than before, enabling us to orient boreholes so that the chance of stress-induced damage during stress measurement is minimized, and enabling us to measure the full 3D stress tensor successively in a hole within reasonable time even when stresses are as large as those expected in seismogenic zones. Better recovery of cores with less stress-induced damage during drilling is also feasible. These will allow us to address key scientific questions in earthquake science and associated deep biosphere activities which have remained elusive. We held a 4-day workshop sponsored by ICDP and Ritsumeikan University in October/November 2015, which confirmed the great scientific value as well as technical feasibility, flexibility, and cost-effectiveness of drilling into the targets which have already been well seismologically probed. The value will be maximized if we combine outcomes from a limited number of holes drilled from 3 km depth into the M5.5 seismogenic zones (~ 4 km depth) with larger number of boreholes from mining horizons into the other targets (M~2 faults) already extensively exhumed by mining or which will be in future. We could have additional inputs during the 2015 AGU Fall Meeting period. We intend to start drilling before the M5.5 aftershocks diminish or mining around the M2.8 fault starts to alter stress considerably.
Fixation of the Achilles tendon insertion using suture button technology.
Fanter, Nathan J; Davis, Edward W; Baker, Champ L
2012-09-01
In the operative treatment of Achilles insertional tendinopathy, no guidelines exist concerning which form of fixation of the Achilles tendon insertion is superior. Transcalcaneal drill pin passage does not place any major plantar structures at risk, and the addition of a Krackow stitch and suture button to the fixation technique provides a significant increase in ultimate load to failure in Achilles tendon insertional repairs. Controlled laboratory study. The Achilles tendon insertions in 6 fresh-frozen cadaveric ankles were detached, and transcalcaneal drill pins were passed. Plantar dissection took place to evaluate the drill pin relationship to the plantar fascia, lateral plantar nerve and artery, flexor digitorum longus tendon, and master knot of Henry. The Achilles tendons were then repaired with a double-row suture anchor construct alone or with a suture button and Krackow stitch added to the double-row suture anchor construct. The repairs were then tested to maximum load to failure at 20 mm/min. The mode of failure was recorded, and the mean maximum load to failure was assessed using the Student t test for distributions with equal variance. Transcalcaneal drill pin passage did not place any selected anatomic structures at risk. The mean maximum load to failure for the suture bridge group was 239.2 N; it was 391.4 N for the group with the suture button (P = .014). The lateral plantar artery was the structure placed at greatest risk from drill pin placement, with a mean distance of 22.7 mm (range, 16.5-29.2 mm) between the pin and artery. In this laboratory study, transcalcaneal drill pin passage appeared to be anatomically safe, and the use of suture button technology with a Krackow stitch for Achilles tendon insertional repair significantly increased repair strength. Achilles tendon insertional repair with suture button fixation and a Krackow stitch may facilitate the earlier institution of postoperative rehabilitation and improve clinical outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubb, M.
1983-03-01
Petronas recently commissioned its first offshore jack-up drilling rig at Promet, Singapore. The $49 million jack-up Parameswara will undertake both exploration and development activities in Petronas Carigali's exploration block off the eastern coast of Malaysia. The block measures 19,800 sq. km. Initially, the rig will be located at the Duyong gas field. Based on Baker Marine Corporation's BMC 300 design, the 65 X 64 X 8 m rig is capable of working in water depths of up to 91.4 m and is able to drill to a depth of 7,600 m. It has three triangular open-lattice truss-type legs, each 131more » m long. Prominent features include four-tier living quarters which can house 90 men, three cranes of boom length 30.48 m each, a helideck, mess hall, galley, and recreation room. The rig is built to American Bureau of Shipping standards. This paper describes the transport, installation and ballast operations involved in situating the Petronas rig in the Duyong field.« less
Subsurface temperature data in Jemez Mountains, New Mexico. Circular 151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, M.; Weidman, C.; Edwards, C.L.
1976-01-01
Temperature data taken in 13 drill tests around the Valles Caldera are presented. Seven of these tests were shallow auger holes (less than approximately 30m), 4 were rotary holes of intermediate depth (140 m to 170 m), and 2 were relatively deep tests (350 m and 730 m). Heat-flow measurements were obtained in the 4 intermediate drill tests whereas only geothermal gradients were measured in the remaining tests. Potential ground-water movement, lack of good thermal conductivity control, and the shallow depth of many of the drill tests makes the heat-flow pattern in the area uncertain. Two trends appear likely: highermore » heat flows are to the western side of the Valles Caldera (as opposed to the eastern side) and heat flows increase rapidly in approaching the margin of the Valles Caldera from the west. Both observations suggest a relatively shallow heat source located beneath the western part of the Valles Caldera.« less
Surface drilling technologies for Mars
NASA Technical Reports Server (NTRS)
Blacic, J. D.; Rowley, J. C.; Cort, G. E.
1986-01-01
Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass.
NASA Astrophysics Data System (ADS)
Wenning, Q.; Zappone, A.; Berthet, T.; Ask, M. V. S.; Rosberg, J. E.; Almqvist, B. S. G.
2017-12-01
Borehole breakouts are often assumed to form near instantaneously due to stress perturbations around boreholes after the rock mass was removed. Recent observations in sediments [e.g., Moore et al., 2011] and crystalline rocks [e.g., Berard and Cornet, 2003], as well as numerical modelling results [e.g., Schoenball et al., 2014], suggest that there are cases in which borehole breakout grows radially over time, forcing us to reconsider subsurface stress estimation. These observations are rare due to drilling difficulties (i.e., cementing and casing the borehole after drilling), often only allowing a single image logging campaign. In 2014, the Collisional Orogeny in the Scandinavian Caledonides deep scientific borehole (COSC-1) was drilled to a depth of 2.5 km. To date the borehole is open and uncased, allowing two acoustic televiewer logging campaigns, with more than one year between campaigns. The borehole is still available for supplementary data collactions. These logs provide detailed images along the full length of the 2.5 km deep borehole with 1.6 km of overlapping logs for breakout and drilling induced tensile fracture analysis. The results show from the sparse occurrence of breakouts and drilling induced tensile fractures a NW-SE average maximum horizontal stress direction, consistent with the general trend in Scandinavia. The unique acquisition of image logs in two successions allows for analysis of time-dependent borehole deformation, indicating that six breakout zones have crept, both along the borehole axis and radially (up to 20° growth) around the borehole. While some breakouts have grown, the formation of new breakouts has not occurred. The occurrence of breakouts and their growth appear to be independent of lithology. The observed growth after the second logging campaign suggests that under conditions where the stress exceeded the strength of the rock, the resulting breakout causes perturbations in the stresses around the borehole in the near vicinity. As those stresses are redistributed around the breakouts over the course of the year, the breakouts widen. The fact that no new breakout zones have formed suggests that the brittle creeping is not likely to initiate breakouts and that an initial perturbation during drilling (i.e., a breakout) is required to observe such a phenomenon.
Site 765: Sediment Lithostratigraphy
,
1990-01-01
A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.
Study of Hydrothermal Mineralization in 2013 Drill Core from Hawaii Island
NASA Astrophysics Data System (ADS)
Lautze, N. C.; Calvin, W. M.; Moore, J.; Haskins, E.; Thomas, D. M.
2014-12-01
The Humu'ula Groundwater Research Project (HGRP) drilled a continuously-cored hole to nearly 2 km depth near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100 C. A study is underway to characterize hydrothermal (secondary) mineralization in the core at depths below ~ 1 km. Secondary mineralization can indicate the presence, chemistry, and temperature of hydrothermal fluids, therein helping to characterize a present and/or past geothermal system. To date, the study is two pronged. In collaboration with University Nevada Reno (UNR) we used an Analytical Spectral Devices (ASD) FieldSpec instrument to obtain nearly 800 spectra from core depths spanning 3190 to 5785 feet. This device has a 2 cm contact probe that measures from 0.4 to 2.5 mm, and has been used successfully by UNR to identify depth-associated changes in alteration mineralogy and zoning in drill core from other pilot studies. The spectra indicate that rocks above a depth of ~1 km are only weakly altered. At greater depths to the base of the well, chlorite, possibly with some mica, and zeolites are common. The majority of zeolites are spectrally similar to each other at these wavelengths, however analcime and natrolite are uniquely identified in some sections. Epidote was not observed. The secondary mineral assemblages suggest that the alteration was produced by moderate temperature neutral pH fluids. Here, we used the spectral data as a survey tool to help identify and select over 20 sections of core for sampling and more detailed mineralogical analysis using traditional X-Ray Diffraction (XRD) and petrographic techniques, conducted in collaboration with University of Utah. This presentation will include mineral maps with depth and results of the petrographic analyses.
NASA Astrophysics Data System (ADS)
Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel
2017-09-01
When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.R.; Aguilar, R.; Mercer, J.W.
This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with boreholemore » locations and times-of-drilling charts are included.« less
NASA Astrophysics Data System (ADS)
Mortensen, A. K.; Mibei, G. K.
2017-12-01
Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).
Chemical logging of geothermal wells
Allen, C.A.; McAtee, R.E.
The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.
Chemical logging of geothermal wells
Allen, Charles A.; McAtee, Richard E.
1981-01-01
The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.
NASA Astrophysics Data System (ADS)
Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev
2016-09-01
We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.
Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schorderet, Alain; Deghilage, Emmanuel; Agbeviade, Kossi
2011-05-04
Brittle materials such as ceramics, glasses and oxide single crystals find increasing applications in advanced micro-engineering products. Machining small features in such materials represents a manufacturing challenge. Ultrasonic drilling constitutes a promising technique for realizing simple micro-holes of high diameter-to-depth ratio. The process involves impacting abrasive particles in suspension in a liquid slurry between tool and work piece. Among the process performance criteria, the drilling time (productivity) is one of the most important quantities to evaluate the suitability of the process for industrial applications.This paper summarizes recent results pertaining to the ultrasonic micro-drilling process obtained with a semi-industrial 3-axis machine.more » The workpiece is vibrated at 40 kHz frequency with an amplitude of several micrometers. A voice-coil actuator and a control loop based on the drilling force impose the tool feed. In addition, the tool is rotated at a prescribed speed to improve the drilling speed as well as the hole geometry. Typically, a WC wire serves as tool to bore 200 {mu}m diameter micro-holes of 300 to 1,000 {mu}m depth in glass and ruby. The abrasive slurry contains B4C particles of 1 {mu}m to 5 {mu}m diameter in various concentrations.This paper discusses, on the basis of the experimental results, the influence of several parameters on the drilling time. First, the results show that the control strategy based on the drilling force allows to reach higher feed rates (avoiding tool breakage). Typically, a 8 um/s feed rate is achieved with glass and 0.9 {mu}m/s with ruby. Tool rotation, even for values as low as 50 rpm, increases productivity and improves holes geometry. Drilling with 1 {mu}m and 5 {mu}m B4C particles yields similar productivity results. Our future research will focus on using the presented results to develop a model that can serve to optimize the process for different applications.« less
Impact of exploratory wells, offshore Florida: A biological assessment
Dustan, Phillip A.; Lidz, Barbara H.; Shinn, Eugene A.
1991-01-01
Seven offshore exploratory oil well sites were examined in an effort to determine the ecological impact of exploratory drilling on the subtropical marine ecosystems of southern Florida, including seagrass beds and coral reefs. The time since drilling ranged from 2 to 29 years; water depths varied between 5 and 70 m. The major long-term ecological impact observed at these sites ranged from the creation of "artificial-reef" conditions to the physical destruction of hardbottom habitat that had not recovered in 29 years. Long-term ecological perturbation appeared to be limited to physical destruction and the deposition of drilling debris, which provided substratum for settling organisms. Significant deposits of drill muds or cuttings were not encountered at any of the sites, and there was no evidence of ecological damage from cuttings or drill muds. The results of this study pertain only to exploratory drilling that, unlike production wells that remain in place for tens of years, is a one-time perturbation to the habitat.
NASA Astrophysics Data System (ADS)
Han, Min-Seop; Min, Byung-Kwon; Lee, Sang Jo
2009-06-01
Electrochemical discharge machining (ECDM) is a spark-based micromachining method especially suitable for the fabrication of various microstructures on nonconductive materials, such as glass and some engineering ceramics. However, since the spark discharge frequency is drastically reduced as the machining depth increases ECDM microhole drilling has confronted difficulty in achieving uniform geometry for machined holes. One of the primary reasons for this is the difficulty of sustaining an adequate electrolyte flow in the narrow gap between the tool and the workpiece, which results in a widened taper at the hole entrance, as well as a significant reduction of the machining depth. In this paper, ultrasonic electrolyte vibration was used to enhance the machining depth of the ECDM drilling process by assuring an adequate electrolyte flow, thus helping to maintain consistent spark generation. Moreover, the stability of the gas film formation, as well as the surface quality of the hole entrance, was improved with the aid of a side-insulated electrode and a pulse-power generator. The side-insulated electrode prevented stray electrolysis and concentrated the spark discharge at the tool tip, while the pulse voltage reduced thermal damage to the workpiece surface by introducing a periodic pulse-off time. Microholes were fabricated in order to investigate the effects of ultrasonic assistance on the overcut and machining depth of the holes. The experimental results demonstrated that the possibility of consistent spark generation and the machinability of microholes were simultaneously enhanced.
NASA Astrophysics Data System (ADS)
McNeill, L.; Moore, J. C.; Yamada, Y.; Chang, C.; Tobin, H.; Kinoshita, M.; Gulick, S.; Moore, G.; Iodp Exp. 314/315/316 Science Party, &
2008-12-01
Borehole breakouts are commonly observed in borehole images shortly after drilling of continental margin sites. This study aims to compile and compare these results to determine what in situ shallow stress measurements can tell us about the larger scale tectonic regime. Recent Logging While Drilling resistivity images across the Kumano transect of the Nankai subduction zone, during Expedition 314, Stage 1 of the IODP NanTroSEIZE project, add to this dataset. Expedition 314 site data within the prism (C0001, C0004, C0006, including the megasplay fault system which may overlie the seismogenic updip limit) suggest maximum compressive stress (SHmax) is perpendicular to the margin (not parallel to the convergence vector) but is rotated through 90° at the forearc basin site (C0002). These results may point to changes in stress state of the shallow forearc from east to west: compression in the aseismic active prism (with evidence of strain partitioning of oblique convergence); and extension above the updip seismogenic zone suggesting focus of plate coupling at the plate boundary and not in the shallow forearc. Further south, ODP Leg 196 drilled the prism toe (808) with breakouts indicating SHmax parallel to the convergence vector, in contrast to Exp. 314 results. The stress state in the shallow prism at Site 808 may be affected by nearby seamount subduction or may represent differences in strain partitioning. On the Cascadia margin, two drilling legs have collected LWD borehole images (Leg 204 and Exp. 311). Leg 204 drilled 3 sites at hydrate ridge in the C Cascadia outer prism with breakout orientations variable between closely spaced sites. Prism fold axes are parallel to the margin so we might expect SHmax perpendicular to the margin as in Exp. 314. Deviations from this orientation may reflect local and surface effects (Goldberg and Janik, 2006). Exp. 311, N Cascadia, drilled 5 sites across the prism with breakouts in LWD images. Subduction is not oblique here, in contrast to the other sites discussed, and most sites indicate SHmax almost parallel to convergence and normal to major fold axes. In one case, the in situ stress orientation is also compatible with shallow normal faulting from seismic data. Site 1325, in a slope basin, deviates from this orientation and may reflect local processes. Borehole breakouts within the shallow forearc of convergent margins are often in agreement with other indications of regional tectonic stress and may be indicative of processes at depth. Deviations may represent local stresses due to gravitational processes.
El-Kholey, Khalid E; Ramasamy, Saravanan; Kumar R, Sheetal; Elkomy, Aamna
2017-12-01
To test the hypothesis that there would be no difference in heat production by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 120 implant site preparations with 3 different diameters (3.6, 4.3, and 4.6 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and other half using the conventional drilling protocol (pilot drill followed by graduated series of drills to widen the site). Heat production by different drilling techniques was evaluated by measuring the bone temperature using k-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 3.6, 4.3, and 4.6-mm implants was 2.45, 2.60, and 2.95° when the site was prepared by the simplified procedure, whereas it was 2.85, 3.10, and 3.60° for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 3 different diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling technique produced similar amount of heat comparable to the conventional technique that proved the initial hypothesis.
Residual stress measurement in veneering ceramic by hole-drilling.
Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J
2011-05-01
Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.
Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A
2015-10-01
Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoenner, R.W.; Davis, R. Jr.; Bauer, M.
1973-01-01
The gas was extracted from the sample return container from the Apollo 16 and 17 missions by adsorption on charcoal and activated vanadium metal. The hydrogen, argon, and radon were separated and counted to give the tritium, /sup 37/Ar, /suyp 39/Ar, and /sup 222 /Rn activities. The tritium and argon activities observed could be explained by diffusive losses of these gases from the fine material in the container. There was no excess tritium present in the Apollo 17 containers that could be attributed to solar tritons remaining from the intense flare of August 4, 1972. The /sup 222/Rn observed inmore » the sample return container was interpreted as an emanation product from lunar fines and an emanation yield of 1 x 10/sup -4/ was calculated. This yield is consistent with the low radon content observed in the lunar atmosphere. The tritium, sup 37/Ar, / sup 39/Ar, and /sup 222/Rn activities and the K, Ca, Ti, Fe, and Mn contents were measured on a set of samples from the Apollo 16 deep drill stem at depths from 83 to 343 g/cm/sup 2/. The /sup 37/Ar and /sup 39/Ar activities combined with similar measurements at more shallow depth by Fireman and associates (SAO) give the complete activity proflle in the lunar regolith. Since /sup 37/Ar is produced mainly by the /sup 40/Ca(n, alpha )/su p 37/Ar reaction it is possible to determine the neutron production rate in the regolith as a function of the depth. The /sup 222/Rn extracted from the samples by vacuum melting was found to be lower than expected in some samples based upon their uranium contents. The hydrogen and helium contents of the drill stem samples were measured and found to be relatively uniform with depth in contrast to similar measurements on Apollo 15 and 17 drill stems. The H/He atom ratio was higher than the accepted solar-wind value by a factor of two, possibly due to water contamination. (auth)« less
Design and testing of coring bits on drilling lunar rock simulant
NASA Astrophysics Data System (ADS)
Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo; Ma, Chao; Zhang, Hui; Qin, Hongwei; Deng, Zongquan
2017-02-01
Coring bits are widely utilized in the sampling of celestial bodies, and their drilling behaviors directly affect the sampling results and drilling security. This paper introduces a lunar regolith coring bit (LRCB), which is a key component of sampling tools for lunar rock breaking during the lunar soil sampling process. We establish the interaction model between the drill bit and rock at a small cutting depth, and the two main influential parameters (forward and outward rake angles) of LRCB on drilling loads are determined. We perform the parameter screening task of LRCB with the aim to minimize the weight on bit (WOB). We verify the drilling load performances of LRCB after optimization, and the higher penetrations per revolution (PPR) are, the larger drilling loads we gained. Besides, we perform lunar soil drilling simulations to estimate the efficiency on chip conveying and sample coring of LRCB. The results of the simulation and test are basically consistent on coring efficiency, and the chip removal efficiency of LRCB is slightly lower than HIT-H bit from simulation. This work proposes a method for the design of coring bits in subsequent extraterrestrial explorations.
Underwater noise from geotechnical drilling and standard penetration testing.
Erbe, Christine; McPherson, Craig
2017-09-01
Geotechnical site investigations prior to marine construction typically involve shallow, small-core drilling and standard penetration testing (SPT), during which a small tube is hammered into the ground at the bottom of the borehole. Drilling (120 kW, 83 mm diameter drillbit, 1500 rpm, 16-17 m drill depth in sand and mudstone) and SPT (50 mm diameter test tube, 15 mm wall thickness, 100 kg hammer, 1 m drop height) by a jack-up rig in 7-13 m of water were recorded with a drifting hydrophone at 10-50 m range. Source levels were 142-145 dB re 1 μPa rms @ 1 m (30-2000 Hz) for drilling and 151-160 dB re 1 μPa 2 s @ 1 m (20-24 000 Hz) for SPT.
NASA Astrophysics Data System (ADS)
Yabe, Y.; Ogasawara, H.; Ito, T.; van Aswegen, G.; Durrheim, R. J.; Cichowicz, A.; Onstott, T. C.; Kieft, T. L.; Boettcher, M. S.; Wiemer, S.; Ziegler, M.; Shapiro, S. A.; Gupta, H. K.; Dight, P.
2017-12-01
The DSeis project under ICDP consists of drilling in three mines; MK, TT and C4 mines. Common scientific targets among them are the stress state and the microstructure in the seismogenic zone. In addition to these targets, specific targets in individual mines are detailed below. A M5.5 earthquake occurred beneath the MK mine on 5 August 2014. The hypocenter of this event was 5km depth from the surface. In contrast to the normal faulting of induced earthquakes in mining horizons (<4km depth), the M5.5 event was a strike-slip one with an N-S striking, sub-vertical nodal plane along which aftershocks aligned. Aftershocks extend up to 3.5km depth. We established a drilling site at 2.8km depth in the mine, from where two boreholes 800m-long penetrate into the areas of high and low aftershock densities. Targets of these drilling are 1) to investigate a depth variation in the stress state from the normal faulting to the strike-slip one, 2) to know what controls the spatial variation in the aftershock activity, and 3) to explore a limit of deep life that might be trapped in Archean sediments. Our site in the TT mine is 50m under the hypocenter of a M3.2 earthquake which occurred on 28 January 2017 at 3.6km depth. Although aftershock activity recorded by the seismic network operated by the mine is low, the source fault looks to extend along or parallel to a pre-existing, N-S striking fault. Three boreholes go through the fault at the hypocenter and the northern and the southern margins of the fault to compare the stress states and the microfracture distributions. Further, monitoring of microseismicity down to M -4 and geochemistry is planned to evaluate how much is a ratio of microseismicity associated with creation of new fractures. In the C4 mine, there was the site of a previous project, in which the microseismicity monitoring and the stress measurement by the CCBO technique were carried out. A M2.8 earthquake occurred 1 year after the CCBO and its hypocenter was only 100m away from the CCBO site. Due to little mining activity in the source region, the stress state just after the M2.8 event should be preserved. We will measure the stress again. Damage zones that evolved quasi-statically were seen by the microseismicity monitoring. Drilling into these zones would provide a clue to see a difference between faults evolved dynamically and quasi-statically.
Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.
NASA Astrophysics Data System (ADS)
Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.
2003-12-01
The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.
Gupta, Vishal; Pandey, Pulak M
2016-11-01
Thermal necrosis is one of the major problems associated with the bone drilling process in orthopedic/trauma surgical operations. To overcome this problem a new bone drilling method has been introduced recently. Studies have been carried out with rotary ultrasonic drilling (RUD) on pig bones using diamond coated abrasive hollow tools. In the present work, influence of process parameters (rotational speed, feed rate, drill diameter and vibrational amplitude) on change in the temperature was studied using design of experiment technique i.e., response surface methodology (RSM) and data analysis was carried out using analysis of variance (ANOVA). Temperature was recorded and measured by using embedded thermocouple technique at a distance of 0.5mm, 1.0mm, 1.5mm and 2.0mm from the drill site. Statistical model was developed to predict the maximum temperature at the drill tool and bone interface. It was observed that temperature increased with increase in the rotational speed, feed rate and drill diameter and decreased with increase in the vibrational amplitude. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Heat accumulation during sequential cortical bone drilling.
Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R
2016-03-01
Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from <0.5 °C to nearly 13 °C. The difference between drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
State-of-the-art in coalbed methane drilling fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltoiu, L.V.; Warren, B.K.; Natras, T.A.
2008-09-15
The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less
The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS
NASA Astrophysics Data System (ADS)
Binns, R.; Barriga, F.; Miller, D.
2001-12-01
This first sub-seafloor examination of an active hydrothermal system hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and hydrothermal phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the system. Technological breakthroughs included deployment of a new hard-rock re-entry system, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS hydrothermal site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive hydrothermal alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major hydrothermal event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated hydrothermal pressures, whereas evidence from fluid inclusions and hydrothermal brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days after drilling (360 mbsf at the diffuse venting site), if indicative of thermal gradient, suggests the presence of a very shallow ( ~1.5 km below seafloor) magmatic heat source. While isotopic characteristics of anhydrite suggest an irregularly varying component of magmatic fluid, the abundance of this mineral implies a substantial role for circulating seawater within the subsurface hydrothermal system. Other than the near-ubiquitous, fine grained disseminated pyrite in altered rocks, we found little sulfide mineralisation. Pyritic vein networks and breccias are extensive in the rapidly penetrated, but poorly recovered, interval down to 120 mbsf within our "high-T end-member" hole spudded on a mound surmounted by active (280 degC) chimneys. Anhydrite and open cavities possibly dominate this interval, from which a possible example of subhalative semi-massive sulfide containing chalcopyrite and some sphalerite was recovered near 30 mbsf. At the low-T and high-T vent sites respectively, anaerobic microbes were recorded by direct counting at depths down to 99 and 78 mbsf, and in 90 degC cultivation experiments at 69-107 and 99-129 mbsf. >http://www-odp.tamu.edu/publications/prelim/193
Percussive Force Magnitude in Permafrost
NASA Technical Reports Server (NTRS)
Eustes, A. W., III; Bridgford, E.; Tischler, A.; Wilcox, B. H.
2000-01-01
An in-depth look at percussive drilling shows that the transmission efficiency is very important; however, data for percussive drilling in hard rock or permafrost is rarely available or the existing data are very old. Transmission efficiency can be used as a measurement of the transmission of the energy in the piston to the drill steel or bit and from the bit to the rock. Having a plane and centralized impact of the piston on the drill steel can optimize the transmission efficiency from the piston to the drill steel. A transmission efficiency of near 100% between piston and drill steel is possible. The transmission efficiency between bit and rock is dependent upon the interaction within the entire system. The main factors influencing this transmission efficiency are the contact area between cutting structure and surrounding rock (energy loss due to friction heat), damping characteristics of the surrounding rock (energy dampening), and cuttings transport. Some of these parameters are not controllable. To solve the existing void regarding available drilling data, an experiment for gathering energy data in permafrost for percussive drilling was designed. Fifteen artificial permafrost samples were prepared. The samples differed in the grain size distribution to observe a possible influence of the grain size distribution on the drilling performance. The samples were then manually penetrated (with a sledge-hammer) with two different spikes.
Deep Borehole Field Test Laboratory and Borehole Testing Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.
2016-09-19
Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuelmore » and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).« less
NASA Astrophysics Data System (ADS)
Webster, J. M.; Yokoyama, Y.; Cotterill, C.; Expedition 325 Scientists
2010-12-01
Integrated Ocean Drilling Program (IODP) Exp. 325 (GBREC: Great Barrier Reef Environmental Change) that investigated fossil reefs on the shelf edge of the Great Barrier Reef (GBR), was the fourth IODP expedition to use a mission-specific platform, and was conducted by the European Consortium for Ocean Research Drilling (ECORD) Science Operator (ESO). The scientific objectives are to establish the course of sea level change, define sea-surface temperature variations, and to analyze the impact of these environmental changes on reef growth and geometry over the period of 20-10 ka. Exp.325 complements and extends the findings of the 2005 Exp. 310 (Tahiti Sea Level) that recovered Postglacial coral reef cores from the flanks of Tahiti from 41.6-117.5 meters below sea level and spanned ~16 to ~8 ka. Preliminary data confirms that Exp. 325 recovered truly unique and valuable fossil coral reef material from key periods in Earth's sea level and climate history from 30 to 9 ka. On Exp. 325 a succession of fossil reef structures preserved on the shelf edge seaward of the modern barrier reef were cored at three geographic locations (Hydrographers Passage, Noggin Pass and Ribbon Reef) from a dynamically positioned vessel in February-April 2010. A total of 34 boreholes were cored from 17 sites in four transects at depths ranging from 42.2 to 167.2 meters below sea level. Borehole logging of four boreholes provided continuous geophysical information about the drilled strata. The cores were split and described during the Onshore Science Party at the IODP Bremen Core Repository (Germany) in July 2010, where minimum and some standard measurements were made. Initial lithologic and biologic observations identified high-quality fossil coralgal frameworks, consistent with shallow, high energy reef settings - crucial for precise reconstructions of sea level and paleoclimate change. Preliminary C14-AMS and U-Th age interpretations from 60 core catcher samples confirmed that the cores span ages from >30 to 9 ka. This chronology, combined with their recovered depths, clearly demonstrates that Exp. 325 recovered coral reef material from key periods of interest for sea level change and environmental reconstruction, including the Last Glacial Maximum, Heinrich Events 1 and 2, 19ka-MWP, Bølling-Allerød, MWP1A, the Younger Dryas and MWPB. The new Exp. 325 cores are especially important because few fossil coral records span these intervals, and even fewer are from stable, passive margin settings far from the confounding influences of ice sheets or tectonic activity. This paper summarizes Exp. 325’s first results and their broader implications for understanding global sea-level and paleoclimate changes, and provides a first interpretation of how these reefs responded to environmental stress.
Real-Time Fluid and Gas Monitoring During Drilling of the SAFOD Main Hole in Parkfield, CA.
NASA Astrophysics Data System (ADS)
Wiersberg, T.; Erzinger, J.
2005-12-01
Little is known about the role and origin of fluids and gases associated with the San Andreas Fault zone (SAF). To gain information on fluids and gases at depth, we performed real-time mud gas monitoring during drilling of the SAFOD (San Andreas Fault Observatory at Depth) Pilot Hole (PH) and Main Hole (MH). Gas extracted from returning drill mud was piped into a nearby laboratory trailer and analyzed on-line. Permanent gases were detected using a portable mass spectrometer, hydrocarbons with a gas chromatograph, and the 222Rn-activity with a Lucas-Cell detector. When significant amounts of non-atmospheric gases were detected, off-line gas samples were collected from the gas line for further isotope studies. The SAFOD PH and MH were drilled in only a few meter distance, but in contrast to the straight PH, which penetrates through 768 m of sediments into granites down to 2168 m target depth (TD), the nearby MH is deviated towards the SAF and returns into sedimentary strata below 1930 m. The MH drilled sedimentary rocks down to 3987 m TD, approximately 45 m northeast of the surface trace of the SAF. From surface to 1930 m, the depth distribution of gas is similar for SAFOD PH and MH. Shear zones, identified by geophysical logging, are often characterized by elevated concentrations of CH4, CO2, H2, Rn, and He. The same gases were found in the MH below 1930 m, but their concentrations were, with the exception of He, significantly higher: CH4, CO2, and H2 sometimes reach several volume percent. Generally, the gas composition is partly controlled by the lithology. Variation in the methane concentration in several depth intervals reflects the changes in lithology from low gas abundance in clays and silts to more gas rich shales, which are the source rocks for hydrocarbons. Highly porous and permeable sandstone yield the highest concentrations of hydrocarbons (up to 15 vol% methane), and may be regarded as reservoir rocks. We interpret high radon activities in mud gas as indicator for circulating fluids entering the borehole via fractures. These fluids are also rich in hydrocarbons, carbon dioxide, and hydrogen, but only low concentrated in helium. Such intervals could be identified in several depth intervals (2675-2750 m, 2825-2900 m, and 3550-3650 m depth, and below 3700 m). The hydrocarbons in the surrounding rocks show a similar composition as those associated with fault zones. In addition to the low helium concentration, these results demonstrate fluid migration from the nearby with only little evidence for gas migration from a deeper source. A striking observation is the high amount of hydrogen found in these intervals. We can exclude a significant contribution of artificial hydrogen (drilling artifact) and mantle hydrogen. From soil gas studies, it is known that fault zones sometimes show enhanced concentration of hydrogen. As a possible source of hydrogen, the interaction of water with freshly ground rock, caused by fault zone movement, is discussed. Isotopic studies on hydrogen in combination with laboratory experiments are ongoing to test hydrogen synthesis by rock-water interaction. First isotopic studies on δ13C of methane indicate mixing of microbial methane with only small amounts of methane generated by thermal degradation of organic matter in the shallower depth (down to ~2500 m). Below this depth, the concentration of heavy hydrocarbons increases. CH4/(C2H6+C3H8) significantly drops from >100 to values <30 towards the bottom of the MH, and, methane becomes isotopically heavier, which is more typical for thermogenic hydrocarbons.
Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck
2011-01-01
Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper
Sankey, Eric W; Butler, Eric; Sampson, John H
2017-10-01
To evaluate accuracy of a computed tomography (CT)-guided frameless stereotactic drilling and catheter system. A prospective, single-arm study was performed using human cadaver heads to evaluate placement accuracy of a novel, flexible intracranial catheter and stabilizing bone anchor system and drill kit. There were 20 catheter placements included in the analysis. The primary endpoint was accuracy of catheter tip location on intraoperative CT. Secondary endpoints included target registration error and entry and target point error before and after drilling. Measurements are reported as mean ± SD (median, range). Target registration error was 0.46 mm ± 0.26 (0.50 mm, -1.00 to 1.00 mm). Two (10%) target point trajectories were negatively impacted by drilling. Intracranial catheter depth was 59.8 mm ± 9.4 (60.5 mm, 38.0-80.0 mm). Drilling angle was 22° ± 9 (21°, 7°-45°). Deviation between planned and actual entry point on CT was 1.04 mm ± 0.38 (1.00 mm, 0.40-2.00 mm). Deviation between planned and actual target point on CT was 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). No correlation was observed between intracranial catheter depth and target point deviation (accuracy) (Pearson coefficient 0.018) or between technician experience and accuracy (Pearson coefficient 0.020). There was no significant difference in accuracy with trajectories performed for different cadaver heads (P = 0.362). Highly accurate catheter placement is achievable using this novel flexible catheter and bone anchor system placed via frameless stereotaxy, with an average deviation between planned and actual target point of 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). Copyright © 2017 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...
Code of Federal Regulations, 2014 CFR
2014-07-01
... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...
Implementing Monitored Natural Attenuation and Expediting Closure at Fuel-Release Sites
2004-08-01
Center for Environmental Excellence AFCEE/ERS Air Force Center for Environmental Excellence/Science and Engineering Division AFRPA Air Force Real...auger, air - or mud- rotary , cable-tool) was and is dependent on the target drilling depths and the types of subsurface materials expected to be...95(2000) ASTM. 1995c. Guide for the use of direct air - rotary drilling for geoenvironmental exploration and installation of subsurface water quality
Results from Coalbed Methane Drilling in Winn Parish, Louisiana
Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton; Richard, Troy E.; Ross, Kirk
2007-01-01
A coalbed methane (CBM) well in Winn Parish, Louisiana, named CZ Fee A No. 114, was drilled by Vintage Petroleum, Inc., in January 2004. The CZ Fee A No. 114 CBM well was drilled to a total depth of 3,114 ft and perforated at 2,730-2,734 ft in a Wilcox Group (Paleocene-Eocene) coal bed. Analytical data from the drilling project have been released by Vintage Petroleum, Inc., and by the current well operator, Hilcorp Energy Corporation (see Appendix) to the Louisiana Geological Survey (LGS) and the U.S. Geological Survey (USGS) for publication. General information about the CZ Fee A No. 114 CBM well is compiled in Table 1, and analytical data from the well are included in following sections. The CZ Fee A No. 114 well is located in eastern Winn Parish, approximately 30 mi east of where Wilcox Group strata crop out on the Sabine Uplift (fig. 1). In the CZ Fee A No. 114 well, lower Wilcox Paleocene coal beds targeted for CBM production occur at depths of 2,600-3,000 ft (fig. 2). Average monthly gas production for the reporting period August 1, 2004, through May 1, 2005, was 450 thousand cubic feet (Mcf) (Louisiana Department of Natural Resources, 2005).
NASA Astrophysics Data System (ADS)
Ciarletti, Valérie; Clifford, Stephen; Plettemeier, Dirk; Le Gall, Alice; Hervé, Yann; Dorizon, Sophie; Quantin-Nataf, Cathy; Benedix, Wolf-Stefan; Schwenzer, Susanne; Pettinelli, Elena; Heggy, Essam; Herique, Alain; Berthelier, Jean-Jacques; Kofman, Wlodek; Vago, Jorge L.; Hamran, Svein-Erik; WISDOM Team
2017-07-01
The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples.
NASA Astrophysics Data System (ADS)
Liu, Jie; Feng, Xiuli; Liu, Xiao
2017-05-01
One of the most important factors controlling the morphology of the modern Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.
Impact of Drilling Operations on Lunar Volatiles Capture: Thermal Vacuum Tests
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Paulsen, Gale; Zacny, Kris; Smith, Jim
2015-01-01
In Situ Resource Utilization (ISRU) enables future planetary exploration by using local resources to supply mission consumables. This idea of 'living off the land' has the potential to reduce mission cost and risk. On the moon, water has been identified as a potential resource (for life support or propellant) at the lunar poles, where it exists as ice in the subsurface. However, the depth and content of this resource has yet to be confirmed on the ground; only remote detection data exists. The upcoming Resource Prospector mission (RP) will 'ground-truth' the water using a rover, drill, and the RESOLVE science package. As the 2020 planned mission date nears, component level hardware is being tested in relevant lunar conditions (thermal vacuum). In August 2014 a series of drilling tests were performed using the Honeybee Robotics Lunar Prospecting Drill inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The drill used a unique auger design to capture and retain the lunar regolith simulant. The goal of these tests was to investigate volatiles (water) loss during drilling and sample transfer to a sample crucible in order to validate this regolith sampling method. Twelve soil samples were captured over the course of two tests at pressures of 10(exp-5) Torr and ambient temperatures between -80C to -20C. Each sample was obtained from a depth of 40 cm to 50 cm within a cryogenically frozen bed of NU-LHT-3M lunar regolith simulant doped with 5 wt% water. Upon acquisition, each sample was transferred and hermetically sealed inside a crucible. The samples were later baked out to determine water wt% and in turn volatile loss by following ASTM standard practices. Of the twelve tests, four sealed properly and lost an average of 30% of their available water during drilling and transfer. The variability in the results correlated well with ambient temperature (lower the temperature lower volatiles loss) and the trend agreed with the sublimation rates for the same temperature. Moisture retention also correlated with quantity of sample: a larger amount of material resulted in less water loss. The drilling process took an average of 10 minutes to capture and transfer each sample. The drilling power was approximately 20 Watt with a Weight on Bit of approximately 30 N. The bit temperature indicated little heat input into formation during the drilling process.
NASA Astrophysics Data System (ADS)
Hamada, Y.; Yamada, Y.; Sanada, Y.; Nakamura, Y.; Kido, Y. N.; Moe, K.
2017-12-01
Gas hydrates bearing layer can be normally identified by a basement simulating reflector (BSR) or well logging because of their high acoustic- and electric impedance compared to the surrounding formation. These characteristics of the gas hydrate can also represent contrast of in-situ formation strength. We here attempt to describe gas hydrate bearing layers based on the equivalent strength (EST). The Indian National Gas Hydrate Program (NGHP) Expedition 02 was executed 2015 off the eastern margin of the Indian Peninsula to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. Recorded drilling performance data was converted to the EST, which is a developed mechanical strength calculated only by drilling parameters (top drive torque, rotation per minute , rate of penetration , and drill bit diameter). At a representative site, site 23, the EST shows constant trend of 5 to 10 MPa, with some positive peaks at 0 - 270 mbsf interval, and sudden increase up to 50 MPa above BSR depth (270 - 290 mbsf). Below the BSR, the EST stays at 5-10 MPa down to the bottom of the hole (378 mbsf). Comparison of the EST with logging data and core sample description suggests that the depth profiles of the EST reflect formation lithology and gas hydrate content: the EST increase in the sand-rich layer and the gas hydrate bearing zone. Especially in the gas hydrate zone, the EST curve indicates approximately the same trend with that of P-wave velocity and resistivity measured by downhole logging. Cross plot of the increment of the EST and resistivity revealed the relation between them is roughly logarithmic, indicating the increase and decrease of the EST strongly depend on the saturation factor of gas hydrate. These results suggest that the EST, proxy of in-situ formation strength, can be an indicator of existence and amount of the gas-hydrate layer. Although the EST was calculated after drilling utilizing recorded surface drilling parameter in this study, the EST can be acquired during drilling by using real-time drilling parameters. In addition, the EST only requires drilling performance parameters without any additional tools or measurements, making it a simplified and economical tool for the exploration of gas hydrates.
El-Kholey, Khalid E; Elkomy, Aamna
2016-12-01
To test the hypothesis that there would be no difference in heat generation by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 80 implant site preparations with 2 different diameters (5.6 and 6.2 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and the other half using the conventional drilling protocol, where multiple drills of increasing diameter were utilized. Heat production by different drilling techniques was evaluated by measuring the bone temperature using K-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 5.6- and 6.2-mm implants was 2.20°C, and it was 2.55°C when the site was prepared by the simplified procedure, whereas it was 2.80°C and 2.95°C for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 2 chosen diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling protocol produces similar amount of heat comparable to the conventional technique, which proved the initial hypothesis.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... than 400 meters of water depth completed to a drilling depth of 20,000 feet TVD SS or deeper may... are specified as (1) less than 400 meters and (2) 400 meters or more. Successful Bidders: BOEM... summarized in the following table: [[Page 29686
The research of breaking rock with liquid-solid two-phase jet flow
NASA Astrophysics Data System (ADS)
Cheng, X. Z.; Ren, F. S.; Fang, T. C.
2018-03-01
Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.
Impacts of exploratory drilling for oil and gas on the benthic environment of Georges Bank
Neff, J. M.; Bothner, Michael H.; Maciolek, N. J.; Grassle, J. F.
1989-01-01
Cluster analysis revealed a strong relationship between community structure and both sediment type and water depth. Little seasonal variation was detected, but some interannual differences were revealed by cluster analysis and correspondence analysis. The replicates from a station always resembled each other more than they resembled any replicates from other stations. In addition, the combined replicates from a station always clustered with samples from that station taken on other cruises. This excellent replication and uniformity of the benthic infaunal community at a station over time made it possible to detect very subtle changes in community parameters that might be related to discharges of drilling fluid and drill cuttings. Nevertheless, no changes were detected in benthic communities of Georges Bank that could be attributed to drilling activities.
SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.
Sass, J.H.; Elders, W.A.
1986-01-01
The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.
Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths
Tenzer, R.; Gladkikh, V.
2014-01-01
We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-15
This report presents test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) UP-1 wells: 299-W19-48 (C4300/Well K), 699-30-66 (C4298/Well R), and 699-36-70B (C4299/Well P). These wells are located within, adjacent to, and to the southeast of the Hanford Site 200-West Area. The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » UP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-21
The following report presents test descriptions and analysis results for multiple, stress level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) ZP-1 wells: 299-W11-43 (C4694/Well H), 299-W15-50 (C4302/Well E), and 299-W18-16 (C4303/Well D). These wells are located within south-central region of the Hanford Site 200-West Area (Figure 1.1). The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » ZP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
Concepts and Benefits of Lunar Core Drilling
NASA Technical Reports Server (NTRS)
McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.
2007-01-01
Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.
Toyoshima, Takeshi; Wagner, Wilfried; Klein, Marcus Oliver; Stender, Elmar; Wieland, Marco; Al-Nawas, Bilal
2011-03-01
Modifications of implant design have been intending to improve primary stability. However, little is known about investigation of a hybrid self-tapping implant on primary stability. The aims of this study were to evaluate the primary stability of two hybrid self-tapping implants compared to one cylindrical non-self-tapping implant, and to elucidate the relevance of drilling protocols on primary stability in an ex vivo model. Two types of hybrid self-tapping implants (Straumann® Bone Level implant [BL], Straumann® Tapered Effect implant [TE]) and one type of cylindrical non-self-tapping implant (Straumann® Standard Plus implant [SP]) were investigated in the study. In porcine iliac cancellous bones, 10 implants each were inserted either using standard drilling or under-dimensioned drilling protocol. The evaluation of implant-bone interface stability was carried out by records of maximum insertion torque, the Periotest® (Siemens, Bensheim, Germany), the resonance frequency analysis (RFA), and the push-out test. In each drilling group, the maximum insertion torque values of BL and TE were significantly higher than SP (p=.014 and p=.047, respectively). In each group, the Periotest values of TE were significantly lower than SP (p=.036 and p=.033, respectively). The Periotest values of BL and TE were significantly lower in the group of under-dimensioned drilling than standard drilling (p=.002 and p=.02, respectively). In the RFA, no statistical significances were found in implants between two groups and between implants in each group. In each group, the push-out values of BL and TE were significantly higher than SP (p=.006 and p=.049, respectively). Hybrid self-tapping implants could achieve a high primary stability which predicts them for use in low-density bone. However, there is still a debate to clarify the influence of under-dimensioned drilling on primary stability. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.
Advantages and limitations of remotely operated sea floor drill rigs
NASA Astrophysics Data System (ADS)
Freudenthal, T.; Smith, D. J.; Wefer, G.
2009-04-01
A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.
Bothner, Michael H.; Rendigs, R. R.; Campbell, Esma; Doughten, M.W.; Parmenter, C.M.; O'Dell, C. H.; DiLisio, G.P.; Johnson, R.G.; Gillison, J.R.; Rait, Norma
1986-01-01
Of the 12 elements analyzed in bulk (undifferentiated) sediments collected adjacent to drilling rigs on Georges Bank, only barium was found to increase in concentration during the period when eight exploratory wells were drilled (July 1981 until September 1982). The maximum postdrilling concentration of barium (a major element in drilling mud) reached 172 ppm in bulk sediments near the drill site in block 410. This concentration is higher than the predrilling concentration at this location by a factor of 5.9. This maximum barium concentration is within the range of predrilling concentrations (28-300 ppm) measured in various sediment types from the regional stations of this program. No drilling-related changes in the concentrations of the 11 other metals have been observed in bulk sediments at any of the locations sampled in this program. We estimate that about 25 percent of the barite discharged at block 312 was present in the sediments within 6 km of the rig, 4 weeks after drilling was completed at this location (drilling period was December 8, 1981-June 27, 1982). For almost a year following completion of this well, the inventory of barite decreased rapidly, with a half-life of 0.34 year. During the next year, the inventory decreased at a slower rate (half-life of 3.4 years). The faster rate probably reflects resuspension and sediment transport of bariterich material residing at the sediment surface. Elevated barium concentrations in post-drilling sediment-trap samples from block 312 indicate that such resuspension can occur up to at least 25 m above the sea floor. As the remaining barite particles are reworked deeper into the sediments by currents and bioturbation, removal by sediment-transport processes is slower. The barite discharged during the exploratory phase of drilling is associated with the fine fraction of sediment and is widely distributed around the bank. We found evidence for barium transport to Great South Channel, 115 km west of the drilling, and to stations 2 and 3, 35 km east of the easternmost drilling site. Small increases in barium concentrations, present in the fine fraction of sediment only, were measured also at the heads of both Lydonia and Oceanographer Canyons, located 8 and 39 km, respectively, seaward of the nearest exploratory well.
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Colaprete, Anthony; Kleinhenz, Julie; Cook, Amanda
2017-01-01
NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170 K) and placed under low vacuum (a few x 10(exp -6) Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.
Coral ages and island subsidence, Hilo drill hole
Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.
1996-01-01
A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.
Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311
Torres, M.E.; Trehu, A.M.; Cespedes, N.; Kastner, M.; Wortmann, U.G.; Kim, J.-H.; Long, P.; Malinverno, A.; Pohlman, J.W.; Riedel, M.; Collett, T.
2008-01-01
Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8??km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49??mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23??cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63????m) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245??mbsf. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Roush, T. L.; Colaprete, A.; Kleinhenz, J.; Cook, A.
2017-12-01
NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170° K) and placed under low vacuum (a few x 10-6 Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision-making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.
The stress heat-flow paradox and thermal results from Cajon Pass
Lachenbruch, A.H.; Sass, J.H.
1988-01-01
Conventional friction models predict a substantial thermal anomaly associated with active traces of strike-slip faults, but no such anomaly is observed from over 100 heat-flow determinations along 1000 km of the San Andreas fault. The Cajon Pass well is being drilled to bring deep heat-flow and stress data to bear on this paradox. Preliminary stress results from Cajon Pass and a new interpretation of regional data by Mark D. Zoback and colleagues suggests that the maximum compressive stress near the fault is almost normal to the trace, and hence the resolved shear stress is low and the fault, weak. The heat-flow data show large variability with depth, probably from three-dimensional structure, and an overall decrease from over 90 mW/m2 in the upper kilometer to less than 80 mW/m2 in the lower 300 m with no evidence of advective heat transfer. -from Authors
NASA Astrophysics Data System (ADS)
Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.
2017-12-01
The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.
Development of Decision Analysis Specifically for Arctic Offshore Drilling Islands.
1985-12-01
the decision analysis method will - give tradeoffs between costs and design wave height, production and depth • :of water for an oil platform , etc...optimizing the type of platform that is best suited for a particular site has become an extremely difficult decision. Over fifty- one different types of...drilling and production platforms have been identified for the Arctic environment, with new concepts being developed - every year, Boslov et al (198j
Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment
1979-01-01
nannoplankton, a sparse to rich DITIBTO OF HORIZO C I foraminiferal fauna (simple arenaceous foramin - 5S SSftB / ifera, lagenids, epistominids, and primitive...Deep Sea Pessagno, E.A., Jr., Mesozoic Planctonic Foramin - DrillingP , 11, Washington (U.S. Govern- vera and Radiolaria, in Ewing, M., Worzel, L.J. ment...Strati- B.,er, W.H., Foramin ooze: solution at graphic Micropaleontology of Atlantic Basins depths, Science, 156, 383-385, 1967. and Borderlands
Did Antarctic Intermediate Water in the Southeast Pacific expanded vertically or only deepened?
NASA Astrophysics Data System (ADS)
Martinez-Mendez, G.; Lamy, F.; Mohtadi, M.; Hebbeln, D.
2017-12-01
Paleoceanographic and modelling studies have demonstrated in the last few years that deep waters are not the single protagonists in the global circulation scheme. Intermediate waters also play various and important roles. Particularly, the Antarctic Intermediate Water (AAIW) is key for the ventilation of mid-depths and thermocline levels, with its influence being noticeable till the eastern equatorial Pacific; it is involved in rapid reorganizations of the Global Circulation and also, most plausibly, in trapping and releasing atmospheric CO2 on glacial-interglacial time scales. In recent years, several records about the past variability of the AAIW have been published while they all lay at the lower edges of the influence of this water mass and, hence, mostly only conclusions about the AAIW variability at its deep boundary could be drawn. Here we present a novel record covering several glacial-interglacial cycles from the upper levels of this water mass. Site GeoB15020 was drilled with the MARUM Sea floor drill rig (MeBo) off Chile (27.29°S; 71.05°W) at 550 m water depth (core length: 78 meters composite depth). We will present δ18O, δ13C downcore records and Mg/Ca-derived ambient temperature from peak interglacial and peak glacial periods. The records will be compared with published results from Site GeoB15016 (Martínez-Méndez et al., 2013), which lays at nearly the same position but at 956 m water depth, i.e. both cores bound the main tongue of AAIW today. The results of GeoB15016 had shown increase presence of the AAIW at the site, but it was not possible to relate unequivocally this increased presence to a deepening of the core of the AAIW or to an increase in production. Results from GeoB15020 will allow answering that dichotomy. In addition, actual changes in the intrinsic characteristics of the AAIW are poorly constrained. Therefore, we will additionally present high resolution (multi-decadal time scales) δ18O, δ13C and Sortable Silt records from core GeoB3359-3 (35.23°S; 72.81°W, 678 m, 380 cm core length) to investigate fluctuations within the core of AAIW from the Last Glacial Maximum to the present and relate those to the changes observed downstream.
High-pressure high-temperature rheological studies of colloidal suspensions with carbon nanotube
NASA Astrophysics Data System (ADS)
Baby, Anoop; Sadr, Reza; Yarc, Rommel; Amani, Mahmood
2017-11-01
Selection of the drilling fluid, drilling mud, is vital in minimizing the cost and time required for the drilling in oil fields. Drilling mud aids in cooling, lubricating drilling bit, removing the debries from the drill bore and maintaining the wellbore stability. Owing to the enhanced thermo-physical properties and stable nature, suspensions of nanoparticles have been suggested for drilling fluids. High-pressure and high-temperature rheology of a nanomud suspension (nano particles suspended in a mud solution) is studied here. The nanomud is prepared by dispersing a water-based drilling mud suspension (water with 1% Bentonite and 7% Barite particles) with multi-walled carbon nanotubes, MWCNT. The effect of pressure, temperature, and shear rate are independently studied for the various particle loading of the nanoparticles. Viscosity values are measured at a maximum pressure of 170MPa with temperatures ranging from ambient to 180oC. The effect of MWCNT concentration and variation in shear rate are also investigated A shear thinning non-Newtonian behavior is observed for the basemud and the nanomud samples for all cases. The basemud showed an increase in viscosity with an increase in pressure. However, with MWCNT particle addition, this trend is observed to have reversed.
Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean
2014-08-01
Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pitcher, Craig; Gao, Yang
2017-03-01
The dual-reciprocating drill (DRD) is a biologically-inspired low-mass alternative to traditional drilling techniques, using backwards-facing teethed halves to grip the surrounding substrate, generating a traction force that reduces the required overhead penetration force. Previous experiments using a proof-of-concept test bench have provided evidence as to the significant role of sideways movements and lateral forces in improving drilling performance. The system is also progressing to a first system prototype concept, in which an actuation mechanism is integrated within the drill heads. To experimentally determine the effect of lateral motions, a new internal actuation mechanism was developed to allow the inclusion of controlled sideways movements, resulting in the creation of the circular and diagonal burrowing motions. This paper presents an investigation into the performance of the reciprocation and burrowing motions by testing them in a planetary regolith simulant. Analysis of force sensor measurements has shown a relationship between the penetration and traction forces and the internal friction of the mechanism and depth achieved. These tests have also experimentally demonstrated the benefit of lateral motions in drilling performance, with both the burrowing mechanisms and drilling tests performed at an angle able to penetrate further than traditional vertical reciprocation, leading to the proposition of new burrowing and diagonal drilling mechanics. From this, a new fully integrated system prototype can be developed which incorporates lateral motions that can optimise the drilling performance.
NASA Astrophysics Data System (ADS)
Santos, M. F. L.; Lana, P. C.; Silva, J.; Fachel, J. G.; Pulgati, F. H.
2009-01-01
This paper assesses the effects of non-aqueous fluids (NAFs-type III) cuttings discharge from exploratory drilling activities on deep-sea macrobenthic communities in the Campos Basin, off the southeastern Brazilian coast, Rio de Janeiro State. One hundred and fifty nine sediment samples were taken with a 0.25 m 2 box corer at a depth of 902 m on three monitoring cruises: first cruise—before drilling (April 2001), second cruise—after drilling (July 2001), and third cruise—one year after drilling (July 2002). The results indicated no significant changes in values of density, number of families and functional groups related to drilling activities in the reference area (2500 m distance), and biological variations may be result from the natural variability of the fauna. Evidence indicates that drilling activities led to measurable effects on the community structure related to NAF cuttings discharge but were limited to a 500 m radius from the drilling well. Such effects were much more evident at isolated sites in the impact area (WBF and WBF+NAF areas) and are characterized as localized impacts. One year after drilling, a recolonization was observed, with the probable recovery of the macrobenthic community in most of the study area; only at part of the WBF+NAF area (stations 05, 24 and 36) was the community still undergoing recovery.
The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.
2007-12-01
The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.
Hydrogeologic data from a 2,000-foot deep core hole at Polk City, Green Swamp area, central Florida
Navoy, A.S.
1986-01-01
Two core holes were drilled to depths of 906 and 1,996 feet, respectively, within the Tertiary limestone (Floridan) aquifers, at Polk City, central Florida. Data from the two holes revealed that the bottom of the zone of vigorous groundwater circulation is confined by carbonate rocks at a depth of about 1,000 feet (863 feet below sea level). The zone of circulation is divided into two high-permeability zones. The dissolved solids of the water within the high-permeability zones is approximately 150 milligrams per liter. Within the carbonate rocks, the dissolved solids content of the water reaches about 2,000 milligrams per liter at the bottom of the core hole. Water levels in the core holes declined a total of about 16 feet as the hole was drilled; most of the head loss occurred at depths below 1,800 feet. The porosities of selected cores ranged from 1.6 to 45.3 percent; the hydraulic conductivities ranged from less than 0.000024 to 19.0786 feet per day in the horizontal direction and from less than 0.000024 to 2.99 feet per day in the vertical direction; and the ratio of vertical to horizontal permeability ranged from 0.03 to 1.98. Due to drilling problems, packer tests and geophysical logging could not be accomplished. (USGS)
Data for ground-water test hole near Butte City, Central Valley aquifer project, California
French, James J.; Page, R.W.; Bertoldi, G.L.
1983-01-01
This report provides preliminary data for the third of seven test holes drilled as part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 32, T. 19 N., R. 1 W., Glenn County, California, about one-half mile south of the town of Butte City. Drilled to a depth of 1,432 feet below land surface, the hole is cased to a depth of 82 feet and equipped with three piezometer tubes to depths of 592 feet, 968 feet, and 1,330 feet. A 5-foot well screen is at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer , and the well bore is filled between the plugs with sediment. Nine cores and 49 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, and chemical quality of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)
Data for ground-water test hole near Nicolaus, Central Valley aquifer project, California
French, James J.; Page, R.W.; Bertoldi, Gilbert L.
1983-01-01
Preliminary data are provided for the third of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 2, T.12N., R.3E., Sutter County, California, about 1 1/2 miles northwest of the town of Nicolaus. Drilled to a depth of 1,150 feet below land surface, the hole is cased to a depth of 100 feet and equipped with three piezometer tubes to depths of 311, 711, and 1,071 feet. A 5-foot well screen is set in sand at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer, and the well bore is filled between the plugs with sediment. Thirty-one cores and 34 sidewall cores were recovered. Laboratory tests were made for minerology, consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis of the three tapped zones and measured for water level. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)
Metzger, Loren F.; Izbicki, John A.; Nawikas, Joseph M.
2012-01-01
Two multiple-well monitoring sites were drilled in the Calaveras County portion of the Eastern San Joaquin Groundwater Subbasin, about 100 miles east of San Francisco, California, during December 2009 and January 2010. Site 3N/9E-12G1-4 was drilled to a depth of 503 feet below land surface (bls), and four wells were installed. Site 4N/9E-36A1-3 was drilled to a depth of 400 feet bls, and three wells were installed. Lithologic and geophysical data collected during test drilling indicated the presence of volcanic sands interspersed with lahar deposits that are characteristic of the Mehrten Formation to about 420 feet bls at site 12G1-4, and the presence of volcanic sands interspersed with clay that are characteristic of the Valley Springs Formation at site 36A1-3. In January 2010, water levels at site 12G1-4 ranged from 120 to 127 feet bls (the shallowest well at the site, 12G4, screened from 90 to 110 feet bls, was dry). Between May and November 2010, water levels declined as much as 22 feet in wells 12G1 and 12G2, the deepest wells at this site, and declined about 6 feet in shallower well 12G3. During this same period, water-levels declined less than 8 feet in the three wells at site 36A1-3. Water levels in all monitoring wells recovered to near-May-2010 levels by mid-spring 2011. Dissolved solids in the six sampled monitoring wells (residue on evaporation) ranged from 154 to 239 milligrams per liter (mg/L); arsenic concentrations ranged from 1.8 to 13 micrograms per liter (μg/L), and were greater than the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) for arsenic of 10 μg/L in well 36A2. The oxygen-18 (δ18O) and deuterium (δD) stable-isotopic composition of water from the six monitoring wells and from nine domestic and public-supply wells sampled as part of this study ranged from -6.7 to -8.2 per mil (δ18O), and -50 to -60 per mil (δD), and was consistent with values expected for water recharged in the lower altitudes of the Sierra Nevada. Well 36A3, the shallowest well at site 36A1-3, was the only well that contained measurable tritium - indicative of water recharged after 1952. Carbon-14 activities from the six monitoring wells ranged from 76.0 to 18.9 percent modern carbon, and groundwater ages (time since recharge), not corrected for chemical reactions, ranged from 2,200 to 13,400 years before present.
Geophysical investigations in deep horizontal holes drilled ahead of tunnelling
Carroll, R.D.; Cunningham, M.J.
1980-01-01
Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.
Reaching 1 m deep on Mars: the Icebreaker drill.
Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J
2013-12-01
The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.
Lane, Michael
2013-06-28
Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.
Noise characterization of oil and gas operations.
Radtke, Cameron; Autenrieth, Daniel A; Lipsey, Tiffany; Brazile, William J
2017-08-01
In cooperation with The Colorado Oil and Gas Conservation Commission, researchers at Colorado State University performed area noise monitoring at 23 oil and gas sites throughout Northern Colorado. The goals of this study were to: (1) measure and compare the noise levels for the different phases of oil and gas development sites; (2) evaluate the effectiveness of noise barriers; and (3) determine if noise levels exceeded the Colorado Oil and Gas Conservation Commission noise limits. The four phases of oil and gas development include drilling, hydraulic fracturing, completion and production. Noise measurements were collected using the A- and C-weighted sound scales. Octave band analysis was also performed to characterize the frequency spectra of the noise measurements. Noise measurements were collected using noise dosimeters and a hand-held sound-level meter at specified distances from the development sites in each cardinal direction. At 350 ft (107 m), drilling, hydraulic fracturing, and completion sites without noise barriers exceeded the maximum permissible noise levels for residential and commercial zones (55 dBA and 60 dBA, respectively). In addition, drilling and hydraulic fracturing sites with noise barriers exceeded the maximum permissible noise level for residential zones (55 dBA). However, during drilling, hydraulic fracturing, and completion operations, oil producers are allowed an exception to the noise permissible limits in that they only must comply with the industrial noise limit (80 dBA). It is stated in Rule 604.c.(2)A. that: "Operations involving pipeline or gas facility installation or maintenance, the use of a drilling rig, completion rig, workover rig, or stimulation is subject to the maximum permissible noise levels for industrial zones (80dBA)." [8] Production sites were within the Colorado Oil and Gas Conservation Commission permissible noise level criteria for all zones. At 350 ft (107 m) from the noise source, all drilling, hydraulic fracturing, and completion sites exceeded 65 dBC. Current noise wall mitigation strategies reduced noise levels in both the A- and C-weighted scale measurements. However, this reduction in noise was not sufficient to reduce the noise below the residential permissible noise level (55 dBA).
Economic and statistical analysis of time limitations for spotting fluids and fishing operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, P.S.; Brinkmann, P.E.; Taneja, P.K.
1984-05-01
This paper reviews the statistics of ''Spotting Fluids'' to free stuck drill pipe as well as the economics and statistics of drill string fishing operations. Data were taken from Mobil Oil Exploration and Producing Southeast Inc.'s (MOEPSI) records from 1970-1981. Only those events which occur after a drill string becomes stuck are discussed. The data collected were categorized as Directional Wells and Straight Wells. Bar diagrams are presented to show the Success Ratio vs. Soaking Time for each of the two categories. An analysis was made to identify the elapsed time limit to place the spotting fluid for maximum probabilitymore » of success. Also determined was the statistical minimum soaking time and the maximum soaking time. For determining the time limit for fishing operations, the following criteria were used: 1. The Risked ''Economic Breakeven Analysis'' concept was developed based on the work of Harrison. 2. Statistical Probability of Success based on MOEPSI's records from 1970-1981.« less
Fort Bliss Geothermal Area Data: Temperature profile, logs, schematic model and cross section
Adam Brandt
2015-11-15
This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. The dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area.
Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.
2009-01-01
During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.
Drill hole logging with infrared spectroscopy
Calvin, W.M.; Solum, J.G.
2005-01-01
Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.
Reaction of Rhyolitic Magma to its Interception by the IDDP-1 Well, Krafla, 2009
NASA Astrophysics Data System (ADS)
Saubin, É.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Watson, T.; Nichols, A. R.; Schipper, I.; Cole, J. W.; Mortensen, A. K.; Zierenberg, R. A.
2017-12-01
The unexpected encounter of rhyolitic magma during IDDP-1 geothermal borehole drilling at Krafla, Iceland in 2009, temporarily created the world's hottest geothermal well. This allowed new questions to be addressed. i) How does magma react to drilling? ii) Are the margins of a magma chamber suitable for long-term extraction of supercritical fluids? To investigate these questions, we aim to reconstruct the degassing and deformation behaviour of the enigmatic magma by looking for correlations between textures in rhyolitic material retrieved from the borehole and the recorded drilling data. During drilling, difficulties were encountered in two zones, at 2070 m and below 2093 m depth. Drilling parameters are consistent with the drill bit encountering a high permeability zone and the contact zone of a magma chamber, respectively. Magma was intercepted three times between 2101-2104.4 m depth, which culminated in an increase in standpipe pressure followed by a decrease in weight on bit interpreted as representing the ascent of magma within the borehole. Circulation returned one hour after the last interception, carrying cuttings of glassy particles, felsite with granophyre and contaminant clasts from drilling, which were sampled as a time-series for the following 9 hours. The nature of glassy particles in this time-series varied through time, with a decrease in the proportion of vesicular clasts and a commensurate increase in dense glassy clasts, transitioning from initially colourless to brown glass. Componentry data show a sporadic decrease in felsite (from 34 wt. %), an increase in glassy particles during the first two hours (from 63 wt. % to 94 wt. %) and an increase in contaminant clasts towards the end of the cutting retrieval period. These temporal variations are probably related to the magma body architecture and interactions with the borehole. Transition from vesicular to dense clasts suggests a change in the degassing process that could be related to an early degassing phase caused by drilling-induced decompressions followed by a fast ascent after the last magma interception. Additional data in terms of shape of clasts, vesicularity, density and water content within glassy particles will link textural data to drilling history in order to investigate degassing history, origin of clasts and quenching pressure.
Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim
2014-01-01
Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due to mixing. In situ thermogenic gas production at depths shallower 2000 mbsf is unlikely based on in situ temperature estimations between 81°C and 85°C and a cumulative time-temperature index of 0.23. In conclusion, the onboard SciGas data acquisition helps to provide a preliminary, qualitative evaluation of the gas composition, the in situ temperature and the possibility of gas migration.
The deep biosphere in terrestrial sediments in the chesapeake bay area, virginia, USA.
Breuker, Anja; Köweker, Gerrit; Blazejak, Anna; Schippers, Axel
2011-01-01
For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 10(9) to 10(6) cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD-FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers. The gene mcrA of methanogens was not detectable. Cloning and sequencing data of 16S rRNA genes revealed sequences of typical soil Bacteria. The closest relatives of the archaeal sequences were Archaea recovered from terrestrial and marine environments. Phylogenetic analysis of the Crenarchaeota and Euryarchaeota revealed new members of the uncultured South African Gold Mine Group, Deep Sea Hydrothermal Vent Euryarchaeotal Group 6, and Miscellaneous Crenarcheotic Group clusters.
NASA Astrophysics Data System (ADS)
Harjes, H.-P.; Bram, K.; Dürbaum, H.-J.; Gebrande, H.; Hirschmann, G.; Janik, M.; KlöCkner, M.; Lüschen, E.; Rabbel, W.; Simon, M.; Thomas, R.; Tormann, J.; Wenzel, F.
1997-08-01
For almost 10 years the KTB superdeep drilling project has offered an excellent field laboratory for adapting seismic techniques to crystalline environments and for testing new ideas for interpreting seismic reflections in terms of lithological or textural properties of metamorphic rock units. The seismic investigations culminated in a three-dimensional (3-D) reflection survey on a 19×19 km area with the drill site at its center. Interpretation of these data resulted in a detailed, structural model of the German Continental Deep Drilling Program (KTB) location with dominant, steep faults in the upper crust. The 3-D reflection survey was part of a suite of seismic experiments, ranging from wide-angle reflection and refraction profiles to standard vertical seismic profiles (VSP) and more sophisticated surface-to-borehole observations. It was predicted that the drill bit would meet the most prominent, steeply dipping, crustal reflector at a depth of about 6500-7000 m, and indeed, the borehole penetrated a major fault zone in the depth interval between 6850 and 7300 m. This reflector offered the rare opportunity to relate logging results, reflective properties, and geology to observed and modeled data. Post-Variscan thrusting caused cataclastic deformation, with partial, strong alterations within a steeply dipping reverse fault zone. This process generated impedance contrasts within the fault zone on a lateral scale large enough to cause seismic reflections. This was confirmed by borehole measurements along the whole 9.1 km deep KTB profile. The strongest, reflected signals originated from fluid-filled fractures and cataclastic fracture zones rather than from lithological boundaries (i.e., first-order discontinuities between different rock types) or from texture- and/or foliation-induced anisotropy. During the interpretation of seismic data at KTB several lessons were learned: Conventional processing of two-dimensional (2-D) reflection data from a presite survey showed predominantly subhorizontal layering in the upper crust with reflectivity striking in the Variscan direction. Drilling, however, revealed that all rock units are steeply dipping. This confirms that surface common depth point (CDP) seismics strongly enhances subhorizontal reflectivity and may thus produce a very misleading crustal image. Although this was shown for synthetic examples earlier, the KTB provides the experimental proof of how crucial this insight can be.
NASA Astrophysics Data System (ADS)
Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.
2017-12-01
Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline metasediments and metabasalts. Metasediments have qtz + plag and mica + amphibole layers, with minor epidote, and become less abundant and poorer in K downhole. Metabasalts are massive, epidote-rich with less qtz and mica. Actinolite and possible pumpellyite needles in quartz suggest low T/P. Sediment and basalt compositions resemble alkali basalt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thamir, F.; Thordarson, W.; Kume, J.
Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includesmore » drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.« less
Concentration and Distribution of Well Drilling in the Amargosa Desert Area of Southern Nevada
NASA Astrophysics Data System (ADS)
Lee, M. P.; Gross, A. J.; Coleman, N. M.
2002-05-01
The earliest sources of fresh water supply in the Amargosa Desert area of Southern Nevada were the abundant, naturally occurring (cold) springs. They initially sustained the indigenous Native American populations and later, Euro-American miners, farmers, and ranchers. Prior to 1900, the many local springs and a few (mostly shallow) hand-dug wells were the principal sources of water supply. The first hand-dug well in the area was the Franklin well; it was dug in 1852 for workers performing a survey of the California-Nevada State line. The first mechanically bored wells were drilled for local railroads, along their respective alignments, sometime between 1905-07. About 1917, the first irrigation well in the Amargosa Desert area was drilled for an experimental farm operated by the Tonopah and Tidewater Railroad. In the late 1940s-early 1950s, permanent interest in the area was established, in large measure because of a Federally sponsored desert reclamation program. For the period 1900-1999, a preliminary evaluation of publicly available information (collected principally by the State Engineer) indicates that more than 950 boreholes were drilled in the Amargosa Desert area. Almost half of these boreholes were drilled in the last 20 years. Forty-two percent of the boreholes were drilled to supply fresh drinking water; 26 percent were in support of irrigated agriculture; 21 percent of the wells were drilled for some non-water supply related purpose - ground-water monitoring and testing; and 11 percent were drilled to supply water for commercial or unspecified applications. Most of the well drilling has been concentrated in a parcel of land about 30-40 kilometers south of the proposed geologic repository at Yucca Mountain, Nevada. Most wells have been generally drilled to depths less than 30 meters (100 feet), although deeper wells are uncommon. The main reason is that drilling is expensive and the profitability of finding and extracting potable water, in sufficient quantity, generally declines with depth. However, during the last two decades, there has been a general decline in drilling for irrigation. Designation of local aquifers in the area as "protected" in 1979 has favored new well-permitting for residential or commercial uses. Moreover, in the 1990s, local farmers were required to forfeit unused water rights and these rights have been reallocated to new, non-farming residents by the State Engineer in Nevada's Department of Conservation and Natural Resources. Nevertheless, the general decline in irrigation permitting for farming over the last several decades most likely has more to do with the physical and/or economic factors that have historically controlled local farming rather than with recent water availability issues.
Flexible roof drill for low coal. Volume 2. Phase III and Phase IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, N.H.
1977-09-01
Design specifications were developed for a flexible drilling and bolting system. The system configuration is based on the use of the Galis dual-boom roof drill as a vehicle for the drilling/bolting system. The WSU Flex-drill drivehead is mounted on the Galis drill boom and the Galis parts are modified to accommodate the revised system. The flexible drillhead supports a bolt bender/inserter designed by Bendix Corporation and is integrated into the system operation. A supplemental bolt thruster was designed to complete insertion of the roof bolt following operation and removal of the Bendix bender from the bolt shank. The complete cyclemore » of drilling a 1-3/8-in. diameter bolt hole, bending a roof bolt into the hole, thrusting the bolt head and washer to the roof surface, and final torquing of the bolt is manually controlled by the operator located in the new position behind the bolting line. The new operating position is beneath newly bolted roof in a safer location in back of the stab jack ad roof jacks positioning the drill boom and drivehead. The Flex-drill/bolting system prototype was constructed from both purchased components and parts specially fabricated in the shops for this design. This unit was assembled and test-operated with appropriate support equipment in a laboratory test stand. Numerous test holes were drilled in blocks of concrete at feed rates of 5 ft/min with drill rotation speeds of 360 rpm. The drill feeds uniformly and cuts smoothly with no difficulty in collection of dust or clogging of the drill bit. The holes drilled were straight, as evidence by passage of a 1-1/4-in. diameter bar full depth into the hole with no binding or evidence of curvature. The flexible drill is capable of drilling 8-ft-deep roof bolt holes in low coal 36 in. in height.« less
Reducing temperature elevation of robotic bone drilling.
Feldmann, Arne; Wandel, Jasmin; Zysset, Philippe
2016-12-01
This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more delicate procedures such as that performed during minimally invasive robotic cochlear implantation. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Auto-Gopher: A Wireline Deep Sampler Driven by Piezoelectric Percussive Actuator and EM Rotary Motor
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Ressa, Aaron; Jae Lee, Hyeong; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi
2013-01-01
The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.
Pitt, William A.; Meyer, Frederick W.
1976-01-01
The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.
Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada
Whitfield, M.S.; Thordarson, William; Eshom, E.P.
1984-01-01
Data are presented on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1,219 meters. Depth to water below land surface was 519 meters or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. (USGS)
Weems, Robert E.; Schindler, J. Stephen; Lewis, William C.
2010-01-01
The Emporia 1:100,000-scale quadrangle straddles the Tidewater Fall Line in southern Virginia and includes a small part of northernmost North Carolina. Sediments of the coastal plain underlie the eastern three-fifths of this area. These sediments onlap crystalline basement rocks toward the west and dip gently to the east, reaching a maximum known thickness of 821 feet in the extreme southeastern part of the map area. The gentle eastward dip is disrupted in several areas due to faulting delineated during the course of mapping. In order to produce a new geologic map of the Emporia 1:100,000-scale quadrangle, the U.S. Geological Survey drilled one corehole to a depth of 223 feet and augered 192 shallow research test holes (maximum depth 135 feet) to supplement sparse outcrop data available from the coastal plain part of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented coastal plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Emporia geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, the locations and detailed descriptions of the auger test holes and one corehole are provided in this open-file report for geologists, hydrologists, engineers, and community planners in need of a detailed shallow-subsurface stratigraphic framework for much of the Emporia map region.
Optimizing light delivery for a photoacoustic surgical system
NASA Astrophysics Data System (ADS)
Eddins, Blackberrie; Lediju Bell, Muyinatu A.
2017-03-01
This work explores light delivery optimization for a photoacoustic surgical system previously proposed to provide real-time, intraoperative visualization of the internal carotid arteries hidden by bone during minimally invasive neurosurgeries. Monte Carlo simulations were employed to study 3D light propagation in tissue. For a 2.4 mm diameter drill shaft and 2.9 mm spherical drill tip, the optimal fiber distance from the drill shaft was 2 mm, determined from the maximum normalized fluence seen by the artery. A single fiber was insufficient to deliver light to arteries separated by a minimum of 8 mm. Using similar drill geometry and the optimal 2 mm fiber-to-drill shaft distance, Zemax ray tracing simulations were employed to propagate a 950 nm wavelength Gaussian beam through one or more 600 μm core diameter optical fibers, and the resulting optical beam profile was detected on the representative bone surface. For equally spaced fibers, a single merged optical profile formed with 7 or more fibers, determined by thresholding the resulting light profile images at 1/e times the maximum intensity. The corresponding spot size was larger than that of a single fiber transmitting the same input energy, thus reducing the fluence delivered to the sphenoid bone and enabling higher energies within safety limits. A prototype was designed and built based on these optimization parameters. The methodology we used to optimize our light delivery system to surround surgical tools is generalizable to multiple interventional photoacoustic applications.
Kiilsgaard, Thor H.
1970-01-01
The Samrah mine, near Ad Dawadimi, Kingdom of Saudi Arabia, has been explored by 18 diamond drill holes, aggregating 3,624.3 meters in length. The holes demonstrate that the Samrah vein zone follows premineral andesitic dikes. Smaller veins split away from the main Samrmh vein zone, The Samrah vein zone is known to be mineralized at the surface for at least 400 meters and to a depth of a of the least 220 meters below the surface. Within this mineralized part of the vein zone diamond drilling has indicated ore reserves of approximately 204,000 metric tons, the average value of which is estimated at $57 per ton.
Logging-while-coring method and apparatus
Goldberg, David S.; Myers, Gregory J.
2007-11-13
A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.
Logging-while-coring method and apparatus
Goldberg, David S.; Myers, Gregory J.
2007-01-30
A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.
Geohydrologic and drill-hole data for test well USW H-3, Yucca Mountain, Nye County, Nevada
Thordarson, William; Rush, F.E.; Spengler, R.W.; Waddell, S.J.
1984-01-01
Test well USW H-3 is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy as part of the Nevada Nuclear Waste Storage investigations. The well penetrated volcanic tuffs of Tertiary age to a depth of 1,219 meters. This report presents data collected to determine the hydraulic characteristics of rocks penetrated. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, pumping, swabbing, and injection tests for the well are contained in this report. (USGS)
Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, D.
1996-12-31
This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, Didi
1996-01-26
This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.
2010-01-01
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2011 CFR
2011-07-01
... well and for well control, including the following: (i) Pore pressure; (ii) Formation fracture..., fracture gradients of the exposed formations, casing setting depths, and cementing intervals, total well...
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.
He, Jiang-fu; Li, Li-jia; Luo, Yong-jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations. PMID:29768421
Estimating Hardness from the USDC Tool-Bit Temperature Rise
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart
2008-01-01
A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.
NASA Astrophysics Data System (ADS)
Ujiie, K.; Inoue, T.; Ishiwata, J.
2015-12-01
Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.
Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.
Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A
2016-01-01
In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P < .0001) different mean (SD) measurements: 1.49 (0.15) Nm and 3.73 (0.79) Nm. Use under drill power at controlled low velocity and at high velocity also resulted in significantly (P < .0001) different mean (SD) measurements: 1.47 (0.14) Nm and 5.37 (0.90) Nm. Maximum single measurement obtained was 9.0 Nm using drill power at high velocity. Locking screw insertion with improper technique may result in higher than expected torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.
Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring
NASA Astrophysics Data System (ADS)
Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.
2005-12-01
Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).
NASA Astrophysics Data System (ADS)
Boulton, Carolyn; Menzies, Catriona D.; Toy, Virginia G.; Townend, John; Sutherland, Rupert
2017-01-01
Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from ˜35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends ˜20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T ≤ 300-400°C, 6-10 km depth) and at shallow depths (T = 20-150°C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.
Program helps quickly calculate deviated well path
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, M.P.
1993-11-22
A BASIC computer program quickly calculates the angle and measured depth of a simple directional well given only the true vertical depth and total displacement of the target. Many petroleum engineers and geologists need a quick, easy method to calculate the angle and measured depth necessary to reach a target in a proposed deviated well bore. Too many of the existing programs are large and require much input data. The drilling literature is full of equations and methods to calculate the course of well paths from surveys taken after a well is drilled. Very little information, however, covers how tomore » calculate well bore trajectories for proposed wells from limited data. Furthermore, many of the equations are quite complex and difficult to use. A figure lists a computer program with the equations to calculate the well bore trajectory necessary to reach a given displacement and true vertical depth (TVD) for a simple build plant. It can be run on an IBM compatible computer with MS-DOS version 5 or higher, QBasic, or any BASIC that does no require line numbers. QBasic 4.5 compiler will also run the program. The equations are based on conventional geometry and trigonometry.« less
Tool life and surface integrity aspects when drilling nickel alloy
NASA Astrophysics Data System (ADS)
Kannan, S.; Pervaiz, S.; Vincent, S.; Karthikeyan, R.
2018-04-01
Nickel based super alloys manufactured through powder metallurgy (PM) route are required to increase the operational efficiency of gas turbine engines. They are material of choice for high pressure components due to their superior high temperature strength, excellent corrosion, oxidation and creep resistance. This unique combination of mechanical and thermal properties makes them even more difficult-to-machine. In this paper, the hole making process using coated carbide inserts by drilling and plunge milling for a nickel-based powder metallurgy super alloy has been investigated. Tool life and process capability studies were conducted using optimized process parameters using high pressure coolants. The experimental trials were directed towards an assessment of the tendency for surface malformations and detrimental residual stress profiles. Residual stresses in both the radial and circumferential directions have been evaluated as a function of depth from the machined surface using the target strain gauge / center hole drilling method. Circumferential stresses near workpiece surface and at depth of 512 µm in the starting material was primarily circumferential compression which was measured to be average of –404 MPa. However, the radial stresses near workpiece surface was tensile and transformed to be compressive in nature at depth of 512 µm in the starting material (average: -87 Mpa). The magnitude and the depth below the machined surface in both radial and circumferential directions were primarily tensile in nature which increased with hole number due to a rise of temperature at the tool–workpiece interface with increasing tool wear. These profiles are of critical importance for the selection of cutting strategies to ensure avoidance/minimization of tensile residual stresses that can be detrimental to the fatigue performance of the components. These results clearly show a tendency for the circumferential stresses to be more tensile than the radial stresses. Overall the results indicate that the effect of drilling and milling parameters is most marked in terms of surface quality in the circumferential direction. Material removal rates and tool flank wear must be maintained within the control limits to maintain hole integrity.
Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.
Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem
2018-01-01
Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chapot, Melissa S.; Roberts, Helen M.; Lamb, Henry F.; Schäbitz, Frank; Asrat, Asfawossen; Trauth, Martin H.
2017-04-01
Optically stimulated luminescence (OSL) dating is a family of numerical chronometric techniques applied to quartz or feldspar mineral grains to assess the time since these grains were last exposed to sunlight (i.e. deposited), based on the amount of energy they absorbed from ambient radiation during burial. The maximum limit of any OSL dating technique is not defined by a fixed upper age limit, but instead by the maximum radiation dose the sample can accurately record before the OSL signal saturates. The challenge is to assess this upper limit of accurate age determination without necessitating comparison to independent age control. Laboratory saturation of OSL signals can be observed using a dose response curve (DRC) plotting OSL signal intensity against absorbed laboratory radiation dose. When a DRC is fitted with a single saturating exponential, one of the equation's parameters can be used to define a pragmatic upper limit beyond which uncertainties become large and asymmetric (Wintle and Murray, 2006). However, many sub-samples demonstrate DRCs that are best defined by double saturating exponential equations, which cannot be used to define this upper limit. To investigate the reliability of luminescence ages approaching saturation, Chapot et al. (2012) developed the Natural DRC concept, which uses expected ages derived from independent age control, combined with sample-specific measurements of ambient radioactivity, to calculate expected doses of absorbed radiation during burial. Natural OSL signal intensity is then plotted against these expected doses and compared to laboratory-generated DRCs. Using this approach, discrepancies between natural and laboratory DRCs have been observed for the same mineral material as natural OSL signal intensities saturate at absorbed radiation doses lower than the pragmatic upper limit defined by laboratory DRCs, leading to increasing age underestimation with depth without a metric for questioning the age reliability. The present study explores a means of defining the upper limit for reliable luminescence ages for sedimentary records without an established chronologic framework, using a long ( 280m; Cohen et al., 2016) lacustrine record from Chew Bahir, Ethiopia, drilled as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP) of the International Continental Scientific Drilling Programme (ICDP) and CRC806 "Our way to Europe". Natural saturation of OSL signals is explored by plotting natural signal intensity against depth, creating a pseudo-Natural DRC that can be compared to laboratory DRCs. Unlike the homogenous deposits of the Chinese Loess Plateau where the Natural DRC concept was developed, the 280m composite core from Chew Bahir shows significant variation in lithology enabling investigation of the effects of sample to sample variability on Natural DRC construction, and facilitating comparison between signals from fine-quartz, fine-polymineral, and coarse-potassium feldspar grains. This work demonstrates how the concepts of Natural DRCs can be used to define the upper dating limit of sample suites without independent age control, providing valuable information for long sedimentary sequences such as the lacustrine deposits from Chew Bahir. Chapot M.S., et al. (2012), Radiation Measurements 47: 1045-1052. Cohen A, et al. (2016), Scientific Drilling 21: 1-16. Wintle, A.G., Murray, A.S. (2006) Radiation Measurements 41: 369-391.
Nankai Stress History and Implications for an Overpressured Decollement
NASA Astrophysics Data System (ADS)
Moran, K.; O'Regan, M.
2005-12-01
The Nankai Trough, formed from the subduction of the Shikoku Basin beneath the island arc of southwestern Japan, is a relatively young accretionary complex converging at a rate of ~4 cm/yr [Shipboard Scientific Party, 2001a]. The region was studied during the Deep Sea Drilling Project and on three Ocean Drilling Program (ODP) Legs-131, 190 and 196. Three sites visited during these Legs form a single cross-margin transect (dubbed the Muroto Transect) that traverses the leading edge of the Nankai accretionary prism, from seaward of the deformation front at Site 1173, to close to the deformation front (Site 1174), and landward to the first frontal thrust (Site 808). The decollement, which forms the major boundary between the converging plates, occurs within the Lower Shikoku Basin stratigraphic unit. The ODP sites were drilled and cored to depths below the decollement (Sites 808 and 1174) and the proto-decollement (Site 1173). Here we present consolidation test results [Moran et al., 1993] that are consistent with porosity-depth functions from core and log measurements for the Lower Shikoku Basin sediments, assuming that the decollement is an overpressured seal. At 1173, where a true decollement has not yet formed, moderate fluid overpressures occur that can be fully attributed to high turbiditic sedimentation rates. Forward modeling of this site into the deformation front over a period of ~300 ky shows that the present 1173 porosity-depth function matches the porosity-depth function at 1174. These results suggest that the young decollement on the Muroto Transect at the deformation front and landward is highly overpressured and forms a seal to sediments below that can be classically modeled as a one-dimensional consolidation system.
Electromagnetic detection of deep freshwater lenses in a hyper-arid limestone terrain
NASA Astrophysics Data System (ADS)
Young, Michael E.; Macumber, Phillip G.; Donald Watts, M.; Al-Toqy, Nasser
2004-12-01
In the hyper-arid desert of Central Oman, freshwater lenses are found lying on a regional saline water table. These lenses have developed where recharge from infrequent cyclonic rainfall has collected in shallow depressions on the Tertiary limestones of the Central Plateau and in the catchments of ancient river channels draining the Plateau. Central-loop time-domain electromagnetic (TDEM) sounding was applied as a method of reconnaissance exploration for these lenses at two sites, a shallow depression extending over an area of 60 km 2 and a wadi gorge draining a catchment of 3400 km 2. These results were subsequently tested by drilling. In the case of the shallow depression, drilling intersected a freshwater lens up to 18 m thick at a depth of 92 m. TDEM resistivity-depth inversion showed that the corresponding high resistivity zone included both the lens and overlying unsaturated rocks, and that the depth to the saline interface could be accurately predicted. Where drilling failed to intersect a lens, TDEM inversion resulted in a consistently low resistivity zone in which the water table could not be resolved. By invoking the Archie formula modified for the presence of clays, it is thought that the higher resistivity of the vadose zone observed over the lens may be explained by a reduction in the clay conductivity factor resulting from higher pore-water resistivity. In the case of the wadi gorge, low regional resistivities were also recorded over the limestones on the survey margins, and high resistivity anomalies over the freshwater lens within and extending away from the gorge. Again, TDEM was found to be useful as a reconnaissance method and for mapping the depth to the underlying saline aquifer, but not for predicting the thickness of the overlying freshwater lens.
Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie
2014-01-01
Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.
Phase 1 drilling operations at the Magma Energy Exploratory Well (LVF 51-20)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finger, J.T.; Jacobson, R.D.
1990-12-01
This report describes the Phase 1 drilling operations for the Magma Energy Exploratory Well near Mammoth Lakes, California. An important part of the Department of Energy's Magma Energy Program, this well is designed to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degree}C, whichever comes first. There will be four drilling phases, at least a year apart, with scientific investigations in the borehole between the drilling intervals. Phase 1 of this project resulted in a 20 inch cased hole to 2558 feet, with 185 feet of coring beyond that. This document comprises a narrative of themore » daily activities, copies of the daily mud and lithologic reports, time breakdowns of rig activities, inventories of lost circulation materials, temperature logs of the cored hole, and a strip chart mud log. 2 figs.« less
Barile, Claudia; Casavola, Caterina; Pappalettera, Giovanni; Pappalettere, Carmine
2014-01-01
Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.
2014-01-01
Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value. PMID:25276850
Notched K-wire for low thermal damage bone drilling.
Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert
2017-07-01
The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Sadek, H.S.; Rashad, S.M.; Blank, H.R.
1984-01-01
If proper account is taken of the constraints of the method, it is capable of providing depth estimates to within an accuracy of about 10 percent under suitable circumstances. The estimates are unaffected by source magnetization and are relatively insensitive to assumptions as to source shape or distribution. The validity of the method is demonstrated by analyses of synthetic profiles and profiles recorded over Harrat Rahat, Saudi Arabia, and Diyur, Egypt, where source depths have been proved by drilling.
Inexistence of permafrost at the top of the Veleta peak (Sierra Nevada)
NASA Astrophysics Data System (ADS)
Gómez-Ortiz, Antonio; Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Palacios, David; Tanarro, Luis Miguel; Schulte, Lothar
2014-05-01
Several deep drillings wew carried out along a latitudinal transect from Svalbard (78°N) to Sierra Nevada (37°N, Spain) within the project Permafrost and Climate Change in Europe (PACE). In this abstract we discuss the data corresponding to the drilling existing at the top of the Veleta peak, at an altitude of 3380 m. This drilling reach a depth of 114.5 m depth, although we analyze here the data of the first 60 m depth. UTL-1 loggers were installed at depths of 0.2, 0.6, 1.2, 2.6, 4, 7, 10, 13, 15, 20 and 60 m. The observation period spans from 2002 to 2013 with data being taken every 2 h. The most surficial loggersrecorded the largest annual temperature oscillations, reaching 22.6°C at 20 cm. Down to 10 m depth the annual temperature amplitude is still remarkable and seasonal temperature changes are even observed at depths of 15 to 20 m. Below this level the temperature remains constant. The logger installed at 60 m depth recorded small temperature changes between 2006 and 2009, oscillating between 2.38 and 2.61ºC. Since January 2010 the temperatures stabilized at 2.61°C. However, this slight temperature increase must be framed within the margin of instrumentation error of the devices. Data shows evidence of the inexistence ofpermanent negative temperatures at depth. In contrast to what happens in the nearby Veleta cirque floor (3100 m), where marginal permafrost conditions have been recorded, in the Veleta peak (3380 m) data points to the absence of a permafrost regime. This may be due to several factors: a) The existence of permafrost in the Veletacirque is directly related to the presence of fossil glacier ice corresponding to a glacier that existed there during the Little Ice Age. b ) The early melting of snow cover in the Veleta peak due to wind effect and incidence of solar radiation condition the absence of permafrost conditions at the summitin contrast to the Veleta cirquefloor, where the longer persistence of snow favours the presence of continuous negative temperatures. c) The topographical setting of the Veleta peak favours a major incidence of radiation through therock walls,conditioning higher temperatures.
Smellie, John A.T.; Stuckless, John S.
1985-01-01
The pervasive alteration and the more recent mobilisation of U are evident to a depth of at least 600 m. The effects are most prevalent along major fracture zones and within the upper 250–300 m of one drill-hole where a high frequency of crush zones has been noted. Higher Fe oxidation ratios, higher Rb contents, lower U contents and correspondingly higher Th/U ratios, all characterise this zone.
Inert gas stratigraphy of Apollo 15 drill core sections 15001 and 15003
NASA Technical Reports Server (NTRS)
Huebner, W.; Kirsten, T.; Heymann, D.
1973-01-01
Rare gase contents were studied in Apollo 15 drill core sections corresponding to 207 to 238 and 125 to 161-cm depths, with respect to layering of the core, turnover on a centimeter scale, and cosmic proton bombardment history. Trapped gas abundance was established in all samples, the mean grain size being a major factor influencing the absolute rare gas contents. Analysis of the results suggests that the regolith materials were exposed to galactic and solar cosmic rays long before their deposition.
Experimental Study on Longmaxi Shale Breaking Mechanism with Micro-PDC Bit
NASA Astrophysics Data System (ADS)
Wang, Teng; Xiao, Xiaohua; Zhu, Haiyan; Zhao, Jingying; Li, Yuheng; Lu, Ming
2017-10-01
China has abundant shale gas resource, but its geological conditions are complicated. This work sought to find the shale breaking mechanism with the polycrystalline diamond compact (PDC) bit when drilling the shale that is rich in stratification. Therefore, a laboratory-scale drilling device based on a drilling machine is developed. The influences of Longmaxi shale stratification on drilling parameters in the drilling process with micro-PDC bit are investigated. Six groups of drilling experiments with six inclination angles ( β = 0°, 15°, 30°, 45°, 60° and 90°), total thirty-six groups, are carried out. The weight on bit reaches the maximum value at β = 30° and reaches the minimum value at β = 0°. The biggest torque value is at β = 30°, and the smaller torque values are at β = 15°, β = 45° and β = 60°. When the inclination angle is between 30° and 60°, the shale fragmentation volume is larger. The inclination angle β = 0° is beneficial, and β = 15° and β = 60° are detrimental to controlling the drilling direction in the Longmaxi shale gas formation.
NASA Astrophysics Data System (ADS)
Yao, X. F.; Xiong, T. C.; Xu, H. M.; Wan, J. P.; Long, G. R.
2008-11-01
The residual stresses of the PMMA (polymethyl methacrylate) specimens after being drilled, reamed and polished respectively are investigated using the digital speckle correlation experimental method,. According to the displacement fields around the correlated calculated region, the polynomial curve fitting method is used to obtain the continuous displacement fields, and the strain fields can be obtained from the derivative of the displacement fields. Considering the constitutive equation of the material, the expression of the residual stress can be presented. During the data processing, according to the fitting effect of the data, the calculation region of the correlated speckles and the degree of the polynomial fitting curve is decided. These results show that the maximum stress is at the hole-wall of the drilling hole specimen and with the increasing of the diameter of the drilled hole, the residual stress resulting from the hole drilling increases, whereas the process of reaming and polishing hole can reduce the residual stress. The relative large discrete degree of the residual stress is due to the chip removal ability of the drill bit, the cutting feed of the drill and other various reasons.
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Liberty, L. M.; Kessler, J. A.; Kueck, J.; Kofman, R. S.; Bishop, R. A.; Shervais, J. W.; Evans, J. P.; Champion, D. E.
2012-12-01
The recently completed ICDP Hotspot drilling program consisted of drilling of three scientific drill holes each to at least 1800 m depth across the Snake River Plain of Idaho. The three boreholes include i) Kimama: thick sequences of basalt flows with sediment interbeds; ii) Kimberley: near surface basalt flows overlying rhyolite deposits, and iii) Mountain Home: geothermally altered basalts overlain by lacustrine sediments. The program consisted of high resolution 2D surface tied to vertical and walk-a-way borehole seismic profiles and an extensive suite of full waveform sonic, ultrasonic televiewer, electrical resistivity, magnetic susceptibility, and hydrogen index neutron logging. There are a number of highlights out of this work. First, seismic imaging beneath basalt flows is a classic problem in reflection seismology and has long been believed to be due to rapid attenuation of the downgoing seismic pulse. Here, however, we observed strong arrivals at all depths suggesting that seismic energy is penetrating such formations and that issues in imaging may be a result of the heterogeneous nature of the formations. Second, the neutron log responses correlate well with the structure of individual basalt flows. High and low backscattered neutron counts correspond to massive low porosity basalt rock and with the higher porosity and sediment filled flow tops, respectively. Third, the ultrasonic borehole televiewer information is being used to orient the nearly complete sets of core in order to obtain information on the azimuths of natural and drilling induced core fractures. This together with examination of borehole breakouts and drilling induced tensile fractures on the wellbore wall will allow for semi-quantitative stress estimates across the Snake River Plain. Finally, the Mountain Home borehole provides an unique opportunity to study the geothermally altered basalts. There are a number of correlations between, for example, the sonic and electrical logs that must relate to the style of alteration.
NASA Astrophysics Data System (ADS)
Micheuz, P.; Kurz, W.; Ferre, E. C.
2015-12-01
IODP Expedition 352 aimed to drill through the entire volcanic sequence of the Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Analysis of structures within drill cores, combined with borehole and site survey seismic data, indicates that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic, associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement, deformation was accommodated by shear along cataclastic fault zones, and the formation of tension fractures, hybrid (tension and shear) fractures, and shear fractures. Veins commonly form by mineral filling of tension or hybrid fractures and, generally, show no or limited observable macroscale displacement along the fracture plane. The vein filling generally consists of (Low Mg-) calcite and/or various types of zeolite as well as clay. Vein frequency varies with depth but does not seem to correlate with the proximity of faults. This may indicate that these veins are genetically related to hydrothermal activity taking place shortly after magma cooling. Host-rock fragments are commonly embedded within precipitated vein material pointing to a high fluid pressure. Vein thickness varies from < 1 mm up to 15 mm. The wider veins appear to have formed in incremental steps of extension. Calcite veins tend to be purely dilational at shallow depths, but gradually evolve towards oblique tensional veins at depth, as shown by the growth of stretched calcite and/or zeolites (idiomorphic and/or stretched) with respect to vein margins. With increasing depth, the calcite grains exhibit deformation microstructures more frequently than at shallower core intervals. These microstructures include thin twinning (type I twins), increasing in width with depth (type I and type II twins), curved twins, and subgrain boundaries indicative of incipient plastic deformation.
NASA Astrophysics Data System (ADS)
Gupta, H. K.; Tiwari, V. M.; Satyanarayana, H.; Roy, S.; Arora, K.; Patro, P. K.; Shashidhar, D.; Mallika, K.; Akkiraju, V.; Misra, S.; Goswami, D.; Podugu, N.; Mishra, S.
2017-12-01
Koyna, near the west coast of India is the most prominent site of artificial water reservoir triggered seismicity (RTS). Soon after the impoundment of the Koyna Dam in 1962, RTS was observed. It has continued till now. It includes the largest RTS earthquake M 6.3 on December 10, 1967; 22 M≥5.0, and thousands of smaller earthquakes. The entire earthquake activity is limited to an area of about 30 km x 20 km, with most focal depths being within 6 km. There is no other earthquake source within 50 km of the Koyna Dam. An ICDP Workshop held in March 2011 found Koyna to be the most suitable site to investigate reservoir- triggered seismicity (RTS) through deep drilling. Studies carried out in the preparatory phase since 2011 include airborne magnetic and gravity-gradient surveys, MT surveys, drilling of 9 boreholes going to depths of 1500 m and logging, heat flow measurements, seismological investigations including the deployment of six borehole seismometers, and LiDAR. The Second ICDP Workshop held during 16- 18 May 2014, reviewed the progress made and detailed planning of putting the borehole observatory was discussed. The site of a 3 km deep pilot borehole was debated and among the 5 possible location. Based on the seismic activity and logistics the location of the first Pilot Borehole has been finalized and the drilling started on the 21st December 2016. The 3000 m deep borehole was completed on 11th June 2017. The basement was touched at 1247 m depth and there were no sediments below basalt. Several zones with immense fluid losses were encountered. Geophysical Logging has been completed. Cores were recovered from 1269, 1892 and 2091 depths. The cores are 9 m long and with 4 inches diameter. The core recovery is almost 100%. In-situ stress measurements have been conducted at depths of 1600 m onwards.
Optimizing Geothermal Drilling: Oil and Gas Technology Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denninger, Kate; Eustes, Alfred; Visser, Charles
There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drillingmore » reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Richard; Whiting, Dick; Moore, James
1991-07-01
On June 24, 1991, a third-party investigation team consisting of Richard P. Thomas, Duey E. Milner, James L. Moore, and Dick Whiting began an investigation into the blowout of well KS-8, which occurred at the Puna Geothermal Venture (PGV) site on June 12, 1991, and caused the unabated release of steam for a period of 31 hours before PGV succeeded in closing in the well. The scope of the investigation was to: (a) determine the cause(s) of the incident; (b) evaluate the adequacy of PGVs drilling and blowout prevention equipment and procedures; and (c) make recommendations for any appropriate changesmore » in equipment and/or procedures. This report finds that the blowout occurred because of inadequacies in PGVs drilling plan and procedures and not as a result of unusual or unmanageable subsurface geologic or hydrologic conditions. While the geothermal resource in the area being drilled is relatively hot, the temperatures are not excessive for modem technology and methods to control. Fluid pressures encountered are also manageable if proper procedures are followed and the appropriate equipment is utilized. A previous blowout of short duration occurred on February 21, 1991, at the KS-7 injection well being drilled by PGV at a depth of approximately 1600'. This unexpected incident alerted PGV to the possibility of encountering a high temperature, fractured zone at a relatively shallow depth. The experience at KS-7 prompted PGV to refine its hydrological model; however, the drilling plan utilized for KS-8 was not changed. Not only did PGV fail to modify its drilling program following the KS-7 blowout, but they also failed to heed numerous ''red flags'' (warning signals) in the five days preceding the KS-8 blowout, which included a continuous 1-inch flow of drilling mud out of the wellbore, gains in mud volume while pulling stands, and gas entries while circulating muds bottoms up, in addition to lost circulation that had occurred earlier below the shoe of the 13-3/8-hch casing.« less