Mukherjee, R; Ghosh, M; Nandi, B
2004-08-01
Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.
Chandra, K K; Kumar, Neeraj; Chand, Gireesh
2010-11-01
Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.
NASA Astrophysics Data System (ADS)
Lauren, Ari; Kinnunen, Jyrki-Pekko; Sikanen, Lauri
2016-04-01
Bioenergy contributes 26 % of the total energy use in Finland, and 60 % of this is provided by solid forest fuel consisting of small stems and logging residues such as tops, branches, roots and stumps. Typically the logging residues are stored as piles on site before transporting to regional combined heat and power plants for combustion. Profitability of forest fuel use depends on smart control of the feedstock. Fuel moisture, dry matter loss, and the rate of interest during the storing are the key variables affecting the economic value of the fuel. The value increases with drying, but decreases with wetting, dry matter loss and positive rate of interest. We compiled a simple simulation model computing the moisture change, dry matter loss, transportation costs and present value of feedstock piles. The model was used to predict the time of the maximum value of the stock, and to compose feedstock allocation strategies under the question: how should we choose the piles and the combustion time so that total energy yield and the economic value of the energy production is maximized? The question was assessed concerning the demand of the energy plant. The model parameterization was based on field scale studies. The initial moisture, and the rates of daily moisture change and dry matter loss in the feedstock piles depended on the day of the year according to empirical field measurements. Time step of the computation was one day. Effects of pile use timing on the total energy yield and profitability was studied using combinatorial optimization. Results show that the storing increases the pile maximum value if the natural drying onsets soon after the harvesting; otherwise dry matter loss and the capital cost of the storing overcome the benefits gained by drying. Optimized timing of the pile use can improve slightly the profitability, based on the increased total energy yield and because the energy unit based transportation costs decrease when water content in the biomass is decreased.
Estimated winter wheat yield from crop growth predicted by LANDSAT
NASA Technical Reports Server (NTRS)
Kanemasu, E. T.
1977-01-01
An evapotranspiration and growth model for winter wheat is reported. The inputs are daily solar radiation, maximum temperature, minimum temperature, precipitation/irrigation and leaf area index. The meteorological data were obtained from National Weather Service while LAI was obtained from LANDSAT multispectral scanner. The output provides daily estimates of potential evapotranspiration, transpiration, evaporation, soil moisture (50 cm depth), percentage depletion, net photosynthesis and dry matter production. Winter wheat yields are correlated with transpiration and dry matter accumulation.
Hassan, Muhammad Umair; Chattha, Muhammad Umer; Mahmood, Athar; Sahi, Shahbaz Talib
2018-05-01
Biomass is a promising renewable energy source and its significance is escalating in the context of climate change and depletion of fossil foils. This study was conducted for two consecutive years 2016 and 2017, using five sorghum cultivars, i.e., JS-263, Jawar-2011, Hagari, JS-2002, and YS-2016, in order to determine the best cultivars in terms of dry matter yield, chemical composition, and biomethane yield grown under semi-arid conditions in Pakistan. The results revealed that sorghum cultivars responded differently in terms of growth, biomass yield, chemical composition, and methane yield. Cultivars Jawar-2011 produced maximum leaf area index, leaf area duration, crop growth rate, plant height, and leaves per plant, however, they were comparable with Sorghum-2016, whereas cultivar JS-2002 performed poorly among the tested cultivars. Similarly, cultivar Jawar-2011 produced maximum dry matter yield (16.37 t ha -1 ) similar to that of YS-2016, further cultivar JS-2002 performed poorly and gave lower dry matter yield (12.87 t ha -1 ). The maximum protein concentration (10.95), neutral detergent fibers (61.20), and lignin contents (5.55) found in Jawar-2011 were comparable with those in YS-2016, while the lowest neutral detergent fiber and lignin contents were found in JS-2002. Although JS-2002 produced the highest specific methane yield per kilogram of volatile solids, it was overcompensated by Jawar-2011 owing to higher dry matter yield per hectare. These results suggested that cultivar Jawar-2011 can be grown successfully in semi-arid conditions of Pakistan in order to get good biomass yield along with higher methane yield.
Chen, De-Xing; Coughenour, M. B.; Eberts, Debra; Thullen, Joan S.
1994-01-01
Experiments of plant growth responses to different CO2 concentrations and temperatures were conducted in growth chambers to explore the interactive effects of atmospheric CO2 enrichment and temperature on the growth and dry matter allocation of dioecious Hydrilla [Hydrilla verticillata (L.f.) Royle]. Hydrilla plants were exposed to two atmospheric CO2 concentrations (350 and 700 ppm) and three temperatures (15, 25 and 32°C) under a 12-hr photoperiod for about 2 months. The plant growth analysis showed that elevated CO2 appeared to enhance the growth of Hydrilla, and that the percentage of the enhancement is strongly temperature-dependent. Maximum biomass production was achieved at 700 ppm CO2 and 32°C. At 15°C, the total dry matter production was increased about 27% by doubling CO2, due to a 26% enhancement of leaf biomass, a 34% enhancement of stem biomass and 16% enhancement of root biomass. At 25°C, the dry matter production was increased about 46% by doubling CO2, due to a 29% enhancement of leaf biomass, a 27% enhancement of stem biomass and 40% enhancement of root biomass. At 32°C, however, the percentage of the enhancement of total dry matter production by doubling CO2 was only about 7%. The dry matter allocation among different plant parts was influenced by temperature but not by elevated CO2 concentration.
Dahouda, M; Toléba, S S; Youssao, A K I; Ali, A A Mama; Hambuckers, A; Hornick, J-L
2008-11-01
1. An experiment was carried out with 120 helmeted guinea fowls during one year in Parakou (Benin). Feed intake, ingredient and chemical composition, along with the nutritional adequacy of scavenging diets were measured during the rainy season (November-February) and dry season (March-October) in order to propose supplementation strategies. Ingredients found in crops were identified and allocated into 6 main categories (supplemental feed, seeds, green forages, animal materials, mineral matter and unidentified materials). 2. Mean dry weights of crop contents were significantly higher in the rainy than in the dry season. Amounts and proportions of supplemental feed and seeds were not significantly different between seasons, whereas those of green forage, animal materials and mineral matter were higher in rainy season. Supplemental feed, especially maize and sorghum, was the largest component of the crop content in both seasons. The most represented grass seeds were Panicum maximum (rainy season) and Rottboellia cochinchinensis (dry season). 3. Dietary concentrations of organic matter, non-nitrogen extract and metabolisable energy were higher in the dry season, while mineral concentrations were higher in the rainy season. There were no significant differences between the two seasons in dry matter, crude protein or crude fibre. 4. Scavenging provided insufficient nutrients and energy to allow guinea fowls to be productive. Therefore, more nutritionally balanced supplementary feed would be required during both seasons.
USDA-ARS?s Scientific Manuscript database
Weather and management constraints, as well as the intended use of the harvested forage, all influence the forage harvest system selected by the producer. Generally, maximum retention of dry matter from harvested forage crops is achieved at moistures intermediate between the standing fresh crop and ...
Impact of dietary fiber and physical form on performance of lactating dairy cows.
Woodford, J A; Jorgensen, N A; Barrington, G P
1986-04-01
Two trials were conducted to study the effects of forage intake and physical form on lactating cow performance. In trial 1, four cows in a 4 X 4 Latin square were fed long alfalfa hay at 28, 36, 45, and 53% of total dry matter plus concentrate. Total dry matter intake was not affected by forage percent. Total chewing time and milk fat percentage increased linearly with increasing forage consumption. Maximum 4% fat-corrected milk production occurred when diets contained 27% neutral detergent fiber and 18% acid detergent fiber. In trial 2, four cows in a 4 X 4 Latin square were fed diets of chopped alfalfa hay and concentrate in proportions to supply 27.4% total ration neutral detergent fiber. Mean particle length measured with an oscillating screen particle separator of the chopped hay was .26, .46, .64, and .90 cm. Total dry matter and forage dry matter intakes and total chewing were not influenced by forage mean particle length. Mean particle length did not affect actual milk or 4% fat-corrected milk production. Depression of milk fat percentage was prevented when forage mean particle length was greater than or equal .64 cm. Apparent digestibility of dietary constituents and rate of passage of hay and concentrate was not influenced by forage intake or physical form.
Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle
USDA-ARS?s Scientific Manuscript database
Genetic parameters for dry matter intake (DMI), residual feed intake (RFI), average daily gain (ADG), mid-period body weight (MBW), gain to feed ratio (G:F) and flight speed (FS) were estimated using 1165 steers from a mixed-breed population using restricted maximum likelihood methodology applied to...
NASA Astrophysics Data System (ADS)
Kaveh, Mohammad; Abbaspour-Gilandeh, Yousef; Chayjan, Reza Amiri; Taghinezhad, Ebrahim; Mohammadigol, Reza
2018-01-01
This research was investigated to the thin-layer drying of terebinth fruit under convective infrared microwave (CIM) conditions with initial moisture content about 4.28% (g water/g dry matter). The effects of drying different conditions were studied on the effective moisture diffusivity, activation energy, specific energy, shrinkage, color, and mechanical properties of terebinth. Experiments were conducted at three air temperatures (45, 60, and 70 °C), three infrared power (500, 1000, and 1500 W) and three microwave power (270, 450 and 630 W). All these experiments were carried out under air velocity of 0.9 m/s. The effective moisture diffusivity of terebinth was obtained as 1.79 × 10-9 to 15.77 × 10-9 m2/s during drying. The activation energy of terebinth samples was measured to be 12.70 to 32.28 kJ/mol. To estimate the drying kinetic of terebinth, seven mathematical models were used to fit the experimental data of thin-layer drying. Results showed that the Midilli et al. model withR 2 = 0.9999, χ 2 = 0.0001 andRMSE = 0.0099 had the best performance in prediction of moisture content. Specific energy consumption was within the range of 127.62 to 678.90 MJ/kg. The maximum shrinkage during drying was calculated 69.88% at the air temperature 75 °C, infrared power of 1500 W, and microwave power 630 W. Moreover, the maximum values of the ΔL ∗ (15.89), Δa ∗ (12.28), Δb ∗(-0.12), and total color difference (ΔE= 17.44) were calculated in this work. Also, the maximum rupture force and energy for dried terebinth were calculated to be 149.2 N and 2845.4 N.mm, respectively.
NASA Astrophysics Data System (ADS)
Kaveh, Mohammad; Abbaspour-Gilandeh, Yousef; Chayjan, Reza Amiri; Taghinezhad, Ebrahim; Mohammadigol, Reza
2018-07-01
This research was investigated to the thin-layer drying of terebinth fruit under convective infrared microwave (CIM) conditions with initial moisture content about 4.28% (g water/g dry matter). The effects of drying different conditions were studied on the effective moisture diffusivity, activation energy, specific energy, shrinkage, color, and mechanical properties of terebinth. Experiments were conducted at three air temperatures (45, 60, and 70 °C), three infrared power (500, 1000, and 1500 W) and three microwave power (270, 450 and 630 W). All these experiments were carried out under air velocity of 0.9 m/s. The effective moisture diffusivity of terebinth was obtained as 1.79 × 10-9 to 15.77 × 10-9 m2/s during drying. The activation energy of terebinth samples was measured to be 12.70 to 32.28 kJ/mol. To estimate the drying kinetic of terebinth, seven mathematical models were used to fit the experimental data of thin-layer drying. Results showed that the Midilli et al. model with R 2 = 0.9999, χ 2 = 0.0001 and RMSE = 0.0099 had the best performance in prediction of moisture content. Specific energy consumption was within the range of 127.62 to 678.90 MJ/kg. The maximum shrinkage during drying was calculated 69.88% at the air temperature 75 °C, infrared power of 1500 W, and microwave power 630 W. Moreover, the maximum values of the Δ L ∗ (15.89), Δ a ∗ (12.28), Δ b ∗(-0.12), and total color difference (Δ E= 17.44) were calculated in this work. Also, the maximum rupture force and energy for dried terebinth were calculated to be 149.2 N and 2845.4 N.mm, respectively.
Stomatal conductance of lettuce grown under or exposed to different light qualities
NASA Technical Reports Server (NTRS)
Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.
2004-01-01
BACKGROUND AND AIMS: The objective of this research was to examine the effects of differences in light spectrum on the stomatal conductance (Gs) and dry matter production of lettuce plants grown under a day/night cycle with different spectra, and also the effects on Gs of short-term exposure to different spectra. METHODS: Lettuce (Lactuca sativa) plants were grown with 6 h dark and 18 h light under four different spectra, red-blue (RB), red-blue-green (RBG), green (GF) and white (CWF), and Gs and plant growth were measured. KEY RESULTS AND CONCLUSIONS: Conductance of plants grown for 23 d under CWF rose rapidly on illumination to a maximum in the middle of the light period, then decreased again before the dark period when it was minimal. However, the maximum was smaller in plants grown under RB, RGB and GF. This demonstrates that spectral quality during growth affects the diurnal pattern of stomatal conductance. Although Gs was smaller in plants grown under RGB than CWF, dry mass accumulation was greater, suggesting that Gs did not limit carbon assimilation under these spectral conditions. Temporarily changing the spectral quality of the plants grown for 23 d under CWF, affected stomatal responses reversibly, confirming studies on epidermal strips. This study provides new information showing that Gs is responsive to spectral quality during growth and, in the short-term, is not directly coupled to dry matter accumulation.
Wooten, Kimberly J; Sandoz, Melissa A; Smith, Philip N
2018-04-01
Beef cattle in the United States are routinely administered ractopamine, a β-adrenergic receptor agonist, to enhance growth. The present study is the first to quantify ractopamine in feedyard-emitted particulate matter and playa wetlands near feedyards. Ractopamine was present in 92% of particulate matter samples, 16% of playa sediment samples, and 3% of playa water samples, at maximum concentrations of 4.7 μg/g, 5.2 ng/g (dry wt), and 271 ng/L, respectively. These data suggest that aerial transmission and deposition of particulate matter is a transport mechanism for ractopamine between feedyards and aquatic systems in the region. Environ Toxicol Chem 2018;37:970-974. © 2017 SETAC. © 2017 SETAC.
Mphahlele, Rebogile R; Fawole, Olaniyi A; Makunga, Nokwanda P; Opara, Umezuruike L
2016-05-26
The use of pomegranate peel is highly associated with its rich phenolic concentration. Series of drying methods are recommended since bioactive compounds are highly sensitive to thermal degradation. The study was conducted to evaluate the effects of drying on the bioactive compounds, antioxidant as well as antibacterial and antityrosinase activities of pomegranate peel. Dried pomegranate peels with the initial moisture content of 70.30 % wet basis were prepared by freeze and oven drying at 40, 50 and 60 °C. Difference in CIE-LAB, chroma (C*) and hue angle (h°) were determined using colorimeter. Individual polyphenol retention was determined using LC-MS and LC-MS(E) while total phenolics concentration (TPC), total flavonoid concentration (TFC), total tannins concentration (TTC) and vitamin C concentration were measured using colorimetric methods. The antioxidant activity was measured by radical scavenging activity (RSA) and ferric reducing antioxidant power (FRAP). Furthermore, the antibacterial activity of methanolic peel extracts were tested on Gram negative (Escherichia coli and Klebsiella pneumonia) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) using the in vitro microdilution assays. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin as positive controls. Oven drying at 60 °C resulted in high punicalin concentration (888.04 ± 141.03 mg CE/kg dried matter) along with poor red coloration (high hue angle). Freeze dried peel contained higher catechin concentration (674.51 mg/kg drying matter) + catechin and -epicatechin (70.56 mg/kg drying matter) compared to oven dried peel. Furthermore, freeze dried peel had the highest total phenolic, tannin and flavonoid concentrations compared to oven dried peel over the temperature range studied. High concentration of vitamin C (31.19 μg AAE/g dried matter) was observed in the oven dried (40 °C) pomegranate peel. Drying at 50 °C showed the highest inhibitory activity with the MIC values of 0.10 mg/ml against Gram positive (Staphylococcus aureus and Bacillus subtili. Likewise, the extracts dried at 50 °C showed potent inhibitory activity concentration (22.95 mg/ml) against monophenolase. Principal component analysis showed that the peel colour characteristics and bioactive compounds isolated the investigated drying method. The freeze and oven dried peel extracts exhibited a significant antibacterial and antioxidant activities. The freeze drying method had higher total phenolic, tannin and flavonoid concentration therefore can be explored as a feasible method for processing pomegranate peel to ensure retention of the maximum amount of their naturally occurring bioactive compounds. Not relevant for this study.
Lima de Souza, Alexandre; Divino Ribeiro, Marinaldo; Mattos Negrão, Fagton; Castro, Wanderson José Rodrigues; Valério Geron, Luiz Juliano; de Azevedo Câmara, Larissa Rodrigues
2016-01-01
The objective was to evaluate the ingestive behavior of ovine fed Marandu grass silage with dehydrated brewery residue added. The experiment had a completely randomized design with five treatments and four repetitions, with the treatments levels of inclusion being of 0, 10, 20, 30, and 40% natural matter of naturally dehydrated brewery residue for 36 hours to the marandu grass silage. 20 ovines were used and the experimental period was 21 days, 15 being for adaptation to diets. The use of brewery byproduct promoted quadratic effect (P < 0.05) for the consumption of dry matter with maximum point value estimated at adding 23.25% additive. Ingestion efficiency and rumination efficiency of dry matter (g DM/hour) were significant (P < 0.05), by quadratic behavior, and NDF ingestion and rumination efficiency showed crescent linear behavior. The DM and NDF consumption expressed in kg/meal and in minutes/kg were also significant (P < 0.05), showing quadratic behavior. Rumination activity expressed in g DM and NDF/piece was influenced (P < 0.05) by the adding of brewery residue in marandu grass silage in quadratic way, with maximum value estimated of 1.57 g DM/bolus chewed in inclusion of 24.72% additive in grass silage. The conclusion is that intermediary levels adding of 20 to 25% dehydrated brewery residue affects certain parameters of ingestive behavior. PMID:27547811
West, J W; Mullinix, B G; Bernard, J K
2003-01-01
Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.
NASA Astrophysics Data System (ADS)
Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.
2015-06-01
Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.
Pedersen, Ken Steen; Stege, Helle; Nielsen, Jens Peter
2011-07-01
Microwave drying as a procedure for determination of faecal dry matter in weaned pigs was evaluated and clinical relevant cut-off values between faecal consistency scores were determined. Repeatability and reproducibility were evaluated. Overall coefficient of variation was 0.03. The 95% confidence limits for any future faecal subsample examined by any operator in any replica were ± 0.85% faecal dry matter. Robustness in relation to weight of wet faeces was evaluated. The weight categories were 0.5, 1.0, 1.5, 2.0 and 3.0 g. Samples of 0.5 g gave significantly different mean faecal dry matter content compared to weighing of 1.0-3.0 g. Agreement with freeze-drying was evaluated. Lin's concordance correlation coefficient was 0.94. On average the faecal dry matter values was 1.7% (SD=1.99%) higher in freeze dried compared to micro waved samples. Non-parametric ROC analyses were used to determine optimal faecal dry matter cut-off values for clinical faecal consistency scores. The 4 consistency scores were score 1=firm and shaped, score 2=soft and shaped, score 3=loose and score 4=watery. The cut-off values were score 1: faecal dry matter content >19.5%, score 2: faecal dry matter content ≤ 19.5% and >18.0%, score 3: faecal dry matter content ≤ 18.0% and >11.3%, score 4: faecal dry matter content ≤ 11.3%. In conclusion, the microwave procedure has an acceptable repeatability/reproducibility and good agreement with freeze drying can be expected. A minimum of 1.0 g of wet faeces must be used for analyses. Faecal dry matter cut-off values between 4 different clinical consistency scores were determined. © 2011 Elsevier B.V. All rights reserved.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-05-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-01-01
The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067
Saegusa, A; Inouchi, K; Ueno, M; Inabu, Y; Koike, S; Sugino, T; Oba, M
2017-08-01
The objective of this study was to evaluate effects of partial replacement of dry ground corn with lactose in calf starters on dry matter intake, growth rate, ruminal pH, and volatile fatty acid profile. Sixty Holstein bull calves were raised on a high plane of nutrition program until 55 d of age. Calves were fed texturized calf starters containing 30.1% steam-flaked grains and lactose at 0 (control), 5, or 10% (n = 20 for each treatment) on a dry matter basis. All calves were fed treatment calf starters ad libitum from d 7 and kleingrass hay from d 35. Ruminal pH was measured continuously immediately after weaning (d 55-62) for 15 calves (n = 5 per treatment), and 3 wk after weaning (d 77 to 80) for the other 45 calves (n = 15 per treatment). Dry matter intake, growth performance, and ruminal pH variables were not affected by treatment. However, according to Spearman's correlation coefficient (r s ) analyses, lactose intake was positively correlated with dairy minimum ruminal pH (r s = 0.306) for the data collected from d 77 to 80. Similarly, hay intake was not affected by treatment, but positively correlated with daily mean (r s = 0.338) and maximum ruminal pH (r s = 0.408) and negatively correlated with duration pH <5.8 (r s = -0.329) and area pH <5.8 (r s = -0.325), indicating that the variation in hay intake among animals might have masked treatment effects on ruminal pH. Ruminal molar ratio of acetate was higher (45.2 vs. 40.6%), and that of propionate was lower in 10% lactose than control (35.3 vs. 40.2%) for ruminal fluid collected on d 80; however, molar ratio of butyrate was not affected by treatment. These results indicate that lactose inclusion in calf starters up to 10% of dry matter might not affect dry matter intake and growth performance of calves, but that greater lactose and hay intake might be associated with higher ruminal pH. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao
2017-01-01
Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589
Accumulation and Distribution of Dry Matter and Nutrients in Aigeiros Poplar Plantations
G. L. Switzer; L. E. Nelson; James B. Baker
1976-01-01
Patterns of accumulation of dry matter and nutrients through 20 years in Aigeiros poplar plantations are strongly influenced by mode of plantation culture. Accumulation of both dry matter and nutrients in closely spaced thinned plantations is linear through age 12 to 14, after which accumulation declines and then stabilizes. In contrast, dry matter and nutrient...
Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Awasthi, Sanjeev Kumar; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Zhang, Zengqiang
2018-01-01
The objective of this study was to identify the effect of mixture of additives to improve the enzymatic activities, organic matter humification and diminished the bioavailability of heavy metals (HMs) during biosolids co-composting. In this study, zeolite (Z) (10%, 15% and 30%) with 1%lime (L) (dry weight basis of biosolids) was blended into the mixture of biosolids and wheat straw, respectively. The without any amendment and 1%lime applied treatments were run for comparison (Control). The Z+L addition resulted rapid organic matter degradation and humification with maximum enzymatic activities. In addition, higher dosage of Z+1%L amendment reduced the bioavailability of HMs (Cu and Zn) and improved the end product quality as compared to control and 1%L applied treatments. However, the 30%Z+1%L applied treatment showed maximum humification and low bioavailability of HMs but considering the economic feasibility and compost quality results, the treatment with 10%Z+1%L is recommended for biosolids co-composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.
2015-08-01
Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.
Effects of sawdust bedding dry matter on lying behavior of dairy cows: a dose-dependent response.
Reich, L J; Weary, D M; Veira, D M; von Keyserlingk, M A G
2010-04-01
The objective was to determine the effect of sawdust bedding dry matter on the lying behavior of Holstein cows. Dry matter (DM) was varied systematically over 5 treatment levels to test how cows respond to damp bedding. This experiment was repeated during summer and winter to test if the effects of damp bedding varied with season. The 5 bedding treatments averaged (+/-SD) 89.8+/-3.7, 74.2+/-6.4, 62.2+/-6.3, 43.9+/-4.0, and 34.7+/-3.8% DM. Over the course of the trial, minimum and maximum temperatures in the barn were 2.6+/-2.0 and 6.8+/-2.2 degrees C in the winter and 13.3+/-2.5 and 22.6+/-4.1 degrees C in the summer. In both seasons, 5 groups of 3 nonlactating cows were housed in free stalls bedded with sawdust. Following a 5-d acclimation period on dry bedding, groups were exposed to the 5 bedding treatments in a 5 x 5 Latin square. Each treatment lasted 4 d, followed by 1 d when the cows were provided with dry bedding. Stall usage was assessed by 24-h video scanned at 5-min intervals. Responses were analyzed within group (n=5) as the observational unit. Bedding DM affected lying time, averaging 10.4+/-0.4 h/d on the wettest treatment and increasing to 11.5+/-0.4 h/d on the driest bedding. Lying time varied with season, averaging 12.1+/-0.4 h/d across treatments during the winter and 9.9+/-0.6 h/d during the summer, but season and bedding DM did not interact. These results indicate that access to dry bedding is important for dairy cows. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rumen Protozoal Degradation of Structurally Intact Forage Tissues
Amos, Henry E.; Akin, Danny E.
1978-01-01
The association with and digestion of intact leaf sections of cool- and warm-season grasses by cattle rumen protozoa were investigated by light and scanning electron microscopy and by in vitro dry matter disappearance studies. Within extensively degraded areas of mesophyll tissue in cool-season forages, almost all protozoa were Epidinium ecaudatum form caudatum, with maximum numbers at 4 to 10 h of incubation. However, few protozoa were found inside warm-season forage leaves. In in vitro dry matter disappearance studies of a series of incubations with and without 1.6 mg of streptomycin per ml, which inhibited the cellulolytic activity of the bacteria, and in comparison with uninoculated controls, rumen protozoa degraded 11.0 and 3.7 percentage units of orchardgrass and bermuda-grass, respectively. Scanning electron microscopy showed that the tissues degraded in orchardgrass consisted of large amounts of mesophyll and portions of the parenchyma bundle sheath and epidermis; no tissue loss due to the protozoa was observed in bermudagrass. The relationship of these observations to forage digestion is discussed. Images PMID:16345315
Effect of germination and thermal treatments on folates in rye.
Kariluoto, Susanna; Liukkonen, Kirsi-Helena; Myllymäki, Olavi; Vahteristo, Liisa; Kaukovirta-Norja, Anu; Piironen, Vieno
2006-12-13
Effects of germination conditions and thermal processes on folate contents of rye were investigated. Total folate contents were determined microbiologically with Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism, and individual folates were determined by high-performance liquid chromatography after affinity chromatographic purification. Germination increased the folate content by 1.7-3.8-fold, depending on germination temperature, with a maximum content of 250 micro g/100 g dry matter. Hypocotylar roots with their notably high folate concentrations (600-1180 micro g/100 g dry matter) contributed 30-50% of the folate contents of germinated grains. Germination altered the proportions of folates, increasing the proportion of 5-methyltetrahydrofolate and decreasing the proportion of formylated folate compounds. Thermal treatments (extrusion, autoclaving and puffing, and IR and toasting) resulted in significant folate losses. However, folate levels in grains that were germinated and then were heat processed were higher than for native (nongerminated) grains. Opportunities to optimize rye processing to enhance folate levels in rye-based foods are discussed.
Icken, W; Looft, C; Schellander, K; Cavero, D; Blanco, A; Schmutz, M; Preisinger, R
2014-01-01
1. The responses to genetic selection on yolk proportion as a technique for increasing egg dry matter content, an important criterion for the egg-product industry, was investigated in a pedigree flock of White Leghorn hens. 2. Parents were preselected on high and low yolk proportion from a base population. The absolute estimated breeding value for yolk proportion of both groups differed by 3%. The realised selection difference in dry matter content of eggs between groups was more than 1% in the analysed offspring population. 3. Heritability estimates were moderate and dry matter had a lower heritability (h(2) = 0.39) than yolk proportion (h(2) = 0.44). 4. The genetic correlation between yolk proportion and dry matter content was highly positive (rg = 0.91). Genetic correlations with egg weight were negative and would have to be compensated for in a breeding programme (rg = -0.76 with yolk proportion and rg = -0.64 with dry matter content). The genetic correlation between the laying performance and yolk proportion was rg = 0.28 and close to zero (rg = -0.05) for dry matter content. 5. Easy recording and lower undesirable correlations make yolk proportion more suitable for commercial selection compared with egg dry matter content in layer breeding.
NASA Astrophysics Data System (ADS)
Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.
2017-05-01
Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant ( p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly ( p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.
Soil-plant-atmosphere ammonia exchange associated with calluna vulgaris and deschampsia flexuosa
NASA Astrophysics Data System (ADS)
Schjoerring, Jan K.; Husted, Søren; Poulsen, Mette M.
Ammonia fluxes and compensation points at atmospheric NH 3 concentrations corresponding to those occurring under natural growth conditions (0-26 nmol NH 3 mol air -1) were measured for canopies of two species native to heathland in N.W. Europe, viz. Calluna vulgaris (L.) Hull and Deschampsia flexuosa (L.) Trin. The NH 3 compensation point in 2 yr-old C. vulgaris plants, in which current year's shoots had just started growing, was below the detection limit (0.1 nmol mol -1 at 8°C). Fifty days later, when current year's shoots were elongating and flowers developed, the NH 3 compensation point was approximately 6±2.0 nmol mol -1 at 22°C (0.8±0.3 nmol mol -1 at 8°C). The plants in which the shoot tips had just started growing were characterized by a low N concentration in the shoot dry matter (5.8 mg N g -1 shoot dry weight) and a low photosynthetic CO 2 assimilation compared to the flowering plants in which the average dry matter N concentration in old shoots and woody stems was 7.4 and in new shoots 9.5 mg N g -1 shoot dry weight. Plant-atmosphere NH 3 fluxes in C. vulgaris responded approximately linearly to changes in the atmospheric NH 3 concentration. The maximum net absorption rate at 26 nmol NH 3 mol -1 air was 12 nmol NH 3 m -2 ground surface s -1 (equivalent to 13.3 pmol NH 3 g -1 shoot dry matter s -1). Ammonia absorption in Deschampsia flexuosa plants increased approximately linearly with increasing NH 3 concentrations up to 20 nmol mol -1. The maximum NH 3 absorption was 8.5 nmol m -2 ground surface s -1 (30.4 pmol g -1 shoot dry weight s -1). The NH 3 compensation point at 24°C was 3.0±1.1, and at 31°C 7.5±0.6 nmol mol air -1. These values correspond to a NH 3 compensation point of 0.45±0.15 at 8°C. The soil used for cultivation of C. vulgaris (peat soil with pH 6.9) initially adsorbed NH 3 at a rate which exceeded the absorption by the plant canopy. During a 24 d period following the harvest of the plants soil NH 3 adsorption declined and the soil NH 3 compensation point increased from below the detection limit to 8.0±1.8 nmol NH 3 mol air -1 (22°C). No detectable NH 3 exchange took place between the D. flexuosa soil (sandy soil with pH 6.8) and the atmosphere.
Falandysz, Jerzy; Zhang, Ji; Wang, Yuan-Zhong; Saba, Martyna; Krasińska, Grażyna; Wiejak, Anna; Li, Tao
2015-01-01
For the first time, highly elevated levels of mercury (Hg) have been documented for several species of the edible Fungi genus Boletus growing in latosols, lateritic red earths, and red and yellow earths from the Yunnan province of China. Analysis of Hg concentrations in the genus suggests that geogenic Hg is the dominant source of Hg in the fungi, whereas anthropogenic sources accumulate largely in the organic layer of the forest soil horizon. Among the 21 species studied from 32 locations across Yunnan and 2 places in Sichuan Province, the Hg was found at elevated level in all samples from Yunnan but not in the samples from Sichuan, which is located outside the mercuriferous belt. Particularly abundant in Hg were the caps of fruiting bodies of Boletus aereus (up to 13 mg kg-1 dry matter), Boletus bicolor (up to 5.5 mg kg-1 dry matter), Boletus edulis (up to 22 mg kg-1 dry matter), Boletus luridus (up to 11 mg kg-1 dry matter), Boletus magnificus (up to 13 mg kg-1 dry matter), Boletus obscureumbrinus (up to 9.4 mg kg-1 dry matter), Boletus purpureus (up to 16 mg kg-1 dry matter), Boletus sinicus (up to 6.8 mg kg-1 dry matter), Boletus speciosus (up to 4.9mg kg-1 dry matter), Boletus tomentipes (up to 13 mg kg-1 dry matter), and Boletus umbriniporus (up to 4.9 mg kg-1 dry matter). Soil samples of the 0-10 cm topsoil layer from the widely distributed locations had mercury levels ranging between 0.034 to 3.4 mg kg-1 dry matter. In Yunnan, both the soil parent rock and fruiting bodies of Boletus spp. were enriched in Hg, whereas the same species from Sichuan, located outside the mercuriferous belt, had low Hg concentrations, suggesting that the Hg in the Yunnan samples is mainly from geogenic sources rather than anthropogenic sources. However, the contribution of anthropogenically-derived Hg sequestered within soils of Yunnan has not been quantified, so more future research is required. Our results suggest that high rates of consumption of Boletus spp. from Yunnan can deliver relatively high doses of Hg to consumers, but that rates can differ widely because of large variability in mercury concentrations between species and locations.
Falandysz, Jerzy; Zhang, Ji; Wang, Yuan-Zhong; Saba, Martyna; Krasińska, Grażyna; Wiejak, Anna; Li, Tao
2015-01-01
For the first time, highly elevated levels of mercury (Hg) have been documented for several species of the edible Fungi genus Boletus growing in latosols, lateritic red earths, and red and yellow earths from the Yunnan province of China. Analysis of Hg concentrations in the genus suggests that geogenic Hg is the dominant source of Hg in the fungi, whereas anthropogenic sources accumulate largely in the organic layer of the forest soil horizon. Among the 21 species studied from 32 locations across Yunnan and 2 places in Sichuan Province, the Hg was found at elevated level in all samples from Yunnan but not in the samples from Sichuan, which is located outside the mercuriferous belt. Particularly abundant in Hg were the caps of fruiting bodies of Boletus aereus (up to 13 mg kg-1 dry matter), Boletus bicolor (up to 5.5 mg kg-1 dry matter), Boletus edulis (up to 22 mg kg-1 dry matter), Boletus luridus (up to 11 mg kg-1 dry matter), Boletus magnificus (up to 13 mg kg-1 dry matter), Boletus obscureumbrinus (up to 9.4 mg kg-1 dry matter), Boletus purpureus (up to 16 mg kg-1 dry matter), Boletus sinicus (up to 6.8 mg kg-1 dry matter), Boletus speciosus (up to 4.9mg kg-1 dry matter), Boletus tomentipes (up to 13 mg kg-1 dry matter), and Boletus umbriniporus (up to 4.9 mg kg-1 dry matter). Soil samples of the 0–10 cm topsoil layer from the widely distributed locations had mercury levels ranging between 0.034 to 3.4 mg kg-1 dry matter. In Yunnan, both the soil parent rock and fruiting bodies of Boletus spp. were enriched in Hg, whereas the same species from Sichuan, located outside the mercuriferous belt, had low Hg concentrations, suggesting that the Hg in the Yunnan samples is mainly from geogenic sources rather than anthropogenic sources. However, the contribution of anthropogenically-derived Hg sequestered within soils of Yunnan has not been quantified, so more future research is required. Our results suggest that high rates of consumption of Boletus spp. from Yunnan can deliver relatively high doses of Hg to consumers, but that rates can differ widely because of large variability in mercury concentrations between species and locations. PMID:26606425
Sánchez, T; Ceballos, H; Dufour, D; Ortiz, D; Morante, N; Calle, F; Zum Felde, T; Domínguez, M; Davrieux, F
2014-05-15
Efforts are currently underway to improve carotenoids content in cassava roots through conventional breeding as a strategy to reduce vitamin A deficiency. However, only few samples can be quantified each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. A database with >3000 samples was used to evaluate the potential of NIRS and chromameter devices to predict root quality traits. Maximum TTC and TBC were up to 25.5 and 16.6 μg/g (fresh weight basis), respectively. NIRS predictions were highly satisfactory for dry matter content (DMC, R(2): 0.96), TCC (R(2): 0.92) and TBC (R(2): 0.93). NIRS could also distinguish roots with high or low cyanogenic potential (R(2): 0.86). Hunter color parameters could also be used for predictions, but with lower accuracy than NIRS. NIRS or chromameter improve selection protocols, allowing faster gains from breeding. Results also demonstrate that TBC and DMC can be improved simultaneously (required for the adoption of biofortified cassava). Copyright © 2013 Elsevier Ltd. All rights reserved.
Nater, S; Wanner, M; Wichert, B
2007-03-01
For horses no special tables related to nutrients for Swiss roughage exist. For this reason samples of hay, straw, silage/haylage and green forage were taken from 46 horse keeping farms in 22 cantons. The samples were judged by sense and following the nutrient--and macromineral--content as well as the content of fructans were analysed. Regarding its quality no sample was totally inadequate for horses. The mean contents of crude protein in Swiss hay for horses were clearly lower than in hay for ruminants and in German hay for horses. The mineral contents (calcium, magnesium, phosphorus) showed a wide range. On average they were also lower than the values provided in tables for ruminants. Except for one sample the silages/haylages showed a dry matter content of more than 40 %. No nutrient tables for silage or haylage, which are such high in dry matter contents, were found in the literature. The contents offructans in silage/haylage and green forage also showed a wide range with a maximum of 94 g/kg DM fructan.
NASA Astrophysics Data System (ADS)
Hernández, H. J.; Acuña, T.; Reyes, P.; Torres, M.; Figueroa, E.
2016-06-01
The Atacama Desert in northern Chile is known as the driest place on Earth, with an average rainfall of about 15 mm per year. Despite these conditions, it contains a rich variety of flora with hundreds of species characterised by their extraordinary ability to adapt to this extreme environment. These biotic components have a direct link to important ecosystem services, especially those related to carbon storage and sequestration. No quantitative assessment is currently available for these services and the role of the desert in this matter remains unclear. We propose an approach to estimate above-ground biomass (AGB) using Landsat-8 data, which we tested in the Taparacá region, located in the northern section of the desert. To calibrate and validate the models, we used field data from 86 plots and several spectral indexes (NDVI, EVI and SAVI) obtained from the provisional Landsat-8 Surface-reflectance products. We applied randomised branch sampling and allometry principles (non-destructive methods) to collect biomass samples for all plant biological types: wetlands, steppes, shrubs and trees. All samples were dried in an oven until they reached constant weight and the final values were used to extrapolate dry matter content (AGB) to each plot in terms of kg m-2. We used all available scenes from September 2014 to August 2015 to calculate the maximum, minimum and average value for each index in each pixel within this period. For modeling, we used the method based on classification and regression trees called random forest (RF), available in the statistical software R-Project. The explained variance obtained by the RF algorithm was around 80-85%, and it improved when a wetland vector layer was used as the predictive factor in the model to reach the range 85-90%. The mean error was 1.45 kg m-2 of dry matter. The best model was obtained using the maximum and mean values of SAVI and EVI indexes. We were able to estimate total biomass storage of around 8 million tons (~ 4 million tons of C) for the whole region.
Gallagher, Joe A; Turner, Lesley B; Adams, Jessica M M; Dyer, Philip W; Theodorou, Michael K
2017-01-01
Macroalgal water content is an on-going problem for the use of readily accessible seaweeds in sustainable biorefining, including fuel production. Silage is a reduced-water, compactable, easily stored, transportable material. Ensiling could establish a non-seasonal supply of preserved algal biomass, but requires high initial dry matter content to mitigate environmental pollution risks from effluent. This study investigated potential dewatering methods for kelp harvested throughout the year. Treatments included air-drying, osmotic media and acids. Significant interactions between treatment and harvest-time were observed for traits of interest. Fresh weight loss during treatment was composed of changes in water and dry matter content. Air-drying gave reliable increase in final dry matter content; in summer and autumn 30% dry matter content was reached after 24h. Dilute hydrochloric acid reduced stickiness and rendered material suitable for dewatering by screw-pressing; it may be possible to use the consequent pH reduction to promote efficient preservation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The characterization of haboobs and the deposition of dust in Tempe, AZ from 2005 to 2014
NASA Astrophysics Data System (ADS)
Eagar, Jershon Dale; Herckes, Pierre; Hartnett, Hilairy Ellen
2017-02-01
Dust storms known as 'haboobs' occur in Tempe, AZ during the North American monsoon season. This work presents a catalog of haboob occurrence over the time period 2005-2014. A classification method based on meteorological and air quality measurements is described. The major factors that distinguish haboobs events from other dust events and from background conditions are event minimum visibility, maximum wind or gust speed, and maximum PM10 (particulate matter with aerodynamic diameters of 10 μm or less) concentration. We identified from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated annual TSP (total suspended particulate) dry deposition ranged from a low of 259 kg ha-1 in 2010 to a high of 2950 kg ha-1 in 2011 with a mean of 950 kg ha-1 yr-1. The deposition of large particles (PM>10) is greater than the deposition of PM10. The TSP dry deposition during haboobs is estimated to contribute 74% of the total particulate mass deposited in Tempe.
Temperature Regulation of Growth and Endogenous Abscisic Acid-like Content of Tulipa gesneriana L
Aung, Louis H.; De Hertogh, August A.
1979-01-01
The ontogenetic changes of dry matter and abscisic acid (ABA)-like content in the component organs of Tulipa gesneriana L. `Paul Richter' and `Golden Melody' under two temperature storage regimes were determined. The organ dry matter and ABA showed marked differences during 13 and 5 C dry storage and during subsequent growth at 13 C. Scale dry matter of both cultivars declined sharply when grown at 13 C. The basalplate of the cultivars showed an initial gain in dry matter, but declined subsequently. The shoot of both cultivars stored at 13 C exhibited greater dry matter gain than at 5 C. In contrast, the bulblets of the cultivars at 5 C showed a much higher rate of dry matter accumulation than at 13 C. An inhibitory substance extracted from tulip bulb organs co-chromatographed with authentic ABA and had identical thin layer chromatographic RF values of ABA in five solvent systems. The total ABA content per bulb increased 3-fold in `Golden Melody' and 2- to 4-fold in `Paul Richter' during the course of the temperature treatments. ABA was low in the scales and shoot, but it was high in the basalplate, bulblets, and roots. It is suggested that the probable ABA biosynthetic sites of tulip bulb are the developing bulblets, basalplate, and roots. PMID:16660867
Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City
NASA Astrophysics Data System (ADS)
Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.
2015-08-01
The Mexico City metropolitan area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short-lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e., ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown a less positive response to mitigation strategies that have been in place for almost 3 decades. For the first time, extended measurements of equivalent black carbon (eBC), derived from light absorption measurements, have been made using a Photoacoustic Extinctiometer (PAX) over a 13 month period from March 2013 through March 2014. The daily trends in workdays (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in the MCMA: rainy, cold and dry and warm and dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P < 0.05) during the dry periods than in the rainy season. The changes from rainy to dry seasons for eBC, PM2.5, CO, O3 and NOx were 8.8 to 13.1 μg m-3 (40 %), 49 to 73 μg m-3 (40 %), 2.5 to 3.8 ppm (40 %), 73 to 100 ppb (30 %) and 144 to 252 ppb (53 %), respectively. The primary factors that lead to these large changes between the wet and dry seasons are the accelerated vertical mixing of boundary layer and free tropospheric air by the formation of clouds that dilutes the concentration of the SLCPs, the decreased actinic flux that reduces the production of ozone by photochemical reactions and the heavy, almost daily rain that removes particulate matter. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel, which produces a large fraction of the BC. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum values from workdays to Sundays. This lack of change is a result of the balancing effects of lower precursor gases, i.e., VOCs, offset by lower concentrations of NOx, that is an O3 inhibitor. A comparison of the average maximum value of eBC measured during the 1 year period of the current study, with maximum values measured in shorter field campaigns in 2000 and 2006, shows no significant change in the eBC emissions over a 14 year period. This suggests that new methods may need to be developed that can decrease potentially toxic levels of this particulate pollutant.
Al-Dulaimi, Rana Ibrahim; Ismail, Norli; Ibrahim, Mahamad H
2014-01-01
Water is one of the most important precious resources found on the earth, and are most often affected by anthropogenic activities and by industry. Pollution caused by human beings and industries is a serious concern throughout the world. Population growth, massive urbanization, rapid rate of industrialization and modern techniques in agriculture have accelerated water pollution and led to the gradual deterioration of its quality. A large quantity of waste water disposed of at sea or on land has caused environmental problems which have led to environmental pollution, economic losses and chemical risks caused by the wastewater, and its impact on agriculture. However, waste water which contain nutrients and organic matter has possible advantages for agricultural purposes. Therefore, the presented study was undertaken to assess the impact of Dairy Effluent (treated and untreated waste water) on seed germination, seedling growth, dry matter production and the biochemical parameters of lady's fingers (Abelmoschus esculentus L.). A field experiment in a green house was conducted to use raw and treated dairy wastewater for watering lady's fingers (Abelmoschus esculentus L.). The plants were watered using (WW) raw dairy wastewater, (T1) chemicals treatment, (T2) physical treatment, (T3) dilution method treatment and tap water (TW) in pot experiments. Ten plants of each treatment /3 replicate were randomly selected and labelled for the collection of data. The data was collected sequentially, starting with chlorophyll content pre-harvest, vegetative qualities (shoot, root and seedling length) and dry matter quality (shoot and root dry matter) pos-tharvest. The effect was seen on the germination seed and growth of the plant. The results showed inhibitory effect from dairy effluent (WW) on seed germination and plant growth. Treatment with chemicals showed statistically significant differences with other treatments. Chemical treatment (TC2) at 20 mg/L Al2(SO4)3 and pH 6.5 improved all growth characteristics, compared with WW, and TW reached 85%, 70.8 cm, 28.6 cm, 99.4 cm, 65.36%, 15.86% and 3.543 Mg\\g FW for seed germination, shoot length, root length, seedling length, shoot dry matter, root dry matter and chlorophyll, respectively. Also, 25% concentration and 6.5 pH from the dilution method treatment improved all the qualities, but at a lower level. A maximum favourable effect was also observed in the (T2) physical treatment, and ranged from average to moderate in terms of impact. Thus, dairy effluent, after chemical treatment and proper dilution, can be used as a potential source of water for seed germination and plant growth in agricultural practices.
Marwein, M A; Choudhury, B U; Chakraborty, D; Kumar, M; Das, A; Rajkhowa, D J
2017-05-01
Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ET c ) of maize crop under controlled condition (pot experiment) of water deficit (W 25 -25 % and W 50 -50 % of field capacity soil moistures) and well watered (W 100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ET c losses and water use efficiency was also studied. The measured seasonal ET c loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant (p < 0.05) reduction (by 33-50 %) of seasonal ET c losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha -1 significantly (p < 0.05) increased ET c losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W 25 ) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W 100 ) while seasonal ET c loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ET c losses while weekly crop ET c loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ET c losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg -1 water and 4.21 to 8.56 g dry matter kg -1 , respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ET c loss, growth duration, grain formation, and water use efficiency of maize.
Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin
2014-07-01
A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high nitrogen utilization efficiency had a strong ability of dry matter production and nitrogen accumulation. It could synergistically improve yield and nitrogen utilization efficiency by enhancing the ability of nitrogen uptake and dry matter formation before jointing stage in barley.
NASA Astrophysics Data System (ADS)
Wojcieszak, D.; Przybył, J.; Lewicki, A.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Witaszek, K.
2015-07-01
The aim of this research was investigate the possibility of using methods of computer image analysis and artificial neural networks for to assess the amount of dry matter in the tested compost samples. The research lead to the conclusion that the neural image analysis may be a useful tool in determining the quantity of dry matter in the compost. Generated neural model may be the beginning of research into the use of neural image analysis assess the content of dry matter and other constituents of compost. The presented model RBF 19:19-2-1:1 characterized by test error 0.092189 may be more efficient.
40 CFR 60.732 - Standards for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...
40 CFR 60.732 - Standards for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...
40 CFR 60.732 - Standards for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...
40 CFR 60.732 - Standards for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...
Measuring dry plant residues in grasslands: A case study using AVIRIS
NASA Technical Reports Server (NTRS)
Fitzgerald, Michael; Ustin, Susan L.
1992-01-01
Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.
Long-term residual dry matter mapping for monitoring California hardwood rangelands
Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen
2002-01-01
Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous seasonâs use and can be used to describe the health...
Zheng, Xue Jiao; Yu, Zhen Wen; Zhang, Yong Li; Shi, Yu
2018-02-01
With the large-spike wheat cultivar Shannong 23 as test material,a field experiment was conducted by increasing the relative soil moisture content to 70% and 65% at jointing and anthesis stages. Four nitrogen levels,0 (N 0 ), 180 (N 1 ), 240 (N 2 ) and 300 kg·hm -2 (N 3 ), were designed to examine the effects of nitrogen application rates on the interception of photosynthetic active radiation (PAR) and dry matter distribution of wheat at different canopy layers. The results showed that the total stem number of wheat population at anthesis stage, the leaf area index at 10, 20 and 30 days after anthesis, PAR capture ratio at upper and middle layers and total PAR capture ratio in wheat canopy on day 20 after anthesis of treatment N 2 were significantly higher than those in the treatments of both N 0 and N 1 . Those indexes showed no significant increase when the application rate increased to 300 kg·hm -2 (N 3 ). The vegetative organ dry matter accumulation of all layers at maturity stage of treatment N 2 were significantly higher than N 0 and N 1 . Compared with treatment N 0 and N 1 , N 2 increased the grain and total dry matter accumulation by 36.7% and 35.4%, 9.5% and 10.2%, respectively, but had no significant difference with treatment N 3 . The vegetative organ dry matter accumulation at all layers, grain and total dry matter accumulation were significantly and positively correlated with PAR capture ratio at upper and middle layers, and had no significant correlation with that at lower layer. The vegetative organ dry matter accumulation at all layers was significantly and positively correlated with grain dry matter accumulation. The application rate at 240 kg·hm -2 (N 2 ) would be the optimum treatment under the present experimental condition.
Orescanin, Visnja; Mikulic, Nenad; Mikelic, Ivanka Lovrencic; Posedi, Mario; Kampic, Stefica; Medunic, Gordana
2009-10-01
Eighteen samples of electroplating sludge were taken from three vertical profiles of waste storage pond of the zinc plating facility. Dry matter and organic matter content, pH value, bulk concentrations and leachate composition were determined. A sludge sample with the highest zinc value in the leachate was treated with calcium oxide (10% to 70%) and the obtained solidificate was repeatedly tested. There were found significant variations of all measured parameters among the profiles of untreated waste. Dry matter content varied from 125 to 455 mgg(-1), organic matter varied from 94.3 to 293.9 mgg(-1), and pH value varied from 3.42 to 5.90 (mean 4.34). Iron content ranged from 38.4 to 191.4 mgg(-1) (mean 136 mgg(-1); RSD 0.25), while zinc ranged from 10.9 to 58.2 mgg(-1) (mean 33.4 mgg(-1); RSD 0.38). According to its DIN38414-S4 leachate composition, this material was not suitable for landfilling of inert waste since zinc and nickel mean values were 10 and 1.5 times higher, respectively, and maximum values 27 and 2.5 times higher, respectively, compared to the upper permissible limit. Maximum values of Cr(VI), Fe, Ni, Cu, and Zn in the DIN38414-S4 leachate were 0.183 mgL(-1), 34.085 mgL(-1), 1.052 mgL(-1), 0.829 mgL(-1) and 107.475 mgL(-1)L, respectively. Following the solidification/stabilization procedure with CaO (sample/CaO = 90/10), concentrations of Cr(VI), Fe, Cu and Zn were reduced 92, 44, 66 and 57 times, respectively, compared to the untreated sample. The addition of 50% of CaO into the sludge reduced zinc and nickel concentrations 79 and 45 times, respectively, in the DIN38414-S4 leachate of the solidified waste compared to the original sludge, thereby converting an hazardous waste into the inert material suitable for landfilling or reuse in the construction processes.
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
40 CFR 60.152 - Standard for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...
Abbaspoor, Majid; Streibig, Jens C
2007-06-01
Desmedipham, phenmedipham and a 50% mixture of the two decreased the maximum quantum efficiency of photosystem II (F(v)/F(m)) and the relative changes at the J step (F(vj)) immediately after spraying in both sugar beet and black nightshade grown in the greenhouse. Sugar beet recovered more rapidly from phenmedipham and the mixture than from desmedipham. Desmedipham and the mixture irreversibly affected F(v)/F(m) and F(vj) in black nightshade at much lower doses than in sugar beet. Black nightshade recovered from phenmedipham injury at the highest dose in the first experiment (120 g AI ha(-1)) but not in the second experiment (500 g AI ha(-1)). The dry matter dose-response relationships and the energy pipeline presentation confirmed the same trend. There was a relatively good correlation between F(vj) taken 1 day after spraying and dry matter taken 2 or 3 weeks after spraying. The differential speed of herbicide metabolism between weed and crop plays an important role in herbicide selectivity and can be studied by using appropriate chlorophyll a fluorescence parameters. Copyright 2007 Society of Chemical Industry.
Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong
2014-08-30
Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai
2018-01-01
In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other plant density treatments. The combination of black film mulching and density of 82500 plants·hm -2 significantly improved the water use efficiency of maize, which increased by 4.6%-40.9% compared with other treatments. In addition, it increased yield by 3.0%-39.7% compared with other treatments. At heading stage, the correlation between the dry matter amount of stalk and leaf and the yield and yield components was the biggest. Decreasing 1 kg·hm -2 dry matter amount of stalk and leaf would decrease the population yield by almost 0.79 kg·hm -2 . Decreasing 10% dry matter amount of stalk and leaf would decrease the yield by almost 10%. Based on increasing plant density, black film mulching was beneficial for increasing the dry matter accumulation and improving grain yield and water use efficiency of spring maize.
Teodoro, P E; Laviola, B G; Martins, L D; Amaral, J F T; Rodrigues, W N
2016-08-19
The aim of this study was to screen physic nut (Jatropha curcas) genotypes that differ in their phosphorous (P) use, using mixed models. The experiment was conducted in a greenhouse located in the experimental area of the Centro de Ciências Agrárias of the Universidade Federal do Espírito Santo, in Alegre, ES, Brazil. The experiment was arranged in a randomized block design, using a 10 x 3-factorial scheme, including ten physic nut genotypes and two environments that differed in their levels of soil P availability (10 and 60 mg/dm 3 ), each with four replications. After 100 days of cultivation, we evaluated the plant height, stem diameter, root volume, root dry matter, aerial part dry matter, total dry matter, as well as the efficiency of absorption, and use. The parameters were estimated for combined selection while considering the studied parameters: stability and adaptability for both environments were obtained using the harmonic mean of the relative performance of the predicted genotypic values. High genotype by environment interactions were observed for most physic nut traits, indicating considerable influences of P availability on the phenotypic value. The genotype Paraíso simultaneously presented high adaptability and stability for aerial part dry matter, total dry matter, and P translocation efficiency. The genotype CNPAE-C2 showed a positive response to P fertilization by increasing both the total and aerial part dry matter.
Kiaitsi, Elsa; Magan, Naresh
2018-01-01
Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90) and temperature (10–25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins. PMID:29462982
Garcia-Cela, Esther; Kiaitsi, Elsa; Sulyok, Michael; Medina, Angel; Magan, Naresh
2018-02-17
Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (a w ; 0.95-0.90) and temperature (10-25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO₂ production. There was an increase in temporal CO₂ production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 a w treatments + F. graminearum inoculation. This was reflected in the total accumulated CO₂ in the treatments. The maximum DMLs were in the 0.95 a w /20-25 °C treatments and at 10 °C/0.95 a w . The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95-0.93 a w and 20 °C/0.95 a w . ZEN contamination levels plotted against DMLs for all the treatments showed that at ca <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.
Martins, Karla Vilaça; Dourado-Neto, Durval; Reichardt, Klaus; de Jong van Lier, Quirijn; Favarin, José Laércio; Sartori, Felipe Fadel; Felisberto, Guilherme; Mello, Simone da Costa
2017-01-01
The improvement of agronomic practices and the use of high technology in field crops contributes for significant increases in maize productivity, and may have altered the dynamics of nutrient uptake and partition by the plant. Official recommendations for fertilizer applications to the maize crop in Brazil and in many countries are based on critical soil nutrient contents and are relatively outdated. Since the factors that interact in an agricultural production system are dynamic, mathematical modeling of the growth process turns out to be an appropriate tool for these studies. Agricultural modeling can expand our knowledge about the interactions prevailing in the soil-plant-atmosphere system. The objective of this study is to propose a methodology for characterizing the micronutrient composition of different organs and their extraction, and export during maize crop development, based on modeling nutrient uptake, crop potential evapotranspiration and micronutrient partitioning in the plant, considering the production environment. This preliminary characterization study (experimental growth analysis) considers the temporal variation of the micronutrient uptake rate in the aboveground organs, which defines crop needs and the critical nutrient content of the soil solution. The methodology allowed verifying that, initially, the highest fraction of dry matter, among aboveground organs, was assigned to the leaves. After the R1 growth stage, the largest part of dry matter was partitioned to the stalk, which in this growth stage is the main storage organ of the maize plant. During the reproductive phase, the highest fraction of dry matter was conferred to the reproductive organs, due to the high demand for carbohydrates for grain filling. The micronutrient (B, Cu, Fe, Mn, and Zn) content follows a power model, with higher values for the initial growth stages of development and leveling off to minimum values at the R6 growth stage. The proposed model allows to verify that fertilizer recommendations should be related to the temporal variability of micronutrient absorption rates, in contrast to the classic recommendation based on the critical soil micronutrient content. The maximum micronutrient absorption rates occur between the reproductive R4 and R5 growth stages. These evaluations allowed to predict the maximum micronutrient requirements, considered equal to respective stalk sap concentrations. PMID:28919900
Role of organic matter on aggregate stability and related mechanisms through organic amendments
NASA Astrophysics Data System (ADS)
Zaher, Hafida
2010-05-01
To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water, two mechanisms affecting structural stability. Overall, the results suggest that reduction in maximum internal pressure induced by organic amendments most likely resulted from increases in pore surface roughness and pore occlusion rather than by increase in surface wetting angles. This study also supports the view of a non specific action of the lipids, neutral and uronic sugars on aggregate stability to rapid wetting. Key words: soil aggregate stability, polysaccharides, lipids, mechanisms, organic matter
Modelling milk production from feed intake in dairy cattle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, D.L.
1985-05-01
Predictive models were developed for both Holstein and Jersey cows. Since Holsteins comprised eighty-five percent of the data, the predictive models developed for Holsteins were used for the development of a user-friendly computer model. Predictive models included: milk production (squared multiple correlation .73), natural log (ln) of milk production (.73), four percent fat-corrected milk (.67), ln four percent fat-corrected milk (.68), fat-free milk (.73), ln fat-free milk (.73), dry matter intake (.61), ln dry matter intake (.60), milk fat (.52), and ln milk fat (.56). The predictive models for ln milk production, ln fat-free milk and ln dry matter intakemore » were incorporated into a computer model. The model was written in standard Fortran for use on mainframe or micro-computers. Daily milk production, fat-free milk production, and dry matter intake were predicted on a daily basis with the previous day's dry matter intake serving as an independent variable in the prediction of the daily milk and fat-free milk production. 21 refs.« less
Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke
USDA-ARS?s Scientific Manuscript database
The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...
Sun, L Z; Auerswald, K; Wenzel, R; Schnyder, H
2014-01-01
Cattle obtain water primarily from the moisture in their feed and from drinking water. On pasture, the moisture content of the diet is influenced by plant tissue water (internal water) and surface moisture (external water), which may include dew, guttation, and intercepted rain, that influence the drinking water requirement. This study investigated the relationship between daily drinking water intake (DWI, L/d) of steers on pasture (19 steers with mean initial BW of approximately 400 kg) and soil and weather factors that are known to affect plant water status (dry matter content) and surface moisture formation and persistence. Daily records of weather conditions and DWI were obtained during 2 grazing seasons with contrasting spring, summer, and autumn rainfall patterns. Plant available water in the soil (PAW, mm) was modeled from actual and potential evapotranspiration and the water-holding capacity of the soil. The DWI averaged over the herd varied among days from 0 to 29 L/d (grazing season mean 9.8 L/d). The DWI on both dry (<0.2 mm rainfall on the corresponding and previous days) and wet (>2 mm) days increased with increasing temperature (mean, maximum, and minimum), sunshine hours, and global radiation and decreasing relative humidity, and the slopes and coefficients of determination were generally greater for wet days. Wind reduced DWI on wet days but had no effect on dry days. The DWI was reduced by up to 4.4 L/d on wet days compared to dry days, but DWI did not correlate with rainfall amount. Increasing PAW decreased DWI by up to >10 L/d on both dry and wet days. These results are all consistent with environmental effects on the water status (dry matter content) of pasture vegetation and canopy surface moisture, the associated effects on grazing-related water intake, and the corresponding balancing changes of DWI. Using the observed relationships with environmental factors, we derived a new model predicting DWI for any soil moisture condition, for both wet and dry days, which included mean ambient temperature and relative humidity and explained virtually all variation of DWI that was not caused by the random scatter among individual animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
Reseach continued on tropical grasses from Saccharum and related genera as sources of intensively-produced, solar-dried biomass. Categories of candidate grasses include short-, intermediate-, and long-rotation species. These categories are based on the time interval required for maximum dry matter production, and on future management requirements of energy crops for intensive co-production with food crop commodities. Year 1 studies at the greenhouse and field-plot levels were continued and broadened during Year 2. This included candidate screening, importation and quarantine of new clones, breeding, controlled nitrogen and water regimes, chemical growth control, tissue expansion and maturation control, seeding rates, harvest frequency, andmore » variable row spacing. Second-year studies were extended to the project's field-scale and mechanized-harvest phases. These include initial economic anayses for the short-rotation phases. These include initial economic analyses for the short-rotation category of candidate species.« less
X-ray computed tomography to study rice (Oryza sativa L.) panicle development
Jhala, Vibhuti M.; Thaker, Vrinda S.
2015-01-01
Computational tomography is an important technique for developing digital agricultural models that may help farmers and breeders for increasing crop quality and yield. In the present study an attempt has been made to understand rice seed development within the panicle at different developmental stages using this technique. During the first phase of cell division the Hounsfield Unit (HU) value remained low, increased in the dry matter accumulation phase, and finally reached a maximum at the maturation stage. HU value and seed dry weight showed a linear relationship in the varieties studied. This relationship was confirmed subsequently using seven other varieties. This is therefore an easy, simple, and non-invasive technique which may help breeders to select the best varieties. In addition, it may also help farmers to optimize post-anthesis agronomic practices as well as deciding the crop harvest time for higher grain yield. PMID:26265763
Bellosa, Mary L; Nydam, Daryl V; Liotta, Janice L; Zambriski, Jennifer A; Linden, Thomas C; Bowman, Dwight D
2011-04-01
Evaluation of dairy calf feces is often used in research and for clinical decision making to assess severity of diarrhea. However, this has not been validated for agreement between dry matter content and observed fecal consistency. Therefore, a comparison of observed fecal consistency score to fecal percent dry matter and Cryptosporidium parvum oocyst shedding was performed to assess the accuracy of observational scoring as a measure of diarrhea and its association with number of oocysts shed. Fecal samples from 20 dairy calves experimentally infected with C. parvum oocysts were collected daily post-infection and scored on a scale from 1 to 4, with 1 being normal feces to 4 being severe diarrhea. An aliquot of each sample was analyzed for percent dry matter and Cryptosporidium oocyst counts by using immunofluorescent microscopy. Fecal consistency scores of 1, 2, 3, and 4 had median percent dry matter of 20.9, 16.3, 9.6, and 5.8, respectively. Using percent dry matter assessed by fecal consistency scoring were significantly different from each other (P < 0.001). A higher fecal consistency score also was associated with a greater number of Cryptosporidium oocysts shed (P < 0 .0001). Scores of 1, 2, 3, and 4 had median oocyst counts of 0, 0, 1.3 × 10⁶, and 2.8 × 10⁶, respectively. These results suggest that observational scoring is a useful proxy to assess diarrhea in dairy calves.
Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N; Owusu-Mensah, Eric; Carey, Edward E; Mwanga, Robert O M; Yencho, G Craig
2017-03-01
Molecular markers are needed for enhancing the development of elite sweetpotato ( Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between 'New Kawogo' × 'Beauregard'. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H 2 ) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = -0.59, P < 0.001) and starch (r = -0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future.
Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N.; Owusu-Mensah, Eric; Carey, Edward E.; Mwanga, Robert O.M.; Yencho, G. Craig
2017-01-01
Molecular markers are needed for enhancing the development of elite sweetpotato (Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between ‘New Kawogo’ × ‘Beauregard’. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H2) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = −0.59, P < 0.001) and starch (r = −0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future. PMID:28588391
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr
2013-12-01
Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.
Agregán, Rubén; Munekata, Paulo E. S.; Carballo, Javier; Şahin, Selin; Lacomba, Ramón
2017-01-01
Proximate composition (moisture, protein, lipid and ash content) and nutritional value (fatty acid, amino acid and mineral profile) of three macroalgae (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcate) were studied. Chemical composition was significantly (p < 0.001) different among the three seaweeds. In this regard, the B. bifurcata presented the highest fat content (6.54% of dry matter); whereas, F. vesiculosus showed the highest protein level (12.99% dry matter). Regarding fatty acid content, the polyunsaturated fatty acids (PUFAs) were the most abundant followed by saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). On the other hand, the three seaweeds are a rich source of K (from 3781.35 to 9316.28 mg/100 g), Mn (from 8.28 to 1.96 mg/100 g), Na (from 1836.82 to 4575.71 mg/100 g) and Ca (from 984.73 to 1160.27 mg/100 g). Finally, the most abundant amino acid was glutamic acid (1874.47–1504.53 mg/100 dry matter), followed by aspartic acid (1677.01–800.84 mg/100 g dry matter) and alanine (985.40–655.73 mg/100 g dry matter). PMID:29140261
NASA Technical Reports Server (NTRS)
Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1994-01-01
While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.
Lee, Yeonjung; Hur, Jin; Shin, Kyung-Hoon
2014-07-15
The characteristics and sources of organic matter in water of the Lake Shihwa, which receives inputs from rural, urban, and industrial areas, were evaluated by examining the biodegradable organic carbon concentration, fluorescence spectra, and carbon and nitrogen isotope ratios, especially during rainy season and dry season. The organic matter transported from rural areas was of refractory nature, while that of industrial origin decomposed rapidly. As compared to the dry season, the organic matter in the rainy season was characterized by a reduced labile fraction. During the dry season, the autochthonous organic matter dominated in the lake, however, the contributions of allochthonous organic sources by industrial and rural areas significantly increased at rainy season. This investigation revealed that the transport of organic matter of anthropogenic origin to the Lake Shihwa was mainly influenced by heavy rainfall. Moreover, each anthropogenic source could differently influence the occurrence of organic matter in water of the Lake Shihwa. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioaccumulation of elements in three selected mushroom species from southwest Poland.
Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Goliński, Piotr; Gąsecka, Monika; Sobieralski, Krzysztof; Dawidowicz, Luiza; Szymańczyk, Mateusz
2015-01-01
The contents of 16 minerals and trace elements (Ag, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Pt, Ti and Zn) were analyzed in edible mushrooms (Leccinum scabrum, Boletus edulis and Boletus badius) collected in southwest Poland. Content of Co, Ni and Pb was similar in all tested mushroom species, while content of Ag, Ca, Cd, Hg and Ti was significantly higher in B. edulis than in L. scabrum and B. badius. The largest differences between these species were observed for Fe and Zn accumulation. The highest contents of these elements were noted in B. badius bodies (202 ± 88 and 137 ± 24 mg kg(-1) dry matter, respectively), lower in B. edulis (131 ± 99 and 89 ± 26 mg kg(-1) dry matter, respectively) and lowest in L. scabrum. Differences in As, Cu and Cr content between tested species were observed mainly between L. scabrum and B. badius fruiting bodies. Content of Pt was below 0.01 mg kg(-1) dry matter). In the case of Mg and Mn accumulation, differences between B. edulis and B. badius were not observed (478 and 440 mg kg(-1) dry matter for Mg and 23 and 19 mg kg(-1) dry matter for Mn), and the results showed significantly higher content of these elements than in L. scabrum bodies (312 and 10 mg kg(-1) dry matter, respectively). It is worth underlining that clear accumulation shown by the bioconcentration factor (BCF>1) observed for all three mushroom species was noted in the case of elements Ag, Cd, Co, Cu, Hg, Ni and Zn only.
Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter
2017-11-01
Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.
Kucey, R M
1987-12-01
Greenhouse and field experiments were conducted to test the effect of a P-solubilizing isolate of Penicillium bilaji on the availability of Idaho rock phosphate (RP) in a calcareous soil. Under controlled greenhouse conditions, inoculation of soils with P. bilaji along with RP at 45 mug of P per g of soil resulted in plant dry matter production and P uptake by wheat (Triticum aestivum) and beans (Phaseolus vulgaris) that were not significantly different from the increases in dry matter production and P uptake caused by the addition of 15 mug of P per g of soil as triple superphosphate. Addition of RP alone had no effect on plant growth. Addition of vesicular-arbuscular mycorrhizal fungi was necessary for maximum effect in the sterilized soil in the greenhouse experiment. Under field conditions, a treatment consisting of RP (20 kg of P per ha of soil) plus P. bilaji plus straw resulted in wheat yields and P uptake equivalent to increases due to the addition of monoammonium phosphate added at an equivalent rate of P. RP added alone had no effect on wheat growth or P uptake. The results indicate that a biological system of RP solubilization can be used to increase the availability of RP added to calcareous soils.
de Figueiredo Monteiro, Carolina Corrêa; Silva de Melo, Airon Aparecido; Ferreira, Marcelo Andrade; de Souza Campos, José Mauricio; Rodrigues Souza, Julyana Sena; Dos Santos Silva, Evannielly Thuanny; de Paula Xavier de Andrade, Rafael; da Silva, Emmanuelle Cordeiro
2014-10-01
The aim of this study was to evaluate the replacement effect of wheat bran with spineless cactus and urea in heifers. Twenty-four heifers with an average initial weight of 185 ± 13 kg were used in this experiment. Four levels of spineless cactus corrected with urea and ammonium sulfate (9:1) were studied: 0, 33, 66, and 100 % replacement with wheat bran. Samples of feed, orts, and feces were analyzed to estimate the intake and digestibility of dry matter (DM) and nutrients. Indigestible neutral detergent fiber was used as an internal marker. The experiment was conducted in a completely randomized design. Dry matter, neutral detergent fiber, and total digestible nutrient intake demonstrated a quadratic effect (P < 0.05). Rumen degradable protein intake increased linearly (P < 0.05). The maximum DM digestibility was estimated to be 0.67 with a 43 % replacement. Crude protein and NDF digestibility increased linearly (P < 0.05). The total body weight gain and average daily gain decreased linearly with the replacement. Thus, it is practical to replace wheat bran with spineless cactus containing urea and ammonium sulfate up to 66 % in sugar cane-based diets.
40 CFR 60.62 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton). (2... subpart shall cause to be discharged into the atmosphere from any clinker cooler any gases which: (1) Contain particulate matter in excess of 0.050 kg per metric ton of feed (dry basis) to the kiln (0.10 lb...
Markesteijn, Lars; Poorter, Lourens; Bongers, Frans; Paz, Horacio; Sack, Lawren
2011-07-01
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet
2014-01-01
Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...
40 CFR 60.732 - Standards for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard... § 60.8 is completed, but not later than 180 days after the initial startup, whichever date comes first...
Skrbic, Biljana; Cvejanov, Jelena; Durisic-Mladenovic, Natasa
2007-01-01
The contents of 16 organochlorine pesticides (OCPs) and six so-called indicator polychlorinated biphenyls (PCBs) were determined in the surface zone (0-5 cm) of soil and sediment samples, taken from different locations in the city of Novi Sad, capitol of Vojvodina Province (North of the Serbia) covering residential and commercial area, recreational and arable zone. The total organochlorine pesticides concentration in soil varied from 2.63 to 31.78 ng g(-1) dry weight, while the level in sediment was 10.35 ng g(-1) dry weight. Maximum content of identified individual organochlorine pesticide in soil samples was 10.40 ng g(-1) dry weight for p, p-DDE in the market garden and 6.31 ng g(-1) dry weight for p, p'-DDT in sediment of the Danube River, although their application is restricted in Serbia. Some of investigated PCBs were identified only in the soil samples from a park-school backyard in the city downtown (0.32 ng g(-1) dry weight) and market garden (0.22 ng g(-1) dry weight), and also in sediment sample from left bank of the Danube River (0.41 ng g(-1) dry weight). Data of the OCPs and PCBs present in this study were compared with the ones found for soils and river sediments throughout the world, and with limit values set by soil and sediment quality guidelines. Also, correlation between the levels of certain pesticides and soil characteristics (organic matter, pH and clay content) was investigated.
Uchida, K; Ballard, C S; Mandebvu, P; Sniffen, C J; Carter, M P
2001-02-01
Sixty-six lactating multiparous Holstein cows (113+/-46 DIM) housed in a free-stall facility were blocked and assigned randomly to one of three treatments to evaluate the effects on animal performance from feeding cornmeal, cornmeal mixed with steam-rolled corn in a ratio of 1:1 on dry matter basis, or steam-rolled corn. The only difference in the dietary ingredients was the type of corn, which was included in the total mixed ration (TMR) at 17% of dry matter. The densities (g/L) of cornmeal and steam-rolled corn were, respectively, 635 and 553. Diets were fed as TMR and were formulated according to the Cornell Penn Miner Dairy nutrition model. The TMR consisted of 40% forage and 60% concentrate on dry matter basis. The first 2 wk of the 8-wk study was a preliminary period, and data collected during this period were used as covariate in statistical analysis of production data collected during wk 6 to 8. Treatment diets were fed from wk 3 to 8. Total tract digestibilities of dry matter, organic matter, crude protein, starch, and neutral detergent fiber were not significantly different among treatments. Cows fed TMR containing steam-rolled corn had higher body condition and ruminated longer. However, feeding cornmeal and steam-rolled corn together did not improve dry matter and nutrient digestion, milk yield, 3.5% fat-corrected milk yield, and percentage and yield of fat, crude protein, true protein, and lactose in milk, and milk urea nitrogen. In conclusion, feeding steam-rolled corn improved animal body condition and rumination. Partial or complete substitution of cornmeal by steam-rolled corn in diets for lactating dairy cows did not improve dry matter and nutrient digestion, milk yield, and milk composition.
Zhang, Haiyan; Vasanthan, Thava; Wettasinghe, Mahinda
2004-12-29
The effect of germination and growth under illuminated and dark environments on canola seed reserves was investigated. Depletion of proteins and lipids in whole seedlings and their top (leaf/cotyledons) and bottom parts (stem/roots/seed coat) was independent of light, whereas the protein solubility increased at a faster rate under an illuminated environment than in the dark. A rapid increase in free fatty acids but a net decrease of dry matter content in seedlings grown in the dark environment was observed. The dry matter content of seedlings grown in the illuminated environment increased due to photosynthetic biomass accumulation.
Remote sensing of total dry-matter accumulation in winter wheat
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III (Principal Investigator)
1980-01-01
The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter.
[Drying characteristics and apparent change of sludge granules during drying].
Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun
2011-08-01
Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.
Chen, Kequan; Zhang, Han; Miao, Yelian; Wei, Ping; Chen, Jieyu
2011-04-07
Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation. Copyright © 2011 Elsevier Inc. All rights reserved.
The ensiling capability of a mixture of sodium benzoate, potassium sorbate, and sodium nitrite.
Knicky, M; Spörndly, R
2011-02-01
The objective of this study was to evaluate the effects of an additive comprising sodium benzoate, potassium sorbate, and sodium nitrite on the quality of silages fermented from various forage crops. Thirteen crops in 3 groups (differing in dry matter concentration and degree of ensilability) were treated with the additive mixture and compared with untreated control silages. The main focus was on yeast and Clostridia spp. activity in the silages, although other silage quality criteria also were measured. Treated silages from difficult-to-ensile crops at low dry matter were found to have significantly lower silage pH, fewer clostridial spores, and reduced concentrations of ammonia N, butyric acid, and ethanol. In addition, dry matter losses were reduced in treated silages compared with those receiving no additive. Similar results were observed in silages from easy or intermediate ensilable crops when the dry matter concentration was <300 g/kg. When the dry matter concentration was >350 g/kg, the treated silages contained less ammonia N, ethanol, and yeast for 3 out of 4 forages. All treated silages from all crops were aerobically stable during the examination time. The application of the tested additive mixture reduced the growth of undesirable microflora and thereby reduced silage losses and prolonged the aerobic stability of the silages. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Investigation of organic nitrogen and carbon removal in the aerobic digestion of various sludges.
Genç, Nevim; Yonsel, Sems; Dağaşan, Levent; Onar, A N
2002-11-01
Nitrification and carbon removal are investigated in aerobic batch digestion of various sludges. The experiments are carried out with activated sludge (Test 1) and with a mixture of activated and primary settling sludge (Test 2). The nitrification rate was monitored, measuring the NO2- concentration. At the 3rd day of the digestion 40.7 mgNO2-N/l and 3.89 mgNO2-N/l were found in Tests 1 and 2 respectively. In a digestion process, the degradation of biomass indicates the beginning of the endogenous phase. Our measure for biomass content of the sludge was protein analysis. In Test 1, the first day values of 50.93 mgTOC/ g(dry) matter/day and 138.53 mg(protein)-C/g(dry) matter/day for specific TOC and protein-C removal rates showed, that the digestion process began in the endogenous phase. For Test 2, since the endogenous phase began after removal of raw organic matter in primary settling sludge, specific TOC and protein-C removal rates were observed to be 60.12 mgTOC/g(dry) matter/day and 26.72 mg(protein-C/g(dry)matter/day, respectively.
7 CFR 205.237 - Livestock feed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... than 120 days per calendar year. Due to weather, season, and/or climate, the grazing season may or may... animal. (3) Document changes that are made to all rations throughout the year in response to seasonal grazing changes. (4) Provide the method for calculating dry matter demand and dry matter intake. [65 FR...
7 CFR 205.237 - Livestock feed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... than 120 days per calendar year. Due to weather, season, and/or climate, the grazing season may or may... animal. (3) Document changes that are made to all rations throughout the year in response to seasonal grazing changes. (4) Provide the method for calculating dry matter demand and dry matter intake. [65 FR...
7 CFR 205.237 - Livestock feed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... than 120 days per calendar year. Due to weather, season, and/or climate, the grazing season may or may... animal. (3) Document changes that are made to all rations throughout the year in response to seasonal grazing changes. (4) Provide the method for calculating dry matter demand and dry matter intake. [65 FR...
7 CFR 205.237 - Livestock feed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... than 120 days per calendar year. Due to weather, season, and/or climate, the grazing season may or may... animal. (3) Document changes that are made to all rations throughout the year in response to seasonal grazing changes. (4) Provide the method for calculating dry matter demand and dry matter intake. [65 FR...
Pepper injury and partitioning response to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, J.P.; Oshima, R.J.; Lippert, L.F.
Pepper plants (Capsicum annuum L.) grown in containers and exposed intermittently to 0.12 or 0.20 ppm ozone (O/sub 3/) while they grew to final yield, increased in plant height and total number of leaves in spite of the formation of chlorotic leaves. On an absolute basis, root, stem and leaf dry weights were not significantly affected by O/sub 3/, but fruit dry matter fell by as much as 54%. However, on a relative basis, dry matter partitioning to fruit was not constant and a significant alteration of the expected dry matter distribution was observed in the O/sub 3/ treatment. O/submore » 3/ also significantly accentuated the inverse relationship between crown fruit and leaf production. A conceptual model for whole plant response to O/sub 3/ was developed.« less
In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts.
Sangaletti-Gerhard, Naiane; Cea, Mara; Risco, Vicky; Navia, Rodrigo
2015-03-01
This study proposes to select the most appropriate sewage sludge (greasy, primary and secondary) for in situ transesterification and to compare the technical, economic and energetic performance of an enzymatic catalyst (Novozym®435) with sulfuric acid. Greasy sludge was selected as feedstock for biodiesel production due to its high lipid content (44.4%) and low unsaponifiable matter. Maximum methyl esters yield (61%) was reached when processing the wet sludge using sulfuric acid as catalyst and n-hexane, followed by dried-greasy sludge catalyzed by Novozym®435 (57% methyl esters). Considering the economic point of view, the process using acid catalyst was more favorable compared to Novozym®435 catalyst due to the high cost of lipase. In general, greasy sludge (wet or dried) showed high potential to produce biodiesel. However, further technical adjustments are needed to make biodiesel production by in situ transesterification using acid and enzymatic catalyst feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characteristics and model of sludge adhesion during thermal drying.
Li, Huan; Zou, Shuxin; Li, Yangyang; Jin, Yiying
2013-01-01
During sludge thermal drying, the sludge adhered on the heated surface of drying equipments may affect drying efficiency. Sludge thermal drying experiments were conducted to investigate the effect of different drying conditions on sludge adhesion. The mass of sludge adhered on the heated surface (dryer wall) reached the maximum when sludge water content was about 60%. A high drying temperature would result in more sludge adhered on the heated surface in the temperature range of 80-160 degrees C. The convection heating and rougher surface would also lead to more sludge adhered on the heated surface. The relation between the maximum mass of adherent sludge and drying temperatures could be described by an exponential equation.
Holkar, Somnath Kadappa; Chandra, Ram
2016-01-01
Pleurotus spp. is one of the most important edible mushrooms cultivated in India. The present study was an attempt to compare five Pleurotus species in context of actual time required for each growth stage viz., spawn run period, number of days required for initiation of pin heads of sporophores, average weight of fruiting bodies in all the flushes and total yield. The spawn run period in all the five species were recorded between 18 days-21 days, similarly for initiation of pinheads 5 days -7 days were required after spawn run period. A total of 24 days to 27 days, 34 days to 37 days and 47 days to 53 days were required for harvesting the I, II and III flushes respectively. An average number of 41 to 70 sporophores per bag containing 1 kg of dry substrates were obtained from all the Pleurotus species. Maximum 14 g weight of single sporophore was recorded from P. florida, similarly, an average maximum diameter of 5.3 cm of sporophores of P. florida was observed whereas the diameter of sporophores in rest of the species ranged from 3.0 cm to 3.2 cm. The number of sporophores were obtained from P. sajor-caju (n-70) and all the species showed significant difference with respect to the number of sporophores in a bunch at probability level of P = 0.05. Maximum weight of single bunch was recorded (58 g) in P. florida and total yield of 740 gkg(-1) of dry matter was recorded in P. florida.
el-Komy, H M; Saad, O A; Hetta, A M
2003-01-01
The effect of Herbaspirillum seropedicae inoculation and/or maize straw (0, 5 and 10 Mg/hm2) amendment on the growth and N2 fixation of wheat was determined in pot experiments using 15N-dilution method. Inoculation resulted in accumulation of fixed nitrogen, and % N from atmosphere being 24.6 and 26.5% in wheat shoot and grain, respectively. Straw amendment reduced % Natm to 16.1 and 20.2% at high straw level (10 Mg/hm2). Rational nitrogen fertilization (180 kg N/hm2) completely inhibited N2 fixation by H. seropedicae inoculation. Bacterial inoculation increased dry shoot and grain yield up to 23 and 31%, respectively. The highest levels of shoot and grain dry mass (46.5 and 42.4%) were obtained by N-fertilization in both inoculated and uninoculated plants. Total shoot and grain N-yield increased irrespective of organic matter amendment by inoculation up to 9 and 25%, respectively. N-fertilized plants recorded a maximum increase in N-yield (57 and 51%). H. seropedicae was reisolated from inoculated wheat histosphere after harvesting (90 d from sowing). Neither organic matter nor mineral nitrogen applications had any marked effect on bacterial total counts colonizing wheat histosphere. Moreover, no symptoms of mottled stripe disease were observed on leaves and stems of inoculated plants.
McEachron, D L; Nissanov, J; Tretiak, O J
1997-06-01
Tritium quenching refers to the situation in which estimates of tritium content generated by film autoradiography depend on the chemical composition of the tissue as well as on the concentration of the radioisotope. When analysing thin brain sections, for example, regions rich in lipid content generate reduced optical densities on x-ray film compared with lipid-poor regions even when the total tissue concentration of tritium in those regions is identical. We hypothesize that the dried thickness of regions within sections depends upon the relative concentrations and types of lipid within the regions. Areas low in white matter dry thinner than areas high in white matter, leading to a relative enrichment of tritium in the thinner regions. To test this model, a series of brain pastes were made with different concentrations of grey and white matter and impregnated with equal amounts of tritium. The thickness of dried sections was compared with percentage of white matter and apparent radioactive content as determined by autoradiogram analysis. The results demonstrated that thickness increased, and apparent radioactivity decreased, with higher percentages of white matter. In the second experiment, thickness measurements from dried sections were successfully used to correct the apparent radioisotope content of autoradiograms created from tritium containing white- and grey-matter tissue slices. We conclude that within-section thickness variation is the major physical cause for 'tritium quenching'.
Hu, Haiyan; Zhang, Tongwei; Wiggins-Camacho, Jaclyn D.; Ellis, Geoffrey S.; Lewan, Michael D.; Zhang, Xiayong
2014-01-01
This study quantifies the effects of organic-matter (OM) thermal maturity on methane (CH4) sorption, on the basis of five samples that were artificially matured through hydrous pyrolysis achieved by heating samples of immature Woodford Shale under five different time–temperature conditions. CH4-sorption isotherms at 35 °C, 50 °C, and 65 °C, and pressures up to 14 MPa on dry, solvent-extracted samples of the artificially matured Woodford Shale were measured. The results showed that CH4-sorption capacity, normalized to TOC, varied with thermal maturity, following the trend: maximum oil (367 °C) > oil cracking (400 °C) > maximum bitumen/early oil (333 °C) > early bitumen (300 °C) > immature stage (130 °C). The Langmuir constants for the samples at maximum-oil and oil-cracking stages are larger than the values for the bitumen-forming stages. The total pore volume, determined by N2 physisorption at 77 K, increases with increased maturation: mesopores, 2–50 nm in width, were created during the thermal conversion of organic-matter and a dramatic increase in porosity appeared when maximum-bitumen and maximum-oil generation stages were reached. A linear relationship between thermal maturity and Brunauer–Emmett–Teller (BET) surface area suggests that the observed increase in CH4-sorption capacity may be the result of mesopores produced during OM conversion. No obvious difference is observed in pore-size distribution and pore volume for samples with pores 2 physisorption at 273 K. The isosteric heat of adsorption and the standard entropy for artificially matured samples ranged from 17.9 kJ mol−1 to 21.9 kJ mol−1 and from −85.4 J mol−1 K−1 to −101.8 J mol−1 K−1, respectively. These values are similar to the values of immature Woodford kerogen concentrate previously observed, but are larger than naturally matured organic-rich shales. High-temperature hydrous pyrolysis might have induced Lewis acid sites on both organic and mineral surfaces, resulting to some extent, in chemical interactions between the adsorption site and the methane C–H bonds. The formation of abundant mesopores (2–50 nm) within organic matter during organic-matter thermal maturation makes a great contribution to the increase in both BET surface area and pore volume, and a significant increase in 2–6 nm pores occurs at maximum-oil-generation and oil-cracking to gas, ultimately controlling the methane-adsorption capacity. Therefore, consideration of pore-size effects and thermal maturity is very important for gas in place (GIP) prediction in organic-rich shales.
USDA-ARS?s Scientific Manuscript database
The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...
USDA-ARS?s Scientific Manuscript database
The HarvestPlus program for cassava (Manihot esculenta Crantz) fortifies cassava with beta-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. Here, we investigated the genetic control of ...
Reliability of measurement and genotype x environment 1 interaction for potato specific gravity
USDA-ARS?s Scientific Manuscript database
The dry matter content of potatoes used to make potato chips and French fries strongly influences fry oil absorption and texture of the finished product. Specific gravity (SpGr) is often used to assess the processing quality of potatoes tubers because of its strong correlation with dry matter conten...
Wheat response to CO2 enrichment: CO2 exchanges transpiration and mineral uptakes
NASA Technical Reports Server (NTRS)
Andre, M.; Ducloux, H.; Richaud, C.
1986-01-01
When simulating canopies planted in varied densities, researchers were able to demonstrate that increase of dry matter production by enhancing CO2 quickly becomes independant of increase of leaf area, especially above leaf area index of 2; dry matter gain results mainly from photosynthesis stimulation per unit of surface (primary CO2 effect). When crop density is low (the plants remaining alone a longer time), the effects of increasing leaf surface (tillering, leaf elongation here, branching for other plants etc.) was noticeable and dry matter simulation factor reached 1.65. This area effect decreased when canopy was closed in, as the effect of different surfaces no longer worked. The stimulation of photosynthesis reached to the primary CO2 effect. The accumulation in dry matter which was fast during that phase made the original weight advantage more and more neglectible. Comparison with short term measurements showed that first order long term effect of CO2 in wheat is predictible with short term experiment, from the effect of CO2 on photosynthesis measured on reference sample.
Pholsen, S; Rodchum, P; Higgs, D E B
2014-07-01
This third year work was carried on at Khon Kaen University during the 2008-2009 to investigate dry matter yields of grass, grass plus legumes, grown on Korat soil series (Oxic Paleustults). The experiment consisted of twelve-treatment combinations of a 3x4 factorial arranged in a Randomized Complete Block Design (RCBD) with four replications. The results showed that Dry Matter Yields (DMY) of Ruzi and Guinea grass were similar with mean values of 6,585 and 6,130 kg ha(-1) whilst Napier gave the lowest (884 kg ha(-1)). With grass plus legume, grass species and production methods gave highly significant dry matter yields where Guinea and Ruzi gave dry matter yields of 7,165 and 7,181 kg ha(-1), respectively and Napier was the least (2,790 kg ha(-1)). The production methods with the use of cattle manure gave the highest DMY (grass alone) of 10,267 kg ha(-1) followed by Wynn and Verano with values of 6,064 and 3,623 kg ha(-1), respectively. Guinea plus cattle manure gave the highest DMY of 14,599 kg ha(-1) whilst Ruzi gave 12,977 kg ha(-1). Guinea plus Wynn gave DMY of 7,082 kg ha(-1). Ruzi plus Verano gave DMY of 6,501 kg ha(-1). Forage qualities of crude protein were highest with those grown with grass plus legumes. Some prospects in improving production were discussed.
Benatti, João Marcos B; Alves Neto, João Alexandrino; de Oliveira, Ivanna M; de Resende, Flávio D; Siqueira, Gustavo R
2017-11-01
This study evaluated the effect of increasing levels of monensin sodium (MON) in diets with virginiamycin (VM) on the finishing of feedlot cattle. Two hundred and eighty intact male Nellore cattle (348 ± 32 kg body weight, 22 months) received one of the following five diets: control diet (without additives); diet containing VM (25 mg per kg dry matter) combined with 0 (MON0), 10 (MON10), 20 (MON20) or 30 (MON30) mg MON per kg dry matter. During adaptation (28 days), the MON0 diet increased dietary net energy for maintenance and gain compared to the control diet (P = 0.04). The combination of additives linearly reduced dry matter intake, body weight and average daily gain (P < 0.01). Considering the total study period (110 days), there was a trend of greater net energy intake for maintenance (P = 0.09) and hot carcass weight (P = 0.06) for animals fed MON0 compared to the control diet. The combination of additives linearly reduced dry matter intake (P = 0.04) and linearly increased gain : feed and dietary net energy for maintenance and gain (P < 0.01). The combination of VM with MON at a dose of 30 mg/kg dry matter is recommended for Nellore feedlot cattle because it improves the efficiency of energy utilization. © 2017 Japanese Society of Animal Science.
Constantinescu, Dario; Memmah, Mohamed-Mahmoud; Vercambre, Gilles; Génard, Michel; Baldazzi, Valentina; Causse, Mathilde; Albert, Elise; Brunel, Béatrice; Valsesia, Pierre; Bertin, Nadia
2016-01-01
Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD) condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85%) and decreased its fresh weight (up to 60%), big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16–18% in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which (i) the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and (ii) the high dry matter content in control treatment (C) was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4, and 8. The model was then applied to design ideotypes with high dry matter content in C condition and low fresh mass loss in WD condition. The ideotypes outperformed the RILs especially for large and medium fruit-size genotypes, by combining high pedicel conductance and high active uptake of sugars. Interestingly, five small fruit-size RILs were close to the selected ideotypes, and likely bear interesting traits and alleles for adaptation to WD. PMID:28018381
Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil.
Arguelho, Maria de Lara Palmeira de Macedo; Alves, José do Patrocínio Hora; Monteiro, Adnívia Santos Costa; Garcia, Carlos Alexandre Borges
2017-06-01
The Sal River estuary, which is located in the state of Sergipe, Northeastern Brazil, stands out as an urban estuary, anthropogenically impacted by untreated and treated wastewater discharge. Synchronous fluorescence spectroscopy and measurement of dissolved organic carbon (DOC) were used for characterization of dissolved organic matter (DOM) in the estuarine water. Dissolved organic carbon concentrations ranged from 7.5 to 19.0 mg L -1 and, in general, the highest values were recorded during dry season. For both seasons (dry and rainy), DOC presented an inverse linear relationship with salinity, which indicates a conservative dilution of organic matter coming into the estuary. During rainy season, anthropogenic organic constituents and humic substances from land-based sources predominated in DOM composition, carried by river flow. Whereas during the dry season, it has been observed a significant increase of products generated by microbial degradation of anthropogenic organic matter. The relationships between fluorescence intensity and salinity suggest a conservative behavior during rainy season and a non-conservative behavior during dry season, with addition of fluorescent organic matter into the intermediate zone of the estuary. Photodegradation by action of sunlight caused a decrease in fluorescence intensity of humic and tryptophan-like constituents and the release of photoproducts, resulting in an increase in fluorescence intensity of protein-like constituents.
Porous membrane utilization in plant nutrient delivery
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Hinkle, C. R.; Prince, R. P.; Knott, W. M., III
1987-01-01
A spacecraft hydroponic plant growth unit of tubular configuration, employing a microporous membrane as a capilary interface between plant roots and a nutrient solution, is presented. All three of the experimental trials undertaken successfully grew wheat from seed to harvest. Attention is given to the mass/seed, number of seeds/head, ratio of seed dry mass to total plant dry mass, production of tillers, and mass of seed/plant. Dry matter production is found to be reduced with increasing suction pressure; this is true for both average seed and average total dry matter/plant. This may be due to a reduction in water and nutrient availability through the microporous membrane.
Dry Matter Production and Leaf Elemental Concentrations of Rambutan Grown on an Acid Ultisol
USDA-ARS?s Scientific Manuscript database
Little is known about the adaptability of rambutan (Nephelium lappaceum) to highly acidic soils rich in aluminum (Al). A 2-yr field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient concentration in the leaves of four cult...
Urinary purine derivatives as a tool to estimate dry matter intake in cattle: a meta-analysis
USDA-ARS?s Scientific Manuscript database
The objectives of this study were: 1) to investigate the relationship between dry matter intake (DMI) and urinary purine derivatives (PD) excretion in order to develop equations to predict DMI, and 2) to determine the endogenous excretion of PD for beef and dairy cattle using a meta-analytic approac...
USDA-ARS?s Scientific Manuscript database
A non-destructive method based on visible and near-infrared spectroscopy was investigated for determining the dry matter and soluble solids contents of dehydrator onions at the base, equatorial, and shoulder locations and of garlic cloves at the equatorial location. The interactance spectrum (400-10...
Dry matter production and nutrient content of mamey sapote grown on an acid ultisol
USDA-ARS?s Scientific Manuscript database
Little is known about the adaptability of mamey sapote (Pouteria sapota) to acidic soils high in aluminum (Al). A two-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, stem diameter and nutrient concentration in tissues of four clones of ...
Dry matter production and nutrient content of longan grown on an acid Ultisol
USDA-ARS?s Scientific Manuscript database
Little is known about the adaptability of longan (Dimocarpus longan) to acidic soils high in aluminum (Al). A 2-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient content in shoots of four cultivars of longan. S...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, D.T.; Flint, E.P.
Research report: Mathematical growth analysis techniques were used to determine the effects of carbon dioxide on the growth and biomass partitioning in corn (zea mays), itchgrass (Rottbiellia exalata concentrations of 350 ppM, 600 ppM, and 1000 ppM were considered. Dry matter production in soybean and velvetleaf was increased significantly by raising the CO2 concentration above 350 ppM. Dry matter production in itchgrass was greatest at 600 ppM; CO2 levels did not affect dry matter production in corn. Weed growth with each plant at the various CO2 concentrations was also measured. CO2 enrichment increased weed growth in weeds planted with soybeanmore » and velvetleaf; weeds planted with corn and itchgrass did not experience any significant increase in growth. (18 references, 4 tables)« less
The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.
Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina
2017-05-01
Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.
NASA Astrophysics Data System (ADS)
Fattah, S.; Sobang, Y. U. L.; Samba, F. D.; Hartati, E.; Kapa, M. M. J.; Henuk, Y. L.
2018-02-01
This study aimed to evaluate the effect of feeding bull Bali Cattle kept in extensive husbnadry system with concentrates contained gliricidia sepium leaf meal and banana strach tuber meal in their feed consumptions and dried organic matter digestibility. Three bull Bali cattle aged 1 - 2 years old with an initial body weight of 135.5 kg - 168.0 kg were used in this study. The three treatments used were T0 = local feeds (consisted of Leucaena leucocephala, Acasia leochophloea, and Ficus sp. leaves as commonly used by local farmers); T1 = T0 + 1 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal); T2 = T1 +2 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal). The results showed that the dry matter intake were: 2.40, 3.52, and 4.14; organic matter intake were: 2.17, 3.32, and 3.62; dry matter digestible was 64.63%, 72.45%, 77.28% and organic matter digestible was 66.79%, 74.66%, 79.33% for T0, T1, and T2, respectively. There was no effect (P>0.05) of treatments on the three parameters observed on bull Bali cattle kept in extensive husbandry system and fed with concentrates contained leaf gliricidia sepium meal and banana starch tuber meal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Once per charge Once per charge ✔ ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous Once...
A growth analysis of waterlogging damage in mung bean (Phaseolus aureus)
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Vanhoy, M. A.
1989-01-01
Mung beans (Phaseolus aureus Roxb.) were grown for 2 weeks in gravel-vermiculite soilless mix in a growth chamber and subjected to a 1-week waterlogging period followed by a 1-week recovery period. Sequential harvests were made to determine the time course of effects of waterlogging and subsequent recovery on growth parameters by techniques of growth analysis. Root dry matter was the first to be affected, along with an increase in leaf dry matter and specific leaf weight. After a 1-week waterlogging period, specific leaf weight had more than doubled in the stressed plants. Leaf area declined in relation to the control plants as did the ratio of root dry matter to shoot dry matter. During the recovery period there was an increase in the dry matter allocation to the roots relative to the shoot. Specific leaf weight fell to control levels although the rate of leaf area elaboration did not increase during this time, suggesting a redistribution of stored assimilates from the leaves. Net assimilation rate increased during the waterlogging period, probably due to a restriction in root metabolism and reduced translocation out of the leaf rather than to an increase in photosynthesis. Net assimilation rate of waterlogged plants was severely reduced compared with control plants during the recovery period. Both relative growth rate and leaf area duration declined during the waterlogging period and declined further subsequent to the waterlogging treatment. The results illustrate the interrelationships between root and shoot carbon budgets in mung bean during response to the stress of waterlogging.
Fatokun, Kayode; Zharare, Godfrey Elijah
2015-09-01
Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.
Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian
2018-05-01
This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.
USDA-ARS?s Scientific Manuscript database
The use of triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly to improve land stewardship by providing winter ground cover. Our objectives were to establish relationships relating indices of nutritive value with growth stage or accumulated gro...
Development of equations to predict dry matter intake of lactating cows using animal factors
USDA-ARS?s Scientific Manuscript database
Our objective was to model dry matter intake (DMI, kg) in Holstein dairy cows based on milk energy (MilkE, Mcal/d), energy required for maintenance, change in body weight (DeltaBW, kg/d), body condition score (BCS, scale 1 to 5), height (Htcm, cm), and parity. The database contained weekly DMI of 4,...
USDA-ARS?s Scientific Manuscript database
Two experiments were carried out to evaluate the relationship between dry matter content (DMC) and maturity index of ‘Fuji’ apple fruit sports (‘Mishima’, ‘Fuji Select’ and ‘Fuji Suprema’) during the final stage of fruit growth, and the relationship between DMC at harvest and the post-harvest fruit ...
Choubert, G; Fauconneau, B; Luquet, P
1982-01-01
Rainbow trout adapted to a water temperature of 10 degrees C were subjected to an abrupt rise in temperature (from 10 to 18 degrees C) in a 24-h period. Fish maintained in recirculated water were fed to satiation twice a day and their feed intakes were recorded. Changes in dry matter, nitrogen and energy digestibility were measured each day at 10 degrees C and during the course of acclimatation to 18 degrees C. Low water temperature (10 degrees C) was characterized by a feed intake of 1.84 g (DM)/fish/day; digestibility values were as follows: dry matter 62.15 p. 100, nitrogen 86.91 p. 100, energy 70.60 p. 100. High water temperature (18 degrees C) was characterized by a feed intake of 3.75 g (DM)/fish/day; digestibility values were as follows: dry matter 66.08 p. 100, nitrogen 89.57 p. 100, energy 73.52 p. 100. The daily patterns in digestibility were affected by the rise in temperature. The digestibility values were stabilized by day 7 after the positive thermal shock.
Wood, C D; Tiwari, B N; Plumb, V E; Powell, C J; Roberts, B T; Padmini Sirimane, V D; Rossiter, J T; Gill, M
1994-12-01
Dry matter, ash, crude protein, and protein precipitation activity (PPA) of 13 Nepalese tree fodder species were monitored in dried samples prepared monthly between November 1990 and May 1991, and additionally in November 1991, covering the season when they are particularly important as fodder. Monthly levels of dry matter, ash, and crude protein were fairly stable except when there was new leaf growth, although year to year differences in dry matter were found inBrassaiopsis hainla (Bh),Dendrocalamus strictus (Ds),Ficus roxburghii (Fr), andQuercus semecarpifolia (Qs). Tannin PPA fluctuated considerably inArtocarpus lakoocha (Al),Ficus glaberrima (Fg),F. nerrifolia (Fn), Fr,F. semicordata (Fs),Litsea polyantha (Lp), andPrunus cerasoides (Pc), and to a lesser extent in Bh,Castanopsis indica (Ci),C. tribuloides (Ct),Quercus lamellosa (Ql), and Qs. Similar fluctuations in PPA were observed in fresh leaf samples taken weekly. Ds did not have any detectable PPA. Trends in PPA fluctuation were generally similar for trees located at similar altitudes. Fr, Pc, Al, Fn, Ql, and Ci had falling PPAs before shedding leaves. Some of the fluctuations in Fr, Fs, Fg, Pc, and Lp were apparently due to changes in the extractability and quantity of condensed tannins. These fluctuations in PPA may affect the nutritive value of the fodders.
Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R
2018-02-20
The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Venkataramana, V; Sarma, V V S S; Matta Reddy, Alavala
2017-08-28
Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L -1 ) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.
The sources of trace element pollution of dry depositions nearby a drinking water source.
Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo
2017-02-01
Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.
Ultrasound assisted extraction of polysaccharides from hazelnut skin.
Yılmaz, Tuncay; Tavman, Şebnem
2016-03-01
In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values. © The Author(s) 2015.
Code of Federal Regulations, 2014 CFR
2014-04-01
...(monobromoacetoxy) ethane [CA Reg. No. 3785-34-0] At a maximum level of 0.10 pound per ton of dry weight fiber. Bis... Methylenebisthiocyanate 2-Nitrobutyl bromoacetate [CA Reg. No. 32815-96-6] At a maximum level of 0.15 pound per ton of dry.... No. 55566-30-8) Maximum use level of 84 mg/kg in the pulp slurry. The additive may also be added to...
Naderi, N; Ghorbani, G R; Sadeghi-Sefidmazgi, A; Nasrollahi, S M; Beauchemin, K A
2016-11-01
The effects of substituting increasing concentrations of dried, shredded beet pulp for corn silage on dry matter intake, nutrient digestibility, rumen fermentation, blood metabolites, and milk production of lactating dairy cows was evaluated under conditions of ambient heat stress. Four multiparous (126±13d in milk) and 4 primiparous (121±11d in milk) Holstein cows were used in a 4×4 Latin square design experiment with 4 periods of 21d. Each period had 14d of adaptation and 7d of sampling, and parity was the square. Dietary treatments were (dry matter basis): 16% of dietary dry matter as corn silage without BP (0BP, control diet); 8% corn silage and 8% beet pulp (8BP); 4% corn silage and 12% beet pulp (12BP); and 0% corn silage and 16% beet pulp (16BP). Alfalfa hay was included in all diets (24% dietary dry matter). Dietary concentrations of forage neutral detergent fiber and nonfiber carbohydrates were 21.3 and 39.2% (0BP), 16.5 and 40.9% (8BP), 14.1 and 42.2% (12BP), and 11.7 and 43.4% (16BP), respectively (dry matter basis). The ambient temperature-humidity index indicated that the cows were in heat stress for almost the entire duration of the study. Dry matter intake and nutrient digestibilities were similar across treatments and between multi- and primiparous cows. Mean rumen pH tended to decrease with increasing proportions of beet pulp in the diet. Also, increasing proportions of beet pulp in the diet linearly decreased acetate and butyrate concentrations in the rumen and increased propionate concentrations, leading to a linear decrease in acetate:propionate ratio. Milk yield linearly increased (38.5, 39.3, 40.9, and 39.6kg/d for 0BP, 8BP, 12BP, and 16BP, respectively), but fat content linearly decreased (3.46, 3.47, 3.27, and 2.99), such that we observed no effect on fat-corrected milk. Substituting beet pulp for corn silage increased the neutral detergent insoluble crude protein content of the diet, leading to a decrease in rumen concentration of ammonia-nitrogen and milk concentration of urea, corresponding to an increase in percentage of protein in milk. Compared with multiparous cows, primiparous cows had greater rumen pH, metabolite concentrations in plasma (glucose, cholesterol, urea nitrogen, total protein, and globulins), milk production, and concentrations of milk components. Substituting beet pulp for corn silage at up to 12% of dietary dry matter can be beneficial during heat stress conditions. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions. PMID:26760509
Bioprocessing of wheat straw into nutritionally rich and digested cattle feed
Shrivastava, Bhuvnesh; Jain, Kavish Kumar; Kalra, Anup; Kuhad, Ramesh Chander
2014-01-01
Wheat straw was fermented by Crinipellis sp. RCK-1, a lignin degrading fungus, under solid state fermentation conditions. The fungus degraded 18.38% lignin at the expense of 10.37% cellulose within 9 days. However, when wheat straw fermented for different duration was evaluated in vitro, the 5 day fungal fermented wheat straw called here “Biotech Feed” was found to possess 36.74% organic matter digestibility (OMD) and 5.38 (MJ/Kg Dry matter) metabolizable energy (ME). The Biotech Feed was also observed to be significantly enriched with essential amino acids and fungal protein by fungal fermentation, eventually increasing its nutritional value. The Biotech Feed upon in vitro analysis showed potential to replace 50% grain from concentrate mixture. Further, the calves fed on Biotech Feed based diets exhibited significantly higher (p<0.05) dry matter intake (DMI: 3.74 Kg/d), dry matter digestibility (DMD: 57.82%), total digestible nutrients (TDN: 54.76%) and comparatively gained 50 g more daily body weight. PMID:25269679
NASA Astrophysics Data System (ADS)
Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny
2017-04-01
Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water stable aggregates in the profile under arable land. These data indicate the correlation between the wettability of soils with the content of organic matter and their influence on the formation of water stable structure, as well as the negative impact of tillage on the analyzed characteristics.
USDA-ARS?s Scientific Manuscript database
The effect of stable flies on growing calves was examined using modified fly cages attached to the animals. Dry matter intake and digestibility as well as behavioral responses of the animals were monitored. Nine Holstein calves, individually housed in 3 x 3 m pens, were exposed to three levels of st...
Effects of cellulose levels on the apparent digestibility of feeds eaten by mule deer
Henry L. Short
1966-01-01
Three artificial diets that varied in cellulose content but were similar in protein and energy levels were fed to three mule deer according to a latin square design. Food intake for each deer, on each diet, during each feeding period was similar. Energy and dry matter digestion varied between diets (P < 0.05) and both digestible energy and digestible dry matter...
Farmer, E R; Tucker, H A; Dann, H M; Cotanch, K W; Mooney, C S; Lock, A L; Yagi, K; Grant, R J
2014-09-01
This experiment evaluated the effect of feeding a lower starch diet (21% of dry matter) with different amounts of forage (52, 47, 43, and 39% of dry matter) on lactational performance, chewing activity, ruminal fermentation and turnover, microbial N yield, and total-tract nutrient digestibility. Dietary forage consisted of a mixture of corn and haycrop silages, and as dietary forage content was reduced, chopped wheat straw (0-10% of dry matter) was added in an effort to maintain chewing activity. Dietary concentrate was adjusted (corn meal, nonforage fiber sources, and protein sources) to maintain similar amounts of starch and other carbohydrate and protein fractions among the diets. Sixteen lactating Holstein cows were used in replicated 4×4 Latin squares with 21-d periods. Dry matter intake increased while physically effective neutral detergent fiber (peNDF1.18) intake was reduced as forage content decreased from 52 to 39%. However, reducing dietary forage did not influence milk yield or composition, although we observed changes in dry matter intake. Time spent chewing, eating, and ruminating (expressed as minutes per day or as minutes per kilogram of NDF intake) were not affected by reducing dietary forage. However, addition of chopped wheat straw to the diets resulted in greater time spent chewing and eating per kilogram of peNDF1.18 consumed. Reducing dietary forage from 52 to 39% did not affect ruminal pH, ruminal digesta volume and mass, ruminal pool size of NDF or starch, ruminal digesta mat consistency, or microbial N yield. Ruminal acetate-to-propionate ratio was reduced, ruminal turnover rates of NDF and starch were greater, and total-tract digestibility of fiber diminished as dietary forage content decreased. Reducing the dietary forage content from 52 to 39% of dry matter, while increasing wheat straw inclusion to maintain chewing and rumen function, resulted in similar milk yield and composition although feed intake increased. With the lower starch diets in this short-term study, the minimal forage content to maintain lactational performance was between 39 and 43%. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Liu, Hong-mei; Lu, Sheng-yong; Buekens, Alfons G; Chen, Tong; Li, Xiao-dong; Yan, Jian-hua; Ma, Xiao-jun; Cen, Ke-fa
2012-01-01
In order to determine the baseline contamination by polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in different areas in China, prior to the construction of municipal solid waste incinerators (MSWIs), a total of 32 representative soil samples was collected near 16 incinerators and analyzed for their PCDD/F concentrations. The PCDD/F baseline concentrations in the soil samples ranged from 0.32 to 11.4 ng I-TEQ kg(-1) (dry matter), with average and median value of 2.73 and 2.24 ng I-TEQ kg(-1) (dry matter), respectively, and a span between maximum and minimum recorded value of 36. The PCDD homologues predominated in 26 out of 32 soil samples, with the ratio (PCDDs)/(PCDFs) ranging from 1.1 to 164; however in the other 6 samples, PCDF homologues were larger, with the same ratio varying from 0.04 to 0.8. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to examine PCDD/F amount and profile in these soil samples, and their possible associations with known emission sources: in this process 6 really distinct isomer fingerprints were identified. Background PCDD/F levels and profiles were comparable to those found in soils from China and other countries and indicate a rather low baseline PCDD/F contamination of soils. The present data provide the tools for future assessment of a possible impact of these MSWIs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Performance of five Montreal West Island home composters.
Adhikari, Bijaya K; Trémier, Anne; Barrington, Suzelle
2012-01-01
Even if home composting can eliminate municipal organic waste collection, handling and treatment costs, its compost quality requires investigation outside the laboratory. A study was thus conducted to evaluate the influence of the following management practices on the compost quality produced by five backyards home composters in Montreal West Island from June to October 2010: the type and backyard location of the home composter (HC), and the rate and type of organic waste (OW) fed into the home composter. The parameters monitored were compost temperature and final characteristics including trace elements and pathogens. For all HC compost, maximum but not necessarily thermophilic temperatures were highly probable within one week of adding more than 10 kg of OW composed of equal volumes of food waste (FW) and yard trimmings (YT). Top and bottom HC perforations enhanced convective aeration but concentrated OW decomposition within the bottom layer. Fed an equal volume of FW and YT, the final HC compost had a dry and organic matter content exceeding 30%, and 50%, respectively, and a total nitrogen, phosphorous and potassium level of 2, 1 and 3% on a dry matter basis, representing a good quality soil amendment. Clean OW feeding resulted in compost respecting Canadian and European regulations for Escherichia coli and Salmonella, irrespective of the temperature regime. For trace elements, regulatory limits may be exceeded when the home composter is fed ashes and soil. Homeowners must also be careful when applying pesticides to their lawns and gardens and then feeding the residues to the home composter.
Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian
This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other methods of harvesting SRC to minimise losses and optimise land use efficiency. Further research is required to detect whether there are fugitive emissions of CH 4 from wood chip heaps, as this will compromise the net GHG savings from utilising the biomass stored in this way.
Mir, Mohsin Ahmad; Sharma, R. K.; Rastogi, Ankur; Barman, Keshab
2015-01-01
Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05) T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD), truly degradable organic matter (TDOM, mg/200 mg DM), total gas production, microbial biomass production (MBP) and efficiency of microbial biomass production (EMP). Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM), TDOM, MBP, EMP and total gas production in goat. PMID:27047013
Changes on sewage sludge stability after greenhouse drying
NASA Astrophysics Data System (ADS)
Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.
2009-04-01
The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not change so much except for the one of the sludges, which experienced an important reduction. According to the results, and from a point of view of future soil applications, the balance of the drying process could be considered as positive. It is using a free, renewable and clean energy, which reduces the water content and odours of sludge, thereby improving their management. Except for the water content, there was little modification of the behaviour in soil of greenhouse dried sludges compared to the dehydrated sludges, maintaining its large amount of available nitrogen after drying. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).
Inclusion of brown midrib dwarf pearl millet silage in the diet of lactating dairy cows.
Harper, M T; Melgar, A; Oh, J; Nedelkov, K; Sanchez, G; Roth, G W; Hristov, A N
2018-06-01
Brown midrib brachytic dwarf pearl millet (Pennisetum glaucum) forage harvested at the flag leaf visible stage and subsequently ensiled was investigated as a partial replacement of corn silage in the diet of high-producing dairy cows. Seventeen lactating Holstein cows were fed 2 diets in a crossover design experiment with 2 periods of 28 d each. Both diets had forage:concentrate ratios of 60:40. The control diet (CSD) was based on corn silage and alfalfa haylage, and in the treatment diet, 20% of the corn silage dry matter (corresponding to 10% of the dietary dry matter) was replaced with pearl millet silage (PMD). The effects of partial substitution of corn silage with pearl millet silage on dry matter intake, milk yield, milk components, fatty acid profile, apparent total-tract digestibility of nutrients, N utilization, and enteric methane emissions were analyzed. The pearl millet silage was higher in crude protein and neutral detergent fiber and lower in lignin and starch than the corn silage. Diet did not affect dry matter intake or energy-corrected milk yield, which averaged 46.7 ± 1.92 kg/d. The PMD treatment tended to increase milk fat concentration, had no effect on milk fat yield, and increased milk urea N. Concentrations and yields of milk protein and lactose were not affected by diet. Apparent total-tract digestibility of dry matter decreased from 66.5% in CSD to 64.5% in PMD. Similarly, organic matter and crude protein digestibility was decreased by PMD, whereas neutral- and acid-detergent fiber digestibility was increased. Total milk trans fatty acid concentration was decreased by PMD, with a particular decrease in trans-10 18:1. Urinary urea and fecal N excretion increased with PMD compared with CSD. Milk N efficiency decreased with PMD. Carbon dioxide emission was not different between the diets, but PMD increased enteric methane emission from 396 to 454 g/d and increased methane yield and intensity. Substituting corn silage with brown midrib dwarf pearl millet silage at 10% of the diet dry matter supported high milk production in dairy cows. When planning on farm forage production strategies, brown midrib dwarf pearl millet should be considered as a viable fiber source. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Common relationships among proximate composition components in fishes
Hartman, K.J.; Margraf, F.J.
2008-01-01
Relationships between the various body proximate components and dry matter content were examined for five species of fishes, representing anadromous, marine and freshwater species: chum salmon Oncorhynchus keta, Chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, bluefish Pomatomus saltatrix and striped bass Morone saxatilis. The dry matter content or per cent dry mass of these fishes can be used to reliably predict the per cent composition of the other components. Therefore, with validation it is possible to estimate fat, protein and ash content of fishes from per cent dry mass information, reducing the need for costly and time-consuming laboratory proximate analysis. This approach coupled with new methods of non-lethal estimation of per cent dry mass, such as from bioelectrical impedance analysis, can provide non-destructive measurements of proximate composition of fishes. ?? 2008 The Authors.
Moreira, V R; Satter, L D; Harding, B
2004-01-01
Performance of lactating dairy cows fed diets containing either mechanically delinted whole cottonseed (DWCS; 3.7% lint) or linted whole cottonseed (LWCS; 11.7% lint) was measured. Forty primiparous (86 +/- 39 d in milk) and 40 multiparous (88 +/- 30 d in milk) cows were fed a total mixed ration containing 13% (dry matter basis) DWCS or LWCS in two blocks of 112 d (n = 53 and 27, respectively). Other total mixed ration ingredients (dry matter basis) were corn silage (28.1%), alfalfa silage (23%), high moisture shelled corn (27.8%), soybean meal (1.8%), expeller soybean meal (1.8%), blood meal (2%), and mineral-vitamin supplements (2.5%). Dry matter intake and milk yield were measured daily and milk composition every other week. Fecal grab samples were taken during wk 3 and 13 of each block to estimate excretion of intact whole cottonseeds. Milk yield, 3.5% fat-corrected milk, energy-corrected milk, milk composition and dry matter intake were not affected by whole cottonseed source. Body condition score tended to increase more with DWCS (0.22 vs. 0.11) for primiparous cows, although this was not reflected in body weight change. Dry matter digestibilities, based on indigestible ADF, were 63.5 and 64.8% for the DWCS and LWCS diets. It was calculated that 2.5 and 1.5% of the consumed seeds were excreted as whole cottonseeds in feces with the DWCS and LWCS diets, respectively. Although statistically significant, treatment differences in the proportion of intact seeds in the fecal DM would have little nutritional consequence. Mechanically delinted WCS performed as well as LWCS for all of the cow performance and milk composition variables measured.
How Should Dry Lightning be Defined to Best to Correlate to Wildfire Initiation?
NASA Astrophysics Data System (ADS)
Vant-Hull, B.; Koshak, W. J.
2017-12-01
Dry lightning can be defined by a maximum precipitation threshold, a dry period preceding a flash, and the spatial resolution used to relate a lightning flash to precipitation. Using data from most of CONUS from 2003-2015, the annual total of wildfires was compared to the annual number of dry flashes, with dry flash parameters adjusted to maximize the correlation between annual totals throughout the time period. A maximum correlation of 0.93 was found for a dry period of 36 hours, with no precipitation rates above 0.2 mm/hr during this time, on a 0.1 degree grid. Such a high correlation to wildfires on a climatic scale indicates a need to understand how changing weather patterns can influence the occurrence of properly defined dry lightning. Under this understanding dry lightning counts could qualify as a NCA indicator.
NASA Astrophysics Data System (ADS)
Nurhaita; Definiati, N.; Santoso, U.; Akbar, S. A.; Henuk, Y. L.
2018-02-01
This study aimed to determine the effect of mineral supplementation, such as S, P and Zn on the nutrients digestibility of fermented cocoa pod husk, the population of rumen bacteria and rumen liquid characteristics in vitro. The study used a randomized block design with 5 treatments and 4 replicates. The treatments tested were: T0 = without minerals; T1 = 0.2% S mineral; T2 = 0.27% P mineral; T3 = S and P; and T4 = S, P and Zn at 50 ppm. Parameters measured were: (1) digestibility of dry matter and organic matter; (2) rumen bacterial and cellulolytic bacterial populations; (3) characteristics of rumen liquid in vitro. The results of the study showed that mineral supplementation significantly (P <0.05) improved dry matter and organic matter digestibility. Mineral supplementation had no effect on the total population of rumen bacteria and cellulolytic rumen bacterial populations. The characteristics of rumen liquid such pH, VFA and NH3 were in optimal condition. In conclusion supplementation of S, P and Zn simultaneously gave the best results to improve the digestibility of dry matter and organic matter and to maintain rumen liquid characteristics under optimal conditions for growth and microbial activity
Del Bianco Benedeti, Pedro; Paulino, Pedro Veiga Rodrigues; Marcondes, Marcos Inácio; Maciel, Ivan França Smith; da Silva, Matheus Custódio; Faciola, Antonio Pinheiro
2016-01-01
The objective of this study was to evaluate the effects of replacing dry ground corn with crude glycerol on intake, apparent digestibility, performance, and carcass characteristics of finishing beef bulls. A completely randomized block design experiment with 25 d for adaptation and 100 d for data collection was conducted, in which 3,640 Nellore bulls (367 ± 36.8 kg; 18 ± 3 mo) were blocked by body weight and assigned to 20 pens. Bulls were randomly assigned to one of four treatments: 0, 5, 10, and 15% (dry matter basis) of crude glycerol in the diet. Initially, 20 bulls were slaughtered to serve as a reference to estimate initial empty body weight, which allowed for carcass gain calculation. Bulls were weighed at the beginning, at two-thirds, and at the end of the experiment for performance calculations. Carcass measurements were obtained by ultrasound. Fecal output was estimated using indigestible neutral detergent fiber as an internal marker. Data were analyzed using the mixed procedures in SAS 9.2 (SAS Institute Inc., Cary, NC). Intake of dry matter, organic matter, and neutral detergent fiber decreased linearly (P < 0.05) with crude glycerol inclusion. However, crude glycerol levels did not affect (P > 0.05) intakes of crude protein, non-fiber carbohydrates, and total digestible nutrients. Digestibility of dry matter, organic matter, neutral detergent fiber, and total digestible nutrients increased quadratically (P < 0.05) with the inclusion of crude glycerol in the diet. Crude glycerol inclusion did not change the intake of digestible dry matter, average daily gain, final body weight, carcass gain, carcass dressing, gain-to-feed ratio, Longissimus thoracis muscle area, and back and rump fat thicknesses (P > 0.05). These results suggest that crude glycerol may be included in finishing beef diets at levels up to 15% without impairing performance and carcass characteristics. PMID:26820725
Seasonal trends in black carbon properties and co-pollutants in Mexico City
NASA Astrophysics Data System (ADS)
Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.
2015-04-01
The Mexico City Metropolitan Area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e. ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown little response to mitigation strategies that have been in place for more than two decades. For the first time, extended measurements have been made of equivalent black carbon (eBC), derived from light absorption measurements made with a Photoacoustic Extinctiometer (PAX), over a 13 month period from March 2013 through March 2014. The daily trends in workday (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in that region: rainy, cold-dry and warm-dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P< 0.05) during the dry periods than in the rainy season. The changes from rainy to dry seasons for eBC, PM2.5, CO, O3, and NOx were 8.8 to 13.1 μg m-3 (40%), 49 to 73 μg m-3 (40%), 2.5 to 3.8 ppm (40%), 73 to 100 ppb (30%) and 144 to 252 ppb (53%), respectively. The primary factors that lead to these large changes between the wet and dry seasons are the accelerated vertical mixing of boundary layer and free tropospheric air by the formation of clouds that dilutes the concentration of the SLCPs and the decreased actinic flux that reduces the production of ozone by photochemical reactions. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel that produces a large fraction of the BC emissions. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum values from workday to Sunday. As has been noted in previous studies, this lack of change is a result of the balancing effects of lower precursor gases, i.e. VOCs, offset by lower NOx that is an O3 inhibitor. A comparison of average, maximum values of eBC measured during the one year period of the current study with maximum values measured in short field campaigns in 2000 and 2006 show that there has been no significant change in the eBC emissions over a 14 year period. This suggests that the current pollution mitigation strategy will need to be evaluated to develop new methods than can decrease potentially toxic levels of this particulate pollutant.
Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A
2011-05-01
Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that different strains of S. cerevisiae fed as active dried yeasts vary in their ability to modify the rumen fermentative pattern in nonlactating dairy cows. Because strain 2 tended (when compared with strain 1) to lower CH(4) emissions but increase the risk of acidosis, it may be prudent to further evaluate this strain in cattle fed high-forage diets, for which the risk of acidosis is low but CH(4) emissions are high. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M
2014-06-01
The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (P<0.001) affected by thermal treatment, being higher (32.5%) after microwaving and lower after grilling (22.5%) and frying (23.8%). As expected, all the cooking methods increased TBARs content, since high temperature during cooking causes increased oxidation in foal steaks, this increase was significantly (P<0.001) higher when foal steaks were microwaved or roasted. The four different cooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. Copyright © 2014 Elsevier Ltd. All rights reserved.
da Silva, Gabriel Santana; Chaves Véras, Antônia Sherlanea; de Andrade Ferreira, Marcelo; Moreira Dutra, Wilson; Menezes Wanderley Neves, Maria Luciana; Oliveira Souza, Evaristo Jorge; Ramos de Carvalho, Francisco Fernando; de Lima, Dorgival Morais
2015-10-01
The objective of this study was to evaluate the influence of diets with increasing concentrate levels (170, 340, 510 and 680 g/kg of total dry matter) on dry matter intake, digestibility, performance and carcass characteristics of 25 Holstein-Zebu crossbred dairy steers in a feedlot. A completely randomized design was used, and data were submitted to analysis of variance and regression. The dry matter intake and digestibility coefficients of all nutrients increased linearly. The total weight gain and average daily gain added 1.16 kg and 9.90 g, respectively, for each 10 g/kg increase in concentrate. The empty body weight, hot carcass weight and cold carcass weight responded linearly to increasing concentrate. The hot carcass yield and cold carcass yield, gains in empty body weight and carcass gain were also influenced, as were the efficiencies of carcass deposition and carcass deposition rate. It is concluded that increasing concentrate levels in feedlot diets increase the intake and digestibility of dry matter and other nutrients, improving the feed efficiency, performance and physical characteristics of the carcass. Furthermore and of importance concerning the climate change debate, evidence from the literature indicates that enteric methane production would be reduced with increasing concentrate levels such as those used.
Nybroe, S; Astrup, A; Bjørnvad, C R
2016-12-01
In humans, dietary supplementation with flaxseed mucilage and calcium decrease apparent digestibility of fat and energy. These supplements could prove useful for weight management in dogs. To examine dry matter, energy and fat apparent digestibility, and fecal characteristics following dietary flaxseed mucilage supplementation alone or in combination with calcium. A single-blinded crossover feeding trial was conducted on 11 privately owned dogs. During three consecutive 14-day periods, dogs where fed commercial dog food supplemented with potato starch (control diet), flaxseed mucilage or flaxseed mucilage and calcium. Feces from the past 2 days of each period were collected for analysis. Owners recorded fecal score (1-7: 1=very hard/dry feces, 2-3=ideal and 7=diarrhea). Apparent digestibility of fat was lower in both flaxseed mucilage diet (94.5±0.8%), and flaxseed mucilage and calcium diet (92.9±0.9%) compared with control diet (96.9±0.2%, P<0.0001) with fat digestibility in flaxseed mucilage and calcium diet being significantly lower than the diet supplemented with only flaxseed mucilage. Dry matter and energy digestibility was not significantly affected by diet. Fecal wet weight, dry weight and dry matter percentage was not affected by diet despite a higher fecal score for test diets (3.7±0.3) compared with control (2.8±0.2, P<0.007). In dogs, flaxseed mucilage decreased fat apparent digestibility and this effect was enhanced when combined with calcium. Dry matter and energy apparent digestibility was not affected. Decreased fecal quality may limit the acceptable level of supplementation. Further studies on incorporating flaxseed mucilage in pet food products for weight management are needed.
What is soil organic matter worth?
Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A
2006-01-01
The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.
Kim, Eun-Ah; Nguyen, Hang Vo-Minh; Oh, Hae Sung; Hur, Jin; Choi, Jung Hyun
2016-03-01
This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation-emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.
Piñeiro-Vázquez, A T; Jiménez-Ferrer, G; Alayon-Gamboa, J A; Chay-Canul, A J; Ayala-Burgos, A J; Aguilar-Pérez, C F; Ku-Vera, J C
2018-01-01
The aim of this work was to evaluate the effect of quebracho tannins extract (QTE) on feed intake, dry matter (DM) digestibility, and methane (CH 4 ) emissions in cattle fed low-quality Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight (LW) of 295 ± 19 kg were allotted to five treatments (0, 1, 2, 3, and 4% QTE/kg DM) in a 5 × 5 Latin square design. Intake, digestibility, and total methane emissions (L/day) were recorded for periods of 23 h when cattle were housed in open-circuit respiration chambers. Dry matter intake (DMI), organic matter intake (OMI), dry matter digestibility (DMD), and organic matter digestibility (OMD) were different between treatments with 0 and 4% of QTE/kg DM (P < 0.05). Total volatile fatty acid and the molar proportion of acetate in the rumen was not affected (P < 0.05); however, the molar proportion of propionate increased linearly (P < 0.01) for treatments with 3 and 4% QTE. Total CH 4 production decreased linearly (P < 0.01) as QTE increased in the diet, particularly with 3 and 4% concentration. When expressed as DMI and OMI by CH 4 , production (L/kg) was different between treatments with 0 vs 3 and 4% QTE (P < 0.05). It is concluded that the addition of QTE at 2 or 3% of dry matter ration can decrease methane production up to 29 and 41%, respectively, without significantly compromising feed intake and nutrients digestibility.
Sluiter, Amie; Sluiter, Justin; Wolfrum, Ed; ...
2016-05-20
Accurate and precise chemical characterization of biomass feedstocks and process intermediates is a requirement for successful technical and economic evaluation of biofuel conversion technologies. The uncertainty in primary measurements of the fraction insoluble solid (FIS) content of dilute acid pretreated corn stover slurry is the major contributor to uncertainty in yield calculations for enzymatic hydrolysis of cellulose to glucose. This uncertainty is propagated through process models and impacts modeled fuel costs. The challenge in measuring FIS is obtaining an accurate measurement of insoluble matter in the pretreated materials, while appropriately accounting for all biomass derived components. Three methods were testedmore » to improve this measurement. One used physical separation of liquid and solid phases, and two utilized direct determination of dry matter content in two fractions. We offer a comparison of drying methods. Lastly, our results show utilizing a microwave dryer to directly determine dry matter content is the optimal method for determining FIS, based on the low time requirements and the method optimization done using model slurries.« less
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
Dark-matter haloes and the M-σ relation for supermassive black holes
NASA Astrophysics Data System (ADS)
Larkin, Adam C.; McLaughlin, Dean E.
2016-10-01
We develop models of two-component spherical galaxies to establish scaling relations linking the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law dependence on the maximum circular speed in a protogalactic dark-matter halo: M_{BH}∝ V^4_{d,pk}, as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion σap(Re) at z = 0. Thus, they transform a theoretical MBH-Vd,pk relation into a prediction for an observable MBH-σap(Re) relation. We find the latter to be distinctly non-linear in log-log space. Its shape depends on the generic redshift evolution of haloes in a Λ cold dark matter cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in addition to any assumptions about the physics underlying the MBH-Vd,pk relation. Despite some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not include any SMBH growth through dry mergers at low redshift, our results for MBH-σap(Re) compare well to data for local early types if we take zqso ˜ 2-4.
The cadmium status of horses from central Europe depending on breed, sex, age and living area.
Anke, M; Kośla, T; Groppel, B
1989-07-01
The Cd status of animals is best reflected by kidneys and much worse by liver and hair. Breed (heavy- and warm-blooded horses) only took an insignificant effect on the Cd content of kidneys and liver. On the average, however, warm-blooded horses stored more Cd than heavy ones. Geldings from Cd-exposed living areas accumulated insignificantly more Cd in liver, kidneys and hair than mares. The influence of age on the Cd content of kidneys and liver of Cd-exposed horses was significant. The Cd exposure of a living area was very well reflected by kidneys and liver. On the average, horses from two areas with nonferrous metal smelting stored 1000 mg Cd/kg kidney dry matter and 100 to 200 mg Cd/kg liver dry matter. The highest Cd concentration of the kidneys of horses amounted to 2.6 and 2.3 g/kg dry matter, resp.
Modelling of influential parameters on a continuous evaporation process by Doehlert shells
Porte, Catherine; Havet, Jean-Louis; Daguet, David
2003-01-01
The modelling of the parameters that influence the continuous evaporation of an alcoholic extract was considered using Doehlert matrices. The work was performed with a wiped falling film evaporator that allowed us to study the influence of the pressure, temperature, feed flow and dry matter of the feed solution on the dry matter contents of the resulting concentrate, and the productivity of the process. The Doehlert shells were used to model the influential parameters. The pattern obtained from the experimental results was checked allowing for some dysfunction in the unit. The evaporator was modified and a new model applied; the experimental results were then in agreement with the equations. The model was finally determined and successfully checked in order to obtain an 8% dry matter concentrate with the best productivity; the results fit in with the industrial constraints of subsequent processes. PMID:18924887
Correlation and path analysis of biomass sorghum production.
Vendruscolo, T P S; Barelli, M A A; Castrillon, M A S; da Silva, R S; de Oliveira, F T; Corrêa, C L; Zago, B W; Tardin, F D
2016-12-23
Sorghum biomass is an interesting raw material for bioenergy production due to its versatility, potential of being a renewable energy source, and low-cost of production. The objective of this study was to evaluate the genetic variability of biomass sorghum genotypes and to estimate genotypic, phenotypic, and environmental correlations, and direct and indirect effects of seven agronomic traits through path analysis. Thirty-four biomass sorghum genotypes and two forage sorghum genotypes were cultivated in a randomized block design with three replicates. The following morpho-agronomic traits were evaluated: flowering date, stem diameter, number of stems, plant height, number of leaves, green mass production, and dry matter production. There were significant differences at the 1% level for all traits. The highest genotypic correlation was found between the traits green mass production and dry matter production. The path analysis demonstrated that green mass production and number of leaves can assist in the selection of dry matter production.
da Teixeira, Catarine S C; de Carvalho, Gleidson G P; Nicory, Isis C M; Santos, Aracele V; Dos Pina, Douglas S; de Júnior, José E F; de Araújo, Maria L G M L; de Rufino, Luana M A; Cirne, Luís G A; Pires, Aureliano J V
2018-04-01
Two experiments were conducted to evaluate the number of days required for total fecal collection and the viability of using the indigestible dry matter (iDM), indigestible neutral detergent fiber (iNDF), and indigestible acid detergent fiber (iADF) internal markers to determine the fecal excretion of dry matter (FEDM) and digestibility in nutritional trials with small ruminants. Eight sheep in the first experiment and eight goats in the second experiment were distributed into two 4 × 4 Latin square designs. There were no significant differences between days of total fecal collection for FEDM; digestibility of dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber corrected for ash and protein (NDFap), and non-fibrous carbohydrates corrected for ash and protein (NFCap); and total digestible nutrients (TDN) in both species. The results suggest that only 1 day of total collection is sufficient to obtain the FEDM and the digestibility of the nutritional components in sheep and goats. The markers are efficient in determining fecal production and digestibility in these animal species.
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... used exclusively for space heating with a rated heat input capacity of less than 400,000 British... average of 0.23 grams per dry standard cubic meter (0.1 grains per dry standard cubic foot), corrected to... boiler stack must not exceed an average of 0.46 grams per dry standard cubic meter (0.2 grains per dry...
Owens, Tammy J; Larsen, Jennifer A; Farcas, Amy K; Nelson, Richard W; Kass, Philip H; Fascetti, Andrea J
2014-07-01
To determine total dietary fiber (TDF) composition of feline diets used for management of obesity and diabetes mellitus. Cross-sectional survey. Dry veterinary (n = 10), canned veterinary (12), and canned over-the-counter (3) feline diets. Percentage of TDF as insoluble dietary fiber (IDF), high-molecular-weight soluble dietary fiber (HMWSDF), and low-molecular-weight soluble dietary fiber (LMWSDF) was determined. Median measured TDF concentration was greater than reported maximum crude fiber content in dry and canned diets. Median TDF (dry-matter) concentration in dry and canned diets was 12.2% (range, 8.11% to 27.16%) and 13.8% (range, 4.7% to 27.9%), respectively. Dry and canned diets, and diets with and without a source of oligosaccharides in the ingredient list, were not different in energy density or concentrations of TDF, IDF, HMWSDF, or LMWSDF. Similarly, loaf-type (n = 11) and gravy-type (4) canned diets differed only in LMWSDF concentration. Disparities in TDF concentrations among products existed despite a lack of differences among groups. Limited differences in TDF concentration and dietary fiber composition were detected when diets were compared on the basis of carbohydrate concentration. Diets labeled for management of obesity were higher in TDF concentration and lower in energy density than diets for management of diabetes mellitus. Diets provided a range of TDF concentrations with variable concentrations of IDF, HMWSDF, and LMWSDF. Crude fiber concentration was not a reliable indicator of TDF concentration or dietary fiber composition. Because carbohydrate content is calculated as a difference, results suggested that use of crude fiber content would cause overestimation of both carbohydrate and energy content of diets.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.
1976-01-01
During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.
Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A
2006-10-01
In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering methane composition (average 63.09%) and COD removal (average 90.60%), slight differences were found among these three reactors.
Hervert-Hernández, Deisy; Sáyago-Ayerdi, Sonia G; Goñi, Isabel
2010-03-24
Pepper fruits (Capsicum annuum) contain a wide array of phytochemicals with well-known antioxidant properties. Since bioactive compounds depend on their bioavailability to exert beneficial effects, it was crucial to estimate the extent of release from the food matrix and thus their bioaccessibility. Accordingly, we determined the individual carotenoid and phenolic content as well as the antioxidant properties of four red hot dried cultivars (Capsicum annuum L.) of high consumption in Mexico and estimated the extent of intestinal bioaccessibility of carotenoids with significance in human health, beta-carotene, beta-cryptoxanthin, and zeaxanthin, using an in vitro gastrointestinal model. Hot dried peppers at ripe stage had a high content of bioactive compounds that exhibited significant antioxidant properties (26-80 micromol trolox equivalents/g of dry matter), such as polyphenols (>2000 mg/100 g of dry matter) and carotenoids (95-437 mg/100 g of dry matter), which were partially bioaccessible. The amount released from the food matrix by the action of digestive enzymes was about 75% for total polyphenols, up to 49% for both beta-carotene and zeaxanthin, and up to 41% for beta-cryptoxanthin. The results suggest that from 50 to 80% of these carotenoids could reach the colon to be potentially fermented or could remain unavailable.
Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua
2013-01-01
Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.
Xu, Jie; Li, Congfeng; Liu, Huitao; Zhou, Peilu; Tao, Zhiqiang; Wang, Pu; Meng, Qingfeng; Zhao, Ming
2015-01-01
Plastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China. Compared to crops grown without PM treatment (control, CK), PM significantly increased the grain yield by 15-26% in the dry years, but no significant yield increase was observed in the rainy years. Yield increase in the dry years was mainly due to a large increase in dry matter accumulation pre-silking compared to the CK, which resulted from a greater dry matter accumulation rate due to the higher topsoil temperature and water content. As a result, the WUE of the crops that underwent PM (3.27 kg m-3) treatment was also increased by around 16% compared to the CK, although the overall evapotranspiration was similar between the two treatments. In the rainy years, due to frequent precipitation and scant sunshine, the topsoil temperature and water content in the field that received PM treatment was improved only at some stages and failed to cause higher dry matter accumulation, except at the 8th leaf stage. Consequently, the grain yield and WUE were not improved by PM in the rainy years. In addition, we found that PM caused leaf senescence at the late growth stage in both dry and rainy years. Therefore, in practice, PM should be applied cautiously, especially when in-season precipitation is taken into account. PMID:25970582
... cup cooked dry beans, or 1 egg. Milk Matters Milks is an important part of a toddler's ... fortified breads and cereals, cooked dried beans, and dark green vegetables like broccoli, bok choy, and kale. ...
Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products.
Tolić, Mandica-Tamara; Jurčević, Irena Landeka; Krbavčić, Ines Panjkota; Marković, Ksenija; Vahčić, Nada
2015-06-01
Chokeberries ( Aronia melanocarpa ) are rarely used in diet in Croatia but they have high content of polyphenolic compounds and one of the highest in vitro antioxidant activities among fruits. The aim of this study is to compare the quality, phenolic content and antioxidant capacity of different chokeberry products (juices, powders, fruit tea, capsules and dried berries). It can be expected that processing influences antioxidant activity and phenolic content of final products reaching consumers. Characterisation of phenolic compounds was carried out by using spectroscopic methods (Folin-Ciocalteu and pH differential methods). Antioxidant activity of chokeberry products was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. The results show that the investigated products contain high amount of phenols (3002 to 6639 mg per L and 1494 to 5292 mg per 100 g of dry matter) and lower amount of total anthocyanins (150 to 1228 mg per L and 141 to 2468 mg per 100 g of dry matter). The examined juices and other chokeberry products possess high antioxidant capacity (12.09 to 40.19 mmol per L or 58.49 to 191.31 mmol per 100 g of dry matter, respectively) and reducing power (38.71 to 79.86 mmol per L or 13.50 to 68.60 mmol per 100 g of dry matter, respectively). On the basis of phenolic content and antioxidant activity, capsules and powders stand out among other products. The study indicates that there are significant differences (p<0.05) in the quality, phenolic content and antioxidant capacity among examined products.
Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products
Jurčević, Irena Landeka; Krbavčić, Ines Panjkota; Marković, Ksenija; Vahčić, Nada
2015-01-01
Summary Chokeberries (Aronia melanocarpa) are rarely used in diet in Croatia but they have high content of polyphenolic compounds and one of the highest in vitro antioxidant activities among fruits. The aim of this study is to compare the quality, phenolic content and antioxidant capacity of different chokeberry products (juices, powders, fruit tea, capsules and dried berries). It can be expected that processing influences antioxidant activity and phenolic content of final products reaching consumers. Characterisation of phenolic compounds was carried out by using spectroscopic methods (Folin–Ciocalteu and pH differential methods). Antioxidant activity of chokeberry products was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. The results show that the investigated products contain high amount of phenols (3002 to 6639 mg per L and 1494 to 5292 mg per 100 g of dry matter) and lower amount of total anthocyanins (150 to 1228 mg per L and 141 to 2468 mg per 100 g of dry matter). The examined juices and other chokeberry products possess high antioxidant capacity (12.09 to 40.19 mmol per L or 58.49 to 191.31 mmol per 100 g of dry matter, respectively) and reducing power (38.71 to 79.86 mmol per L or 13.50 to 68.60 mmol per 100 g of dry matter, respectively). On the basis of phenolic content and antioxidant activity, capsules and powders stand out among other products. The study indicates that there are significant differences (p<0.05) in the quality, phenolic content and antioxidant capacity among examined products. PMID:27904346
Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng
2018-01-01
Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592
40 CFR 60.282a - Standard for filterable particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... matter. 60.282a Section 60.282a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... 23, 2013 § 60.282a Standard for filterable particulate matter. (a) On and after the date on which the... furnace any gases which: (i) Contain filterable particulate matter in excess of 0.10 gram per dry standard...
Piñeiro-Vázquez, Angel Trinidad; Ayala-Burgos, Armín Javier; Chay-Canul, Alfonso Juventino; Ku-Vera, Juan Carlos
2013-02-01
The aim of the study was to evaluate the effect of graded levels of Enterolobium cyclocarpum pods in the ration on feed intake and digestibility by Pelibuey lambs. Five dietary treatments were imposed where ground pods replaced concentrate diet at 0, 20, 30, 40 and 50 % of dry matter (DM), respectively. The concentrate portion was composed of ground sorghum, soybean meal, cane molasses and minerals. Five entire Pelibuey lambs with initial bodyweight 34 ± 2 kg were allocated in the treatments in a 5 × 5 Latin square design. Values of dry matter intake (DMI) and dry matter (DMD) and organic matter (OMD) digestibility were measured and metabolisable energy intake (MEI) estimated. Rumen degradation constants for E. cyclocarpum were also measured. There were no differences (P > 0.05) in average DMI (86.6 g/kg(0.75)) and OMI (81.2 g/kg(0.75)) among treatments. As the level of incorporation of E. cyclocarpum pods increased, voluntary DMI and OMI increased, whereas apparent DMD and OMD decreased linearly. Average digestible DM (65 g/kg(0.75)) and OM (61 g/kg(0.75)) intakes were similar (P > 0.05) among treatments. Similarly, MEI (0.976 MJ ME kg(0.75)/day) was not different (P > 0.05) among treatments. The potential rumen degradation (A + B) of ground pods of E. cyclocarpum was 866.4 g/kg DM. Ground pods of E. cyclocarpum can be employed for lamb feeding up to 50 % of the ration, without affecting DMI, DM apparent digestibility and MEI.
Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J
2016-05-01
Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk
2017-08-01
Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland.
Shardendu; Salhani, N; Boulyga, S F; Stengel, E
2003-03-01
The phytoremediation of selenium by two different wetland species was investigated. Selenium (20.4 microg/l) was supplied continuously to subsurface flow constructed wetlands, one vegetated with Typha latifolia L. and the other with Phragmites australis (Cav.) Trin. ex Steud. The beds of both species had same hydraulic loading rate (0.079 m(3)/m(2)/d) and water retention time (24 h). However, the mass loading rate was 1.27 mg Se/m(2)/d for Phragmites and 1.35 mg Se/m(2)/d for Typha. In the Typha bed Se migrated faster than in the Phragmites bed. After 25 d of Se supplementation in the Typha bed about 54% of the Se inlet concentration remained in the outlet water. In the Phragmites bed Se was removed completely from the water after passing through 3/4 of the bed length. After 65 d of Se supplementation the highest amount of Se (2.8 microg/g dry matter) was determined in the organic material of the Typha bed. Roots and rhizomes accumulated 2.2 and 1.8 microg/g dry matter respectively. Phragmites accumulated Se in the leaves and stems, but not in the rhizomes. The accumulation in the leaves (1.8 microg Se/g dry matter) was three times higher than in the stems (0.6 microg Se/g dry matter). Copyright 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Natsir, A.; Mujnisa, A.; Mide, M. Z.; Purnomo, N.; Saade, M. F.
2018-05-01
Cocoa pulp is a by-product from cocoa industry which is produced in large quantity, but very limited study has been carried out in utilizing it as energy source in animal feed. The purpose of this study was to assess the in vitro dry matter (IVDMD) and in vitro organic matter digestibility (IVOMD) of complete feed containing different levels of cocoa pulp. The experiment was carried out according to completely randomised design consisting of four treatments and three replications. The treatments were P0 = Complete feed containing 0% cocoa pulp, P1 = Complete feed containing 5% cocoa pulp, P2 = Complete feed containing 10% cocoa pulp, and P3 = Complete feed containing 15% cocoa pulp on dry matter basis. The results of the study indicated that the average IVDMD was 567, 538, 566, and 526 g kg-1 DM, while the average IVOMD was 522, 491, 502, and 461 g/kg DM, respectively for treatment P0, P1, P2, and P3. Statistical analysis indicated that increasing levels of coca pulp in the feed significantly affected (P<0.05) the IVDMD and IVOMD of the feed. In conclusion, cocoa pulp is potential to be used up to 10% in complete feed with corn cobs as the fibre source.
Anderson, J L; Kalscheur, K F; Garcia, A D; Schingoethe, D J
2015-08-01
The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected dry matter intake, average daily gain (ADG), growth performance, and nutrient digestibility. Thirty-three Holstein heifers (133±18 d old) were used in a 24-wk randomized complete block design. Treatments were (1) control (CON) containing ground corn and soybean products, (2) low-fat (LFDG) containing low-fat, high-protein DDGS and ground corn, and (3) high-fat (HFDG) with traditional DDGS. All diets contained 39.8% grass hay, 24.8% corn silage, and 1.5% vitamins and minerals. The HFDG diet was formulated to contain 4.8% fat compared with 2.8% in the CON and LFDG diets, which were greater in nonfibrous carbohydrate. Diets had a net energy gain of 1.0Mcal/kg of dry matter and were limit-fed at 2.45% of body weight. Heifers were weighed every 2wk and rations were adjusted accordingly. Heart girth, hip and wither heights, body length, and body condition score were recorded every 2wk. Total-tract digestion of nutrients was evaluated during wk16 using fecal grab sampling and an external marker. No treatments by time interactions were found. Dry matter intakes, body weights, ADG, and gain-to-feed ratio were similar among treatments; however, ADG averaged 0.96kg/d among treatments, which is greater than recommended. All body frame measurements and body condition scores were similar among treatments. Total-tract digestibilities of dry matter and organic matter were not different among treatments. However, crude protein and neutral detergent fiber digestibility were increased in the HFDG diet compared with the CON and LFDG diets. These results demonstrate that using DDGS or low-fat DDGS with corn in growing heifer rations can maintain performance. Utilizing the fat in DDGS as a dietary energy source in replacement of starch from corn did not influence growth performance or negatively affect nutrient digestion. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Analysis of silage composition by near-infrared reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.
1991-02-01
Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .
Santos, E M; Pereira, O G; Garcia, R; Ferreira, C L L F; Oliveira, J S; Silva, T C
2014-07-01
The objectives of this study were to characterize and quantify the microbial populations in guinea grass (Panicum maximum Jacq. cultivar Mombasa) harvested at different regrowth intervals (35, 45, 55, and 65 d). The chemical composition and fermentation profile of silages (after 60 d) with or without the addition of a microbial inoculant were also analyzed. Before ensiling, samples of the plants were used for the isolation and identification of lactic acid bacteria (LAB) in the epiphytic microbiota. A 4 × 2 factorial arrangement of treatments (4 regrowth intervals × with/without inoculant) was used in a completely randomized design with 3 replications. Based on the morphological and biochemical characteristics and the carbohydrate fermentation profile, Lactobacillus plantarum was found to be the predominant specie of LAB in guinea grass forage. Linear increases were detected in the dry matter (DM) content and concentrations of neutral detergent fiber, acid detergent fiber, acid detergent insoluble nitrogen, and DM recovery as well as linear reductions in the concentrations of crude protein and NH3-N with regrowth interval. Additionally, linear reductions for gas and effluent losses in silages were detected with increasing regrowth interval. These results demonstrate that guinea grass plants harvested after 55 d of regrowth contain a LAB population sufficiently large to ensure good fermentation and increase the DM recovery. The use of microbial inoculant further enhanced the fermentation of guinea grass at all stages of regrowth by improving the DM recovery. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mang, Dimitry Y; Abdou, Armand B; Njintang, Nicolas Y; Djiogue, Edith J M; Panyo, Emmanuel A; Bernard, Clemence; Ndjouenkeu, Robert; Loura, Benoît B; Mbofung, Carl M F
2016-01-01
Extraction conditions for maximum values of protein yield, protein content, sugar content and dry matter of vegetable milk extracts from dehulled Mucuna cochinchinensis bean flour and whole Mucuna cochinchinensis bean flour were investigated using response surface methodology. A Central Composite Design (CCFD) with three factors: temperature (25 to 95 °C); extraction time (6 to 74 min.) and water to flour ratio (6 to 24 mL/g) were used. Data analysis showed that all the factors significantly (p < 0.05) affected the responses variables. The optimal conditions determined for extraction were temperature 63-66 °C, water to flour ratio 12-13 mL/g and extraction time of 57-67 min. At these optimum points the protein and sugar contents, extraction yield of protein and dry matter were respectively 14.0 g/100 mL, 4.8 g/100 mL, 53.8 g/100 g, 12.1 g/100 g for vegetable milk produced from dehulled M. cochinchinensis bean flour and 6.4 g/100 mL, 3.5 g/100 mL, 50.0 g/100 g and 8.0 g/100 g for vegetable milk extracted from whole M. cochinchinensis bean flour milk. The optimal condition was verified at the optimum points for model validation and the response values were not significantly different from the predicted values.
Encapsulation of black carrot juice using spray and freeze drying.
Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam
2015-12-01
Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.
Ma, Shang-Yu; Yu, Zhen-Wen; Shi, Yu; Zhao, Jun-Ye; Zhang, Yong-Li
2014-04-01
With the high-yielding winter wheat cultivar Jimai 22 as test material, a three-year field experiment was conducted to examine the effects of border length for irrigation on flag leaf water potential, photosynthetic characteristics, dry matter accumulation and distribution of wheat. In the 2010-2011 growing season, six treatments were installed, i. e., the field border length was designed as 10 m (L10), 20 m (L20), 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). In the 2011-2012 and 2012-2013 growing seasons, the field border length was designed as 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). The results showed that the average relative soil water content of the 0-200 cm soil layer was presented as L80, L60>L100>L40>L20>L10 at anthesis in the 2010-2011 growing season and as L80, L60>L100>L40 in the 2011-2012 and 2012-2013 growing seasons. At 11 d and 21 d after anthesis, the water potential, net photosynthetic rate and transpiration rate of flag leaf were presented as L80, L100>L60>L40>L20, L10, and as L80>L60, L100>L40, L20, L10 at 31 d after anthesis. The coefficients of variability both of the dry matter accumulation at anthesis and maturity and of grain yield in different regions of L80 field were lower than those of L100. The average dry matter accumulation, dry matter accumulation after anthesis and the contribution to grain of L80 were dramatically higher than those of L100, L40, L20 and L10. L80 had the highest average grain yield and water use efficiency, being the best treatment for irrigation in our study.
Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed
2016-10-15
Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity. Copyright © 2016 Elsevier B.V. All rights reserved.
The distribution of dry matter growth between shoot and roots in loblolly pine
F. Thomas Ledig; F. Herbert Bormann; Karl F. Wenger
1970-01-01
The allometric relationship, log (y) = a + kâ¢log (x)-where x is one plant organ (e g., dry weight of roots) and y is another (e.g., dry weight of shoot)-was used to study the relative distribution of growth within loblolly pine seedlings. The relative...
Simple agrometeorological models for estimating Guineagrass yield in Southeast Brazil.
Pezzopane, José Ricardo Macedo; da Cruz, Pedro Gomes; Santos, Patricia Menezes; Bosi, Cristiam; de Araujo, Leandro Coelho
2014-09-01
The objective of this work was to develop and evaluate agrometeorological models to simulate the production of Guineagrass. For this purpose, we used forage yield from 54 growing periods between December 2004-January 2007 and April 2010-March 2012 in irrigated and non-irrigated pastures in São Carlos, São Paulo state, Brazil (latitude 21°57'42″ S, longitude 47°50'28″ W and altitude 860 m). Initially we performed linear regressions between the agrometeorological variables and the average dry matter accumulation rate for irrigated conditions. Then we determined the effect of soil water availability on the relative forage yield considering irrigated and non-irrigated pastures, by means of segmented linear regression among water balance and relative production variables (dry matter accumulation rates with and without irrigation). The models generated were evaluated with independent data related to 21 growing periods without irrigation in the same location, from eight growing periods in 2000 and 13 growing periods between December 2004-January 2007 and April 2010-March 2012. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, minimum temperature and potential evapotranspiration or degreedays) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on minimum temperature corrected by relative soil water storage, determined by the ratio between the actual soil water storage and the soil water holding capacity.irrigation in the same location, in 2000, 2010 and 2011. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, potential evapotranspiration or degree-days) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on degree-days corrected by the water deficit factor.
Xia, Chuanqi; Liang, Yixun; Bai, Sarula; He, Yang; Muhammad, Aziz Ur Rahman
2018-01-01
Objective Wheat is an alternative to corn silage for ruminant feeding in northern China. This study examined the effects of harvest time and added molasses on nutritional content, ensiling characteristics and in vitro degradation of whole crop wheat (WCW). Methods Fresh WCW at the milk-ripe stage was harvested at 0700 h (i.e., in the morning [Mo]) and 1700 h (i.e., in the afternoon [Af]), and then immediately used to prepare silage and make hay. Commercial molasses was added to Af WCW at 0%, 2%, 4%, and 6% (fresh weight) proportions. The WCW treated with molasses was mixed thoroughly prior to ensiling. Results Dry matter (DM), neutral detergent fiber, water soluble carbohydrate (WSC) content (p<0.01), accumulative gas production in 72 h (GP72h, 77.46 mL/g vs 95.15 mL/g) and dry matter disappearance in vitro (69.15% vs 76.77%) were lower (p<0.05), while crude protein (CP) content was higher for WCW silage (WCWS) compared to WCW (p<0.01). The propionic acid and butyric acid concentrations in WCWS from Mo WCW were 1.47% and 0.26%, respectively. However, the propionic and butyric acid concentrations were negligible, while the ammonia nitrogen/total nitrogen (NH3-N/TN, p<0.01) concentration was lower and the rate of gas production at 50% of the maximum (17.05 mL/h vs 13.94 mL/h, p<0.05) was higher for Af WCWS compared to Mo WCWS. The incubation fluid’s NH3-N concentration was lower in WCWS and Af WCW compared to Mo WCW (p<0.05). The CP and WSC content increased with increasing molasses levels (p<0.05). Furthermore, the pH (p<0.01) and time when gas production was 50% of the maximum (2.78 h vs 3.05 h, p<0.05) were lower in silage treated with 4% molasses than silage without molasses. Conclusion Harvesting wheat crops in the afternoon and adding molasses at 4% level to WCW optimally improved ensiling characteristics, leading to well-preserved silage. PMID:29059724
Comparison of shortened and conventional dry period management strategies.
Cermakova, J; Kudrna, V; Simeckova, M; Vyborna, A; Dolezal, P; Illek, J
2014-09-01
The aim of this study was to compare 2 dry-cow management strategies and evaluate the effect of shortened dry period strategy on feed intake, metabolism, and postpartum performance of dairy cows in early lactation. Twenty-nine high-yielding dairy cows were divided into 2 groups. The control (CON) group (n=14) was assigned to a traditional dry period of approximately 60 d (57±5.9 d) and was fed a far-off dry cow ration from dry-off to -21 d relative to expected parturition. From d -21 relative to expected parturition, the cows were switched to a precalving ration containing an additional 3kg of concentrates. The cows of the experimental group (n=15) were assigned to a shortened dry period (SDP; 35±6.3 d) and were continuously fed a late-lactation diet from d -60 d relative to expected parturition until calving. After calving, both groups were fed the same lactation diet corresponding to their lactation requirements and cows were followed for 100 d of lactation. Prepartum dry matter intake of the cows assigned to an SDP and fed a late-lactation diet was approximately 4.11kg/cow per day greater compared with the CON group during the 60 d. However, no effect of dry period strategy on postpartum dry matter intake was detected. The cows with an SDP produced approximately 2.78kg/d (6.9%) less milk in the first 100 d of lactation than CON cows; the difference was not statistically significant. No differences were observed in live body weight, body condition score, or back-fat thickness between the treatments. Similarly, no differences existed in concentrations of plasma metabolites. The cows of the SDP group showed lower pH and increased concentrations of lactic acid and volatile fatty acids prepartum than the CON cows. Postpartum concentrations of lactic acid, volatile fatty acids, and NH3 and pH in rumen fluid did not differ between the treatments. Shortening of the dry period did not affect the colostrum quality or birth weights of the calves. Based on the results of this study, a traditional dry period management strategy appeared to be more favorable, considering the dry matter intake and milk production, compared with an SDP and feeding a late-lactation diet throughout the dry period. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effects of bedding quality on lying behavior of dairy cows.
Fregonesi, J A; Veira, D M; von Keyserlingk, M A G; Weary, D M
2007-12-01
Cows prefer to spend more time lying down in free stalls with more bedding, but no research to date has addressed the effects of bedding quality. Bedding in stalls often becomes wet either from exposure to the elements or from feces and urine. The aim of this study was to test the effect of wet bedding on stall preference and use. Four groups of 6 nonlactating Holstein cows were housed in free stalls bedded daily with approximately 0.1 m of fresh sawdust. Following a 5-d adaptation period, each group of cows was tested sequentially with access to stalls with either dry or wet sawdust bedding (86.4 +/- 2.1 vs. 26.5 +/- 2.1% dry matter), each for 2 d. These no-choice phases were followed by a 2-d free-choice phase during which cows had simultaneous access to stalls containing either wet or dry bedding. Stall usage was assessed by using 24-h video recordings scanned at 10-min intervals, and responses were analyzed by using a mixed model, with group (n = 4) as the observational unit. The minimum and maximum environmental temperatures during the experiment were 3.4 +/- 2.2 and 6.8 +/- 2.5 degrees C, respectively. When cows had access only to stalls with wet bedding, they spent 8.8 +/- 0.8 h/d lying down, which increased to 13.8 +/- 0.8 h/d when stalls with dry bedding were provided. Cows spent more time standing with their front 2 hooves in the stall when provided with wet vs. dry bedding (92 +/- 10 vs. 32 +/- 10 min/d). During the free-choice phase, all cows spent more time lying down in the dry stalls, spending 12.5 +/- 0.3 h/d in the dry stalls vs. 0.9 +/- 0.3 h/ d in stalls with wet bedding. In conclusion, dairy cows show a clear preference for a dry lying surface, and they spend much more time standing outside the stall when only wet bedding is available.
Tai, Anna Y-C; Chen, L-W Antony; Wang, Xiaoliang; Chow, Judith C; Watson, John G
2017-02-01
Lake Tahoe, a North American alpine lake long appreciated for its clear water and geographic setting, has experienced a trend of declining water clarity due to increasing nutrient and particle inputs. Contributions from atmospheric deposition of particulate matter (PM) could be important, yet they are inadequately quantified. This study established a yearlong deposition monitoring network in the northern Lake Tahoe Basin. Dry deposition was quantified on surrogate surfaces while wet deposition was based on particles suspended in precipitation at 24-hour resolution. The particle size ranges by these passive techniques were 1-64μm and 0.5-20μm in diameter for dry and wet deposition, respectively. Dry deposition of submicrometer (0.5-1μm) particles was also estimated by extrapolation of a lognormal size distribution. Higher daily number deposition fluxes (NDF dry and NDF wet ) were found at a near-shore site, confirming substantial impacts of commercial and tourist activities. The two more isolated sites indicated a uniform regional background. On average, daily NDF dry is about one order of magnitude lower than daily NDF wet . Dry deposition velocities increased rapidly with particle size, as evidenced by collocated measurements of NDF dry and ambient particle number concentrations, though it seems less so for wet deposition due to different scavenging mechanisms. Despite fewer "wet" days than "dry" days during the monitoring period, wet processes dominated seasonal particle deposition, particularly in winter and spring when most precipitation occurred. Adopting sediment (insoluble, inorganic) particle fraction estimates from the literature, this study reports an annual particle flux of 2.9-5.2×10 10 #m -2 yr -1 for sediment particles with 1-20μm diameter and 6.1-11×10 10 #m -2 yr -1 for those with 0.5-20μm diameter. Implications of these findings to the current knowledge of atmospheric deposition in the Lake Tahoe Total Maximum Daily Load (TMDL) are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... limits HMIWI size Small Medium Large Averaging time 1 Methodfor demonstrating compliance 2 Particulate matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 69 (0.03) 34 (0.015.../furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter TEQ (grains...
Code of Federal Regulations, 2011 CFR
2011-07-01
... HMIWI size Small Medium Large Averaging time 1 Method fordemonstrating compliance 2 Particulate matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 66 (0.029) 22 (0.0095) 18 (0.../furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter TEQ (grains...
Mani, Dinesh; Sharma, Bechan; Kumar, Chitranjan
2007-07-01
An investigation was conducted to study the interaction between Cd and Ca, Zn and organic matter for Cd-phytoremediation in sunflower on the alluvium soil of the Sheila Dhar Institute (SDI) experimental farm, Allahabad (India). Application of 40 ppm Zn produced 11.18% extra dry matter (DM) content and 5.8% extra seed yield over the control. We recommended 1.0% Ca, 40 ppm Zn and 20 tons/ha of compost to enhance dry matter yield and diminish the Cd accumulation in 15 ppm Cd- ethylenediaminetetraacetic (EDTA)-treated plots up to 1/12 folds in sunflower (<0.21 ppm), which indicated phytoremediation of Cd-contaminated soil through soil-plant-rhizospheric processes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge... mercury (Hg) sorbent flow rate Hourly Once per hour ✔ ✔ Minimum pressure drop across the wet scrubber or...
Moate, P J; Jacobs, J L; Hannah, M C; Morris, G L; Beauchemin, K A; Alvarez Hess, P S; Eckard, R J; Liu, Z; Rochfort, S; Wales, W J; Williams, S R O
2018-05-02
Short-term studies have shown that feeding dairy cows diets containing a high proportion (>40%) of wheat may result in reduced milk fat concentration and reduced CH 4 emissions (g of CH 4 /cow per d), but no long-term studies have been done on these responses. This study compared the milk production and CH 4 responses when 24 dairy cows were fed diets containing high proportions of either wheat or corn over 16 wk. Cows were assigned to 2 groups and offered a diet (CRN) containing 10.0 kg of dry matter/d of crushed corn grain, 1.8 kg of dry matter/d of canola meal, 0.2 kg of dry matter/d of minerals, and 11.0 kg of dry matter/d of chopped alfalfa hay or a similar diet (WHT) in which wheat replaced the corn. Dry matter intake and milk yields of individual cows were measured daily. Methane emissions from individual cows were measured using controlled climate respiration chambers over 2 consecutive days during each of wk 4, 10, and 16. Milk composition was measured on the 2 d when cows were in chambers during wk 4, 10, and 16. Over the 16-wk experimental period, total dry matter intake remained relatively constant and similar for the 2 dietary treatment groups. At wk 4, CH 4 emission, CH 4 yield (g of CH 4 /kg of dry matter intake), milk fat yield, and milk fat concentration were substantially less in cows fed the WHT diet compared with the same metrics in cows fed the CRN diet; but these differences were not apparent at wk 10 and 16. The responses over time in these metrics were not similar in all cows. In 4 cows fed the WHT diet, CH 4 yield, milk fat concentration, and milk fat yield remained relatively constant from wk 4 to 16, whereas for 5 fed the WHT diet, their CH 4 emissions, milk fat yields, and milk fat concentrations almost doubled between wk 4 and 16. In the short term (4 wk), the inclusion of approximately 45% wheat instead of corn in the diet of cows resulted in reductions of 39% in CH 4 yield, 35% in milk fat concentration, and 40% in milk fat yield. However, these reductions did not persist to wk 10 or beyond. Our data indicate that cows do not all respond in the same way with some "adaptive" cows showing a marked increase in CH 4 yield, milk fat concentration, and milk fat yield after wk 4, whereas in other "nonadaptive" cows, these metrics were persistently inhibited to 16 wk. This research shows that short-term studies on dietary interventions to mitigate enteric CH 4 emissions may not always predict the long-term effects of such interventions. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ruohonen; Grove; McIlroy
1997-07-01
Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436±189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65±113 and 70±66 mg kg-1 h-1 respectively). Dietary water facilitated food processing and increased daily dry matter intake of trout when fed four times a day. When only one satiation meal per day was allowed, dietary water had no effect. It is concluded from this work that, in addition to gastric volume, a short-term limitation on the size of satiation meals in the rainbow trout is the availability of water to moisturize the food and thus to promote gastric digestion and emptying. 1997 The Fisheries Society of the British Isles
Xia, Gui-Hui; Wang, Qiu-Ling; Wang, Wen-Quan; Hou, Jun-Ling; Song, Qing-Yan; Luo, Lin; Zhang, Dou-Dou; Yang, Xiang
2016-11-01
With annual Salvia miltiorrhiza seedlings as experimental material, using "3414" optimal regression design recommended by the Ministry of Agriculture and regularly watered with nutrient solution, through the dynamic sampling of S. miltiorrhiza in different growing stages, and the growth index, dry weight of plant root and content of active components were measured. The potted experiments were applied to study the effects of different nitrogen and phosphorus ratios on the growth, dry matter accumulation and accumulation of active components of S. miltiorrhiza, in order to explore a compatible fertilization method of nitrogen and phosphorus ratio that are suitable for production and quality of S. miltiorrhiza. The results reported as follows:①High concentrations of nitrogen fertilizer was beneficial to dry matter accumulation of S. miltiorrhiza aerial parts, and low concentration of nitrogen fertilizer transferred the dry matter accumulation to underground, and N1P1 could make the transfer ahead of time;②Regression analysis showed that in the early growth stage (before early July), we could use the nitrogen and phosphorus as basic fertilizer at a concentration of 1.521,0.355 g•L⁻¹ respectively to promote the growth of S. miltiorrhiza and at a concentration of 2.281,0.710 g•L⁻¹ respectively to promote the dry matter accumulation of root (after mid-August);③Five kinds of active components of S. miltiorrhiza decreased with the increase of nitrogen concentration, and increased with the increase of the concentration of phosphate fertilizer. Nitrogenous fertilizer, phosphate fertilizer in N-P=2∶3 ratio was more suitable for the accumulation of salvianolic acids, in N-P=1∶2 ratio was more suitable for the accumulation of tanshinone. Copyright© by the Chinese Pharmaceutical Association.
Cyanogenic potential of cassava peels and their detoxification for utilization as livestock feed.
Tweyongyere, Robert; Katongole, Ignatious
2002-12-01
This study determined the cyanogenic potential of the cassava peels and assess the effectiveness of sun drying, heap fermentation and wet fermentation (soaking) in reducing the cyanide potential of the peels. Fresh cassava peels from major fresh food markets in Kampala and cassava grown in various parts of Uganda from Namolonge Agricultural and Animal Research Institute were used. The fresh peels from the market were subjected to the different detoxification methods foe 5 d; the cyanide potential was determined by enzymatic assay. The mean potential of the cassava peels from the food markets Kampala was 856 mg cyanide equivalen/kg of dry matter. The potential of the peels of the 14 cultivars fell between 253 and 1081 mg cyanide eQuivalent/kg of dry matter. High cyanogenic potential cultivars dominate on the market and pose danger of poisoning to livestock fed on fresh cassava peels. Treatment of the peels by sun-drying, heap fermentation on soaking reduced the cyanide potential to below 100 mg cyanide equivalent/kg of dry matter at 48, 72 and 96 h respectively. Sun-dying caused an early sharp fall in the cyanide potential, but heap fermentation or soaking gave the lowest residual cyanide after 120 h. Cassava peels could be safely used as livestock feed if they are treated to reduce the cyanogenic potential.
Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity
Chiou, C.T.; Shoup, T.D.
1985-01-01
Vapor sorption isotherms on dry Woodburn soil at 20-30??C were determined for benzene, chlorobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,2,4-trichlorobenzene, and water as single vapors and for benzene, m-dichlorobenzene, and 1,2,4-trichlorobenzene as functions of relative humidity (RH). Isotherms for all compounds on dry soil samples are distinctively nonlinear, with water showing the greatest capacity. Water vapor sharply reduced the sorption capacities of organic compounds with the dry soil; on water-saturated soil, the reduction was about 2 orders of magnitude. The markedly higher sorption of organic vapors at subsaturation humidities is attributed to adsorption on the mineral matter, which predominates over the simultaneous uptake by partition into the organic matter. At about 90% RH, the sorption capacities of organic compounds become comparable to those in aqueous systems. The effect of humidity is attributed to adsorptive displacement by water of organics adsorbed on the mineral matter. A small residual uptake is attributed to the partition into the soil-organic phase that has been postulated in aqueous systems. The results are essentially in keeping with the model that was previously proposed for sorption on the soil from water and from organic solvents.Vapor sorption isotherms on dry Woodburn soil at 20-30 degree C were determined for benzene, chlorobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,2,4-trichlorobenzene, and water as single vapors and for benzene, m-dichlorobenzene, and 1,2,4-trichlorobenzene as functions of relative humidity (RH). Isotherms for all compounds on dry soil samples are distinctively nonlinear, with water showing the greatest capacity. Water vapor sharply reduced the sorption capacities of organic compounds with the dry soil; on water-saturated soil, the reduction was about 2 orders of magnitude. The markedly higher sorption of organic vapors at subsaturation humidities is attributed to adsorption on the mineral matter. The results are essentially in keeping with the model that was previously proposed for sorption on the soil from water and from organic solvents.
Investment opportunity : the FPL low-cost solar dry kiln
George B. Harpole
1988-01-01
Two equations are presented that may be used to estimate a maximum investment limit and working capital requirements for the FPL low-cost solar dry kiln systems. The equations require data for drying cycle time, green lumber cost, and kiln-dried lumber costs. Results are intended to provide a preliminary estimate.
Morgen, Michael; Bloom, Corey; Beyerinck, Ron; Bello, Akintunde; Song, Wei; Wilkinson, Karen; Steenwyk, Rick; Shamblin, Sheri
2012-02-01
To demonstrate drug/polymer nanoparticles can increase the rate and extent of oral absorption of a low-solubility, high-permeability drug. Amorphous drug/polymer nanoparticles containing celecoxib were prepared using ethyl cellulose and either sodium caseinate or bile salt. Nanoparticles were characterized using dynamic light scattering, transmission and scanning electron microscopy, and differential scanning calorimetry. Drug release and resuspension studies were performed using high-performance liquid chromatography. Pharmacokinetic studies were performed in dogs and humans. A physical model is presented describing the nanoparticle state of matter and release performance. Nanoparticles dosed orally in aqueous suspensions provided higher systemic exposure and faster attainment of peak plasma concentrations than commercial capsules, with median time to maximum drug concentration (Tmax) of 0.75 h in humans for nanoparticles vs. 3 h for commercial capsules. Nanoparticles released celecoxib rapidly and provided higher dissolved-drug concentrations than micronized crystalline drug. Nanoparticle suspensions are stable for several days and can be spray-dried to form dry powders that resuspend in water. Drug/polymer nanoparticles are well suited for providing rapid oral absorption and increased bioavailability of BCS Class II drugs.
Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René
2016-10-01
Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Robustness of Tomato Quality Evaluation Using a Portable Vis-SWNIRS for Dry Matter and Colour
Subedi, P. P.; Walsh, K. B.
2017-01-01
The utility of a handheld visible-short wave near infrared spectrophotometer utilising an interactance optical geometry was assessed in context of the noninvasive determination of intact tomato dry matter content, as an index of final ripe soluble solids content, and colouration, as an index of maturation to guide a decision to harvest. Partial least squares regression model robustness was demonstrated through the use of populations of different harvest dates or growing conditions for calibration and prediction. Dry matter predictions of independent populations of fruit achieved R2 ranging from 0.86 to 0.92 and bias from −0.14 to 0.03%. For a CIE a⁎ colour model, prediction R2 ranged from 0.85 to 0.96 and bias from −1.18 to −0.08. Updating the calibration model with new samples to extend range in the attribute of interest and in sample matrix is key to better prediction performance. The handheld spectrometry system is recommended for practical implementation in tomato cultivation. PMID:29333161
Code of Federal Regulations, 2012 CFR
2012-07-01
... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...
Investigating alternative solutions for adsorption-contact drying when burning vegetable wastes
NASA Astrophysics Data System (ADS)
Golubkovich, A. V.
2007-06-01
Results are presented from investigation of three alternative solutions for adsorption-contact drying: combined (with cooling by means of outdoor air), with afterburning of combustible matters, and with limited adsorption of moisture using solid products of fuel combustion. Mathematical models and simplified expressions for calculating the time taken for the fuel drying to proceed are proposed.
Dry Weight of Several Piedmont Hardwoods
Bobby G. Blackmon; Charles W. Ralston
1968-01-01
Forty-four sample hardwood trees felled on 24 plots were separated into three above-ground components- stem, branches, and leaves--and weighed for dry matter content. Tree, stand, and site variables were tested for significant relationships with dry weight of tree parts. Weight increase of stems was a logarithmic function ,of both stem diameter and height, whereas for...
NASA Astrophysics Data System (ADS)
Aké-Castillo, José A.; Vázquez, Gabriela
2008-07-01
In tropical and subtropical zones, coastal lagoons are surrounded by mangrove communities which are a source of high quantity organic matter that enters the aquatic system through litter fall. This organic matter decomposes, becoming a source of nutrients and other substances such as tannins, fulvic acids and humic acids that may affect the composition and productivity of phytoplankton communities. Sontecomapan is a coastal lagoon located in the southern Gulf of Mexico, which receives abundant litter fall from mangrove. To study the phytoplankton composition and its variation in this lagoon from October 2002 to October 2003, we evaluated the concentrations of dissolved folin phenol active substances (FPAS) as a measure of plant organic matter, salinity, temperature, pH, O 2, N-NH 4+, N-NO 3-, P-PO 43-, Si-SiO 2, and phytoplanktonic cell density in different mangrove influence zones including the three main rivers that feed the lagoon. Nutrients concentrations depended on freshwater from rivers, however these varied seasonally. Concentrations of P-PO 43-, N-NH 4+ and FPAS were the highest in the dry season, when maximum mangrove litter fall is reported. Variation of these nutrients seemed to depend on the internal biogeochemical processes of the lagoon. Blooms of diatoms ( Skeletonema spp., Cyclotella spp. and Chaetoceros holsaticus) and dinoflagellates ( Peridinium aff. quinquecorne, Prorocentrum cordatum) occurred seasonally and in the different mangrove influence zones. The high cell densities in these zones and the occurrence of certain species and its ordination along gradient of FPAS in a canonical correspondence analysis, suggest that plant organic matter (i.e. mangrove influence) may contribute to phytoplankton dynamics in Sontecomapan lagoon.
Proof of concept for a new energy-positive wastewater treatment scheme.
Remy, C; Boulestreau, M; Lesjean, B
2014-01-01
For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70-80% of total chemical oxygen demand into the sludge while dosing 15-20 mg/L Al and 5-7 mg/L polymer with stable operation of the microsieve and effluent limits below 2-3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.
Hatch, J.R.; Morey, G.B.
1984-01-01
In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solor Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5 percent for 22 of 25 samples); (2) the organic matter is thermally very mature (Tmax = 494°C, sample 19) and is probably near the transition between the wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatch, J.R.; Morey, G.B.
In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solar Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5% for 22 of 25 samples); (2) the organic matter is thermally very mature (T/sub max/ = 494/sup 0/C, sample 19) and is probably near the transition between themore » wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup). 5 figs., 2 tabs.« less
Practical Considerations of Moisture in Baled Biomass Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Smith; Ian J. Bonner; Kevin L. Kenney
2013-01-01
Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover andmore » energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.« less
The surface area of soil organic matter
Chiou, C.T.; Lee, J.-F.; Boyd, S.A.
1990-01-01
The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.
Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu
2015-08-01
To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.
Structural and evaporative evolutions in desiccating sessile drops of blood
NASA Astrophysics Data System (ADS)
Sobac, B.; Brutin, D.
2011-07-01
We report an experimental investigation of the drying of a deposited drop of whole blood. Flow motion, adhesion, gelation, and fracturation all occur during the evaporation of this complex matter, leading to a final typical pattern. Two distinct regimes of evaporation are highlighted: the first is driven by convection, diffusion, and gelation in a liquid phase, whereas the second, with a much slower rate of evaporation, is characterized by the mass transport of the liquid left over in the gellified biocomponent matter. A diffusion model of the drying process allows a prediction of the transition between these two regimes of evaporation. Moreover, the formation of cracks and other events occurring during the drying are examined and shown to be driven by critical solid mass concentrations.
John K. Francis
2006-01-01
A considerable portion of the former dry and dry-transition-to-moist forests of Puerto Rico dominated by Bucida buceras L. was transformed by land clearing and periodic fires to tall grasslands dominated by Urochloa maximum Jacq. and savannas with scattered small trees and shrubs. These communities, maintained by fires, are relatively stable and difficult to reforest....
Collard, Marie; Teychené, Benoit; Lemée, Laurent
2017-12-01
Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P
2017-08-01
Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.
Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua
2013-01-01
Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected dry matter intake (DMI), average daily gain (ADG), growth performance, and nutrient digestibility. Thirty-three Holstein heifers (133 ± 18 d ol...
A rapid method for concentrating sedimentary organic matter for vitrinite reflectance analysis.
Barker, C.E.
1982-01-01
The tecnique discussed in this paper utilizes crushing, high-speed blending, and ultrasonic treatment to mechanically disaggregate rock and release the sedimentary organic matter (OM) in a suitable heavy liquid. This new method can provide freeze-dried concentrated OM in approximately 8 to 24 hours (longer time is necessary for removing carbonate). Under optimal conditions, it is possible to concentrate the OM and prepare a hardened epoxy microscope slide in about 24 hours. Subsequent grinding, polishing, and drying allows microscopic examination of the organic concentrate the next day.-from Author
Dry Cleaning Facilities: National Perchloroethylene Air Emission Standards
Learn about the Maximum Achievable Control Technology (MACT) standards for dry cleaning facilities. Find the rule history information, federal register citations, legal authority, and additional resources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Miyaji, M; Matsuyama, H; Hosoda, K
2014-02-01
The effects of the substitution of brown rice (Oryza sativa L.; BR) for corn (Zea mays L.) in ensiled total mixed ration (TMR) that had a high proportion of grain on feed intake, lactation performance, ruminal fermentation, digestion, and N utilization were evaluated. Nine multiparous Holstein cows (51 ± 9 d in milk) were used in a replicated 3 × 3 Latin square design with 3 dietary treatments: a diet containing 0, 20, or 40% steam-flaked BR and 40, 20, or 0% steam-flaked corn (dry matter basis). Cows were fed ad libitum an ensiled TMR consisting of 40.7% alfalfa silage, 11.8% grass silage, 7.1% soybean meal, and 40.0% steam-flaked grain (dry matter basis). The ensiled TMR was prepared by baling fresh TMR, and then sealed by a bale wrapper and stored outdoors at 5 to 30 °C for over 6 mo. Dry matter intake and milk yield were lower for cows fed 40% BR than for cows fed 40% corn. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The ruminal ammonia-N concentration decreased as the percentage of BR in the diets was elevated. The proportion of acetate decreased, and that of propionate and butyrate increased with the increasing levels of BR. Plasma urea-N concentrations was lower and glucose and insulin concentrations were higher for cows fed 40% BR than for cows fed 40% corn. The whole-tract apparent digestibility of dry matter, organic matter, and starch increased, and the digestibility of neutral detergent fiber and acid detergent fiber decreased with the increasing BR level in the diet, with no dietary effect on crude protein digestion. As a proportion of N intake, the urinary N excretion was lower and the retention of N was higher for cows fed 40% BR than for cows fed 40% corn, with no dietary effect observed on N secretion in milk and fecal N excretion. These results show that substituting BR for corn decreases urinary N losses and improves N utilization, but causes adverse effects on milk production when cows are fed high-grain diets at 40% of dietary dry matter. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong
2002-12-01
The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.
NASA Astrophysics Data System (ADS)
Moitra, Pranabendu; Gonnermann, Helge
2014-05-01
Magma often contains crystals of various shapes and sizes. We present experimental results on the effect of the shape- and size-distribution of solid particles on the rheological properties of solid-liquid suspensions, which are hydrodynamically analogous to crystal-bearing magmas. The suspensions were comprised of either a single particle shape and size (unimodal) or a mixture of two different particle shapes and sizes (bimodal). For each type of suspension we characterized the dry maximum packing fraction of the particle mixture using the tap density method. We then systematically varied the total volume fraction of particles in the suspension, as well as the relative proportion of the two different particle types in the bimodal suspensions. For each of the resultant mixtures (suspensions) we performed controlled shear stress experiments using a rotational rheometer in parallel-plate geometry spanning 4 orders of magnitude in shear stress. The resultant data curves of shear stress as a function of shear rate were fitted using a Herschel-Bulkley rheological model. We find that the dry maximum packing decreases with increasing particle aspect ratio (ar) and decreasing particle size ratio (Λ). The highest dry maximum packing was obtained at 60-75% volume of larger particles for bimodal spherical particle mixture. Normalized consistency, Kr, defined as the ratio of the consistency of the suspension and the viscosity of the suspending liquid, was fitted using a Krieger-Dougherty model as a function of the total solid volume fraction (φ). The maximum packing fractions (φm) obtained from the shear experimental data fitting of the unimodal suspensions were similar in magnitude with the dry maximum packing fractions of the unimodal particles. Subsequently, we used the dry maximum packing fractions of the bimodal particle mixtures to fit Kr as a function of φ for the bimodal suspensions. We find that Kr increases rapidly for suspensions with larger ar and smaller Λ. We also find that both the apparent yield stress and the shear thinning behavior of the suspensions increase with increasing ar and become significant at φ/φm ≥ 0.4.
NASA Technical Reports Server (NTRS)
Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)
1988-01-01
Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.
Hill, S R; Rutherfurd-Markwick, K J; Ravindran, G; Ugarte, C E; Thomas, D G
2009-12-01
To compare the effects of feeding diets varying in the proportions of macronutrients on the digestibility, post-prandial endocrine responses and large intestinal fermentation of carbohydrate in working dogs. The apparent digestibility of two test diets, one comprising low-carbohydrate, high-protein dry biscuits (Diet 1), and one comprising high-carbohydrate, low-protein dry biscuits (Diet 2), fed to 12 adult Harrier Hounds (n=5 female), was determined using the indigestible-marker and total-collection methods. Serial breath samples were collected from each dog before and after feeding, and analysed for concentrations of hydrogen. Concentrations of glucose and insulin in plasma were established from serial blood samples obtained after feeding. The apparent dry matter, protein, fat and energy digestibility of Diet 1 were higher, but the carbohydrate digestibility was lower (p<0.05), than those of Diet 2. The apparent digestibility values determined using the total-collection method were lower (p<0.05) for carbohydrates, and tended to be lower for dry matter and energy (p<0.10) than those determined using the indigestible-marker method, but the values for protein and fat digestibility were similar using the two methods of determination. The maximum concentration (Cmax) of hydrogen detected in the breath of the dogs occurred earlier for Diet 1 than Diet 2 (p<0.01). However, the Cmax and area under the curve (AUC) for breath hydrogen were higher in the dogs fed Diet 2 than Diet 1 (p<0.01). The Cmax for glucose and insulin in plasma occurred earlier in dogs fed Diet 2 compared with those fed Diet 1 (p<0.05). However, the Cmax for glucose, and AUC for glucose and for insulin were not different between the two diets. The Cmax for insulin was greater for Diet 2 compared with Diet 1 (p<0.05). The low-carbohydrate, high-protein diet (Diet 1) appeared to offer certain advantages to working dogs, including higher apparent nutrient digestibility, slower release of glucose into the bloodstream, and reduced large intestinal fermentation of carbohydrate. A low-carbohydrate, high-protein diet may be beneficial for specific groups of dogs, including working dogs subjected to prolonged bouts of exercise requiring a sustained energy source, or those with diabetes mellitus requiring better glycaemic control.
Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.
Simões da Costa, A M; Delgadillo, I; Rudnitskaya, A
2014-11-01
An array of 10 potentiometric chemical sensors has been applied to the detection of total Fe, Cu, Pb and Cd content in digested wine. As digestion of organic matter of wine is necessary prior to the trace metal detection using potentiometric sensors, sample preparation procedures have been optimized. Different variants of wet and microwave digestion and dry ashing, 14 conditions in total, have been tested. Decomposition of organic matter was assessed using Fourier transform mid-infrared spectroscopy and total phenolic content. Dry ashing was found to be the most effective method of wine digestion. Measurements with sensors in individual solutions of Fe(III), Cu(II), Pb(II) and Cd(II) prepared on different backgrounds have shown that their detection limits were below typical concentration levels of these metals in wines and, in the case of Cu, Pb and Cd below maximum allowed concentrations. Detection of Fe in digested wine samples was possible using discrete iron-sensitive sensors with chalcogenide glass membranes with RMSEP of 0.05 mmol L(-1) in the concentration range from 0.0786 to 0.472 mmol L(-1). Low concentration levels of Cu, Pb and Cd in wine and cross-sensitivity of respective sensors resulted in the non-linearity of their responses, requiring back-propagation neural network for the calibration. Calibration models have been calculated using measurements in the model mixed solutions containing all three metals and a set of digested wine sample. RMSEP values for Cu, Pb and Cd were 3.9, 39 and 1.2 μmol L(-1) in model solutions and 2, 150 and 1 μmol L(-1) in digested wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling and improving Ethiopian pasture systems
NASA Astrophysics Data System (ADS)
Parisi, S. G.; Cola, G.; Gilioli, G.; Mariani, L.
2018-01-01
The production of pasture in Ethiopia was simulated by means of a dynamic model. Most of the country is characterized by a tropical monsoon climate with mild temperatures and precipitation mainly concentrated in the June-September period (main rainy season). The production model is driven by solar radiation and takes into account limitations due to relocation, maintenance respiration, conversion to final dry matter, temperature, water stress, and nutrients availability. The model also considers the senescence of grassland which strongly limits the nutritional value of grasses for livestock. The simulation for the 1982-2009 period, performed on gridded daily time series of rainfall and maximum and minimum temperature with a resolution of 0.5°, provided results comparable with values reported in literature. Yearly mean yield in Ethiopia ranged between 1.8 metric ton per hectare (t ha-1) (2002) and 2.6 t ha-1 (1989) of dry matter with values above 2.5 t ha-1 attained in 1983, 1985, 1989, and 2008. The Ethiopian territory has been subdivided in 1494 cells and a frequency distribution of the per-cell yearly mean pasture production has been obtained. This distribution ranges from 0 to 7 t ha-1 and it shows a right skewed distribution and a modal class between 1.5-2 t ha-1. Simulation carried out on long time series for this peculiar tropical environment give rise to as lot of results relevant by the agroecological point of view on space variability of pasture production, main limiting factors (solar radiation, precipitation, temperature), and relevant meteo-climatic cycles affecting pasture production (seasonal and inter yearly variability, ENSO). These results are useful to establish an agro-ecological zoning of the Ethiopian territory.
Wang, C; Liu, Q; Zhang, Y L; Pei, C X; Zhang, S L; Wang, Y X; Yang, W Z; Bai, Y S; Shi, Z G; Liu, X N
2015-02-01
The objective of this study was to evaluate the effects of isobutyrate supplementation on rumen microflora, enzyme activities and methane emissions in Simmental steers consuming a corn stover-based diet. Eight ruminally cannulated Simmental steers were used in a replicated 4 × 4 Latin square experiment. The treatments were control (without isobutyrate), low isobutyrate (LIB), moderate isobutyrate (MIB) and high isobutyrate (HIB) with 8.4, 16.8 and 25.2 g isobutyrate per steer per day respectively. Isobutyrate was hand-mixed into the concentrate portion. Diet consisted of 60% corn stover and 40% concentrate [dry matter (DM) basis]. Dry matter intake (averaged 9 kg/day) was restricted to a maximum of 90% of ad libitum intake. Population of total bacteria, cellulolytic bacteria and anaerobic fungi were linearly increased, whereas that of protozoa and total methanogens was linearly reduced with increasing isobutyrate supplementation. Real-time PCR quantification of population of Ruminococcus albus, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens and Fibrobacter succinogenes was linearly increased with increasing isobutyrate supplementation. Activities of carboxymethyl cellulase, xylanase and β-glucosidase were linearly increased, whereas that of protease was linearly reduced. Methane production was linearly decreased with increasing isobutyrate supplementation. Effective degradabilities of cellulose and hemicellulose of corn stover were linearly increased, whereas that of crude protein in diet was linearly decreased with increasing isobutyrate supplementation. The present results indicate that isobutyrate supplemented improved microflora, rumen enzyme activities and methane emissions in steers. It was suggested that the isobutyrate stimulated the digestive micro-organisms or enzymes in a dose-dependent manner. In the experimental conditions of this trial, the optimum isobutyrate dose was approximately 16.8 g isobutyrate per steer per day. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Modeling and improving Ethiopian pasture systems
NASA Astrophysics Data System (ADS)
Parisi, S. G.; Cola, G.; Gilioli, G.; Mariani, L.
2018-05-01
The production of pasture in Ethiopia was simulated by means of a dynamic model. Most of the country is characterized by a tropical monsoon climate with mild temperatures and precipitation mainly concentrated in the June-September period (main rainy season). The production model is driven by solar radiation and takes into account limitations due to relocation, maintenance respiration, conversion to final dry matter, temperature, water stress, and nutrients availability. The model also considers the senescence of grassland which strongly limits the nutritional value of grasses for livestock. The simulation for the 1982-2009 period, performed on gridded daily time series of rainfall and maximum and minimum temperature with a resolution of 0.5°, provided results comparable with values reported in literature. Yearly mean yield in Ethiopia ranged between 1.8 metric ton per hectare (t ha-1) (2002) and 2.6 t ha-1 (1989) of dry matter with values above 2.5 t ha-1 attained in 1983, 1985, 1989, and 2008. The Ethiopian territory has been subdivided in 1494 cells and a frequency distribution of the per-cell yearly mean pasture production has been obtained. This distribution ranges from 0 to 7 t ha-1 and it shows a right skewed distribution and a modal class between 1.5-2 t ha-1. Simulation carried out on long time series for this peculiar tropical environment give rise to as lot of results relevant by the agroecological point of view on space variability of pasture production, main limiting factors (solar radiation, precipitation, temperature), and relevant meteo-climatic cycles affecting pasture production (seasonal and inter yearly variability, ENSO). These results are useful to establish an agro-ecological zoning of the Ethiopian territory.
Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva
2015-02-01
The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.
Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ho, Yin Wan; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa
2012-01-01
Ability of two strains of Aspergillus terreus (ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained using A. terreus ATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM for A. terreus ATCC 20542 and A. terreus ATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P < 0.01) and inoculums size and pH had no significant effect on lovastatin production (P > 0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM for A. terreus ATCC 20542 and ATCC 74135, respectively, using RS as substrate. PMID:23118499
The composition of pigeon peas (Cajanus cajan (L.) Millsp.) grown in Botswana.
Amarteifio, J O; Munthali, D C; Karikari, S K; Morake, T K
2002-01-01
This study investigated the composition of pigeon peas (Cajanus cajan), grown at Sebele, Botswana. The raw seeds of six varieties were analyzed for dry matter, crude fat, protein, fiber, and ash, using Association of Official Analytical Chemists procedures. Major minerals, Ca, K, P, Mg, Na and trace minerals, Cu, Fe and Zn were also assessed. The range of nutrient contents obtained were: dry matter 86.6-88.0%, crude protein 19.0-21.7%, crude fat 1.2-1.3%, crude fiber 9.8-13.0%, and ash 3.9-4.3%. Minerals ranges (mg/100 g dry matter) were: K 1845-1941, P 163-293, Ca 120-167, Mg 113-127, Na 11.3-12.0, Zn 7.2-8.2, Fe 2.5-4.7 and Cu 1.6-1.8. There were no significant differences in Na among the six varieties (p > 0.05). For the other components, varietal differences (p < 0.05) were observed. The values obtained for the dry matter, crude protein, fat, ash, Ca, Cu, Fe, and Mg were similar to those in pigeon peas grown elsewhere, while those for crude fiber and Zn were higher. In general, the composition of pigeon peas compared favorably with those of other legumes such as Bambara groundnut (Vigna subterranea). The levels of crude protein, crude fiber, K, Ca, P and Mg indicated that pigeon peas could be valuable in the diet of the people of Botswana. This crop would positively contribute protein in the diet and the diversification of agricultural produce.
Zhao, Ben; Ata-Ui-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun
2016-01-01
Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0-375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China.
Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.
Begna, Sultan H; Fielding, Dennis J
2005-12-01
Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, D.T.; Flint, E.P.
Mathematical growth analysis techniques were used to evaluate the effects of CO/sub 2/ concentrations of 350, 600, and 1000 ppm (v/v) on growth and biomass partitioning in corn (Zea mays L. Dekalb (L 395'), itchgrass (Rottboellia exaltata L.f.), soybean (Glycine max L) Merr. Tracy), and velvetleaf (Abutilon theophrasti Medic.). Controlled environment chambers with day/night temperatures of 28/22 C and photosynthetic photon flux densities (PPFD) of 650 ..mu..E (microeinteins) m/sup -2/ s/sup -1/ were used. Dry matter production in the two C/sub 3/ species soybean and velvetleaf) was increased significantly by raising the CO/sub 2/ concentration above 350 ppm. In cornmore » (a C/sub 4/ species), dry matter production was greatest at 600 ppm CO/sub 2/ and did not differ between the 350 and 1000 ppm treatments. Increasing the CO/sub 2/ concentration increased the rate of dry matter production per unit leaf area (net assimilation rate or NAR) in soybean and velvetleaf but either decreased or did not alter NAR in corn and itchgrass. At 45 days after planting, the weed/crop ratios for total dry matter production for velvetleaf/corn and itchgrass/corn were significantly greater at both 600 and 1000 ppm than at 350 ppm CO/sub 2/. The weed/crop ratio for itchgrass/soybean was less at 1000 ppm than at 350 or 600 ppm CO/sub 2/. Compared to the value at 350 ppm, the weed/crop ratio for velvetleaf/soybean was greater at 600 ppm and less at 100 ppm CO/sub 2/.« less
Saba, Martyna; Falandysz, Jerzy; Nnorom, Innocent C
2016-02-01
Presented in this paper is result of the study of the bioconcentration potential of mercury (Hg) by Suillus luteus mushroom collected from regions within Central, Eastern, and Northern regions of Europe. As determined by cold-vapor atomic absorption spectroscopy, the Hg content varied from 0.13 ± 0.05 to 0.33 ± 0.13 mg kg(-1) dry matter for caps and from 0.038 ± 0.014 to 0.095 ± 0.038 mg kg(-1) dry matter in stems. The Hg content of the soil substratum (0-10 cm layer) underneath the fruiting bodies showed generally low Hg concentrations that varied widely ranging from 0.0030 to 0.15 mg kg(-1) dry matter with mean values varying from 0.0078 ± 0.0035 to 0.053 ± 0.025 mg kg(-1) dry matter, which is below typical content in the Earth crust. The caps were observed to be on the richer in Hg than the stems at ratio between 1.8 ± 0.4 and 5.3 ± 2.6. The S. luteus mushroom showed moderate ability to accumulate Hg with bioconcentration factor (BCF) values ranging from 3.6 ± 1.3 to 42 ± 18. The consumption of fresh S. luteus mushroom in quantities up to 300 g week(-1) (assuming no Hg ingestion from other foods) from background areas in the Central, Eastern, and Northern part of Europe will not result in the intake of Hg exceeds the provisional weekly tolerance limit (PTWI) of 0.004 mg kg(-1) body mass.
Netto, Arlindo Saran; Zanetti, Marcus Antônio; Claro, Gustavo Ribeiro Del; de Melo, Mariza Pires; Vilela, Flávio Garcia; Correa, Lisia Bertonha
2014-01-01
Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat. PMID:25049978
Dubey, Archana; Chandra, Amaresh
2008-05-01
Carbon isotope discrimination (CID) has been proposed in estimating transpiration efficiency (TE) in plants indirectly To identify variations for TE and specific leaf area (SLA) and their association with CID, a glasshouse experiment was conducted using six prominent species of Cenchrus. A significant increase in TE (3.50 to 3.87 g kg(-1)) and decrease in SLA (219.50 to 207.99 cm2 g(-1)) and CID (13.72 to 13.23% per hundred) was observed from well watered to stress condition. Results indicated a direct relationship of SLA with CID (r = 0.511* and 0.544*) and inverse relationship between TE and CID (r = -0.229 and -0.270) However the relationship of TE with CID was insignificant. A positive and significant relationship was visualized between TE and dry matter production in both control (r = 0.917**) and stress (0.718**) treatments. Relationships of total dry matter with SLA and CID were monitored insignificant and negative in control and positive in stress treatment indicated difference in dry matter production under two treatments. It seems that, in Cenchrus species, CID was influenced more by the photosynthetic capacity than by stomatal conductance, as indicated by its positive relationship with SLAin both control (r = 0.511) and stress (r = 0.544) conditions and negative relationship with root dry matter production under control (r = -0.921**) and stress (r = -0.919***) condition. Results showed good correspondence between CID and SLA, indicating that lines having high TE and biomass production can be exploited for their genetic improvement for drought.
Richter, F; Fricke, T; Wachendorf, M
2011-04-01
In order to determine influencing parameters on energy production of the IFBB process, herbage from a lowland hay meadow (Arrhenaterion) was sampled and ensiled at eight dates between 27 April and 21 June 2007. The silage from each date was processed in six IFBB treatments with and without hydrothermal conditioning at different temperatures. Methane yields and higher heating values were determined and an energy balance was calculated with whole-crop digestion (WCD) of the silage as reference system. Maximum net energy yields were 10.2 MWh ha(-1) for the IFBB treatment without hydrothermal conditioning and 9.0 MWh ha(-1) for the treatment with hydrothermal conditioning at 50 °C. WCD achieved a maximum net energy yield of 3.7 MWh ha(-1). Energy conversion efficiency ranged from 0.24 to 0.54 and was predicted with high accuracy by temperature of hydrothermal conditioning as well as concentration of neutral detergent fibre and dry matter in the silage (R(2)=0.90). Copyright © 2011 Elsevier Ltd. All rights reserved.
Gregorini, P; Galli, J; Romera, A J; Levy, G; Macdonald, K A; Fernandez, H H; Beukes, P C
2014-07-01
The DairyNZ whole-farm model (WFM; DairyNZ, Hamilton, New Zealand) consists of a framework that links component models for animal, pastures, crops, and soils. The model was developed to assist with analysis and design of pasture-based farm systems. New (this work) and revised (e.g., cow, pasture, crops) component models can be added to the WFM, keeping the model flexible and up to date. Nevertheless, the WFM does not account for plant-animal relationships determining herbage-depletion dynamics. The user has to preset the maximum allowable level of herbage depletion [i.e., postgrazing herbage mass (residuals)] throughout the year. Because residuals have a direct effect on herbage regrowth, the WFM in its current form does not dynamically simulate the effect of grazing pressure on herbage depletion and consequent effect on herbage regrowth. The management of grazing pressure is a key component of pasture-based dairy systems. Thus, the main objective of the present work was to develop a new version of the WFM able to predict residuals, and thereby simulate related effects of grazing pressure dynamically at the farm scale. This objective was accomplished by incorporating a new component model into the WFM. This model represents plant-animal relationships, for example sward structure and herbage intake rate, and resulting level of herbage depletion. The sensitivity of the new version of the WFM was evaluated and then the new WFM was tested against an experimental data set previously used to evaluate the WFM and to illustrate the adequacy and improvement of the model development. Key outputs variables of the new version pertinent to this work (milk production, herbage dry matter intake, intake rate, harvesting efficiency, and residuals) responded acceptably to a range of input variables. The relative prediction errors for monthly and mean annual residual predictions were 20 and 5%, respectively. Monthly predictions of residuals had a line bias (1.5%), with a proportion of square root of mean square prediction error (RMSPE) due to random error of 97.5%. Predicted monthly herbage growth rates had a line bias of 2%, a proportion of RMSPE due to random error of 96%, and a concordance correlation coefficient of 0.87. Annual herbage production was predicted with an RMSPE of 531 (kg of herbage dry matter/ha per year), a line bias of 11%, a proportion of RMSPE due to random error of 80%, and relative prediction errors of 2%. Annual herbage dry matter intake per cow and hectare, both per year, were predicted with RMSPE, relative prediction error, and concordance correlation coefficient of 169 and 692kg of dry matter, 3 and 4%, and 0.91 and 0.87, respectively. These results indicate that predictions of the new WFM are relatively accurate and precise, with a conclusion that incorporating a plant-animal relationship model into the WFM allows for dynamic predictions of residuals and more realistic simulations of the effect of grazing pressure on herbage production and intake at the farm level without the intervention from the user. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sablayrolles, Caroline; Montréjaud-Vignoles, Mireille; Silvestre, Jérôme; Treilhou, Michel
2009-01-01
Surfactants are widely used in household and industrial products. The risk of incorporation of linear alkylbenzene sulfonates (LAS) from biosolids, wastewater, and fertilizers land application to the food chain is being assessed at present by the European Union. In the present work, a complete analytical method for LAS trace determination has been developed and successfully applied to LAS (C10–C13) uptake in carrot plants used as model. These carrots were grown in soil with the trace organics compounds added directly into the plant containers in pure substances form. LAS trace determination (μg kg−1 dry matter) in carrots samples was achieved by Soxtec apparatus and high-performance liquid chromatography-fluorescence detection. The methodology developed provides LAS determination at low detection limits (5 μg kg−1 dry matter) for carrot sample (2 g dry matter) with good recoveries rate (>90%). Transfer of LAS has been followed into the various parts of the carrot plant. LAS are generally found in the carrot leaves and percentage transfer remains very low (0.02%). PMID:20107562
Martín-Sánchez, Ana María; Cherif, Sarra; Vilella-Esplá, José; Ben-Abda, Jamel; Kuri, Víctor; Pérez-Álvarez, José Ángel; Sayas-Barberá, Estrella
2014-07-01
The nutritive, physicochemical and technological characteristics of several intermediate food products (IFPs) from Spanish Confitera fresh date co-products were investigated. Three IFPs were obtained, two from unblanched dates in different ripening stages (Khalal and Rutab), and a third one from blanched Khalal fruits. The IFPs were rich in dietary fibre (13-16%, dry matter), phenolics (0.56-4.26g GAE/100g dry matter) and sugars (55-82%, dry matter), with glucose and fructose as the predominant sugars. Malic acid was the major organic acid, and potassium was the main mineral. Blanching Khalal dates aided to prevent browning in the IFP, but also the thermal treatment modified the sugars profile. The results indicated that both maturity stages yield IFPs with potential in the food industry; and according to their sugar and phenolic content they could be suitable for the elaboration of new ingredients with different industrial applications. In addition, it would be recommendable blanching unripe fruits. Copyright © 2014. Published by Elsevier Ltd.
Occurrence of soil water repellency in arid and humid climates
NASA Astrophysics Data System (ADS)
Jaramillo, D. F.; Dekker, L. W.; Ritsema, C. J.; Hendrickx, J. M. H.
2000-05-01
Soil water repellency generally tends to increase during dry weather while it decreases or completely vanishes after heavy precipitation or during extended periods with high soil water contents. These observations lead to the hypothesis that soil water repellency is common in dry climates and rare in humid climates. The study objective is to test this hypothesis by examining the occurrence of soil water repellency in an arid and humid climate. The main conclusion of this study is that the effect of climate on soil water repellency is very limited. Field observations in the arid Middle Rio Grande Basin in New Mexico (USA) and the humid Piedras Blancas Watershed in Colombia show that the main impact of climate seems to be in which manner it affects the production of organic matter. An extremely dry climate will result in low organic matter production rates and, therefore, less potential for the development of soil water repellency. On the other hand, a very humid climate is favorable for organic matter production and, therefore, for the development of water repellency.
NASA Astrophysics Data System (ADS)
Natali, S.; Mauritz, M.; Pegoraro, E.; Schuur, E.
2015-12-01
Climate warming in arctic tundra has been associated with increased plant productivity and a shift in plant community composition, specifically an increase in shrub cover, which can impact soil organic matter through changes in the size and composition of the leaf litter pool. Shifts in litter quantity and quality will in turn interact with changes in the soil environment as the climate continues to warm. We examined the effects of permafrost thaw, soil moisture changes, and plant community composition on leaf litter decomposition in an upland tundra ecosystem in Interior Alaska. We present warming and drying effects on decomposition rates of graminoid-dominated and shrub-dominated leaf litter mixtures over three years (2 cm depth), and annual decomposition of a common cellulose substrate (0-10 cm and 10-20 cm) over five years at a permafrost thaw and soil drying experiment. We expected that warming and drying would increase decomposition, and that decomposition would be greater in the shrub litter than in the graminoid litter mix. Decomposition of Betula nana, the dominant shrub, was 50% greater in the shrub-dominated litter mix compared to the graminoid-dominated litter. Surprisingly, there was no significant difference in total litter mass loss between graminoid and shrub litter mixtures, despite significant differences in decomposition rates of the dominant plant species when decomposed alone and in community mixtures. Drying decreased decomposition of B. nana and of the shrub community litter overall, but after two years there was no detected warming effect on shrub-community decomposition. In contrast to leaf litter decomposition, both warming and drying increased decomposition of the common substrate. Warming caused an almost twofold increase in cellulose decomposition in surface soil (0-10cm), and drying caused a twofold increase in cellulose decomposition from deeper organic layer soils (10-20cm). These results demonstrate the importance of interactions among temperature, moisture and vegetation changes on organic matter decomposition, and the potential for increased plant productivity and vegetation changes to alter the size and composition of the soil organic matter pool.
Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking w...
Idowu, O J; Arigbede, O M; Dele, P A; Olanite, J A; Adelusi, O O; Ojo, V O A; Sunmola, A S
2013-12-01
A study was conducted to assess the nutritive value of Enterolobium cyclocarpum seeds as supplementary feed for ruminant animals during the dry season when grasses are either not available or of low quality. Matured fruits of E. cyclocarpum were collected, toasted, peeled and then used for the trial. Thirty two West African Dwarf (WAD) sheep aged between 12 +/- 2 months with an average body weight of 10 +/- 2 kg were used in assessing the nutritive value of graded levels of toasted Enterolobium cyclocarpum seed in a concentrate diets as supplement to Panicum maximum basal diet. The percent compositions of the experimental diets were toasted E. cyclocarpum seeds at various levels of inclusion (0, 10, 20 and 30%) for diets 1, 2, 3 and 4. respectively. The diets (1-4) were consecutively fed to each animal at 50 g kg(-1) b.wt. for 12 weeks in a completely randomized design. Parameters taken were weekly body weights, daily feed intake, nutrient utilization and nitrogen balance status for each animal. Diet 2 had the highest significant (p < 0.05) nutrients intake being 871.88, 137.13, 147.59, 33.26 and 69.86 g day(-1) for DM, CP, CF, EE and ASH respectively. The Dry Matter Digestibility (DMD) coefficients decreased significantly (p < 0.05) with increased inclusion levels of toasted E. cyclocarpum seeds supplementation. Sheep fed diet 4 had the lowest feed conversion ratio (8.61) and the highest daily average gain of 58.93 g. However the animals fed Diet 2 had the highest nitrogen retension and converted their feed to flesh.
Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.
2001-01-01
A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.
Removal efficiency of particulate matters at different underlying surfaces in Beijing.
Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan
2016-01-01
Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.
Jacobsen, Anne Marie; Halling-Sørensen, Bent
2006-03-01
A multi-component method focussing on thorough sample preparation has been developed for simultaneous analysis of swine manure for three classes of antibiotic-tetracyclines, sulfonamides, and tylosin. Liquid manure was initially freeze-dried and homogenised by pulverization before extraction by pressurised liquid extraction. The extraction was performed at 75 degrees C and 2,500 psig in three steps using two cycles with 0.2 mol L(-1) citric acid buffer (pH 4.7) and one cycle with a mixture of 80% methanol with 0.2 mol L(-1) citric acid (pH 3). After liquid-liquid extraction with heptane to remove lipids, the pH of the manure was adjusted to 3 with formic acid and the sample was vacuum-filtered through 0.6 mum glass-fibre filters. Finally the samples were pre-concentrated by tandem SPE (SAX-HLB). Recoveries were determined for manure samples spiked at three concentrations (50-5,000 microg kg(-1) dry matter); quantification was achieved by matrix-matched calibration. Recoveries were >70% except for oxytetracycline (42-54%), sulfadiazine (59-73%), and tylosin (9-35%) and did not vary with concentration or from day-to-day. Limits of quantification (LOQ) for all compounds, determined as a signal-to-noise ratio of 10, were in the range 10-100 microg kg(-1) dry matter. The suitability of the method was assessed by analysis of swine manure samples from six different pig-production sites, e.g. finishing pigs, sows, or mixed production. Residues of antibiotics were detected in all samples. The largest amounts were found for tetracyclines (up to 30 mg kg(-1) dry matter for the sum of CTC and ECTC). Sulfonamides were detected at concentrations up to 2 mg kg(-1) dry matter (SDZ); tylosin was not detected in any samples.
Springer, C; Heldt, N
2016-06-01
Owing to the lack in structural strength while composting certain kinds of organic wastes, 11 co-substrates were tested that are generally locally available in rural areas of northern Tamil Nadu, India. In addition to the classical composting parameters such as carbon/nitrogen ratio, moisture content, dry matter and organic dry matter, a compression test was conducted to evaluate the structural strength and the suitability as bulking agent for composting processes. Additionally, with respect to the climatic conditions in India, the water holding capacity was also evaluated. © The Author(s) 2016.
Effect of Pleurotus ostreatus and Erwinia carotovora on wheat straw digestibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streeter, C.L.; Conway, K.E.; Horn, G.W.
1981-11-01
The objectives of this study were to determine whether growing Pleurotus ostreatus and Erwinia carotovora on wheat straw would synergistically improve the digestibility of straw and whether there was a necessity of sterilizing the straw by autoclaving prior to inoculation. Dry matter decomposition of autoclaved and non-autoclaved straw was similar when both organisms were used in the system after 28 days incubation. However, in vitro ruminal dry matter digestibility of straw was significantly improved (P less than 10) only when the straw was autoclaved prior to inoculation with both organisms. (Refs. 21).
Analysis of problems with dry fermentation process for biogas production
NASA Astrophysics Data System (ADS)
Pilát, Peter; Patsch, Marek; Jandačka, Jozef
2012-04-01
The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.
21 CFR 184.1979c - Whey protein concentrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose content, maximum 60 percent—as determined by... Action” under the heading “Lactose,” or in section 31.061 (dry sample), entitled “Lane-Eynon General Volumetric Method” under the heading “Lactose—Chemical Methods—Official Final Action.” (v) Moisture content...
21 CFR 184.1979c - Whey protein concentrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose content, maximum 60 percent—as determined by... Action” under the heading “Lactose,” or in section 31.061 (dry sample), entitled “Lane-Eynon General Volumetric Method” under the heading “Lactose—Chemical Methods—Official Final Action.” (v) Moisture content...
Laha, Ranjan
2018-02-01
Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laha, Ranjan
Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less
NASA Astrophysics Data System (ADS)
Pérez-Sánchez, Julio; Senent-Aparicio, Javier
2017-08-01
Dry spells are an essential concept of drought climatology that clearly defines the semiarid Mediterranean environment and whose consequences are a defining feature for an ecosystem, so vulnerable with regard to water. The present study was conducted to characterize rainfall drought in the Segura River basin located in eastern Spain, marked by the self seasonal nature of these latitudes. A daily precipitation set has been utilized for 29 weather stations during a period of 20 years (1993-2013). Furthermore, four sets of dry spell length (complete series, monthly maximum, seasonal maximum, and annual maximum) are used and simulated for all the weather stations with the following probability distribution functions: Burr, Dagum, error, generalized extreme value, generalized logistic, generalized Pareto, Gumbel Max, inverse Gaussian, Johnson SB, Log-Logistic, Log-Pearson 3, Triangular, Weibull, and Wakeby. Only the series of annual maximum spell offer a good adjustment for all the weather stations, thereby gaining the role of Wakeby as the best result, with a p value means of 0.9424 for the Kolmogorov-Smirnov test (0.2 significance level). Probability of dry spell duration for return periods of 2, 5, 10, and 25 years maps reveal the northeast-southeast gradient, increasing periods with annual rainfall of less than 0.1 mm in the eastern third of the basin, in the proximity of the Mediterranean slope.
Effect of repeated drying-wetting-freezing-thawing cycles on the active soil organic carbon pool
NASA Astrophysics Data System (ADS)
Semenov, V. M.; Kogut, B. M.; Lukin, S. M.
2014-04-01
Samples of soddy-podzolic soil (long-term overgrown fallow and continuous bare fallow), gray forest soil (forest, farming agrocenosis), and a typical chernozem (virgin steppe, forest area, farming agrocenosis, continuous bare fallow) have been incubated under stable conditions; other samples of these soils have been subjected to six drying-wetting-incubation-freezing-thawing-incubation cycles during 136 days. The wetting of dried soils and the thawing of frozen soils result in an abrupt but short increase in the emission rate of C-CO2 by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. As the soil is depleted in potentially mineralizable organic matter, the rate of the C-CO2 emission pulses initiated by disturbing impacts decreases. The cumulative extra production of C-CO2 by soils of natural lands for six cycles makes up 21-40% of that in the treatments with stable incubation conditions; the corresponding value for cultivated soils, including continuous clean fallow, is in the range of 45-82%. The content of potentially mineralizable organic matter in the soils subjected to recurrent drying-wetting-freezingthawing cycles decreased compared to the soils without disturbing impacts by 1.6-4.4 times, and the mineralization constants decreased by 1.9-3.6 times. It has been emphasized that the cumulative effect of drying-wetting-freezing-thawing cycles is manifested not only in the decrease in the total Corg from the soil but also in the reduction of the mineralization potential of the soil organic matter.
Singh, U B; Verma, D N; Varma, A; Ranjhan, S K
1977-11-01
1. The production rates of bacteria in the rumen of buffalo (Bos bubalis) calves were estimated using an isotope-dilution technique. A series of fifteen experiments was done with animals given green maize and nine experiments with animals given cowpea (Vigna unguiculata). 2. The turnover time ranged from 205 to 567 min in the group given green maize and from 330 to 648 min in animals offered cowpea. The production rates of bacteria were (mean +/- SE; g/d) 145.77 +/- 7.240 and 237.09 +/- 11.847 in animals given green maize and cowpea respectively. 3. There was a significant correlation between bacterial production rates and dry matter intake, digestible organic matter and total volatile fatty acids formed in the rumen. 4. Regression equations obtained for the two foodstuffs were different suggesting that the bacterial growth rate may vary depending upon the quantity and quality of foodstuff digested and possibly the ratio nitrogen:energy of the foodstuff.
Flood hydrology for Dry Creek, Lake County, Northwestern Montana
Parrett, C.; Jarrett, R.D.
2004-01-01
Dry Creek drains about 22.6 square kilometers of rugged mountainous terrain upstream from Tabor Dam in the Mission Range near St. Ignatius, Montana. Because of uncertainty about plausible peak discharges and concerns regarding the ability of the Tabor Dam spillway to safely convey these discharges, the flood hydrology for Dry Creek was evaluated on the basis of three hydrologic and geologic methods. The first method involved determining an envelope line relating flood discharge to drainage area on the basis of regional historical data and calculating a 500-year flood for Dry Creek using a regression equation. The second method involved paleoflood methods to estimate the maximum plausible discharge for 35 sites in the study area. The third method involved rainfall-runoff modeling for the Dry Creek basin in conjunction with regional precipitation information to determine plausible peak discharges. All of these methods resulted in estimates of plausible peak discharges that are substantially less than those predicted by the more generally applied probable maximum flood technique. Copyright ASCE 2004.
Dichromated Gelatine as a Material of Optical Element
NASA Astrophysics Data System (ADS)
Lee, Hyuk-Soo; Cho, Dong-Hyun; Choi, Yong-Jin; Son, Jung-Young; Park, Seung-Han
1999-04-01
In the fabrication process of optical elements (OEs) by the laser scanning method using a dichromated gelatin (DCG) photoplate, the expansion and drying stress of gelatine caused by inhomogeneous liquid flow inside the gelatine affects the shape of OEs. The reason this inhomogeneous liquid flow exists in the energy oversaturated parts of OEs is the presence of surplus energy. In order to obtain the OEs of desired spherical lens shape, the drying stress should be reduced and therefore the maximum energy of the illuminating laser should be defined not to cause the surplus energy. The maximum energy is investigated according to the relative concentrations of (NH4)2Cr2O7 to DCG. The use of photoplates with a relative concentration of (NH4)2Cr2O7 to gelatin of more than 20% has some advantages when making the lens raster, especially a short-focal-length lens raster. It is also very important to increase the drying time to reduce the total drying stress by maintaining high humidity during the drying process.
Khedkar, Manisha A; Nimbalkar, Pranhita R; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B
2017-02-01
Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production. The production of ABE was further accomplished via acid hydrolysis, detoxification, and fermentation process. Maximum total sugar release obtained by using acid hydrolysis was 97g/L with 95-97% and 10-50% removal of phenolics and acetic acid, respectively during detoxification process. The maximum ABE titer obtained was 5.23g/L with 55.6% substrate consumption when samples dried at 120°C were used as a substrate (after detoxification). Copyright © 2016 Elsevier Ltd. All rights reserved.
Arigbede, O M; Anele, U Y; Südekum, K-H; Hummel, J; Oni, A O; Olanite, J A; Isah, A O
2012-04-01
Seasonal chemical composition and ruminal organic matter (OM) and crude protein (CP) degradabilities were determined in four tropical multi-purpose tree species (MPTS) namely; Pterocarpus santalinoides, Grewia pubescens, Enterolobium cyclocarpum and Leucaena leucocephala. Three West African dwarf (WAD) rams fitted with permanent rumen cannula were used for the degradability trials. Foliage samples were collected four times to represent seasonal variations as follows: January--mid dry; April--late dry; July--mid rainy and October--late rainy seasons. Leaf samples were randomly collected from the trees for estimation of dry matter (DM) and chemical composition. Ruminal in sacco OM and CP degradabilities were estimated from residues in nylon bags. All samples had high CP (161-259 g/kg DM) and moderate fibre concentrations [neutral detergent fibre (without residual ash], 300-501 g/kg DM; acid detergent fibre (without residual ash), 225-409 g/kg DM and acid detergent lignin, 87-179 g/kg DM across seasons. Interaction effects of species and season on chemical composition were highly significant (p = 0.001) except for trypsin inhibitor (p = 0.614). The MPTS recorded more than 60% OM and CP degradability at 24 h, which implied that they were all highly degradable in the rumen. Their incorporation into ruminant feeding systems as dry season forage supplements is therefore recommended. © 2011 Blackwell Verlag GmbH.
Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows.
Guyader, J; Eugène, M; Doreau, M; Morgavi, D P; Gérard, C; Martin, C
2017-03-01
The effect of tea saponin supplementation in the ruminant diet on methane emissions, rumen fermentation, and digestive processes is still under debate. The objective of this study was to assess the effect of this plant extract on methanogenesis, total-tract digestibility, and lactating performances of dairy cows. The work included 2 independent and successive experiments. First, the effect of 7 tea saponin doses (from 0 to 0.50 g/L) on methane emissions and protozoa concentrations was tested in 2 repeated in vitro batch culture incubations using bovine rumen contents as inoculum and a cereal mixture as substrate. After 18 h of incubation, total gas production and composition as well as rumen fermentation parameters and protozoa concentration were analyzed. Increasing dosage of the plant extract reduced methane production and protozoa concentration, with a maximum reduction of 29% for CH 4 (mL/g of substrate) and 51% for protozoa (10 5 /mL). Tea saponin did not affect volatile fatty acids concentration, but marginally decreased total gas production by 5% at the highest dose. Second, a 2-period crossover design experiment was carried out with 8 lactating dairy cows fed a basal diet (54% corn silage, 6% hay, and 40% pelleted concentrates on a dry matter basis) without (control) or with 0.52% tea saponin (TSP). Each experimental period lasted 5 wk. Animals were fed ad libitum during the first 3 wk of the period (wk 1, 2, and 3) and restricted (95% of ad libitum intake) during the last 2 wk (wk 4 and 5). Intake and milk production were recorded daily. Methane emissions were quantified using open chambers (2 d, wk 4). Total-tract digestibility and nitrogen balance were determined from total feces and urine collected separately (5 d, wk 5). Rumen fermentation parameters and protozoa concentration were analyzed from samples taken after morning feeding (1 d, wk 5). Milk production, dry matter intake, and feed efficiency were reduced with TSP (-18, -12, and -8%, respectively). As daily methane production (g/d) was not affected, methane emissions (g/kg of dry matter intake) increased by 14% with TSP. Total-tract digestibility and nitrogen balance were similar between diets, except for acid detergent fiber digestibility, which tended to be improved with TSP (+4 percentage units). Rumen fermentation parameters and protozoa concentration were relatively unchanged by diets. Under the conditions of this experiment, tea saponin is not efficient to reduce methane emissions from dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Enhancement of the folate content in Egyptian pita bread.
Hefni, Mohammed; Witthöft, Cornelia M
2012-01-01
Egypt has a high incidence of neural tube defects related to folate deficiency. One major food source for folate is pita (baladi) bread, which is consumed daily. Bioprocessing (e.g. germination) has been reported to increase the folate content in cereals. The aim was to produce pita bread with increased folate content using germinated wheat flour (GWF). Prior to milling the effects of germination and drying conditions on folate content in wheat grains were studied. Pita bread was baked from wheat flour substituted with different levels of GWF. The folate content in dough and bread and rheological properties of dough were determined. Germination of wheat grains resulted in, depending on temperature, 3- to 4-fold higher folate content with a maximum of 61 µg/100 g DM (dry matter). The folate content in both flour and bread increased 1.5 to 4-fold depending on the level of flour replacement with GWF. Pita bread baked with 50% sieved GWF was acceptable with respect to colour and layer separation, and had a folate content of 50 µg/100 g DM compared with 30 µg/100 g DM in conventional pita bread (0% GWF). Using 50% GWF, pita bread with increased folate content, acceptable for the Egyptian consumer, was produced. Consumption of this bread would increase the average daily folate intake by 75 µg.
Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M
2008-01-01
Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.
Code of Federal Regulations, 2014 CFR
2014-07-01
... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...
Code of Federal Regulations, 2013 CFR
2013-07-01
... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...
Piñeiro-Vázquez, A T; Canul-Solis, J R; Alayón-Gamboa, J A; Chay-Canul, A J; Ayala-Burgos, A J; Solorio-Sánchez, F J; Aguilar-Pérez, C F; Ku-Vera, J C
2017-02-01
The aim of the experiment was to assess the effect of condensed tannins (CT) on feed intake, dry matter digestibility, nitrogen balance, supply of microbial protein to the small intestine and energy utilization in cattle fed a basal ration of Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight of 295 ± 19 kg were allotted to five treatments consisting of increasing levels of CT (0, 1, 2, 3 and 4% CT/kg DM) in a 5 × 5 Latin square design. Dry matter intake (DMI) was similar (p > 0.05) between treatments containing 0, 1, 2 and 3% of CT/kg DM and it was reduced (p < 0.05) to 4% CT (5.71 kg DM/day) with respect to that observed with 0% CT (6.65 kg DM/day). Nitrogen balance, purine derivatives excretion in urine, microbial protein synthesis and efficiency of synthesis of microbial nitrogen in the rumen were not affected (p ≥ 0.05) by the increase in the levels of condensed tannins in the ration. Energy loss as CH 4 was on average 2.7% of the gross energy consumed daily. Metabolizable energy intake was 49.06 MJ/day in cattle fed low-quality tropical grass with a DMI of 6.27 kg/day. It is concluded that concentrations of CT between 2 and 3% of DM of ration reduced energy loss as CH 4 by 31.3% and 47.6%, respectively, without affecting intakes of dry and organic matter; however, digestibilities of dry and organic matter are negatively affected. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Performance of weaner rabbits fed a concentrate diet supplemented with pawpaw leaves.
Aderinboye, Ronke Yemisi; Oladeji, Olayinka Timothy; Abaire, Michael Adebayo; Sobayo, Richard Abayomi; Oso, Abimbola Oladele; Oni, Adebayo Olusoji; Yusuf, Kafayat Omowumi; Osho, Saheed Oladipupo; Bamgbose, Adeyemi Mustapha
2015-02-01
This experiment investigated the performance of weaner rabbits fed concentrate diets supplemented with pawpaw leaves (PPL). Twenty-four male weaner rabbits aged 5 weeks, weighing between 350 and 450 g were used. Concentrate diet was supplemented with PPL in ratios 100:0, 70:30, 50:50 and 30:70. Rabbits were randomly allotted to the four diets in a completely randomised design for 8 weeks, with six rabbits per diet. Results showed that rabbits supplemented with 30 and 50 % PPL had higher (P < 0.05) dry matter intake to sole concentrate. At 70 % PPL, dry matter intake did not vary with other treatments. Weight gain was higher (P < 0.05) in rabbits fed 30 and 50 % PPL than sole concentrate. Rabbits fed 70 % PPL had lower (P < 0.05) weight gain to animals fed 30 % PPL but gained similarly (P > 0.05) to those fed on 50 % PPL and sole concentrate. Feed conversion ratio improved (P < 0.05) in animals fed 30, 50 and 70 % PPL. Rabbits fed 30 % PPL had the highest (P < 0.05) protein efficiency ratio. Rabbits had higher dry matter digestibility (P < 0.05) with PPL supplementation than sole concentrate while crude protein and fibre digestibility was higher with 30 and 50 % PPL. Haematological and serum parameters in rabbits were unaltered with feeding PPL. It is concluded that weaner rabbits can utilise PPL as supplement to concentrate diet at 30 to 70 % dry matter with positive responses in performance and nutrient digestibility without deleterious effect on the physiological status of the rabbits.
Zhao, Ben; Ata-UI-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun
2016-01-01
Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0–375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China. PMID:27732634
Popovic, Olga; Jensen, Lars Stoumann
2012-08-01
Chemical-mechanical separation of pig slurry into a solid fraction rich in dry matter, P, Cu and Zn and a liquid fraction rich in inorganic N but poor in dry matter may allow farmers to manage surplus slurry by exporting the solid fraction to regions with no nutrient surplus. Pig slurry can be applied to arable land only in certain periods during the year, so it is commonly stored prior to field application. This study investigated the effect of storage duration and temperature on chemical characteristics and P, Cu and Zn distribution between particle size classes of raw slurry and its liquid separation fraction. Dry matter, VFA, total N and ammonium content of both slurry products decreased during storage and were affected by temperature, showing higher losses at higher storage temperatures. In both products, total P, Cu and Zn concentrations were not significantly affected by storage duration or temperature. Particle size distribution was affected by slurry separation, storage duration and temperature. In raw slurry, particles larger than 1 mm decreased, whereas particles 250 μm-1 mm increased. The liquid fraction produced was free of particles >500 μm, with the highest proportions of P, Cu and Zn in the smallest particle size class (<25 μm). The proportion of particles <25 μm increased when the liquid fraction was stored at 5 °C, but decreased at 25 °C. Regardless of temperature, distribution of P, Cu and Zn over particle size classes followed a similar pattern to dry matter. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alfalfa leaf meal in finishing steer diets. Quarterly report, July 1, 1997--September 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehnder, C.M.; DiCostanzo, A.; Smith, L.B.
1997-10-30
Ninety-six medium frame, Angus and Angus cross steer calves (average initial weight 540 lb.) were allotted to a heavy or light weight block and then randomly assigned to one of four dietary treatments for a 167 or 189-day finishing phase, respectively. Treatments were control (supplemental soybean meal), alfalfa leaf meal (ALM) providing 33%, 66%, 100% of supplemental protein. Finishing diets were formulated to contain .61 Mcal NE{sub g}/lb dry matter, 12.5% crude protein, .6 % Ca and .3 % P. There were no significant (P >.05) effects of dietary treatments on daily gain or dry matter required /lb of gain.more » Steers fed 100 % ALM consumed more (P <.05) dry matter than steers fed either of the other three treatments. Dry matter consumption increased linearly (P >.05) with increasing ALM. There was no significant (P >.05) dietary treatment effect on marbling, KPH %, yield grade, quality grade, or liver abscesses. There was an apparent trend in reduced liver abscess incidence in steers fed 100 % ALM. Steers fed 66 % ALM had significantly (P <.05) greater backfat measurements, backfat also had a cubic effect (P <.05). Hot carcass weight had a quadratic relation (P <.05) with level of ALM. Substituting alfalfa leaf meal for soybean meal in diets of finishing steers increased DM intake, but this increase was accompanied by an increase in gain which resulted in similar feed efficiency. There may be an advantage in blending ALM and soybean meal as feed efficiency was improved when cattle were fed the blend. Also, feeding ALM may result in lower incidence of liver abscess.« less
Ozyurt, Ayhan; Kocak, Nilufer; Akan, Pınar; Calan, Ozlem Gursoy; Ozturk, Taylan; Kaya, Mahmut; Karahan, Eyup; Kaynak, Suleyman
2017-06-01
The aim of the study was to evaluate the macular pigment optical density (MPOD) levels in patients with wet age-related macular degeneration (AMD), dry AMD, and also in healthy controls. This study was conducted at Department of Ophthalmology, and the study design was a prospective study. Forty-eight patients with wet AMD, 51 patients with dry AMD, and 50 controls were included in the study. All patients were naive to both previous lutein or zeaxanthin administration and any previous intravitreal injections. Fundus reflectance (VISUCAM 500, reflectance of a single 460 nm wavelength) was used to measure the MPOD levels. Three groups were compared regarding age, gender, serum lutein, and zeaxanthin concentrations as well as MPOD levels. Serum lutein and zeaxanthin levels were significantly higher in control group when compared with wet AMD (Group 1) and dry AMD (Group 2) (P = 0.001 and P< 0.001, respectively). Mean MPOD was found to be similar in all of the three study subgroups (P = 0.630). However, maximum MPOD was significantly higher in control group when compared with Group 1 and 2 (P = 0.003). There was no correlation between serum lutein or zeaxanthin concentrations and mean MPOD levels (P = 0.815, r = 0.014 and P = 0.461, r = 0.043, respectively), but there was a weak correlation between serum zeaxanthin concentration and maximum MPOD level (P = 0.042, r = 0.124). Maximum MPOD level was found to be correlated with the level of AMD (Group 1, 2, and 3; r = 0.184, P = 0.041). Maximum MPOD level was found to be lower in patients with AMD when compared with control cases. Mean MPOD and maximum MPOD levels were similar in wet and dry AMD Groups. These results can be applied clinically keeping in mind that MPOD measurements with one wavelength reflectometry may not be completely reliable.
NASA Astrophysics Data System (ADS)
Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.
2008-12-01
The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the materials in simulated body fluids (SBFs), physiologically based extraction tests (PBETs) are an inexpensive, acellular in vitro test. Bioaccessibility, defined as the fraction of a potential toxicant that becomes soluble in the SBF (e.g. gastric, intestinal, lung or lysosomal fluid), is an indication of the amounts of a potential toxicant that may be available for absorption through ingestion or inhalation. PBETs were conducted on artificially generated dust samples from playas in the Mojave Desert and soil and ash samples from recent California wildfires. Speciation, an important factor in assessing toxicity, was evaluated using high performance liquid chromatography (HPLC) separation with ICP-MS detection for arsenic and chromium.
Carrot injury and yield response to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, J.P.; Oshima, R.J.
1976-11-01
Container-grown plants of carrot (Daucus carota L.) exposed intermittently to 0.19 or 0.25 ppm ozone throughout their growth increased in plant height and total number of leaves in spite of the development of chlorotic leaves. Leaf dry weight was unaffected by ozone, but root dry matter decreased 32 to 46%. As a result, the root weight/total dry weight ration and root/shoot ratio declined significantly in the presence of ozone. A regression of root dry weight on chlorotic lead dry weight explained 35% of the root loss and predicted that 1.5 g of root tissue is lost for every g ofmore » chlorotic leaf dry weight casued by ozone injury.« less
Shi, H T; Cao, Z J; Wang, Y J; Li, S L; Yang, H J; Bi, Y L; Doane, P H
2016-08-01
The objective of this study was to determine the optimum conditions for calcium oxide (CaO) treatment of anaerobically stored corn stover by in situ and in vitro methods. Four ruminally cannulated, non-lactating, non-pregnant Holstein cows were used to determine the in situ effective degradabilities of dry matter (ISDMD), organic matter (ISOMD), neutral detergent fibre (ISNDFD), in vitro organic matter disappearance (IVOMD) and gas production in 72 h (GP72h ) of corn stover. A completely randomized design involving a 3 × 3 factorial arrangement was adopted. Ground corn stover was treated with different levels of CaO (3%, 5% and 7% of dry stover) at varying moisture contents (40%, 50% and 60%) and stored under anaerobic conditions for 15 days before analysis. Compared with untreated corn stover, the CaO-treated stover had increased ash and calcium (Ca) contents but decreased aNDF and OM contents. The moisture content, CaO level and their interaction affected (p < 0.01) the content of aNDF, ash and OM, and the ratio of aNDF/OM. The greatest ISDMD, ISOMD and ISNDFD were observed when stover was treated with 7% CaO and 60% moisture, while no differences (p > 0.01) in these in situ degradability parameters were observed between the stover treated with 5% CaO at 60% moisture content and those treated with 7% CaO at 60% moisture content. Corn stover treated with 5% CaO at 50% moisture had the maximum IVOMD and GP72 h among the treatments, and there was no difference (p > 0.01) between 50% and 60% moisture. Results from this study suggested that 5% CaO applied at 60% moisture could be an effective and economical treatment combination. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Apparent nutrient digestibility of two raw diets in domestic kittens.
Hamper, Beth A; Kirk, Claudia A; Bartges, Joseph W
2016-12-01
The aim of the study was to evaluate overall dry matter, organic matter, crude protein, crude fat and gross energy digestibility of a feline commercial raw diet and a homemade raw diet compared with a canned, heat-processed diet. Six domestic shorthair kittens (20-28 weeks old) were fed three different diets in a Latin square crossover design. Diet A was a commercially available, canned, heat-processed diet. Diet B was a complete commercial, prefrozen, raw diet (commercial raw), and diet C was a raw diet supplement mixed with ground raw meat obtained locally (homemade raw). Both diets A and B were formulated to meet nutritional profile levels for cats at all life stages. Kittens were given specific diet amounts to maintain a 2-4% weight increase per week. Food was measured before and after feedings to determine the amount eaten, and all feces were collected, weighed and frozen prior to submission. Composite food samples and all feces were submitted to a national laboratory for proximate analysis of crude protein, crude fiber, ash, crude fat, moisture and caloric density. Significantly higher digestibility of dry matter (P <0.001), organic matter (P <0.001), crude protein (P <0.001) and gross energy (P <0.001) was seen in the raw diets compared with the heat-processed diets. This difference resulted in significantly less fecal matter (P <0.001) despite similar levels of intake and kcal ingested, and evidence of no difference in fecal scores. Higher dry matter, organic matter and protein digestibility was seen in two commercial raw diets compared with a heat-processed diet. Digestibility differences could have been due to variance in dietary protein, fat and carbohydrate concentrations between the diets, variance in dietary ingredients or quality, alterations in protein structure secondary to heat processing, as well as alterations in gastrointestinal flora. Future research examining digestibility in diets with the same macronutrient proportions and ingredients, and mechanisms for any differences, is warranted. © The Author(s) 2015.
Environmental control and waste management system design concept
NASA Technical Reports Server (NTRS)
Gandy, A. R.
1974-01-01
Passive device contains both solid and liquid animal waste matter for extended period without being cleaned and without contaminating animal. Constant airflow dries solid waste and evaporates liquid matter. Technique will maintain controlled atmospheric conditions and cage cleanliness during periods of 6 months to 1 year.
Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...
Brick Paving Systems in Expeditionary Environments: Field Testing
2012-07-01
specific gravity of 2.7, optimum moisture content of 2.6 percent, and a maximum dry density of 114.2 pcf. Figure 5 shows the Proctor curve developed by...4 Figure 3. Dry density versus moisture content for CH material...6 Figure 5. Dry density versus moisture content for blended GM base course. ..................................... 7 Figure 6
77 FR 8741 - Spirotetramat; Pesticide Tolerances for Emergency Exemptions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... on onion, dry bulb under section 408(l)(6) of the Federal Food, Drug, and Cosmetic Act (FFDCA), 21 U... pesticide on dry bulb onions. This regulation establishes a maximum permissible level for residues of... degradates, in or on onion, dry bulb at 0.3 parts per million (ppm). This time-limited tolerance expires on...
Devine, Carrick; Wells, Robyn; Lowe, Tim; Waller, John
2014-01-01
The M. longissimus from lambs electrically stimulated at 15 min post-mortem were removed after grading, wrapped in polythene film and held at 4 (n=6), 7 (n=6), 15 (n=6, n=8) and 35°C (n=6), until rigor mortis then aged at 15°C for 0, 4, 24 and 72 h post-rigor. Centrifuged free water increased exponentially, and bound water, dry matter and shear force decreased exponentially over time. Decreases in shear force and increases in free water were closely related (r(2)=0.52) and were unaffected by pre-rigor temperatures. © 2013.
Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang
2014-06-01
Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.
Gorniak, Tobias; Meyer, Ulrich; Südekum, Karl-Heinz; Dänicke, Sven
2014-01-01
The aim of the present study was to evaluate the impact of summer temperatures in a temperate climate on mid-lactation Holstein dairy cows. Therefore, a data set was examined comprising five trials with dairy cows conducted at the experimental station of the Friedrich-Loeffler-Institute in Braunschweig, Germany. The temperature-humidity index (THI) was calculated using temperature and humidity data from the barns recorded between January 2010 and July 2012. By using a generalised additive mixed model, the impact of increasing THI on dry matter intake, milk yield and milk composition was evaluated. Dry matter intake and milk yield decreased when THI rose above 60, whilst water intake increased in a linear manner beyond THI 30. Furthermore, milk protein and milk fat content decreased continuously with increasing THI. The present results revealed that heat stress exists in Lower Saxony, Germany. However, further research is necessary to describe the mode of action of heat stress. Especially, mild heat stress has to be investigated in more detail and appropriate heat stress thresholds for temperate climates have to be developed.
Tagawa, Shin-Ichi; Yoshida, Norio; Iino, Yukihiro; Horiguchi, Ken-Ichi; Takahashi, Toshiyoshi; Watanabe, Maria; Takemura, Kei; Ito, Syuhei; Mikami, Toyoji
2017-01-01
This study was conducted to determine the effect of pelleting on in situ dry matter degradability of pelleted compound feed containing brown rice for dairy cows. Mash feed of the same composition was used as a control and the in situ study was conducted using three non-lactating Holstein steers fitted with a rumen cannula. The feeds contained 32.3% brown rice, 19.4% rapeseed meal, 11.4% wheat bran and 10.6% soybean meal (fresh weight basis). Except for moisture content, the chemical composition of the feed was not affected by pelleting. In situ dry matter disappearance of the feed increased from 0 to 2 h and after 72 h of incubation with pellet processing. Integration of the dry matter disappearance values over time revealed that degradability parameter a (soluble fraction) increased with pellet processing, whereas parameter b (potentially degradable fraction) decreased. Parameter c (fractional rate of degradation) and effective degradability (5% passage rate) were not affected by pellet processing. We concluded that pellet processing promotes rumen degradability at early incubation hours when the pelleted feed contains brown rice. © 2016 Japanese Society of Animal Science.
Process for protein enrichment of cassava by solid substrate fermentation in rural conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daubresse, P.; Ntibashirwa, S.; Gheysen, A.
1987-06-01
An artisanal static process for protein enrichment of cassava by solid-state fermentation, developed in laboratory and tested on pilot units in Burundi (Central Africa), provides enriched cassava containing 10.7% of dry matter protein versus 1% before fermentation. Cassava chips, processed into granules of 2-4-mm diameter, are moistened (40% water content) and steamed. After cooling to 40 degrees C, cassava is mixed with a nutritive solution containing the inoculum (Rhizopus oryzae, strain MUCL 28627) and providing the following per 100 g dry matter: 3.4 g urea, 1.5 g KH/sub 2/PO/sub 4/, O.8 g MgSO/sub 4/.7H/sub 2/O, and 22.7 g citric acid.more » For the fermentation, cassava, with circa 60% moisture content, is spread in a thin layer (2-3 cm thick) on perforated trays and slid into an aerated humidified enclosure. The incubation lasts more or less 65 hours. The production of protein enriched cassava is 3.26 kg dry matter/square m tray. The effects of the variation of the nutritive solution composition and the inoculum conservation period on the protein production are equally discussed. (Refs. 37).« less
Hue, Khuc Thi; Thanh Van, Do Thi; Ledin, Inger; Wredle, Ewa; Spörndly, Eva
2012-01-01
The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves. PMID:25049534
Steen, Kim Arild; Green, Ole; Karstoft, Henrik
2017-01-01
Optimal fertilization of clover-grass fields relies on knowledge of the clover and grass fractions. This study shows how knowledge can be obtained by analyzing images collected in fields automatically. A fully convolutional neural network was trained to create a pixel-wise classification of clover, grass, and weeds in red, green, and blue (RGB) images of clover-grass mixtures. The estimated clover fractions of the dry matter from the images were found to be highly correlated with the real clover fractions of the dry matter, making this a cheap and non-destructive way of monitoring clover-grass fields. The network was trained solely on simulated top-down images of clover-grass fields. This enables the network to distinguish clover, grass, and weed pixels in real images. The use of simulated images for training reduces the manual labor to a few hours, as compared to more than 3000 h when all the real images are annotated for training. The network was tested on images with varied clover/grass ratios and achieved an overall pixel classification accuracy of 83.4%, while estimating the dry matter clover fraction with a standard deviation of 7.8%. PMID:29258215
Hue, Khuc Thi; Thanh Van, Do Thi; Ledin, Inger; Wredle, Ewa; Spörndly, Eva
2012-12-01
The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.
NASA Astrophysics Data System (ADS)
Müller, Ann-Christin; Blagodatskaya, Evgenia
2017-04-01
The aim of this experiment was to study the impact of the extreme weather events freezing-thawing and drying-rewetting on C-, N- and P-dynamics in dissolved organic matter and microbial biomass. The three variants of a chernozem soil (Voronezh region, Russia) are (1) fertilized maize cropping, (2) unfertilized maize cropping and (3) a bare fallow. After both abiotic perturbations the respiration rates were generally lower in the freezing-thawing than in the drying-rewetting treatment, due to the lower temperature. The elevated respiration came along with the decay of organic matter, which was also manifested in increased mineralization of C, N and P immediately after rewetting. However, freezing-thawing had significantly less impact on C-, N- and P-mobilization. We conclude that drying-rewetting leads to an initially increased mobilization of C, N and P, which becomes obvious as increased amounts of DOM immediately after rewetting. Freezing-thawing does not affect mobilization in the same way. There, only an increased mobilization of C can be observed. Especially concerning N and P, the reaction is dependent on the form of use/cropping in both treatments.
Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed
2017-02-01
The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA 3 ) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA 3 content and GA 3 /ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA 3 /ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA 3 /ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development. Copyright © 2016 Elsevier B.V. All rights reserved.
Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas
2009-06-01
The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter content of 4.5% and 20.8% solid phase with a dry matter content of 19.3%. Dry matter, volatile solids and carbon, raw ash and phosphate--in relation to the mass--accumulated strongly in the solid phase. Nitrogen and ammonia nitrogen were slightly enriched in the solid phase. Only the potassium content decreased slightly in the solid phase.
Increasing heat waves and warm spells in India, observed from a multiaspect framework
NASA Astrophysics Data System (ADS)
Panda, Dileep Kumar; AghaKouchak, Amir; Ambast, Sunil Kumar
2017-04-01
Recent heat waves have been a matter of serious concern for India because of potential impacts on agriculture, food security, and socioeconomic progress. This study examines the trends and variability in frequency, duration, and intensity of hot episodes during three time periods (1951-2013, 1981-2013 and 1998-2013) by defining heat waves based on the percentile of maximum, minimum, and mean temperatures. The study also explores heat waves and their relationships with hydroclimatic variables, such as rainfall, terrestrial water storage, Palmer drought severity index, and sea surface temperature. Results reveal that the number, frequency, and duration of daytime heat waves increased considerably during the post-1980 dry and hot phase over a large area. The densely populated and agriculturally dominated northern half of India stands out as a key region where the nighttime heat wave metrics reflected the most pronounced amplifications. Despite the recent warming hiatus in India and other parts of the world, we find that both daytime and nighttime extreme measures have undergone substantial changes during or in the year following a dry year since 2002, with the probability distribution functions manifesting a hotter-than-normal climate during 1998-2013. This study shows that a few months preceding the 2010 record-breaking heat wave in Russia, India experienced the largest hot episode in the country's history. Interestingly, both these mega events are comparable in terms of their evolution and amplification. These findings emphasize the importance of planning for strategies in the context of the rising cooccurrence of dry and hot events.
Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely ...
DESIGN AND EVALUATION OF AN INLET CONDITIONER TO DRY PARTICLES FOR AN AERODYNAMIC PARTICLE SIZER
Atmospheric particulate matter is one of six pollutants for which the Environmental Protection Agency (EPA) has set National Ambient Air Quality Standards. Particulate matter standards are specified by particle size as PM 2.5 defined as the mass concentration of ′fine...
Algal culture studies related to a closed ecological life support system
NASA Technical Reports Server (NTRS)
Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.
1984-01-01
Studies on the steady-state long-term (4 month) culture of Scenedesmus obliquus algae, maintained in an annular air-lift column operated as a turbidostat, were carried out to evaluate the life-supporting possibilities of this system. Chlorophyll production and cell number as functions of the dry weight were linear at constant illumination. Productivity (measured as the product of dry weight, mg/ml, and the growth rate, ml/hr) vs. dry weight rose linearly until the cell density reached a level at which light became limiting (89 percent absorption of the photosynthetically active radiation). In the initial, linear portion of the curve, the productivity was limited by cell growth at the given light intensity. The maximum dilution rate of the system corresponded to the doubling time of 13.4 hr, about half the maximum rate, with a productivity of 80 percent of the maximum theoretical productivity. The high light utilization efficiencies were contributed by the low (10 percent of full sunlight) incident intensities.
Zhang, Junya; Cai, Xing; Qi, Lu; Shao, Chunyan; Lin, Yang; Zhang, Jin; Zhang, Yuanli; Shen, Peihong; Wei, Yuansong
2015-09-01
Sludge bio-drying in which sludge is dried by means of the heat generated by the aerobic degradation of its own organic substances has been widely used for sludge treatment. A better understanding of the evolution of dissolved organic matter (DOM) and its degradation drivers during sludge bio-drying could facilitate its control. Aeration is one of the key factors that affect sludge bio-drying performance. In this study, two aeration strategies (pile I-the optimized and pile II-the current) were established to investigate their impacts on the evolution of DOM and the microbial community in a full-scale sludge bio-drying plant. A higher pile temperature in pile I caused pile I to enter the DOM and microbiology stable stage approximately2 days earlier than pile II. The degradation of easily degradable components in the DOM primarily occurred in the thermophilic phase; after that degradation, the DOM components changed a little. Along with the evolution of the DOM, its main degradation driver, the microbial community, changed considerably. Phyla Firmicutes and Proteobacteria were dominant in the thermophilic stage, and genus Ureibacillus, which was the primary thermophilic bacteria, was closely associated with the degradation of the DOM. In the mesophilic stage, the microbial community changed significantly at first and subsequently stabilized, and the genus Parapedobacter, which belongs to Bacteriodetes, became dominant. This study elucidates the interplay between the DOM and microbial community during sludge bio-drying.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator... kg/Mg (0.75 lb/ton) dry sludge input or less during the most recent performance test, a scrubber... particulate matter emission rate of greater than 0.38 kg/Mg (0.75 lb/ton) dry sludge input during the most...
USDA-ARS?s Scientific Manuscript database
Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...
Rapid high throughput amylose determination in freeze dried potato tuber samples
USDA-ARS?s Scientific Manuscript database
Approximately 80% of the fresh weight of a potato tuber is water; nearly all of the remaining dry matter is starch. Most of the starch (70%) is composed of amylopectin, while the remainder is amylose. The ratio between amylose and amylopectin is the most important property influencing the physical p...
Growth of the eye lens: II. Allometric studies.
Augusteyn, Robert C
2014-01-01
The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Incinerators for Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 1A... Facilities as Defined in § 60.50c(a)(1) and (2) Pollutant Units (7 percent oxygen, dry basis) Emissions... matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 69 (0.03) 34 (0.015...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Incinerators for Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 1B... Facilities as Defined in § 60.50c(a)(3) and (4) Pollutant Units (7 percent oxygen, dry basis) Emissions... matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 66 (0.029) 22 (0.0095...
Drying-induced physico-chemical changes in cranberry products.
Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried
2018-02-01
Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pharmaceuticals and illicit drugs - A new threat to the application of sewage sludge in agriculture.
Ivanová, Lucia; Mackuľak, Tomáš; Grabic, Roman; Golovko, Oksana; Koba, Olga; Staňová, Andrea Vojs; Szabová, Petra; Grenčíková, Anna; Bodík, Igor
2018-04-07
The occurrence of 93 pharmaceuticals, illicit drugs and their metabolites has been investigated in stabilized sewage sludge from five municipal wastewater treatment plants (WWTPs) in the Slovak Republic. The total population connected to the tested WWTPs was approximately 600,000 p.e. which represents >20% of the Slovak population connected to public sewer systems. The sludge production from the five tested plants was >8100tons in 2016, which is approximately 15% of the total Slovak sewage sludge production in 2016. The highest total concentration of all pharmaceuticals was found in WWTP Bratislava Devínska Nová Ves (DNV) and Senec - 11,800 and 11,300ng/g dry matter (DM), respectively. Among individual pharmaceuticals, the highest concentrations were recorded for fexofenadine (mean 2340ng/g DM, maximum 5600ng/g DM in Bratislava DNV) and telmisartan (mean 1170ng/g DM, with a maximum of 3370ng/g DM in Senec). A principal component analysis revealed differences between pharmaceutical patterns in aerobically and anaerobically stabilized sludge. The worst-case scenario based on no further degradation of pharmaceuticals between sludge production and field application was used to predict pharmaceutical mass loads in agriculture. For the result, we estimated an annual load to soil in the Slovak Republic of up to several hundred kilograms of pharmaceuticals and drugs, with the maximum for fexofenadine (120kg/year) and verapamil (29kg/year). Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Ping; Du, Qing; Liu, Xiaoming; Zhou, Li; Hussain, Sajad; Lei, Lu; Song, Chun; Wang, Xiaochun; Liu, Weiguo; Yang, Feng; Shu, Kai; Liu, Jiang; Du, Junbo; Yang, Wenyu; Yong, Taiwen
2017-01-01
The blind pursuit of high yields via increased fertilizer inputs increases the environmental costs. Relay intercropping has advantages for yield, but a strategy for N management is urgently required to decrease N inputs without yield loss in maize-soybean relay intercropping systems (IMS). Experiments were conducted with three levels of N and three planting patterns, and dry matter accumulation, nitrogen uptake, nitrogen use efficiency (NUE), competition ratio (CR), system productivity index (SPI), land equivalent ratio (LER), and crop root distribution were investigated. Our results showed that the CR of soybean was greater than 1, and that the change in root distribution in space and time resulted in an interspecific facilitation in IMS. The maximum yield of maize under monoculture maize (MM) occurred with conventional nitrogen (CN), whereas under IMS, the maximum yield occurred with reduced nitrogen (RN). The yield of monoculture soybean (MS) and of soybean in IMS both reached a maximum under RN. The LER of IMS varied from 1.85 to 2.36, and the SPI peaked under RN. Additionally, the NUE of IMS increased by 103.7% under RN compared with that under CN. In conclusion, the separation of the root ecological niche contributed to a positive interspecific facilitation, which increased the land productivity. Thus, maize-soybean relay intercropping with reduced N input provides a very useful approach to increase land productivity and avert environmental pollution.
William T. Simpson
1991-01-01
The modern dry kiln is a unique product of research, development, and experience. It is the only practical means now in wide use for rapid, high- volume drying of lumber to conditions necessary for maximum serviceability in housing, furniture, millwork, and many other wood products. As part of our charge to help further the efficient utilization of our nationâs timber...
NASA Astrophysics Data System (ADS)
Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.
2018-02-01
A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.
Arriola, Kathy G; Oliveira, Andre S; Ma, Zhengxin X; Lean, Ian J; Giurcanu, Mihai C; Adesogan, Adegbola T
2017-06-01
The aim of this study was to use meta-analytical methods to estimate effects of adding exogenous fibrolytic enzymes (EFE) to dairy cow diets on their performance and to determine which factors affect the response. Fifteen studies with 17 experiments and 36 observations met the study selection criteria for inclusion in the meta-analysis. The effects were compared by using random-effect models to examine the raw mean difference (RMD) and standardized mean difference between EFE and control treatments after both were weighted with the inverse of the study variances. Heterogeneity sources evaluated by meta-regression included experimental duration, EFE type and application rate, form (liquid or solid), and method (application to the forage, concentrate, or total mixed ration). Only the cellulase-xylanase (C-X) enzymes had a substantial number of observations (n = 13 studies). Application of EFE, overall, did not affect dry matter intake, feed efficiency but tended to increase total-tract dry matter digestibility and neutral detergent fiber digestibility (NDFD) by relatively small amounts (1.36 and 2.30%, respectively, or <0.31 standard deviation units). Application of EFE increased yields of milk (0.83 kg/d), 3.5% fat-corrected milk (0.55 kg/d), milk protein (0.03 kg/d), and milk lactose (0.05 kg/d) by moderate to small amounts (<0.30 standard deviation units). Low heterogeneity (I 2 statistic <25%) was present for yields and concentrations of milk fat and protein and lactose yield. Moderate heterogeneity (I 2 = 25 to 50%) was detected for dry matter intake, milk yield, 3.5% fat-corrected milk, and feed efficiency (kg of milk/kg of dry matter intake), whereas high heterogeneity (I 2 > 50%) was detected for total-tract dry matter digestibility and NDFD. Milk production responses were higher for the C-X enzymes (RMD = 1.04 kg/d; 95% confidence interval: 0.33 to 1.74), but were still only moderate, about 0.35 standardized mean difference. A 24% numerical increase in the RMD resulting from examining only C-X enzymes instead of all enzymes (RMD = 1.04 vs. 0.83 kg/d) suggests that had more studies met the inclusion criteria, the C-X enzymes would have statistically increased the milk response relative to that for all enzymes. Increasing the EFE application rate had no effect on performance measures. Application of EFE to the total mixed ration improved only milk protein concentration, and application to the forage or concentrate had no effect. Applying EFE tended to increase dry matter digestibility and NDFD and increased milk yield by relatively small amounts, reflecting the variable response among EFE types. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
The energy content of wet corn distillers grains for lactating dairy cows.
Birkelo, C P; Brouk, M J; Schingoethe, D J
2004-06-01
Forty-five energy balances were completed with 12 multiparous, lactating Holstein cows in a study designed to determine the energy content of wet corn distillers grains. Treatments were applied in a repeated switchback design and consisted of total mixed diets containing 31.4% corn silage, 18.4% alfalfa hay, and either 30.7% rolled corn and 16.7% soybean meal or 17.0% rolled corn and 31.2% wet corn distillers grains (dry matter basis). Replacement of corn and soybean meal with wet corn distillers grains reduced dry matter intake 10.9% but did not affect milk production. Neither digestible nor metabolizable energy were affected by diet composition. Heat and milk energy output did not differ by diet, but body energy retained was 2.8 Mcal/d less in cows fed the wet corn distillers grains diet. Multiple regression estimates of maintenance metabolizable energy requirement and partial efficiencies of metabolizable energy used for lactation and body energy deposition did not differ by diet. Pooled estimates were 136.2, 0.66, and 0.85, kcal of metabolizable energy/ body weight0.75 per day, respectively. Calculated by difference, wet corn distillers grains was estimated to contain 4.09, 3.36, and 2.27 Mcal/kg of dry matter as digestible, metabolizable, and lactational net energy, respectively. These energy estimates were 7 to 11% and 10 to 15%, respectively, greater than those reported for dried corn distillers grains by the 1989 and 2001 dairy NRC publications.
Interatomic potentials in condensed matter via the maximum-entropy principle
NASA Astrophysics Data System (ADS)
Carlsson, A. E.
1987-09-01
A general method is described for the calculation of interatomic potentials in condensed-matter systems by use of a maximum-entropy Ansatz for the interatomic correlation functions. The interatomic potentials are given explicitly in terms of statistical correlation functions involving the potential energy and the structure factor of a ``reference medium.'' Illustrations are given for Al-Cu alloys and a model transition metal.
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M
2017-07-01
In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhong, R Z; Li, J G; Gao, Y X; Tan, Z L; Ren, G P
2008-10-01
Eight multiparous Holstein cows, 4 of them fitted with rumen cannulas, were used to test the effects of substitution of steam-flaked corn (SFC) for equal amounts of finely ground corn (FGC) in diets on feed intake and digestion, blood metabolites, and lactation performance in early lactation dairy cows. Cows were fed 4 diets in a replicated 4 x 4 Latin square design. The fistulated cows formed 1 replicate. Each experimental period lasted for 3 wk. The 4 diets contained 0, 10, 20, or 40% SFC and 40, 30, 20, or 0% FGC (dry matter basis), respectively. The milk protein content and yield, milk solid nonfat content and yield, plasma glucose concentration, and dry matter intake increased as the proportion of SFC increased in diets. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, and average ruminal fluid NH(3)-N concentration decreased with increasing levels of SFC. The ruminal fluid pH was not affected by the substitution of SFC for FGC. The 20% SFC substitution improved digestion of crude protein, yield of fat-corrected milk, milk lactose content, fat, and fat yield. The 40% SFC substitution increased urea concentration in both plasma and milk. It was concluded that 20% of SFC substitution for FGC appeared to be an appropriate level in diet for early lactation dairy cows.
The maximal-density mass function for primordial black hole dark matter
NASA Astrophysics Data System (ADS)
Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson
2018-04-01
The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.
Chen, Liyan; Vadlani, Praveen V; Madl, Ronald L
2014-01-15
Phytic acid of soy meal (SM) could influence protein and important mineral digestion of monogastric animals. Aspergillus oryzae (ATCC 9362) solid-state fermentation was applied to degrade phytic acid in SM. Two-stage temperature fermentation protocol was investigated to increase the degradation rate. The first stage was to maximize phytase production and the second stage was to realize the maximum enzymatic degradation. In the first stage, a combination of 41% moisture, a temperature of 37 °C and inoculum size of 1.7 mL in 5 g substrate (dry matter basis) favored maximum phytase production, yielding phytase activity of 58.7 U, optimized via central composite design. By the end of second-stage fermentation, 57% phytic acid was degraded from SM fermented at 50 °C, compared with 39% of that fermented at 37 °C. The nutritional profile of fermented SM was also studied. Oligosaccharides were totally removed after fermentation and 67% of total non-reducing polysaccharides were decreased. Protein content increased by 9.5%. Two-stage temperature protocol achieved better phytic acid degradation during A. oryzae solid state fermentation. The fermented SM has lower antinutritional factors (phytic acid, oligosaccharides and non-reducing polysaccharides) and higher nutritional value for animal feed. © 2013 Society of Chemical Industry.
Allen, M S; Ying, Y
2012-11-01
This experiment was conducted to evaluate ruminal digestion responses to Saccharomyces cerevisiae fermentation product (SCFP) supplementation and to determine if responses are influenced by voluntary feed intake. Fifteen ruminally and duodenally cannulated Holstein cows with a wide range in preliminary dry matter intake (pDMI; 20.1 to 31.0 kg/d) measured during a 14-d preliminary period were used in a crossover design experiment. Treatments were SCFP and control (a mix of dry ground corn and soybean meal), top-dressed at the rate of 56 g/d per head. The base diet contained 28% NDF, 30% starch, and 16.5% CP and included corn silage, alfalfa silage, high-moisture corn, protein supplement, and a mineral and vitamin supplement. Treatment periods were 28 d, with the final 8d used for sample and data collection. Voluntary dry matter intake was determined during the last 4d of the preliminary period. Ruminal digestion kinetics were determined using the pool-and-flux method. Main effects of SCFP treatment and their interaction with pDMI were tested by ANOVA. An interaction was detected between SCFP treatment and pDMI for ruminal digestion rate of starch; SCFP increased the rate of starch digestion compared with the control for cows with pDMI below 26 kg/d and decreased it for cows with higher pDMI. This resulted in an interaction between treatment and pDMI for turnover rate of starch in the rumen and true and apparent ruminal starch digestibility because passage rate of starch from the rumen was not affected by treatment (mean=24.3%/h). Ruminal pH (mean=6.0), dry matter intake, milk yield and component percentages were not affected by treatment or its interaction with pDMI. Supplementation of SCFP reduced the rate of ruminal starch digestion for cows with higher feed intake, which could help stabilize the ruminal environment when large amounts of starch are consumed to support higher milk production. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Conserved actions, maximum entropy and dark matter haloes
NASA Astrophysics Data System (ADS)
Pontzen, Andrew; Governato, Fabio
2013-03-01
We use maximum entropy arguments to derive the phase-space distribution of a virialized dark matter halo. Our distribution function gives an improved representation of the end product of violent relaxation. This is achieved by incorporating physically motivated dynamical constraints (specifically on orbital actions) which prevent arbitrary redistribution of energy. We compare the predictions with three high-resolution dark matter simulations of widely varying mass. The numerical distribution function is accurately predicted by our argument, producing an excellent match for the vast majority of particles. The remaining particles constitute the central cusp of the halo (≲4 per cent of the dark matter). They can be accounted for within the presented framework once the short dynamical time-scales of the centre are taken into account.
Fertilizer application equipment for bareroot and container nurseries
John W. Bartok
2002-01-01
Fertilizer application equipment can apply chemicals in dry or liquid form or as manure. The appropriate equipment will place the material at the desired rate in the desired location. In bareroot nurseries, fertilizer is usually applied dry in granulated pellets or coated form. Where in plentiful supply, animal manure may be used, both for nutrients and organic matter...
USDA-ARS?s Scientific Manuscript database
Moisture is paramount to cotton fiber properties dictating harvesting, ginning, storage and spinning as well as others. Currently, oven drying in air is often utilized to generate the percentage of moisture in cotton fibers. Karl Fischer Titration another method for cotton moisture, has been compa...
Code of Federal Regulations, 2011 CFR
2011-07-01
... matter (PM) in excess of: (i) 0.30 pound per ton of feed (dry basis) to the kiln if construction... conducted by § 60.8 is completed, you may not discharge into the atmosphere from any clinker cooler any gases which: (1) Contain PM in excess of: (i) 0.10 pound per ton of feed (dry basis) to the kiln if...
Code of Federal Regulations, 2012 CFR
2012-07-01
... matter (PM) in excess of: (i) 0.30 pound per ton of feed (dry basis) to the kiln if construction... conducted by § 60.8 is completed, you may not discharge into the atmosphere from any clinker cooler any gases which: (1) Contain PM in excess of: (i) 0.10 pound per ton of feed (dry basis) to the kiln if...
USDA-ARS?s Scientific Manuscript database
Most broilers in the U.S. are transported live to slaughter facilities in cages with fiberglass floors. Cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Drying feces out between uses is an effectiv...
Physiological responses during continuous work in hot dry and hot humid environments in Indians
NASA Astrophysics Data System (ADS)
Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.
1984-06-01
Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work.
Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems
Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Yang, Rongsheng
2012-01-01
A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro. For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C. The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.
NASA Astrophysics Data System (ADS)
Azoddein, Abdul Aziz Mohd; Nuratri, Yana; Azli, Faten Ahada Mohd; Bustary, Ahmad Bazli
2017-12-01
Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91 %. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been grown in agar. Result from this study may be beneficial and useful as initial reference before commercialized freeze-dried P. putida.
NASA Astrophysics Data System (ADS)
Ying, G.; Sansalone, J.
2010-03-01
SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.
Responses of seminal wheat seedling roots to soil water deficits.
Trejo, Carlos; Else, Mark A; Atkinson, Christopher J
2018-04-01
The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.
Xiao, Jun; Wu, Xu; Yu, Wenbo; Liang, Sha; Yu, Jiangwei; Gu, Yueyuan; Deng, Huali; Hu, Jiukun; Xiao, Keke; Yang, Jiakuan
2017-12-01
In this study, the influence of Na 2 SO 4 on electro-dewatering (EDW) of waste activated sludge (WAS) was investigated. The highest water removal efficiency of 42.5% was achieved at the optimum Na 2 SO 4 dosage of 12.5 g kg -1 DS during EDW process at a constant voltage of 20 V. The migration and distribution of water, organic matters and Na + at different Na 2 SO 4 dosages were investigated through layered experiments. The results indicated the entire EDW process followed the S curve model, and it can be divided into three stages: (1) initial desalination stage: at the initial few min of EDW process, the rate of electroosmosis was extremely slow while electromigration of ions like Na + was intense, and the electromigration was more obvious with increased Na 2 SO 4 dosage; (2) dewatering stage: the dewatering efficiency increased dramatically via electroosmosis; (3) the dewaterability limit stage: the maximum value of dewatering efficiency has been achieved, while the water removal efficiency and dry solids content remained constant. During the EDW process, the possible electrolysis resulted in a pH gradient in the sludge cake. With the addition of Na 2 SO 4 in the EDW, the pH gradient was intensified, and the migration rate of organic matters moving from cathode to anode increased while compared with the raw WAS. This study provided insights into the mechanism of EDW process at different dosages of Na 2 SO 4 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Alfaro, M A; Martínez, A; Ramírez, R; Bressani, R
1987-03-01
The genus Amaranthus comprises species which, consumed as vegetables, provide essential nutrients to man; they also have a high acceptability among the population. These two factors justify the need to increase their cultivation. Therefore, the purpose of this research was to establish the most adequate physiological state of maturity, to harvest the leaves for human consumption. The field experiment utilized a randomized block design with three treatments and eight replications. These treatments consisted in harvesting the plants at 25, 40 and 60 days after emergence of the seedlings, samples which served to evaluate: plant height, number of leaves, leaf surface area, gross weight (leaves and stems), net weight (leaves), green matter and dry matter yield, as well as protein. The chemical composition of the harvested material was evaluated also in terms of moisture, protein, crude fiber, ether extract, ash, carbohydrate, calcium, phosphorus, iron, beta-carotene and oxalates. The results obtained in the agronomic study were subjected to analysis of variance for the respective design, with significant differences found between treatments for all the variables studied. In its turn, the results of the chemical analysis were analyzed by a completely randomized design, with significant differences obtained for most of the variables studied, except for ether extract, calcium, iron and oxalates. From the nutritional point of view, the first harvest was the most acceptable due to the chemical composition of the plant, in particular protein (29.5%), beta-carotene (33.7 mg%), calcium (2,356.1 mg%), phosphorus (759.1 mg%) and due to its low crude fiber content, only 11.1 g%. It did not occur so from the agronomic point of view, since during this stage, very low yields of green matter (575.9 kg/ha), dry matter (66.6 kg/ha) and protein (19.7 kg/ha) were obtained. At the second harvest, besides obtaining adequate yields of green matter (6,530.4 kg/ha), dry matter (681.8 kg/ha) and protein 154.3 kg/ha), an acceptable composition in its protein content (22.7 g%), beta-carotene (24.1 mg%), calcium (2,279.8 mg%), phosphorus (740.9 mg%) and iron (52.7 mg%) was also obtained. The crude fiber content, on the other hand, was not excessively increased (14.3 g%), from which findings it was concluded that this is the best stage for harvesting, in comparison with the harvests carried out 25 and 60 days after emergence. Finally, it was observed that harvesting at 60 days gave the highest yields in green matter (24,272.8 kg/ha), dry matter (3,452.0 kg/ha) and protein (510.7 kg/ha).(ABSTRACT TRUNCATED AT 400 WORDS)
Ye, D; Karnati, S K R; Wagner, B; Firkins, J L; Eastridge, M L; Aldrich, J M
2018-06-01
The interaction of monensin and essential oil was hypothesized to suppress protozoa and methane production while maintaining normal rumen function. The objective of this study was to determine the effects of feeding monensin (MON) and CinnaGar (CIN, a commercial blend of cinnamaldehyde and garlic oil; Provimi North America, Brookville, OH) on ruminal fermentation characteristics. Continuous culture fermentors (n = 4) were maintained in 4 experimental periods in a 4 × 4 Latin square design. Four dietary treatments were arranged in a 2 × 2 factorial: (1) control diet, 37 g/d of dry matter (40 g/d at ∼92.5% dry matter) of a 50:50 forage:concentrate diet containing no additive; (2) MON at 11 g/909 kg of dry matter; (3) CIN at 0.0043% of dry matter; and (4) a combination of MON and CIN at the levels in (2) and (3). Treatment had no effects on protozoal populations, concentration of NH 3 N, total N flow of effluent, production of total volatile fatty acids, or flows of conjugated linoleic acid and total C18 fatty acids. The MON decreased acetate:propionate ratio and biohydrogenation of both total C18 and 18:1 cis-9 but increased protozoal generation time, concentration of peptide, and flow of 18:1 trans-11. The MON tended to decrease protozoal counts in effluent and flow of 18:0 but tended to increase propionate production. The CIN decreased true organic matter digestibility and protozoal N flow of effluent but increased nonammonia, nonmicrobial N flow. The CIN tended to decrease protozoal counts, microbial N flow, and neutral detergent fiber digestibility but tended to increase biohydrogenation of total C18, 18:2, and 18:3. The CIN tended to increase isovalerate production. The MON and CIN tended to interact for increased methane production and bacterial N flow. A second experiment was conducted to determine the effects of MON and CIN on protozoal nitrogen and cell volume in vitro. Four treatments included (1) control (feed only), (2) feed + 0.0043% dry matter CIN, (3) feed + 2.82 μM MON, and (4) feed + CIN + MON at the same levels as in (2) and (3). With no interactions, MON addition decreased percentage of protozoa that were motile and tended to decrease cell volume at 6 h. The CIN did not affect cell count or other indicators of motility or volume at either 3 or 6 h. Under the conditions of our study, we did not detect an additive response for MON and CIN to decrease protozoal counts or methane production. A 3-dimensional method is suggested to better estimate protozoal cell volume. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fustini, M; Palmonari, A; Canestrari, G; Bonfante, E; Mammi, L; Pacchioli, M T; Sniffen, G C J; Grant, R J; Cotanch, K W; Formigoni, A
2017-06-01
The objective of this study was to investigate the effects of 2 alfalfa hays differing in undigested neutral detergent fiber content and digestibility used as the main forage source in diets fed to high producing cows for Parmigiano-Reggiano cheese production. Diets were designed to have 2 different amounts of undigestible NDF [high (Hu) and low (Lu)], as determined by 240-h in vitro analysis (uNDF 240 ). Alfalfa hay in vitro digestibility [% of amylase- and sodium sulfite-treated NDF with ash correction (aNDFom)] at 24 and 240 h was 40.2 and 31.2% and 53.6 and 45.7% for low- (LD) and high-digestibility (HD) hays, respectively. The 4 experimental diets (Hu-HD, Lu-HD, Hu-LD, and Lu-LD) contained 46.8, 36.8, 38.8, and 30.1% of alfalfa hay, respectively, 8.6% wheat straw, and 35.3% corn (50% flake and 50% meal; DM basis). Soy hulls and soybean meal were used to replace hay to balance protein and energy among diets. Eight multiparous Holstein cows (average milk production = 46.0 ± 5.2 kg/d, 101 ± 38 d in milk, and 662 ± 42 kg of average body weight) were assigned to a 4 × 4 Latin square design, with 2 wk of adaptation and a 1-wk collection period. Dry matter and water intake, rumination time, ruminal pH, and milk production and composition were measured. Diets and feces were analyzed for NDF on an organic matter basis (aNDFom), acid detergent fiber, acid detergent lignin, and uNDF 240 to estimate total-tract fiber digestibility. Dry matter intake and rumination times were higher in HD diets compared with LD diets, regardless of forage amount. Rumination time was constant per unit of dry matter intake but differed when expressed as a function of uNDF 240 , aNDFom, or physically effective NDF intake. No differences were found among treatments on average ruminal pH, but the amount of time with pH <5.8 was lower in Hu-HD diets. Milk production and components were not different among diets. Total-tract aNDFom and potentially digestible neutral detergent fiber fraction digestibility was higher for the LD diets (88.3 versus 85.8% aNDFom in HD), for which lower feed intakes were also observed. The Hu-HD diet allowed greater dry matter intake, longer rumination time, and higher ruminal pH, suggesting that the limiting factor for dry matter intake is neutral detergent fiber digestibility and its relative rumen retention time. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
viral abundance distribution in deep waters of the Northern of South China Sea
NASA Astrophysics Data System (ADS)
He, Lei; Yin, Kedong
2017-04-01
Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.
Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland
NASA Astrophysics Data System (ADS)
Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim
2015-04-01
In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic calcite precipitation in May leading to the monthly maximum in calcite deposition of 1.18 [g/m2d] (66.31
Ooh, Keng-fei; Ong, Hean-Chooi; Wong, Fai-Chu; Chai, Tsun-Thai
2015-01-01
Limnocharis flava is an edible wetland plant, whose phenolic acid and flavonoid compositions as well as bioactivities were underexplored. This study analyzed the profiles of selected hydroxybenzoic acids, hydroxycinnamic acids and flavonoids in the aqueous extracts of L. flava leaf, rhizome and root by high performance liquid chromatography (HPLC). Anti-lipoxygenase and antioxidant (iron chelating, 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging, and nitric oxide (NO) scavenging) activities of the extracts were also evaluated. Leaf extract had the highest phenolic contents, being most abundant in p-hydroxybenzoic acid (3861.2 nmol/g dry matter), ferulic acid (648.8 nmol/g dry matter), and rutin (4110.7 nmol/g dry matter). Leaf extract exhibited the strongest anti-lipoxygenase (EC50 6.47 mg/mL), iron chelating (EC50 6.65 mg/mL), DPPH scavenging (EC50 15.82 mg/mL) and NO scavenging (EC50 3.80 mg/mL) activities. Leaf extract also had the highest ferric reducing ability. This is the most extensive HPLC profiling of phenolic acids and flavonoids in L.flava to date. In conclusion, L. flava leaf is a source of health-promoting phenolics, anti-lipoxygenase agents and antioxidants.
Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo
2013-07-01
Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.
Lam, Yu Shan; Okello, Edward J
2015-01-01
The objective of this study was to quantify a number of bioactive compounds and antioxidant activity of the oyster mushroom, Pleurotus. Ostreatus, and characterize the effects of processing, such as blanching, on these outcomes. Dry matter content was 8%. Lovastatin was not detected in this study. β-glucan content of 23.9% and total polyphenol content of 487.12 mg gallic acid equivalent/100 g of dry matter were obtained in raw P. ostreatus. Antioxidant activities as evaluated by 1,1-diphenyl-2-picrylhydrazyl, Trolox equivalent antioxidant capacity, and ferric reducing antioxidant power assays in raw P. ostreatus were 14.46, 16.51, and 11.21 µmol/g, respectively. Blanching did not significantly affect β-glucan content but caused significant decrease in dry matter content, polyphenol content, and antioxidant activities. Mushroom rolls produced from blanched mushrooms and blanching water contained significantly higher amounts of β-glucan, total polyphenol content, and FRAP antioxidant activity compared to blanched mushrooms. In conclusion, P. ostreatus is a good source for β-glucan, dietary polyphenols, and antioxidants. Although the blanching process could affect these properties, re-addition of the blanching water during the production process of mushroom rolls could potentially recover these properties and is therefore recommended.
Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.
Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L
2014-03-30
The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.
Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.
Mungray, Arvind Kumar; Kumar, Pradeep
2008-09-01
Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.
NASA Astrophysics Data System (ADS)
Ray, R.; Michaud, E.; Vantrepotte, V.; Aller, R. C.; Morvan, S.; Thouzeau, G.
2016-12-01
We studied the mangrove dominated Sinnamary estuarine system in French Guiana during the dry and wet seasons in 2015 to examine the sources, transport and fate of surface water DOC, POC and DIC along the salinity gradient and the effect of tidal fluctuations on carbon dynamics. Elemental ratios, stable isotopes and optical properties (absorption) were applied as proxies to delineate the sources and molecular structure of the organic carbon. Results showed that during the wet season there were significant net inputs of POC and DOC along the salinity gradient from mangroves and enhanced surface runoff. Time series performed during the dry season at a station in channel water adjacent to mangroves revealed mangrove-derived export and exchanges of DOC and POC during the ebb and marine algae import during the flood. DOC was the dominant form of carbon in both seasons with DOC:POC ratios typically between 13 and 40. Both δ13DOC and CDOM descriptors (e.g., S275-295 and a*412) confirmed mangrove litter leaching to be the primary contributor of high molecular weight dissolved organic matter in the wet season which was replaced by marine phytoplanktonic OC during transport offshore in the dry season. CDOM aromaticity is lower in the dry season as mangrove inputs decrease. POC showed similar trends as DOC, with maximum contributions of terrestrial litter in the river and mixing zone, and in situ production dominant in the marine zone. The entire estuary is heterotrophic, exhibiting high pCO2 (837-5575µatm) and oxygen undersaturation (59-86%) in both seasons, and substantial CO2 emission fluxes (278-3671mmol m-2 d-1). Intense local remineralization and laterally transported CO2 originating from mangrove benthic respiration could account for the water column pCO2 enrichment during low tide and night time. Keywords: Organic carbon, stable isotopes, CDOM, pCO2, mangrove, French Guiana
Whole plant senescence of sunflower following seedhead removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, InSun; Below, F.E.
1989-09-01
This study was undertaken to further clarify the relationship between seed development and monocarpic senescence of sunflower (Helianthus annuus L.). Field-grown plants with and without seedheads were evaluated for rate and duration of accumulation of dry weight, reduced N, and P by whole shoots, and for partitioning of these constituents within the individual plant parts. Concurrent with seedhead removal, ({sup 15}N)nitrate was applied to the plants in a selected are of the experimental plot. Whole plants (above ground portions) were harvested seven times during the seed-filling period and analyzed from dry weight, reduced N, and P. Although seedhead removal depressedmore » the rates of dry weight, reduced N, and P accumulation by whole shoots, it extended the duration of accumulation of these constituents, relative to headed control plants. As a result, the final whole shoot dry weight and N and P contents at seed maturity were similar for deheaded and headed plants. Seedhead removal also affected the partitioning of dry matter, reduced N, and P but the relative proportions varied as a function of constituent and growth stage. Analysis of {sup 15}N present in whole shoots at physiological maturity showed that similar amounts of nitrate were absorbed during the postflowering period by headed and deheaded plants. These data indicate that the absence of seeds does not affect the total accumulation of dry matter, reduced N, or P, by sunflower plants, but does alter the rates of accumulation and partitioning of these constituents.« less
Bacterial communities and their association with the bio-drying of sewage sludge.
Cai, Lu; Chen, Tong-Bin; Gao, Ding; Yu, Jie
2016-03-01
Bio-drying is a technology that aims to remove water from a material using the microbial heat originating from organic matter degradation. However, the evolution of bacterial communities that are associated with the drying process has not been researched systematically. This study was performed to investigate the variations of bacterial communities and the relationships among bacterial communities, water evaporation, water generation, and organic matter degradation during the bio-drying of sewage sludge. High-throughput pyrosequencing was used to analyze the bacterial communities, while water evaporation and water generation were determined based on an in situ water vapor monitoring device. The values of water evaporation, water generation, and volatile solids degradation were 412.9 g kg(-1) sewage sludge bio-drying material (SSBM), 65.0 g kg(-1) SSBM, and 70.2 g kg(-1) SSBM, respectively. Rarefaction curves and diversity indices showed that bacterial diversity plummeted after the temperature of the bio-drying pile dramatically increased on d 2, which coincided with a remarkable increase of water evaporation on d 2. Bacterial diversity increased when the pile cooled. During the thermophilic phase, in which Acinetobacter and Bacillus were the dominant genera, the rates of water evaporation, water generation, and VS degradation peaked. These results implied that the elevated temperature reshaped the bacterial communities, which played a key role in water evaporation, and the high temperature also contributed to the effective elimination of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rifai, S. W.; Anderson, L. O.; Bohlman, S.
2015-12-01
Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.
Beyene, Getu; Solomon, Felix R; Chauhan, Raj D; Gaitán-Solis, Eliana; Narayanan, Narayanan; Gehan, Jackson; Siritunga, Dimuth; Stevens, Robyn L; Jifon, John; Van Eck, Joyce; Linsler, Edward; Gehan, Malia; Ilyas, Muhammad; Fregene, Martin; Sayre, Richard T; Anderson, Paul; Taylor, Nigel J; Cahoon, Edgar B
2017-11-28
Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A β-carotene. In this study, β-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 μg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-β-carotene, the most nutritionally efficacious carotenoid. β-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in β-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between β-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between β-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Kišidayová, Svetlana; Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora
2018-01-01
Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities.
Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora
2018-01-01
Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities. PMID:29324899
Getty, Caitlyn M; Dilger, Ryan N
2015-01-01
Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter) or choline sufficient (CS, 1306 mg choline/kg dry matter) diet for the last 65 d of gestation (prenatal intervention). Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter) or CS (1528 mg choline/kg dry matter) milk replacer (postnatal intervention) for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal) groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P < 0.01) plasma choline and choline-containing phospholipid concentrations and higher (P < 0.05) liver enzyme (alkaline phosphatase and gamma-glutamyl transferase) values compared with piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P < 0.01) compared with piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01) plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01) than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.
Bahmaniar, M A; Ranjbar, G A
2007-05-01
Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p < or = 0.05). Potassium application in field conditions has significantly affected on all characteristics but 1000 grain weight and leaf N and K contents. Simultaneous application of N and K have increasingly affected on grain yield, plant height, shoot dry matter and harvest index in field conditions and on plant height, length of flag leaf and shoot dry matter in pot conditions (p < or = 0.05).
Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D
2017-12-01
In this work, winery wastes generated by a cellar producing approximately 300,000 hL of wine per year was monitored for a period of one year. On average, 196 L of wastewater, 0.1 kg of waste activated sludge (dry matter) and 1.6 kg of wine lees were produced per hectoliter of wine produced. Different winery wastes, deriving from different production steps, namely waste activated sludge from wastewater treatment and wine lees, were co-treated using an anaerobic digestion process. Testing was conducted on a pilot scale for both mesophilic and thermophilic conditions. The process was stable for a long period at 37 °C, with an average biogas production of 0.386 m 3 /kg COD fed . On the other hand, for thermophilic conditions, volatile fatty acids accumulated in the reactor and the process failed after one hydraulic retention time (23 days). In order to fix the biological process, trace elements (iron, cobalt and nickel) were added to the feed of the thermophilic reactor. Metals augmentation improved process stability and yields at 55 °C. The pH ranged between 7.8 and 8.0, and specific gas production was 0.450 m 3 /kg COD fed , which corresponded to dry matter and COD removals of 34% and 88%, respectively. Although the observed performances in terms of biogas production were good, the thermophilic process exhibited some limitations related to both the necessity of metals addition and the worse dewaterability properties. In fact, while the mesophilic digestates reached a good dewatering quality via the addition of 6.5 g of polymer per kg of dry matter, the required dosage for the thermophilic sludge was greater than 10 g/kg of dry matter. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancement of the folate content in Egyptian pita bread
Hefni, Mohammed; Witthöft, Cornelia M.
2012-01-01
Introduction Egypt has a high incidence of neural tube defects related to folate deficiency. One major food source for folate is pita (baladi) bread, which is consumed daily. Bioprocessing (e.g. germination) has been reported to increase the folate content in cereals. The aim was to produce pita bread with increased folate content using germinated wheat flour (GWF). Methods Prior to milling the effects of germination and drying conditions on folate content in wheat grains were studied. Pita bread was baked from wheat flour substituted with different levels of GWF. The folate content in dough and bread and rheological properties of dough were determined. Results Germination of wheat grains resulted in, depending on temperature, 3- to 4-fold higher folate content with a maximum of 61 µg/100 g DM (dry matter). The folate content in both flour and bread increased 1.5 to 4-fold depending on the level of flour replacement with GWF. Pita bread baked with 50% sieved GWF was acceptable with respect to colour and layer separation, and had a folate content of 50 µg/100 g DM compared with 30 µg/100 g DM in conventional pita bread (0% GWF). Conclusion Using 50% GWF, pita bread with increased folate content, acceptable for the Egyptian consumer, was produced. Consumption of this bread would increase the average daily folate intake by 75 µg. PMID:22489220
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in excess of 21 parts per million...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in excess of 21 parts per million...
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in excess of 21 parts per million...
ERIC Educational Resources Information Center
Grossman, Elly S.; Cleaton-Jones, Peter E.
2011-01-01
This retrospective study documents the Masters and PhD training of 131 Dental Research Institute (DRI) postgraduates (1954-2006) to establish demographics, throughput and research outcomes for future PhD pipeline strategies using the DRI database. Descriptive statistics show four degree-based groups of postgraduates: 18 PhDs; 55 MScs; 42 MDents…
Gibson, Richard W; Wang, Min-Jian; Padgett, Emma; Lopez-Real, Joe M; Beck, Angus J
2007-07-01
Enhanced treatments of sewage sludge produce a more manageable product for agricultural use by stabilizing the material, removing water, and reducing the possibility of pathogen transfer. We investigated the impact of pilot-scale composting and drying of sludge on physicochemical characteristics and on the concentrations of some organic contaminants. During the 143 day composting procedure, organic matter fell 22% and moisture by half. Concentrations of 4-nonylphenols (4-NPs) fell by 88% and di-(2-ethylhexyl) phthalate (DEHP) by 60%; losses continued throughout the procedure. Losses of total polychlorinated biphenyls (PCBs) were 11%, mostly from the lower molecular weight congeners, suggesting volatilization as the most likely loss mechanism. The drying process was much shorter, 40 days, yet organic matter content decreased by 27% and moisture by 85%. Losses of 4-NPs (39%) and DEHP (22%) were less than in composting and stopped when moisture content became constant. There were no losses of PCBs. Both treatments are simple, practical procedures that reduce the volume of waste and are applicable in situ on farms. Composting would be the method of choice for reducing organic contaminants but requires much longer times than drying.
NASA Astrophysics Data System (ADS)
Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.
2013-12-01
Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of the FlowCAM, especially for subclasses of particles, but in light of uncertainty in particle counts, believe that it should be paired with traditional methods such as microscopy in this stage of the technique's development. Analysis of well-mixed samples produced lower variability than settling methods used for algae samples. Use of the marble inserts in the dry deposition collector in the NADP context is recommended, and the implications of various particle counting and identification methods are explored.
Faecal bulking efficacy of Australasian breakfast cereals.
Monro, John A
2002-01-01
Faecal bulk may play an important role in preventing a range of disorders of the large bowel, but as yet there is little information available on the relative faecal bulking capacities of various foods. Breakfast cereals are often promoted as a good source of potential bulk for 'inner health' because they provide dietary fibre, but their relative abilities to provide faecal bulk per se have not been described. The faecal bulking efficacy of 28 representative Australasian breakfast cereals was therefore measured. A rat model developed for the purpose, and shown to give similar responses as humans to cereal fibres, was used to measure faecal bulking efficacy as increases in fully hydrated faecal weight/100 g diet, based on precise measurements of food intake, faecal dry matter output and faecal water-holding capacity (g water held without stress/g faecal dry matter). Compared to a baseline diet containing 50% sucrose, increments in hydrated faecal weight due to 50% breakfast cereal ranged from slightly negative (Cornflakes, -2 g/100 g diet) to about 80 g/100 g diet (San Bran). Most breakfast cereals increased hydrated faecal weight by between 10 and 20 g/100 g diet from a baseline of 21 +/- 1.5 g/100 g diet, but four products containing high levels of wheat bran had an exceptionally large impact on hydrated faecal weight (increment > 20 g/100 g diet), and the changes resulted more from relative changes in dry matter output than in faecal water retention/gram. However, as faecal water retention was about 2.5 g water/g faecal dry matter on average, increases in dry matter represented large increases in faecal water load. Faecal bulking indices (FBI) for most of the breakfast cereals were less than 20 (wheat bran = 100). The content of wheat bran equivalents for faecal bulk (WBE(fb)) in the breakfast cereals was calculated from FBI. Most breakfast cereals contributed, per serve, less than 10% of a theoretical daily reference value for faecal bulk (DRV(fb) = 63 WBE(fb)/day), which was based on data from human clinical trials and dietary fibre recommendations. Based on the WBE(fb) contribution/serving that would be required to meet the DRV(fb) from the number of servings of dietary fibre sources in the CSIRO 12345+ food and nutrition plan, the results suggest that although some high bran breakfast cereals may contribute substantially to, and many are reasonable sources of, faecal bulk, for most of them, one or two servings at breakfast cannot be relied on to effectively redress shortfalls in faecal bulk elsewhere in the diet.
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr; Badyda, Krzysztof
2011-12-01
The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Wang, Chang-Lin; Guo, Qiao-Sheng; Zhu, Zai-Biao; Cheng, Bo-Xing
2017-12-01
Changium smyrnioides Wolff (Apiaceae) is an endangered medicinal plant with numerous pharmacological uses. To investigate the effect of light intensity levels on the growth and accumulation of secondary metabolites of C. smyrnioides, cultivated seedlings were subjected to different relative light intensities via sun-shading. Changium smyrnioides seedlings were subjected to five irradiance treatments (100, 60.54, 44.84, 31.39, and 10.56% sunlight) in glasshouse for 9 months. Enzymatic and non-enzymatic antioxidants with spectrophotometric method, photosynthetic parameters with Li-6400XT, dry matter accumulation and active component contents in the root with spectrophotometric and HPLC method were analyzed. With an increase in relative light intensity levels, activities of enzymatic and non-enzymatic antioxidants, and malondialdehyde (MDA) contents were increased overall, while net photosynthetic rate (P n ) and dry matter accumulation patter first increased and then declined. The highest net photosynthetic rate (30.68 μmol/m 2 ·s) and dry root weight (5.07 g) were achieved under 60.54% sunlight. Lower relative light intensity levels stimulated the accumulation levels of bioactive compounds in the roots so that the highest contents of mannitol (1.35%) and choline (405.58 μg/g) were recorded under 31.39% sunlight, and the highest polysaccharide content (10.80%) were achieved under 44.84% sunlight. With a decrease in the relative light intensity levels, the water-soluble component content increased first and then decreased. The results revealed that 31.39-60.54% sunlight serve as appropriate relative light intensity conditions for cultivated C. smyrnioides.
Kuźma, Paula; Drużyńska, Beata; Obiedziński, Mieczysław
2014-01-01
Parsley leaf is a rich source of natural antioxidants, which serve a lot of functions in human body and prevent food from oxidation processes. The aim of the study was to investigate the influence of different extraction solvents and times of extraction on natural antioxidants content. Owing to the knowledge of the properties of extracted components and solvents, as well as their interactions, it is possible to achieve a high effectiveness of active compounds recovery. Three different extraction solvents (acetone 70% in water, methanol 80% in water and distilled water) and different times of extraction (30 and 60 minutes) were used to determine the efficiency of extraction of polyphenols and catechins, antioxidant activity against free radicals DPPH and ABTS and the ability to chelate ion Fe(2+) in dried parsley leaves. Other natural antioxidants contents in parsley leaves were also determined. In this study the best extraction solvent for polyphenols was acetone 70% and for catechins was distilled water. All extracts examined displayed the antioxidative activity, but water was the best solvent in the method of assaying the activity against ABTS(•+) and Fe(2+) ions chelating capability, whereas methanol turned out to be the least effective in this respect. Opposite results were observed in the case of determining the activity against DPPH(•). The prolongation of the extraction time enhanced or decreased antiradical activity in some cases. Additionally, important biologically active compounds in parsley leaves, such as vitamin C (248.31 mg/100 g dry matter), carotenoids (31.28 mg/100 g dry matter), chlorophyll (0.185 mg/g dry matter) were also analysed.
Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P
2016-02-01
Fertilisation of established perennial ryegrass forage pastures with nitrogen (N)-based fertilisers is currently the most common practice used on farms to increase pasture forage biomass yield. However, over-fertilisation can lead to undesired environmental impacts, including nitrate leaching into waterways and increased gaseous emissions of ammonia and nitrous oxide to the atmosphere. Additionally, there is growing interest from pastoral farmers to adopt methods for increasing pasture dry matter yield which use 'natural', environmentally safe plant growth stimulators, together with N-based fertilisers. Such plant growth stimulators include plant hormones and plant growth promotive microorganisms such as bacteria and fungi ('biostimulators', which may produce plant growth-inducing hormones), as well as extracts of seaweed (marine algae). This review presents examples and discusses current uses of plant hormones and biostimulators, applied alone or together with N-based fertilisers, to enhance shoot dry matter yield of forage pasture species, with an emphasis on perennial ryegrass. © 2015 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.V.; Baghy, M.O.
Sweet potato can yield 1000 gallons of ethanol/acre compared with 250-300 gal/acre for corn. Sweet potatoes of normal, relatively high, and very high dry-matter contents were fermented to ethanol. Pectinase was necessary to decrease viscosity before fermentation for economic processing, especially for varieties of normal and relatively high dry-matter contents. Attained yield of ethanol was 90% of theoretical value. After ethanol was distilled, residual stillage was separated by screening and centrifugation into filter cake, centrifuged solids, and stillage solubles. Filter cake and centrifuged solids had crude protein contents (nitrogen x 6.25, dry basis) of 22-32% and 42-57%, respectively, and accountedmore » for 44-85% and 0-17% of total sweet potato nitrogen. Sweet potatoes and their fermented products had 4.3-7.6 g of lysine/16 g of N and are expected to have good nutritional value. This practical method to ferment sweet potato for ethanol and to recover valuable protein-rich byproducts may have commercial potential. (Refs. 19).« less
Zou, Chang-ming; Wang, Yun-qing; Cao, Wei-dong; Liu, Ying; Zhang, Xiao-hong; Tang, Shan
2015-12-01
In order to determine the adaptability of Adzuki beans as the interplanting crops in fruit yards, field and pot experimental treatments with full natural light and weak light (48% of full natural light) regimes were conducted to test the shade tolerance and physiological responses of three Adzuki bean varieties including Funan green Vigna angularis (FGVA), early-mature black V. angularis (EBVA) and late-mature black V. angularis (LBVA). The leaf photosynthetic characteristic parameters, photosynthetic pigment contents and the activity of RuBPCase were measured during the first bloom stage. The response of growth to weak light was likewise studied. The results showed that the photosynthetic characteristic parameters, i.e., the maximum net photosynthetic rate, light saturation point and light compensation point of the three Adzuki bean varieties under the weak light stress changed differently. The weak light stress induced the reduction of net photosynthetic rate, water use efficiency and RuBPCase activity of the three Adzuki bean varieties significantly. The contents of chlorophyll a and chlorophyll b in leaves of FGVA increased significantly, while Chl a/b and carotenoid content in the leaves decreased significantly after shading. But the other two varieties did not change obviously in photosynthetic pigments content after shading. The weak light changed the growth of the three Adzuki bean varieties, such as decreasing dry matter yield and dry matter accumulation efficiency, reducing root nodule and root-shoot ratio, debasing leaves quantity and leaf area index. The first bloom stage and maturing stage of FGVA advanced, while that of EBVA delayed under weak light. However, flowers were not strong enough to seed for LBVA under the weak light. In conclusion, according to the photosynthetic characteristics changes after shading, as well as the growth status, we concluded that the shade tolerance of the three Adzuki beans was ranked as FGVA>EBVA>LBVA.
NASA Astrophysics Data System (ADS)
Marshall, Maurice R.
Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).
Efficient approach for bioethanol production from red seaweed Gelidium amansii.
Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong
2015-01-01
Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Peach response to water deficit in a semi-arid region
NASA Astrophysics Data System (ADS)
Paltineanu, C.; Septar, L.; Moale, C.; Nicolae, S.; Nicola, C.
2013-09-01
During three years a deficit irrigation experiment was performed on peach response under the semi-arid conditions of south-eastern Romania. Three sprinkler-irrigated treatments were investigated: fully irrigated, deficit irrigation treatment, and non-irrigated control treatment. Soil water content ranged between 60 and 76% of the plant available soil water capacity in fully irrigated, between 40 and 62% in deficit irrigation treatment, and between 30 and 45% in control. There were significant differences in fruit yield between the treatments. Irrigation water use efficiency was maximum in deficit irrigation treatment. Fruit yield correlated significantly with irrigation application. Total dry matter content, total solids content and titrable acidity of fruit were significantly different in the irrigated treatments vs. the control. Significant correlation coefficients were found between some fruit chemical components. For the possible future global warming conditions, when water use becomes increasingly restrictive, deficit irrigation will be a reasonable solution for water conservation in regions with similar soil and climate conditions.
Ramirez-Lopez, L M; McGlynn, W; Goad, C L; Mireles Dewitt, C A
2014-04-15
Phenolic acids, flavanols, flavonols and stilbenes (PAFFS) were isolated from whole grapes, juice, or pomace and purified using enzymatic hydrolysis. Only anthocyanin mono-glucosides and a few of the oligomers from Cynthiana grape (Vitis aestivalis) were analysed. Flavonoid-anthocyanin mono-glucosides (FA) were isolated using methanol/0.1% hydrochloric acid extraction. In addition, crude extractions of phenolic compounds from Cynthiana grape using 50% methanol, 70% methanol, 50% acetone, 0.01% pectinase, or petroleum ether were also evaluated. Reverse phase high performance liquid chromatography (RP-HPLC) with photodiode array (PDA) detector was used to identify phenolic compounds. A method was developed for simultaneous separation, identification and quantification of both PAFFS and FA. Quantification was performed by the internal standard method using a five points regression graph of the UV-visible absorption data collected at the wavelength of maximum absorbance for each analyte. From whole grape samples nine phenolic compounds were tentatively identified and quantified. The individual phenolic compounds content varied from 3 to 875 mg kg⁻¹ dry weight. For juice, twelve phenolic compounds were identified and quantified. The content varied from 0.07 to 910 mg kg⁻¹ dry weight. For pomace, a total of fifteen phenolic compounds were tentatively identified and quantified. The content varied from 2 mg kg⁻¹ to 198 mg kg⁻¹ dry matter. Results from HPLC analysis of the samples showed that gallic acid and (+)-catechin hydrate were the major phenolic compounds in both whole grapes and pomace. Cyanidin and petunidin 3-O-glucoside were the major anthocyanin glucosides in the juice. Published by Elsevier Ltd.
Côrtes, Ana Luiza A; Rapini, Alessandro; Daniel, Thomas F
2015-06-01
The Tetramerium lineage (Acanthaceae) presents a striking ecological structuring in South America, with groups concentrated in moist forests or in seasonally dry forests. In this study, we investigate the circumscription and relationships of the South American genera as a basis for better understanding historic interactions between dry and moist biomes in the Neotropics. We dated the ancestral distribution of the Tetramerium lineage based on one nuclear and four plastid DNA regions. Maximum parsimony, maximum likelihood, and Bayesian inference analyses were performed for this study using 104 terminals. Phylogenetic divergences were dated using a relaxed molecular clock approach and ancestral distributions obtained from dispersal-vicariance analyses. The genera Pachystachys, Schaueria, and Thyrsacanthus are nonmonophyletic. A dry forest lineage dispersed from North America to South America and reached the southwestern part of the continent between the end of the Miocene and beginning of the Pleistocene. This period coincides with the segregation between Amazonian and Atlantic moist forests that established the geographic structure currently found in the group. The South American genera Pachystachys, Schaueria, and Thyrsacanthus need to be recircumscribed. The congruence among biogeographical events found for the Tetramerium lineage suggests that the dry forest centers currently dispersed throughout South America are relatively old remnants, probably isolated since the Neogene, much earlier than the Last Glacial Maximum postulated by the Pleistocene Arc hypothesis. In addition to exploring the Pleistocene Arc hypothesis, this research also informs evolution in a lineage with numerous geographically restricted and threatened species. © 2015 Botanical Society of America, Inc.
76 FR 79072 - New Standards for Domestic Mailing Services
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... them are included in the applicable subject matter sections below. Changes for Letters Commercial First... Return Service. The maximum weight for machinable parcels that contain books or other printed matter... also will discontinue the 3-cent barcode discount for all Bound Printed Matter (BPM), Media Mail[supreg...
Solubility of aluminum and silica in Spodic horizons as affected by drying and freezing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonsson, M.; Berggren, D.; Gustafsson, J.P.
The release of toxic Al{sup 3+} is one of the most serious consequences of anthropogenic soil acidification. Therefore, the mechanisms controlling Al solubility have been a topic of intense research for more than a decade. For convenience, soil samples are often dried before storage and experimental use. However, the literature offers examples of drying that results in changes in pH, solubility of organic matter, and dissolution rates of Al. In this study, the authors examined the solubility of Al and Si in fresh soil and in soil that had been dried or deep-frozen. Five Spodosol B horizon soils were subjectedmore » to batch titrations, where portions of each soil were equilibrated with solutions with varying concentrations of acid or base added. Extractions with acid oxalate and Na pyrophosphate indicated the presence of imogolite-type materials (ITM) in three of the soils. In the other two soils most secondary solid-phase Al was associated with humic substances. Deep-freezing did not significantly change pH nor the concentration of Al or Si as compared with fresh soil. Drying, on the other hand, yielded pH increases of up to 0.3 units at a given addition of acid or base, whereas Al{sup 3+} changed only slightly, implying a higher Al solubility in all of the soils. Furthermore, dissolved silica increased by up to 200% after drying, except in a soil that almost completely lacked oxalate-extractable Si. The authors suggest that drying enhanced the dissolution of ITM by disrupting soil organic matter, thus exposing formerly coated mineral surfaces. In the soil where dissolved Si did not change with drying, it has been demonstrated that Al-humus complexes controlled Al solubility. They suggest that fissures in the organic material caused by drying may have exposed formerly occluded binding sites that had a higher Al saturation than had sites at the surface of humus particles.« less
Characteristics of the overflow pollution of storm drains with inappropriate sewage entry.
Yin, Hailong; Lu, Yi; Xu, Zuxin; Li, Huaizheng; Schwegler, Benedict R
2017-02-01
To probe the overflow pollution of separate storm drains with inappropriate sewage entries, in terms of the relationship between sewage entries and the corresponding dry-weather and wet-weather overflow, the monitoring activities were conducted in a storm drainage system in the Shanghai downtown area (374 ha). In this study site, samples from inappropriately entered dry-weather sewage and the overflow due to storm pumps operation on dry-weather and wet-weather days were collected and then monitored for six water quality constituents. It was found that overflow concentrations of dry-weather period could be higher than those of wet-weather period; under wet-weather period, the overflow concentrations of storm drains were close to or even higher than that of combined sewers. Relatively strong first flush mostly occurred under heavy rain that satisfied critical rainfall amount, maximum rainfall intensity, and maximum pumping discharge, while almost no first flush effect or only weak first flush effect was found for the other rainfall events. Such phenomenon was attributed to lower in-line pipe storage as compared to that of the combined sewers, and serious sediment accumulation within the storm pipes due to sewage entry. For this kind of system, treating a continuous overflow rate is a better strategy than treating the maximum amount of early part of the overflow. Correcting the key inappropriate sewage entries into storm drains should also be focused.
Growth of the eye lens: II. Allometric studies
2014-01-01
Purpose The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Methods Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Results Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Conclusions Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size. PMID:24715759
Towards bridging the gap between climate change projections and maize producers in South Africa
NASA Astrophysics Data System (ADS)
Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus
2018-05-01
Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.
A sustainable approach towards rural development: dry toilets in Nepal.
Regmi, M R
2005-01-01
Existing inadequate sewerage systems and direct disposal of household waste into water courses has tremendously increased water pollution. Dry toilets are feasible in rural and peri-urban areas to reduce the consumption of costlier water that is required for flushing. As conventional treatment technologies require high investment, and operation and maintenance costs, dry toilets are the only suitable option left for sanitation in the 21st century when working with limited financial resources. To reduce environmental degradation and overcome this problem, the dry toilet is only the realistic option in Nepal. Two reactors, one exposed to sunrays and the other without sunrays, were constructed. In the model with sunrays, it was found that in 48 days of observation faecal coliform presence depleted to 610 cells per gm from the initial value of 7 x 10(10) and volatile organic matter came down from 98.09% to 70.18%. Similarly, in the other model, the destruction of faecal coliform in 65 days was found to be 920 cells/gm while the destruction of organic matter took 75 days. Also, observing from 313 people in a cluster on the pilot project, the annually recovered value of N, P and K was found to be 1565 kg, 125 kg, 344 kg, respectively. This paper deals with the different types of dry ecological toilet, their performance and feasibility study in Nepal, with the full involvement of local people, based on complete laboratory analysis and regular monitoring. Using dry toilets will save 14 LPCD, which is equivalent to 14 MLD and the resulting demand will become only 80 MLD for the urban area of Kathmandu. The result advocates the implementation of ecological dry toilets to save valuable water wasted in flushing, as well as saving the resources needed to treat the waste.
Insulinaemic and glycaemic responses to three forages in ponies.
Carslake, H B; Argo, C McG; Pinchbeck, G L; Dugdale, A H A; McGowan, C M
2018-05-01
Reduction of the hyperinsulinaemic response to feeding is central to the management of insulin dysregulation (ID). The aim of this study was to compare insulinaemic and glycaemic responses to soaked hay, dry hay and haylage in ponies. Twelve ponies of mixed breeds were maintained under identical management conditions. A randomised four-way crossover trial was conducted, in which fasted animals were fed a meal of 0.25% body weight as dry matter intake soaked hay, dry hay or haylage, or administered an oral glucose test (OGT). Blood glucose and serum insulin concentrations were measured before and at 2h following OGT, and regularly for 5h following forage meals. Median and interquartile range (IQR) area under the curve (AUC) for insulin (AUC i ) was greater for haylage (median 6495; IQR 17352) vs. dry hay (2932; IQR 5937; P=0.019) and soaked hay (1066; IQR 1753; P=0.002), and greater for dry hay vs. soaked hay (P=0.002). The AUC for glucose (AUC g ) was lower for soaked hay (1021; IQR 99) vs. dry hay (1075; IQR 105; P=0.002) and haylage (1107; IQR 221; P=0.003). Six ponies were classified as having ID based on the OGT. AUC i was greater in ID vs. non-ID ponies after all forages. In contrast, there was no detectable effect of ID status on AUC g . On an equivalent dry matter basis, soaked hay produced the lowest insulinaemic and glycaemic responses to feeding, while haylage produced the highest responses. The insulinaemic effects of all forages were greater in ponies with ID. These data support the practice of soaking hay with water to reduce postprandial insulinaemic responses in ponies. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Method of preparation of removable syntactic foam
Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.
1995-07-11
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.
Method of preparation of removable syntactic foam
Arnold, Jr., Charles; Derzon, Dora K.; Nelson, Jill S.; Rand, Peter B.
1995-01-01
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.
Awua, Adolf K; Doe, Edna D; Agyare, Rebecca
2011-10-27
Fresh coconut (Cocos nucifera L) water is a clear, sterile, colourless, slightly acidic and naturally flavoured drink, mostly consumed in tropical areas. It is a rich source of nutrients and has been used for medical purposes. This study was designed to investigate changes in selected characteristics of coconut water after autoclaving, gamma irradiation and storage. Also, the study was designed for assessing the possibility of measuring the growth of bacterial in fresh, stored or sterilised coconut water using turbidity measurements (at wavelengths between 600 nm and 800 nm) or by dry biomass determinations. Portions of coconut water aseptically extracted from the matured fruit, (average pH of 6.33 ± 0.17) were either stored at 4°C, autoclaved at 121°C for 20 min., or irradiated with gamma rays at 5 kGy. Subsequent changes in selected characteristics were determined. Autoclaving, gamma irradiation and long term storage of coconut water at 4°C resulted both in the development of a pale to intense yellow colour and changes in turbidity. After storage, the dry matter content of fresh, autoclaved and irradiated coconut water by 52.0%, 23.5% and 5.0% respectively. There were also significant differences in the UV spectra before and after sterilisation and during the storage of the coconut water. Although changes in total carbohydrates were observed, they were not significant (p > 0.05). The enormous differences in the characteristics before and after storage suggests that the use of turbidity and dry biomass measurements for measuring the growth of bacteria in fresh, autoclaved and gamma irradiated coconut water before storage is practicable without any possibility of interference by the innate turbidity, colour and dry matter of the coconut water. However, this is not practicable after storing the coconut waters at 4°C, since there were increases in the turbidity and dry matter of the coconut water to levels that will mask the turbidity of a growing bacteria culture.
1.2.1.1 Harvest, Collection and Storage Quarter 3 Milestone Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Lynn M.; Smith, William A.; Cafferty, Kara G.
Single pass baling of corn stover is required in order to meet targets for the herbaceous biomass 2017 logistics design case. Single-pass pass stover harvest is based on the grain harvest and generally results in stover with a moisture content of 30-50% wet basis (w.b). Aerobic storage of corn stover with high moisture results in high levels of dry matter loss (DML), up to 25%. Anaerobic storage (ensiling) reduces DML to less than 5%, but additional costs are associated with handling and transporting the extra moisture in the biomass. This milestone provides a best-estimate of costs for using high moisturemore » feedstock within the conventional baled logistics system. The costs of three (3) anaerobic storage systems that reduce dry matter losses (bale wrap, silage tube, and silage drive over pile) are detailed in this milestone and compared to both a conventional dry-baled corn stover case and a high moisture bale case, both stored aerobically. The total logistics cost (harvest, collection, storage, and transportation) of the scenarios are as follows: the conventional multi-pass dry bale case and the single-pass high moisture case stored aerobically were nearly equivalent at $61.15 and $61.24/DMT. The single-pass bale wrap case was the lowest at $57.63/DMT. The bulk anaerobic cases were the most expensive at $84.33 for the silage tube case and $75.97 for the drive over pile, which reflect the additional expense of transporting high-moisture bulk material; however, a reduction in preprocessing costs may occur because these feedstocks are size reduced in the field. In summary, the costs estimates presented in this milestone report can be used to determine if anaerobic storage of high-moisture corn stover is an economical option for dry matter preservation.« less
NASA Astrophysics Data System (ADS)
Farshadfar, M.; Farshadfar, E.
The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.
Mass and size growth of early-type galaxies by dry mergers in cluster environments
NASA Astrophysics Data System (ADS)
Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki
2016-02-01
We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.
77 FR 63234 - Approval and Promulgation of Implementation Plans; North Carolina 110(a)(1) and (2...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental... SIP addresses emissions of particulate matter generally, and does not distinguish between PM 10 and PM 2.5. The Commenter also references the particulate matter maximum emission rates for two coal-fired...
NASA Technical Reports Server (NTRS)
Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1986-01-01
Dry matter accumulation of plants utilizing NH4+ as the sole nitrogen source generally is less than that of plants receiving NO3- unless acidity of the root-zone is controlled at a pH of about 6.0. To test the hypothesis that the reduction in growth is a consequence of nitrogen stress within the plant in response to effects of increased acidity during uptake of NH4+ by roots, nonnodulated soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 24 days in flowing nutrient culture containing 1.0 millimolar NH4+ as the nitrogen source. Acidities of the culture solutions were controlled at pH 6.1, 5.1, and 4.1 +/- 0.1 by automatic additions of 0.01 N H2SO4 or Ca(OH)2. Plants were sampled at intervals of 3 to 4 days for determination of dry matter and nitrogen accumulation. Rates of NH4+ uptake per gram root dry weight were calculated from these data. Net CO2 exchange rates per unit leaf area were measured on attached leaves by infrared gas analysis. When acidity of the culture solution was increased from pH 6.1 to 5.1, dry matter and nitrogen accumulation were reduced by about 40% within 14 days. Net CO2 exchange rates per unit leaf area, however, were not affected, and the decreased growth was associated with a reduction in rates of appearance and expansion of new leaves. The uptake rates of NH4+ per gram root were about 25% lower throughout the 24 days at pH 5.1 than at 6.1. A further increase in solution acidity from pH 5.1 to 4.1 resulted in cessation of net dry matter production and appearance of new leaves within 10 days. Net CO2 exchange rates per unit leaf area declined rapidly until all viable leaves had abscised by 18 days. Uptake rates of NH4+, which were initially about 50% lower at pH 4.1 than at 6.1 continued to decline with time of exposure until net uptake ceased at 10 days. Since these responses also are characteristic of the sequence of responses that occur during onset and progression of a nitrogen stress, they corroborate our hypothesis.
Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua
2015-09-01
Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.
Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population
Abdullah, Norhani; Oskoueian, Armin
2013-01-01
This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation. PMID:24175289
Parmar, Aditya; Gebre, Bilatu Agza; Legesse, Addisu; Demelash, Yoseph; Fladung, Kirsten; Hensel, Oliver
2017-08-22
Anchote ( Coccinia abyssinica ) is an indigenous tuber crop of the Ethiopian Highlands. It is popular in the western Oromia Region of the country. Apart from food, the crop is also used in traditional medicine. Anchote tubers possess two variations in its tissue colour, red and white. In this study, a small market survey and a nutritional comparison of red and white anchote were conducted. White tissue anchote seems to be more popular, due to its soft texture and ease of cooking. However, the red variant was considered for flour making (by dehydration), for use in porridge and soups for various medicinal and supplementary food applications. Red anchote tubers contained significantly higher protein content (16.85 mg/100 g dry matter basis) than the white variant. However, apart from the marginally higher protein content compared to other tropical root and tuber crops, anchote seems to remain a primary source of carbohydrates. In macro minerals, white anchote proves to be a more important source of Ca with 81 mg/100 g edible portion; however, on dry matter basis, the content was similar to the red variant (316 and 309 mg/100 g dry matter, white and red respectively). Further research on vitamin content (especially vitamin A in the red variant) would be useful to understand the full nutrition potential of the crop.
Wohlt, J E; Ritter, D E; Evans, J L
1986-11-01
Three supplemental sources of inorganic calcium (calcite flour, aragonite, albacar), each differing in particle size and rate of reactivity, provided .6 or .9% calcium in corn silage:grain (1:1 dry matter) diets of high producing dairy cows. All cows were fed calcite flour at .6% calcium during the first 4 wk of lactation. On d 29 of lactation 5 cows were assigned to each of the six diets. Peak milk yield paralleled dry matter intake and was higher when calcite flour and aragonite provided .9% calcium, intermediate when all sources provided .6% calcium, and lower when albacar provided .9% calcium. However, adaptations to calcium source and to particle sizes of a calcium source (.35 to 1190 mu) were made within 40 d by lactating Holsteins. Starch increased and pH decreased in feces of cows fed albacar. Increasing calcium in the diet provided more buffering capacity in the gastrointestinal tract. True absorption of calcium did not differ from linearity due to source when fecal calcium was regressed on ingested calcium but did vary as a function of diet percentage. Thus, calcium retention was increased when cows were fed .9 vs. .6% calcium. These data suggest that a slow reacting (coarser) inorganic calcium source should be fed at a higher amount to optimize feed intake and milk production.
Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe
2016-01-01
Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.
Ierna, Anita
2010-01-15
There is little research on evaluating the compatibility of potatoes for double cropping in southern Italy. The aim of this investigation was to assess tuber yield and some qualitative traits of tubers such as skin colour, tuber dry matter content and tuber nitrate content, both in winter-spring and in summer-autumn crops, as influenced by genotype and harvest time. Yield, skin colour and dry matter content of tubers were higher in the winter-spring crop than in the summer-autumn crop, attributable to the advantageous lag time in spring between solar radiation and temperatures and the disadvantageous lag in autumn. Spunta and Arinda performed well within each crop season, whereas Ninfa showed an important yield loss in autumn. In both off-season crops, delaying tuber harvest until leaf senescence increased yield and improved quality attributes such as tuber dry matter content and skin colour, whereas nitrate contents significantly decreased in the winter-spring crop and increased in the summer-autumn crop. Ninfa showed less tendency than Arinda and Spunta to accumulate nitrate in tubers in both off-season crops. It might be advantageous to examine in further research which mechanisms sustain compatibility to the autumn and assess other quality characteristics for the fresh market in the contrasting climatic conditions of the two off-season crops. Copyright (c) 2009 Society of Chemical Industry.
Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe
2016-01-01
Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635
Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao
2007-03-01
Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.
Protein requirements of finishing paca (Cuniculus paca).
Nogueira-Filho, Sérgio Luiz Gama; Bastos, Ivanise da Hora; Mendes, Alcester; Nogueira, Selene Siqueira da Cunha
2016-06-01
We conducted a nitrogen balance digestion trial to determine the crude protein requirements of paca (Cuniculus paca) during the last growth phase. In a 4 × 4 Latin square design, four young captive male pacas, aged 5 months, were fed four isoenergetic diets containing four different levels of nitrogen (N) (11.3, 16.6, 21.4, and 26.6 g N/kg of dry matter). After 15 days of adaptation, we collected all feces and urine for five consecutive days. By regression analysis between N intake and N in feces and urine, the metabolic fecal nitrogen (MFN = 4.2 g/kg of dry matter intake) and daily endogenous urinary N (EUN = 91.6 mg/kg(0.75)) were determined. Likewise, by regression analyses between nitrogen intake and nitrogen retention [NR = N intake-(fecal N + urine N)], we estimated the daily requirement of 280.5 mg N/kg(0.75). Therefore, a minimum of 55 g crude protein per kilogram dry matter and 13 MJ/kg of digestible energy are required by finishing paca on unrestricted diets. Such values are similar to those of other wild frugivores and below those of growing rabbits. The data confirm that farmers overfeed protein, and similar growth can be more economically achieved on lower protein diets.
The changes of dominant lactic acid bacteria and their metabolites during corn stover ensiling.
Xu, Zhenshang; Zhang, Susu; Zhang, Rongling; Li, Shixu; Kong, Jian
2018-05-15
Monitoring the succession of bacterial populations during corn stover ensiling are helpful for improving the silage quality. Fermentation characteristics were assessed and bacterial communities were described along with the ensiling process. The ensiled corn stover exhibited chemical traits as low pH value (3.92 ± 0.02) and high levels of lactic acid (66.75 ± 1.97 g kg -1 dry matter) which were associated with well ensiled forages, as well as moderate concentrations of acetic acid (19.69 ± 1.51 g kg -1 dry matter) and small amounts of 1, 2-propanediol (4.4 ± 0.11 g kg -1 dry matter). In the early stages of the ensiling process, a significant increase and then reduction of the abundance of species Lactococcus lactis, Leuconostoc pseudomesenteroides, Pediococcus pentosaceus and Weissella sp. were observed. The species Lactobacillus plantarum (Lb. plantarum) group and Lb. brevis grew vigorously, and the species Lb. farciminis and Lb. parafarraginis gradually increased along with the course of ensiling. High-throughput sequencing was successfully used to describe bacterial communities throughout the process of corn stover ensiling. The knowledge about the ecological succession of the dominant lactic acid bacteria could lead to improved ensiling practices and the selection of corn stover silage inoculants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure.
Myers, Heidi M; Tomberlin, Jeffery K; Lambert, Barry D; Kattes, David
2008-02-01
Black soldier flies, Hermetia illucens L., are a common colonizer of animal wastes. However, all published development data for this species are from studies using artificial diets. This study represents the first examining black soldier fly development on animal wastes. Additionally, this study examined the ability of black soldier fly larvae to reduce dry matter and associated nutrients in manure. Black soldier fly larvae were fed four rates of dairy manure to determine their effects on larval and adult life history traits. Feed rate affected larval and adult development. Those fed less ration daily weighed less than those fed a greater ration. Additionally, larvae provided the least amount of dairy manure took longer to develop to the prepupal stage; however, they needed less time to reach the adult stage. Adults resulting from larvae provided 27 g dairy manure/d lived 3-4 d less than those fed 70 g dairy manure. Percentage survivorship to the prepupal or adult stages did not differ across treatments. Larvae fed 27 g dairy manure daily reduced manure dry matter mass by 58%, whereas those fed 70 g daily reduced dry matter 33%. Black soldier fly larvae were able to reduce available P by 61-70% and N by 30-50% across treatments. Based on results from this study, the black soldier fly could be used to reduce wastes and associated nutrients in confined bovine facilities.
76 FR 72507 - National Emissions Standards for Hazardous Air Pollutants: Ferroalloys Production
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... MDL method detection limit mg/dscm milligrams per dry standard cubic meter MIR maximum individual risk... pounds per hour per megawatt (lb/hr/ MW) or 35 milligrams per dry standard cubic meter (mg/ dscm) (0.015... stacks) producing ferromanganese. New, reconstructed, or Metal oxygen refining process... 69 mg/dscm (0...
Code of Federal Regulations, 2010 CFR
2010-04-01
... a significant amount of lactose is converted to lactic acid, or from the curd formation by direct... conversion of lactose to lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of...” under the heading “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose content, 61 to 75 percent...
Code of Federal Regulations, 2011 CFR
2011-04-01
... a significant amount of lactose is converted to lactic acid, or from the curd formation by direct... conversion of lactose to lactic acid is known as sweet whey. Sweet whey has a maximum titratable acidity of...” under the heading “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose content, 61 to 75 percent...
Production of alkaline protease from Cellulosimicrobium cellulans
Ferracini-Santos, Luciana; Sato, Hélia H
2009-01-01
Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317
NASA Astrophysics Data System (ADS)
Becker, Joscha; Kuzyakov, Yakov
2017-04-01
Decomposition is one of most important ecological steps in organic matter and nutrient cycles, but studies and reliable data from tropical regions in Africa are still scarce. At the global scale, litter decomposition and recycling is controlled by climatic factors and land-use intensity. These factors can be linked to specific ecosystem characteristics along the unique elevation gradient of Mt. Kilimanjaro. Our objectives were to assess the effects of climatic conditions (i.e. elevation) and land-use intensity on C turnover and stabilization and investigated the seasonal variations. Tea-bag Index (see www.teatime4science.org) was used to measure decomposition of a standardized litter substrate by microorganisms and mesofauna <0.25 mm. Nine pairs of litterbags were exposed in eleven ecosystems for 90 days during the short-rainy (October-December), warm-dry (December-March), long-rainy (March-July) and cold-dry season (July-September) respectively. Decomposition rates increased from k=0.007 in savanna, up to a maximum of k=0.022 in cloud forest (i.e. mid elevation). The increase was followed by a decrease of 50% in (sub-) alpine ecosystems. Stabilization factors decreased from savanna (S=0.33) to coffee plantations or cloud forest (S=0.11) respectively and strongly increased again to a maximum of S=0.41 in the alpine helichrysum ecosystem. During all seasons, we found the highest decomposition rates at mid elevation. However, during both warm seasons the peak is shifted upslope. Savanna experienced the strongest seasonal variation, with 23 times higher S-values in dry- compared to rainy season. Mean annual k-values increased for about 30% with increasing land-use intensity. C stabilization in Mt. Kilimanjaro ecosystems is strongly dependent on seasonal moisture limitation (lower slope) and perennial temperature limitation (alpine zone). Ecosystems at mid elevation (around 1920 & 2120m) represent the interception zone of optimal moisture and temperature conditions. High input and fast turnover drive the C sequestration in these ecosystems, while restrains on decomposition control the C turnover in lower and higher elevation zones. Land-use intensification decreases stabilization from new C inputs in transition zones from savanna to maize monocultures and from traditional homegardens to large-scale coffee plantations.
Influence of the impact energy on the pattern of blood drip stains
NASA Astrophysics Data System (ADS)
Smith, F. R.; Nicloux, C.; Brutin, D.
2018-01-01
The maximum spreading diameter of complex fluid droplets has been extensively studied and explained by numerous physical models. This research focuses therefore on a different aspect, the bulging outer rim observed after evaporation on the final dried pattern of blood droplets. A correlation is found between the inner diameter, the maximum outer diameter, and the impact speed. This shows how the drying mechanism of a blood drip stain is influenced by the impact energy, which induces a larger spreading diameter and thus a different redistribution of red blood cells inside the droplet. An empirical relation is established between the final dried pattern of a passive bloodstain and its impact speed, yielding a possible forensic application. Indeed, being able to relate accurately the energy of the drop with its final pattern would give a clue to investigators, as currently no such simple and accurate tool exists.
Total folate content and retention in rosehips (Rosa ssp.) after drying.
Strålsjö, Lena; Alklint, Charlotte; Olsson, Marie E; Sjöholm, Ingegerd
2003-07-16
Folate concentrations in rosehips and commercial rosehip products and factors affecting folate retention during drying were investigated. On the basis of the raw material studied during 3 years, rosehips were shown to be a rich folate source, 400-600 microg/100 g based on dry matter and 160-185 microg/100 g based on the fresh weight (edible part). Rosehips are not often consumed fresh; therefore, drying to produce stable semimanufactures is a crucial step. The degradation of folate was shown to be dependent on the drying time until the water activity was below 0.75. The required drying time was reduced by cutting the rosehips in slices and to some extent also by increasing the temperature. Retention of folate and ascorbic acid was affected by the same factors, and high content of ascorbic acid could provide a possible protection for folate degradation.
Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J
2006-11-01
The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia nitrogen for microbial protein synthesis was decreased with the barley diets compared with the corn-based diet. In this study, waxy Baronesse barley was less degradable in the rumen and the total digestive tract than its normal counterpart. The most likely reasons for these effects were the differences in starch characteristics and chemical composition, and perhaps the different response to processing between the 2 barleys.
NASA Astrophysics Data System (ADS)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.
2018-02-01
We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.
Edwards, Clayton J.; Hudson, Patrick L.; Duffy, Walter G.; Nepszy, Stephen J.; McNabb, Clarence D.; Haas, Robert C.; Liston, Charles R.; Manny, Bruce; Busch, Wolf-Dieter N.; Dodge, D.P.
1989-01-01
The connecting channels of the Great Lakes are large rivers (1, 200-9, 900 m3 • s-1) with limited tributary drainage systems and relatively stable hydrology (about 2:1 ration of maximum to minimum flow). The rivers, from headwaters to outlet, are the St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence. They share several characteristics with certain other large rivers: the fish stocks that historically congregated for spawning or feeding have been overfished, extensive channel modification have been made, and they have been used as a repository for domestic and industrial wastes and for hydroelectric energy generation. Levels of phosphorus, chlorophyll a, and particulate organic matter increase 3- to 5-fold from the St. Marys River to the St. Lawrence River. Biological communities dependent on nutrients in the water column, such as phytoplankton, periphyton, and zooplankton similarly increase progressively downstream through the system. The standing crop of emergent macrophytes is similar in all of the rivers, reflecting the relatively large nutrient pools in the sediments and atmosphere. Consequently, emergent macrophytes are an important source of organic matter (67% of total primary production) in the nutrient poor waters of the St. Marys River, whereas phytoplankton production dominates (76%) in the enriched St. Lawrence River. Submersed and emergent macrophytes and the associated periphyton are major producers of organic matter in the connecting channels. Another major source of organic matter (measured as ash free dry weight, AFDW) in the Detroit River is sewage, introduced at a rate of 26, 000 t per year. The production of benthos ranges from a low 5.4 g AFDW•m-2 in the Detroit River to a high of 15.5 g AFDW•m-2 in the St. Marys River. The rivers lack the organic transport from riparian sources upstream but receive large amounts of high quality phytoplankton and zooplankton from the Great Lakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.
We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table and redox oscillation and porewater advection.« less
Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.
Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J
2015-05-01
Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tschudin, A; Clauss, M; Codron, D; Liesegang, A; Hatt, J-M
2011-08-01
Rabbits (Oryctolagus cuniculus) are often presented suffering from urolithiasis. A high water intake is important in the prophylaxis of uroliths. We investigated the influence factors for water intake using 12 rabbits subjected to different feed and water regimes with practical relevance: Hay, fresh parsley, a seed mix and two different pelleted feed were offered in diverse combinations. Water was provided either by open dish or nipple drinker. Water was accessible ad libitum except for four treatments with 6 h or 12 h water access. Under the different feeding regimes, the drinker had no influence on water intake, but faecal dry matter content was significantly higher with nipple drinkers [60.0 ± 2.1 vs. 57.2 ± 2.1% of wet weight (mean ± 95% confidence interval), p = 0.003]. Dry food led to a higher drinking water intake but total water intake was still lower than with addition of 'fresh' food. With restricted water access, rabbits exhibited a significantly higher water intake with open dishes compared with nipple drinkers (54.9 ± 9.8 vs. 48.1 ± 8.2 g/kg(0.75) /day (mean ± 95% confidence interval), p = 0.04). High proportions of fresh parsley or hay in the diet enhanced total water intake and urine output, and led to lower urinary dry matter content and lower urinary calcium concentrations. Restricted access to drinkers led to a decreased total daily water intake and increased dry matter content of urine and faeces. For optimal water provision and urolith prophylaxis, we recommend a diet with a high 'fresh food' proportion as well as additionally hay ad libitum with free water access, offered in an open bowl. © 2010 Blackwell Verlag GmbH.
Payandeh, S; Kafilzadeh, F
2007-12-15
This experiment was conducted to determine the effect of yeast (Saccharomyces cerevisiae, SC47) on finishing performance, digestibility, some blood metabolites and carcass characteristics of male lambs fed a diet based on dried Molasses Sugar Beet-Pulp (MSBP). Eighteen Sanjabi male lambs (20.95 +/- 2.7 kg initial body weight and 3 month of age) were used in a completely randomized design. Animals were assigned to one of the two dietary treatments (with or without yeast). Digestibility and nitrogen balance experiment was carried out using six mature rams on finishing diet with and without yeast. Serum metabolites were determined in samples taken from lambs at the end of finishing period. Dry matter digestibility of finishing diet was significantly increased by yeast addition. However, yeast did not have any significant effect on apparent digestibility of OM, NDF, CP and energy. Nitrogen retention was also not affected by yeast addition. Yeast resulted in a significant increase in the average daily gain, dry matter and organic matter intake. However, feed conversion ratio was not significantly affected by addition of yeast. The concentration of the serum metabolites including glucose, urea, cholesterol, sodium, potassium, calcium, phosphorous and cratinine were not affected significantly by yeast supplementation, but triglyceride concentrations increased significantly when yeast was fed. Addition of yeast to the diet did not have any significant effect on the carcass characteristics. Results of this study suggest that feeding saccharomyces cerevisiae with a diet based on MSBP can improve the performance of fattening lambs without any change in carcass characteristics or cuts.
Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi
2011-01-01
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630
Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi
2011-07-01
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.
Nutritive value of methane fermentation residue in diets fed to feedlot steers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J.M.; Shirley, R.L.; Palmer, A.Z.
1982-12-01
Nutritive value of the methane fermentation residue (MFR) from the effluent of a large scale thermophilic methane generator was determined in diets fed to feedlot steers. The MFR contained 22.2% dry matter and 21.9% crude protein (dry basis). Two diets containing 10.6% (dry basis) MFR were formulated using the Urea Fermentation Potential (UFP) system such that in one diet N was in excess (-1.6 UFP) while in the other diet energy was in excess (+2.6 UFP). These two diets were compared in a California Net Energy trial with a feedlot diet (-.3 UFP) containing the same ingredients except the MFR.more » Six steers were fed in a replicated 3(2) Latin square metabolism trial and 70 steers were fed in a 118-d comparative-slaughter, feedlot trial. Digestibilities of dry matter, organic matter, crude protein, acid detergent fiber, ash, total digestible nutrients (TDN) and metabolizable energy were depressed (all P less than .05) in the MFR-containing diets. Steers fed the MFR-containing diets had lower (P less than .05) rates of gain and increased (P less than .05) feed requirements per unit gain. Net energies for maintenance and gain were slightly lower for the MFR-containing diets than the control diet. Crude protein digestibility for the MFR calculated by difference, for the -UFP and the +UFP diets were 37.8 and 50.7%, while corresponding values for TDN were 28.8 and 12.8%, respectively. Concentrations of potentially toxic elements in kidney, liver and muscle as well as flavor and tenderness of steaks were not affected by feeding MFR.« less
Kononoff, P J; Ivan, S K; Klopfenstein, T J
2007-05-01
The objectives of this study were to expand the database and determine the intestinal digestibility of rumen undegradable protein (dRUP) of common dairy feeds and to determine the effects of feeding 37.9% wet corn gluten feed on these estimates. Two ruminally and duodenally fistulated steers were assigned randomly to a crossover design with 4-wk periods. The mobile bag technique was used to determine rumen undegradable protein (RUP), dRUP, total tract digestible protein, and total tract digestible dry matter of alfalfa hay, brome hay, alfalfa haylage, corn silage, whole cottonseed, soybean meal, soyhulls, ground corn, nonenzymatically browned soybean meal, and dried distillers grains. There was no consistent effect of diet on RUP, dRUP, total tract digestible protein, and total tract digestible dry matter. The RUP (% of crude protein) ranged from 5.97% for alfalfa haylage to 75.6% for nonenzymatically browned soybean meal. The dRUP ranged from 15.3% for alfalfa haylage to 96.5% for nonenzymatically browned soybean meal. The dRUP for alfalfa hay (33.9%), brome hay (39.1%), alfalfa haylage (15.5%), and corn silage (19.9%) were lower than National Research Council reported values. The higher dRUP of the nonenzymatically browned soybean meal is reflective of more total protein reaching the small intestine. The large range in dRUP was not reflected in total tract digestible protein (% of crude protein), with corn silage being the lowest at 85.2% and nonenzymatically browned soybean meal the highest at 97.9%. In this study, diet had little effect on intestinal digestibility of protein or dry matter.
NASA Astrophysics Data System (ADS)
Shrestha Vaidya, G.; Shrestha, K.; Wallander, H.
2009-04-01
Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces erosion. Trees and shrubs on the lower hillsides in Nepal form symbiosis with arbuscular mycorrhizal (AM) fungi and these fungi are important for the uptake of mineral nutrients from the soil. In addition, the mycelia formed by these fungi have an important function in stabilizing the soil. The success of plantations of these eroded slopes is therefore highly dependent on the extent of mycorrhizal colonization of the plants. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant and nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter was placed in mesh bags which were buried around the trees of Bauhinia purpurea and Leucaena diversifolia .This experiment were done in two seasons ( (the wet and the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the six month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the wet and dry seasons. More microbial biomass was produced during wet season than during dry season. Further more, organic matter addition enhanced the production of AM fungal and bacterial biomass during both seasons. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival, growth and nutrient composition in the soil in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded sites.
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.
1977-01-01
An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.
Salin, S; Vanhatalo, A; Elo, K; Taponen, J; Boston, R C; Kokkonen, T
2017-07-01
We assessed whether high energy intake during the early dry period [144% of metabolizable energy (ME) requirements/d] followed by a gradual restriction of energy intake in the close-up dry period (119% of ME/d; HEI) impaired whole-body insulin sensitivity compared with a controlled energy intake (100% of ME/d; CEI) throughout the 6-wk dry period. Multiparous Ayrshire dairy cows (n = 16) were blocked by body weight, body condition score, and expected date of parturition and were used in a randomized complete block design until 10 d after parturition. Cows were fed either HEI or CEI diets based on grass silage during the first 3 wk of the dry period and grass silage supplemented with a commercial concentrate (30% of ME intake) during the final 3 wk of gestation. After calving, all cows were fed grass silage ad libitum and an increasing amount of commercial concentrate (maximum 9 kg at d 10 postpartum). Intravenous glucose tolerance tests (IVGTT) and intravenous insulin challenges were performed -10 ± 5 d (n = 15) and +10 ± 1 d (n = 14) relative to parturition. Following glucose injection, we did not find any treatment effects on glucose and insulin responses. The prepartal nonesterified fatty acid (NEFA) response of the HEI group was blunted, basal NEFA and the decrement of NEFA were smaller, and the area under the response curve (AUC) of NEFA was less negative in HEI cows than in CEI cows. The NEFA response reversed after parturition; the NEFA AUC of the HEI group was more negative than that of the CEI group. We did not find similar responses after insulin injection. Across the treatments, NEFA AUC correlated strongly with the basal NEFA concentration during the IVGTT pre- and postpartum. Calculated and model-based indices characterizing the overall glucose tolerance and β-cell function and the insulin sensitivity were higher after parturition than during the dry period. Consistent with the lower basal insulin, the acute insulin release after the glucose infusion was smaller in postpartal IVGTT than in prepartal IVGTT. The results suggest that whole-body insulin sensitivity of the cows increased after parturition. However, the role of peripheral insulin sensitivity in the regulation of glucose partitioning seems to be minor relative to the major change in insulin secretion and clearance during the periparturient period. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pamplona, Fábio Campos; Paes, Eduardo Tavares; Nepomuceno, Aguinaldo
2013-11-01
The temporal and spatial variability of dissolved inorganic nutrients (NO3-, NO2-, NH4+, PO43- and DSi), total nitrogen (TN), total phosphorus (TP), nutrient ratios, suspended particulate matter (SPM) and Chlorophyll-a (Chl-a) were evaluated for the macrotidal estuarine mangrove system of the Quatipuru river (QUATIES), east Amazon coast, North Brazil. Temporal variability was assessed by fortnightly sampling at a fixed station within the middle portion of the estuary, from November 2009 to November 2010. Spatial variability was investigated from two field surveys conducted in November 2009 (dry season) and May 2010 (rainy season), along the salinity gradient of the system. The average DIN (NO3- + NO2- + NH4+) concentration of 9 μM in the dry season was approximately threefold greater in comparison to the rainy season. NH4+ was the main form of DIN in the dry season, while NO3- predominated in the rainy season. The NH4+ concentrations in the water column during the dry season are largely attributed to release by tidal wash-out of the anoxic interstitial waters of the surficial mangrove sediments. On the other hand, the higher NO3- levels during the wet season, suggested that both freshwater inputs and nitrification processes in the water column acted in concert. The river PO43- concentrations (DIP < 1 μM) were low and similar throughout the year. DIN was thus responsible for the major temporal and spatial variability of the dissolved DIN:DIP (N:P) molar ratios and nitrogen corresponded, in general, to the prime limiting nutrient for the sustenance of phytoplankton biomass in the estuary. During the dry season, P-limitation was detected in the upper estuary. PO43- adsorption to SPM was detected during the rainy season and desorption during the dry season along the salinity gradient. In general, the average Chl-a level (14.8 μg L-1) was 2.5 times higher in the rainy season than in the dry season (5.9 μg L-1). On average levels reached maxima at about 14 km from the estuaries' mouth, but shifts of the maximum Chl-a zone were subject to a dynamic displacement influenced by the tidal regime and seasonality of freshwater input. Our results showed that the potential phytoplankton productivity in QUATIES was subject to temporal and spatial variability between N and P limitation. The mangrove forests also played a relevant role as a nutrient source as established by the high variability of the nutrient behaviour along the estuarine gradient, consequently affecting the productivity in QUATIES.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dry standard cubic meter (mg/dscm) as measured using the test methods specified in § 63.1450(a). (2... dryer vent any gases that contain total particulate matter in excess of 23 mg/dscm as measured using the... off-gas that contains nonsulfuric acid particulate matter in excess of 6.2 mg/dscm as measured using...
Code of Federal Regulations, 2010 CFR
2010-07-01
... dry standard cubic meter (mg/dscm) as measured using the test methods specified in § 63.1450(a). (2... dryer vent any gases that contain total particulate matter in excess of 23 mg/dscm as measured using the... off-gas that contains nonsulfuric acid particulate matter in excess of 6.2 mg/dscm as measured using...
Code of Federal Regulations, 2013 CFR
2013-07-01
... determine the volumetric flow rate of the stack gas. (iii) Method 3, 3A, or 3B to determine the dry... of particulate matter, grains per dry standard cubic foot (gr/dscf); Q = Volumetric flow rate of... flow-weighted concentration for each test run using Equation 2 of this section as follows: ER20MY03.001...
Code of Federal Regulations, 2014 CFR
2014-07-01
... determine the volumetric flow rate of the stack gas. (iii) Method 3, 3A, or 3B to determine the dry... of particulate matter, grains per dry standard cubic foot (gr/dscf); Q = Volumetric flow rate of... flow-weighted concentration for each test run using Equation 2 of this section as follows: ER20MY03.001...
Code of Federal Regulations, 2012 CFR
2012-07-01
... determine the volumetric flow rate of the stack gas. (iii) Method 3, 3A, or 3B to determine the dry... of particulate matter, grains per dry standard cubic foot (gr/dscf); Q = Volumetric flow rate of... flow-weighted concentration for each test run using Equation 2 of this section as follows: ER20MY03.001...
40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... veneer dryers must not exceed 0.3 pounds per 1000 square feet of veneer dried (3/8 inch basis), one-hour average. (ii) PM10 emissions from steam heated veneer dryers must not exceed 0.3 pounds per 1000 square... dryers must not exceed a total of 0.3 pounds per 1000 square feet of veneer dried (3/8 inch basis) and 0...
Dry habitats sustain high CO2 emissions from temporary ponds across seasons.
Obrador, Biel; von Schiller, Daniel; Marcé, Rafael; Gómez-Gener, Lluís; Koschorreck, Matthias; Borrego, Carles; Catalán, Núria
2018-02-14
Despite the increasing understanding of the magnitude and drivers of carbon gas emissions from inland waters, the relevance of water fluctuation and associated drying on their dynamics is rarely addressed. Here, we quantified CO 2 and CH 4 fluxes from a set of temporary ponds across seasons. The ponds were in all occasion net CO 2 emitters irrespective of the presence or absence of water. While the CO 2 fluxes were in the upper range of emissions for freshwater lentic systems, CH 4 fluxes were mostly undetectable. Dry habitats substantially contributed to these emissions and were always a source of CO 2 , whereas inundated habitats acted either as a source or a sink of atmospheric CO 2 along the year. Higher concentrations of coloured and humic organic matter in water and sediment were linked to higher CO 2 emissions. Composition of the sediment microbial community was related both to dissolved organic matter concentration and composition, but we did not find a direct link with CO 2 fluxes. The presence of methanogenic archaea in most ponds suggested the potential for episodic CH 4 production and emission. Our results highlight the need for spatially and temporally inclusive approaches that consider the dry phases and habitats to characterize carbon cycling in temporary systems.
Bioethanol production from sweet potato using Saccharomyces diastaticus
NASA Astrophysics Data System (ADS)
Abdullah, Suryani, Irma; Pradia Paundradewa, J.
2015-12-01
Sweet potato contains about 16 to 40% dry matter and about 70-90% of the dry matter is a carbohydrate made up of starch, sugar, cellulose, hemicellulose and pectin so suitable for used as raw material for bioethanol. In this study focused on the manufacture of bioethanol with changes in temperature and concentration variations of yeast with sweet potato raw materials used yeast Saccharomyces diastaticus. Operating variables used are at a temperature of 30°C; 31,475°C; 35°C; 38,525°C; and 40°C with a yeast concentration of 25.9%; 30%; 40%; 50% and 54.1%. The experimental results obtained, the optimum conditions of ethanol fermentation with yeast Saccharomyces diastaticus on 36,67 °C temperature and yeast concentration of 43,43 % v / v.
Broderick, G A; Grabber, J H; Muck, R E; Hymes-Fecht, U C
2017-05-01
Two lactation trials were conducted comparing the feeding value of silages made from birdsfoot trefoil (BFT, Lotus corniculatus L.) that had been selected for low (BFTL), medium (BFTM), and high (BFTH) levels of condensed tannins (CT) to an alfalfa silage (AS) when fed as the principal forage in total mixed rations. Diets also included corn silage, high-moisture shelled corn, soybean meal, soy hulls, and supplemental fat. In trial 1, 32 lactating Holstein cows were blocked by days in milk, assigned to treatment sequences in 8 balanced 4 × 4 Latin squares, and fed 50% dietary dry matter from AS or 1 of 3 BFT silages containing 0.6, 1.2, or 1.7% CT. Diets averaged 17.5 to 19.5% crude protein and 26% neutral detergent fiber on a dry matter basis. Data were collected over the last 2 wk of each 4-wk period. Intakes were 1.3 to 2.8 kg of dry matter/d greater on BFT than on AS and cows gained 0.5 kg of body weight/d on BFT diets while losing 0.14 kg of body weight/d on the AS diet; this resulted in greater milk per dry matter intake (DMI) on AS. Linear effects indicated true protein yield and milk urea nitrogen declined with increasing CT concentration and quadratic effects indicated DMI, energy-corrected milk, and fat yield were increased at intermediate CT concentration. True protein yield and apparent N-efficiency were greater, and milk urea nitrogen lower, on all BFT diets than on AS. In trial 2, 50 lactating Holstein cows were fed a covariate AS diet for 2 wk and then blocked by parity and days in milk and randomly assigned to 1 of 5 diets that were fed continuously for 12 wk. Diets contained (dry matter basis) 48% AS, 16% AS plus 32% of 1 of 3 BFT silages with 0.5, 0.8, or 1.5% CT, or 48% of an equal mixture of each BFT silage. Diets averaged 16.5% crude protein and 30% neutral detergent fiber. Intake and milk yield tended to be lower on AS than BFT, but body weight gains averaged 0.6 kg/d on all diets. Cows fed any of the BFT silages had reduced milk urea nitrogen and ruminal ammonia and reduced urinary N excretion. Feeding the BFT mixture reduced concentrations of milk true protein and milk urea nitrogen and depressed apparent nutrient digestibility. Among diets containing the individual BFT silages, linear reductions in DMI and yield of milk, fat, true protein, lactose, and SNF were observed with increasing CT concentration. By contrast, a previous trial with the same BFT populations showed that substituting BFTH silage containing 1.6% CT for AS in rations containing 60% silage dry matter had no effect on intake, increased yield of milk, energy-corrected milk and milk components, elevated protein use-efficiency, but with a more modest reduction in milk urea nitrogen and urinary N excretion. Silage analyses suggested that the inconsistent responses among trials were related to growth environment or ensiling effects that altered tannin-protein interactions in BFT silage. Differences in diet formulation among trials may have also influenced responses. Results from the current and previous trials indicate further work is needed to identify optimum tannin levels in forages. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2018-01-01
Objective An experiment was conducted to study the effect of a blend of essential oils (BEO) on enteric methane emission and growth performance of buffaloes (Bubalus bubalis). Methods Twenty one growing male buffaloes (average body weight of 279±9.3 kg) were divided in to three groups. The animals of all the three groups were fed on a ration consisting of wheat straw and concentrate mixture targeting 500 g daily live weight gain. The three dietary groups were; Group 1, control without additive; Group 2 and 3, supplemented with BEO at 0.15 and 0.30 mL/kg of dry matter intake (DMI), respectively. Results During six months feeding trial, the intake and digestibility of dry matter and nutrients (organic matter, crude protein, ether extract, neutral detergent fibre, and acid detergent fibre) were similar in all the groups. The average body weight gain was tended to improve (p = 0.084) in Group 2 and Group 3 as compared to control animals. Feeding of BEO did not affect feed conversion efficiency of the animals. The calves of all the three groups were in positive nitrogen balance with no difference in nitrogen metabolism. During respiration chamber studies the methane production (L/kg DMI and L/kg digestible dry matter intake was significantly (p<0.001) lower in Group 2 and Group 3 as compared to control animals. Conclusion The results indicated that the BEO tested in the present study have shown potential to reduce enteric methane production without compromising the nutrient utilization and animal performance and could be further explored for its use as feed additive to mitigate enteric methane production in livestock. PMID:28231698
Kongphitee, Kanokwan; Sommart, Kritapon; Phonbumrung, Thamrongsak; Gunha, Thidarat; Suzuki, Tomoyuki
2018-03-13
This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight of 98.3 ± 12.8 kg were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300 and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p < 0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p < 0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was 399 kJ/kg BW0.75, with an efficiency of metabolizable energy utilization for growth of 0.86. Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.
Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad
2013-01-01
Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353
NASA Astrophysics Data System (ADS)
Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri
2018-02-01
Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.
Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan
2009-02-25
The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.
NASA Astrophysics Data System (ADS)
Le Vien, Nguyen Thi; Nguyen, Pham Bao; Cuong, Lam Duc; An, Trinh Thi Thua; Dao, Dong Thi Anh
2017-09-01
Glycosaminoglycans (GAGs) are natural biocompounds which join to construct cartilage tissuses, it can be extracted from cartilage of sharks, pigs, cows, chickens, etc. GAGs contain a Chondroitin sulfate (CS) content which is a supplement of functional food used for preventing and supporting treatment of arthritis and eye diseases. Therefore, the GAGs extraction from byproducts of the industry of cattle and poultry slaughter to identify the CS content by papain enzyme is necessary. In this study, the optimal hydrolysis conditions were obtained by response surface methodology (RSM). The independent variables were coded as: pH (x1), enzyme concentration (x2), incubation temperature (x3) and hydrolysis time (x4). The results of the analysis of variance (ANOVA) shown that the variables actively affected GAGs content. The optimal conditions of hydrolysis were derived at pH of 7.1, ratio of enzyme per substances of 0.62% w/wpo, temperature of 65°C and hydrolysis time of 230 minutes, GAGs content reached 14.3% of the dry matter of raw material. Analyzes by HPLC revealed that 56.17% of the dry preparations of GAGs were CS compound, were equivalent to 8.11% of the dry matter of chicken keel cartilage. Molecular weight of the dry preparations GAGs was 259.6 kDa. The dry preparations included the contents of moisture 12.2%, protein 8.42%, lipid 0%, ash 10.03% and extracted GAGs 69.35%.
Priority and emerging pollutants in sewage sludge and fate during sludge treatment.
Mailler, R; Gasperi, J; Chebbo, G; Rocher, V
2014-07-01
This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n=117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM - dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols - except NP - BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.). Copyright © 2014 Elsevier Ltd. All rights reserved.
Le Hyaric, R; Canler, J-P; Barillon, B; Naquin, P; Gourdon, R
2009-01-01
The objective of this study was to analyze the composition of the screenings sampled from three municipal wastewater treatment plants (wwtp) located in the Region Rhône-Alpes, France. The plants were equipped with multi screening stages with gap sizes ranging from 60 to 3 mm. Waste production flows from each plant were monitored over at least 48 hours in each sampling campaign in order to calculate average production rates. Waste samples of at least 7 kg were collected from each screening stage in each plant at different seasons to evaluate the influence of different parameters on the composition of the waste. An overall 30 samples were thereby collected between May 2007 and February 2008, dried at 80 degrees C for a week, and subsequently hand sorted into 10 fractions of waste materials. Results showed that the average production varied between 0.53 and 3.49 kg (wet mass) per capita per year. The highest production rates were observed during or immediately after rainy weather conditions. The dry matter content ranged between 14.4 and 29.2% of wet mass, and the volatile matter content was between 70.0 and 90.5% of dry mass. The predominant materials in the screenings were found to be sanitary textiles which accounted for 65.2% to 73.6% of dry weight and fines (<20 mm) which accounted for 15.2% to 18.2% of dry weight. These proportions were relatively similar in each plant and each sampling campaign.
Kumahashi, Nobuyuki; Uchio, Yuji; Kitamura, Nobuto; Satake, Shigeru; Iwamoto, Mikio; Yasuda, Kazunori
2014-11-01
The purpose of this study was to clarify the biomechanical characteristics of cement-material interfaces for the zirconia ceramic and cobalt-chromium (Co-Cr) alloy femoral components used for total knee arthroplasty. In the first sub-study, we compared the strength of adhesion of the cement to flat plates, by tensile testing under dry and moistened conditions. In the second sub-study, we compared the maximum load of the cement-component complex by tensile testing. In the third sub-study, we compared the fatigue characteristics of the cement-component complex by use of a dynamic tensile testing machine. Under dry conditions, the maximum strength of adhesion to the zirconia ceramic plate was the same as that to the Co-Cr alloy plate. Under moistened conditions, however, the strength of adhesion to the zirconia ceramic plate was significantly lower (p = 0.0017) whereas the strength of adhesion to the Co-Cr alloy plate was not reduced. Maximum load for the cement-component complexes for zirconia ceramic and Co-Cr alloy was no different under both dry and moistened conditions. Fatigue testing showed that cement-zirconia adhesion was stronger than cement-Co-Cr alloy adhesion (p = 0.0161). The strength of adhesion of cement to zirconia ceramic is substantially weaker under wet conditions than under dry conditions. The mechanical properties of cement-zirconia ceramic component complexes and cement-Co-Cr alloy component complexes are equivalent.
Corn silage from corn treated with foliar fungicide and performance of Holstein cows.
Haerr, K J; Lopes, N M; Pereira, M N; Fellows, G M; Cardoso, F C
2015-12-01
Foliar fungicide application to corn plants is used in corn aimed for corn silage in the dairy industry, but questions regarding frequency of application and its effect on corn silage quality and feed conversion when fed to dairy cows remain prevalent. The objective of this study was to evaluate the effects of various foliar fungicide applications to corn on dry matter intake (DMI), milk production, and milk composition when fed to dairy cows. Sixty-four Holstein cows with parity 2.5±1.5, 653±80kg of body weight, and 161±51d in milk were blocked and randomly assigned to 1 of 4 corn silage treatments (total mixed ration with 35% of the dry matter as corn silage). Treatments were as follows: control (CON), corn silage with no applications of foliar fungicide; treatment 1 (1X), corn silage from corn that received 1 application of pyraclostrobin (PYR) foliar fungicide (Headline; BASF Corp.) at corn vegetative stage 5; treatment 2 (2X), corn silage from corn that received the same application as 1X plus another application of a mixture of PYR and metconazole (Headline AMP; BASF Corp.) at corn reproductive stage 1 ("silking"); and treatment 3 (3X), corn silage from corn that received the same applications as 2X as well as a third application of PYR and metconazole at reproductive stage 3 ("milky kernel"). Corn was harvested at about 32% dry matter and 3/4 milk line stage of kernel development and ensiled for 200d. Treatments were fed to cows for 5wk, with the last week being used for statistical inferences. Week -1 was used as a covariate in the statistical analysis. Dry matter intake tended to be lower for cows fed corn silage treated with fungicide than CON (23.8, 23.0, 19.5, and 21.3kg for CON, 1X, 2X, and 3X, respectively). A linear treatment effect for DMI was observed, with DMI decreasing as foliar fungicide applications increased. Treatments CON, 1X, 2X, and 3X did not differ for milk yield (34.5, 34.5, 34.2, and 34.4kg/d, respectively); however, a trend for increased feed conversion represented by fat-corrected milk/DMI (1.65 vs. 1.47) and energy-corrected milk/DMI (1.60 vs. 1.43) was noted for cows fed corn silage with fungicide compared with CON. In conclusion, cows receiving corn silage treated with foliar fungicide had better conversion of feed dry matter to milk than those receiving CON silage. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
... dehydration, such as a dry mouth, decreased or dark urine, or refusal to drink fluids Skin rashes ... phased out and are no longer recommended. No matter which type of thermometer you use, take these ...
Kuroda, Kazutaka; Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Tanaka, Akihiro; Nakasaki, Kiyohiko
2015-01-01
Bacillus sp. strain TAT105 is a thermophilic, ammonium-tolerant bacterium that grows assimilating ammonium nitrogen and reduces ammonia emission during composting of swine feces. To develop a practical use of TAT105, a dried solid culture of TAT105 (5.3 × 10(9) CFU/g of dry matter) was prepared as an additive. It could be stored for one year without significant reduction of TAT105. Laboratory-scale composting of swine feces was conducted by mixing the additive. When the additive, mixed with an equal weight of water one day before use, was added to obtain a TAT105 concentration of above 10(7) CFU/g of dry matter in the initial material, the ammonia concentration emitted was lower and nitrogen loss was approximately 22% lower in the treatment with the additive than in the control treatment without the additive. The colony formation on an agar medium containing high ammonium could be used for enumeration of TAT105 in the composted materials.
Maximum Mass of Hybrid Stars in the Quark Bag Model
NASA Astrophysics Data System (ADS)
Alaverdyan, G. B.; Vartanyan, Yu. L.
2017-12-01
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.
2008-03-01
behavior of moisture content-dry density Proctor curves......................................... 16 Figure 8. Moisture- density data scatter for an... density . Built-in higher order regression equations allow the user to visua- lize complete curves for Proctor density , as-built California Bearing Ratio...requirements involving soil are optimum moisture content (OMC) and maximum dry density (MDD) as determined from a laboratory compaction or Proctor test
Branco, A F; Giallongo, F; Frederick, T; Weeks, H; Oh, J; Hristov, A N
2015-06-01
Technical-grade cashew nut shell liquid (TCNSL) is a by-product of the cashew nut industry in tropical countries, and is known to exhibit a wide range of biological activities, including inhibitory effect against gram-positive bacteria. This study was conducted to investigate the effects of TCNSL (73.3% cardanol, 16.4% cardol, and 3.0% methylcardol) on rumen methane emission, nutrient digestibility, dry matter intake, and milk yield and composition in dairy cows. Eight multiparous Holstein cows were used in a crossover design trial with two 21-d experimental periods. The diet was based on corn silage and alfalfa haylage and was formulated to meet or exceed the energy and metabolizable protein requirements of the cows. Treatments were control (no TCNSL supplementation) or 30 g/cow per day of TCNSL. Rumen carbon dioxide emission was not affected by TCNSL. Treatment had no effect on methane emission (542 vs. 511±35.3 g/cow per day, respectively) and methane emission intensity (15.0 vs. 13.9±0.58 g/kg of energy-corrected milk, respectively) and tended to decrease methane emission per kilogram of dry matter intake (20.2 vs. 18.6±1.04 g/kg, respectively). Dry matter intake (average 26.9±1.00 kg/d), milk yield (40.0±1.73 kg/d), and milk composition were not different between treatments. The TCNSL had no effect on N losses in urine and feces and total-tract apparent digestibility of nutrients, except digestibility of neutral detergent fiber tended to be increased compared with the control. Plasma urea and glucose concentrations were not affected by TCNSL. Concentration of milk C18:0 tended to be decreased (17%) by TCNSL compared with the control. In this study, TCNSL did not alter absolute methane emission in the rumen, but tended to decrease it by 8% per kilogram of dry matter intake. The TCNSL had no effect on milk yield and composition in dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Daniel, J B; Friggens, N C; van Laar, H; Ingvartsen, K L; Sauvant, D
2018-06-01
The control of nutrient partitioning is complex and affected by many factors, among them physiological state and production potential. Therefore, the current model aims to provide for dairy cows a dynamic framework to predict a consistent set of reference performance patterns (milk component yields, body composition change, dry-matter intake) sensitive to physiological status across a range of milk production potentials (within and between breeds). Flows and partition of net energy toward maintenance, growth, gestation, body reserves and milk components are described in the model. The structure of the model is characterized by two sub-models, a regulating sub-model of homeorhetic control which sets dynamic partitioning rules along the lactation, and an operating sub-model that translates this into animal performance. The regulating sub-model describes lactation as the result of three driving forces: (1) use of previously acquired resources through mobilization, (2) acquisition of new resources with a priority of partition towards milk and (3) subsequent use of resources towards body reserves gain. The dynamics of these three driving forces were adjusted separately for fat (milk and body), protein (milk and body) and lactose (milk). Milk yield is predicted from lactose and protein yields with an empirical equation developed from literature data. The model predicts desired dry-matter intake as an outcome of net energy requirements for a given dietary net energy content. The parameters controlling milk component yields and body composition changes were calibrated using two data sets in which the diet was the same for all animals. Weekly data from Holstein dairy cows was used to calibrate the model within-breed across milk production potentials. A second data set was used to evaluate the model and to calibrate it for breed differences (Holstein, Danish Red and Jersey) on the mobilization/reconstitution of body composition and on the yield of individual milk components. These calibrations showed that the model framework was able to adequately simulate milk yield, milk component yields, body composition changes and dry-matter intake throughout lactation for primiparous and multiparous cows differing in their production level.
Wang, Zhongcheng; Yu, Huimin; Wu, Xuezhuang; Zhang, Tietao; Cui, Hu; Wan, Chunmeng; Gao, Xiuhua
2016-10-01
The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P < 0.05) than those of either the control, Zn-POS-300, or Zn-POS-900. Zn-POS-600 had the highest apparent digestibility of dry matter, crude protein, and metabolic energy among all groups. The control group had the lowest apparent digestibility of dry matter (P < 0.05), whereas the apparent digestibility of dry matter in Zn-POS-600 was higher (P < 0.05) than that of Zn-POS-300. The apparent digestibility of crude protein in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) compared to Zn-POS-300 or the control. The apparent digestibility of metabolic energy in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) than that of Zn-POS-300. Zn-POS-600 had the highest liver zinc concentrations (P < 0.05), while Zn-POS-900 had the highest pancreatic zinc concentrations (P < 0.05). Our data suggest that the supplementation of 600 mg/kg Zn-POS is optimal in improving the average daily gain and the average daily feed intake, utilization of dietary dry matter and crude protein, and increasing tissue zinc concentrations in liver and pancreas of broilers.
Golzar Adabi, S H; Cooper, R G; Kamali, M A; Hajbabaei, A
2011-01-01
Reported was an investigation of the effect of vitamin E (Vit.E) and corn oil on semen traits of male Japanese quail (Coturnix coturnix japonica). From 8 to 20 wk of age, birds were raised on corn-based diets supplemented with corn oil (0 and 3%) and Vit.E (National Research Council (NRC) recommended 25mg/kg/day/dry matter and 150 mg/kg/day/dry matter) in a 2×2 factorial manner. The diet was supplemented with corn oil and Vit.E (E2C2) which provided additional n-6 polyunsaturated fatty acids in the form of 20:4n-6 and 22:4n-6 in spermatozoa phospholipid. The left testes weights were increased (P<0.01) in groups that received Vit.E in the diet (3.95 and 4.12 g, respectively) (P=0.03) and combined testes weight was the greatest in E2C2 group (7.57g) (P=0.02). Semen volume increased throughout the experiment in the E2C2 group. E2C1 and E2C2 birds had the greatest (90.05% and 92.1%, respectively) live sperm percent by comparison with other groups. The susceptibility of semen to lipid peroxidation in vitro was increased in quail fed E1C1 and E1C2, but was reduced when 150 mg Vit.E kg/day/dry matter feed was provided in the diet. The amount of Vit.E in the seminal plasma of E1C1 and E1C2 groups was (P<0.01) less than that in the other two groups (E2C1 and E2C2). From this study, it may be concluded that increasing diet n-6/n-3 ratio can be beneficial for semen traits, however, this application increased sperm peroxidation sensitivity but it can be controlled by inclusion of antioxidant such as Vit.E (150 mg/kg/day/dry matter) to diet. Copyright © 2010 Elsevier B.V. All rights reserved.
Effects of body weight loss on serum progesterone concentrations of non-lactating dairy cows.
Rodrigues, R O; Trevisanuto, C; Cooke, R F; Vasconcelos, J L M
2011-01-01
The objective was to evaluate serum concentrations of nonesterified fatty acids (NEFA), cortisol, insulin, and progesterone (P4) of dairy cows maintaining or mobilizing body weight (BW). Eleven non-lactating, non-pregnant, and ovariectomized Gir × Holstein cows were stratified by BW and body condition score (BCS), and randomly assigned to: 1) BW loss (six cows; LOSS) and 2) BW maintenance (five cows; MAINT). Treatments were achieved through a grazing schedule using three pastures. From Days -7 to 1 of the study, all cows were maintained in Pasture A (12 kg of dry matter/cow daily). From Days 2 to 30, LOSS cows were maintained in Pasture B (less than 1.0 kg of dry matter/cow daily), whereas MAINT cows were maintained in Pasture C (12 kg of dry matter/cow daily). However, from Days 3 to 30 of the study, cows from both treatments were regrouped daily into Pasture A from 0600 to 1200 h to allow LOSS cows to consume, on average, 4.5 kg/d of forage dry matter. On Day -66 of the study, all cows received an intravaginal drug releasing device containing 1.9 g of P4 (replaced every 14 d and removed on Day 3). Cow BW and BCS were assessed on Day 0 and 30 and blood samples were collected daily from Days 0 to 30 at 0600 and 1200 h. Changes in BW and BCS were greater (P ≤ 0.05) in LOSS cows compared to MAINT cows. Within samples collected at 0600 h, serum NEFA concentrations were often greater (P < 0.05) in LOSS cows compared to MAINT after Day 14. Serum P4 concentrations were greater (P < 0.05) on Days 21 and 22, and tended (P < 0.10) to be greater on Days 16, 23, and 24 of the study in LOSS cows compared to MAINT. In conclusion, BW loss was associated with increased circulating concentrations of P4 in non-lactating ovariectomized dairy cows; this was mainly attributed to fat mobilization and consequent release of P4 stored in adipose tissues. Copyright © 2011 Elsevier Inc. All rights reserved.
Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter
Liu, Kindtoken H. D.; Hamrin, Jr., Charles E.
1982-01-01
A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.
Jana, Ulrike; Chassany, Vincent; Bertrand, Georges; Castrec-Rouelle, Maryse; Aubry, Emmanuel; Boudsocq, Simon; Laffray, Daniel; Repellin, Anne
2012-11-15
One of the objectives of this study was to assess the contamination levels in the tailings of an old antimony mine site located in Ouche (Cantal, France). Throughout the 1.3 ha site, homogenous concentrations of antimony and arsenic, a by-product of the operation, were found along 0-0.5 m-deep profiles. Maximum concentrations for antimony and arsenic were 5780 mg kg(-1) dry tailings and 852 mg kg(-1) dry tailings, respectively. Despite the presence of the contaminants and the low pH and organic matter contents of the tailings, several patches of vegetation were found. Botanical identification determined 12 different genera/species. The largest and most abundant plants were adult pines (Pinus sylvestris), birches (Betula pendula) and the bulrush (Juncus effusus). The distribution of the metalloids within specimens of each genera/species was analysed in order to deduce their concentration and translocation capacities. This was the second goal of this work. All plant specimens were highly contaminated with both metalloids. Most were root accumulators with root to shoot translocation factors <1. Whereas contamination levels were high overall, species with both a low translocation factor and a low root accumulation coefficient were identified as suitable candidates for the complete revegetation of the site. Species combining those characteristics were the perennials P. sylvestris, B. pendula, Cytisus scoparius and the herbaceous Plantago major, and Deschampsia flexuosa. Copyright © 2012 Elsevier Ltd. All rights reserved.
Influence of animal age on body concentrations of minerals in Japanese quail (Coturnix japonica).
Sales, J; Skřivan, M; Englmaierová, M
2014-12-01
Mathematical modelling of the relationships between mineral inputs and outputs would enable the prediction of mineral requirements of poultry under a wide range of conditions. To establish the feasibility of possible modelling of mineral requirements, the current study aimed to describe the individual mineral concentrations of whole bodies of quail over the life cycle from hatching to 70 days of age. Quail were reared indoors without any restrictions that could limit growth. Sampling of birds (n = 6-18) was carried out at 0, 3, 7, 14, 21, 35, 49 and 70 days after hatching. Freeze-dried samples of whole bodies (digestive contents removed) were analysed for ash, and macrominerals (calcium, magnesium, phosphorus, potassium, sodium) and microminerals (copper, iron, manganese, nickel, selenium, zinc). Ash concentration followed a curvilinear trend, with a maximum of 101.7 g/kg dry matter at 32.77 days. Individual mineral concentrations, expressed as a proportion of ash, were fluctuating over time, with the most prominent changes at 3 days and again at either 14 or 21 days. Dissimilar patterns in individual mineral concentrations resulted that ratios between minerals followed inconsistent patterns over time. Although mineral contents in absolute quantities can be described through modelling over the entire life cycle of the bird, it can be concluded that variable concentrations of individual minerals could complicate further model development. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Americium-241 uptake by Bahiagrass as influenced by soil type, lime, and organic matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, G.D.; Adriano, D.C.
1979-07-01
Availability of /sup 241/Am to bahiagrass (Paspalum notatum), a major forage crop in the southeastern US, was studied under greenhouse conditions using two soil types, two rates of lime, and four rates of organic matter. The plants were grown in pots until three clippings were obtained. Americium-241 concentrations in plant tissues from the unlimed Dothan (24% clay) soil were, on the average, approximately twice as high as those from unlimed Troup (10% clay) soil. Lime significantly reduced /sup 241/Am uptake from both soils. The americium concentration ratios (americium concentration in dry plant tissue/average americium concentration in dry soil) for limedmore » treatments were, in general, one order of magnitude lower than those for unlimed treatments. Organic matter, added to the soils as bermuda grass hay, somewhat reduced /sup 241/Am uptake, especially when added at high rates in unlimed soils. The effect of lime on uptake could be attributed to immobilization of americium ions external to the roots as a result of decreased solubility of this radionuclide and/or antagonistic effect of increased calcium ion concentration in the soil solution on americium ions. The effect of organic matter on uptake could be attributed to its fixing capacity for metals.« less
Yu, Chaowei; Zheng, Yi; Cheng, Yu-Shen; Jenkins, Bryan M; Zhang, Ruihong; VanderGheynst, Jean S
2010-06-01
Leaching was studied for its application in extracting inorganic and organic constituents from fresh fermented grape pomace, air-dried fermented grape pomace and air-dried sugar beet pulp. Samples of each feedstock were leached in water at ambient temperature for 30 or 120 min at dry solid-to-liquid ratios of 1/20 and 1/50 kg/L. Leaching removed 82% of sodium, 86% of potassium, and 76% of chlorine from sugar beet pulp, and reduced total ash concentration in air-dry fermented grape pomace from 8.2% to 2.9% of dry matter, 8.2% to 4.4% in fresh fermented grape pomace, and 12.5% to 5.4% in sugar beet pulp. Glycerol (7-11 mg/dry g), ethanol (131-158 mg/dry g), and acetic acid (24-31 mg/dry g) were also extracted from fermented grape pomace. These results indicate that leaching is a beneficial pretreatment step for improving the quality of food processing residues for thermochemical and biochemical conversion. (c) 2010 Elsevier Ltd. All rights reserved.
Leadership Criteria under Maximum Performance Conditions
2011-03-01
other a priori psychological constructs investigated across the maximum and typical performance continuum (Scholtz & Schuler, 1993). While many...reviewed by three trained subject matter experts to ultimately determine a psychological dimension that appropriately captured each input provided. The
NASA Astrophysics Data System (ADS)
Tammik, Kerttu; Kauer, Karin; Astover, Alar
2017-04-01
The objective of this study was to determine whether it is possible to assess the impact of different management practices (crop rotation, fertilization (organic and mineral fertilizers) on the chemical composition of soil organic matter, using Fourier transform infrared spectroscopy (FTIR). The study is based IOSDV long-term (established in 1989) three field crop rotation (potato-wheat-barely) experiment located in Tartu, Estonia. Soil samples (Stagnic Albeluvisol) were collected from the 0-20 cm depth in the autumn of 2015, air dried, sieved to 2 mm and grinded to obtain homogeneous samples. The content of soil organic matter was measured by the dry combustion method in a varioMax CNS elemental analyser (ELEMENTAR, Germany). The samples were analysed using Thermo-Nicolet iS10 Fourier Transform Infrared Spectrophotometer (FT-IR) and OMNIC software. An intense and sharp peak was recorded in the region of Si-O vibrations of clay minerals and polysaccharides in all samples analysed. The volume of the peak correlated with the quantity of fertilizers administered
Implications of tachyon-like matter for superdense stars.
NASA Technical Reports Server (NTRS)
Bhatia, M. S.; Pande, L. K.
1972-01-01
Derivation of a new equation of state of superdense matter by treating superdense matter as a perfect, degenerate tachyon gas. Model calculations for superdense stars based on this equation of state are presented. By appropriately choosing a certain parameter, dynamical stability can be achieved for arbitrarily large central densities. Also, a somewhat larger than usual value for the maximum mass is obtained.
Stabilization of active matter by flow-vortex lattices and defect ordering
Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.
2016-01-01
Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846
NASA Technical Reports Server (NTRS)
Hunt, E. R., Jr.; Running, Steven W.
1992-01-01
An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.
Nutrient digestibility of vegetables waste flour on male quail (Coturnix coturnix japonica)
NASA Astrophysics Data System (ADS)
Pramono, A.; Primadhani, M. S.; Swastike, W.; Sutrisno, J.
2018-03-01
The aim of this research is to determine the nutrient digestibility of vegetables waste flour on of male quail. Four hundred male quails were divided into four groups with five replications. The experiment is Completely Randomized Design and the data were analyzed by analyses of variants. The experimental diets were P0 = basal diet, P1 = 97% basal diet + 3% vegetables waste flour, P2 = 94% basal diet + 6% vegetables waste flour, and P3 = 91% basal diet + 9% vegetables waste flour. The observed variables were the digestibility of dry matter, crude protein and extract ether. Result showed that of the addition of vegetable waste flour in the diet had no effect on crude protein digestibility (P>0.05), however shown significant effect on dry matter (P <0.01) and extract ether (P <0.01) digestibility.
Dietary leucine requirement of juvenile Japanese seabass ( Lateolabrax japonicus)
NASA Astrophysics Data System (ADS)
Li, Yan; Cheng, Zhenyan; Mai, Kangsen; Ai, Qinghui
2015-02-01
A 56-day feeding trial was conducted to examine the dietary leucine requirement of juvenile Japanese seabass in seawater floating net cages (1.5 m × 1.5 m × 2.0 m). Six isonitrogenous (crude protein 40%) and isoenergetic (gross energy 20 kJ g-1) diets were formulated to contain different concentrations of leucine (0.9%, 1.49%, 2.07%, 2.70%, 3.30% and 3.88% of dry matter). Crystalline L-amino acids were supplemented to simulate the whole body amino acid pattern of Japanese seabass except for leucine. Three groups (30 fish individuals each, 8.0 g ± 0.20 g in initial weight) were fed to apparent satiation at 5:00 and 17:30 every day. During the experimental period, the water temperature ranged from 26 to 32δC and salinity from 26 to 30, and the dissolved oxygen was maintained at 7 mg L-1. The results showed that weight gain ( WG), nitrogen retention ( NR), feed efficiency ( FE) and protein efficiency ratio ( PER) were significantly increased when dietary leucine was increased from 0.90% to 2.70% of dry matter, and then declined. WG was the highest when fish were fed D4 containing 2.70% of leucine. No significant differences were observed in body composition among dietary treatments ( P > 0.05). Considering the change of WG, the optimum dietary leucine requirement of juvenile Japanese seabass was either 2.39% of dry matter or 5.68% of dietary protein.
Air quality and human health improvements from reduced deforestation in Brazil
NASA Astrophysics Data System (ADS)
Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.
2015-12-01
Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, P<0.001). Observed dry season AOD is more than a factor two greater in years with high deforestation rates compared to years with low deforestation rates, suggesting regional air quality is degraded substantially by fire emissions associated with deforestation. This link is further demonstrated by the positive relationship between observed AOD and satellite-derived particulate emissions from deforestation fires (r=0.89, P<0.01). Using a global aerosol model with satellite-derived fire emissions, we show that reductions in fires associated with reduced deforestation have reduced regional dry season mean surface particulate matter concentrations by ~30%. Using concentration response functions we estimate that this reduction in particulate matter may be preventing 1060 (388-1721) premature adult mortalities annually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.
Interactive Effects of CO2 and O2 in Soil on Root and Top Growth of Barley and Peas
Geisler, G.
1967-01-01
Barley and pea plants were grown under several regimens of different compositions of soil atmosphere, the O2 concentration varying from 0 to 21% and the CO2 concentration from 0 to 8%. In absence of CO2, the effect of O2 on root length in barley was characterized by equal root lengths within the range of 21 to 7% O2 and a steep decline between 7 and 0%. In peas, while showing the same general response, the decline occurred between 14 and 7% O2. Root numbers of the seminal roots of barley decreased already with reduction in O2 concentration from 21 to 14%. Dry matter production was affected somewhat differently by O2 and CO2 concentration. Dry matter production in barley was reduced at 14% O2 while root length decreased between 7 and 0%. In peas, dry matter production was favored by low CO2 concentrations except where there was no oxygen. At 21% O2, increasing CO2 concentrations did not seem to affect root length up to concentrations of 2% CO2. At 8% CO2, root length was decreased. The inter-active effects of CO2 and O2 are characterized by a reduced susceptibility to CO2 at O2 values below 7%, and a very deleterious effect of 8% CO2 at 7% O2. PMID:16656508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-29
The original purpose of the grant was to construct an alcohol producing facility for community use thereby demonstrating that small land owners could, through their initiative, produce fuel from a vegetable grown on small plots of land. The rationale for the program was predicated on increasing fuel costs, decreasing fuel supplies, and on information supplied by Tuskegee Institute about a high dry matter sweet potato (Rojo Blanco, reportedly 42% dry matter and an average yield of 750 bushels/acre) which theoretically would produce at least 1.42 gallons of ethyl alcohol/bushel. Two approaches were undertaken: the production of sweet potatoes and themore » production of alcohol. In the first year, Rojo Blanco did yield 700 bushels/acre, but in subsequent years, due to drought and inadequate knowledge of proper fertilizer and moisture regimes, that yield was never reached. In alcohol production, a long period of time with laboratory stills was devoted to testing sweet potato varieties to determine the alcohol/bushel ratios. The hypothetical 1.4 gallons/bushel was never attained - because the dry matter never approached 42%. In spite of the low alcohol per bushel results, a 250 gallon batch still was built (cost of over $3000). With cost of fuel for the digester and for the fermentation coupled with the market value of sweet potatoes, we determined that community operated stills using home-grown vegetable sources for alcohol production is not economically feasible at this time.« less
Nahand, M.K.; Doust-Nobar, R.S.; Maheri-Sis, N.; Mahmoudi, S.
2012-01-01
In the present study, chemical composition and in situ rumen dry matter degradability (DMD) of some tree species (cherry, apricot and almond tree leaves) were determined. Crude protein (CP) concentration varied from 6.76% for almond tree to 2.76% for cherry tree, neutral detergent fiber (NDF) and acid detergent fiber (ADF), from 29.2, 20.8% for apricot tree to 20.8 and 15.8% for almond tree leaves respectively. Polyphenol and tannin composition measured from 3.49, 1.2% for almond tree to 1.51 and 0.61% for apricot tree, respectively. In situ rumen degradability was carried out in three fistulaed Taleshi native male cattle which were incubated at times of 0, 4, 8, 16, 24, 48, 72 and 96-hour. Almond leaves had higher potential degradation (a+b) for dry matter (92.37%) and cherry leaves showed lower potential degradation (84.12%), respectively. Effective rumen degradable dry matter at rate of 0.05/h varied from 69.86% for almond tree to 52.20% for cherry leaves. Results showed that the almond leaves were higher in nutritive value than cherry and apricot leaves. Therefore, almond tree leaves could be used with forage in ruminant diets to reduce cost of animals feed requirements. Overall, it seemed that the tree leaves used in this study, had a higher nutritive value in ruminant’s nutrition, however more experiments are needed for an accurate determination of nutritional values of these resources. PMID:26623298
Hydroponic cultivation improves the nutritional quality of soybean and its products.
Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo
2012-01-11
Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.
Miyaji, Makoto; Matsuyama, Hiroki; Hosoda, Kenji; Nonaka, Kazuhisa
2012-08-01
Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design to determine the effects of substituting corn grain with brown rice (BR) grain in total mixed ration (TMR) silage on milk yield, ruminal fermentation and nitrogen (N) balance. The TMR silages were made from the ensiling of TMR containing (dry matter basis) 50.1% forage in rice silage and corn silage combination, and 49.9% concentrate. The grain portion of the diets contained 31.2% steam-flaked corn, 31.2% steam-flaked BR or an equal mixture of corn and BR. Dietary treatments did not affect dry matter intake, milk yield and milk fat, protein and lactose yields. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The urinary N excretion decreased linearly (P < 0.01) in response to increased levels of BR, with no dietary effect on N intake, N secretion in milk and fecal N excretion. Our results indicate that steam-flaked BR is a suitable replacement for steam-flaked corn in dairy cow diets, and that it can be included in rations to a level of at least 31.2% of dry matter without adverse effects on milk production, when cows were fed rice silage and corn silage-based diets. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
[Proximate analysis of straw by near infrared spectroscopy (NIRS)].
Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling
2009-04-01
Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.
Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L
2017-08-01
Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
soil organic matter fractionation
NASA Astrophysics Data System (ADS)
Osat, Maryam; Heidari, Ahmad
2010-05-01
Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical studies were carried out to illustrate the relationship between clay mineral series and organic matter. According to the results the amount of organic carbon increases by decreasing size fractions and reaches to its maximum in <250μ classes, also 2:1 and expanding clays which have the ability to maintain larger amounts of organic carbon were the dominant clay minerals. Chemical fractionation of soil organic matter to humic acid and fulvic acid shows that there is a better correlation between humic acid contents and soil organic matter (R2 = 0.86) than fulvic acid and organic matter (R2=0.5). The amount of humic and fulvic acids varies in different size fractions and reaches to its minimum in the E fraction in all three stages. The relationships between fulvic and humic acids with organic matter content, demonstrating that at the lower organic matter content, humification is slow, thus humic acid content is rather low than the fulvic acid content. By increasing the organic matter content biological activity increases and followed by humification process proceeds so that the humic acid content locates over the fulvic acid content.
Automated grading, upgrading, and cuttings prediction of surfaced dry hardwood lumber
Sang-Mook Lee; Phil Araman; A.Lynn Abbott; Matthew F. Winn
2010-01-01
This paper concerns the scanning, sawing, and grading of kiln-dried hardwood lumber. A prototype system is described that uses laser sources and a video camera to scan boards. The system automatically detects defects and wane, searches for optimal sawing solutions, and then estimates the grades of the boards that would result. The goal is to derive maximum commercial...
Costa, Flávia R C; Lang, Carla; Almeida, Danilo R A; Castilho, Carolina V; Poorter, Lourens
2018-05-16
The linking of individual functional traits to ecosystem processes is the basis for making generalizations in ecology, but the measurement of individual values is laborious and time consuming, preventing large-scale trait mapping. Also, in hyper-diverse systems, errors occur because identification is difficult, and species level values ignore intra-specific variation. To allow extensive trait mapping at the individual level, we evaluated the potential of Fourrier-Transformed Near Infra-Red Spectrometry (FT-NIR) to adequately describe 14 traits that are key for plant carbon, water, and nutrient balance. FT-NIR absorption spectra (1,000-2,500 nm) were obtained from dry leaves and branches of 1,324 trees of 432 species from a hyper-diverse Amazonian forest. FT-NIR spectra were related to measured traits for the same plants using partial least squares regressions. A further 80 plants were collected from a different site to evaluate model applicability across sites. Relative prediction error (RMSE rel ) was calculated as the percentage of the trait value range represented by the final model RMSE. The key traits used in most functional trait studies; specific leaf area, leaf dry matter content, wood density and wood dry matter content can be well predicted by the model (R 2 = 0.69-0.78, RMSE rel = 9-11%), while leaf density, xylem proportion, bark density and bark dry matter content can be moderately well predicted (R 2 = 0.53-0.61, RMSE rel = 14-17%). Community-weighted means of all traits were well estimated with NIR, as did the shape of the frequency distribution of the community values for the above key traits. The model developed at the core site provided good estimations of the key traits of a different site. An evaluation of the sampling effort indicated that 400 or less individuals may be sufficient for establishing a good local model. We conclude that FT-NIR is an easy, fast and cheap method for the large-scale estimation of individual plant traits that was previously impossible. The ability to use dry intact leaves and branches unlocks the potential for using herbarium material to estimate functional traits; thus advancing our knowledge of community and ecosystem functioning from local to global scales. © 2018 by the Ecological Society of America.
McArthur, DAJ.; Knowles, N. R.
1993-01-01
Morphological and biochemical interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus fasciculatum [Thaxt. sensu Gerdemann] Gerdemann and Trappe) and potato (Solanum tuberosum L.) plants during the development of P deficiency were characterized. Nonmycorrhizal (NM) plants grown for 63 d with low abiotic P supply (0.5 mM) produced 34, 52, and 73% less root, shoot, and tuber dry matter, respectively, than plants grown with high P (2.5 mM). The total leaf area and the leaf area:plant dry weight ratio of low-P plants were substantially lower than those of high-P plants. Moreover, a lower shoot:root dry weight ratio and tuber:plant dry weight ratio in low-P plants than in high-P plants characterized a major effect of P deficiency stress on dry matter partitioning. In addition to a slower rate of growth, low-P plants accumulated nonreducing sugars and nitrate. Furthermore, root respiration and leaf nitrate reductase activity were lower in low-P plants than in high-P plants. Low abiotic P supply also induced physiological changes that contributed to the greater efficiency of P acquisition by low-P plants than by high-P plants. For example, allocation of dry matter and P to root growth was less restricted by P deficiency stress than to shoot and tuber growth. Also, the specific activities of root acid phosphatases and vanadate-sensitive microsomal ATPases were enhanced in P-deficient plants. The establishment of a VAM symbiosis by low-P plants was essential for efficient P acquisition, and a greater root infection level for P-stressed plants indicated increased compatibility to the VAM fungus. By 63 d after planting, low-P VAM plants had recovered 42% more of the available soil P than low-P NM plants. However, the VAM fungus only partially alleviated P deficiency stress and did not completely compensate for inadequate abiotic P supply. Although the specific activities of acid phosphatases and microsomal ATPases were only marginally influenced by VAM infection, VAM roots characteristically had a higher protein concentration and, consequently, enhanced microsomal ATPase and acid phosphatase activities on a fresh weight basis compared with NM roots. Morphological and ultrastructural details of VAM plants are discussed in relation to the influence of the VAM symbiosis on P nutrition of potato.
Novak, Martin; Erbanova, Lucie; Fottova, Daniela; Voldrichova, Petra; Prechova, Eva; Blaha, Vladimir; Veselovsky, Frantisek; Krachler, Michael
2010-08-01
The 40-year long period of heavy industrialization in Central Europe (1950-1990) was accompanied by burning of arsenic-rich lignite in thermal power plants, and accumulation of anthropogenic arsenic in forest soils. There are fears that retreating acidification may lead to arsenic mobilization into drinking water, caused by competitive ligand exchange. We present monthly arsenic concentrations in surface runoff from 12 headwater catchments in the Czech Republic for a period of 13 years (1996-2008). The studied area was characterized by a north-south gradient of decreasing pollution. Acidification, caused mainly by SOx and NOx emissions from power plants, has been retreating since 1987. Between 1996 and 2003, maximum arsenic concentrations in runoff did not change, and were < 1 ppb in the rural south and < 2 ppb in the industrial north. During the subsequent two years, 2004-2005, maximum arsenic concentrations in runoff increased, reaching 60% of the drinking water limit (10 ppb). Starting in 2006, maximum arsenic concentrations returned to lower values at most sites. We discuss three possible causes of the recent arsenic concentration maximum in runoff. We rule out retreating acidification and a pulse of high industrial emission rates as possible controls. The pH of runoff has not changed since 1996, and is still too low (<6.5) at most sites for an As-OH(-) ligand exchange to become significant. Elevated arsenic concentrations in runoff in 2004-2005 may reflect climate change through changing hydrological conditions at some, but not all sites. Dry conditions may result in elevated production of DOC and sulfur oxidation in the soil. Subsequent wet conditions may be accompanied by acidification leading to faster dissolution of arsenic-bearing sulfides, dissolution of arsenic-bearing Fe-oxyhydroxides, and elevated transport of arsenic sorbed on organic matter. Anaerobic domains exist in normally well-aerated upland soils for hours-to-days following precipitation events. 2010 Elsevier B.V. All rights reserved.
Bagchi, Sourav Kumar; Rao, Pavuluri Srinivasa; Mallick, Nirupama
2015-03-01
Drying of wet algal biomass is a major bottleneck in viable commercial production of the microalgal biodiesel. In the present investigation, an oven drying protocol was standardized for drying of wet Scenedesmus biomass at 60, 80 and 100°C with initial sample thickness of 5.0, 7.5 and 10.0mm. The optimum drying temperature was found to be 80°C with a maximum lipid yield of 425.0±5.9mgg(-1) at 15h drying time for 5.0mm thick samples with 0.033kWh power consumption. Partial drying at 80°C up to 10% residual moisture content was efficient showing 93% lipid recovery with 8h drying and a power consumption of 0.017kWh. Scenedesmus biomass was also found to be rich in saturated and mono-unsaturated fatty acids. Thus, the drying protocol demonstrates its suitability to improve the downstream processing of biodiesel production by significantly lowering the power consumption and the drying time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ground Reaction Force and Cadence during Stationary Running Sprint in Water and on Land.
Fontana, H de Brito; Ruschel, C; Haupenthal, A; Hubert, M; Roesler, H
2015-06-01
This study was aimed at analyzing the cadence (Cadmax) and the peak vertical ground reaction force (Fymax) during stationary running sprint on dry land and at hip and chest level of water immersion. We hypothesized that both Fymax and Cadmax depend on the level of immersion and that differences in Cadmax between immersions do not affect Fymax during stationary sprint. 32 subjects performed the exercise at maximum cadence at each immersion level and data were collected with force plates. The results show that Cadmax and Fymax decrease 17 and 58% from dry land to chest immersion respectively, with no effect of cadence on Fymax. While previous studies have shown similar neuromuscular responses between aquatic and on land stationary sprint, our results emphasize the differences in Fymax between environments and levels of immersion. Additionally, the characteristics of this exercise permit maximum movement speed in water to be close to the maximum speed on dry land. The valuable combination of reduced risk of orthopedic trauma with similar neuromuscular responses is provided by the stationary sprint exercise in water. The results of this study support the rationale behind the prescription of stationary sprinting in sports training sessions as well as rehabilitation programs. © Georg Thieme Verlag KG Stuttgart · New York.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-05-01
Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.
NASA Astrophysics Data System (ADS)
Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.
2017-03-01
The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-01-01
Abstract Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear–surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738