Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency
Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei
2016-01-01
The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178
Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan; Liao, Tianjun; Zhang, Yanchao
2016-01-28
A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less
Light dependence of carboxylation capacity for C3 photosynthesis models
USDA-ARS?s Scientific Manuscript database
Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...
Negative space charge effects in photon-enhanced thermionic emission solar converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segev, G.; Weisman, D.; Rosenwaks, Y.
2015-07-06
In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less
The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell.
Choi, Chansoo; Hu, Naixu
2013-04-01
In this study, tetrachloroaurate as an electron acceptor of a microbial fuel cell (MFC) has been studied to discover the parameters that affect the cost-effective recovery of gold. The modeling and equations for calculating the maximum actual efficiency and electrochemical impedance spectroscopic internal resistance of the MFC were also developed. The maximum power density (Pmax) of 6.58 W/m(2) with a fill factor of 0.717 was achieved for 60 mL volumes of 2000 ppm Au(III) catholyte and 12.2 mM acetate anolyte, respectively. The Pmax can also be predicted simply by measuring Rint by EIS. Additionally, the maximum actual MFC efficiency of about 57% was achieved, and the recovery efficiency of Au and the remaining concentration reached 99.89±0.00% and 0.22±0.00 ppm, respectively, for an Au(III) concentration of 200 ppm. The anodic concentration polarization quenching of the MFC strongly supports a mediator mechanism for the electron transfer from the microorganism to the anode. Copyright © 2013 Elsevier Ltd. All rights reserved.
Donor impurity incorporation during layer growth of Zn II-VI semiconductors
NASA Astrophysics Data System (ADS)
Barlow, D. A.
2017-12-01
The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.
Thermoelectric transport properties of the n-type impurity Al in PbTe
NASA Astrophysics Data System (ADS)
Jaworski, Christopher M.; Heremans, Joseph P.
2012-01-01
Because Tl and In are known to be resonant levels in IV-VI semiconductors, here we synthesize and electrically characterize lead telluride doped n-type with aluminum. The results show that Al behaves as a normal donor in PbTe, reaching a maximum electron concentration of 4 1019 cm-3. At 300 K, the thermopower, when plotted as function of electron concentration (the Pisarenko relation), follows the calculated line for the conduction band of PbTe, and no enhancement is observed that could indicate the presence of a resonant level.
NASA Astrophysics Data System (ADS)
Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.
2018-04-01
Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.
Aeronomy report no. 73: Analysis of sounding rocket data from Punta Chilca, Peru
NASA Technical Reports Server (NTRS)
Fillinger, R. W., Jr.; Mechtly, E. A.; Walton, E. K.
1976-01-01
A technique is described for measuring electron concentrations in the lower portion of the ionosphere above Punta Chilca. A radio-propagation experiment for measuring Faraday rotation is combined with a dc/Langmuir probe experiment for measuring electron current. The results obtained from the analysis of radio and probe data from Nike Apache 14.532, which was launched at 20:26 UT on May 28, 1975, at a solar zenith angle of 60 deg are presented. A comparison of the profiles of electron concentration indicates that the value of the maximum ionization in the D region under quiet conditions is proportional to the square of the cosine of the solar zenith angle.
NASA Astrophysics Data System (ADS)
Preissler, Natalie; Bierwagen, Oliver; Ramu, Ashok T.; Speck, James S.
2013-08-01
A comprehensive study of the room-temperature electrical and electrothermal transport of single-crystalline indium oxide (In2O3) and indium tin oxide (ITO) films over a wide range of electron concentrations is reported. We measured the room-temperature Hall mobility μH and Seebeck coefficient S of unintentionally doped and Sn-doped high-quality, plasma-assisted molecular-beam-epitaxy-grown In2O3 for volume Hall electron concentrations nH from 7×1016 cm-3 (unintentionally doped) to 1×1021 cm-3 (highly Sn-doped, ITO). The resulting empirical S(nH) relation can be directly used in other In2O3 samples to estimate the volume electron concentration from simple Seebeck coefficient measurements. The mobility and Seebeck coefficient were modeled by a numerical solution of the Boltzmann transport equation. Ionized impurity scattering and polar optical phonon scattering were found to be the dominant scattering mechanisms. Acoustic phonon scattering was found to be negligible. Fitting the temperature-dependent mobility above room temperature of an In2O3 film with high mobility allowed us to find the effective Debye temperature (ΘD=700 K) and number of phonon modes (NOPML=1.33) that best describe the polar optical phonon scattering. The modeling also yielded the Hall scattering factor rH as a function of electron concentration, which is not negligible (rH≈1.4) at nondegenerate electron concentrations. Fitting the Hall-scattering-factor corrected concentration-dependent Seebeck coefficient S(n) for nondegenerate samples to the numerical solution of the Boltzmann transport equation and to widely used, simplified equations allowed us to extract an effective electron mass of m*=(0.30±0.03)me (with free electron mass me). The modeled mobility and Seebeck coefficient based on polar optical phonon and ionized impurity scattering describes the experimental results very accurately up to electron concentrations of 1019 cm-3, and qualitatively explains a mobility plateau or local maximum around 1020 cm-3. Ionized impurity scattering with doubly charged donors best describes the mobility in our unintentionally doped films, consistent with oxygen vacancies as unintentional shallow donors, whereas singly charged donors best describe our Sn-doped films. Our modeling yields a (phonon-limited) maximum theoretical drift mobility and Hall mobility of μ=190 cm2/Vs and μH=270 cm2/Vs, respectively. Simplified equations for the Seebeck coefficient describe the measured values in the nondegenerate regime using a Seebeck scattering parameter of r=-0.55 (which is consistent with the determined Debye temperature), and provide an estimate of the Seebeck coefficient to lower electron concentrations. The simplified equations fail to describe the Seebeck coefficient around the Mott transition (nMott=5.5×1018 cm-3) from nondegenerate to degenerate electron concentrations, whereas the numerical modeling accurately describes this region.
Elevated CO2 response of photosynthesis depends on ozone concentration in aspen
Asko Noormets; Olevi Kull; Anu Sober; Mark E. Kubiske; David F. Karnosky
2010-01-01
The effect of elevated CO2 and O3 on apparent quantum yield (ø), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus...
Liu, Wei; Poelker, Matt; Peng, Xincun; ...
2017-07-19
Here, the degree of polarization of photoemitted electrons extracted from bulk unstrained GaAs photocathodes is usually considerably less than the theoretical maximum value of 50%, as a result of depolarization mechanisms that originate within the photocathode material and at the vacuum surface interface. This paper provides a comprehensive review of depolarization mechanisms and presents a systematic experimental evaluation of polarization sensitivities to temperature, dopant density, quantum efficiency, and crystal orientation. The highest measured polarization was similar to 50%, consistent with the maximum theoretical value, obtained from a photocathode sample with relatively low dopant concentration and cooled to 77 K. Inmore » general, measurements indicate electron spin polarization can be enhanced at the expense of photoelectron yield (or quantum efficiency).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Poelker, Matt; Peng, Xincun
Here, the degree of polarization of photoemitted electrons extracted from bulk unstrained GaAs photocathodes is usually considerably less than the theoretical maximum value of 50%, as a result of depolarization mechanisms that originate within the photocathode material and at the vacuum surface interface. This paper provides a comprehensive review of depolarization mechanisms and presents a systematic experimental evaluation of polarization sensitivities to temperature, dopant density, quantum efficiency, and crystal orientation. The highest measured polarization was similar to 50%, consistent with the maximum theoretical value, obtained from a photocathode sample with relatively low dopant concentration and cooled to 77 K. Inmore » general, measurements indicate electron spin polarization can be enhanced at the expense of photoelectron yield (or quantum efficiency).« less
Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser
NASA Astrophysics Data System (ADS)
Cornacchia, F.; Parisi, D.; Bernardini, C.; Toncelli, A.; Tonelli, M.
2004-05-01
In this work we report the spectroscopy and laser results of several Thulium doped BaY2F8 single crystals grown using the Czochralski technique. The doping concentration is between 2at.% and 18at.%. We performed room temperature laser experiments pumping the samples with a laser diode at 789 nm obtaining 61% as maximum optical-to-optical efficiency with a maximum output power of 290 mW and a minimum lasing threshold of 26 mW. The lasing wavelength changed with the dopant concentration from 1927 nm up to 2030 nm and the nature of the transition changed from purely electronic to vibronic, accordingly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savich, N.A.; Andrev, V.E.
1986-11-01
The Venera-15 and -16 satellites, using the method of dual-frequency radio transillumination, determined the altitude distribution of electron concentration over the surface of Venus in the planet's polar regions near its terminator for solar zenith angles of 90 less than or equal to /ZETA/theta less than or equal to 96/sup 0/. The measurements were conducted from October 25 through November 5, 1983, in a period of comparatively low solar activity. In the experiments, the on-board transmitter emitted two coherent signals in the decimeter and centimeter bands at the times of the satellites' settings or occultations behind the planetary disk andmore » of their emerging from behind it, and the terrestrial receiver complex carried out measurements of the phase and frequency differences of these signals. It was found that, at 92 < /ZETA//PHI/ < 96/sup 0/, the distribution of electron concentration can have either one or two ionization maxima. The concentration at the upper maximum, situated at altitudes of 140-150 km, decreases regularly with increase of /ZETA/theta, while at the lower maximum it is practically independent of /ZETA/theta. The altitude range of the ionosphere in the vicinity of the terminator is as much as 10/sup 3/ km. At altitudes h > 200 km a plasma layer forms with an almost constant electron concentration of about 10/sup 3/ cm/sup -3/.« less
Revealing the transport properties of the spin-polarized β‧-Tb2(MoO4)3: DFT+U
NASA Astrophysics Data System (ADS)
Reshak, A. H.
2017-11-01
The thermoelectric properties of the spin-polarized β‧-Tb2(MoO4)3 phase are calculated using first-principles and second-principles methods to solve the semi-classical Bloch-Boltzmann transport equations. It is interesting to highlight that the calculated electronic band structure reveals that the β‧-Tb2(MoO4)3 has parabolic bands in the vicinity of the Fermi level (EF); therefore, the carriers exhibit low effective mass and hence high mobility. The existence of strong covalent bonds between Mo and O in the MoO4 tetrahedrons is more favorable for the transport of the carriers than the ionic bond. It has been found that the carrier concentration of spin-up (↑) and spin-down (↓) increases linearly with increasing the temperature and exhibits a maximum carrier concentration at EF. The calculations reveal that the β‧-Tb2(MoO4)3 exhibits maximum electrical conductivity, minimum electronic thermal conductivity, a large Seebeck coefficient and a high power factor at EF for (↑) and (↓). Therefore, the vicinity of EF is the area where the β‧-Tb2(MoO4)3 is expected to show maximum efficiency.
NASA Astrophysics Data System (ADS)
Chaiamornnugool, Phrompak; Tontapha, Sarawut; Phatchana, Ratchanee; Ratchapolthavisin, Nattawat; Kanokmedhakul, Somdej; Sang-aroon, Wichien; Amornkitbamrung, Vittaya
2017-01-01
The low cost DSSCs utilized by crude and pre-concentrated anthocyanins extracted from six anthocyanin-rich samples including mangosteen pericarp, roselle, red cabbage, Thai berry, black rice and blue pea were fabricated. Their photo-to-current conversion efficiencies and stability were examined. Pre-concentrated extracts were obtained by solid phase extraction (SPE) using C18 cartridge. The results obviously showed that all pre-concentrated extracts performed on photovoltaic performances in DSSCs better than crude extracts except for mangosteen pericarp. The DSSC sensitized by pre-concentrated anthocyanin from roselle and red cabbage showed maximum current efficiency η = 0.71% while DSSC sensitized by crude anthocyanin from mangosteen pericarp reached maximum efficiency η = 0.97%. In addition, pre-concentrated extract based cells possess more stability than those of crude extract based cells. This indicates that pre-concentration of anthocyanin via SPE method is very effective for DSSCs based on good photovoltaic performance and stability. The DFT/TDDFT calculations of electronic and photoelectrochemical properties of the major anthocyanins found in the samples are employed to support the experimental results.
Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
NASA Astrophysics Data System (ADS)
Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.
2018-05-01
Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .
Electron injection from graphene quantum dots to poly(amido amine) dendrimers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, T. N.; Inciong, M. R.; Santiago, S. R.
2016-04-18
The steady-state and time-resolved photoluminescence (PL) are used to study the electron injection from graphene quantum dots (GQDs) to poly(amido amine) (PAMAM) dendrimers. The PL is enhanced by depositing GQDs on the surfaces of the PAMAM dendrimers. The maximum enhancement of PL with a factor of 10.9 is achieved at a GQD concentration of 0.9 mg/ml. The dynamics of PL in the GQD/PAMAM composite are analyzed, evidencing the existence of electron injection. On the basis of Kelvin probe measurements, the electron injection from the GQDs to the PAMAM dendrimers is accounted for by the work function difference between them.
Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices
NASA Astrophysics Data System (ADS)
Brown, A. E.; Baril, N.; Zuo, D.; Almeida, L. A.; Arias, J.; Bandara, S.
2017-09-01
The influence of dopant concentration on both in-plane mobility and minority carrier lifetime in long-wave infrared InAs/InAsSb superlattices (SLs) was investigated. Unintentially doped ( n-type) and various concentrations of Be-doped ( p-type) SLs were characterized using variable-field Hall and photoconductive decay techniques. Minority carrier lifetimes in p-type InAs/InAsSb SLs are observed to decrease with increasing carrier concentration, with the longest lifetime at 77 K determined to be 437 ns, corresponding to a measured carrier concentration of p 0 = 4.1 × 1015 cm-3. Variable-field Hall technique enabled the extraction of in-plane hole, electron, and surface electron transport properties as a function of temperature. In-plane hole mobility is not observed to change with doping level and increases with reducing temperature, reaching a maximum at the lowest temperature measured of 30 K. An activation energy of the Be-dopant is determined to be 3.5 meV from Arrhenius analysis of hole concentration. Minority carrier electrons populations are suppressed at the highest Be-doping levels, but mobility and concentration values are resolved in lower-doped samples. An average surface electron conductivity of 3.54 × 10-4 S at 30 K is determined from the analysis of p-type samples. Effects of passivation treatments on surface conductivity will be presented.
Simpson, J A; Hamilton, D; Lentz, G; McKibben, R B; Mogro-Campero, A; Perkins, M; Pyle, K R; Tuzzolino, A J; O'gallagher, J J
1974-01-25
Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere.
Rodriguez, Jose M.
2000-01-01
Stormwater discharges from Las Flores Industrial Park, Rio Grande, Puerto Rico, were characterized from June 1998 to July 1999 by measuring the flow rate at two outfalls, delineating the drainage areas for each outfall, and calculating the volume of the stormwater discharges. Stormwater-discharge samples were collected and analyzed to determine the quality of the discharges. Constituent loads and loads per area were estimated for each drainage area. The studied drainage subareas covered approximately 46 percent of the total area of the Las Flores Industrial Park. Industrial groups represented in the study areas include manufacturers of textile, electronics, paper, fabricated metal, plastic, and chemical products. The concentrations of oil and grease (1 to 6 milligrams per liter), biochemical oxygen demand (4.7 to 16 milligrams per liter), total organic carbon (5.8 to 36 milligrams per liter), total suspended solids (28 to 100 milligrams per liter), and total phosphorous (0.11 to 0.78 milligrams per liter) from all the samples collected were less than the U.S. Environmental Protection Agency stormwater benchmark concentrations. Concentrations of chemical oxygen demand (15.8 to 157 milligrams per liter) and nitrate and nitrite (0.06 to 1.75 milligrams per liter) exceeded benchmark concentrations at one of the studied drainage areas. Total Kjeldahl nitrogen concentrations (1.00 to 3.20 milligrams per liter) exceeded the benchmark concentrations at the two studied drainage areas. Maximum concentrations for oil and grease, biochemical oxygen demand, chemical oxygen demand, total organic carbon, total Kjeldahl nitrogen, nitrate plus nitrite, and total phosphorous were detected in an area where electronics, plastics, and chemical products are currently manufactured. The maximum concentration of total suspended solids was detected at an area where textile, paper, plastic, chemical, and fabricated metal products are manufactured.
NASA Astrophysics Data System (ADS)
Gitin, Andrey V.
2009-10-01
An optical system for laser radiation focusing, which consists of parabolic and elliptic mirrors, is considered. It is shown by the method of elementary reflections that the maximum concentration of laser radiation on the target can be achieved at a certain position of these mirrors.
NASA Astrophysics Data System (ADS)
Goldberg, R. A.; Jackman, C. H.; Baker, D. N.; Herrero, F. A.
Highly relativistic electron precipitation events (HREs) can provide a major source of energy affecting ionization levels and minor constituents in the mesosphere. Based on satellite data, these events are most pronounced during the minimum of the solar sunspot cycle, increasing in intensity, spectral hardness and frequency of occurrence as solar activity declines. Furthermore, although the precipitating flux is modulated diurnally in local time, the noontime maximum is very broad, exceeding several hours. Since such events can be sustained up to several days, their integrated effect in the mesosphere can dominate over those of other external sources such as relativistic electron precipitation events (REPs) and auroral precipitation. In this work, the effects of HRE relativistic electrons on the neutral minor constituents OH and O3 are modeled during a modest HRE, to estimate their anticipated impact on mesospheric heating and dynamics. The data to be discussed and analyzed were obtained by rocket at Poker Flat, Alaska on May 13, 1990 during an HRE observed at midday near the peak of the sunspot cycle. Solid state detectors were used to measure the electron fluxes and their energy spectra. An x-ray scintillator was included to measure bremsstrahlung x-rays produced by energetic electrons impacting the upper atmosphere; however, these were found to make a negligible contribution to the energy deposition during this particular HRE event. Hence, the energy deposition produced by the highly relativistic electrons dominated within the mesosphere and was used exclusively to infer changes in the middle atmospheric minor constituent abundances. By employing a two-dimensional photochemical model developed for this region at Goddard Space Fight Center, it has been found that for this event, peak modifications in the neutral minor species occurred near 80 km. A maximum enhancement for OH was calculated to be over 40% at the latitude of the launch site, which in turn induced a maximum depletion of O3 in excess of 30%. Since this particular HRE occurred near solar maximum, it was of modest intensity and spectral hardness, parameters which could grow significantly as solar minimum is approached. Estimates of mesospheric OH enhancement and O3 depletion have also been made for more intense HRE events, as might be expected during the declining phase of the solar cycle. The findings imply that the energy deposition from highly relativistic electrons during more intense HREs could modulate the concentration of important minor species within the mesosphere to much higher levels than estimated for the observed HRE. By causing O3 destruction, the electron precipitation can also modify the penetration depth of solar UV radiation, which may affect thermal properties of the mesosphere to depths approaching 60 km.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kato, Daiki; Sakai, Hayato; Araki, Yasuyuki; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku
2018-03-28
Photophysical control and switching on organic-inorganic hybrid interfaces are of great interest in diverse fundamental and applicative research areas. 6,13-Bis(triisopropylsilylethynyl)pentacene (TP) is well-known to exhibit efficient singlet fission (SF) for generation of high-yield triplet excited states in aggregated forms, whereas perylenediimide (PDI) ensembles show the characteristic excimer formation. Additionally, a combination of pentacene (electron donor: D) and PDI (electron acceptor: A) is expected to undergo an efficient photoinduced electron transfer (PET), and absorption of two chromophores combined covers the entire visible region. Therefore, the concentration-dependent mixed self-assembled monolayers (SAMs) composed of two chromophores enable us to control and switch the photophysical processes on a surface. In this work, a series of mixed SAMs composed of TP and PDI units on gold nanoclusters (GNCs) were newly synthesized by changing the relative molecular concentration ratios. Structural control of mixed SAMs on a gold surface based on the concentration ratios was successfully achieved. Time-resolved femtosecond and nanosecond transient absorption measurements clearly demonstrate photophysical control and switching of the above competitive reactions such as SF, electron transfer (ET) and excimer formation. The maximum quantum yields of triplet states (ΦT = ∼170%) and electron transfer (ΦET = ∼95%) were quantitatively evaluated by changing the concentration ratios. The rate constants of SF and excimer processes are largely dependent on the concentration ratios, whereas the rate constants of ET processes approximately remain constant. These findings are also discussed based on the statistical framework of the assembly of chromophores on the gold surface.
The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).
Xu, Ming
2015-07-20
This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.
Aruga, Yasuhiro; Kozuka, Masaya
2016-04-01
Needle-shaped precipitates in an aged Al-0.62Mg-0.93Si (mass%) alloy were identified using a compositional threshold method, an isoconcentration surface, in atom probe tomography (APT). The influence of thresholds on the morphological and compositional characteristics of the precipitates was investigated. Utilizing optimum parameters for the concentration space, a reliable number density of the precipitates is obtained without dependence on the elemental concentration threshold in comparison with evaluation by transmission electron microscopy (TEM). It is suggested that careful selection of the concentration space in APT can lead to a reasonable average Mg/Si ratio for the precipitates. It was found that the maximum length and maximum diameter of the precipitates are affected by the elemental concentration threshold. Adjustment of the concentration threshold gives better agreement with the precipitate dimensions measured by TEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder
NASA Astrophysics Data System (ADS)
Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.
2017-11-01
In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.
NASA Astrophysics Data System (ADS)
Bak, Geonyoung; Kim, Bongju; Choi, Nagchoul; Park*, Cheonyoung
2015-04-01
In this study, in order to obtain the maximum Au leaching rate, an invisible gold concentrate sample was microwave-treated and a thiourea leaching experiment was performed. It is found that gold exists as invisible as a result of observation with an optical microscope and an electron microscope. As the invisible gold concentrate sample was exposed to microwave longer, its temperature and weight loss were increased together and its S content was decreased. The conditions for the maximum Au leaching rate and the fast leaching effect were a particle size of -325×400 mesh, exposure to microwave for 70 minutes, 1.0 g of thiourea, 0.0504 g of sodium sulfite and 0.425 g of ferric sulfate. However, the condition under which Au was leached out to the maximum was applied to the control sample, but its Au leaching rate was just in a range of 78% to 88%. Such results suggest that the effect of sodium sulfite and ferric sulfate was more effective in the microwave-treated sample than in the control sample. Therefore, it was confirmed that the complete and very fast Au leaching can be achieved by means of the microwave pretreatment of invisible gold concentrate.
Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
Yang, Yun; Ding, Yuanzhao; Hu, Yidan; Cao, Bin; Rice, Scott A; Kjelleberg, Staffan; Song, Hao
2015-07-17
Flavins regulate the rate and direction of extracellular electron transfer (EET) in Shewanella oneidensis. However, low concentration of endogenously secreted flavins by the wild-type S. oneidensis MR-1 limits its EET efficiency in bioelectrochemical systems (BES). Herein, a synthetic flavin biosynthesis pathway from Bacillus subtilis was heterologously expressed in S. oneidensis MR-1, resulting in ∼25.7 times' increase in secreted flavin concentration. This synthetic flavin module enabled enhanced bidirectional EET rate of MR-1, in which its maximum power output in microbial fuel cells increased ∼13.2 times (from 16.4 to 233.0 mW/m(2)), and the inward current increased ∼15.5 times (from 15.5 to 255.3 μA/cm(2)).
NASA Technical Reports Server (NTRS)
Ferrante, J.
1972-01-01
Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.
Elevated CO2 response of photosynthesis depends on ozone concentration in aspen
A. Noormets; O. Kull; A. Sôber; M.E. Kubiske; D.F. Karnosky
2010-01-01
The effect of elevated CO2 and O3 on apparent quantum yield (f), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy...
Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul
2017-02-01
Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.
Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp.
Pradhan, Jatindra Kumar; Kumar, Sudhir
2012-11-01
These days, electronic waste needs to be taken into consideration due to its materials content, but due to the heterogeneity of the metals present, reprocessing of electronic waste is quite limited. The bioleaching of metals from electronic waste was investigated by using cyanogenic bacterial strains (Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens). A two-step bioleaching process was followed under cyanide-forming conditions for maximum metals mobilization. Both single and mixed cultures of cyanogenic bacteria were able to mobilize metals from electronic waste with different efficiencies. In all the flasks in which high metal mobilizations were observed, the consequent biomass productions were also high. Pseudomonas aeruginosa was applied in the bioleaching process for the first time and this achieved its bioleaching ability of mobilization of metals from electronic waste. Chromobacterium violaceum as a single culture and a mixture of C. violaceum and P. aeruginosa exhibited maximum metal mobilization. Chromobacterium violaceum was capable of leaching more than 79, 69, 46, 9 and 7% of Cu, Au, Zn, Fe and Ag, respectively at an electronic waste concentration of 1% w/v. Moreover, the mixture of C. violaceum and P. aeruginosa exhibited metals leaching of more than 83, 73, 49, 13 and 8% of total Cu, Au, Zn, Fe, and Ag, respectively. Precious metals were mobilized through bioleaching which might be considered as an industrial application for recycling of electronic waste in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.
1999-03-01
Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} valuesmore » determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.« less
Extrapolation procedures in Mott electron polarimetry
NASA Technical Reports Server (NTRS)
Gay, T. J.; Khakoo, M. A.; Brand, J. A.; Furst, J. E.; Wijayaratna, W. M. K. P.; Meyer, W. V.; Dunning, F. B.
1992-01-01
In standard Mott electron polarimetry using thin gold film targets, extrapolation procedures must be used to reduce the experimentally measured asymmetries A to the values they would have for scattering from single atoms. These extrapolations involve the dependent of A on either the gold film thickness or the maximum detected electron energy loss in the target. A concentric cylindrical-electrode Mott polarimeter, has been used to study and compare these two types of extrapolations over the electron energy range 20-100 keV. The potential systematic errors which can result from such procedures are analyzed in detail, particularly with regard to the use of various fitting functions in thickness extrapolations, and the failure of perfect energy-loss discrimination to yield accurate polarizations when thick foils are used.
Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.
Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi
2016-11-01
Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.
NASA Astrophysics Data System (ADS)
Maulia, R.; Putra, R. A.; Suharyadi, E.
2017-05-01
Mg0.5Ni0.5Fe2O4 nanoparticles have been successfully synthesized by using co-precipitation method and varying the synthesis parameter, i.e. synthesis temperature and NaOH concentration. X-ray Diffraction (XRD) pattern showed that nanoparticles have cubic spinel structures with an additional phase of γ-Fe2O3 and particle size varies within the range of 4.3 - 6.7 nm. This variation is due to the effect of various synthesis parameters. Transmission Electron Microscopy (TEM) image showed that the nanoparticles exhibited agglomeration. The observed diffraction ring from selected area electron diffraction showed that the sample was polycrystalline and confirmed the peak appearing in XRD. The coercivities showed an increasing trend with an increase in particle size from 44.7 Oe to 49.6 Oe for variation of NaOH concentration, and a decreasing trend with an increase in particle size from 46.8 to 45.1 Oe for variation of synthesis temperature. The maximum magnetization showed an increasing trend with an increase in the ferrite phase from 3.7 emu/g to 5.4 emu/g possessed in the sample with variations on NaOH concentration. The maximum magnetization for the sample with variations on synthesis temperature varied from 4.4 emu/g to 5.7 emu/g due to its crystal structures.
Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China
NASA Astrophysics Data System (ADS)
Tang, Jianhui; Chan, C. Y.; Wang, Xinming; Chan, L. Y.; Sheng, Guoying; Fu, Jiamo
Volatile organic compounds (VOCs) specified in the USEPA TO-14 list were analysed in microenvironments of a multi-storey shopping mall in Guangzhou city, South China. The microenvironments studied include both indoor (department store, supermarket, fast-food court, electronic games room, children's playground, gallery and book store) and outdoor ones (rooftop and ground level entrance). The characteristics and concentration of VOCs varied widely in differing microenvironments. The average concentrations of the total VOCs in the indoor microenvironments ranged from 178.5 to 457.7 μg m -3 with a maximum of 596.8 μg m -3. The fast-food court and a leather products department store had the highest concentrations of benzene, toluene, ethylbenzene, xylenes and chlorinated hydrocarbons. A high level of 1,4-dichlorobenzene was found in all indoor microenvironments with an average of 12.3 μg m -3 and a maximum of 44.3 μg m -3. The ratios of average indoor to outdoor concentrations (I/O ratio) in all indoor microenvironments fell between 1 and 3, except an average of 24.6 and a maximum of 77.8 in the fashion department store for 1,4-dichlorobenzene. Indoor emission sources of monocyclic aromatic hydrocarbons in the shopping mall might include cooking stoves, leather products and building materials. Chlorinated hydrocarbons, however, were possibly connected with their use as cleaning agents or deodorizers.
Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian
2014-09-01
Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.
Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.
Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G
2012-01-01
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.
Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics
Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.
2012-01-01
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models. PMID:22649564
Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran
2016-10-01
The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hora, H.; Miley, G. H.
2007-12-01
One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.
Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis
2015-06-14
Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermalmore » conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.
Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less
Zhang, Meng; Liu, Yuxue; Yang, Jian; Zhu, Hancheng; Yan, Duanting; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan; Zhang, Hong
2017-05-24
Encaged-OH - -free Ca 12(1-x) Sr 12x Al 14 O 33 :0.1%Gd 3+ conductive phosphors were prepared through a melt-solidification process in combination with a subsequent heat treatment. Absorption spectra showed that the maximum encaged-electron concentration was increased to 1.08 × 10 21 cm -3 through optimizing the doping amount of Sr 2+ (x = 0.005). Meanwhile, FTIR and Raman spectra indicated that pure Ca 11.94 Sr 0.06 Al 14 O 33 :0.1%Gd 3+ conductive phosphor without encaged OH - and C 2 2- anions was acquired. For the conductive powders heat-treated in air for different times, the encaged-electron concentrations were tuned from 1.02 × 10 21 to 8.3 × 10 20 cm -3 . ESR, photoluminescence, and luminescence kinetics analyses indicated that the emission at 312 nm mainly originated from Gd 3+ ions surrounded by encaged O 2- anions, while Gd 3+ ions surrounded by encaged electrons had a negative contribution to the UV emission due to the existence of an energy transfer process. Under low-voltage electron-beam excitation (3 kV), enhanced cathodoluminescence (CL) of the conductive phosphors could be achieved by tuning the encaged-electron concentrations. In particular, for the encaged-OH - -free conductive phosphor, the emission intensity of the CL was about one order of magnitude higher than that of the conductive phosphor containing encaged OH - anions. Our results suggested that the encaged-OH - -free conductive phosphors have potential application in low-voltage FEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftci, Yasemin O.; Mahanti, Subhendra D.
Electronic band structure and structural properties of two representative half-Heusler (HH) compounds with 8 electron valence count (VC), KScC and KScGe, have been studied using first principles methods within density functional theory and generalized gradient approximation. These systems differ from the well studied class of HH compounds like ZrNiSn and ZrCoSb which have VC = 18 because of the absence of d electrons of the transition metal atoms Ni and Co. Electronic transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (κ{sub e}) (the latter two scaled by electronic relaxation time), and the power factor (S{sup 2}σ) havemore » been calculated using semi-classical Boltzmann transport theory within constant relaxation time approximation. Both the compounds are direct band gap semiconductors with band extrema at the X point. Their electronic structures show a mixture of heavy and light bands near the valance band maximum and highly anisotropic conduction and valence bands near the band extrema, desirable features of good thermoelectric. Optimal p- or n-type doping concentrations have been estimated based on thermopower and maximum power factors. The optimum room temperature values of S are ∼1.5 times larger than that of the best room temperature thermoelectric Bi{sub 2}Te{sub 3}. We also discuss the impact of the band structure on deviations from Weidemann-Franz law as one tunes the chemical potential across the band gap.« less
NASA Astrophysics Data System (ADS)
Yang, Liping; Wang, Xiaoping; Kou, Zhiqi; Ji, Changyan
2017-04-01
The electro-optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the stepwise doping structure in the emitting layer (EML). A series of multi-EML devices with different doping concentration of blue dopant (FIrpic) are fabricated. The effect of the stepwise doping structure close to the electron transport layer is more obvious than that close to the hole transport layer. When the doping concentration increases gradually from the hole injection side to the electron injection side, the maximum values of the luminance, current and power efficiency can reach to 9745 cd/m2 (at 9 V), 32.0 cd/A and 25.1 lm/W in the device with the asymmetric tri-EML structure, which is improved by about 10% compared with that in the bi-EML device. When the number of the EML is four, the performance of the device becomes worse because of the interface effect resulting from different concentration of dopant.
Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian
2013-11-01
In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.
Role of oxygen defects on the magnetic properties of ultra-small Sn1-xFexO2 nanoparticles
NASA Astrophysics Data System (ADS)
Dodge, Kelsey; Chess, Jordan; Eixenberger, Josh; Alanko, Gordon; Hanna, Charles B.; Punnoose, Alex
2013-05-01
Although the role of oxygen defects in the magnetism of metal oxide semiconductors has been widely discussed, it is been difficult to directly measure the oxygen defect concentration of samples to verify this. This work demonstrates a direct correlation between the photocatalytic activity of Sn1-xFexO2 nanoparticles and their magnetic properties. For this, a series of ˜2.6 nm sized, well characterized, single-phase Sn1-xFexO2 crystallites with x = 0-0.20 were synthesized using tin acetate, urea, and appropriate amounts of iron acetate. X-ray photoelectron spectroscopy confirmed the concentration and 3+ oxidation state of the doped Fe ions. The maximum magnetic moment/Fe ion, μ, of 1.6 × 10-4 μB observed for the 0.1% Fe doped sample is smaller than the expected spin-only contribution from either high or low spin Fe3+ ions, and μ decreases with increasing Fe concentration. This behavior cannot be explained by the existing models of magnetic exchange. Photocatalytic studies of pure and Fe-doped SnO2 were used to understand the roles of doped Fe3+ ions and of the oxygen vacancies and defects. The photocatalytic rate constant k also showed an increase when SnO2 nanoparticles were doped with low concentrations of Fe3+, reaching a maximum at 0.1% Fe, followed by a rapid decrease of k for further increase in Fe%. Fe doping presumably increases the concentration of oxygen vacancies, and both Fe3+ ions and oxygen vacancies act as electron acceptors to reduce e--h+ recombination and promote transfer of electrons (and/or holes) to the nanoparticle surface, where they participate in redox reactions. This electron transfer from the Fe3+ ions to local defect density of states at the nanoparticle surface could develop a magnetic moment at the surface states and leads to spontaneous ferromagnetic ordering of the surface shell under favorable conditions. However, at higher doping levels, the same Fe3+ ions might act as recombination centers causing a decrease of both k and magnetic moment μ.
Torsion fracture of carbon nanocoils
NASA Astrophysics Data System (ADS)
Yonemura, Taiichiro; Suda, Yoshiyuki; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Umeda, Yoshito
2012-10-01
We fix a carbon nanocoil (CNC) on a substrate in a focused ion beam instrument and then fracture the CNC with a tensile load. Using the CNC spring index, we estimate the maximum to average stress ratio on the fractured surface to range from 1.3 to 1.7, indicating stress concentration on the coil wire inner edge. Scanning electron microscopy confirms a hollow region on the inner edge of all fractured surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuwei; Sun, Jifeng; Singh, David J.
In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Miley, George
2007-03-01
One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)
Li, Yuwei; Sun, Jifeng; Singh, David J.
2018-03-26
In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less
Sevda, Surajbhan; Sreekrishnan, T R
2012-01-01
The aim of this study was to investigate the feasibility of using agar salt bridges for proton transport in Microbial Fuel Cells (MFC). It also tries to elucidate and effect of mediators on electricity production from wastewaters through experimentation using a simulated wastewater. In order to offset the very high cost of proton exchange membrane, salt bridges have been used in dual chamber MFCs. When the concentration of salt was varied in agar salt bridges from 1% to 10%, the volumetric power density changed from 1.71 to 84.99 mW/m(3) with a concomitant variation in power density from 0.32 to 16.02 mW/m(2). The maximum power density was observed at 5% salt concentration with 10% agar, which was accompanied by 88.41% COD reduction. In the case of methylene blue (0.01 mM) as the electron mediator, the voltage and current generation were 0.551 V and 0.47 mA, respectively. A maximum open circuit voltage of 0.718 V was seen at 0.08 mM methylene blue concentration, whereas maximum power densities of 17.59 mW/m(2) and 89.22 mW/m(3) were obtained. Different concentrations of neutral red were also tried out as mediators. A maximum open circuit voltage of 0.730 V was seen at 0.01 mM neutral red, corresponding to a power density of 12.02 mW/m(2) (volumetric power density of 60.97 mW/m(3)). Biofilm formation on the electrode surface was not observed in the presence of mediators, but was present in the absence of mediators. The results clearly demonstrated the feasibility to use agar salt bridge for proton transport and role of mediators in MFCs to generate electricity.
NASA Technical Reports Server (NTRS)
Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.
2015-01-01
With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and computed flame lengths and radii, and it is shown that the integrated electronically excited CH emission scales proportionally to the computed total heat release rate; the two-dimensional electronically excited CH spatial distribution, however, does not appear to be a good marker for the local heat release rate.
Electronic bandstructure of semiconductor dilute bismide structures
NASA Astrophysics Data System (ADS)
Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.
2017-02-01
In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.
NASA Astrophysics Data System (ADS)
Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos
2017-05-01
Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.
Zhang, Meng; Liu, Yuxue; Zhu, Hancheng; Yan, Duanting; Yang, Jian; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan
2016-07-28
Conductive C12A7:0.1%Gd(3+),y%Sr(2+) powders with different Sr(2+) doping concentrations have been prepared in a H2 atmosphere by a solid state method in combination with subsequent UV-irradiation. The encaged electron concentration could be modulated through tuning Sr(2+) doping and its maximum value reaches 2.3 × 10(19) cm(-3). This is attributed to the competition between enhanced uptake and the release of the encaged anions during their formation and diffusion processes and the suppression of encaged electrons generation due to the increased encaged OH(-) anions and the decreased encaged O(2-) anions. Although there exists encaged electrons and different encaged anions (O(2-), H(-) and OH(-)) in C12A7 conductive powders prepared through the hydrogen route, a dominant local environment around Gd(3+) could be observed using electron spin resonance (ESR) detection. It can be ascribed to the stronger coupling of the encaged OH(-) to the framework of C12A7 than those of the encaged electrons, O(2-) and H(-) anions. In addition, emission of Gd(3+) ions is enhanced under UV or low voltage electron beam excitation and a new local environment around Gd(3+) ions appears through the thermal annealing in air because of the decrease of the encaged OH(-) anions and the increase of the encaged O(2-) anions. Our results suggested that Sr(2+) doping in combination with thermal annealing in air is an effective strategy for increasing the conductive performance and enhancing the emission of rare earth ions doped into C12A7 conductive phosphors for low-voltage field emission displays (FEDs).
Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application
NASA Astrophysics Data System (ADS)
Dubal, D. P.; Kim, W. B.; Lokhande, C. D.
2012-01-01
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g-1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g-1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge-discharge property between -0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.
Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems
NASA Astrophysics Data System (ADS)
Stepanenko, A. A.; Volkova, D. O.; Igoshev, P. A.; Katanin, A. A.
2017-11-01
We study a question of the presence of Kohn points, yielding at low temperatures nonanalytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectra of some threedimensional systems. In particular, we consider a one-band model on face-centered cubic lattice with hopping between the nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn2, and the two-band model on body-centered cubic lattice, modeling the dispersion of chromium. For the former model, it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model, we show the existence of the lines of Kohn points, yielding maximum susceptibility, whose position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.
Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan
2015-02-01
We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.
Yang, Gui; Yang, Jueming; Yan, Yuli; Wang, Yuanxu
2014-03-28
The electronic structure and the thermoelectric properties of M2Zn5As4 (M = K, Rb) are studied by the first principles and the semiclassical BoltzTraP theory. It is determined that they are semiconductors with an indirect band gap of about 1 eV, which is much larger than that of Ca5Al2Sb6 (0.50 eV). The calculated electronic localization function indicates that they are typical Zintl bonding compounds. The combination of heavy and light bands near the valence band maximum may improve their thermoelectric performance. Rb2Zn5As4 exhibits relatively large Seebeck coefficients, high electrical conductivities, and the large "maximum" thermoelectric figures of merit (ZeT). Compared with Ca5Al2Sb6, the highest ZeT of Rb2Zn5As4 appears at relatively low carrier concentration. For Rb2Zn4As5, the p-type doping may achieve a higher thermoelectric performance than n-type doping. The thermoelectric properties of Rb2Zn5As4 are possibly superior to those of Ca5Al2Sb6.
Role of various microorganisms on Tc behavior in sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignolet, L.; Auvray, F.; Fonsny, K.
1989-11-01
Marine bacteria (Moraxella sp., Planococcus sp. and a mixed population of anaerobes) from a coastal sediment were found to concentrate Tc. Maximum concentration of this element occurred during the stationary phase of growth of the bacteria, at low redox potential. A metabolic process seems responsible for Tc concentration by bacteria, in which it binds to high molecular weight cellular constituents. Polysaccharidic polymers, which were visualized around the bacterial cells with the scanning electron microscope, might bind Tc, but direct experimental evidence in favor of this hypothesis was not yet obtained. The role of sedimentary bacteria in the behavior of Tcmore » in the marine environment is briefly discussed. The action of sulfate-reducing microorganisms is considered.« less
NASA Technical Reports Server (NTRS)
Vining, Cronin B.
1991-01-01
A model is presented for the high-temperature transport properties of large-grain-size, heavily doped n-type silicon-germanium alloys. Electron and phonon transport coefficients are calculated using standard Boltzmann equation expressions in the relaxation time approximation. Good agreement with experiment is found by considering acoustic phonon and ionized impurity scattering for electrons, and phonon-phonon, point defect, and electron-phonon scattering for phonons. The parameters describing electron transport in heavily doped and lightly doped materials are significantly different and suggest that most carriers in heavily doped materials are in a band formed largely from impurity states. The maximum dimensionless thermoelectric figure of merit for single-crystal, n-type Si(0.8)Ge(0.2) at 1300 K is estimated at ZT about 1.13 with an optimum carrier concentration of n about 2.9 x 10 to the 20th/cu cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra
2012-11-01
This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less
Liu, Ru; Gao, Chongyang; Zhao, Yang-Guo; Wang, Aijie; Lu, Shanshan; Wang, Min; Maqbool, Farhana; Huang, Qing
2012-11-01
The single chamber microbial fuel cells (MFCs) were used to treat steroidal drug production wastewater (SPW) and generate electricity simultaneously. The results indicated that the maximum COD removal efficiency reached 82%, total nitrogen and sulfate removal rate approached 62.47% and 26.46%, respectively. The maximum power density and the Coulombic efficiency reached to 22.3Wm(-3) and 30%, respectively. The scanning electron microscope showed that the dominant microbial populations were remarkably different in morphology on the surface of SPW and acetate-fed anodes. PCR-denaturing gradient gel electrophoresis profiles revealed that the microbial community structure fed with different concentrations of SPW presented a gradual succession and unique bacterial sequences were detected on the SPW and acetate-fed anodes. This research demonstrates that MFCs fed with SPW achieved a high efficiency of power density and simultaneous nutrient removal, and the dominant microorganisms on the anode were related to the types and the concentrations of substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.
Almatouq, Abdullah; Babatunde, A O
2017-08-01
Concurrent hydrogen (H 2 ) production and phosphorus (P) recovery were investigated in dual chamber microbial electrolysis cells (MECs). The aim of the study was to explore and understand the influence of applied voltage and influent COD concentration on concurrent H 2 production and P recovery in MEC. P was efficiently precipitated at the cathode chamber and the precipitated crystals were verified as struvite, using X-ray diffraction and scanning electron microscopy analysis. The maximum P precipitation efficiency achieved by the MEC was 95%, and the maximum H 2 production rate was 0.28m 3 -H 2 /m 3 -d. Response surface methodology showed that applied voltage had a great influence on H 2 production and P recovery, while influent COD concentration had a significant effect on P recovery only. The overall energy recovery in the MEC was low and ranged from 25±1 to 37±1.7%. These results confirmed MECs capability for concurrent H 2 production and P recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Lei; Lindblad, Rebecka; Gabrielsson, Erik; Boschloo, Gerrit; Rensmo, Håkan; Sun, Licheng; Hagfeldt, Anders; Edvinsson, Tomas; Johansson, Erik M J
2018-04-11
4- tert-Butylpyridine ( t-BP) is commonly used in solid state dye-sensitized solar cells (ssDSSCs) to increase the photovoltaic performance. In this report, the mechanism how t-BP functions as a favorable additive is investigated comprehensively. ssDSSCs were prepared with different concentrations of t-BP, and a clear increase in efficiency was observed up to a maximum concentration and for higher concentrations the efficiency thereafter decreases. The energy level alignment in the complete devices was measured using hard X-ray photoelectron spectroscopy (HAXPES). The results show that the energy levels of titanium dioxide are shifted further away from the energy levels of spiro-OMeTAD as the t-BP concentration is increased. This explains the higher photovoltage obtained in the devices with higher t-BP concentration. In addition, the electron lifetime was measured for the devices and the electron lifetime was increased when adding t-BP, which can be explained by the recombination blocking effect at the surface of TiO 2 . The results from the HAXPES measurements agree with those obtained from density functional theory calculations and give an understanding of the mechanism for the improvement, which is an important step for the future development of solar cells including t-BP.
Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Chen, Gang
2014-03-01
Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.
Spatial patterns of tropospheric ozone in the mount rainier region of the cascade mountains, USA
NASA Astrophysics Data System (ADS)
Brace, Sarah; Peterson, David L.
Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 -2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.
Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA
Brace, S.; Peterson, D.L.
1998-01-01
Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.
Electroluminescence properties of LEDs based on electron-irradiated p-Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Shtel’makh, K. F.; Kalyadin, A. E.
2016-02-15
The electroluminescence (EL) in n{sup +}–p–p{sup +} light-emitting-diode (LED) structures based on Si irradiated with electrons and annealed at high temperature is studied. The LEDs are fabricated by the chemical- vapor deposition of polycrystalline silicon layers doped with high concentrations of boron and phosphorus. Transformation of the EL spectra with current in the LEDs is well described by six Gaussian curves. The peak positions of these curves are current-independent and equal to 1233, 1308, 1363, 1425, 1479, and 1520 nm. The dependences of the integrated EL intensity and of the full-width at half-maximum (FWHM) of the lines on current aremore » examined.« less
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates
NASA Astrophysics Data System (ADS)
Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.
2018-04-01
In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.
Synthesis of copper nanocolloids using a continuous flow based microreactor
NASA Astrophysics Data System (ADS)
Xu, Lei; Peng, Jinhui; Srinivasakannan, C.; Chen, Guo; Shen, Amy Q.
2015-11-01
The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2.
NASA Astrophysics Data System (ADS)
Verronen, P. T.; Shematovich, V. I.; Bisikalo, D. V.; Turunen, E.; Ulich, Th.
Solar proton events have an effect on the middle atmospheric odd nitrogen chem- istry. During a solar proton event high energy protons enter Earth's middle atmosphere where they ionize ambient gas. Ionization leads to production of atomic nitrogen, and further to production of nitric oxide, through ion chemistry. In addition, ionization processes produce secondary electrons that, if possessing 9.76 eV or more energy, dissociate N2 providing an additional source of atomic nitrogen. We have calculated mesospheric N2 dissociation rate due to secondary electrons dur- ing a solar proton event. Further, we have studied the effect on atomic nitrogen and nitric oxide at altitudes between 50 and 90 km. It was found that N2 is efficiently dis- sociated in the lower mesosphere by secondary electrons, with rates up to 103 cm-3 s-1 at 50 km. Thus, secondary electrons significantly add to odd nitrogen produc- tion. As a result of N2 dissociation, atomic nitrogen is greatly enhanced in both N(4S) and N(2D) states by 259% and 1220% maximum increases at 50 km, respectively. This further leads to a maximum increase of 16.5% in NO concentration at 61 km via chemical reactions. In our study a Monte Carlo model was used to calculate the total ionization rate and secondary electrons flux due to precipitating protons. These where then used as input to a detailed ion and neutral chemistry model and a steady-state solution was calcu- lated for two cases: With and without N2 dissociation due to secondary electrons.
Magnetotransport studies of mobility limiting mechanisms in undoped Si/SiGe heterostructures
NASA Astrophysics Data System (ADS)
Mi, X.; Hazard, T. M.; Payette, C.; Wang, K.; Zajac, D. M.; Cady, J. V.; Petta, J. R.
2015-07-01
We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms. By analyzing data from 26 different heterostructures, we observe a strong correlation between the background oxygen concentration in the Si quantum well and the maximum mobility. The highest-quality wafer supports a 2DEG with mobility μ =160 000 cm 2/Vs at a density n =2.17 ×1011 /cm 2 and exhibits a metal-to-insulator transition at a critical density nc=0.46 ×1011 /cm 2. We extract a valley splitting Δv˜150 μ eV at a magnetic field B =1.8 T. These results provide evidence that undoped Si/SiGe heterostructures are suitable for the fabrication of few-electron quantum dots.
Carvalho, Margarida; Matos, Mariana; Roca, Christophe; Reis, Maria A M
2014-01-25
Glycerol, a highly abundant byproduct of the biodiesel industry, constitutes today a cheap feedstock for biobased succinic acid (SA) production. Actinobacillus succinogenes is one of the best SA producers. However, glycerol consumption by this biocatalyst is limited because of a redox imbalance during cell growth. The use of an external electron acceptor may improve the metabolism of SA synthesis by A. succinogenes in glycerol. In this study, the effect of dimethylsulfoxide (DMSO), an electron acceptor, on glycerol consumption and SA production by A. succinogenes under controlled fermentation conditions was investigated. Concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by A. succinogenes. During fed-batch cultivation, SA concentration reached 49.62 g/L, with a product yield of 0.87 gSA/gGLR and a maximum production rate of 2.31 gSA/Lh, the highest values so far reported in the literature for A. succinogenes using glycerol as carbon source. These results show that using DMSO as external electron acceptor significantly promotes glycerol consumption and succinic acid production by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Copyright © 2013 Elsevier B.V. All rights reserved.
Sun, G; Zhao, P; Zeng, X; Peng, S
2001-06-01
The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.
Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com
2016-05-21
Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., differentmore » E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, R.; Kevan, L.; Szajdzinska-Pietek, E.
1984-11-01
The electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the cation radical of N,N,N',N'-tetramethylbenzidine (TMB) in frozen sodium dodecyl sulfate (SDS)= and dodecyltrimethylammonium chloride (DTAC) micelles were studied as a function of sodium chloride concentration. TMB/sup +center-dot/ was produced by photoionization at 350 nm of the parent compound in the micelles at 77 K. From the ESEM analysis it is found that the cation--water interactions increase with salt addition in both anionic and cationic micelles to a maximum near 0.2 M NaCl and then decrease somewhat. The increase is interpreted in terms of an increase inmore » the water density at the micellar surface due to an increased surface concentration of hydrated counterions. The decrease may be due to TMB moving further from the polar micellar surface with added salt. From ESR spectra the photoionization yields of TMB at 77 K were determined. For DTAC micelles the yields are found to decrease with salt addition as expected from electrostatic considerations. For SDS micelles the photoionization yields increase for salt concentrations up to about 0.15 M and decrease for greater salt concentrations up to 0.5 M. The initial increase in cation yield correlates with electrostatic expectations. The decrease may be due to TMB moving further from the polar micellar surface with added salt. The possible effect of differing TMB protonation equilibria between anionic and cationic micelles on the photoionization yields was found to be unimportant by adjusting the bulk solution pH. An important conclusion is that salt addition can be used to optimize charge separation for photoionized solutes in anionic micelles.« less
Induced calcium carbonate precipitation using Bacillus species.
Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin
2016-12-01
Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.
Cryoradiolytic reduction of heme proteins: Maximizing dose-dependent yield
NASA Astrophysics Data System (ADS)
Denisov, Ilia G.; Victoria, Doreen C.; Sligar, Stephen G.
2007-04-01
Radiolytic reduction in frozen solutions and crystals is a useful method for generation of trapped intermediates in protein-based radical reactions. In this communication we define the conditions which provide the maximum yield of one electron-reduced myoglobin at 77 K using 60Co γ-irradiation in aqueous glycerol glass. The yield reached 50% after 20 kGy, was almost complete at ˜160 kGy total dose, and does not depend on the protein concentration in the range 0.01-5 mM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavanapranee, Tosaporn; Horikoshi, Yoshiji
The characteristics of heavily Sn-doped GaAs samples grown at 300 deg. C by a migration-enhanced epitaxy (MEE) technique are investigated in comparison with those of the samples grown by a conventional molecular-beam epitaxy (MBE) at 580 deg. C. While no discernible difference is observed in the low doping regime, the difference in doping characteristics between the MBE- and MEE-grown samples becomes apparent when the doping concentration exceeds 1x10{sup 19} cm{sup -3}. Sn atoms as high as 4x10{sup 21} cm{sup -3} can be incorporated into MEE-grown GaAs films, unlike the MBE-grown samples that have a maximum doping level limited around 1x10{supmore » 19} cm{sup -3}. Due to an effective suppression of Sn segregation in the MEE growth case, high quality GaAs films with abrupt high-concentration Sn-doping profiles are achieved with the doping concentrations of up to 2x10{sup 21} cm{sup -3}. It has been shown that even though a high concentration of Sn atoms is incorporated into the GaAs film, the electron concentration saturates at 6x10{sup 19} cm{sup -3} and then gradually decreases with Sn concentration. The uniform doping limitation, as well as the electron concentration saturation, is discussed by means of Hall-effect measurement, x-ray diffraction, and Raman scattering spectroscopy.« less
A white organic light emitting diode based on anthracene-triphenylamine derivatives
NASA Astrophysics Data System (ADS)
Jiang, Quan; Qu, Jianjun; Yu, Junsheng; Tao, Silu; Gan, Yuanyuan; Jiang, Yadong
2010-10-01
White organic lighting-diode (WOLED) can be used as flat light sources, backlights for liquid crystal displays and full color displays. Recently, a research mainstream of white OLED is to develop the novel materials and optimize the structure of devices. In this work a WOLED with a structure of ITO/NPB/PAA/Alq3: x% rubrene/Alq3/Mg: Ag, was fabricated. The device has two light-emitting layers. NPB is used as a hole transport layer, PAA as a blue emitting layer, Alq3: rubrene host-guest system as a yellow emitting layer, and Alq3 close to the cathode as an electron transport layer. In the experiment, the doping concentration of rubrene was optimized. WOLED 1 with 4% rubrene achieved a maximum luminous efficiency of 1.80 lm/W, a maximum luminance of 3926 cd/m2 and CIE coordinates of (0.374, 0.341) .WOLED 2 with 2% rubrene achieved a maximum luminous efficiency of 0.65 lm/W, a maximum luminance of 7495cd/m2 and CIE coordinates of (0.365,0.365).
Hu, Zhongqiu; Li, Xiaojing; Wang, Huxuan; Niu, Chen; Yuan, Yahong; Yue, Tianli
2016-07-15
Alcohol acetyltransferase (AATFase) extensively catalyzes the reactions of alcohols to acetic esters in microorganisms and plants. In this work, a novel method has been proposed to quantify the activity of AATFase using a SnO2-based sensor of electronic nose, which was determined on the basis of its higher sensitivity to the reducing alcohol than the oxidizing ester. The maximum value of the first-derivative of the signals from the SnO2-based sensor was therein found to be an eigenvalue of isoamyl alcohol concentration. Quadratic polynomial regression perfectly fitted the correlation between the eigenvalue and the isoamyl alcohol concentration. The method was used to determine the AATFase activity in this type of reaction by calculating the conversion rate of isoamyl alcohol. The proposed method has been successfully applied to determine the AATFase activity of a cider yeast strain. Compared with GC-MS, the method shows promises with ideal recovery and low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low energy electron beam processing of YBCO thin films
NASA Astrophysics Data System (ADS)
Chromik, Š.; Camerlingo, C.; Sojková, M.; Štrbík, V.; Talacko, M.; Malka, I.; Bar, I.; Bareli, G.; Jung, G.
2017-02-01
Effects of low energy 30 keV electron irradiation of superconducting YBa2Cu3O7-δ thin films have been investigated by means of transport and micro-Raman spectroscopy measurements. The critical temperature and the critical current of 200 nm thick films initially increase with increasing fluency of the electron irradiation, reach the maximum at fluency 3 - 4 × 1020 electrons/cm2, and then decrease with further fluency increase. In much thinner films (75 nm), the critical temperature increases while the critical current decreases after low energy electron irradiation with fluencies below 1020 electrons/cm2. The Raman investigations suggest that critical temperature increase in irradiated films is due to healing of broken Cusbnd O chains that results in increased carrier's concentration in superconducting CuO2 planes. Changes in the critical current are controlled by changes in the density of oxygen vacancies acting as effective pinning centers for flux vortices. The effects of low energy electron irradiation of YBCO turned out to result from a subtle balance of many processes involving oxygen removal, both by thermal activation and kick-off processes, and ordering of chains environment by incident electrons.
Nicotine delivery, retention, and pharmacokinetics from various electronic cigarettes
St. Helen, Gideon; Havel, Christopher; Dempsey, Delia; Jacob, Peyton; Benowitz, Neal L.
2015-01-01
Aims To measure the systemic retention of nicotine, propylene glycol (PG), and vegetable glycerin (VG) in electronic cigarette (e-cigarette) users, and assess the abuse liability of e-cigarettes by characterizing nicotine pharmacokinetics. Design E-cigarette users recruited over the Internet participated in a 1-day research ward study. Subjects took 15 puffs from their usual brand of e-cigarette. Exhaled breath was trapped in gas-washing bottles and blood was sampled before and several time after use. Setting San Francisco, California, USA. Participants Thirteen healthy, experienced adult e-cigarette users (6 females and 7 males). Measurements Plasma nicotine was analyzed by GC-MS/MS, and nicotine, VG, and PG in e-liquids and gas traps were analyzed by LC-MS/MS. Heart rate changes and subjective effects were assessed. Findings E-cigarettes delivered an average of 1.3 (0.9–1.8) mg (mean and 95% CI) of nicotine and 94% of the inhaled dose, 1.2 (0.8–1.7), was systemically retained. Average maximum plasma nicotine concentration (Cmax) was 8.4 (5.4–11.5) ng/mL and time of maximal concentration (Tmax) was 2 to 5 minutes; one participant had Tmax of 30 minutes. 89% and 92% of VG and PG, respectively, was systemically retained. Heart rate increased by an average of 8.0 bpm after 5 minutes. Withdrawal and urge to smoke decreased and the e-cigarettes were described as satisfying. Conclusions E-cigarettes can deliver levels of nicotine that are comparable to or higher than typical tobacco cigarettes, with similar systemic retention. Although the average maximum plasma nicotine concentration in experienced e-cigarettes users appears to be generally lower than what has been reported from tobacco cigarette use, the shape of the pharmacokinetic curve is similar, suggesting addictive potential. PMID:26430813
Akbari-Adergani, B; Saghi, M H; Eslami, A; Mohseni-Bandpei, A; Rabbani, M
2018-06-01
An (Fe, Ag) co-doped ZnO nanostructure was synthesized by a simple chemical co-precipitation method and used for the degradation of dibutyl phthalate (DBP) in aqueous solution under visible light-emitting diode (LED) irradiation. (Fe, Ag) co-doped ZnO nanorods were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV-VIS diffuse reflectance spectroscopy, elemental mapping, Field emission scanning electron microscopy, transmission electron microscope and Brunauer-Emmett-Teller surface area analysis. A Central Composite Design was used to optimize the reaction parameters for the removal of DBP by the (Fe, Ag) co-doped ZnO nanorods. The four main reaction parameters optimized in this study were the following: pH, time of radiation, concentration of the nanorods and initial DBP concentration. The interaction between the four parameters was studied and modeled using the Design Expert 10 software. A maximum reduction of 95% of DBP was achieved at a pH of 3, a photocatalyst concentration of 150 mg L -1 and a DBP initial DBP concentration of 15 mg L -1 . The results showed that the (Fe, Ag) co-doped ZnO nanorods under low power LED irradiation can be used as an effective photocatalyst for the removal of DBP from aqueous solutions.
Seasonal variation of leaf traits in two woody species of an urban park
NASA Astrophysics Data System (ADS)
Kim, H.; Ryu, Y.
2013-12-01
Leaf traits are important for understanding physiology of woody plants. Some leaf traits such as maximum carboxylation rate (Vcamx) and maximum electron transport rate (Jmax) are especially crucial parameters for photosynthesis modelling. In this study, we report leaf traits (leaf mass per unit area, leaf carbon and nitrogen contents and C:N, Vcmax, Jmax) of two species (Zelkova serrata and Prunus yedoensis) in the Seoul Forest Park in 2013. From May to July, Vcmax and Jmax show gradual increase. In contrast, N concentration and C:N show the opposite pattern. Also we find that the ratio of Jmax to Vcmax was 1.05, which is substantially lower than many previous studies. We discuss main factors that control seasonal variation of leaf traits and correlation between Vcmax and Jmax.
Interpretation of transport measurements in ZnO-thin films
NASA Astrophysics Data System (ADS)
Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas
2011-01-01
In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers.
Zheng, Xiao J; Chow, James C L
2017-01-01
AIM To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness. METHODS Clinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe2O3 nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness. RESULTS It was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with lower atomic number, DERs in the range of 0.99-1.02 were found using the 4 and 6 MeV electron beams. CONCLUSION In nanoparticle-enhanced skin therapy, Au nanoparticle addition can achieve the highest dose enhancement with 105 kVp photon beams. Electron beams, while popular for skin therapy, did not produce as high dose enhancements as kV photon beams. Additionally, the DER is dependent on nanoparticle type, nanoparticle concentration, skin target thickness and energies of the photon and electron beams. PMID:28298966
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
Electron avalanche structure determined by random walk theory
NASA Technical Reports Server (NTRS)
Englert, G. W.
1973-01-01
A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.
NASA Astrophysics Data System (ADS)
Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.
2010-01-01
A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen
2018-04-01
Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.
Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi
2006-07-01
Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less
The optimal thickness of a transmission-mode GaN photocathode
NASA Astrophysics Data System (ADS)
Wang, Xiao-Hui; Shi, Feng; Guo, Hui; Hu, Cang-Lu; Cheng, Hong-Chang; Chang, Ben-Kang; Ren, Ling; Du, Yu-Jie; Zhang, Jun-Ju
2012-08-01
A 150-nm-thick GaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 × 104 cm·s-1, and the electron diffusion length is 116 nm. Based on these parameters, the influence of GaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN.
NASA Astrophysics Data System (ADS)
Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.
2015-10-01
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.
Baez-Cazull, S.; McGuire, J.T.; Cozzarelli, I.M.; Raymond, A.; Welsh, L.
2007-01-01
Steep biogeochemical gradients were measured at mixing interfaces in a wetland-aquifer system impacted by landfill leachate in Norman, Oklahoma. The system lies within a reworked alluvial plain and is characterized by layered low hydraulic conductivity wetland sediments interbedded with sandy aquifer material. Using cm-scale passive diffusion samplers, "peepers", water samples were collected in a depth profile to span interfaces between surface water and a sequence of deeper sedimentary layers. Geochemical indicators including electron acceptors, low-molecular-weight organic acids, base cations, and NH4+ were analyzed by capillary electrophoresis (CE) and field techniques to maximize the small sample volumes available from the centimeter-scale peepers. Steep concentration gradients of biogeochemical indicators were observed at various interfaces including those created at sedimentary boundaries and boundaries created by heterogeneities in organic C and available electron acceptors. At the sediment-water interface, chemical profiles with depth suggest that SO42 - and Fe reduction dominate driven by inputs of organic C from the wetland and availability of electron acceptors. Deeper in the sediments (not associated with a lithologic boundary), a steep gradient of organic acids (acetate maximum 8.8 mM) and NH4+ (maximum 36 mM) is observed due to a localized source of organic matter coupled with the lack of electron acceptor inputs. These findings highlight the importance of quantifying the redox reactions occurring in small interface zones and assessing their role on biogeochemical cycling at the system scale. ?? 2007 Elsevier Ltd. All rights reserved.
Liu, Ling; Hu, Liangliang; Tang, Jianjun; Li, Yuefang; Zhang, Qian; Chen, Xin
2012-01-01
A field experiment was conducted to assess the effect of crop and planting pattern on levels of cadmium (Cd), lead (Pb), and copper (Cu) in crops grown in soil contaminated by electronic waste. The crops were maize (Zea mays L. var. Shentian-1), tomato (Solanum lycopersicum L. var. Zhongshu-4), cabbage (Brassica oleracea L. var. Jingfeng-1), and pakchoi (Brassica chinensis (L.) Makino. var. Youdonger-Hangzhou). The planting patterns were crop monoculture, crop co-planted with a legume, and crop co-planted with another crop. Metal concentrations in the edible parts of the crops varied with types of metals and crops. Pb concentration was higher in leafy vegetables (cabbage and pakchoi) than in maize or tomato, Cd concentration was higher in tomato and pakchoi than in maize or cabbage, and Cu concentration was higher in maize and pakchoi than in tomato or cabbage. Metal concentrations in the edible part were also influenced by planting pattern. Relative to monoculture, co-planting and especially co-planting with Japanese clover tended to decrease Pb accumulation and increase Cd accumulation. According to the maximum permissible concentration (MPC) standard of the National Standard Agency in China, only maize (under all planting patterns) could be safely consumed. Because co-planting tended to increase Cd accumulation even in maize, however, the results suggest that maize monoculture is the optimal crop and planting pattern for this kind of contaminated soil. Copyright © 2011 Elsevier Ltd. All rights reserved.
Maximum current density and beam brightness achievable by laser-driven electron sources
NASA Astrophysics Data System (ADS)
Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.
2014-02-01
This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.
Establishing reference intervals for hCG in postmenopausal women.
Patel, Khushbu K; Qavi, Abraham J; Hock, Karl G; Gronowski, Ann M
2017-03-01
Plasma concentrations of human chorionic gonadotropin (hCG) have been shown to increase with age due to pituitary secretion. We previously recommended that an hCG cutoff of 14.0IU/L be used for women ≥55years of age. However, it remains unknown whether concentrations >14.0IU/L can be expected in women with advanced age. Our objectives were to establish plasma hCG reference intervals and correlate follicle stimulating hormone (FSH) and hCG concentrations in postmenopausal females ≥55years. Residual plasma samples from 798 women ≥55years were utilized with 303, 269, and 226 samples belonging to the age groups 55-69, 70-84, and ≥85years, respectively. FSH and hCG were measured using the Abbott ARCHITECT. All positive hCG samples (hCG ≥5IU/L) were analyzed for potential heterophile antibody interference and 3 were excluded. Electronic medical records were reviewed and patients with malignancy were excluded. 8% (56/666) of women age≥55years had plasma hCG ≥5IU/L. There were 19, 16, and 21 patients with hCG ≥5IU/L in the age groups 55-69, 70-84, and ≥85years, respectively. The highest hCG concentrations observed in each age group were: 55-69years maximum=11.7IU/L and 97.5th percentile=9.6IU/L; 70-84years maximum=18.09IU/L, 97.5th percentile=6.2IU/L; ≥85years maximum=11.1IU/L and 97.5th percentile=10.0IU/L, and the overall 97.5th percentile=8.5IU/L for all women ≥55years of age. Neither hCG nor FSH concentrations continued to increase with age in women ≥55years. The prevalence of positive hCG in women ≥55years is 8%. This study confirms our previously recommended cutoff of 14IU/L for women ≥55years of age. In women ≥55years of age, FSH concentrations do not predict hCG concentrations. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria
2014-01-01
Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.
Panek, Jeanne A
2004-03-01
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.
NASA Astrophysics Data System (ADS)
Siregar, N.; Indrayana, I. P. T.; Suharyadi, E.; Kato, T.; Iwata, S.
2017-05-01
Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully synthesized through coprecipitation method by varying NaOH concentrations from 0.5 M to 6 M and synthesis temperatures from 30 to 120 °C. The X-ray diffraction (XRD) pattern indicates samples consisting of multiphase structures such as spinel of Mn0.5Zn0.5Fe2O4, α-MnO2, ZnO, λ-MnO2, and γ-Fe2O3. The crystallite size of Mn0.5Zn0.5Fe2O4 is in the range of 14.1 to 26.7 nm. The Transmission electron microscope (TEM) image shows that sample was agglomerate. The hysteresis loops confirm that nanoparticles are soft magnetic materials with low coercivity (H c) in the range of 45.9 to 68.5 Oe. Those values increased relatively with increasing particles size. For NaOH concentration variation, the maximum magnetization of the sample increased from 10.4 emu/g to 11.6 emu/g with increasing ferrite content. Meanwhile, the maximum magnetization increased from 7.9 to 15.7 emu/g for samples with various synthesis temperature. The highest coercivity of 68.5 Oe was attained for a sample of 6 M NaOH under 90 °C. The highest magnetization of 15.7 emu/g was achieved for a sample of 1.5 M NaOH under 120 °C caused by the maximum crystallinity of sample.
Phat, Chanvorleak; Moon, BoKyung; Lee, Chan
2016-02-01
Seventeen edible mushrooms commercially available in Korea were analysed for their umami taste compounds (5'-nucleotides: AMP, GMP, IMP, UMP, XMP; free amino acids: aspartic, glutamic acid) and subjected to human sensory evaluation and electronic tongue measurements. Amanita virgineoides featured the highest total 5'-nucleotide content (36.9 ± 1.50 mg/g), while monosodium glutamate-like components (42.4 ± 6.90 mg/g) were highest in Agaricus bisporus. The equivalent umami concentration (EUC) ranged from 1.51 ± 0.42 to 3890 ± 833 mg MSG/g dry weight; most mushrooms exhibited a high umami taste. Pleurotus ostreatus scored the highest in the human sensory evaluation, while Flammulina velutipes obtained the maximum score in the electronic tongue measurement. The EUC and the sensory score from the electronic tongue test were highly correlated, and also showed significant correlation with the human sensory evaluation score. These results suggest that the electronic tongue is suitable to determine the characteristic umami taste of mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp
NASA Astrophysics Data System (ADS)
Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.
2013-09-01
The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl2 mixtures at pressures of 240-250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl2 concentrations in the range of 0.01-1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl2 concentrations in the range of 0.1-5%. It is found that the radiation intensities of the emission bands of Xe*2(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01-0.1%. In this case, in the mixture, the radiation intensity of the Xe*2 molecule rapidly decreases with increasing Cl2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4-0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl2 mixtures is studied numerically. It is shown that an increase in the Cl2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl2 molecules and ionization of Xe atoms and Cl2 molecules. The total energy deposited in the discharge rises with increasing chlorine concentration due to an increase in the power spent on the heating of positive and negative ions. The power dissipated by electrons decreases with increasing chlorine concentration in the working mixture. Recommendations on the choice of the chlorine content in the mixture for reducing the intensity of VUV radiation of the second continuum of the Xe*2 excimer without a substantial decrease in the excilamp efficiency are formulated.
Nagy, Valéria; Vidal-Meireles, André; Tengölics, Roland; Rákhely, Gábor; Garab, Győző; Kovács, László; Tóth, Szilvia Z
2016-07-01
In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rajakarthikeyan, R. K.; Muthukumaran, S.
2017-07-01
ZnO, Zn0.96Mn0.04O and Ni-doped Zn0.96Mn0.04O nanoparticles with different Ni concentrations (0%, 2% and 4%) have been synthesized successfully by sol-gel method. The effects of Ni doping on the structural and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed the existence of single phase wurtzite-like hexagonal structure throughout the Ni concentrations without any additional phases. The substitution of Ni created the lattice distortion due to the disparity of ionic radius between Zn and Ni which reduced the crystallite size. The microscopic images showed that the size of ZnO nanoparticles reduced by Ni-doping while the shape remains almost spherical/hexagonal type. The electrical conductivity found to be maximum at Ni = 2% due to the availability of more charge carriers generated by Ni. The decrease of electrical conductivity at higher doping (Ni = 4%) is due to the fact that the generation of more defects. The enhanced band gap from 3.73 eV (Ni = 0%) to 3.79 eV (Ni = 4%) by the addition of Ni explained by Burstein-Moss effect. The change in infra-red (IR) intensity and full width at half maximum (FWHM) corresponding to the frequency around defect states were caused by the difference in the bond lengths that occurs when Ni ion replaces Zn ion. The observed blue band emission from 474 nm to 481 nm is due to a radiative transition of an electron from the deep donar level of Zni to an acceptor level of neutral VZn and the origin of green band may be due to oxygen vacancies and intrinsic defects. The tuning of the band gap and the visible emission bands by Ni doping concluded that Ni-doped Zn0.96Mn0.04O is suitable for various nano-photo-electronics applications.
Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency
NASA Astrophysics Data System (ADS)
Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.
2011-05-01
This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.
Electronic properties of prismatic modifications of single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.
2018-01-01
The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.
Xia, Siqing; Li, Haixiang; Zhang, Zhiqiang; Zhang, Yanhao; Yang, Xin; Jia, Renyong; Xie, Kang; Xu, Xiaotian
2011-08-30
para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H(2) as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2mg/L and a hydraulic residence time of 4.8h, which corresponded to a p-CNB flux of 0.058g/m(2) d. The H(2) availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avtaeva, S. V., E-mail: s_avtaeva@mail.ru; Sosnin, E. A.; Saghi, B.
The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in themore » mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules. The total energy deposited in the discharge rises with increasing chlorine concentration due to an increase in the power spent on the heating of positive and negative ions. The power dissipated by electrons decreases with increasing chlorine concentration in the working mixture. Recommendations on the choice of the chlorine content in the mixture for reducing the intensity of VUV radiation of the second continuum of the Xe*{sub 2} excimer without a substantial decrease in the excilamp efficiency are formulated.« less
Surface origin and control of resonance Raman scattering and surface band gap in indium nitride
NASA Astrophysics Data System (ADS)
Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.
2016-06-01
Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm-1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g = 0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.
Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets.
Xie, Qiangzhi; Zhu, Qunzhi; Li, Yan
2016-12-01
In this study, the effect of concentration of nanoparticles on the thermal storage properties of molten nitrate salt-based nanofluids with graphene nanoplatelets (GNPs) was investigated. Solar salt consisting of sodium nitrate and potassium nitrate was utilized as the base material for the nanofluids. Homogeneous dispersion of GNPs within the solar salt was observed through scanning electron microscopy analysis. For both solar salt and resultant nanofluids, differential scanning calorimetry was employed to measure the thermal storage properties, including characteristic temperatures of phase change, startup heat, and specific heat capacity (SHC). A maximum increase of 16.7 % in SHC at the liquid phase was found at an optimal concentration of 1 wt% of GNPs. At the same concentration, the onset temperature decreased by 10.4 °C, the endset temperature decreased by 4.7 °C, and the startup heat decreased by 9 %.
Modification of Lightweight Aggregates' Microstructure by Used Motor Oil Addition.
Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech
2016-10-18
An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %-8 wt %) caused marked changes in the aggregates' microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%-2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates' bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms.
Modification of Lightweight Aggregates’ Microstructure by Used Motor Oil Addition
Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech
2016-01-01
An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %–8 wt %) caused marked changes in the aggregates’ microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%–2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates’ bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms. PMID:28773964
Wang, Yanzhu; Sun, Lizhang; Jiang, Tongying; Zhang, Jinghai; Zhang, Chen; Sun, Changshan; Deng, Yihui; Sun, Jin; Wang, Siling
2014-06-01
To explore the suitable application of MCM-41 (Mobil Composition of Matter number forty-one)-type and MCM-48-type mesoporous silica in the oral water insoluble drug delivery system. Cilostazol (CLT) as a model drug was loaded into synthesized MCM-48 (Mobil Composition of Matter number forty-eight) and commercial MCM-41 by three common methods. The obtained MCM-41, MCM-48 and CLT-loaded samples were characterized by means of nitrogen adsorption, thermogravimetric analysis, ultraviolet-visible spectrophotometry, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and powder X-ray diffractometer. It was found that solvent evaporation method was preferred according to the drug loading efficiency and the maximum percent cumulative drug dissolution. MCM-48 with 3D cubic pore structure and MCM-41 with 2D long tubular structure are nearly spherical particles in 300-500 nm. Nevertheless, the silica carriers with similar large specific surface areas and concentrating pore size distributions (978.66 m(2)/g, 3.8 nm for MCM-41 and 1108.04 m(2)/g, 3.6 nm for MCM-48) exhibited different adsorption behaviors for CLT. The maximum percent cumulative drug release of the two CLT/silica solid dispersion (CLT-MCM-48 and CLT-MCM-41) was 63.41% and 85.78% within 60 min, respectively; while in the subsequent 12 h release experiment, almost 100% cumulative drug release were both obtained. In the pharmacokinetics aspect, the maximum plasma concentrations of CLT-MCM-48 reached 3.63 mg/L by 0.92 h. The AUC0-∞ values of the CLT-MCM-41 and CLT-MCM-48 were 1.14-fold and 1.73-fold, respectively, compared with the commercial preparation. Our findings suggest that MCM-41-type and MCM-48-type mesoporous silica have great promise as solid dispersion carriers for sustained and immediate release separately.
Diffusion studies on permeable nitroxyl spin probe through lipid bilayer membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benial, A. Milton Franklin; Meenakumari, V.; Ichikawa, Kazuhiro
2014-04-24
Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled deutrated permeable 3- methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water, 1 mM, 2 mM, 3 mM and 4 mM concentration of MC-PROXYL in 300 mM concentration of liposomal solution by using a L-band ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported. The partition parameter and permeability values indicate the maximum spin distribution in the lipid phase at 2 mM concentration. This study illustrates that ESR can be used to differentiate between the intra and extra-membrane water by loading themore » liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the radical concentration was optimized as 2 mM in liposomal solution for ESR phantom studies and experiments.« less
Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria
NASA Astrophysics Data System (ADS)
Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong
2016-09-01
Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.
Cozzarelli, I.M.; Bekins, B.A.; Baedecker, M.J.; Aiken, G.R.; Eganhouse, R.P.; Tuccillo, M.E.
2001-01-01
A 16-year study of a hydrocarbon plume shows that the extent of contaminant migration and compound-specific behavior have changed as redox reactions, most notably iron reduction, have progressed over time. Concentration changes at a small scale, determined from analysis of pore-water samples drained from aquifer cores, are compared with concentration changes at the plume scale, determined from analysis of water samples from an observation well network. The small-scale data show clearly that the hydrocarbon plume is growing slowly as sediment iron oxides are depleted. Contaminants, such as ortho-xylene that appeared not to be moving downgradient from the oil on the basis of observation well data, are migrating in thin layers as the aquifer evolves to methanogenic conditions. However, the plume-scale observation well data show that the downgradient extent of the Fe2+ and BTEX plume did not change between 1992 and 1995. Instead, depletion of the unstable Fe (III) oxides near the subsurface crude-oil source has caused the maximum dissolved iron concentration zone within the plume to spread at a rate of approximately 3 m/year. The zone of maximum concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) has also spread within the anoxic plume. In monitoring the remediation of hydrocarbon-contaminated ground water by natural attenuation, subtle concentration changes in observation well data from the anoxic zone may be diagnostic of depletion of the intrinsic electron-accepting capacity of the aquifer. Recognition of these subtle patterns may allow early prediction of growth of the hydrocarbon plume. Copyright ?? 2001 .
Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Lamba, Ravita; Manikandan, S.; Kaushik, S. C.
2018-06-01
A thermodynamic model for a concentrating solar thermoelectric generator considering the Thomson effect combined with Fourier heat conduction, Peltier, and Joule heating has been developed and optimized in MATLAB environment. The temperatures at the hot and cold junctions of the thermoelectric generator were evaluated by solving the energy balance equations at both junctions. The effects of the solar concentration ratio, input electrical current, number of thermocouples, and electrical load resistance ratio on the power output and energy and exergy efficiencies of the system were studied. Optimization studies were carried out for the STEG system, and the optimum number of thermocouples, concentration ratio, and resistance ratio determined. The results showed that the optimum values of these parameters are different for conditions of maximum power output and maximum energy and exergy efficiency. The optimum values of the concentration ratio and load resistance ratio for maximum energy efficiency of 5.85% and maximum exergy efficiency of 6.29% were found to be 180 and 1.3, respectively, with corresponding power output of 4.213 W. Furthermore, at higher concentration ratio (C = 600), the optimum number of thermocouples was found to be 101 for maximum power output of 13.75 W, maximum energy efficiency of 5.73%, and maximum exergy efficiency of 6.16%. Moreover, the optimum number of thermocouple was the same for conditions of maximum power output and energy and exergy efficiency. The results of this study may provide insight for design of actual concentrated solar thermoelectric generator systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banik, Ananya; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in
SnTe, a Pb-free analogue of PbTe, was earlier assumed to be a poor thermoelectric material due to excess p-type carrier concentration and large energy separation between light and heavy hole valence bands. Here, we report the enhancement of the thermoelectric performance of p-type SnTe by Ag and I co-doping. AgI (1–6 mol%) alloying in SnTe modulates its electronic structure by increasing the band gap of SnTe, which results in decrease in the energy separation between its light and heavy hole valence bands, thereby giving rise to valence band convergence. Additionally, iodine doping in the Te sublattice of SnTe decreases themore » excess p-type carrier concentration. Due to significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands, significant enhancement in Seebeck coefficient was achieved at the temperature range of 600–900 K for Sn{sub 1−x}Ag{sub x}Te{sub 1−x}I{sub x} samples. A maximum thermoelectric figure of merit, zT, of ~1.05 was achieved at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Graphical abstract: Significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands resulted in a maximum thermoelectric figure of merit, zT, of ~1.05 at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Highlights: • AgI alloying in SnTe increases the principle band gap. • Hole concentration reduction and valence band convergence enhances thermopower of SnTe-AgI. • A maximum zT of ~1.05 was achieved at 860 K in p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}.« less
Wu, Zhongbiao; Sheng, Zhongyi; Liu, Yue; Wang, Haiqiang; Tang, Nian; Wang, Jie
2009-05-30
Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.
Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.
Faraji, M; Katgerman, L
2010-08-01
The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.
Valency configuration of transition metal impurities in ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Leon; Schulthess, Thomas C; Svane, Axel
2006-01-01
We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less
NASA Astrophysics Data System (ADS)
Taimur, Shaista; Yasin, Tariq
2017-11-01
Novel polyacrylonitrile (PAN) grafted sepiolite nanocomposites were synthesized via emulsion polymerization. The influence of synthesis parameters on the degree of grafting was studied by varying the concentrations of monomer, initiator and surfactant. The nitrile groups of PAN were chemically modified into amidoxime. Both the grafting and amidoxime percentages were determined gravimetrically and maximum grafting of 373% was achieved at 5% acrylonitrile, 1% surfactant and 0.1% initiator concentrations. The presence of vibration at 2242 cm-1 in Fourier transform infrared (FT-IR) spectrum and x-ray diffraction (XRD) reflection at 2θ = 16.9° (010) confirmed the grafting of PAN chains onto modified sepiolite. XRD patterns also indicated a decrease in crystallinity of sepiolite and appearance of new amorphous region in grafted nanocomposites. The morphological changes of sepiolite during silanization and grafting of PAN is also confirmed by field emission scanning electron microscope (FESEM). Transmission electron microscope (TEM) images clearly showed the shortening of fibers after silanization of sepiolite and the same were involved in heterogeneous nucleation in micelles. These developed amidoxime grafted sepiolite nanocomposites can be used as adsorbent for the metal recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dronov, A.V.; Tsirs, V.E.
1988-11-01
We have investigated the relation between the precipitation of energetic electrons and protons (>30 keV), field aligned currents, and the position of the westward electrojet during the active phase of substorms. Our work is based on measurements by Kosmos-426 in November 11-12 and 22-25, 1971, and by Kosmos-900 and Interkosmos-17 in December 1-2, 1977. Maximum fluxes of precipitating energetic electrons arrive in the region of outflowing current. Maximum fluxes of protons are precipitated preferentially in regions of inflowing current. During the active phase of substorms, the maximum fluxes of energetic electrons are recorded at the leading edge of the westwardmore » electrojet.« less
Cross-ontological analytics for alignment of different classification schemes
Posse, Christian; Sanfilippo, Antonio P; Gopalan, Banu; Riensche, Roderick M; Baddeley, Robert L
2010-09-28
Quantification of the similarity between nodes in multiple electronic classification schemes is provided by automatically identifying relationships and similarities between nodes within and across the electronic classification schemes. Quantifying the similarity between a first node in a first electronic classification scheme and a second node in a second electronic classification scheme involves finding a third node in the first electronic classification scheme, wherein a first product value of an inter-scheme similarity value between the second and third nodes and an intra-scheme similarity value between the first and third nodes is a maximum. A fourth node in the second electronic classification scheme can be found, wherein a second product value of an inter-scheme similarity value between the first and fourth nodes and an intra-scheme similarity value between the second and fourth nodes is a maximum. The maximum between the first and second product values represents a measure of similarity between the first and second nodes.
Pretreatment of rapeseed straw by sodium hydroxide.
Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee
2012-06-01
Pretreatment method for rapeseed straw by sodium hydroxide was investigated for production of bioethanol and biobutanol. Various pretreatment parameters, including temperature, time, and sodium hydroxide concentration were optimized using a statistical method which is a central composite design of response surface methodology. In the case of sodium hydroxide pretreatment, optimal pretreatment conditions were found to be 7.9% sodium hydroxide concentration, 5.5 h of reaction time, and 68.4 °C of reaction temperature. The maximum glucose yield which can be recovered by enzymatic hydrolysis at the optimum conditions was 95.7% and the experimental result was 94.0 ± 4.8%. This experimental result was in agreement with the model prediction. An increase of surface area and pore size in pretreated rapeseed straw by sodium hydroxide pretreatment was observed by scanning electron microscope.
40 CFR Table 2 to Subpart Dddd of... - Operating Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...
40 CFR Table 2 to Subpart Dddd of... - Operating Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...
40 CFR Table 2 to Subpart Dddd of... - Operating Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...
Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.
Zhong, Hua; Yang, Xin; Tan, Fei; Brusseau, Mark L; Yang, Lei; Liu, Zhifeng; Zeng, Guangming; Yuan, Xingzhong
2016-03-01
Solubilization of n -decane, dodecane, tetradecane and hexadecane by monorhamnolipid biosurfactant (monoRL) at concentrations near the critical micelle concentration (CMC) was investigated. The apparent solubility of all the four alkanes increases linearly with increasing monoRL concentration either below or above CMC. The capacity of solubilization presented by the molar solubilization ratio (MSR), however, is stronger at monoRL concentrations below CMC than above CMC. The MSR decreases following the order dodecane > decane > tetradecane > hexadecane at monoRL concentration below CMC. Formation of aggregates at sub-CMC monoRL concentrations was demonstrated by dynamic light scattering (DLS) and cryo-transmission electron microscopy examination. DLS-based size ( d ) and zeta potential of the aggregates decrease with increasing monoRL concentration. The surface excess ( Γ ) of monoRL calculated based on alkane solubility and aggregate size data increases rapidly with increasing bulk monoRL concentration, and then asymptotically approaches the maximum surface excess ( Γ max ). Relation between Γ and d indicates that the excess of monoRL molecules at the aggregate surface greatly impacts the surface curvature. The results demonstrate formation of aggregates for alkane solubilization at monoRL concentrations below CMC, indicating the potential of employing low-concentration rhamnolipid for enhanced solubilization of hydrophobic organic compounds.
Electronic structure and magnetic anisotropy of Sm2Fe17Nx
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Ogura, Masako
2014-03-01
Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong
2014-07-01
In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Yan; Xue, Lili; Ye, Qi; Franks, Ashley E.; Zhu, Min; Feng, Xi; Xu, Jianming; He, Yan
2018-01-01
Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments. PMID:29643842
Tomkinson, A.; Raeburn, D.
1996-01-01
1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552
Spacecraft Maximum Allowable Concentrations for Airborne Contaminants
NASA Technical Reports Server (NTRS)
James, John T.
2008-01-01
The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).
Kim, Jun-Woo; Price, Neil M
2017-10-01
Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu-replete medium (263 fmol Cu' · L -1 ) with maximum rates achieved at 200 μmol photons · m -2 · s -1 . Lowering the Cu concentration at this irradiance to 30.8 fmol Cu' · L -1 decreased cellular Cu quota by 7-fold and reduced growth rate by 50%. Copper-deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETR max ) than Cu-sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low-Cu medium (30.8 fmol Cu' · L -1 ), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu-replete cells when irradiance increased to 400 μmol photons · m -2 · s -1 . Thus, at high light, low-Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETR max and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m -2 · s -1 to levels measured in Cu-replete cells. Steady-state uptake rates of Cu-deficient and sufficient cells were light-dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light-stimulated Cu uptake. © 2017 Phycological Society of America.
Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.
2013-01-01
Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052
New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3-δ
NASA Astrophysics Data System (ADS)
Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.
2015-02-01
Recently, we have reported a significant enhancement in the electronic and thermoelectric properties of bulk polycrystalline SrTiO3 ceramics via praseodymium doping. This improvement was originated from the simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity, which was contributed to the non-uniform distribution of Pr dopants. In order to further understand the underlying mechanism, we herein investigate the role of praseodymium doping source (Pr2O3 versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our synthesis strategy. Theoretical calculations were also performed in order to estimate the maximum achievable power factor and the corresponding optimal carrier concentration. The result suggests the possibility of further improvement of the power factor. This study should shed some light on the superior electronic transport in bulk polycrystalline Pr-doped SrTiO3 ceramics and provide new insight on further improvement of the thermoelectric power factor.
Slow positron beam production by a 14 MeV C.W. electron accelerator
NASA Astrophysics Data System (ADS)
Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.
1982-10-01
A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.
Electron-irradiated n+-Si as hole injection tunable anode of organic light-emitting diode
NASA Astrophysics Data System (ADS)
Li, Y. Z.; Wang, Z. L.; Wang, Y. Z.; Luo, H.; Xu, W. J.; Ran, G. Z.; Qin, G. G.
2013-01-01
Traditionally, n-type silicon is not regarded as a good anode of organic light emitting diode (OLED) due to the extremely low hole concentration in it; however, when doped with Au element which acts as carrier generation centers, it can be, as shown in our previous work. In this study, we demonstrate a new kind of carrier generation centers in n+-type silicon, which are the defects produced by 5 MeV electron irradiation. The density of carrier generation centers in the irradiated n+-Si anode can be controlled by tuning the electron irradiation time, and thus hole injection current in the OLEDs with the irradiated n+-Si anode can be optimized, leading to their much higher maximum efficiencies than those of the OLEDs with non-irradiated n+-Si anode. For a green phosphorescent OLED with the irradiated n+-Si anode, the current efficiency and power efficiency reach up to 12.1 cd/A and 4.2 lm/W, respectively.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...
Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes.
St Helen, Gideon; Havel, Christopher; Dempsey, Delia A; Jacob, Peyton; Benowitz, Neal L
2016-03-01
To measure the systemic retention of nicotine, propylene glycol (PG) and vegetable glycerin (VG) in electronic cigarette (e-cigarette) users, and assess the abuse liability of e-cigarettes by characterizing nicotine pharmacokinetics. E-cigarette users recruited over the internet participated in a 1-day research ward study. Subjects took 15 puffs from their usual brand of e-cigarette. Exhaled breath was trapped in gas-washing bottles and blood was sampled before and several times after use. San Francisco, California, USA. Thirteen healthy, experienced adult e-cigarette users (six females and seven males). Plasma nicotine was analyzed by gas chromatography-mass spectrometry (GC-MS/MS) and nicotine, VG and PG in e-liquids and gas traps were analyzed by LC-MS/MS. Heart rate changes and subjective effects were assessed. E-cigarettes delivered an average of 1.33 (0.87-1.79) mg [mean and 95% confidence interval (CI)] of nicotine, and 93.8% of the inhaled dose, 1.22 (0.80-1.66) was systemically retained. Average maximum plasma nicotine concentration (Cmax ) was 8.4 (5.4-11.5) ng/ml and time of maximal concentration (Tmax ) was 2-5 minutes. One participant had Tmax of 30 minutes. 84.4% and 91.7% of VG and PG, respectively, was systemically retained. Heart rate increased by an average of 8.0 beats per minute after 5 minutes. Withdrawal and urge to smoke decreased and the e-cigarettes were described as satisfying. E-cigarettes can deliver levels of nicotine that are comparable to or higher than typical tobacco cigarettes, with similar systemic retention. Although the average maximum plasma nicotine concentration in experienced e-cigarette users appears to be generally lower than what has been reported from tobacco cigarette use, the shape of the pharmacokinetic curve is similar, suggesting addictive potential. © 2015 Society for the Study of Addiction.
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi
2012-12-01
We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.
Quiet-Time Suprathermal ( 0.1-1.5 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Wang, L.; Tao, J.; Zong, Q.; Li, G.; Salem, C. S.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C.; Bale, S. D.
2016-12-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND/3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).
Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.
2016-03-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).
Indoor radon levels in workplaces of Adapazarı, north-western Turkey
NASA Astrophysics Data System (ADS)
Kapdan, Enis; Altinsoy, Nesrin
2014-02-01
The main objective of this study is to assess the health hazards due to radon gas accumulation and to compare the concentrations in different kinds of workplaces, in the city of Adapazarı, one of the most important industrial cities of Turkey. For this purpose, radon activity concentration measurements were carried out in schools, factories, offices and outdoors using CR-39 solid state nuclear track detectors (SSNTD). Results show that the mean radon activity concentrations (RAC) in schools, offices and factories were found to be 66, 76 and 27 Bq/m3, respectively, with an outdoor concentration of 14 Bq/m3. The average concentrations were found to decrease as follows for different types of industries: automotive > electronic > metal > textile. Because the maximum measured radon concentrations are 151 Bq/m3 in the schools, 173 Bq/m3 in the offices and 52 Bq/m3 in the factories, the limits of ICRP are not exceeded in any of the buildings in the region. In addition, the estimated mean annual effective doses to the people in the workplace, students, office workers and factory workers have been calculated as 0.27, 0.63 and 0.20 mSv/y, respectively for the region.
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
NASA Astrophysics Data System (ADS)
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
Ab initio modeling of vacancies, antisites, and Si dopants in ordered InGaAs
NASA Astrophysics Data System (ADS)
Wang, Jingyang; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette
2017-01-01
In0.53Ga0.47As, a III-V compound semiconductor with high electron mobility, is expected to bring better performance than silicon in next-generation n-type MOSFET devices. However, one major challenge to its wide scale adoption is the difficulty of obtaining high enough dopant activation. For Si-doped InGaAs, the best current experimental result, involving 10 min of furnace annealing at temperatures above 700 °C, yields a free electron concentration of 1.4 ×1019 cm-3, a value that still falls short of requirement for practical applications. In this paper, we investigate the origin of low dopant activation in InGaAs by calculating formation energies for a wide variety of single point defects (Si substutionals, Si tetrahedral interstitials, vacancies, and antisites) in Si-doped In0.5Ga0.5As in a CuAu-I type crystal structure. We find that (1) a high electron concentration can only be achieved under In/Ga-poor growth conditions, while As-poor conditions inhibit n-type doping; and (2) in heavily n-doped samples, cation vacancies VIn/Ga-3 contribute the most to the compensation of excess Si donors via the Si III - VIII mechanism (III = In/Ga), thus becoming the limiting factor to higher dopant activation. Under the most favorable growth conditions for n-doping, we find the maximum carrier concentration to be 5.2 ×1018 cm-3 under thermal equilibrium, within an order of magnitude of the best experimental value.
VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash
2014-01-01
Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362
Generation of subnanosecond electron beams in air at atmospheric pressure
NASA Astrophysics Data System (ADS)
Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.
2009-11-01
Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.
1994-01-01
InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.
Tarai, Madhumita; Mishra, Ashok Kumar
2016-10-12
The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum. Copyright © 2016 Elsevier B.V. All rights reserved.
Active Remote Detection of Radioactivity Based on Electromagnetic Signatures
2013-08-15
electron with energy eE therefore generates EEe ∆/~ low energy electrons. In the case of Compton absorption, the maximum electron energy is max,))21/(2...γγγ αα EEe += where 2 max, /mcγγα E= . For example, a 1 MeV gamma ray in air generates Compton electrons having a maximum energy of MeV8.0= eE ...and average energy of MeV44.0= eE . It should be noted that the range of high energy electrons is much less than the range of the high energy gammas
Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673
Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.
Friction wear and auger analysis of iron implanted with 1.5-MeV nitrogen ions
NASA Technical Reports Server (NTRS)
Ferrante, J.; Jones, W. R., Jr.
1982-01-01
The effect of implantation of 1.5-MeV nitrogen ions on the friction and wear characteristics of pure iron sliding against steel was studied in a pin-on disk apparatus. An implantation dose of 5 x 10 to the 17th power ions/sq cm was used. Small reductions in initial and steady-state wear rates were observed for nitrogen-implanted iron riders as compared with unimplanted controls. Auger electron spectroscopy revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 15 at. % at a depth of 8 x 10 to the -7th m. A similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration, thus giving no evidence for diffusion of nitrogen beyond the implanted range.
Maximum Acceleration Recording Circuit
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Lafreniere, Janet A; Hamilton, Donald P; Carr, Roxane R
2006-10-01
To examine the practice of potassium chloride (KCl) replacement in pediatric oncology patients receiving amphotericin B (amp-B). A retrospective observational chart review was conducted of patients who received amp-B on the oncology unit between August 2000 and May 2001. A survey was distributed to pediatric oncology pharmacists at other pediatric institutions to assess KCl infusion guidelines across North America. Twenty hypokalemic episodes were identified within 22 patient admissions. Fifty-five percent used KCl replacement (by all combined routes) at rates exceeding the institution's guidelines. Other pediatric institutions varied with respect to the maximum rates and concentration of KCl permitted on non-intensive care units. Based on the data from this review, the KCl administration guidelines for our hospital were changed. We now allow a maximum peripheral line concentration of 60 mEq/L, a maximum central line concentration of 120 mEq/L and a maximum KCl infusion rate of 0.4 mEq/kg/hr without the requirement of a heart monitor. Parenteral Nutrition is now restricted to maximum potassium concentration of 80 mEq/L and fluid-restricted patients are restricted to a maximum concentration of 150 mEq/L.
Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway
NASA Astrophysics Data System (ADS)
Zhu, Zhiguang; Wang, Yiran; Minteer, Shelley D.; Percival Zhang, Y.-H.
Enzymatic fuel cells (EFCs) use a variety of fuels to generate electricity through oxidoreductase enzymes, such as oxidases or dehydrogenases, as catalysts on electrodes. We have developed a novel synthetic enzymatic pathway containing two free enzymes (maltodextrin phosphorylase and phosphoglucomutase) and one immobilized glucose-6-phosphate dehydrogenase that can utilize an oligomeric substrate maltodextrin for producing electrons mediated via a diaphorase and vitamin K 3 electron shuttle system. Three different enzyme immobilization approaches were compared based on electrostatic force entrapment, chemical cross-linking, and cross-linking with the aid of carbon nanotubes. At 10 mM glucose-6-phosphate (G6P) as a substrate concentration, the maximum power density of 0.06 mW cm -2 and retaining 42% of power output after 11 days were obtained through the method of chemical cross-linking with carbon nanotubes, approximately 6-fold and 3.5-fold better than those of the electrostatic force-based method, respectively. When changed to maltodextrin (degree of polymerization = 19) as the substrate, the EFC achieved a maximum power density of 0.085 mW cm -2. With the advantages of stable, low cost, high energy density, non-inhibitor to enzymes, and environmental friendly, maltodextrin is suggested to be an ideal fuel to power enzymatic fuel cells.
Guidelines for developing spacecraft maximum allowable concentrations for Space Station contaminants
NASA Technical Reports Server (NTRS)
1992-01-01
The National Aeronautics and Space Administration (NASA) is preparing to launch a manned space station by the year 1996. Because of concerns about the health, safety, and functioning abilities of the crews, NASA has requested that the National Research Council (NRC) through the Board on Environmental Studies and Toxicology (BEST) provide advice on toxicological matters for the space-station program. The Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants was established by the Committee on Toxicology (COT) to address NASA's concerns. Spacecraft maximum allowable concentrations (SMAC's) are defined as the maximum concentrations of airborne substances (such as gas, vapor, or aerosol) that will not cause adverse health effects, significant discomfort, or degradation in crew performance.
Photoautotrophic Production of Biomass, Laurate, and Soluble Organics by Synechocystis sp. PCC 6803
NASA Astrophysics Data System (ADS)
Nguyen, Binh Thanh
Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 muE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 muE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI. How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently. Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (mumax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 muE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its mumax with a modest Ci concentration (≥1.0 mM). Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall biomass productivity. This dissertation systematically evaluates and synthesizes fundamental growth factors of cyanobacteria: light, inorganic carbon (Ci), and pH. LI remains the most critical growth condition to promote biomass productivity and desired forms of biomass, while Ci and pH now can be managed to support optimal productivity.
Lim, Hyun-Hee; Shin, Ho-Sang
2017-02-01
An analytical method for the detection of 14 volatile organic compounds (VOCs) was developed to investigate VOCs in refill fluids and cartridges of electronic cigarettes (EC) using headspace solid-phase micro extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). In total, 14 VOCs were identified and quantified in 283 flavored liquids, 21 nicotine liquids, and 12 disposable cartridges. The detected concentration ranges of the VOCs are as follows: benzene (0.008-2.28 mg L -1 ), toluene (0.006-0.687 mg L -1 ), ethylbenzene (0.01-1.21 mg L -1 ), m-xylene (0.002-1.13 mg L -1 ), p-xylene (0.007-2.8 mg L -1 ), o-xylene (0.004-2.27 mg L -1 ), styrene (0.011-0.339 mg L -1 ), ethyl acetate (0.3-669.9 mg L -1 ), ethanol (16-38,742 mg L -1 ), methanol (66-3375 mg L -1 ), pyridine (0.077-99.7 mg L -1 ), acetylpyrazine (0.077-147 mg L -1 ), 2,3,5-trimethylpyrazine (0.008-96.8 mg L -1 ), and octamethylcyclotetrasiloxane (0.1-57.2 mg L -1 ). Benzene, toluene, ethylbenzene, m-xylene, p-xylene, and o-xylene coexisted in samples, which may have originated from the use of petrogenic hydrocarbons as an extraction solvent for flavor and nicotine from natural plants. The maximum detected concentrations of benzene, methanol, and ethanol in liquid samples were found in quantities higher than their authorized maximum limits as residual solvents in pharmaceutical products.
Hole-dominated transport in InSb nanowires grown on high-quality InSb films
NASA Astrophysics Data System (ADS)
Algarni, Zaina; George, David; Singh, Abhay; Lin, Yuankun; Philipose, U.
2016-12-01
We have developed an effective strategy for synthesizing p-type indium antimonide (InSb) nanowires on a thin film of InSb grown on glass substrate. The InSb films were grown by a chemical reaction between S b 2 S 3 and I n and were characterized by structural, compositional, and optical studies. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal that the surface of the substrate is covered with a polycrystalline InSb film comprised of sub-micron sized InSb islands. Energy dispersive X-ray (EDX) results show that the film is stoichiometric InSb. The optical constants of the InSb film, characterized using a variable-angle spectroscopic ellipsometer (VASE) shows a maximum value for refractive index at 3.7 near 1.8 eV, and the extinction coefficient (k) shows a maximum value 3.3 near 4.1 eV. InSb nanowires were subsequently grown on the InSb film with 20 nm sized Au nanoparticles functioning as the metal catalyst initiating nanowire growth. The InSb nanowires with diameters in the range of 40-60 nm exhibit good crystallinity and were found to be rich in Sb. High concentrations of anions in binary semiconductors are known to introduce acceptor levels within the band gap. This un-intentional doping of the InSb nanowire resulting in hole-dominated transport in the nanowires is demonstrated by the fabrication of a p-channel nanowire field effect transistor. The hole concentration and field effect mobility are estimated to be ≈1.3 × 1017 cm-3 and 1000 cm2 V-1 s-1, respectively, at room temperature, values that are particularly attractive for the technological implications of utilizing p-InSb nanowires in CMOS electronics.
Biological reduction of chlorinated solvents: Batch-scale geochemical modeling
NASA Astrophysics Data System (ADS)
Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.
2010-09-01
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.
Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.
Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I
2011-03-22
We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.
Benson, Nsikak U; Akintokun, Oyeronke A; Adedapo, Adebusayo E
2017-01-01
Levels of trihalomethanes (THMs) in drinking water from water treatment plants (WTPs) in Nigeria were studied using a gas chromatograph (GC Agilent 7890A with autosampler Agilent 7683B) equipped with electron capture detector (ECD). The mean concentrations of the trihalomethanes ranged from zero in raw water samples to 950 μ g/L in treated water samples. Average concentration values of THMs in primary and secondary disinfection samples exceeded the standard maximum contaminant levels. Results for the average THMs concentrations followed the order TCM > BDCM > DBCM > TBM. EPA-developed models were adopted for the estimation of chronic daily intakes (CDI) and excess cancer incidence through ingestion pathway. Higher average intake was observed in adults (4.52 × 10 -2 mg/kg-day), while the ingestion in children (3.99 × 10 -2 mg/kg-day) showed comparable values. The total lifetime cancer incidence rate was relatively higher in adults than children with median values 244 and 199 times the negligible risk level.
Silva, Rosimar Lima Brandão; Barra, Cristina Maria; Monteiro, Teófilo Carlos do Nascimento; Brilhante, Ogenis Magno
2002-01-01
Increasing attention is current focused on urban groundwater contamination with gasoline hydrocarbon compounds in Brazil. The compounds benzene, toluene, ethylbenzene, and xylenes (BTEX) contained in fuels are highly toxic and can have severe public health consequences, besides posing the risk of intake from the water table by way of contamination. After two years of a steady gasoline storage tank leak, water samples from private household wells in the district of Brisa Mar, Itaguaí, Rio de Janeiro State, were analyzed and the concentration of BTEX compounds was evaluated. Two out of ten water samples from the study area presented BTEX concentrations above the National Water Quality Standard (Brazilian Health Ministry Ruling No. 1469/2000), in which the maximum permissible benzene concentration is 5 micro g.L-1. Four others wells were also contaminated with nitrate, responsible for the induction of methemoglobinemia. Natural attenuation (intrinsic biodegradation) mechanisms through electron acceptors was also investigated in this study.
QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jiawei; Wang, Linghua; Zong, Qiugang
2016-03-20
We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl andmore » halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)« less
Maslia, Morris L.; Aral, Mustafa M.; Ruckart, Perri Z.; Bove, Frank J.
2017-01-01
A U.S. government health agency conducted epidemiological studies to evaluate whether exposures to drinking water contaminated with volatile organic compounds (VOC) at U.S. Marine Corps Base Camp Lejeune, North Carolina, were associated with increased health risks to children and adults. These health studies required knowledge of contaminant concentrations in drinking water—at monthly intervals—delivered to family housing, barracks, and other facilities within the study area. Because concentration data were limited or unavailable during much of the period of contamination (1950s–1985), the historical reconstruction process was used to quantify estimates of monthly mean contaminant-specific concentrations. This paper integrates many efforts, reports, and papers into a synthesis of the overall approach to, and results from, a drinking-water historical reconstruction study. Results show that at the Tarawa Terrace water treatment plant (WTP) reconstructed (simulated) tetrachloroethylene (PCE) concentrations reached a maximum monthly average value of 183 micrograms per liter (μg/L) compared to a one-time maximum measured value of 215 μg/L and exceeded the U.S. Environmental Protection Agency’s current maximum contaminant level (MCL) of 5 μg/L during the period November 1957–February 1987. At the Hadnot Point WTP, reconstructed trichloroethylene (TCE) concentrations reached a maximum monthly average value of 783 μg/L compared to a one-time maximum measured value of 1400 μg/L during the period August 1953–December 1984. The Hadnot Point WTP also provided contaminated drinking water to the Holcomb Boulevard housing area continuously prior to June 1972, when the Holcomb Boulevard WTP came on line (maximum reconstructed TCE concentration of 32 μg/L) and intermittently during the period June 1972–February 1985 (maximum reconstructed TCE concentration of 66 μg/L). Applying the historical reconstruction process to quantify contaminant-specific monthly drinking-water concentrations is advantageous for epidemiological studies when compared to using the classical exposed versus unexposed approach. PMID:28868161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, O.V., E-mail: bov@tpu.ru; Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050; Kazinski, P.O., E-mail: kpo@phys.tsu.ru
The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energiesmore » and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.« less
Organic electronic devices via interface engineering
NASA Astrophysics Data System (ADS)
Xu, Qianfei
This dissertation focuses on interface engineering and its influence on organic electronic devices. A comprehensive review of interface studies in organic electronic devices is presented in Chapter 1. By interface engineering at the cathode contact, an ultra-high efficiency green polymer light emitting diode is demonstrated in Chapter 2. The interface modification turns out to be solution processable by using calcium acetylacetonate, donated by Ca(acac)2. The device structure is Induim Tin Oxide (ITO)/3,4-polyethylenedioxythiophene-polystyrene-sulfonate (PEDOT)/Green polyfluorene/Ca(acac) 2/Al. Based on this structure, we obtained device efficiencies as high as 28 cd/A at 2650 cd/m2, which is about a 3 times improvement over previous devices. The mechanism of this nano-layer has been studied by I-L-V measurements, photovoltaic measurements, XPS/UPS studies, impedance measurements as well as transient EL studies. The interfacial layer plays a crucial role for the efficiency improvement. It is believed to work as a hole blocking layer as well as an electron injection layer. Meanwhile, a systematic study on ITO electrodes is also carried out in Chapter 4. By engineering the interface at ITO electrode, the device lifetime has been improved. In Chapter 5, very bright white emission PLEDs are fabricated based on blue polyfluorene (PF) doped with 1 wt% 6, 8, 15, 17-tetraphyenyl-1.18, 4.5, 9.10, 13.14-tetrabenzoheptacene (TBH). The maximum luminance exceeds 20,000 cd/m2. The maximum luminance efficiency is 3.55 cd/A at 4228 cd/m2 while the maximum power efficiency is 1.6 lm/W at 310 cd/m2. The white color is achieved by an incomplete energy transfer from blue PF to TBH. The devices show super stable CIE coordinates as a function of current density. The interface engineering is also applied to memory devices. In Chapter 6, a novel nonvolatile memory device is fabricated by inserting a buffer layer at the anode contact. Devices with the structure of Cu/Buffer-layer/organic layer/Cu show very attractive electrical bi-stability. The switching mechanism is believed to origin from by the different copper ion concentrations in the organic layer. This opens up a promising way to achieve high-performance organic electronic devices.
NASA Astrophysics Data System (ADS)
Luniov, S. V.; Zimych, A. I.; Nazarchuk, P. F.; Maslyuk, V. T.; Megela, I. G.
2016-12-01
Temperature dependencies for concentration of electrons and the Hall mobility for unirradiated and irradiated by the flow of electrons ? single crystals ?, with the energy of ?, for different values of uniaxial pressures along the crystallographic directions ?, ? and ? are obtained on the basis of piezo-Hall effect measurements. Non-typical growth of the Hall mobility of electrons for irradiated single crystals ? in comparison with unirradiated with the increasing of value of uniaxial pressures along the crystallographic directions ? (for the entire range of the investigated temperatures) and ? (to temperatures ?) has been revealed. Such an effect of the Hall mobility increase for uniaxially deformed single crystals ? is explained by the reduction of gradients of a resistance as a result of reduction in the amplitude of a large-scale potential with deformation and concentration of charged A-centers in the process of their recharge by the increasing of uniaxial pressure and consequently the probability of scattering on these centers. Theoretical calculations for temperature dependencies of the Hall mobility for uniaxially deformed single crystals ? in terms of the electrons scattering on the ions of shallow donors, acoustic, optical and intervalley phonons, regions of disordering and large-scale potential is good conformed to the corresponding experimental results at temperatures T<220 K for the case of uniaxial pressures along the crystallographic directions ? and ? and for temperatures ? when the uniaxial pressure is directed along the crystallographic directions ?. The mechanism of electron scattering on a charged radiation defects (which correspond to the deep energy levels of A-centers) 'is turned off' for the given temperatures due to the uniaxial pressure. Reduction of the Hall mobility in transition through a maximum of dependence ? with the increasing temperature for cases of the uniaxial deformation of the irradiated single crystals ? along the crystallographic directions ? and ? is explained by the deforming redistribution of electrons between the minima of conduction band of germanium with different mobility.
Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.
Lin, Ching-Ho
2008-04-01
The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.
OUTER RADIATION BELT AND AURORAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorchakov, E.V.
1961-01-01
Data obtained from Sputnik IH were used to determine the high-latitude boundary of the outer radiation belt and to interpret the nature of auroras. At the heights at which the auroras were observed, the outer boundary of the belt (69 deg north geomagnetic latitude) practically coincides with the auroral zone maximum (70 deg north geomagnetic latitude), while the maximum intensity of the outer belt near the earth lies at about 55 deg north geomagnetic latitude, i.e., at latitudes 15 deg below the auroral maximum. Consequently, auroras near the zone of maximum cannot be caused by the penetration into the atmospheremore » of electrons from the outer belt with energies on the order of 0.1 Mev (the mean energy of electrons in the outer belt). Other investigators have reported the detection of lowenergy streams at 55,000 to 75,000 km from the center of the earth in the equatorial plane. Moving toward the surface of the earth along the force lines of the magnetic field, electron streams of this type will reach the earth precisely in the region of the auroral zone maximum. It is considered possible that the electron streams are trapped at these distances from the earth and are at least partially responsible for auroras in the region of maximum. The existence of two maxima in the latitudinal distribution of auroral frequency, which attests to differert mechanisms of aurora formation, favors this hypothesis. In the region of the basic auroral maximum (70 deg north geomagnetic latitude) the auroras are the result of the invasion of belt particles, while in the region of the additional maximum (about 80 deg north geomagnetic latitude) they are caused by the direct penetration of corpuscular streams into the atmosphere. (OTS)« less
Pilavaki, Evdokia; Demosthenous, Andreas
2017-11-20
Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassays can be used with great success for the detection of infectious diseases. However, for the quantification of their results an electronic reader is required. This paper presents an optimized handheld electronic reader for developing countries. It features a potentially low-cost, low-power, battery-operated device with no added optical accessories. The operation of this proof of concept device is based on measuring the reflected light from the lateral flow immunoassay and translating it into the concentration of the specific analyte of interest. Characterization of the surface of the lateral flow immunoassay has been performed in order to accurately model its response to the incident light. Ray trace simulations have been performed to optimize the system and achieve maximum sensitivity by placing all the components in optimum positions. A microcontroller enables all the signal processing to be performed on the device and a Bluetooth module allows transmission of the results wirelessly to a mobile phone app. Its performance has been validated using lateral flow immunoassays with influenza A nucleoprotein in the concentration range of 0.5 ng/mL to 200 ng/mL.
Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.
Velmurugan, Palanivel; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Bae, Sunyoung; Oh, Byung-Taek
2014-06-15
This study aims to investigate the green synthesis of silver nanoparticles (AgNPs) by Erigeron annuus (L.) pers flower extract as reducing and capping agent, and evaluation of their antibacterial activities for the first time. The obtained product was confirmed by UV-Vis spectrum, high resolution-transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The optimum AgNPs production was achieved at pH 7, metal silver (Ag(+) ion) concentration of 2.0mM, flower extract concentration 4%, and time 335 min. In addition, the antibacterial activity of cotton fabrics and tanned leather loaded with AgNPs, commercial AgNPs, flower extract, Ag(+) ion and blend of flower extract with AgNPs were evaluated against Gram-positive odor causing bacteria Brevibacterium linens and Staphylococcus epidermidis. The results showed maximum zone of inhibition (ZOI) by the cotton fabrics embedded with blend of flower extract and AgNPs against B. linens. The structure and morphology of cotton fabric and leather samples embedded with AgNPs, Ag(+) ion and blend of flower extract with AgNPs were examined under field emission scanning electron microscope. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Coene, A.; Crevecoeur, G.; Dupré, L.; Vaes, P.
2013-06-01
In recent years, magnetic nanoparticles (MNPs) have gained increased attention due to their superparamagnetic properties. These properties allow the development of innovative biomedical applications such as targeted drug delivery and tumour heating. However, these modalities lack effective operation arising from the inaccurate quantification of the spatial MNP distribution. This paper proposes an approach for assessing the one-dimensional (1D) MNP distribution using electron paramagnetic resonance (EPR). EPR is able to accurately determine the MNP concentration in a single volume but not the MNP distribution throughout this volume. A new approach that exploits the solution of inverse problems for the correct interpretation of the measured EPR signals, is investigated. We achieve reconstruction of the 1D distribution of MNPs using EPR. Furthermore, the impact of temperature control on the reconstructed distributions is analysed by comparing two EPR setups where the latter setup is temperature controlled. Reconstruction quality for the temperature-controlled setup increases with an average of 5% and with a maximum increase of 13% for distributions with relatively lower iron concentrations and higher resolutions. However, these measurements are only a validation of our new method and form no hard limits.
NASA Astrophysics Data System (ADS)
De Vos, Caroline; Baneton, Joffrey; Witzke, Megan; Dille, Jean; Godet, Stéphane; Gordon, Michael J.; Mohan Sankaran, R.; Reniers, François
2017-03-01
A comparative study of the reduction of aqueous silver (Ag) and gold (Au) salts to colloidal Ag and Au nanoparticles, respectively, by a gaseous, cathodic, atmospheric-pressure microplasma electrode is presented. The resulting nanoparticles (NPs) were characterized by ultraviolet-visible (UV-vis) absorption spectroscopy and transmission electron microscopy (TEM), and the aqueous solution composition before and after experiments was determined by ionic conductivity, electrochemical potential, and/or UV-vis absorption measurements. TEM showed that Ag and Au NPs were spherical and non-agglomerated when synthesized in the presence of a stabilizer, polyvinyl alcohol. The charge injected by the plasma was correlated to the maximum intensity in the absorbance spectra which in turn depends on the nanoparticle concentration. Separately, the charge injected was correlated to the metal cation concentration. Ag and Au reduction rates were found to be directly proportional to the charge injected, independent of plasma current and process time. Differences in the mechanism for Ag and Au reduction were also observed, and solution species generated by the plasma and their role in the reduction process (e.g. H2O2, electrons) is discussed.
Thrust and efficiency model for electron-driven magnetic nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, Justin M.; Choueiri, Edgar Y.
2013-10-15
A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is foundmore » that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.« less
Huang, Jingyu; Amuzu-Sefordzi, Basil; Li, Ming
2015-05-01
The Pearl River Delta is one of the biggest electronics manufacturing regions in the world. Due to the presence of abandoned industrial sites and the proliferation of large-scale electronics companies in the past four decades, it is therefore imperative to investigate the extent of heavy metals and polychlorinated biphenyls (PCBs) contamination in the region. Spatial and temporal distribution of heavy metals (Cr, Cu, Ni, Pb, and Zn) and PCBs (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) in the Lianhua Mountain reservoir in the Pearl River Delta, Dongguan City, China were examined based on a sedimentary profile analysis. Higher concentrations of the heavy metals detected were recorded in bottom sediments whereas 70% of the detected PCBs recorded maximum concentrations in top sediments. The geo-accumulation indices (Igeo) indicate that the study area is uncontaminated to moderately contaminated. Also, the integrated pollution indices (IPI) were above 1, except Pb, which shows that the study area is contaminated with heavy metals from anthropogenic sources. The concentrations of individual heavy metals and PCBs over a period of 60 years were also analyzed in order to establish a historical trend of pollution in the study area. This study provides baseline information on the level and historical trend of heavy metals and PCBs pollution in the study area.
A first-principles model for orificed hollow cathode operation
NASA Technical Reports Server (NTRS)
Salhi, A.; Turchi, P. J.
1992-01-01
A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.
NASA Astrophysics Data System (ADS)
Dobrucka, Renata; Kaczmarek, Mariusz; Dlugaszewska, Jolanta
2018-06-01
The present study reveals the efficiency of the fruit extract of Ribes nigrum in the green synthesis of silver nanoparticles (Ag-NPs). Biosynthesized Ag-NPs were characterized by UV-vis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The nanoparticles were found to be 5–10 nm. In some places, the particles were agglomerated. The nanoparticles showed strong bactericidal activity and fungicidal activity against dermatophytes Trichophyton rubrum ATCC 28188. Moreover, the A549 and CCD39Lu cells under the influence of the highest concentration of nanoparticles synthesized using the fruit extract of Ribes nigrum showed the maximum mortality. Also, the results indicate that Ag-NPs synthesized using the fruit extract of Ribes nigrum exhibit efficiency in therapy of human non-small cell lung cancer A549.
NASA Astrophysics Data System (ADS)
Saberi, Maliheh; Ashkarran, Ali Akbar
Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.
NASA Astrophysics Data System (ADS)
Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun
2018-06-01
A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.
Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation
NASA Astrophysics Data System (ADS)
Salama, Ahmed; Mohamed, Alaa; Aboamera, Nada M.; Osman, T. A.; Khattab, A.
2018-02-01
In this work, photocatalytic degradation of organic dyes such as methylene blue (MB) and indigo carmine (IC) have been studied by composite nanofibers systems containing cellulose acetate (CA), multiwall carbon nanotubes (CNT) and TiO2 nanoparticles under UV light. The amino factionalized TiO2-NH2 NPs cross-linked to the CA/CNT composite nanofibers works as a semiconductor catalyst. The morphology and crystallinity were characterized by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, and Fourier transform infrared spectroscopy. It was also seen that many factors affected the photodegradation rate, mainly the pH of the solution and the dye concentration, temperature, etc. The study demonstrated that IC degrades at a higher rate than MB. The maximum photodegradation rate of both organic dyes was achieved at a pH 2. In comparison to other studies, this work achieved high photodegradation rate in lower time and using less power intensity.
NASA Astrophysics Data System (ADS)
Wang, Hung-Ta; Kang, B. S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.
2005-10-01
Pt-gated AlGaN /GaN high electron mobility transistors can be used as room-temperature hydrogen gas sensors at hydrogen concentrations as low as 100ppm. A comparison of the changes in drain and gate current-voltage (I-V) characteristics with the introduction of 500ppm H2 into the measurement ambient shows that monitoring the change in drain-source current provides a wider gate voltage operation range for maximum detection sensitivity and higher total current change than measuring the change in gate current. However, over a narrow gate voltage range, the relative sensitivity of detection by monitoring the gate current changes is up to an order of magnitude larger than that of drain-source current changes. In both cases, the changes are fully reversible in <2-3min at 25°C upon removal of the hydrogen from the ambient.
Farmer, J G; Johnson, L R
1990-01-01
An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455
Guerin, M T; Sir, C; Sargeant, J M; Waddell, L; O'Connor, A M; Wills, R W; Bailey, R H; Byrd, J A
2010-05-01
A systematic review was conducted to evaluate the change in prevalence of Campylobacter on chicken carcasses during processing. A structured literature search of 8 electronic databases using the key words for "Campylobacter," "chicken," and "processing" identified 1,734 unique citations. Abstracts were screened for relevance by 2 independent reviewers. Thirty-two studies described prevalence at more than one stage during processing and were included in this review. Of the studies that described the prevalence of Campylobacter on carcasses before and after specific stages of processing, the chilling stage had the greatest number of studies (9), followed by washing (6), defeathering (4), scalding (2), and evisceration (1). Studies that sampled before and after scalding or chilling, or both, showed that the prevalence of Campylobacter generally decreased immediately after the stage (scalding: 20.0 to 40.0% decrease; chilling: 100.0% decrease to 26.6% increase). The prevalence of Campylobacter increased after defeathering (10.0 to 72.0%) and evisceration (15.0%). The prevalence after washing was inconsistent among studies (23.0% decrease to 13.3% increase). Eleven studies reported the concentration of Campylobacter, as well as, or instead of, the prevalence. Studies that sampled before and after specific stages of processing showed that the concentration of Campylobacter decreased after scalding (minimum decrease of 1.3 cfu/g, maximum decrease of 2.9 cfu/mL), evisceration (0.3 cfu/g), washing (minimum 0.3 cfu/mL, maximum 1.1 cfu/mL), and chilling (minimum 0.2 cfu/g, maximum 1.7 cfu/carcass) and increased after defeathering (minimum 0.4 cfu/g, maximum 2.9 cfu/mL). Available evidence is sparse and suggests more data are needed to understand the magnitude and mechanism by which the prevalence and concentration of Campylobacter changes during processing. This understanding should help researchers and program developers identify the most likely points in processing to implement effective control efforts. For example, if contamination will occur during defeathering and likely during evisceration, critical control points postevisceration are likely to have a greater effect on the end product going to the consumer.
High 400 °C operation temperature blue spectrum concentration solar junction in GaInN/GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian
2014-12-15
Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1 V is achieved. Of the photons absorbed in the limited spectral range of <450 nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49 mW/cm{sup 2} to 0.51 mW/cm{sup 2} at 40 suns and then falls 0.42 mW/cm{sup 2}more » at 150 suns. Under external heating, a maximum of 0.59 mW/cm{sup 2} is reached at 250 °C. Even at 400 °C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.« less
Chen, Jingde; Jiang, Hong; Wu, Yin; Li, Yandong; Gao, Yong
2015-01-01
In this study, oxaliplatin (OX) liposomes surface-modified with glycyrrhetinic acid (GA) were developed by the film-dispersion method. Their morphology, physical and chemical properties, and in vitro release performance were investigated. The transmission electron microscope (TEM) image showed that most liposomes were spherical particles with similar size and uniform dispersion. Both OX-liposomes and GA-OX-liposomes had an average size of 90 nm. They were negatively charged, with zeta potentials of −20.6 and −21.3 mV, respectively, and the entrapment efficiency values of both were higher than 94%. In vitro data showed that the application of liposomes could prolong the OX release. The relatively high correlation coefficient values obtained from analyzing the amount of drug released versus the square root of time depicted that release followed the Weibull model. No significant changes were observed after the addition of GA to the liposomes. In vivo, the relatively long time to reach the maximum plasma concentration of OX-liposomes suggested a sustained-release profile of liposomes, which was consistent with the results of the in vitro release study. The increased area under the curve and maximum plasma concentration of OX-liposomes and GA-OX-liposomes demonstrated an increased absorption. The drug concentration in tissues indicated that the GA-modified liposomes delivered OX mainly to liver after intravenous administration. In addition, no severe signs, such as appearance of epithelial necrosis or sloughing of epithelial cells, were detected in histology studies. PMID:25945038
NITRO MUSK ADDUCTS OF RAINBOW TROUT ...
Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo
Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in
2015-05-07
Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes have been studied for different concentrations of Al{sub 2}O{sub 3} nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al{sub 2}O{sub 3}. The maximum ionic conductivity ∼3.3 × 10{sup −4} S cm{sup −1} has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al{sub 2}O{sub 3} nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymermore » chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al{sub 2}O{sub 3} concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al{sub 2}O{sub 3} in these electrolytes.« less
Khan, Karim; Khan Tareen, Ayesha; Elshahat, Sayed; Yadav, Ashish; Khan, Usman; Yang, Minghui; Bibbò, Luigi; Ouyang, Zhengbiao
2018-03-12
One of the greatest challenges in the enhancement of the electrical properties of conductive mayenite [Ca 24 Al 28 O 64 ] 4+ (4e - ) (hereinafter C12A7:e - ) is the design of a more suitable/simple synthesis strategy that can be employed to obtain the required properties such as excellent stable electrical conductivity, a high electron concentration, outstanding mobility, and an exceptionally large surface area. Therefore, to synthesize C12A7:e - in the metallic state, we proposed a facile, direct synthesis strategy based on an optimized sol-gel combustion method under a nitrogen gas environment using the low-cost precursors Ca(NO 3 ) 2 ·4H 2 O and Al(NO 3 ) 3 ·9H 2 O. Using this developed strategy, we successfully synthesized moderately conductive nanoscale C12A7:e - powder, but with unexpected carbon components (reduced graphene oxide (rGO) and/or graphene oxide (GO)). The synthesized C12A7:e - composite at room temperature has an electrical conductivity of about 21 S cm -1 , a high electron concentration of approximately 1.5 × 10 21 cm -3 , and a maximum specific surface area of 265 m 2 g -1 . Probably, the synthesized rGO was coated on nanocage C12A7:e - particles. In general, the C12A7:e - electride is sensitive to the environment (especially to oxygen and moisture) and protected by an rGO coating on C12A7:e - particles, which also enhances the mobility and keeps the conductivity of C12A7:e - electride stable over a long period. Doped mayenite electride exhibits a conductivity that is strongly dependent on the substitution level. The conductivity of gallium-doped mayenite electride increases with the doping level and has a maximum value of 270 S cm -1 , which for the first time has been reported for the stable C12A7:e - electride. In the case of Si-substituted calcium aluminate, the conductivity has a maximum value of 222 S cm -1 at room temperature.
Biosensing near the neutrality point of graphene
Fu, Wangyang; Feng, Lingyan; Panaitov, Gregory; Kireev, Dmitry; Mayer, Dirk; Offenhäusser, Andreas; Krause, Hans-Joachim
2017-01-01
Over the past decade, the richness of electronic properties of graphene has attracted enormous interest for electrically detecting chemical and biological species using this two-dimensional material. However, the creation of practical graphene electronic sensors greatly depends on our ability to understand and maintain a low level of electronic noise, the fundamental reason limiting the sensor resolution. Conventionally, to reach the largest sensing response, graphene transistors are operated at the point of maximum transconductance, where 1/f noise is found to be unfavorably high and poses a major limitation in any attempt to further improve the device sensitivity. We show that operating a graphene transistor in an ambipolar mode near its neutrality point can markedly reduce the 1/f noise in graphene. Remarkably, our data reveal that this reduction in the electronic noise is achieved with uncompromised sensing response of the graphene chips and thus significantly improving the signal-to-noise ratio—compared to that of a conventionally operated graphene transistor for conductance measurement. As a proof-of-concept demonstration of the usage of the aforementioned new sensing scheme to a broader range of biochemical sensing applications, we selected an HIV-related DNA hybridization as the test bed and achieved detections at picomolar concentrations. PMID:29075669
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye
2016-01-15
Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.
Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna
2008-04-01
Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.
Pachapur, Vinayak Laxman; Das, Ratul Kumar; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo
2017-02-01
The properties of eggshells (EGS) as neutralizing and immobilizing agent were investigated for hydrogen (H 2 ) production using crude glycerol (CG) by co-culture system. Eggshells of different sizes and concentrations were used during batch and repeated-batch fermentation. For batch and repeated-batch fermentation, the maximum H 2 production (36.53±0.53 and 41.16±0.95mmol/L, respectively) was obtained with the EGS size of 33μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.R.; Bailey, E.H.; Purvis, O.W.
1998-11-01
Uranium sorption experiments were carried out at {approximately}25 C using natural samples of the lichen Peltigera membranacea. Thalli were incubated in solutions containing 100 ppm U for up to 24 h at pH values from 2 to 10. Equilibrium sorption was not observed at less than {approximately}6 h under any pH condition. U sorption was strongest in the pH range 4--5, with maximum sorption occurring at a pH of 4.5 and an incubation time of 24 h. Maximum U uptake by P. membranacea averaged {approximately}42,000 ppm, or {approximately}4.2 wt% U. This appears to represent the highest concentration of biosorbed U,more » relative to solution U activity, of any lichen reported to date. Investigation of post-experimental lichen tissues using electron probe microanalysis (EPM) reveals that U uptake is spatially heterogeneous within the lichen body, and that U attains very high local concentrations on scattered areas of the upper cortex. Energy dispersive spectroscopic (EDS) analysis reveals that strong U uptake correlates with P signal intensity, suggesting involvement of biomass-derived phosphate ligands or surface functional groups in the uptake process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Lishev, Stiliyan; Shivarova, Antonia P.
The study combines experiments on probe diagnostics with laser-photodetachment-technique and Faraday-cup measurements directed towards determination of the position of the extraction device and its influence on the discharge structure. The measurements have been carried out in the second chamber of an inductively-driven tandem plasma source performed as small scale arrangements, with a magnetic filter located just after the transition between the two chambers of the source. Results for the axial profiles of the plasma parameters display the correlation of the ratio n lowbar /n{sub e} of the densities of the negative hydrogen ions and of the electrons and of themore » concentration of the negative ions with the electron density and temperature: The maxima of the (n lowbar /n{sub e})-ratio and of the density of the negative ions obtained are located at the position of maximum of the electron density behind the filter, in the region of the low electron temperature. Results from probe diagnostics and laser photodetachment measurements at a given axial position for different positions of the Faraday cup show the changes in the spatial distribution of the electron density and temperature and the reduction of the (n lowbar /n{sub e})-ratio and of the density of the negative ions caused by the extraction device.« less
NASA Astrophysics Data System (ADS)
Arunachalam, A.; Dhanapandian, S.; Manoharan, C.
2016-02-01
In this work, highly oriented pure and Tin-doped Titanium dioxide (Sn-doped TiO2) with porous nature photoelectrodes were deposited on ITO glass plates using spray pyrolysis technique. The XRD pattern revealed the formation of anatase TiO2 with the maximum intensity of (101) plane while doping 6 at% of Sn. The morphological studies depicted the porous nature with the uniform arrangement of small-sized grains. The presence of tin confirmed with the EDX spectra. The size of particles of 13 nm was observed from High Resolution Transmission Electron Microscopy (HR-TEM) analysis. The average transmittance was about 85% for the doped photoelectrode and was observed for the photoelectrode deposited with 6 at% of tin, with decreased energy band gap. The PL study showed the emission peak at 391 nm. The maximum carrier concentration and Hall mobility was observed for the photoelectrode deposited with 6 at% of tin. With these studies, the DSSCs were prepared separately with the dye extracted from Hibiscus Rosasinesis and Hibiscus Surttasinesis and their efficiency was maximum for the DSSC prepared with 6 at% of tin.
Kawada, Kei; Ohta, Tsuyoshi; Tanaka, Koudai; Miyamoto, Norifumi
2018-03-05
Nicardipine is frequently used in the treatment of hypertension for patients with acute stroke; however, its dosing is complicated by a high risk of phlebitis. In the present study, we examined whether restricting nicardipine concentration under a specific value could reduce the incidence of nicardipine-related phlebitis in patients with acute stroke. Intravenous nicardipine-related phlebitis was retrospectively analyzed. From July 2015, a simple proposition was made to dilute maximum intravenous nicardipine concentration to lower than 130 µg/mL. The maximum intravenous nicardipine concentration and the incidence of phlebitis were compared between patients treated from July 2014 to June 2015 (preproposition group) and patients treated from July 2015 to June 2016 (postproposition group). A total of 300 patients (preproposition group, 138; postproposition group, 162) were included. The postproposition group demonstrated significantly lower maximum intravenous nicardipine concentration (in µg/mL, 76.9, 47.6-104.5 versus 130.4, 69.8-230.8; P < .001) and incidence of phlebitis (9.9%, 16/162 vs. 30%, 42/138; P < .001) than the preproposition group. Multivariable logistic regression analysis revealed that the maximum intravenous nicardipine concentration lower than 130 µg/mL (odds ratio [OR] .15; 95% confidence interval [CI] .06-.35; P < .001) and National Institutes of Health Stroke Scale on admission (OR .95; 95% CI .91-.99; P = .007) were the statistically significant independent factors for phlebitis, which indicated the usefulness of the proposition to dilute maximum intravenous nicardipine concentration to lower than 130 µg/mL. The simple and appropriate proposition about nicardipine administration lowered maximum nicardipine concentration and reduced the incidence of nicardipine-related phlebitis in patients with acute stroke. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.
Yeadon, Maurice R; King, Mark A; Wilson, Cassie
2006-01-01
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabtabar-Darvishi, A.; Center for Surface and Nanoanalytics; Bayati, R., E-mail: reza.bayati@intel.com, E-mail: mbayati@ncsu.edu, E-mail: wdfei@hit.edu.cn
2015-03-07
This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{submore » 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.« less
Chakraborty, Paromita; Prithiviraj, Balasubramanian; Selvaraj, Sakthivel; Kumar, Bhupander
2016-12-15
Polychlorinated biphenyls (PCBs) were quantified in settled dust collected from informal electronic waste (e-waste) recycling workshops and nearby highways in the urban centers and roadside dust from the suburban industrial belt of Chennai city in India. Further dust samples were subjected to a high resolution field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX) to characterize the shape, size and elemental composition of the dust particles. Geomean of total PCB concentration followed the following order: informal e-waste metal recovery workshops (53ngg -1 )>e-waste dismantling sites (3.6ngg -1 )>nearby highways (1.7ngg -1 )>suburban industrial roadsides (1.6ngg -1 ). In e-waste workshops, tetra, penta and hexa-PCB homologs contributed two third of Σ 26 PCB concentration. Informal e-waste recycling workshops contributed more than 80% concentration of all the PCB congeners loaded in the first principal component. Predominance of dioxin like PCBs, PCB-l14, -118 and -126 in the e-waste metal recovery sites were presumably due to combustion and pyrolytic processes performed during recycling of electrical components. According to the morphology and elemental composition, settled dust from e-waste workshops were irregular particles heavily embedded with toxic metals and industrial roadside dust were distinct angular particles. FESEM revealed that average particle size (in Ferret diameter) increased in the following order: e-waste recycling workshops (0.5μm)
Theoretical and experimental specific capacitance of polyaniline in sulfuric acid
NASA Astrophysics Data System (ADS)
Li, Hanlu; Wang, Jixiao; Chu, Qingxian; Wang, Zhi; Zhang, Fengbao; Wang, Shichang
The theoretical mass specific capacitance (C s) of polyaniline (PANI) is firstly estimated by combining electrical double-layer capacitance and pseudocapacitance. The maximum C s is 2.0 × 10 3 F g -1 for one single PANI electrode. In present work, the PANI nanofiber modified stainless-steel (SS) electrode (PANI/SS) was used to assemble supercapacitors. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images indicate that the PANI nanofiber has a coarse surface arising from the heterogeneous structure which likes an aggregation of nanoparticles. The performance of the assembled PANI/SS supercapacitors was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge methods in 1.0 M H 2SO 4. The maximum C s obtained from these methods in present work is 608, 445.0, and 524.9 F g -1, respectively, which is only 30%, 22%, and 26% of the theoretical one. The significant difference between the experimental and the theoretical value indicates that only a low percentage of PANI (effective) has contribution to capacitance. The percentage of effective PANI depends on both the diffusion of dopants (counter-anions) and the conductivity of PANI. Under practical conditions, the former factor makes PANI nanofiber behave like a concentric cable with only the shell part involved in the charge/discharge process. The latter one which determines the electron transfer rate in PANI has an influence on the degree of redox reaction. In present work, the heterogeneous structure of the PANI nanofiber has a negative effect on the conductivity.
In Vivo potassium-39 NMR spectra by the burg maximum-entropy method
NASA Astrophysics Data System (ADS)
Uchiyama, Takanori; Minamitani, Haruyuki
The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.
Novel MCP-Based Electron Source Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haughey, M.; Shiltsev V., Shiltsev V.; Stancari, G.
Microchannel plates (MCPs) were recently proposed as novel type of cathodes for electron guns [1], suitable for applications in design of electron lenses. We report results of the first systematic study of microchannel plate based photomultiplier time response and maximum cur-rent density tests using different sources of light pulses. The Burle 85011-501 MCP-PMT is found to have good time response properties being capable of producing na-nosecond long pulses with modest maximum current density and performance strongly dependent on magnetic field strength.
Polymer-surfactant complex formation and its effect on turbulent wall shear stress.
Suksamranchit, Siriluck; Sirivat, Anuvat; Jamieson, Alexander M
2006-02-01
Turbulent drag reduction in Couette flow was investigated in terms of a decrease in wall shear stress for aqueous solutions of a nonionic polymer, poly(ethylene oxide) (PEO), a cationic surfactant, hexadecyltrimethylammonium chloride (HTAC), and their mixtures. Consistent with literature data, drag reduction was observed for PEO solutions above a critical molecular weight, 0.91 x 10(5) < Mc < 3.04 x 10(5) g/mol. Maximum drag reduction occurred at an optimum concentration, c(PEO)*, which scales inversely with molecular weight, and the % maximum drag reduction increases with molecular weight. For aqueous HTAC solutions, wall shear stress decreased with increasing HTAC concentration and leveled off at an optimum concentration, c(HTAC)*, comparable to the critical micelle concentration. For HTAC/PEO mixtures, the critical PEO molecular weight for drag reduction decreases, interpreted as due to an increase in hydrodynamic volume because of binding of HTAC micelles to PEO. Consistent with this interpretation, at fixed PEO concentration, maximum drag reduction was observed at an optimum HTAC concentration, c(HTAC/PEO)*, comparable to the maximum binding concentration, MBC. Also, with HTAC concentration fixed at the MBC, the optimum PEO concentration for drag reduction, c(PEO/HTAC)*, decreases relative to that, c(PEO)*, in the absence of HTAC.
Capacitive Neutralization Dialysis for Direct Energy Generation.
Liu, Yue; Zhang, Yi; Ou-Yang, Wei; Bastos Sales, Bruno; Sun, Zhuo; Liu, Fei; Zhao, Ran
2017-08-15
Capacitive neutralization dialysis energy (CNDE) is proposed as a novel energy-harvesting technique that is able to utilize waste acid and alkaline solutions to produce electrical energy. CNDE is a modification based on neutralization dialysis. It was found that a higher NaCl concentration led to a higher open-circuit potential when the concentrations of acid and alkaline solutions were fixed. Upon closing of the circuit, the membrane potential was used as a driving force to move counter ions into the electrical double layers at the electrode-liquid interface, thereby creating an ionic current. Correspondingly, in the external circuit, electrons flow through an external resistor from one electrode to the other, thereby generating electrical energy directly. The influence of external resistances was studied to achieve greater energy extraction, with the maximum output of 110 mW/m 2 obtained by employing an external resistance of 5 Ω together with the AC-coated electrode.
Effect of Pr 3+ concentration on thermoluminescence from K 2Y 1- xPr xF 5 crystals
NASA Astrophysics Data System (ADS)
Marcazzo, J.; Santiago, M.; Caselli, E.; Nariyama, N.; Khaidukov, N. M.
2004-06-01
Thermoluminescence dosimetric characteristics of K 2YF 5 crystals doped with Pr 3+ are reported for the first time. The efficiency of the 0.5 at.% Pr 3+ doped K 2YF 5 crystal has been found to be maximum for this concentration series and three times higher than that of the commercial dosimeter TLD-700. The thermoluminescence glow curve of this novel phosphor has no appreciable fading. Furthermore, it bears linear dose response and good stability after reutilization. According to these results, K 2YF 5:Pr 3+ appears to be a promising base for developing effective phosphors for TL solid state dosimetry. In this context, the spectral composition of the TL emission is also mentioned along with the values obtained by glow curve deconvolution for the trap parameters characterising electron trap centres involved in thermoluminescence.
Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO 3
NASA Astrophysics Data System (ADS)
Thiemann, Markus; Beutel, Manfred H.; Dressel, Martin; Lee-Hone, Nicholas R.; Broun, David M.; Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen; Scheffler, Marc
2018-06-01
SrTiO3 exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature Tc≈0.4 K . Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO3 with a charge carrier concentration from 0.3 to 2.2 ×1020 cm-3 , covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2 Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO3 . Furthermore, we determine Tc, 2 Δ , and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.
NASA Astrophysics Data System (ADS)
Jmiai, A.; El Ibrahimi, B.; Tara, A.; El Issami, S.; Jbara, O.; Bazzi, L.
2018-04-01
The anti-corrosion behavior of sodium alginate (SA) on copper in the 1 M hydrochloric medium was carried out using weight loss and electrochemical measurements. The obtained results show that the inhibition increases with SA concentration and then reaches a maximum of 83% at a concentration of 0.1 mg L-1. The effect of temperature on the reactions of copper corrosion inhibition and analyzing the thermodynamic parameters revealed that the mode of adsorption has a physical nature and obeys the Langmuir isotherm. The surface morphology was performed by scanning electron microscopy coupled with energy dispersive X-ray spectrometry and atomic force microscopy. To better understand the adsorption mechanism, describing the relationship between inhibitory ability and the molecular structure of SA, quantum calculations using density functional theory were performed. Monte Carlo simulation approache was performed to know well of the relationship between the inhibition ability and molecular structure of alginate.
Study of Zn-Cu Ferrite Nanoparticles for LPG Sensing
Jain, Anuj; Baranwal, Ravi Kant; Bharti, Ajaya; Vakil, Z.; Prajapati, C. S.
2013-01-01
Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. XRD patterns of different compositions of zinc-copper ferrite, Zn(1−x)CuxFe2O4 (x = 0.0, 0.25, 0.50, 0.75), revealed single phase inverse spinel ferrite in all the samples synthesized. With increasing copper concentration, the crystallite size was found to be increased from 28 nm to 47 nm. The surface morphology of all the samples studied by the Scanning Electron Microscopy there exhibits porous structure of particles throughout the samples. The pellets of the samples are prepared for LPG sensing characteristics. The sensing is carried out at different operating temperatures (200, 225, and 250°C) with the variation of LPG concentrations (0.2, 0.4, and 0.6 vol%). The maximum sensitivity of 55.33% is observed at 250°C operating for the 0.6 vol% LPG. PMID:23864833
Cell chip temperature measurements in different operation regimes of HCPV modules
NASA Astrophysics Data System (ADS)
Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.
2013-09-01
A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.
Release of silver nanoparticles from outdoor facades.
Kaegi, Ralf; Sinnet, Brian; Zuleeg, Steffen; Hagendorfer, Harald; Mueller, Elisabeth; Vonbank, Roger; Boller, Markus; Burkhardt, Michael
2010-09-01
In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 micro Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly <15 nm and are released as composite colloids attached to the organic binders of the paint. Microscopic results indicate that the Ag-NP are likely transformed to considerably less toxic forms such as Ag2S. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.
Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong
2016-07-01
Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sant, Marco; Papadopoulos, George K.; Theodorou, Doros N.
2010-04-01
The concentration dependence of self-diffusivity is investigated by means of a novel method, extending our previously developed second-order Markov process model to periodic media. Introducing the concept of minimum-crossing surface, we obtain a unique decomposition of the self-diffusion coefficient into two parameters with specific physical meanings. Two case studies showing a maximum in self-diffusivity as a function of concentration are investigated, along with two cases where such a maximum cannot be present. Subsequently, the method is applied to the large cavity pore network of the ITQ-1 (Mobil tWenty tWo, MWW) zeolite for methane (displaying a maximum in self-diffusivity) and carbon dioxide (no maximum), explaining the diffusivity trend on the basis of the evolution of the model parameters as a function of concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudino, Danila; Pasquino, Rossana, E-mail: r.pasquino@unina.it; Grizzuti, Nino
The micellar system composed of Cetylpyridinium Chloride-Sodium Salicylate (CPyCl-NaSal) in brine aqueous solutions has been studied by systematically changing the salt concentration, in order to investigate the rheology of the arising morphologies. In particular, the zero-shear viscosity and the linear viscoelastic response have been measured as a function of the NaSal concentration (with [CPyCl] = 100 mM). The Newtonian viscosity shows a nonmonotonic dependence upon concentration, passing through a maximum at NaSal/CPyCl ≈ 0.6, and eventually dropping at higher salt concentrations. The progressive addition of salt determines first a transition from a Newtonian to a purely Maxwell-like behavior as the length of themore » micelles significantly increases. Beyond the peak viscosity, the viscoelastic data show two distinct features. On the one hand, the main relaxation time of the system strongly decreases, while the plateau modulus remains essentially constant. Calculations based on the rheological data show that, as the binding salt concentration increases, there is a decrease in micelles breaking rate and a decrease in their average length. On the other hand, in the same concentration region, a low-frequency elastic plateau is measured. Such a plateau is considered as the signature of a tenuous, but persistent branched network, whose existence is confirmed by cryo-transmission electron microscopy images.« less
Das, Dipjyoti; Gopikrishna, Peddaboodi; Singh, Ashish; Dey, Anamika; Iyer, Parameswar Krishnan
2016-03-14
Fabrication of efficient blue and white polymer light-emitting diodes (PLEDs) using a well charge balanced, core modified polyfluorene derivative, poly[2,7-(9,9'-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)] (PFONPN01), is presented. The excellent film forming properties as observed from the morphological study and the enhanced electron transport properties due to the inclusion of the NPN unit in the PFO main chain resulted in improved device properties. Bright blue light was observed from single layer PLEDs with PFONPN01 as an emissive layer (EML) as well as from double layer PLEDs using tris-(8-hydroxyquinoline) aluminum (Alq3) as an electron transporting layer (ETL) and LiF/Al as a cathode. The effect of ETL thickness on the device performance was studied by varying the Alq3 thickness (5 nm, 10 nm and 20 nm) and the device with an ETL thickness of 20 nm was found to exhibit the maximum brightness value of 11 662 cd m(-2) with a maximum luminous efficiency of 4.87 cd A(-1). Further, by using this highly electroluminescent blue PFONPN01 as a host and a narrow band gap, yellow emitting small molecule, dithiophene benzothiadiazole (DBT), as a guest at three different concentrations (0.2%, 0.4% and 0.6%), WPLEDs with the ITO/PEDOT:PSS/emissive layer/Alq3(20 nm)/LiF/Al configuration were fabricated and maximum brightness values of 8025 cd m(-2), 9565 cd m(-2) and 10 180 cd m(-2) were achieved respectively. 0.4% DBT in PFONPN01 was found to give white light with Commission International de l'Echairage (CIE) coordinates of (0.31, 0.38), a maximum luminous efficiency of 6.54 cd A(-1) and a color-rendering index (CRI) value of 70.
Zhang, Wei; Zheng, Ying; Orsini, Lorenzo; Morelli, Andrea; Galli, Giancarlo; Chiellini, Emo; Carpenter, Everett E.; Wynne, Kenneth J.
2010-01-01
A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation cured PDMS coating. The decyl fluorous group is represented by “D”; “5” is a 5 kDa silicone, and “3” the mole ratio of fluorous to silicone side chain. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt%). Higher concentrations result in decreased oleophobicity reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation as a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt%, that is, the CMC. This model suggests increasing aggregate / micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 >0.4 wt%. PMID:20000339
Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN
NASA Astrophysics Data System (ADS)
Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.
2017-06-01
Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.
Kato, Nobuyuki; Nagaya, Taiki; Matsui, Yasuto; Yoneda, Minoru
2017-11-25
The application of multiwall carbon nanotubes (MWCNTs) currently extends to various fields. However, it has been reported that exposure to CNT causes hazardous effects on animals and cells. The purpose of this study was to quantify the exposure to MWCNT in MWCNT/polymer composites for exposure assessment. We focused on catalytic metals included in the MWCNT and the diameter of dust released during the working processes. Although the Co in MWCNTs is not a common catalyst, it was used as a tracer in this study. A field survey was conducted in a MWCNT/polymer composite pilot factory. Airborne MWCNTs were monitored using black carbon monitors (BCMs) and optical particle sizers (OPSs) and collected on a filter. The MWCNT powder, all polymer resins used during the working processes, and the filter were analyzed in our lab using inductively coupled plasma mass spectrometry (ICP-MS) and electron microscopic observation. The mean concentration of airborne MWCNT contained in the collected dust was 0.92 μg/m 3 a few meters away from the extruder during the working processes (using elemental analysis). The maximum concentration measured using BCMs was shown to be seven times higher than the base concentration during the pelletizing process of polycarbonate (PC) and MWCNT composites. However, free, isolated, and unbound agglomerated MWCNTs were not detected using scanning electron microscopic (SEM) observation. The result obtained by elemental analysis indicated it was possible to quantify MWCNT in composites. The mean concentration at this factory was lower than the recommended exposure limit. However, additional studies during the pelletizing process are required in the future.
Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors
Yan, Lei; Chen, Peng; Zhang, Shuang; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu
2016-01-01
We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin. PMID:27708366
NASA Astrophysics Data System (ADS)
Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; He, Jian; Alshareef, Husam N.; Tritt, Terry M.
2014-05-01
Recently, we have reported a significant enhancement (>70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1-xPrxTiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.
1998-10-01
The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.
Whistler turbulence heating of electrons and ions: Three-dimensional particle-in-cell simuations
Gary, S. Peter; Hughes, R. Scott; Wang, Joseph
2016-01-14
In this study, the decay of whistler turbulence in a collisionless, homogeneous, magnetized plasma is studied using three-dimensional particle-in-cell simulations. The simulations are initialized with a narrowband, relatively isotropic distribution of long wavelength whistler modes. A first ensemble of simulations at electron betamore » $${\\beta }_{{\\rm{e}}}$$ = 0.25 and ion-to-electron mass ratio $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}$$ = 400 is carried out on a domain cube of dimension $$L{\\omega }_{\\mathrm{pi}}$$/c = 5.12 where $${\\omega }_{\\mathrm{pi}}$$ is the ion plasma frequency. The simulations begin with a range of dimensionless fluctuating field energy densities, $${\\epsilon }_{{\\rm{o}}}$$, and follow the fluctuations as they cascade to broadband, anisotropic turbulence which dissipates at shorter wavelengths, heating both electrons and ions. The electron heating is stronger and preferentially parallel/antiparallel to the background magnetic field $${{\\boldsymbol{B}}}_{{\\rm{o}}};$$ the ion energy gain is weaker and is preferentially in directions perpendicular to $${{\\boldsymbol{B}}}_{{\\rm{o}}}$$. The important new results here are that, over 0.01 < $${\\epsilon }_{{\\rm{o}}}$$ < 0.25, the maximum rate of electron heating scales approximately as $${\\epsilon }_{{\\rm{o}}}$$, and the maximum rate of ion heating scales approximately as $${\\epsilon }_{{\\rm{o}}}^{1.5}$$. A second ensemble of simulations at $${\\epsilon }_{{\\rm{o}}}$$ = 0.10 and $${\\beta }_{{\\rm{e}}}$$ = 0.25 shows that, over 25 < $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}\\;$$< 1836, the ratio of the maximum ion heating rate to the maximum electron heating rate scales approximately as $${m}_{{\\rm{e}}}$$/$${m}_{{\\rm{i}}}$$.« less
NASA Technical Reports Server (NTRS)
Glasser, M. E.
1981-01-01
The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.
NASA Astrophysics Data System (ADS)
Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu
1999-11-01
In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.
Fapetu, Segun; Keshavarz, Taj; Clements, Mark; Kyazze, Godfrey
2016-09-01
To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
Wilson, J P; Jurjevic, Z; Hanna, W W; Wilson, D M; Potter, T L; Coy, A E
2006-02-01
Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 microg kg(-1)) and fumonisins (maximum concentration = 34,039 microg kg(-1)). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 microg kg(-1)). Beauvericin (maximum concentration = 414.6 microg kg(-1)) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.
Alternating gradient photodetector
NASA Technical Reports Server (NTRS)
Overhauser, Albert W. (Inventor); Maserjian, Joseph (Inventor)
1989-01-01
A far infrared (FIR) range responsive photodetector is disclosed. There is a substrate of degenerate germanium. A plurality of alternating impurity-band and high resistivity layers of germanium are disposed on the substrate. The impurity-band layers have a doping concentration therein sufficiently high to include donor bands which can release electrons upon impingement by FIR photons of energy hv greater than an energy gap epsilon. The high resistivity layers have a doping concentration therein sufficiently low as to not include conducting donor bands and are depleted of electrons. Metal contacts are provided for applying an electrical field across the substrate and the plurality of layers. In the preferred embodiment as shown, the substrate is degenerate n-type (N++) germanium; the impurity-band layers are n+ layers of germanium doped to approximately the low 10(exp 16)/cu cm range; and, the high resistivity layers are n-layers of germanium doped to a maximum of approximately 10(exp)/cu cm. Additionally, the impurity-band layers have a thickness less than a conduction-electron diffusion length in germanium and likely to be in the range of 0.1 to 1.0 micron, the plurality of impurity-bands is of a number such that the flux of FIR photons passing therethrough will be substantially totally absorbed therein, the thickness of the high resistivity layers is such compared to the voltage applied that the voltage drop in each the high resistivity layers controls the occurence of impact ionization in the impurity-band layers to a desired level.
Pathways for tailoring the magnetostructural behavior of FeRh-based systems
NASA Astrophysics Data System (ADS)
Barua, Radhika
2014-03-01
The prediction of phase transition temperatures in functional materials provides dual benefits of supplying insight into fundamental drivers underlying the phase transition, as well as enabling new and improved technological applications that employ the material. In this work, studies focused on understanding the magnetostructural phase transition of FeRh as a function of elemental substitution, provides guidance for tailoring phase transitions in this compound, with possible extensions to other intermetallic-based magnetostructural compounds. Clear trends in the magnetostructural temperatures (Tt) of alloys of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals), as reported in literature since 1961, were identified and confirmed as a function of the valence band electron concentration ((s + d) electrons/atom) of the system. It is observed that substitution of 3 dor 4 delements (x <= 6.5 at%) into B2-ordered FeRh compounds causes Ttto increase to a maximum around a critical valence band electron concentration (ev *) of 8.50 electrons/atom and then decrease. Substitution of 5 delements echoes this trend but with an overall increase in Ttand a shift in ev * to 8.52 electrons/atom. For ev>8.65 electrons/atom, FeRh-based alloys cease to adopt the B2-ordered crystallographic structure in favor of the chemically disordered A1-type structure or the ordered L10-type structure. This phenomenological model has been confirmed through synthesis and characterization of FeRh alloys with Cu, Ni and Au additions. The success of this model in confirming existing data trends in chemically-substituted FeRh and predicting new composition-transition temperature correlations emphasizes the strong interplay between the electronic spin configuration, the electronic band structure, and crystal lattice of this system. Further these results provide pathways for tailoring the magnetostructural behavior and the associated functional response of FeRh-based systems for potential technological applications. Research was performed under the auspices of the U.S. Department of Energy (Contract No. DE-SC0005250).
40 CFR 463.34 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V
2012-08-01
This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1984-04-19
In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.
Pérez-Castilla, Alejandro; Comfort, Paul; McMahon, John J; Pestaña-Melero, Francisco Luis; García-Ramos, Amador
2018-01-17
The aim of this study was to compare the temporal and mechanical variables between the concentric-only and eccentric-concentric bench press (BP) variants. Twenty-one men (age: 22.0±4.2 years, body mass: 73.4±7.7 kg, height: 177.2±8.0 cm; one-repetition maximum [1RM]: 1.12±0.12 kg⋅kg) were evaluated during the concentric-only and eccentric-concentric BP variants using 80% 1RM. Temporal (concentric phase duration, propulsive phase duration, and time to reach the maximum values of force, velocity, and power) and mechanical variables (force, velocity, and power), determined using a linear velocity transducer, were compared between both BP variants. All temporal variables were significantly lower during the eccentric-concentric BP compared to the concentric-only BP (P < 0.05; effect size [ES] range: 0.80-2.52). Maximum force as well as the mean values of velocity and power were significantly higher for the eccentric-concentric BP compared to the concentric-only BP (all P < 0.001; ES range: 2.87-3.58). However, trivial to small differences between both BP variants were observed for mean force (ES: 0.00-0.36) as well as for maximum velocity (ES: 0.40) and power (ES: 0.41). The stretch-shortening cycle (i.e., eccentric-concentric BP) mainly enhanced force production at the early portion of the concentric phase, but this potentiation effect gradually reduced over the latter part of the movement. Finally, force was higher for the concentric-only BP during 49% of the concentric phase duration. These results suggest that both BP variants should be included during resistance training programs in order to optimize force output at different points of the concentric phase.
Becker, Mark F.; Bruce, Breton W.; Pope, Larry M.; Andrews, William J.
2002-01-01
A network of 74 randomly distributed domestic water-supply wells completed in the central High Plains aquifer was sampled and analyzed from April to August 1999 as part of the High Plains Regional Ground-Water Study conducted by the U. S. Geological Survey National Water-Quality Assessment Program to provide a broad-scale assessment of the ground-water-quality in this part of the High Plains aquifer. Water properties were relatively consistent across the aquifer, with water being alkaline and well oxidized. Water was mostly of the calcium and magnesium-bicarbonate type and very hard. Sulfate concentrations in water from three wells and chloride concentration in water from one well exceeded Secondary Maximum Contaminant Levels. Fluoride concentration was equal to the Maximum Contaminant Level in one sample. Nitrate concentrations was relatively small in most samples, with the median concentration of 2.3 milligrams per liter. Dissolved organic carbon concentration was relatively low, with a median concentration of 0.5 milligram per liter. The Maximum Contaminant Level set by the U.S. Environmental Protection Agency for nitrate as nitrogen of 10 milligrams per liter was exceeded by water samples from three wells. Most samples contained detectable concentrations of the trace elements aluminum, arsenic, barium, chromium, molybdenum, selenium, zinc, and uranium. Only a few samples had trace element concentrations exceeding Maximum Contaminant Levels. Fifty-five of the samples had radon concentrations exceeding the proposed Maximum Contaminant Level of 300 picocuries per liter. The greatest radon concentrations were detected where the Ogallala Formation overlies sandstones, shales and limestones of Triassic, Jurassic, or Cretaceous age. Volatile organic compounds were detected in 9 of 74 samples. Toluene was detected in eight of those nine samples. All volatile organic compound concentrations were substantially less than Maximum Contaminant Levels. Detections of toluene may have been artifacts of the sampling and analytical processes. Pesticides were detected in 18 of the 74 water samples. None of the pesticide concentrations exceeded Maximum Contaminant Levels. The most frequently detected pesticides were atrazine and its metabolite deethylatrazine, which were detected in water from 15 and 17 wells, respectively. Most of the samples with a detectable pesticide had at least two detectable pesticides. Six of the samples had more than two detectable pesticides. Tritium concentrations was greater than 0.5 tritium unit in 10 of 51 samples, indicating recent recharge to the aquifer. Twenty-one of the samples that had nitrate concentrations greater than 4.0 milligrams per liter were assumed to have components of recent recharge. Detection of volatile organic compounds was not associated with those indicators of recent recharge, with most of volatile organic compounds being detected in water from wells with small tritium and nitrate concentrations. Detection of pesticides was associated with greater tritium or nitrate concentrations, with 16 of the 18 wells producing water with pesticides also having tritium or nitrate concentrations indicating recent recharge.
[The epidemiological validation of the MPEL for grain dust in the atmosphere].
Pinigin, M A; Cherepov, E M; Safiulin, A A; Petrova, I V; Mukhambetova, L Kh; Osipova, E M; Veselov, A P
1998-01-01
The use of calculating and gravimetric methods for examining the grain dust pollution of the ambient air at the site of an elevator determined the maximum single, mean daily, and mean annual concentrations at different distances from the source of dust emission. The mean ratio of these concentrations was 12.1:4.3:1, respectively. The calculated concentration-effect and concentration-time relationships provided evidence for the maximum single, mean daily, and mean annual allowable concentrations for grain dust in the ambient air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Ling-Bin, E-mail: konglb@lut.cn; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050; Deng, Li
Graphical abstract: Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} nano-flakes materials, which have a flower-like structure, were successfully synthesized by a facile solvothermal method without adding any surfactant. The as-prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} possesses a maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Highlights: ► Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} materials were fabricated in a simple method. ► High specific capacitance of 2212.5 F g{sup −1} has been achieved. ► For the first time the effects of concentration andmore » temperature on its specific capacitance has been studied. -- Abstract: Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} was successfully synthesized by a facile solvothermal method. The microstructure and surface morphology of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} were physically characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electrochemical properties studies were carried out using cyclic voltammetry (CV), chronopotentiometry technology and AC impedance spectroscopy, respectively. The results indicate that the flower-like structure has a profound impact on electrode performance at high discharge capacitance. A maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA could be achieved, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Furthermore, the effects of Ni(NO{sub 3}){sub 2}·6H{sub 2}O concentration and temperature on the microstructure and specific capacitance of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} have also been systematically studied. The results show that flower-like structure can be formed when the concentration is appropriate, while the temperature has just little effect on its electrochemical properties.« less
Kinetic Alfven turbulence: Electron and ion heating by particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Gary, S. P.; Hughes, R. S.; Wang, J.; Parashar, T. N.
2017-12-01
Three-dimensional particle-in-cell simulations of the forward cascade of decaying kinetic Alfvén turbulence have been carried out as an initial-value problem on a collisionless, homogeneous, magnetized, electron-ion plasma model with betae = betai =0.50 and mi/me=100 where subscripts e and i represent electrons and ions respectively. Initial anisotropic narrowband spectra of relatively long wavelength modes with approximately gyrotropic distributions in kperp undergo a forward cascade to broadband spectra of magnetic fluctuations at shorter wavelengths. Maximum electron and ion heating rates are computed as functions of the initial fluctuating magnetic field energy density eo on the range 0.05 < eo < 0.50. In contrast to dissipation by whistler turbulence, the maximum ion heating rate due to kinetic Alfvén turbulence is substantially greater than the maximum electron heating rate. Furthermore, ion heating as well as electron heating due to kinetic Alfvén turbulence scale approximately with eo. Finally, electron heating leads to anisotropies of the type T||e> Tperpe where the parallel and perpendicular symbols refer to directions parallel and perpendicular, respectively, to the background magnetic field, whereas the heated ions remain relatively isotropic. This implies that, for the range of eo values considered, the Landau wave-particle resonance is a likely heating mechanism for the electrons and may also contribute to ion heating.
NASA Astrophysics Data System (ADS)
Kaur, Ramneek; Tripathi, S. K.
2016-04-01
CdSe-PMMA nanocomposite has been synthesized by ex-situ technique. The effect of different Ag doping concentrations on its structural and optical properties has been studied. X-ray diffraction reveals the hexagonal wurtzite structure of the polymer nanocomposites with preferential growth of the nanocrystals along (1 0 0) direction. Transmission electron micrograph shows the spherical CdSe nanoparticles embedded in polymer matrix. The nonlinear refractive index of the nanocomposites has been calculated using Tichy & Ticha semi-empirical relations and Z-scan technique. Z-scan results disclose the two photon absorption process in the hybrid nanocomposites with self focussing behaviour. With Ag doping, the nonlinearity is found to be increased up to 0.2% Ag doping concentration due to the confined effect of Surface Plasmon, Quantum confinement and thermal lensing. Above 0.2% Ag concentration, its value decreases due to the declined linear refractive index of the nanocomposites. Maximum two photon figure of merit is 76 for 0.2% Ag doped CdSe-PMMA hybrid nanocomposite. The present results accentuate the possibility of tuning the optical non-linearity of CdSe-PMMA hybrid nanocomposite by adjusting the doping concentration.
NASA Astrophysics Data System (ADS)
Kumar, A. Guru Sampath; Obulapathi, L.; Sarmash, T. Sofi; Rani, D. Jhansi; Maddaiah, M.; Rao, T. Subba; Asokan, K.
2015-04-01
Thin films of cadmium (Cd) (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%) doped zinc oxide (ZnO) have been deposited on a glass substrate by reactive DC magnetron sputtering. The synthesized films are characterized by glancing angle x-ray diffraction (GAXRD), UV-Vis-NIR spectroscopy, four probe resistivity measurement, Hall measurement system, field emission-scanning electron microscopy and energy dispersive analysis by x-rays. A systematic study has been made on the structure, electrical and optical properties of Cd doped ZnO thin films as a function of Cd concentration (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%). All these films have a hexagonal wurtzite ZnO structure with (0 0 2) orientation without any Cd related phase from the GAXRD patterns. The grain size was increased and maximum appears at 4 wt.% Cd concentration. The electrical resistivity of the films decreased with the Cd doping and minimum resistivity was observed at 4 wt.% Cd concentration. UV-Vis-NIR studies showed that the optical band gap of ZnO (3.37 eV) was reduced to 3.10 eV which is at 4 wt.% Cd concentration.
Srivastava, Deepanshu; Norman, Colin; Azough, Feridoon; Schäfer, Marion C; Guilmeau, Emmanuel; Kepaptsoglou, Demie; Ramasse, Quentin M; Nicotra, Giuseppe; Freer, Robert
2016-09-29
Ceramics based on Sr 0.8 La 0.067 Ti 0.8 Nb 0.2 O 3-δ have been prepared by the mixed oxide route. The La 1/3 NbO 3 component generates ∼13.4% A-site vacancies; this was fixed for all samples. Powders were sintered under air and reducing conditions at 1450 to 1700 K; products were of high density (>90% theoretical). Processing under reducing conditions led to the formation of a Ti 1-x Nb x O 2-y second phase, core-shell structures and oxygen deficiency. X-ray diffraction (XRD) confirmed a simple cubic structure with space group Pm3[combining macron]m. Transmission electron microscopy revealed a high density of dislocations while analytical scanning transmission electron microscopy at atomic resolution demonstrated a uniform distribution of La, Nb and vacancies in the lattice. X-ray photoemission spectroscopy and thermogravimetry showed the oxygen deficiency (δ value) to be ∼0.08 in reduced samples with enhanced carrier concentrations ∼2 × 10 21 cm -3 . Both carrier concentration and carrier mobility increased with sintering time, giving a maximum figure of merit (ZT) of 0.25. Selective additional doping by La or Nb, with no additional A site vacancies, led to the creation of additional carriers and reduced electrical resistivity. Together these led to enhanced ZT values of 0.345 at 1000 K. The contributions from oxygen vacancies and charge carriers have been investigated independently.
Effect of praseodymium on the electrical resistance of YВа2Сu3О7-δ single crystals
NASA Astrophysics Data System (ADS)
Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.
2014-07-01
The electrical resistivity in the ab-plane of the Y1-yPryВа2Сu3О7-δ single crystals with high degree of perfection in the interval of Тc - 300 K was investigated. The increasing of praseodymium content leads to the reduction of the critical temperature (Tc) from 92 to 30 K. The experimental results can be approximated by the expression, taking into account the scattering of electrons by phonons, defects, the fluctuation conductivity in the 3D Aslamazov-Larkin model, as well as the transition to a "semiconductor" type behavior of the resistivity at the high praseodymium concentrations. The concentration dependences of all fitting parameters indicate a structural transition in the region 0.35≤у≤0.43. In particular, the Debye temperature changes in this range from 350 to 550 K, and the transverse coherence length passes through a maximum ξС(0)≈5 Å. The concentration dependence of the critical temperature testifies the d-pairing of the BCS model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J; Kuhlman, J
1981-01-31
The tracker uses a single photo sensor, and a rotating aperature to obtain tracking accuracies better than 1.5 mrads (0.1 degs). Peak signal detection is used to eliminate tracking of false sources, i.e., clouds, etc. A prism is employed to obtain an extended field of view (150 degs axially - 360 degs radially). The tracker digitally measures the Suns displacement angle relative to the concentrator axis, and repositions it incrementally. This arrangement permits the use of low cost non-servo motors. The local controller contains microprocessor based electronics, incorporating digital signal processing. A single controller may be time shared by amore » maximum of sixteen trackers, providing a high performance, cost effective solar tracking system, suitable for both line and point focus concentrators. An installation may have the local controller programmed as a standalone unit or slaved to a central controller. When used with a central controller, dynamic data monitoring and logging is available, together with the ability to change system modes and parameters, as desired.« less
Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan
2013-08-01
The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Akintokun, Oyeronke A.; Adedapo, Adebusayo E.
2017-01-01
Levels of trihalomethanes (THMs) in drinking water from water treatment plants (WTPs) in Nigeria were studied using a gas chromatograph (GC Agilent 7890A with autosampler Agilent 7683B) equipped with electron capture detector (ECD). The mean concentrations of the trihalomethanes ranged from zero in raw water samples to 950 μg/L in treated water samples. Average concentration values of THMs in primary and secondary disinfection samples exceeded the standard maximum contaminant levels. Results for the average THMs concentrations followed the order TCM > BDCM > DBCM > TBM. EPA-developed models were adopted for the estimation of chronic daily intakes (CDI) and excess cancer incidence through ingestion pathway. Higher average intake was observed in adults (4.52 × 10−2 mg/kg-day), while the ingestion in children (3.99 × 10−2 mg/kg-day) showed comparable values. The total lifetime cancer incidence rate was relatively higher in adults than children with median values 244 and 199 times the negligible risk level. PMID:28900447
Performance and stability of Pd nanostructures in an alkaline direct ethanol fuel cell
NASA Astrophysics Data System (ADS)
Carrera-Cerritos, R.; Fuentes-Ramírez, R.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; Arriaga, L. G.
2014-12-01
Pd nanopolyhedral, nanobar and nanorod particles were synthesised using the polyol process and evaluated as anodes in a direct ethanol fuel cell. The materials were physico-chemically characterised by high-resolution transmission electronic microscopy (HR-TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effect of the operation parameters (i.e., temperature and fuel ethanol concentration) on the maximum power density (MPD) and open circuit voltage (OCV) was investigated. In addition, a stability test was performed by applying three current density steps for fifty cycles. The OCV values increased as the temperature increased for all of the catalysts at low ethanol concentration. Although the MPD increased with temperature for all of the catalyst independent of the ethanol concentration, the effect of the temperature on the MPD for each Pd structure results in different slopes due to the different crystal faces. Finally, a loss of electro-catalytic activity after fifty cycles was observed in all of the catalysts evaluated, which may be in response to morphological changes in the nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saik, V.O.; Lipsky, S.
The electronic absorption spectrum of benzene has been obtained by phototransmission measurements over a concentration range from 0.005 M in n-hexane to the neat liquid at 11.2 M and over a spectral range that extends down to 170 nm. Good agreement is obtained with previously reported measurements on the neat liquid. The oscillator strength of the strongly allowed A{sub 1g} {yields} E{sub 1u} transition is maintained at ca. 1.0 as the benzene concentration increases but is accompanied by extensive redistribution of the intensity such that the optical cross section at the position of the absorption maximum (which shifts from 184{submore » .2} nm in dilute solution to 189{sub .5} nm in the neat liquid) reduces by a factor of 2.7. An explanation for these changes in terms of Lorentz field corrections to the complex dielectric constant is developed, and its implication to the assignment of the neat liquid absorption as a collective excitation is considered. 43 refs., 5 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Kumari, Anita; Singh, Inderpreet; Prasad, Neetu; Dixit, Shiv Kumar; Rao, Peta Koteswara; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra; Bhatia, Charanjit Singh; Nagpal, Swati
2014-01-01
In the present work, the effect of incorporation of graphene on the poly(3-hexylthiophene) (P3HT):CuInS2 quantum dot (CIS QD)-based solar cell has been studied. For this purpose, the concentration of graphene is varied from 0 to 0.01% w/w in P3HT-CIS (1:0.5) film. It is found that graphene does not deteriorate the absorption of the composite film. It assists in dissociating the photogenerated excitons (both in P3HT and QDs) owing to its two-dimensional structure and high electron affinity as is evident by photoluminescence (PL) quenching. At 0.01% w/w concentration of graphene about ˜95% of PL is quenched. The electrical characteristics show that the incorporation of graphene enhances the efficiency of the device by establishing interconnected conducting pathways in the volume of polymer matrix. The maximum efficiency is observed to be 1.5% at 0.005% w/w content of graphene. However, at higher concentration, i.e., 0.01% w/w, the device starts deteriorating.
NASA Astrophysics Data System (ADS)
Kuyper, Brett; Palmer, Carl J.; Labuschagne, Casper; Reason, Chris J. C.
2018-04-01
Bromoform mixing ratios in marine air were measured at Cape Point Global Atmospheric Watch Station, South Africa. This represents the first such bromoform data set recorded at this location. Manual daily measurements were made during a month-long field campaign (austral spring 2011) using a gas chromatograph-electron capture detector (GC-ECD) with a custom-built front end thermal desorption trap. The measured concentrations ranged between 4.4 and 64.6 (± 22.2 %) ppt with a mean of 24.8 ± 14.8 ppt. The highest mixing ratios recorded here occurred at, or shortly after, low tide. The diurnal cycle exhibited a morning and evening maximum with lower concentrations throughout the rest of the day. Initial analysis of the data presented indicates that the local kelp beds were the dominant source of the bromoform reported. A concentration-weighted trajectory analysis of the bromoform measurements suggests that two offshore source areas may exist. These source areas appear to be centred on the Agulhas retroflection and extend from St Helena Bay to the southwest.
Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao
2010-07-01
Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.
NASA Astrophysics Data System (ADS)
Chen, Shuguang; Li, Yuhan; Wu, Zixu; Wu, Baoxin; Li, Haibin; Li, Fujin
2017-05-01
Te-doped Bi2MoO6 photocatalyst was hydrothermally synthesized, and nonmetal atoms Te were homogeneously incorporated into Bi2MoO6 lattice with the substitution of Te4+ to Mo6+. With increasing Te-doping concentration in Bi2MoO6, no detectable band-gap narrowing but more and more severe inhomogeneous lattice distortions were determined. The activity of Bi2MoO6 photocatalyst was evaluated through methylene blue degradation under visible light irradiation (λ>410 nm) and was greatly enhanced by Te-doping. When Te-doped Bi2MoO6 was synthesized at Te/Mo molar ratio of 7.5%, a maximum first-order rate constant of methylene blue degradation was obtained. The inhomogeneous lattice distortion generated an internal dipole moment, and the holes generated with the substitution of Te4+ to Mo6+ acted as the capturing centers of photogenerated electrons, thus the effective separation of photogenerated carriers was facilitated to result in a relatively high concentration of holes on the surface of Te-doped Bi2MoO6 to be favorable for the efficient methylene blue degradation.
Liu, Dan; Li, Song; Islam, Ejazul; Chen, Jun-ren; Wu, Jia-sen; Ye, Zheng-qian; Peng, Dan-li; Yan, Wen-bo; Lu, Kou-ping
2015-01-01
A hydroponics experiment was aimed at identifying the lead (Pb) tolerance and phytoremediation potential of Moso bamboo (Phyllostachys pubescens) seedlings grown under different Pb treatments. Experimental results indicated that at the highest Pb concentration (400 μmol/L), the growth of bamboo seedlings was inhibited and Pb concentrations in leaves, stems, and roots reached the maximum of 148.8, 482.2, and 4282.8 mg/kg, respectively. Scanning electron microscopy revealed that the excessive Pb caused decreased stomatal opening, formation of abundant inclusions in roots, and just a few inclusions in stems. The ultrastructural analysis using transmission electron microscopy revealed that the addition of excessive Pb caused abnormally shaped chloroplasts, disappearance of endoplasmic reticulum, shrinkage of nucleus and nucleolus, and loss of thylakoid membranes. Although ultrastructural analysis revealed some internal damage, even the plants exposed to 400 μmol/L Pb survived and no visual Pb toxicity symptoms such as necrosis and chlorosis were observed in these plants. Even at the highest Pb treatment, no significant difference was observed for the dry weight of stem compared with controls. It is suggested that use of Moso bamboo as an experimental material provides a new perspective for remediation of heavy metal contaminated soil owing to its high metal tolerance and greater biomass. PMID:25644467
Study of cyanide removal from contaminated water using zinc peroxide nanomaterial.
Uppal, Himani; Tripathy, S Swarupa; Chawla, Sneha; Sharma, Bharti; Dalai, M K; Singh, S P; Singh, Sukhvir; Singh, Nahar
2017-05-01
The present study highlights the potential application of zinc peroxide (ZnO 2 ) nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO 2 synthesis has been granted in United States of America (US Patent number 8,715,612; May 2014), South Africa, Bangladesh, and India. The ZnO 2 nanomaterial was capped with polyvinylpyrrolidone (PVP) to control the particle size. The PVP capped ZnO 2 nanomaterial (PVP-ZnO 2 ) before and after adsorption of cyanide was characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO 2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO 2 was also studied as a function of pH, adsorbent dose, time and concentration of cyanide. The maximum removal of cyanide was observed in pH range 5.8-7.8 within 15min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Feng, Chun-Rong; Jian, Jun; Chen, Xiao-Hong; Du, Quan; Wang, Ling
2017-12-01
The local structures and the spin Hamiltonian parameters (SHPs) for Cu2+ in (90-x)TeO2-10GeO2-xWO3 glasses are theoretically investigated at various WO3 concentrations (x=7.5, 15, 22.5 and 30 mol%). Subject to the Jahn-Teller effect, the [CuO6]10- groups are found to experience the small or moderate tetragonal elongation distortions (characterised by the relative tetragonal elongation ratios ρ≈0.35-3.09%) in C4 axis. With only three adjusted coefficients a, b and ω, the relevant model parameters (Dq, k and ρ) are described by the Fourier type and linear functions, respectively, and the measured concentration dependences of the d-d transition bands and SHPs are reproduced. The maximum of g∥ and the minimum of |A∥| at x=15 mol% are illustrated from the abrupt decrease of the copper-oxygen electron cloud admixtures or covalency and the obvious decline of the copper 3d-3s (4s) orbital admixtures due to the decreasing electron cloud density around oxygen ligands spontaneously bonding with Cu2+ and Te4+ (W6+), respectively.
Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye
2016-10-18
We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.
Electron Attenuation Measurement using Cosmic Ray Muons at the MicroBooNE LArTPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meddage, Varuna
2017-10-01
The MicroBooNE experiment at Fermilab uses liquid argon time projection chamber (LArTPC) technology to study neutrino interactions in argon. A fundamental requirement for LArTPCs is to achieve and maintain a low level of electronegative contaminants in the liquid to minimize the capture of drifting ionization electrons. The attenuation time for the drifting electrons should be long compared to the maximum drift time, so that the signals from particle tracks that generate ionization electrons with long drift paths can be detected efficiently. In this talk we present MicroBooNE measurement of electron attenuation using cosmic ray muons. The result yields a minimummore » electron 1/e lifetime of 18 ms under typical operating conditions, which is long compared to the maximum drift time of 2.3 ms.« less
Spacecraft maximum allowable concentrations for selected airborne contaminants, volume 1
NASA Technical Reports Server (NTRS)
1994-01-01
As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee on Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMAC's for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMAC's for 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the first 11 SMAC reports that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee.
NASA Technical Reports Server (NTRS)
Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.
2012-01-01
The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric perturbations, and to distinguish ionospheric responses to processes of EQ preparation against the effects of other factors. The 2-D snapshots of the electron density over Japan showed abnormal increase over the maximum stress during the night, a few hours before the main shock. Our results from recording atmospheric and ionospheric conditions during the earthquake indicate the presence of anomalies in the atmosphere and ionospheres occurring consistently over regions of maximum stress near the epicenter. Due to their long duration (hours and days) and spatial appearance (only over the Sendai region) these results do not appear to be caused by meteorological or magnetic activity. They reveal the existence of atmospheric and ionospheric phenomena occurring prior to the earthquake, which indicates new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004).
Makino, Amane; Miyake, Chikahiro; Yokota, Akiho
2002-09-01
Changes in chlorophyll fluorescence, P700(+)-absorbance and gas exchange during the induction phase and steady state of photosynthesis were simultaneously examined in rice (Oryza sativa L.), including the rbcS antisense plants. The quantum yield of photosystem II (PhiPSII) increased more rapidly than CO(2) assimilation in 20% O(2). This rapid increase in PhiPSII resulted from the electron flux through the water-water cycle (WWC) because of its dependency on O(2). The electron flux of WWC reached a maximum just after illumination, and rapidly generated non-photochemical quenching (NPQ). With increasing CO(2) assimilation, the electron flux of WWC and NPQ decreased. In 2% O(2), WWC scarcely operated and PhiPSI was always higher than PhiPSII. This suggested that cyclic electron flow around PSI resulted in the formation of NPQ, which remained at higher levels in 2% O(2). The electron flux of WWC in the rbcS antisense plants was lower, but these plants always showed a higher NPQ. This was also caused by the operation of the cyclic electron flow around PSI because of a higher ratio of PhiPSI/PhiPSII, irrespective of O(2) concentration. The results indicate that WWC functions as a starter of photosynthesis by generating DeltapH across thylakoid membranes for NPQ formation, supplying ATP for carbon assimilation. However, WWC does not act to maintain a high NPQ, and PhiPSII is down-regulated by DeltapH generated via the cyclic electron flow around PSI.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .174 .081 Zinc... monthly average mg/Kg (pounds per million pounds) of concentrate digested Lead 2.592 1.203 Zinc 9.442 3... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .069 .032 Zinc...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .174 .081 Zinc... monthly average mg/Kg (pounds per million pounds) of concentrate digested Lead 2.592 1.203 Zinc 9.442 3... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .069 .032 Zinc...
Easlon, Hsien Ming; Carlisle, Eli; McKay, John K; Bloom, Arnold J
2015-03-01
The objective of this study was to determine if low stomatal conductance (g) increases growth, nitrate (NO3 (-)) assimilation, and nitrogen (N) utilization at elevated CO2 concentration. Four Arabidopsis (Arabidopsis thaliana) near isogenic lines (NILs) differing in g were grown at ambient and elevated CO2 concentration under low and high NO3 (-) supply as the sole source of N. Although g varied by 32% among NILs at elevated CO2, leaf intercellular CO2 concentration varied by only 4% and genotype had no effect on shoot NO3 (-) concentration in any treatment. Low-g NILs showed the greatest CO2 growth increase under N limitation but had the lowest CO2 growth enhancement under N-sufficient conditions. NILs with the highest and lowest g had similar rates of shoot NO3 (-) assimilation following N deprivation at elevated CO2 concentration. After 5 d of N deprivation, the lowest g NIL had 27% lower maximum carboxylation rate and 23% lower photosynthetic electron transport compared with the highest g NIL. These results suggest that increased growth of low-g NILs under N limitation most likely resulted from more conservative N investment in photosynthetic biochemistry rather than from low g. © 2015 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Singh, Davender; Kundu, Virender Singh; Maan, A. S.
2016-07-01
The pure and Zn-doped SnO2 nanoparticles were prepared successfully by hydrothermal route on large scale having different doping concentration of zinc from 0 to 0.20%. The calcined nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) for structural and morphological studies. XRD analyses reveal that the nanoparticles of these doping concentrations are polycrystalline in nature and existed as tetragonal rutile structure, SEM study of images confirms the existence of very small, homogeneously distributed, and spherical nanoparticles. The particles size of the nanoparticles was calculated by Scherrer formula and was found in the range of 9-21 nm. The presence of dopant (i.e. zinc) and formation of Sn-O phase and hydrous nature of Zn-doped SnO2 nanoparticles are confirmed by EDX and FTIR study. The gas sensing properties of pure and Zn-doped SnO2 nanoparticles were investigated for various concentrations of methanol, ethanol and acetone at different operating temperatures and it has been found that with doping concentration of zinc (x = 0.20%) shows the maximum response 78% to methanol, 65% to ethanol and 62% to acetone respectively at different operating temperature within the measurement limit for a concentration of 100 ppm of each gases.
Hahladakis, John N; Stylianos, Michailakis; Gidarakos, Evangelos
2013-04-15
In a passenger ship, the existence of EEE is obvious. In time, under shipwreck's conditions, all these materials will undergo an accelerated severe corrosion, due to salt water, releasing, consequently, heavy metals and other hazardous substances in the aquatic environment. In this study, a laboratory-scale reactor was manufactured in order to simulate the conditions under which the "Sea Diamond" shipwreck lies (14 bars of pressure and 16°C of temperature) and remotely observe and assess any heavy metal release that would occur, from part of the EEE present in the ship, into the sea. Ten metals were examined and the results showed that zinc, mercury and copper were abundant in the water samples taken from the reactor and in significantly higher concentrations compared to the US EPA CMC (criterion maximum concentration) criterion. Moreover, nickel and lead were found in concentrations higher than the CCC (criterion constant concentration) criterion set by the US EPA for clean seawater. The rest of the elements were measured in concentrations within the permissible limits. It is therefore of environmental benefit to salvage the wreck and recycle all the WEEE found in it. Copyright © 2013 Elsevier B.V. All rights reserved.
Haukland, H H; Ulvatne, H; Sandvik, K; Vorland, L H
2001-11-23
The localization of immunolabelled antimicrobial peptides was studied using transmission electron microscopy. Staphylococcus aureus and Escherichia coli were exposed to lactoferricin B (17-41), lactoferricin B (17-31) and D-lactoferricin B (17-31). E. coli was also exposed to cecropin P1 and magainin 2. The lactoferricins were found in the cytoplasm of both bacteria. In S. aureus the amount of cytoplasmic lactoferricin B (17-41) was time- and concentration-dependent, reaching a maximum within 30 min. Cecropin P1 was confined to the cell wall, while magainin 2 was found in the cytoplasm of E. coli. The finding of intracellularly localized magainin is not reported previously.
N incorporation and electronic structure in N-doped TiO2(110) rutile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Sau H.; Nachimuthu, Ponnusamy; Joly, Alan G.
2007-02-08
Epitaxial TiO2-xNx film growth under anion-rich conditions is characterized by nearly balanced incorporation rates for substitutional N (NO) and interstitial Ti (Tii). Tii donors fully compensate and stabilize N3-, but preclude the formation of p-type material. Hybridization occurs between Tii(IV) and NO3-, but the value of x is limited to ~0.02 under these conditions. Tii(IV)-NO3- states occur above the valence band maximum of pure TiO2, riving rise to enhanced optical absorption in the visible up to ~2.5 eV. Much higher NO and Tii concentrations result from using cation-rich conditions.
Physiological effects of hydrogen sulfide inhalation during exercise in healthy men.
Bhambhani, Y; Singh, M
1991-11-01
Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.
Tunneling effect on double potential barriers GaAs and PbS
NASA Astrophysics Data System (ADS)
Prastowo, S. H. B.; Supriadi, B.; Ridlo, Z. R.; Prihandono, T.
2018-04-01
A simple model of transport phenomenon tunnelling effect through double barrier structure was developed. In this research we concentrate on the variation of electron energy which entering double potential barriers to transmission coefficient. The barriers using semiconductor materials GaAs (Galium Arsenide) with band-gap energy 1.424 eV, distance of lattice 0.565 nm, and PbS (Lead Sulphide) with band gap energy 0.41 eV distance of lattice is 18 nm. The Analysisof tunnelling effect on double potentials GaAs and PbS using Schrodinger’s equation, continuity, and matrix propagation to get transmission coefficient. The maximum energy of electron that we use is 1.0 eV, and observable from 0.0025 eV- 1.0 eV. The shows the highest transmission coefficient is0.9982 from electron energy 0.5123eV means electron can pass the barriers with probability 99.82%. Semiconductor from materials GaAs and PbS is one of selected material to design semiconductor device because of transmission coefficient directly proportional to bias the voltage of semiconductor device. Application of the theoretical analysis of resonant tunnelling effect on double barriers was used to design and develop new structure and combination of materials for semiconductor device (diode, transistor, and integrated circuit).
NASA Astrophysics Data System (ADS)
Ahmed, Mohammed H. Othman; Al-Amiery, Ahmed A.; Al-Majedy, Yasmin K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Gaaz, Tayser Sumer
2018-03-01
The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-yl)phenol), for mild steel in 1 M hydrochloric acid (HCl) has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms.
NASA Astrophysics Data System (ADS)
Ijaz, Umber; Bhatti, Ijaz Ahmed; Mirza, Saima; Ashar, Ambreen
2017-10-01
The antibacterial activity of green synthesized calcium oxide nanoparticles was investigated using leaf extract of Mentha piperita in this study. The synthesized nanomaterial was subjected to characterization using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray spectroscopy (EDX). The SEM images showed agglomeration of disc shaped nanoparticles, and FTIR and EDX spectroscopy indicated intensive peaks for calcium ions and oxygen. Subsequently, the potential of nanoscale CaO was also evaluated for antimicrobial index against E. coli using the well diffusion method. A maximum zone of inhibition up to 42 mm was observed when 100 µg ml-1 material was loaded with inoculum size 50 µl of E. coli in sunlight exposure of 5 h. The experimental conditions were optimized using a central composite design using a response surface methodology. The maximum antimicrobial index of the CaO nanoparticle was 6 mm as a result of the optimized response. Furthermore, the minimum inhibitory concentration of the CaO nanoparticle showed 25 µg ml-1, an effective initial concentration for E.coli removal. The results revealed that the CaO nanocomposite synthesized via a green route was a promising candidate for the removal of E. coli present in drinking water, which is an important fecal indicator.
Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas.
Zu, Ke; Liu, Xiaobin; Shi, Liuhua; Tao, Ge; Loftus, Christine T; Lange, Sabine; Goodman, Julie E
2017-07-01
Short-term exposure to ozone has been associated with asthma hospital admissions (HA) and emergency department (ED) visits, but the shape of the concentration-response (C-R) curve is unclear. We conducted a time series analysis of asthma HAs and ambient ozone concentrations in six metropolitan areas in Texas from 2001 to 2013. Using generalized linear regression models, we estimated the effect of daily 8-hour maximum ozone concentrations on asthma HAs for all ages combined, and for those aged 5-14, 15-64, and 65+years. We fit penalized regression splines to evaluate the shape of the C-R curves. Using a log-linear model, estimated risk per 10ppb increase in average daily 8-hour maximum ozone concentrations was highest for children (relative risk [RR]=1.047, 95% confidence interval [CI]: 1.025-1.069), lower for younger adults (RR=1.018, 95% CI: 1.005-1.032), and null for older adults (RR=1.002, 95% CI: 0.981-1.023). However, penalized spline models demonstrated significant nonlinear C-R relationships for all ages combined, children, and younger adults, indicating the existence of thresholds. We did not observe an increased risk of asthma HAs until average daily 8-hour maximum ozone concentrations exceeded approximately 40ppb. Ozone and asthma HAs are significantly associated with each other; susceptibility to ozone is age-dependent, with children at highest risk. C-R relationships between average daily 8-hour maximum ozone concentrations and asthma HAs are significantly curvilinear for all ages combined, children, and younger adults. These nonlinear relationships, as well as the lack of relationship between average daily 8-hour maximum and peak ozone concentrations, have important implications for assessing risks to human health in regulatory settings. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Abbasi, Amirali; Sardroodi, Jaber Jahanbin; Ebrahimzadeh, Alireza Rastkar; Yaghoobi, Mina
2018-03-01
Density functional theory calculations were performed to investigate the geometrical, electronic and adsorption properties of stanene based nanotubes in order to fully exploit the gas sensing capability of these nanotubes. The strain energy, structural parameters and electronic properties of stanene-based nanotubes with armchair and zigzag chirality with various diameters were examined in detail. The results show that, these nanotubes have a buckled structure, in which the tin atoms were arranged in chair-like honeycomb configuration. Calculated strain energy for considered nanotubes are relatively small compared to some other nanotubes pointed to flexibility of stanene mono layer. It was found that the strain energies for (4, 0), (5, 0) and (6, 0) nanotubes have negative values, indicating their stability with respect to stanene nanosheet. The band structure calculations reveal that the armchair nanotubes are semiconductors with two maximums with nearly same energies in valence band. However, the zigzag ones show both conductor and semiconductor behaviors by direct band gap in ᴦ point. Also the spatial distribution of molecular orbitals in valence band maximums and conduction band minimums were presented and discussed. Moreover, the adsorption behaviors of (6, 6) and (8, 8) nanotubes as chemical O3 detection device were investigated in detail. We found that O3 molecule dissociates into O2 over the considered nanotubes, being an effective strategy to help in the reduction of the concentration of these harmful pollutants in the environment. The results also suggest that O3 dissociation over the (6, 6) nanotube is more favorable in energy than that on the (8, 8) nanotube. The results present a great potential of stanene based nanotube for application as a highly sensitive ozone gas sensor.
Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletti, Luigi, E-mail: luigi.barletti@unifi.it
2014-08-15
The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.
Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Meena, Moorthy; Sathishkumar, Rengasamy Subramaniyan; Balasubramanian, Thangavel
2018-06-02
This paper examines the potential detoxification efficiency of heavy metals by phosphate solubilising bacteria (PSB) that were isolated from coral, sea grass and mangrove environment. Initially, four potential bacterial isolates were selected based on their phosphate solubilisation index from 42 strains and were used for the metal tolerance test. Among the four isolates, KSCAS2 exhibited maximum tolerance to heavy metals and the phenotype indicated the production of extra polymeric substances. In a multi-heavy metal experimental setup at two concentrations (100 and 200 mg L -l ), it has been demonstrated that the bacteria have extracellularly sequestered metal ions in amorphous deposits and this has been confirmed by scanning electron microscopy. In experiments with a 100 mg L -1 initial metal concentration, the percentages of metal removal by bacteria were 55.23% of Cd, 72.45% of Cr, 76.51% of Cu and 61.51% of Zn, respectively. In subsequent experiments, when the metal concentration was increased up to 200 mg L -l , the metal removal capacity decreased as follows: 44.62%, 63.1%, 67% and 52.80% for Cd, Cr, Cu and Zn, respectively. In addition, the biosorption of heavy metals was confirmed by the Fourier transform infrared Spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The heavy metal concentrations in a broth culture were analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The study suggests that PSB Cronobacter muytjensii KSCAS2 can efficiently remove the heavy metals and these bacteria could be used for the metal removal from the agricultural soils. Copyright © 2018. Published by Elsevier Ltd.
Fujimori, Takashi; Takigami, Hidetaka
2014-02-01
We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSombre, E.R.; Mease, R.C.; Hughes, A.
1988-01-01
A triphenylbromoethylene, 1,1-bis(p-hydroxyphenyl)-2-bromo-2-phenylethylene, Br-BHPE, and a bromosteroidal estrogen, 17..cap alpha..- bromovinylestradiol, BrVE/sub 2/, were labeled with the Auger electron emitting nuclide bromine-80m, prepared by the (p,n) reaction with /sup 80/Se. To assess their potential as estrogen receptor (ER) directed therapeutic substrates the bromine-80m labeled estrogens were injected into immature female rats and the tissue distribution studied at 0.5 and 2 hours. Both radiobromoestrogens showed substantial diethylstilbesterol (DES)-inhibitable localization in the ER rich tissues, uterus, pituitary, ovary and vagina at both time points. While the percent dose per gram tissue was higher for the Br-BHPE, the BrVE/sub 2/ showed higher tissuemore » to blood ratios, especially at 2 hr, reflecting the lower blood concentrations of radiobromine following administration of the steroidal bromoestrogen. Comparing intraperitoneal, intravenous and subcutaneous routes of administration for the radiobromine labeled Br-BHPE, the intraperitoneal route was particularly advantageous to provide maximum, DES-inhibitable concentrations in the peritoneal, ER-rich target organs, the uterus, ovary and vagina. While uterine concentrations after BrBHPE were from 10--48% dose/g and after BrVE/sub 2/ were 15--25% dose/g, similar treatment with /sup 80m/Br as sodium bromide showed uniform low concentrations in all tissues at about the levels seen in blood. The effective specific activity of (/sup 80m/Br)BrBHPE, assayed by specific binding to ER in rat uterine cytosol, was 8700 Ci/mmole. 23 refs., 9 figs., 2 tabs.« less
Kato, Nobuyuki; Nagaya, Taiki; Matsui, Yasuto; Yoneda, Minoru
2017-01-01
Objectives: The application of multiwall carbon nanotubes (MWCNTs) currently extends to various fields. However, it has been reported that exposure to CNT causes hazardous effects on animals and cells. The purpose of this study was to quantify the exposure to MWCNT in MWCNT/polymer composites for exposure assessment. We focused on catalytic metals included in the MWCNT and the diameter of dust released during the working processes. Although the Co in MWCNTs is not a common catalyst, it was used as a tracer in this study. Methods: A field survey was conducted in a MWCNT/polymer composite pilot factory. Airborne MWCNTs were monitored using black carbon monitors (BCMs) and optical particle sizers (OPSs) and collected on a filter. The MWCNT powder, all polymer resins used during the working processes, and the filter were analyzed in our lab using inductively coupled plasma mass spectrometry (ICP-MS) and electron microscopic observation. Results: The mean concentration of airborne MWCNT contained in the collected dust was 0.92 μg/m3 a few meters away from the extruder during the working processes (using elemental analysis). The maximum concentration measured using BCMs was shown to be seven times higher than the base concentration during the pelletizing process of polycarbonate (PC) and MWCNT composites. However, free, isolated, and unbound agglomerated MWCNTs were not detected using scanning electron microscopic (SEM) observation. Conclusions: The result obtained by elemental analysis indicated it was possible to quantify MWCNT in composites. The mean concentration at this factory was lower than the recommended exposure limit. However, additional studies during the pelletizing process are required in the future. PMID:28993572
NASA Astrophysics Data System (ADS)
Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.
2018-02-01
In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.
NASA Astrophysics Data System (ADS)
Ali, H. M.; Mohamed, H. A.; Wakkad, M. M.; Hasaneen, M. F.
2009-04-01
Tin-doped cadmium oxide films were deposited by electron beam evaporation technique. The structural, optical and electrical properties of the films were characterized. The X-ray diffraction (XRD) study reveals that the films are polycrystalline in nature. As composition and structure change due to the dopant ratio and annealing temperature, the carrier concentration was varied around 1020 cm-3, and the mobility increased from less than 10 to 45 cm2 V-1 s-1. A transmittance value of ˜83% and a resistivity value of 4.4 ×10-4 Ω cm were achieved for (CdO)0.88(SnO2)0.12 film annealed at 350 °C for 15 min., whereas the maximum value of transmittance ˜93% and a resistivity value of 2.4 ×10-3 Ω cm were obtained at 350 °C for 30 min. The films exhibited direct band-to-band transitions, which corresponded to optical band gaps of 3.1-3.3 eV.
Yeast fuel cell: Application for desalination
NASA Astrophysics Data System (ADS)
Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo
2016-02-01
Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.
First plasma wave observations at neptune.
Gurnett, D A; Kurth, W S; Poynter, R L; Granroth, L J; Cairns, I H; Macek, W M; Moses, S L; Coroniti, F V; Kennel, C F; Barbosa, D D
1989-12-15
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.
NASA Astrophysics Data System (ADS)
Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.
2014-12-01
This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).
High-efficiency optical pumping of nuclear polarization in a GaAs quantum well
NASA Astrophysics Data System (ADS)
Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.
2017-11-01
The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.
Howald, Ludovic; Stilp, Evelyn; de Réotier, Pierre Dalmas; Yaouanc, Alain; Raymond, Stéphane; Piamonteze, Cinthia; Lapertot, Gérard; Baines, Christopher; Keller, Hugo
2015-01-01
In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature—tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1−xCdx)5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure. PMID:26224422
Sidhik, Siraj; Cerdan Pasarán, Andrea; Esparza, Diego; López Luke, Tzarara; Carriles, Ramón; De la Rosa, Elder
2018-01-31
We for the first time report the incorporation of cobalt into a mesoporous TiO 2 electrode for application in perovskite solar cells (PSCs). The Co-doped PSC exhibits excellent optoelectronic properties; we explain the improvements by passivation of electronic trap or sub-band-gap states arising due to the oxygen vacancies in pristine TiO 2 , enabling faster electron transport and collection. A simple postannealing treatment is used to prepare the cobalt-doped mesoporous electrode; UV-visible spectroscopy, X-ray photoemission spectroscopy, space charge-limited current, photoluminescence, and electrochemical impedance measurements confirm the incorporation of cobalt, enhanced conductivity, and the passivation effect induced in the TiO 2 . An optimized doping concentration of 0.3 mol % results in the maximum power conversion efficiency of 18.16%, 21.7% higher than that of a similar cell with an undoped TiO 2 electrode. Also, the device shows negligible hysteresis and higher stability, retaining 80.54% of the initial efficiency after 200 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, V. W.; Zavarin, E. E.
The effect of the layer thickness and composition in AlGaN/AlN/GaN and InAlN/AlN/GaN transistor heterostructures with a two-dimensional electron gas on their electrical and the static parameters of test transistors fabricated from such heterostructures are experimentally and theoretically studied. It is shown that the use of an InAlN barrier layer instead of AlGaN results in a more than twofold increase in the carrier concentration in the channel, which leads to a corresponding increase in the saturation current. In situ dielectric-coating deposition on the InAlN/AlN/GaN heterostructure surface during growth process allows an increase in the maximum saturation current and breakdown voltages whilemore » retaining high transconductance.« less
Sheets, Johnathon P; Ge, Xumeng; Li, Yueh-Fen; Yu, Zhongtang; Li, Yebo
2016-02-01
The aim of this work was to isolate methanotrophs (methane oxidizing bacteria) that can directly convert biogas produced at a commercial anaerobic digestion (AD) facility to methanol. A methanotrophic bacterium was isolated from solid-state anaerobic digestate. The isolate had characteristics comparable to obligate methanotrophs from the genus Methylocaldum. This newly isolated methanotroph grew on biogas or purified CH4 and successfully converted biogas from AD to methanol. Methanol production was achieved using several methanol dehydrogenase (MDH) inhibitors and formate as an electron donor. The isolate also produced methanol using phosphate with no electron donor or using formate with no MDH inhibitor. The maximum methanol concentration (0.43±0.00gL(-1)) and 48-h CH4 to methanol conversion (25.5±1.1%) were achieved using biogas as substrate and a growth medium containing 50mM phosphate and 80mM formate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Silkin, V A; Chubchikova, I N
2007-01-01
We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.
Characterization of an F-center in an alkali halide cluster
NASA Astrophysics Data System (ADS)
Bader, R. F. W.; Platts, J. A.
1997-11-01
The removal of a fluorine atom from its central position in a cubiclike Li14F13+ cluster creates an F-center vacancy that may or may not be occupied by the remaining odd electron. The topology exhibited by the electron density in Li14F12+, the F-center cluster, enables one to make a clear distinction between the two possible forms that the odd electron can assume. If it possesses a separate identity, then a local maximum in the electron density will be found within the vacancy and the F-center will behave quantum mechanically as an open system, bounded by a surface of local zero flux in the gradient vector field of the electron density. If, however, the density of the odd electron is primarily delocalized onto the neighboring ions, then a cage critical point, a local minimum in the density, will be found at the center of the vacancy. Without an associated local maximum, the vacancy has no boundary and is undefined. Self-consistent field (SCF) calculations with geometry optimization of the Li14F13+ cluster and of the doublet state of Li14F12+ show that the creation of the central vacancy has only a minor effect upon the geometry of the cluster, the result of a local maximum in the electron density being formed within the vacancy. Thus the F-center is the physical manifestation of a non-nuclear attractor in the electron density. It is consequently a proper open system with a definable set of properties, the most characteristic being its low kinetic energy per electron. In addition to determining the properties of the F-center, the effect of its formation on the energies, volumes, populations, both electron and spin, and electron localizations of the ions in the cluster are determined.
Monoenergetic electron parameters in a spheroid bubble model
NASA Astrophysics Data System (ADS)
Sattarian, H.; Sh., Rahmatallahpur; Tohidi, T.
2013-02-01
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.
NASA Astrophysics Data System (ADS)
Marzocchi, U.; Revsbech, N. P.; Nielsen, L. P.; Risgaard-Petersen, N.
2012-04-01
Bacteria are apparently able to transmit electrons to other bacteria (Summers et al. 2010) or to electrodes (Malvankar et al. 2011) by some kind of nanowires (Reguera et al. 2005, Gorbi et al. 2006). Lately it has been shown that such transfer may occur over distances of centimetres in sediments, thereby coupling sulphide oxidation in deeper layers with oxygen reduction near the surface (Nielsen 2011). The finding of these long-distance electrical connections originated from analysis of O2, H2S, and pH profiles measured with microsensors. Nitrate is thermodynamically almost as good an electron acceptor as O2, and we therefore set up an experiment to investigate whether long-distance electron transfer also happens with NO3-. Aquaria were filled with sulphidic marine sediment from Aarhus Bay that was previously used to show long-distance electron transfer to O2. The aquaria were equipped with a lid so that they could be completely filled without a gas phase. Anoxic seawater with 300 μM NO3- was supplied at a constant rate resulting in a steady state concentration in the aquatic phase of 250 μM NO3-. The reservoir with the nitrate-containing water was kept anoxic by bubbling it with a N2/CO2 mixture and was kept at an elevated temperature. The water was cooled on the way to the aquaria to keep the water in the aquaria undersaturated with gasses, so that bubble formation by denitrification in the sediment could be minimised. Profiles of NO3-, H2S, and pH were measured as a function of time (2 months) applying commercial sensors for H2S and pH and an improved microscale NO3- biosensor developed in our laboratory. The penetration of NO3- in the sediment was 4-5 mm after 2 months, whereas sulphide only could be detected below 8-9 mm depth. The electron acceptor and electron donor were thus separated by 4-5 mm, indicating long distance electron transfer. A pH maximum of about 8.6 pH units at the NO3- reduction zone similar to a pH maximum observed in the O2 reduction zone of electro-active sediments could be observed. This pH maximum was the strongest evidence for long-distance electron transfer in oxic sediments, but cannot be taken as proof in denitrifying sediments as conventional denitrification may also produce elevated pH. We are now searching for the NO3- reducing bacteria that may be active in long-distance electron transfer in our sediment. Gorby, Y. A., S. Yanina, et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America 103(30): 11358-11363. Malvankar, N. S., M. Vargas, et al. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology 6(9): 573-579. Nielsen, L. P., N. Risgaard-Petersen, et al. (2010). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463(7284): 1071-1074. Reguera, G., K. D. McCarthy, et al. (2005). Extracellular electron transfer via microbial nanowires. Nature 435(7045): 1098-1101. Summers, Z. M., H. E. Fogarty, et al. (2010). Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria. Science 330(6009): 1413-1415.
[Hydroxylamine conversion by anammox enrichment].
Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua
2010-04-01
Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway model presented by van de Graaf AA.
[Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].
Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao
2009-04-15
The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.
Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu
2010-11-01
Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.
An investigation of FT-Raman spectroscopy for quantification of additives to milk
USDA-ARS?s Scientific Manuscript database
In this research, four chemicals, urea, ammonium sulfate, dicyandiamide, and melamine, were mixed into liquid nonfat milk at concentrations starting from 0.1% to a maximum concentration determined for each chemical according to its maximum solubility, and two Raman spectrometers—a commercial Nicolet...
Code of Federal Regulations, 2010 CFR
2010-04-01
... conditions: (a) The additive is a mixture of peroxyacetic acid, octanoic acid, acetic acid, hydrogen peroxide... the maximum concentration of hydrogen peroxide is 75 ppm. (2) The additive is used as an antimicrobial... million (ppm) as peroxyacetic acid, the maximum concentration of hydrogen peroxide is 110 ppm, and the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... conditions: (a) The additive is a mixture of peroxyacetic acid, octanoic acid, acetic acid, hydrogen peroxide... the maximum concentration of hydrogen peroxide is 75 ppm. (2) The additive is used as an antimicrobial... million (ppm) as peroxyacetic acid, the maximum concentration of hydrogen peroxide is 110 ppm, and the...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...
40 CFR 464.34 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...
Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai
2010-10-01
Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.
Seebeck Coefficient Measurements on Micron-Size Single-Crystal Zinc Germanium Nitride Rods
NASA Astrophysics Data System (ADS)
Dyck, J. S.; Colvin, J. R.; Quayle, P. C.; Peshek, T. J.; Kash, K.
2016-06-01
II-IV-nitride compounds are tetrahedrally bonded, heterovalent ternary semiconductors that have recently garnered attention for their potential technological applications. These materials are derived from the parent III-nitride compounds; ZnGeN2 is the II-IV-nitride analogue to the III-nitride GaN. Very little is known about the transport properties of ZnGeN2. In this work, we present Seebeck coefficient ( S) data on 3-micron-diameter, 70-micron-long, single-crystal ZnGeN2 rods, employing a novel measurement approach. The measurements of S show that the majority free carriers are electrons, and imply that the carrier gas is degenerate. Within a single-band model for the conduction band, a carrier concentration of order 1019 cm-3 was estimated for a measured S = -90 μV/K. Together with electrical transport measurements, a lower limit for the electron mobility is estimated to be ˜20 cm2/V-s. A discussion of this material as a thermoelectric is presented. The background level of free electrons in this unintentionally doped ZnGeN2 is very near the predicted optimum value for maximum thermoelectric performance.
Asmus, K D; Bensasson, R V; Bernier, J L; Houssin, R; Land, E J
1996-01-01
Redox reactions of endogenous and exogenous sulphur-containing compounds are involved in protection against oxidative damage arising from the incidence and/or treatment of many diseases, including cancer. We have investigated, via pulse radiolysis, the one-electron oxidation of ergothioneine, a molecule with antioxidant properties which is detected at millimolar concentrations in certain tissues and fluids subject to oxidative stress, including erythrocytes and plasma. The spectrum of the transient species, assigned to the product of one-electron oxidation, observed after reaction of ergothioneine with the oxidizing radicals OH., N3. and CCl3O2. has a maximum absorption at 520 nm and is very similar to that obtained by oxidation of analogous molecules such as 2-mercaptoimidazole, 1-methyl-2-mercaptoimidazole, S-methyl- and S,N-dimethyl-ergothioneine. In the presence of vitamin C, the oxidized form of ergothioneine is repaired by a rapid reduction (k = 6.3 x 10(8) M(-1).s(-1)) producing ascorbyl radicals. This co-operative interaction between ergothionine and ascorbate, similar to that previously observed between vitamin E and ascorbate, may contribute to essential biological redox protection. PMID:8615839
Campbell, T.R.
1996-01-01
A number of potentially hazardous chemicals were used at an asphalt plant on the Fort Bragg U.S. Army Reservation near Fayetteville, North Carolina. This plant was demolished in the late 1960's. Samples collected from soil, ground water, surface water, and streambed sediment were tested for the presence of contaminants. The sediment immediately underlying the demolished asphalt plant site consists mainly of sands, silts, and clayey sands with interbedded clay occurring at various depths. About 12 inches of rainfall per year infiltrate the unconfined surficial aquifer. The water table in this area is about 233 to 243 feet above sea level. Local ground water moves laterally, mainly towards the north- to-northwest at a rate of about 35 feet per year. where it discharges to Tank Creek, Little River, or one of their tributaries. A series of confining clays separate the surficial aquifer from the underlying upper Cape Fear aquifer. These clays help retard vertical migration of constituents dissolved in ground water. The saprolite-bedrock aquifer lies below the upper Cape Fear aquifer. In general ground water in the seven monitoring wells screened in the upper and lower part of the surficial aquifer did not contain detectable concentrations of chemicals related to past asphalt-plant activities. A small number of chemicals that were assumed to be unrelated to the asphalt plant were present in some of the study area monitoring wells. Ground water in four wells contained concentrations of organochlorine pesticides. Of these pesticides, concentrations of gamma-benzene hexachloride (lindane) (maximum of 0.76 micrograms per liter) exceeded the U.S. Environmental Protection Agency maximum contaminant level of 0.2 micrograms per liter in two wells. In addition, one well contained a trichloroethane concentration (7.7 micrograms per liter) that is assumed to be unrelated to demolished asphalt-plant operations, but exceeded the U.S. Environmental Protection Agency maximum contaminant level of 5.0 micrograms per liter. One well contained a fluoride concentration of 5.2 milligrams per liter that exceeded the U.S. Environmental Protection Agency maximum contaminant level of 4.0 milligrams per liter. Total and dissolved metals concentrations were generally typical of background levels. Some of the wells contained elevated levels of chloride (maximum of 749 milligrams per liter), specific conductance (maximum of 2,780 microsiemens per centimeter at 25 degrees Celsius), and dissolved solids (maximum of 1,520 milligrams per liter). Twelve of twenty-two soil samples that were collected at various depths at monitoring-well locations did not contain volatile organic compounds or polynuclear aromatic hydrocarbons. The remaining ten soil samples contained very low concentrations of polynuclear aromatic hydrocarbons and (or) analytical laboratory-related volatile organic compounds. The maximum concentrations were for fluoranthene and pyrene, at 780 and 750 micrograms per kilogram, respectively. In general, the polynuclear aromatic hydrocarbon concentrations were in sediment near the land surface. Streambed sediment from an unnamed, eastern tributary to Tank Creek in the eastern part of the site contained a small number of organochlorine pesticide compounds (a maximum of 1,400 milligrams per kilogram of 4,4'-DDD) and total petroleum hydrocarbons (113 milligrams per kilogram). Concentrations of metals and other inorganic constituents were generally typical of background concentrations. Surface water in this tributary did not contain elevated concentrations of anthropogenic chemicals.
NASA Astrophysics Data System (ADS)
Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.
2010-11-01
Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower energy sources. Such ablative magnitude dose enhancement in a relatively small endothelial volume may rapidly disrupt or cause severe biological damage to tumor endothelial cells, without increased toxicity to healthy tissues not containing AuNPs. The findings provide significant impetus for considering the application of AuNPs as VDAs during brachytherapy.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Emerson, B. R., Jr.; Hudgins, C. H.
1978-01-01
Airborne chlorine and hydrogen chloride measurements were made in the tropospheric ground cloud following the Voyager launches of August 20 and September 5, 1977. The maximum observed hydrogen chloride concentration for both launches was about 25 to 30 parts per million (ppm) occurring typically 2 to 6 minutes after launch. By completion of the sampling mission (1-1/2 hours for August, 4-1/2 hours for September), the maximum in-cloud concentration decayed to about 1 to 2 ppm. Maximum observed chlorine concentrations were about 40 to 55 parts per billion (ppb) about 2 to 8 minutes after launch; by about 15 minutes after launch, chlorine concentrations were less than 10 ppb (detection limit). In-cloud chlorine concentrations were well below 1 percent of hydrogen chloride concentrations. The appendix of the report discusses the chlorine instrument and the laboratory evaluation of the detector.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Electrical and optical evaluation of n-type doping in In x Ga(1-x)P nanowires.
Zeng, Xulu; Mourão, Renato T; Otnes, Gaute; Hultin, Olof; Dagytė, Vilgailė; Heurlin, Magnus; Borgström, Magnus T
2018-06-22
To harvest the benefits of III-V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense In x Ga (1-x) P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H 2 S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 × 10 16 cm -3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H 2 S as dopant precursors using our parameters is measured to be ∼2 × 10 18 cm -3 , and ∼1 × 10 19 cm -3 , respectively (by Hall effect measurements). Hence, both TESn and H 2 S are suitable precursors for a wide range of n-doping levels in In x Ga (1-x) P nanowires needed for optoelectronic devices, grown via the vapor-liquid-solid mode.
Electrical and optical evaluation of n-type doping in In x Ga(1‑x)P nanowires
NASA Astrophysics Data System (ADS)
Zeng, Xulu; Mourão, Renato T.; Otnes, Gaute; Hultin, Olof; Dagytė, Vilgailė; Heurlin, Magnus; Borgström, Magnus T.
2018-06-01
To harvest the benefits of III–V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense In x Ga(1‑x)P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H2S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 × 1016 cm‑3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H2S as dopant precursors using our parameters is measured to be ∼2 × 1018 cm‑3, and ∼1 × 1019 cm‑3, respectively (by Hall effect measurements). Hence, both TESn and H2S are suitable precursors for a wide range of n-doping levels in In x Ga(1‑x)P nanowires needed for optoelectronic devices, grown via the vapor–liquid–solid mode.
NASA Astrophysics Data System (ADS)
Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, G. R.; Badalyan, A. G.; Romanov, N. G.; Petrosyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.
2017-06-01
Paramagnetic Ce3 +optical emitters have been studied by means of optically detected magnetic resonance (ODMR) via Ce3 + spin-dependent emission in cerium-doped garnet crystals which were both gadolinium free and contain gadolinium in a concentration from the lowest (0.1%) to 100%, i.e., to the superparamagnetic state. It has been shown that the intensity of photoluminescence excited by circularly polarized light into Ce3 + absorption bands can be used for selective monitoring the population of the Ce3 + ground-state spin sublevels. Direct evidence of the cross-relaxation effects in garnet crystals containing two electron spin systems, i.e., the simplest one of Ce3 + ions with the effective spin S =1/2 and the system of Gd3 + ions with the maximum spin S =7/2 , has been demonstrated. Magnetic resonance of Gd3 + has been found by monitoring Ce3 + emission in cerium-doped garnet crystals with gadolinium concentrations of 0.1 at. %, 4%-8%, and 100%, which implies the impact of the Gd3 + spin polarization on the optical properties of Ce3 +. Strong internal magnetic fields in superparamagnetic crystals were shown to modify the processes of recombination between UV-radiation-induced electron and hole centers that lead to the recombination-induced Ce3 + emission. Observation of spikes and subsequent decay in the cross-relaxation-induced ODMR signals under pulsed microwave excitation is suggested to be an informative method to investigate transient processes in the many-spin system of Ce3 +, Gd3 +, and electron and hole radiation-induced centers.
30 CFR 57.5039 - Maximum permissible concentration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...
30 CFR 57.5039 - Maximum permissible concentration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...
30 CFR 57.5039 - Maximum permissible concentration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...
30 CFR 57.5039 - Maximum permissible concentration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...
30 CFR 57.5039 - Maximum permissible concentration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR...
Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender
NASA Astrophysics Data System (ADS)
Varrla, Eswaraiah; Paton, Keith R.; Backes, Claudia; Harvey, Andrew; Smith, Ronan J.; McCauley, Joe; Coleman, Jonathan N.
2014-09-01
To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml-1 and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ~0.15 g h-1, much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation.To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml-1 and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ~0.15 g h-1, much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03560g
Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Gromiec, Jan P; Konieczko, Katarzyna
2015-06-01
The aim of this study was to determine hydrogen sulphide concentration emitted from the mine extracting copper ore, to evaluate potential adverse health effects to the population living in four selected villages surrounding the exhaust shaft. Maximum measured concentration of hydrogen sulphide in the emitter is 286 µg/m³. Maximum emission calculated from the results of determinations of concentrations in the emitter is 0.44 kg/h. In selected villages hydrogen sulphide at concentrations exceeding 4 µg/m³ was not detected in any of the 5-hour air samples. In all locations, the estimated maximum 1-hour concentrations of hydrogen sulphide were below 1 µg/m³, and the estimated mean annual concentrations were below 0.53 µg/m³. Any risk to the health of people in the selected area is not expected. As indicated by the available data on the threshold odour, the estimated concentrations of hydrogen sulphide may be sensed by humans. Copyright© by the National Institute of Public Health, Prague 2015.
Tang, Yulin; Li, Shuyan; Qiao, Junlian; Wang, Hongtao; Li, Lei
2013-01-01
Anabaena sp. was used to examine the toxicity of exposure to a nano-TiO2 suspension, Zn2+ solution, and mixtures of nano-TiO2 and Zn2+ suspensions. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Nano-TiO2 particles exhibited no significant toxicity at concentrations lower than 10.0 mg/L. The 96 h concentration for the 50% maximal effect (EC50) of Zn2+ alone to Anabaena sp. was 0.38 ± 0.004 mg/L. The presence of nano-TiO2 at low concentrations (<1.0 mg/L) significantly enhanced the toxicity of Zn2+ and consequently reduced the EC50 value to 0.29 ± 0.003 mg/L. However, the toxicity of the Zn2+/TiO2 system decreased with increasing nano-TiO2 concentration because of the substantial adsorption of Zn2+ by nano-TiO2. The toxicity curve of the Zn2+/TiO2 system as a function of incremental nano-TiO2 concentrations was parabolic. The toxicity significantly increased at the initial stage, reached its maximum, and then decreased with increasing nano-TiO2 concentration. Hydrodynamic sizes, concentration of nano-TiO2 and Zn2+ loaded nano-TiO2 were the main parameters for synergistic toxicity. PMID:23852017
Variations of thermoelectric performance by electric fields in bilayer MX2 (M = W, Mo; X = S, Se).
Wang, Rui-Ning; Dong, Guo-Yi; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long
2017-02-22
A gate electrode is usually used to controllably tune the carrier concentrations, further modulating the electrical conductivity and the Seebeck coefficient to obtain the optimum thermoelectric figure of merit (ZT) in two-dimensional materials. On the other hand, it is necessary to investigate how an electric field induced by a gate voltage affects the electronic structures, further determining the thermoelectric properties. Therefore, by using density functional calculations in combination with Boltzmann theory, the thermoelectric properties of bilayer MX 2 (M = W, Mo; X = S, Se) with or without a 1 V nm -1 perpendicular electric field are comparatively investigated. First of all, the variations of the electrical conductivity (σ), electron thermal conductivity and Seebeck coefficient (S) with the carrier concentration are studied. Due to the trade-off relationship between S and σ, there is an optimum concentration to obtain the maximum ZT, which increases with the temperature due to the enhancement of the Seebeck coefficient. Moreover, N-type bilayers have larger optimum ZTs than P-type bilayers. In addition, the electric field results in the increase of the Seebeck coefficient in low hole-doped MS 2 bilayers and high hole-doped MSe 2 bilayers, thus leading to similar variations in ZT. The optimum ZTs are reduced from 2.11 × 10 -2 , 3.19 × 10 -2 , 2.47 × 10 -2 , and 2.58 × 10 -2 to 1.57 × 10 -2 , 1.51 × 10 -2 , 2.08 × 10 -2 , and 1.43 × 10 -2 for the hole-doped MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively. For N-type bilayers, the electric field shows a destructive effect, resulting in the obvious reduction of the Seebeck coefficient in the MSe 2 layers and the low electron-doped MS 2 bilayers. In electron-doped bilayers, the optimum ZTs will decrease from 3.03 × 10 -2 , 6.64 × 10 -2 , and 6.69 × 10 -2 to 2.81 × 10 -2 , 3.59 × 10 -2 , and 4.39 × 10 -2 for the MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehkordi, Arash Mehdizadeh, E-mail: amehdiz@g.clemson.edu; Bhattacharya, Sriparna; He, Jian
2014-05-12
Recently, we have reported a significant enhancement (>70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO{sub 3} ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO{sub 3}. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr{sub 1−x}Pr{sub x}TiO{sub 3} ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factormore » and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.« less
NASA Astrophysics Data System (ADS)
Al-Azawi, Khalida F.; Mohammed, Iman Mahdi; Al-Baghdadi, Shaimaa B.; Salman, Taghried A.; Issa, Hamsa A.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer; Kadhum, Abdul Amir H.
2018-06-01
Iraq has been one of the most extensive oil and natural gas industries in the world. The corrosion of mild steel is costly and insufficiency process. It is responsible for great loss in manufacture and environment. Natural and organic inhibitors have been utilized for a long time to inhibit the corrosion. Selected thiadiazol derivative, namely 3-((5-(3,5-dinitrophenyl)-1,3,4-thiadiazol-2-yl)imino)indolin-2-one (TDIO) was investigated for it inhibitive impacts in 1 M HCl medium on corrosion of mild steel using weight loss and scanning electron microscope techniques. The maximum inhibition efficiency up to 90.7% at the maximum inhibitor concentration 0.5 mM. Surface morphology of results demonstrated that TDIO formed adsorbed film on surface of mild steel in hydrochloric acid solution. Give molecular based clarifications to the inhibitive impacts of the studied. The interactions between mild steel surface and the inhibitor molecules have been undertaken to further corroborate the methodological results.
Costello, L. R.; Bassham, James A.; Calvin, Melvin
1982-01-01
Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants. Images PMID:16662189
NASA Astrophysics Data System (ADS)
Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan
2016-05-01
Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments.
Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method
NASA Astrophysics Data System (ADS)
Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.
Structural and magnetic characterization of Ti doped cobalt ferrite (CoFe2O4)
NASA Astrophysics Data System (ADS)
Pal, Jaswinder; Kumar, Sunil; Kaur, Randeep; Agrawal, P.; Singh, Mandeep; Singh, Anupinder
2018-05-01
Synthesis of Co1-xTixFe2O4 solid solutions for 0.1≤x≤0.4 using the solid-state-reaction rate has been done. The prepared samples were characterized by using XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). Magnetic studies have been done using Vibrating Sample Magnetometer (VSM). XRD confirmed that Cobalt Ferrite spinel cubic structure in all prepared samples. The lattice parameter `a' increases with increase in the concentration of Ti. SEM micrograph shows good grain growth in all samples. Magnetic Study reveals that the M-H curves of all the prepared samples taken at room temperature are very well saturated. The maximum value of remnant magnetization (Mr ˜13.9 emu/g) and saturation magnetization (Ms ˜74.4 emu/g) has been observed for x =0.2 sample. Coercivity does not show any regular variation with increase in the molar concentration of Ti in CoFe2O4 at A-site.
Zhao, Guo-Hua; Luo, Xing-Zhang; Chen, Gui; Zhao, Yong-Jun
2014-08-01
Printed circuit boards (PCBs) are the main components of electrical and electronic equipment (EEE). Waste PCBs contain several kinds of heavy metals, including Cu, Pb and Zn. We characterize the leaching of heavy metals (Cu, Pb, Zn and Ni) from waste PCBs in a pH range of 3.0 to 5.6 using a novel approach based on batch pH-static leaching experiments in this work. The results indicate that the leaching behavior of Cu, Pb, Zn and Ni is strongly dependent on pH. Leaching behavior also varies with different pH values and leaching times. The maximum concentrations of Cu, Pb, Zn and Ni in leachate from waste PCBs were 335.00, 17.57, 2.40 and 2.33 mg L(-1), respectively. The highest Pb, Ni, and Cu concentrations leached significantly exceeded the European Union waste-acceptance limit values with respect to inert waste landfills. The leaching of metals follows the shrinking core model with surface reaction control.
Presence of polychlorinated biphenyls (PCBs) in bottled drinking water in Mexico City.
Salinas, Rutilio Ortiz; Bermudez, Beatriz Schettino; Tolentino, Rey Gutiérrez; Gonzalez, Gilberto Díaz; Vega y León, Salvador
2010-10-01
This paper describes the concentrations of seven polychlorinated biphenyls (PCBs) in bottled drinking water samples that were collected over 1 year from Mexico City in two sizes (1.5 and 19 L), using gas chromatography with an electron capture detector. PCBs 28 (0.018-0.042 μg/L), 52 (0.006-0.015 μg/L) and 101 (0.001-0.039 μg/L) were the most commonly found and were present in the majority of the samples. However, total concentrations of PCBs in bottled drinking water (0.035-0.039 μg/L) were below the maximum permissible level of 0.50 μg/L stated in Mexican regulations and probably do not represent a hazard to human health. PCBs were detectable in all samples and we recommend a monitoring program be established to better understand the quality of drinking bottled water over time; this may help in producing solutions for reducing the presence of organic contaminants.
Experimental and theoretical studies of Schiff bases as corrosion inhibitors.
Jamil, Dalia M; Al-Okbi, Ahmed K; Al-Baghdadi, Shaimaa B; Al-Amiery, Ahmed A; Kadhim, Abdulhadi; Gaaz, Tayser Sumer; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2018-02-05
Relatively inexpensive, stable Schiff bases, namely 3-((4-hydroxybenzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ3) and 3-((4-(dimethylamino)benzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4), were employed as highly efficient inhibitors of mild steel corrosion by corrosive acid. The inhibition efficiencies were estimated based on weight loss method. Moreover, scanning electron microscopy was used to investigate the inhibition mechanism. The synthesized Schiff bases were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and micro-elemental analysis. The inhibition efficiency depends on three factors: the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight. Inhibition efficiencies of 96 and 92% were achieved with BZ4 and BZ3, respectively, at the maximum tested concentration. Density functional theory calculations of BZ3 and BZ4 were performed to compare the effects of hydroxyl and N,N-dimethylamino substituents on the inhibition efficiency, providing insight for designing new molecular structures that exhibit enhanced inhibition efficiencies.
NASA Astrophysics Data System (ADS)
Talik, E.; Kusz, J.; Guzik, A.; Szubka, M.; Balin, K.; Kisielewski, J.; Wierzchowski, W.; Malinowska, A.; Strojny-Nedza, A.; Pajaczkowska, A.; Drozdowski, W.
2017-05-01
Lattice parameters, magnetic susceptibility, electronic structure, distribution of the elements and thermal properties were examined for single crystals of Lu3Al5O12 (LuAG) and (Lu1-x Y x )3Al5O12 (LuYAG) (x = 0.25, 0.50, 0.75), either pure or doped with Pr and optionally co-doped with Mo, which are predicted as potential fast and efficient scintillators. It was indicated that specific cage-like surrounding of rare earth and aluminum ions built from oxygen ions and proper doping can influence the thermal conductivity and the emission process. Maximum light emission (LY) was observed at praseodymium concentration about 0.3 at.%. The growth atmosphere (Ar or N2) influences the crystal quality. Additional molybdenum doping below 0.01 at% concentration increases LY.
NASA Astrophysics Data System (ADS)
Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.
2018-06-01
Using the s-d microscopic model including the electron-phonon interaction and the Green's function theory we have considered the origin of room temperature ferromagnetism (RTFM) in pure and ion doped In2O3 nanoparticles (NPs). The magnetization M increases with decreasing particle size. M of Fe, Tb and Mn doped In2O3 NPs is investigated, which increases, decreases and has a maximum, respectively, with increasing doping concentration. The RTFM is due to surface oxygen vacancies and different ionic radius of the dopants compared to that of the host ions. This differences lead to different strains which changes the exchange interaction constants. We have calculated the dependence of the band gap energy on the particle size in In2O3 NPs and the Fe concentration of Fe doped In2O3 NPs. The results are in good qualitative agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan
2017-05-01
Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, I.; Ito, A.; Hayashi, K.
1973-06-01
The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less
McCarthy, M M; Mann, S; Nydam, D V; Overton, T R; McArt, J A A
2015-09-01
The objective was to use longitudinal data of blood nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) concentrations to describe the relationship between NEFA and BHBA in dairy cows during the periparturient period. Blood NEFA and BHBA concentration data collected from d 21 prepartum to 21 postpartum for 269 multiparous Holstein cows were selected from 4 different studies carried out within our research groups. Overall, NEFA concentrations were increased beginning near parturition with a relatively steady elevation of NEFA through d 9, after which concentrations gradually decreased. Prepartum BHBA concentrations began to increase beginning several days before parturition, continued to increase during the first week after parturition, and remained elevated through d 21 postpartum. Of the 269 cows included in the data set, 117 cows (43.5%) had at least one postpartum hyperketonemic event (BHBA ≥1.2mmol/L), and 202 cows (75.1%) had at least one event of elevated postpartum NEFA concentrations (≥0.70mmol/L) between 3 and 21 d in milk. Area under the curve (AUC) was used to investigate relationships between metabolites over time. Overall, the correlations between transition period NEFA and BHBA AUC were weak. We detected a negative correlation between prepartum BHBA AUC and postpartum NEFA AUC (r=-0.26). A positive correlation existed between postpartum NEFA AUC and postpartum BHBA AUC; however, the correlation coefficient was low (r=0.26). Large variation was found between the day of maximum NEFA concentration within the first 21 d in milk and day of maximum BHBA concentration for the same period. The mean and median times of maximum NEFA concentration were 6.8 and 6 d, respectively, whereas the mean and median times of maximum BHBA were 9.6 and 8 d, respectively; however, the range in days for both the mean and median day of maximum concentrations was very large. Overall, our data set indicates a weak relationship between blood concentrations of NEFA and BHBA during the periparturient period of dairy cows, suggesting that elevated concentrations of one should not be extrapolated to suggest elevated concentrations of the other metabolite. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Miao, Zewei; Xu, Ming; Lathrop, Richard G; Wang, Yufei
2009-02-01
A review of the literature revealed that a variety of methods are currently used for fitting net assimilation of CO2-chloroplastic CO2 concentration (A-Cc) curves, resulting in considerable differences in estimating the A-Cc parameters [including maximum ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), potential light saturated electron transport rate (Jmax), leaf dark respiration in the light (Rd), mesophyll conductance (gm) and triose-phosphate utilization (TPU)]. In this paper, we examined the impacts of fitting methods on the estimations of Vcmax, Jmax, TPU, Rd and gm using grid search and non-linear fitting techniques. Our results suggested that the fitting methods significantly affected the predictions of Rubisco-limited (Ac), ribulose 1,5-bisphosphate-limited (Aj) and TPU-limited (Ap) curves and leaf photosynthesis velocities because of the inconsistent estimate of Vcmax, Jmax, TPU, Rd and gm, but they barely influenced the Jmax : Vcmax, Vcmax : Rd and Jmax : TPU ratio. In terms of fitting accuracy, simplicity of fitting procedures and sample size requirement, we recommend to combine grid search and non-linear techniques to directly and simultaneously fit Vcmax, Jmax, TPU, Rd and gm with the whole A-Cc curve in contrast to the conventional method, which fits Vcmax, Rd or gm first and then solves for Vcmax, Jmax and/or TPU with V(cmax), Rd and/or gm held as constants.
NASA Astrophysics Data System (ADS)
Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.
2015-11-01
For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.
Weigel, K A; Pralle, R S; Adams, H; Cho, K; Do, C; White, H M
2017-06-01
Hyperketonemia (HYK), a common early postpartum health disorder characterized by elevated blood concentrations of β-hydroxybutyrate (BHB), affects millions of dairy cows worldwide and leads to significant economic losses and animal welfare concerns. In this study, blood concentrations of BHB were assessed for 1,453 Holstein cows using electronic handheld meters at four time points between 5 and 18 days postpartum. Incidence rates of subclinical (1.2 ≤ maximum BHB ≤ 2.9 mmol/L) and clinical ketosis (maximum BHB ≥ 3.0 mmol/L) were 24.0 and 2.4%, respectively. Variance components, estimated breeding values, and predicted HYK phenotypes were computed on the original, square-root, and binary scales. Heritability estimates for HYK ranged from 0.058 to 0.072 in pedigree-based analyses, as compared to estimates that ranged from 0.071 to 0.093 when pedigrees were augmented with 60,671 single nucleotide polymorphism genotypes of 959 cows and 801 male ancestors. On average, predicted HYK phenotypes from the genome-enhanced analysis ranged from 0.55 mmol/L for first-parity cows in the best contemporary group to 1.40 mmol/L for fourth-parity cows in the worst contemporary group. Genome-enhanced predictions of HYK phenotypes were more closely associated with actual phenotypes than pedigree-based predictions in five-fold cross-validation, and transforming phenotypes to reduce skewness and kurtosis also improved predictive ability. This study demonstrates the feasibility of using repeated cowside measurement of blood BHB concentration in early lactation to construct a reference population that can be used to estimate HYK breeding values for genomic selection programmes and predict HYK phenotypes for genome-guided management decisions. © 2017 Blackwell Verlag GmbH.
Puckett, L.J.; Cowdery, T.K.
2002-01-01
A combination of ground water modeling, chemical and dissolved gas analyses, and chlorofluorocarbon age dating of water was used to determine the relation between changes in agricultural practices, and NO3- concentrations in ground water of a glacial outwash aquifer in west-central Minnesota. The results revealed a redox zonation throughout the saturated zone with oxygen reduction occurring near the water table, NO3- reduction immediately below it, and then a large zone of ferric iron reduction, with a small area of sulfate (SO42-) reduction and methanogenesis (CH4) near the end of the transect. Analytical and NETPATH modeling results supported the hypothesis that organic carbon served as the electron donor for the redox reactions. Denitrification rates were quite small, 0.005 to 0.047 mmol NO3- yr-1, and were limited by the small amounts of organic carbon, 0.01 to 1.45%. In spite of the organic carbon limitation, denitrification was virtually complete because residence time is sufficient to allow even slow processes to reach completion. Ground water sample ages showed that maximum residence times were on the order of 50 to 70 yr. Reconstructed NO3- concentrations, estimated from measured NO3- and dissolved N gas showed that NO3- concentrations have been increasing in the aquifer since the 1940s, and have been above the 714 ??mol L-1 maximum contaminant level at most sites since the mid- to late-1960s. This increase in NO3- has been accompanied by a corresponding increase in agricultural use of fertilizer, identified as the major source of NO3- to the aquifer.
Razzak, Rene; Zhou, Joe; Yang, XiaoHong; Pervez, Nadim; Bédard, Eric Lr; Moore, Ronald B; Shaw, Andrew; Amanie, John; Roa, Wilson H
2013-06-01
Gold nanoparticles (GNPs) have attracted significant attention in the treatment of cancer due to their potential as novel radiation enhancers, particularly when functionalized with various targeting ligands. The aim of this study was to assess the biodistribution and pharmacokinetic characteristics of a novel choline-bound GNP (choline-GNP) stabilized with polyethelenimine (PEI). Choline bound to 27 nm diameter GNPs was characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Toxicity of choline-GNPs was examined on DU-145 prostate cancer cells using an MTT assay. Using balb/c mice bearing flank DU-145 prostate tumors, choline-GNPs bio-distribution was measured using inductively coupled mass spectroscopy (ICP-MS). Blood, heart, lung, liver, spleen, brain, kidney and tumor gold content were examined at multiple time points over a 24-hour period after tail vein injection. An MTT assay using DU-145 prostate cancer cells yielded a 95% cell viability 72 hours after choline-GNP administration. The tumor GNP area under the concentration-time curve during the first 4 hours (AUC0-4) was 2.2 µg/ml h, representing 13% of the circulating blood GNP concentration over the same time period. The maximum intra-tumor GNP concentration observed was 1.4% of the injected dose per gram of tumor tissue (%ID/g) one hour post injection. GNPs functionalized with choline demonstrates a viable future nanoparticle platform with increased intra-tumor uptake as compared to unconjugated GNPs. Decreased intra-hepatic accumulation appears to be the reason for the improved systemic bioavailability. The next logical translational investigation will incorporate external beam radiation with the observed maximum intra-tumor uptake.
Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria
NASA Astrophysics Data System (ADS)
Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha
2017-09-01
In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response ( r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.
Quiet-Time Suprathermal (˜0.1 - 200 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Wang, Linghua; Yang, Liu; Tao, Jiawei; Zong, Qiugang; Li, Gang; Wimmer-Schweingruber, Robert; He, Jiansen; Tu, Chuanyi; Bale, Stuart
2017-04-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-200 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. The observed energy spectrum of both (beaming) strahl and (isotropic) halo electrons at ˜0.1-1.5 keV generally fits to a Kappa distribution function with an index κ and effective temperature Teff, while the observed energy spectrum of nearly isotropic superhalo electrons at ˜20-200 keV generally fits to a power-law function, J ˜ E-β. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl density and halo density. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. For the superhalo population, the spectral index β ranges from ˜1.6 to ˜3.7 and the integrated density nsup ranges from 10-8 cm-3 to 10-5 cm-3, with no clear association with the sunspot number. In solar cycle 23 (24), the distribution of β has a broad maximum between 2.4 and 2.8 (2.0 and 2.4). All the strahl, halo and superhalo populations show no obvious correlation with the solar wind core population. These results reflect the nature of the generation of solar wind suprathermal electrons.
NASA Astrophysics Data System (ADS)
Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.
2015-10-01
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.
A MODFET dc model with improved pinchoff and saturation characteristics
NASA Astrophysics Data System (ADS)
Rohdin, Hans; Roblin, Patrick
1986-05-01
An improved analytical dc model for the MODFET is proposed which uses a new approximation of the two-dimensional electron gas concentration versus gate-to-channel voltage, a ratio which models both the subthreshold region and the gradual saturation of carriers due to the onset of AlGaAs charge modulation. A two-region Grebene-Ghandi model with a floating boundary is used for the channel. A maximum transconductance and a finite intrinsic output conductance in the saturated region are predicted, in agreement with experimental observations. The model is shown to approach the saturated velocity model in the limit of very short gate lengths, and to approach the classical gradual channel model in the limit of very long gate lengths.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
...; Design Roll Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT... design roll maneuver for electronic flight controls, specifically an electronic flight control system... control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of 12 passengers...
Generation of a pulsed low-energy electron beam using the channel spark device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.
2015-12-15
For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakumari, V.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com; Utsumi, Hideo
2015-06-24
Electron spin resonance (ESR) studies were carried out for permeable 2mM {sup 14}N-labeled deutrated 3 Methoxy carbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water and 1mM, 2mM, 3mM, 4mM concentration of 14N-labeled deutrated MC-PROXYL in 400mM concentration of liposomal solution by using a 300 MHz ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported for these samples. The line broadening was observed for the nitroxyl spin probe in the liposomal solution. The line broadening indicates that the high viscous nature of the liposomal solution. The partition parameter and permeability values indicate the maximum diffusion ofmore » nitroxyl spin probes in the bilayer lipid membranes at 2 mM concentration of nitroxyl radical. This study illustrates that ESR can be used to differentiate between the intra and extra- membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the spin probe concentration was optimized as 2mM in liposomal solution for ESR phantom studies/imaging, invivo and invitro experiments.« less
NASA Astrophysics Data System (ADS)
Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.
2018-04-01
Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.
Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism ofmore » heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.« less
Effect of zinc impurity on silicon solar-cell efficiency
NASA Technical Reports Server (NTRS)
Sah, C.-T.; Chan, P. C. H.; Wang, C.-K.; Yamakawa, K. A.; Lutwack, R.; Sah, R. L.-Y.
1981-01-01
Zinc is a major residue impurity in the preparation of solar-grade silicon material by the zinc vapor reduction of silicon tetrachloride. This paper projects that in order to get a 17-percent AM1 cell efficiency for the Block IV module of the Low-Cost Solar Array Project, the concentration of the zinc recombination centers in the base region of silicon solar cells must be less than 4 x 10 to the 11th Zn/cu cm in the p-base n+/p/p+ cell and 7 x 10 to the 11th Zn/cu cm in the n-base p+/n/n+ cell for a base dopant impurity concentration of 5 x 10 to the 14 atoms/cu cm. If the base dopant impurity concentration is increased by a factor of 10 to 5 x 10 to the 15th atoms/cu cm, then the maximum allowable zinc concentration is increased by a factor of about two for a 17-percent AM1 efficiency. The thermal equilibrium electron and hole recombination and generation rates at the double-acceptor zinc centers are obtained from previous high-field measurements as well as new measurements at zero field described in this paper. These rates are used in the exact dc-circuit model to compute the projections.
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman
2010-01-01
Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly < or =0.019 Bq L(-1)) when pH was >5.3, indicating sequestration; when pH was < or =5.3 (acidic), concentrations were elevated (maximum, 0.985 Bq L(-1) - greater than concentrations in corresponding discharged septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.
Rheology of Dead Sea shampoo containing the antidandruff climbazole.
Abu-Jdayil, B; Mohameed, H A
2004-12-01
In this study, the effect of the antidandruff climbazole on the rheology of hair shampoo containing Dead Sea (DS) salt was investigated. The presence of either DS salt or the climbazole led to increase in the shampoo viscosity. An optimum concentration was found where the viscosity of shampoo was maximum. In the absence of DS salt, the viscosity of hair shampoo increased with increasing the climbazole concentration to reach a maximum value at 1.0 wt%. Further addition of climbazole decreased the viscosity of shampoo. Adjusting the pH of the shampoo at 5.5 and 5.0 shifted the optimum climbazole concentration (corresponds to maximum viscosity) to 0.8 wt% and led to increase in the viscosity of shampoo. On the other hand, the addition of climbazole to the shampoo containing DS salt resulted in a decrease in shampoo viscosity. This decrease of shampoo viscosity became more pronounced with increasing the climbazole and/or DS salt concentrations. By controlling the pH of shampoo, an optimum formula of shampoo comprising both climbazole and DS salt and having maximum viscosity was obtained.
Progress toward clonable inorganic nanoparticles
NASA Astrophysics Data System (ADS)
Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.
2015-10-01
Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04097c
Electron density and plasma dynamics of a colliding plasma experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.
2016-07-15
We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less
Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2
NASA Technical Reports Server (NTRS)
1996-01-01
The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee. This report is the second volume in the series Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. The first volume was published in 1994.
Fakhri, Ali; Naji, Mahsa; Tahami, Shiva
2017-05-01
In this study, wet chemical method used for ZnSe quantum dots (QDs) and characterized by, UV-vis, photoluminescence spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallites size of ZnSe QDs was 4.0nm. The average diameters of ZnSe QDs were 3.0-5.3nm. Ritalin was degraded using the UV/ZnSe QDs/persulfate process. The several parameters investigated for the influence of Rtialin degradation were the temperature, the persulfate concentration, and the initial Ritalin concentration. The values of optimum parameters ware room temperature, concentration persulfate 5mmol/L and initial Ritalin concentration 0.09mmol/L. Comparative analyses showed the maximum degradation of Ritalin was found for ZnSe/persulfate under ultra-visible and ultra-sonic irradiation process. Comparative analysis showed the maximum degradation of Ritalin was found for ZnSe/persulfate under ultra-visible and ultra-sonic irradiation process. The values of first-order rate constants from degradation of Ritalin at 25°C were 0.96×10 -2 , 1.09×10 -2 , 1.59×10 -2 and 2.19×10 -2 for US/PS, UV/PS, ZnSe/US/PS and ZnSe/UV/PS system, respectively. The antibacterial activity evaluation against two bacterials, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300), Bacillus megaterium (ATCC 14581) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853), Micrococcus luteus (ATCC 4698) was considered. It was found that the MIC values for the antibacterial assay in the presence of ZnSe QDs were around 0.30mM with 64.0, 66.0, 79.2, and 83.5% inhibition for the S. aureus, B. megaterium, P. aeruginosa and M. luteus bacterial strains, respectively. Then, results show that the ZnSe QDs have antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Tou, Feiyun; Yang, Yi; Feng, Jingnan; Niu, Zuoshun; Pan, Hui; Qin, Yukun; Guo, Xingpan; Meng, Xiangzhou; Liu, Min; Hochella, Michael F
2017-05-02
Nanoparticle (NP) assessment in sludge materials, although of growing importance in eco- and biotoxicity studies, is commonly overlooked and, at best, understudied. In the present study, sewage sludge samples from across the mega-city of Shanghai, China were investigated for the first time using a sequential extraction method coupled with single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) to quantify the abundance of metal-containing NPs in the extraction fractions and transmission electron microscopy to specifically identify the nanophases present. In general, most sludges observed showed high concentrations of Cr, Cu, Cd, Ni, Zn, and Pb, exceeding the maximum permitted values in the national application standard of acid soil in China. NPs in these sludges contribute little to the volume and mass but account for about half of the total particle number. Based on electron microscopy techniques, various NPs were further identified, including Ti-, Fe-, Zn-, Sn-, and Pb-containing NPs. All NPs, ignored by traditional metal risk evaluation methods, were observed at a concentration of 10 7 -10 11 particles/g within the bioavailable fraction of metals. These results indicate the underestimate or misestimation in evaluating the environmental risks of metals based on traditional sequential extraction methods. A new approach for the environmental risk assessment of metals, including NPs, is urgently needed.
Formation and transport of deethylatrazine and deisopropylatrazine in surface water
Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.
1994-01-01
Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.
Patil, Lakkanagouda; Kaliwal, Basappa
2017-05-01
Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.
Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E
2016-07-01
Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.
Laser-driven relativistic electron beam interaction with solid dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.
2012-07-30
The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phasemore » shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.« less
Fast Transverse Instability and Electron Cloud Measurements in Fermilab Recycler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffery; Adamson, Philip; Capista, David
2015-03-01
A new transverse instability is observed that may limit the proton intensity in the Fermilab Recycler. The instability is fast, leading to a beam-abort loss within two hundred turns. The instability primarily affects the first high-intensity batch from the Fermilab Booster in each Recycler cycle. This paper analyzes the dynamical features of the destabilized beam. The instability excites a horizontal betatron oscillation which couples into the vertical motion and also causes transverse emittance growth. This paper describes the feasibility of electron cloud as the mechanism for this instability and presents the first measurements of the electron cloud in the Fermilabmore » Recycler. Direct measurements of the electron cloud are made using a retarding field analyzer (RFA) newly installed in the Fermilab Recycler. Indirect measurements of the electron cloud are made by propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. The maximum betatron amplitude growth and the maximum electron cloud signal occur during minimums of the bunch length oscillation.« less
Olsson, J; Börjesson, T; Lundstedt, T; Schnürer, J
2002-02-05
Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5 microg kg(-1). We were able to predict DON levels in the naturally contaminated barley samples using the volatile compounds detected and quantified by either GC-MS or the electronic nose. Pentane, methylpyrazine, 3-pentanone, 3-octene-2-ol and isooctylacetate showed a positive correlation with DON, while ethylhexanol, pentadecane, toluene, 1-octanol, 1-nonanol, and 1-heptanol showed a negative correlation with DON. The root mean square error of estimation values for prediction of DON based on GC-MS and electronic nose data were 16 and 25 microg kg(-1), respectively.
Huang, Wei; Hu, Hong; Zhang, Shi-Bao
2015-01-01
Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m(-2) s(-1). Compared with leaves exposed to a constant light of 1200 μmol photons m(-2) s(-1), both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m(-2) s(-1) under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m(-2) s(-1) under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m(-2) s(-1) under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.
Matsuno, T; Yumoto, I
2015-01-01
Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H(+) concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max [h(-1)] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H(+) condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H(+).
Matsuno, T.; Yumoto, I.
2015-01-01
Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max [h−1] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+. PMID:25705691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-07-01
The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/Lmore » initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.« less
Hayat, Sikander; Chughtai, Muhammad Ismail; Ansari, Tariq Mahmood; Kamal, Ghulam Mustafa
2012-04-01
A study was carried out to investigate the concentrations of macro-elements (Na(+), K(+) and Mg(+2)) in twelve commercially available pharmaceutical preparations used as sex stimulant, by Atomic Absorption Spectrophotometer. A wet digestion method was adopted to prepare the samples. The results indicated that sodium concentration was maximum (3702 ± 29 μg g(-1)) in LB and minimum (495 ± 06 μg g(-1)) in H-E-H. Potassium concentration was maximum (6337 ± 13 μg g(-1)) in NBA while minimum (150 ± 06 μg g(-1)) in ZGRA. Magnesium concentration was maximum in V-100 (9226 ± 11 μg g(-1)) and minimum in FGRA (1194 ± 25 μg g(-1)). The concentration of macro-elements in the imported herbal preparations was in the order of Mg
Tsokolar-Tsikopoulos, Konstantinos C; Katsavou, Ioanna D; Krokida, Magdalini K
2015-10-01
The growing consumer demand for healthy snacks has turned the interest of industry and research in the development of new ready-to-eat products, enriched with dietary fibers. Inulin is a soluble fiber with a neutral taste that promotes the good function of the intestine. Rice flour extrudates were produced under various extrusion temperatures, screw speeds, feed moisture concentrations and inulin replacement levels. The objective of this study was to investigate the effect of the material characteristics and the extrusion conditions on the structural and textural properties of the extrudates. Simple mathematical models were used for properties correlation with process conditions and through regression analysis it was revealed that there is a significant effect of extrusion temperature, screw speed, feed moisture content and inulin concentration on the final properties. Both density and maximum stress increased when moisture content and inulin concentration increased, while they decreased when extrusion temperature and screw speed increased. These results were also strengthened by scanning electron microscopy. The highest expansion ratio was presented when decreasing all process conditions apart from screw speed.
Ouédraogo, Igor W K; Pehlivan, Erol; Tran, Hien T; Bonzi-Coulibaly, Yvonne L; Zachmann, Dieter; Bahadir, Müfit
2015-09-01
Because of the recognition that arsenic (As) at low concentrations in drinking water causes severe health effects, the technologies of As removal have become increasingly important. In this study, a simplified and effective method was used to immobilize iron oxyhydroxide onto a pretreated naturally occurring rice straw (RS). The modified RS adsorbent was characterized, using scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analyzer, and surface area analyzer. Experimental batch data of As(V) adsorption were modeled by the isotherms and kinetics models. Although all isotherms, the Langmuir model fitted the equilibrium data better than Freundlich and Dubinin-Radushkevich models and confirmed the surface homogeneity of adsorbent. The iron oxyhydroxide-coated rice straw (IOC-RS) was found to be effective for the removal of As(V) with 98.5% sorption efficiency at a concentration of <50 mg/L of As(V) solution, and thus maximum uptake capacity is ∼22 and 20 mg As(V)/g of IOC-RS at pH 4 and 6, respectively. The present study might provide new avenues to achieve the As concentrations required for drinking water recommended by the World Health Organization.
NASA Astrophysics Data System (ADS)
Singh, Rajinder; Choudhary, Ram Bilash; Kandulna, Rohit
2018-03-01
Polypyrrole (PPY)-Zinc Oxide (ZnO) nanocomposites with varying concentration of ZnO (1:1-1:4) were prepared via in-situ polymerization technique by using pyrrole monomer in the presence of ammonium persulphate (APS) as oxidant. Globular morphology of PPY and sheet like structure of ZnO was examined using FESEM and EDAX. FTIR showed the presence of vibration modes in fingerprint region (1500 cm-1-500 cm-1) for metal oxides confirming the presence and interaction of ZnO with the polymer matrix in nanocomposites. Amorphous nature of PPY and hexagonal wurtzite structure of ZnO was confirmed using XRD with average crystallite size within 20 nm-30 nm. PANI-ZnO (1:1) exhibited blue shift in comparison to PPY (neat) and optimized optical band gap ∼ 1.81 eV. The effect of carrier concentration was investigated using electrochemical analyzer and maximum current was recorded for PANI-ZnO (1:1). The highest conductance was calculated for PANI-ZnO (1:1) ∼ 7.3242 × 10-3 S using current -voltage characteristics. Thermal stability was found to be increasing with the increase in ZnO concentration PANI-ZnO nanocomposite.
Morgen, Michael; Bloom, Corey; Beyerinck, Ron; Bello, Akintunde; Song, Wei; Wilkinson, Karen; Steenwyk, Rick; Shamblin, Sheri
2012-02-01
To demonstrate drug/polymer nanoparticles can increase the rate and extent of oral absorption of a low-solubility, high-permeability drug. Amorphous drug/polymer nanoparticles containing celecoxib were prepared using ethyl cellulose and either sodium caseinate or bile salt. Nanoparticles were characterized using dynamic light scattering, transmission and scanning electron microscopy, and differential scanning calorimetry. Drug release and resuspension studies were performed using high-performance liquid chromatography. Pharmacokinetic studies were performed in dogs and humans. A physical model is presented describing the nanoparticle state of matter and release performance. Nanoparticles dosed orally in aqueous suspensions provided higher systemic exposure and faster attainment of peak plasma concentrations than commercial capsules, with median time to maximum drug concentration (Tmax) of 0.75 h in humans for nanoparticles vs. 3 h for commercial capsules. Nanoparticles released celecoxib rapidly and provided higher dissolved-drug concentrations than micronized crystalline drug. Nanoparticle suspensions are stable for several days and can be spray-dried to form dry powders that resuspend in water. Drug/polymer nanoparticles are well suited for providing rapid oral absorption and increased bioavailability of BCS Class II drugs.
Suspended sediments limit coral sperm availability
Ricardo, Gerard F.; Jones, Ross J.; Clode, Peta L.; Humanes, Adriana; Negri, Andrew P.
2015-01-01
Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L−1), with 2–37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water’s surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water’s surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment. PMID:26659008
Suspended sediments limit coral sperm availability.
Ricardo, Gerard F; Jones, Ross J; Clode, Peta L; Humanes, Adriana; Negri, Andrew P
2015-12-14
Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L(-1)), with 2-37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water's surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water's surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment.
Gao, Wen-Hui; Liu, Bo; Li, Xing-Feng; Han, Jun-Hua; Jia, Ying-Min
2014-03-01
To prepare myclobutanil molecularly imprinted polymer, a method was established for the choice of the appropriate functional monomer and its dosage. UV spectra was applied to study the combination form, the effect intensity, the optimal concentration ratio and the numbers of binding sites between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The results showed that hydrogen-bonding interaction could be formed between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The pi electron of the triazole ring conjugated double bond in my clobutanil could transit to pi* conjugate antibonding orbital when it absorbed energy. The formation of hydrogen bond could make pi-->pi* absorption band transit. Maximum absorption wavelength produced red shift with the increase in the functional monomer concentration in the system. The research revealed that the optimal concentration ratios between myclobutanil and the two monomers were c(M):c(MAA) = 1:4, c(M):c(AM) = 1:2. Myclobutanil and the both the functional monomers had the bonding ability, and strong bonding force. The prepared molecularly imprinted polymer using AM as a functional monomer had better stability and specificity of recognition for myclobutanil.
Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.
Mohapatra, P K D; Mondal, K C; Pati, B R
2007-06-01
The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.
Synthesis and LPG sensing properties of nano-sized cadmium oxide.
Waghulade, R B; Patil, P P; Pasricha, Renu
2007-04-30
This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.
STUDIES ON THE AMOUNT OF LIGHT EMITTED BY MIXTURES OF CYPRIDINA LUCIFERIN AND LUCIFERASE
Stevens, Kenneth P.
1927-01-01
1. A photometric method was devised for measuring the intensities of light emitted per cc. of hiciferin solution and calculating the amount of light emitted per gm. of dried Cypridina powder. A total of 128 runs was made and the data are incorporated in this report. 2. The maximum amount of light emitted from 1 gm. of powder under the experimental conditions was 0.655 lumens. Different samples of powder vary greatly in amount of light production. 3. When the concentration of substrate is doubled, nearly twice as much light is emitted, or an average ratio 2C/C of 1.86. Calculations of total light emissions per gm. of powder at different concentrations indicate that slightly more light is produced from the smaller concentrations. The maximum amount of light was produced by the solutions made with neutral sea water and averaged 0.445 lumens. The least light was obtained from solutions in distilled water saturated with hydrogen. The technique allows too rapid spontaneous oxidation prior to the saturation with hydrogen. The maximum amount of light from such experiments was only 0.077 lumens. Acid sea water solutions subsequently neutralized gave an average maximum of 0.386 lumens per gm. of powder per second. 4. When the concentration of enzyme is doubled, approximately the same amount of light is produced by both concentrations, although the stronger concentrations are slightly less effective than weaker ones. This undoubtedly is due to the colloidal nature of the enzyme and is a function of surface rather than of mass. In dilute solutions greater dispersion probably allows for greater adsorption to the surface of the enzyme. The average maximum amount of light produced in the series of enzyme experiments is of the magnitude 0.56 lumens per gm. of powder. PMID:19872366
Barwick, M; Maher, W
2003-10-01
In this study the biotransference of selenium copper, cadmium, zinc, arsenic and lead was measured in a contaminated seagrass ecosystem in Lake Macquarie, NSW, Australia, to determine if biomagnification of these trace metals is occurring and if they reach concentrations that pose a threat to the resident organisms or human consumers. Selenium was found to biomagnify, exceeding maximum permitted concentrations for human consumption within carnivorous fish tissue, the highest trophic level examined. Selenium concentrations measured within carnivorous fish were also above those shown to elicit sub-lethal effects in freshwater fish. As comparisons are made to selenium concentrations known to effect freshwater fish, inferences must be made with caution. There was no evidence of copper, cadmium, zinc or lead biomagnification within the food web examined. Copper, cadmium, zinc and lead concentrations were below concentrations shown to elicit adverse responses in biota. Copper concentrations within crustaceans M. bennettae and P. palagicus were found to exceed maximum permitted concentrations for human consumption. It is likely that copper concentrations within these species were accumulated due to the essential nature of this trace metal for many species of molluscs and crustaceans. Arsenic showed some evidence of biomagnification. Total arsenic concentrations are similar to those found in other uncontaminated marine ecosystems, thus arsenic concentrations are unlikely to cause adverse effects to aquatic organisms. Inorganic arsenic concentrations are below maximum permitted concentrations for human consumption.
Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O.
Kazemi, M; Biria, D; Rismani-Yazdi, H
2015-05-21
Bio-electrosynthesis is one of the significant developments in reverse microbial fuel cell technology which is potentially capable of creating organic compounds by combining CO2 with H2O. Accordingly, the main objective in the current study was to present a model of microbial electrosynthesis for producing organic compounds (acetate) based on direct conduction of electrons in biofilms. The proposed model enjoys a high degree of rigor because it can predict variations in the substrate concentration, electrical potential, current density and the thickness of the biofilm. Additionally, coulombic efficiency was investigated as a function of substrate concentration and cathode potential. For a system containing CO2 as the substrate and Sporomusa ovata as the biofilm forming microorganism, an increase in the substrate concentration at a constant potential can lead to a decrease in coulombic efficiency as well as an increase in current density and biofilm thickness. On the other hand, an increase in the surface cathodic voltage at a constant substrate concentration may result in an increase in the coulombic efficiency and a decrease in the current density. The maximum coulombic efficiency was revealed to be 75% at a substrate concentration of 0.025 mmol cm(-3) and 55% at a surface cathodic voltage of -0.3 V producing a high range of acetate production by creating an optimal state in the concentration and potential intervals. Finally, the validity of the model was verified by comparing the obtained results with related experimental findings.
NASA Astrophysics Data System (ADS)
Anitha, M.; Amalraj, L.; Anitha, N.
2017-12-01
Cadmium oxide (CdO) thin films were prepared with different concentrations of precursor solution (0.05, 0.1, 0.15, 0.2 and 0.25 M, respectively) at the optimized temperature (200 °C) using the nebulized spray pyrolysis technique to obtain better crystallinity in polycrystalline thin films on amorphous glass substrates. The XRD characterization of those samples revealed a preferential orientation along the (111) plane having a cubic structure. The scanning electron microscopy (SEM) analysis displayed that all the as-deposited thin films have spherical shaped grains. The transmittance of the as-deposited CdO thin films had decreased from 88 to 71% for longer wavelength regions (600-900 nm) as the precursor concentration had increased and then increased for higher precursor concentration. The optical band gap was found to lie between 2.45 and 2.40 eV belonging to direct transition for those thin films. The presence of Cd-O bond (540 cm-1) was confirmed by FTIR spectrum. The emission properties of CdO thin films were studied by luminescence spectrum recorded at room temperature. A maximum carrier concentration and minimum resistivity values of 4.743 × 1019 cm- 3 and 1.06 × 10-3 Ω-cm, respectively, were obtained for 0.2 M precursor concentration. These CdO thin films have high optical transmittance and high room temperature conductivity, which can be used as the TCO and Solar cell (window layer) material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1 Within the range...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for the finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes
NASA Technical Reports Server (NTRS)
Langford, Shannon D.
2007-01-01
Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.
Contribution of ASDEX Upgrade to disruption studies for ITER
NASA Astrophysics Data System (ADS)
Pautasso, G.; Zhang, Y.; Reiter, B.; Giannone, L.; Gruber, O.; Herrmann, A.; Kardaun, O.; Khayrutdinov, K. K.; Lukash, V. E.; Maraschek, M.; Mlynek, A.; Nakamura, Y.; Schneider, W.; Sias, G.; Sugihara, M.; ASDEX Upgrade Team
2011-10-01
This paper describes the most recent contributions of ASDEX Upgrade to ITER in the field of disruption studies. (1) The ITER specifications for the halo current magnitude are based on data collected from several tokamaks and summarized in the plot of the toroidal peaking factor versus the maximum halo current fraction. Even if the maximum halo current in ASDEX Upgrade reaches 50% of the plasma current, the duration of this maximum lasts a fraction of a ms. (2) Long-lasting asymmetries of the halo current are rare and do not give rise to a large asymmetric component of the mechanical forces on the machine. Differently from JET, these asymmetries are neither locked nor exhibit a stationary harmonic structure. (3) Recent work on disruption prediction has concentrated on the search for a simple function of the most relevant plasma parameters, which is able to discriminate between the safe and pre-disruption phases of a discharge. For this purpose, the disruptions of the last four years have been classified into groups and then discriminant analysis is used to select the most significant variables and to derive the discriminant function. (4) The attainment of the critical density for the collisional suppression of the runaway electrons seems to be technically and physically possible on our medium size tokamak. The CO2 interferometer and the AXUV diagnostic provide information on the highly 3D impurity transport process during the whole plasma quench.
Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...
2017-07-07
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thorsten; Foucar, Lutz; Jahnke, Till
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.
2018-05-01
Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.
A global view of F-region electron density and temperature at solar maximum
NASA Technical Reports Server (NTRS)
Brace, L. H.; Theis, R. F.; Hoegy, W. R.
1982-01-01
It is pointed out that the thermal structure of the ionosphere represents a quasi-static balance between a variety of heat sources and sinks which vary spatially and temporally on a wide range of time scales. The present investigation has the objective to present selected early results from the Dynamics Explorer-2 (DE-2) Langmuir probe instrument and to make an initial evaluation of how the thermal structure of the ionosphere at solar maximum differs from that observed at solar minimum. Bowen et al. (1964) and Brace and Reddy (1965) devised early empirical models of the F region electron temperature (Te), based on satellite Langmuir probe measurements at low levels of solar activity. The global structure of Te and the electron density (Ne) obtained in the current investigation is not very different from that reported by Brace and Reddy. The primary difference at solar maximum is that Ne is everywhere much higher, but Te differs only in detail.
Propagation distance-resolved characteristics of filament-induced copper plasma
Ghebregziabher, Isaac; Hartig, Kyle C.; Jovanovic, Igor
2016-03-02
Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Lastly, optimal line emissionmore » is measured near the geometric focus of the lens used to produce the filament.« less
Pope, Larry M.; Bruce, Breton W.; Hansen, Cristi V.
2001-01-01
Water samples from 20 randomly selected domestic water-supply wells completed in the Quaternary deposits of south-central Kansas were collected as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment Program. The samples were analyzed for about 170 water-quality constituents that included physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticides, volatile organic compounds, and radon. The purpose of this study was to provide a broad overview of ground-water quality in a major geologic subunit of the High Plains aquifer. Water from five wells (25 percent) exceeded the 500-milligrams-per-liter of dissolved solids Secondary Maximum Contaminant Level for drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well each. The source of these dissolved solids was probably natural processes. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Water from 15 percent of the sampled wells had concentrations of nitrate greater than the 10-milligram-per-liter Maximum Contaminant Level for drinking water. Water from 80 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter), which is more than what might be expected for natural background concentrations. This enrichment may be the result of synthetic fertilizer applications, the addition of soil amendment (manure) on cropland, or livestock production. Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Only arsenic was detected in one well sample at a concentration (240 micrograms per liter) that exceeded its proposed Maximum Contaminant Level (5.0 micrograms per liter). Additionally, one concentration of iron and two concentrations of manganese were larger than the Secondary Maximum Contaminant Levels of 300 and 50 micrograms per liter, respectively. Some occurrences of trace elements may have originated from human-related sources; however, the generally small concentrations that were measured probably reflect mostly natural sources for these constituents. A total of 47 pesticide compounds from several classes of herbicides and insecticides that included triazine, organophosphorus, organochlorine, and carbamate compounds and three pesticide degradation products were analyzed in ground-water samples during this study. Water from 50 percent of the wells sampled had detectable concentrations of one or more of these 47 compounds. The herbicide atrazine and its degradation product deethylatrazine were detected most frequently (in water from eight and nine wells, respectively); other pesticides detected were the insecticides carbofuran (in water from one well) and diazinon (in water from one well), and the herbicide metolachlor (in water from two wells). However, all concentrations of these compounds were small and substantially less than established Maximum Contaminant Levels. The use of pesticides in crop production probably is largely responsible for the occurrence of pesticides in the ground-water samples collected during this study. Although concentrations of detected pesticides were small (relative to established Maximum Contaminant Levels), the synergistic effect of these concentrations and long-term exposure to multiple pesticides on human health are unknown. Water samples from the Quaternary deposits were analyzed for 85 volatile organic compounds. Water from two wells (10 percent) had a detectable concentration of a volatile organic compound. Chloroform was detected at concen-trations of 0.18 and 0.25 microgram per liter, substantially less than the 100-microgram-per-liter Maximum Contaminant Level for total trihalomethanes. In general, the occurrence and detectio
Pope, Larry M.; Bruce, Breton W.; Rasmussen, Patrick P.; Milligan, Chad R.
2002-01-01
Water samples from 30 randomly distributed monitoring wells in areas of recent residential and commercial development (1960-96), Wichita, Kansas, were collected in 2000 as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The samples were analyzed for about 170 water-quality constituents that included chlorofluorocarbons, physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticide compounds, and volatile organic compounds. The purpose of this report is to provide an assessment of water quality in recharge to shallow ground water underlying areas of recent residential and commercial development and to determine the relation of ground-water quality to overlying urban land use. Analyses of water from the 30 monitoring wells for chlorofluorocarbons were used to estimate apparent dates of recharge. Water from 18 wells with nondegraded and uncontaminated chlorofluorocarbon concentrations had calculated apparent recharge dates that ranged from 1979 to 1990 with an average date of 1986. Water from 14 monitoring wells (47 percent) exceeded the 500-milligrams-per-liter Secondary Maximum Contaminant Level established by the U.S. Environmental Protection Agency for dissolved solids in drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well. The source of the largest concentrations of dissolved solids and associated ions, such as chloride and sulfate, in shallow ground water in the study area probably is highly mineralized water moving out of the Arkansas River into the adjacent, unconsolidated deposits and mixing with the dominant calcium bicarbonate water in the deposits. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Although water from the sampled wells did not have nitrate concentrations larger than the 10-milligram-per-liter Maximum Contaminant Level for drinking water, water from 50 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter). Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Twenty percent of iron concentrations, 40 percent of manganese concentrations, 3 percent of arsenic concentrations, and 13 percent of uranium concentrations exceeded respective Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. A total of 47 pesticide compounds were analyzed in ground-water samples during this study. Water from 73 percent of the wells sampled had detectable concentrations of one or more of 8 of these 47 compounds. The herbicide atrazine or its degradation product deethylatrazine were detected most frequently (in water from 70 percent of the sampled wells). Metolachlor was detected in water from 10 percent of the wells, and simazine was detected in water from 30 percent of the wells sampled. Other pesticides detected included dieldrin, pendimethalin, prometon, and tebuthiuron (each in water from 3 percent of the wells). All concentrations of these compounds were less than established Maximum Contaminant Levels. A total of 85 volatile organic compounds (VOCs) were analyzed in ground-water samples during this study. Water from 43 percent of the wells had a detectable concentration of one or more VOCs. Chloroform was the most frequently detected VOC (23 percent of the wells sampled).Seven other VOCs were detected in water at frequencies of 13 percent or less in the wells sampled. Concentrations of VOCs were less than respective Maximum Contaminant Levels, except one sample with a concentration of 9.0 micrograms per liter for tetrachloroethylene (Maximum Contaminant Level of 5.0 micrograms per liter). An analysis of hydraulic gradient, flow velocity
Ferri, Roberta; Hashim, Dana; Smith, Donald R; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G
2015-06-15
For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Perchlorate in Turfgrass Systems, Suffolk County, Long Island, NY
NASA Astrophysics Data System (ADS)
Munster, J. E.; Hanson, G. N.; Jackson, W. A.
2007-12-01
Perchlorate concentrations in precipitation, grass clippings, and soil water were analyzed at nine turfgrass sites in Suffolk County, NY. The samples were collected monthly between June, 2006 and January, 2007. The soil water was collected from suction lysimeters at 100 cm depth. Four of these sites were treated with chemical fertilizer, three with organic fertilizer and two were not fertilized. Concentrations of ClO4 in grass clippings and soil water, at the sites treated with chemical fertilizer or not treated with fertilizer, are found to increase when spikes of ClO4 concentrations in precipitation are observed. We believe that the spikes in perchlorate in precipitation collected shortly after the Fourth of July are due to firework displays. The concentration of ClO4 in soil water are 1 to 3 times higher than the maximum perchlorate concentrations in precipitation, with maximum soil water concentrations ranging from 0.5 to 3.0 ppb. At the sites treated with organic fertilizer, grass clippings and soil water ClO4 concentrations increase after the fertilizer application in May. The organic fertilizer that was applied has nine mg ClO4 per kg (9,000 ppb). Soil water concentrations at the sites treated with organic fertilizer increase 100 to 300 times the maximum ClO4 concentration observed in precipitation, with maximum soil water concentrations ranging from 120 to 625 ppb. The increase in ClO4 concentrations in the soil water cannot be explained by evaporation alone since the Cl to ClO4 ratios decrease in the soil water relative to precipitation. This decrease in the Cl to ClO4 ratio suggests another source of perchlorate besides precipitation. We postulate that this additional source is associated with the decomposition of mulched grass left after mowing. Grass takes only a few weeks to decompose after mulching, thus providing a continuous source of perchlorate throughout the mowing season. The Cl to ClO4 ratio of the grass is unknown.
Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.
2015-01-01
Background For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity duration in Brescia province. Total soil metal concentration and extractability were measured by X-ray fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thoroughly washing vegetables to minimize metal exposure. PMID:25777956
An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets
NASA Astrophysics Data System (ADS)
Liu, Yadi; Tan, Zhenyu; Chen, Xinxian; Li, Xiaotong; Zhang, Huimin; Pan, Jie; Wang, Xiaolong
2018-03-01
In this work, the effects of air on electron energy in the atmospheric pressure helium plasma jet produced by a needle-plane discharge system have been investigated by means of the numerical simulation based on a two-dimensional fluid model, and the air concentration dependences of the reactive species densities have also been calculated. In addition, the synergistic effects of the applied voltage and air concentration on electron energy have been explored. The present work gives the following significant results. For a fixed applied voltage, the averaged electron energy is basically a constant at air concentrations below about 0.5%, but it evidently decreases above the concentration of 0.5%. Furthermore, the averaged densities of four main reactive species O, O(1D), O2(1Δg), and N2(A3Σu+) increase with the increasing air concentration, but the increase becomes slow at air concentrations above 0.5%. The air concentration dependences of the averaged electron energy under different voltage amplitudes are similar, and for a given air concentration, the averaged electron energy increases with the increase in the voltage amplitude. For the four reactive species, the effects of the air concentration on their averaged densities are similar for a given voltage amplitude. In addition, the averaged densities of the four reactive species increase with increasing voltage amplitude for a fixed air concentration. The present work suggests that a combination of high voltage amplitude and the characteristic air concentration, 0.5% in the present discharge system, allows an expected electron energy and also generates abundant reactive species.
Pilia, P A; Swain, R P; Williams, A V; Loadholt, C B; Ainsworth, S K
1985-12-01
The cationic ultrastructural tracer polyethyleneimine (PEI: pI approximately equal to 11.0), binds electrophysically to uniformly spaced discrete electron-dense anionic sites present in the laminae rarae of the rat glomerular basement membrane (GBM), mesangial reflections of the GBM, Bowman's capsule, and tubular basement membranes when administered intravenously. Computer-assisted morphometric analysis of glomerular anionic sites reveals that the maximum concentration of stainable lamina rara externa (lre) sites (21/10,000 A GBM) occurs 60 minutes after PEI injection with a site-site interspacing of 460 A. Lamina rara interna (lri) sites similarly demonstrate a maximum concentration (20/10,000 A GBM) at 60 minutes with a periodicity of 497 A. The concentration and distribution of anionic sites within the lri was irregular in pattern and markedly decreased in number, while the lre possesses an electrical field that is highly regular at all time intervals analyzed (15, 30, 60, 120, 180, 240, and 300 minutes). Immersion and perfusion of renal tissue with PEI reveals additional heavy staining of the epithelial and endothelial cell sialoprotein coatings. PEI appears to bind to glomerular anionic sites reversibly: ie, between 60 and 180 minutes the concentration of stained sites decreases. At 300 minutes, the interspacing once again approaches the 60-minute concentration. This suggests a dynamic turnover or dissociation followed by a reassociation of glomerular negatively charged PEI binding sites. In contrast, morphometric analysis of anionic sites stained with lysozyme and protamine sulfate reveals interspacings of 642 A and 585 A, respectively; in addition, these tracers produce major glomerular ultrastructural alterations and induce transient proteinuria. PEI does not induce proteinuria in rats, nor does it produce glomerular morphologic alterations when ten times the tracer dosage is administered intravenously. These findings indicate that the choice of ultrastructural charge tracer, the method of administering the tracer, and the time selected for analysis of tissue after administration of tracer significantly influences results. Morphometric analysis of the distribution of glomerular anionic sites in nonproteinuric rats provides a method of evaluating quantitative alterations of the glomerular charge barrier in renal disease models.
Meinertz, Jeffery R.; Schreier, Theresa M.; Bernardy, Jeffry A.; Franz, Jeanne L.
2011-01-01
Diphenhydramine hydrochloride (DH; Benadryl(TM), an over-the-counter antihistamine) and erythromycin thiocyanate (ET; a commonly used macrolide antibiotic) are pharmaceutical compounds whose chronic toxicity to Daphnia magna had not been characterized. Continuous exposure to DH concentrations about 5 times greater than the maximum reported environmental concentration of 0.023 μg/L for 21 days or to ET concentrations about 40 times the maximum reported environmental concentration of 6 μg/L for 21 days did not significantly impact D. magna survival and production. In this study the no observable effect concentration for DH was 0.12 μg/L and for ET was 248 μg/L.
Wells, Frank C.; Jackson, Gerry A.; Rogers, William J.
1988-01-01
Toxaphene was detected in 11 fish samples; detectable concentrations ranged from 0.98 to 5.1 micrograms per gram, wet weight. DOT also was detected in 11 fish samples with concentrations ranging from 0.021 to 0.066 micrograms per gram, wet weight. ODD was detected in 21 fish samples; concentrations ranged from 0.015 to 0.16 micrograms per gram, wet weight. DDE was detected in all 22 fish samples, and concentrations ranged from 0.36 to 9.9 micrograms per gram, wet weight. The maximum concentrations of DOT and ODD exceeded the 1980-81 baseline concentrations. The median and maximum concentrations of toxaphene and DDE exceeded the 1980-81 baseline concentrations. The largest concentrations of toxaphene, ODD, and DDE in fish were all measured in samples collected at the Main Floodway near Progreso.
EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles
2016-01-01
Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM–1 s–1 and r2 relaxivity of 32.7 ± 4.7 mM–1 s–1 where the concentration is in mM of Mn2+. Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM–1 s–1 and r2 relaxivity of 1078.5 ± 1.9 mM–1 s–1. X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn2+ in these NP’s. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP’s. PMID:28154618
Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu
2016-12-01
Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Shengsong, E-mail: geshengsong@126.com; Yang, Xiaokun; Shao, Qian
A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infraredmore » reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.« less
Tolouee, Marziyeh; Alinezhad, Soheil; Saberi, Reza; Eslamifar, Ali; Zad, Seyed Javad; Jaimand, Kamkar; Taeb, Jaleh; Rezaee, Mohammad-Bagher; Kawachi, Masanobu; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi
2010-05-15
The antifungal activity of Matricaria chamomilla L. flower essential oil was evaluated against Aspergillus niger with the emphasis on the plant's mode of action at the electron microscopy level. A total of 21 compounds were identified in the plant oil using gas chromatography/mass spectrometry (GC/MS) accounting for 92.86% of the oil composition. The main compounds identified were alpha-bisabolol (56.86%), trans-trans-farnesol (15.64%), cis-beta-farnesene (7.12%), guaiazulene (4.24%), alpha-cubebene (2.69%), alpha-bisabolol oxide A (2.19%) and chamazulene (2.18%). In the bioassay, A. niger was cultured on Potato Dextrose Broth medium in 6-well microplates in the presence of serial two fold concentrations of plant oil (15.62 to 1000 microg/mL) for 96 h at 28 degrees C. Based on the results obtained, A. niger growth was inhibited dose dependently with a maximum of approximately 92.50% at the highest oil concentration. A marked retardation in conidial production by the fungus was noticed in relation to the inhibition of hyphal growth. The main changes of hyphae observed by transmission electron microscopy were disruption of cytoplasmic membranes and intracellular organelles, detachment of plasma membrane from the cell wall, cytoplasm depletion, and complete disorganization of hyphal compartments. In scanning electron microscopy, swelling and deformation of hyphal tips, formation of short branches, and collapse of entire hyphae were the major changes observed. Morphological alterations might be due to the effect on cell permeability through direct interaction of M. chamomilla essential oil with the fungal plasma membrane. These findings indicate the potential of M. chamomilla L. essential oil in preventing fungal contamination and subsequent deterioration of stored food and other susceptible materials. 2010 Elsevier B.V. All rights reserved.
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rossi, Jamie E.; Cress, Cory D.; Helenic, Alysha R.; Schauerman, Chris M.; DiLeo, Roberta A.; Cox, Nathanael D.; Messenger, Scott R.; Weaver, Brad D.; Hubbard, Seth M.; Landi, Brian J.
2012-08-01
The structural and electrical properties of electronic-type-separated (metallic and semiconducting) single wall carbon nanotube (SWCNT) thin-films have been investigated after irradiation with 150 keV 11B+ and 150 keV 31P+ with fluences ranging from 1012 to 1015 ions/cm2. Raman spectroscopy results indicate that the ratio of the Raman D to G' band peak intensities (D/G') is a more sensitive indicator of SWCNT structural modification induced by ion irradiation by one order of magnitude compared to the ratio of the Raman D to G band peak intensities (D/G). The increase in sheet resistance (Rs) of the thin-films follows a similar trend as the D/G' ratio, suggesting that the radiation induced variation in bulk electrical transport for both electronic-types is equal and related to localized defect generation. The characterization results for the various samples are compared based on the displacement damage dose (DDD) imparted to the sample, which is material and damage source independent. Therefore, it is possible to extend the analysis to include data from irradiation of transferred CVD-graphene films on SiO2/Si substrates using 35 keV C+ ions, and compare the observed changes at equivalent levels of ion irradiation-induced damage to that observed in the SWCNT thin-film samples. Ultimately, a model is developed for the prediction of the radiation response of nanostructured carbon materials based on the DDD for any incident ion with low-energy recoil spectra. The model is also related to the defect concentration, and subsequently the effective defect-to-defect length, and yields a maximum defect concentration (minimum defect-to-defect length) above which the bulk electrical transport properties in SWCNT thin-films and large graphene-based electronic devices rapidly degrade when exposed to harsh environments.
Influence of time of concentration on variation of runoff from a small urbanized watershed
Devendra Amatya; Agnieszka Cupak; Andrzej Walega
2015-01-01
The main objective of the paper is to estimate the influence of time of concentration (TC) on maximum flow in an urbanized watershed. The calculations of maximum flow have been carried out using the Rational method, Technical Release 55 (TR55) procedure based on NRCS (National Resources Conservation Services) guidelines, and NRCS-UH rainfall-runoff model. Similarly,...
NASA Astrophysics Data System (ADS)
Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.
2016-04-01
Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe3O4.
Functional Relationship between Sucrose and a Cariogenic Biofilm Formation
Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu
2016-01-01
Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603
Short term serum pharmacokinetics of diammine silver fluoride after oral application.
Vasquez, Elsa; Zegarra, Graciela; Chirinos, Edgar; Castillo, Jorge L; Taves, Donald R; Watson, Gene E; Dills, Russell; Mancl, Lloyd L; Milgrom, Peter
2012-12-31
There is growing interest in the use of diammine silver fluoride (DSF) as a topical agent to treat dentin hypersensitivity and dental caries as gauged by increasing published research from many parts of the world. While DSF has been available in various formulations for many years, most of its pharmacokinetic aspects within the therapeutic concentration range have never been fully characterized. This preliminary study determined the applied doses (3 teeth treated), maximum serum concentrations, and time to maximum serum concentration for fluoride and silver in 6 adults over 4 h. Fluoride was determined using the indirect diffusion method with a fluoride selective electrode, and silver was determined using inductively coupled plasma-mass spectrometry. The mean amount of DSF solution applied to the 3 teeth was 7.57 mg (6.04 μL). Over the 4 hour observation period, the mean maximum serum concentrations were 1.86 μmol/L for fluoride and 206 nmol/L for silver. These maximums were reached 3.0 h and 2.5 h for fluoride and silver, respectively. Fluoride exposure was below the U.S. Environmental Protection Agency (EPA) oral reference dose. Silver exposure exceeded the EPA oral reference dose for cumulative daily exposure over a lifetime, but for occasional use was well below concentrations associated with toxicity. This preliminary study suggests that serum concentrations of fluoride and silver after topical application of DSF should pose little toxicity risk when used in adults. NCT01664871.
Short term serum pharmacokinetics of diammine silver fluoride after oral application
2012-01-01
Background There is growing interest in the use of diammine silver fluoride (DSF) as a topical agent to treat dentin hypersensitivity and dental caries as gauged by increasing published research from many parts of the world. While DSF has been available in various formulations for many years, most of its pharmacokinetic aspects within the therapeutic concentration range have never been fully characterized. Methods This preliminary study determined the applied doses (3 teeth treated), maximum serum concentrations, and time to maximum serum concentration for fluoride and silver in 6 adults over 4 h. Fluoride was determined using the indirect diffusion method with a fluoride selective electrode, and silver was determined using inductively coupled plasma-mass spectrometry. The mean amount of DSF solution applied to the 3 teeth was 7.57 mg (6.04 μL). Results Over the 4 hour observation period, the mean maximum serum concentrations were 1.86 μmol/L for fluoride and 206 nmol/L for silver. These maximums were reached 3.0 h and 2.5 h for fluoride and silver, respectively. Conclusions Fluoride exposure was below the U.S. Environmental Protection Agency (EPA) oral reference dose. Silver exposure exceeded the EPA oral reference dose for cumulative daily exposure over a lifetime, but for occasional use was well below concentrations associated with toxicity. This preliminary study suggests that serum concentrations of fluoride and silver after topical application of DSF should pose little toxicity risk when used in adults. Clinical trials registration NCT01664871. PMID:23272643
Electromyographic analysis of exercise resulting in symptoms of muscle damage.
McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W
2000-03-01
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.
Transitional properties of supersolitons in a two electron temperature warm multi-ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Steffy S., E-mail: steffy13@iigs.iigm.res.in; Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in
The existence domain of an ion acoustic supersoliton and its transition to a regular kind of solitary wave have been explored in detail using Sagdeev pseudopotential technique for a two electron temperature warm multi-ion plasma having two species of ions. It was found that both the cold to hot electron temperature ratio and their respective ambient densities play a deterministic role for the existence of a supersoliton, as well as its transitional processes to a regular solitary wave. Analogous to a double layer solution, which often marks the boundary of the existence domain of a regular solitary wave, a “curvemore » of inflection” determines the boundary of the existence domain of a supersoliton. The characteristics of the “curve of inflection,” in turn, depend on the respective concentrations of the two ion species. It is observed that the supersolitons are actually a subset of a more general kind of solutions which are characterized by a fluctuation in the corresponding charge separation which precedes their maximum amplitude. It is also observed that these novel kinds of solitary structures, including supersolitons, occur only for a very narrow range of parameters near constant amplitude beyond which the wave breaks.« less
Generation of ionizing radiation from lithium niobate crystals
NASA Astrophysics Data System (ADS)
Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.
2017-01-01
The work done experimentally explores generation of electron and x-ray radiation in the process of heating and cooling monolithic and iron-doped crystals of lithium niobate. Iron doping to the concentrations in the range of 1023 m3 was carried out by adding ferric oxide into the melt during the process of crystal growth. The research into radiation generation was performed at 1-10 Pa. The speed of heating from -10 to 1070 C was 10-20 degrees a minute. Current pulses appeared at 17, 38, 56, 94, 98, 100, 105, 106, 1070 C with the interval of 1-3 minutes. The obtained electron current increased in direct proportion to the crystal surface area. The maximum current was 3mA at the design voltage 11 kV on the crystal with 14,5x10,5x10 mm3 surface area. The article describes the possibility to control the start of generation by introducing priming pulse. The results achieved are explained by the domain repolarization while heating the crystal and the appearance of electric field local strength. Bias and overcharge currents contribute to the appearance of electric strength, which stimulates breakdown and plasma formation. X-ray radiation appears both at the stage of discharge formation and during electron deceleration on gas and target material.
NASA Astrophysics Data System (ADS)
Kaur, Kulwinder; Rai, D. P.; Thapa, R. K.; Srivastava, Sunita
2017-07-01
We explore the structural, electronic, mechanical, and thermoelectric properties of a new half Heusler compound HfPtPb, an all metallic heavy element, recently proposed to be stable [Gautier et al., Nat. Chem. 7, 308 (2015)]. In this work, we employ density functional theory and semi-classical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties, such as shear modulus, Young's modulus, elastic constants, Poisson's ratio, and shear anisotropy factor, have been investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh's ratio and Frantsevich's ratio demonstrate its ductile behavior, and the shear anisotropic factor reveals the anisotropic nature of HfPtPb. The band structure predicts this compound to be a semiconductor with a band gap of 0.86 eV. The thermoelectric transport parameters, such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and lattice thermal conductivity, have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at an optimal carrier concentration of 1.0 × 1020 e/cm3. We predict the maximum value of figure of merit (0.25) at 1000 K. Our investigation suggests that this material is an n-type semiconductor.
A Single-Chamber Microbial Fuel Cell without an Air Cathode
Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo
2012-01-01
Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (Rext) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm2 was achieved at an Rext of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater. PMID:22489190
Zhang, Hui-Min; Xu, Wei; Li, Gang; Liu, Zhan-Meng; Wu, Zu-Cheng; Li, Bo-Geng
2016-01-01
Energy extraction from waste has attracted much interest nowadays. Herein, a coupled redox fuel cell (CRFC) device using heavy metals, such as copper, as an electron acceptor is assembled to testify the recoveries of both electricity and the precious metal without energy consumption. In this study, a NaBH4-Cu(II) CRFC was employed as an example to retrieve copper from a dilute solution with self-electricity production. The properties of the CRFC have been characterized, and the open circuit voltage was 1.65 V with a maximum power density of 7.2 W m−2 at an initial Cu2+ concentration of 1,600 mg L−1 in the catholyte. 99.9% of the 400 mg L−1 copper was harvested after operation for 24 h, and the product formed on the cathode was identified as elemental copper. The CRFC demonstrated that useful chemicals were recovered and the electricity contained in the chemicals was produced in a self-powered retrieval process. PMID:26877144
NASA Technical Reports Server (NTRS)
Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.
2008-01-01
This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).
Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.
Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B
2017-05-01
Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dey, Anup; Roy, Subhashis; Sarkar, Subir Kumar
2018-03-01
In this paper, an attempt is made to deposit ZnO thin films using sol-gel process followed by dip-coating method on p-silicon (100) substrates for intended application as a hydrogen gas sensor owing to the low toxic nature and thermal stability of ZnO. The thin films are annealed under annealing temperatures of 350, 450 and 550 °C for 25 min. The crystalline quality of the fabricated thin films is then analyzed by field-emission scanning electron microscopy and transmission electron microscope. The gas sensing performance analysis of ZnO thin films is demonstrated at different annealing temperatures and hydrogen gas concentrations ranging from 100 to 3000 ppm. Results obtained show that the sensitivity is significantly improved as annealing temperature increases with maximum sensitivity being achieved at 550 °C annealing temperature and operating temperature of 150 °C. Hence, the modified ZnO thin films can be applicable as H2 gas sensing device showing to the improved performance in comparison with unmodified thin-film sensor.
Optimization of ion-atomic beam source for deposition of GaN ultrathin films.
Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš
2014-08-01
We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.
NASA Astrophysics Data System (ADS)
Dhak, Prasanta; Adak, Mrinal Kanti; Dhak, Debasis
2016-02-01
Nanocrystalline Ba1-3xTi1-3xLa2xMn4xO3, [x = 0.006, 0.008, 0.01 and 0.05] (abbreviated hereafter as BTLM) by chemical route. The phase formation and purity were checked by X-ray diffraction (XRD) study and transmission electron microscopy (TEM). The grain morphology after sintering was studied by scanning electron microscopy (SEM). The crystallite sizes range from 21 nm to 30 nm, while the particle size ranges between 27 nm and 38 nm. The grain size 212 nm and grain density 96.8% were found to be maximum for BTLM x = 0.05 and x = 0.01, respectively. The temperature dependence of dielectric constants was found to be more diffused and the peak value of the dielectric constant was decreased and more flat with the increase of the substituent concentration. The tangent loss was found to be decreased and reached to the minimum value of 0.032 for BTLM x = 0.05. The remnant polarization Pr, was 10 μC/cm2 for BTLM x = 0.01.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.S.; Sekar Iyengar, A.N.
1997-09-01
Anomalous width{endash}amplitude variations were observed in large amplitude rarefactive solitary waves which show increasing width with increasing amplitude, contrasting the usual reciprocal relation between the square of the width and the amplitude, beyond a certain value of the plasma parameters [S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas, {bold 3}, 3939 (1996)]. For the limiting maximum amplitude, the {open_quotes}increasing width{close_quotes} solitary wave tends to a double layer-like solution. The overall variation was found to depend crucially on the specific parameter space. From a detailed investigation of the above behavior, a plausible physical explanation has beenmore » presented for such increases in the width. It is found that the ions{close_quote} initial kinetic energies and the cold electron concentration within the perturbed region play a significant role in determining the observed width{endash}amplitude variation. This contradicts the investigation of Sayal, Yadav, and Sharma [Phys. Scr. {bold 47}, 576 (1993)]. {copyright} {ital 1997 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Sekhar, H.; Narayana Rao, D.
2012-07-01
Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-01-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365
NASA Astrophysics Data System (ADS)
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-06-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.
Estimating potency for the Emax-model without attaining maximal effects.
Schoemaker, R C; van Gerven, J M; Cohen, A F
1998-10-01
The most widely applied model relating drug concentrations to effects is the Emax model. In practice, concentration-effect relationships often deviate from a simple linear relationship but without reaching a clear maximum because a further increase in concentration might be associated with unacceptable or distorting side effects. The parameters for the Emax model can only be estimated with reasonable precision if the curve shows sign of reaching a maximum, otherwise both EC50 and Emax estimates may be extremely imprecise. This paper provides a solution by introducing a new parameter (S0) equal to Emax/EC50 that can be used to characterize potency adequately even if there are no signs of a clear maximum. Simulations are presented to investigate the nature of the new parameter and published examples are used as illustration.
Intrinsic Carrier Concentration and Electron Effective Mass in Hg(1-x) Zn(x) Te
NASA Technical Reports Server (NTRS)
Sha, Yi-Gao; Su, Ching-Hua; Lehoczky, S. L.
1997-01-01
In this work, the intrinsic carrier concentration and electron effective mass in Hg(l-x)Zn(x)Te were numerically calculated. We adopt the procedures similar to those used by Su et. al. for calculating intrinsic carrier concentrations in Hg(1-x)Cd(x)Te which solve the exact dispersion relation in Kane model for the calculation of the conduction band electron concentrations and the corresponding electron effective masses. No approximation beyond those inherent in the k centered dot p model was used here.
Development of tolerance of egg plant (Solanum melangena L.) to field application of dimethoate.
Khillar, R; Acharya, S; Mohapatra, P K
2010-07-01
Dimethoate, at field concentration (1.419 mg g(-1) fr wt), caused inhibition of photosynthesis, transpiration and stomatal conductance of Solanum melangena L. on first treatment but subsequent treatments caused adaptation and recovery of these parameters. The variable fluorescence (F(v)), dissipation (DI(0)/RC), 2 ms relative variable fluorescence (V(j)), net rate of PS II closure (M(0)), and maximum trapping rate of active PS II (TR(0)/RC) increased initially but reduced to the control value with repetition of treatment. However, fluorescence yield (TR(0)/Abs), electron transport probability (ET(0)/TR(0)) and activity of RC (ET(0)/RC) increased with each treatment. With each subsequent treatment there was enhancement of activities of esterases and decrease of insecticide content of leaves.
Neutron beam effects on spin-exchange-polarized 3He.
Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S
2008-08-22
We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.
Enhanced gas sensing correlated with structural and optical properties of Cs-loaded SnO2 nanofilms
NASA Astrophysics Data System (ADS)
Elia Raine, P. J.; Arun George, P.; Balasundaram, O. N.; Varghese, T.
2016-09-01
The Cs-loaded SnO2 thin films were prepared by the spray pyrolysis technique and were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, impedance spectroscopy and conductometric method. Investigations based on the structural, optical and electrical properties confirm an enhanced gas sensing potential of cesium-loaded tin oxide films. It is found that the tin oxide thin film doped with 4% Cs with a mean grain size of 20 nm at a deposition temperature of 350 ° C show a maximum sensor response of 97.5% for LPG consistently. It is also observed that the sensor response of Cs-doped SnO2 thin films depends on the dopant concentration and the deposition temperature of the film.
Auroral electrojets and evening sector electron dropouts at synchronous orbit
NASA Technical Reports Server (NTRS)
Erickson, K. N.; Winckler, J. R.
1973-01-01
Evidence is presented in support of the concept that, during magnetospheric substorms, ionospheric auroral electrojet currents are directly coupled to the proton partial ring current in the outer magnetosphere. It has been found that for sufficiently isolated substorms the timing of the start of the electron dropout and of its maximum depression is in good agreement with the start and maximum of electrojet activity as indicated by the auroral electrojet index. This correlation suggests a direct coupling between the electrojet currents and the proton partial ring current.
Electrocatalytic oxidation of formate by [Ni(P(R)2N(R')2)2(CH3CN)]2+ complexes.
Galan, Brandon R; Schöffel, Julia; Linehan, John C; Seu, Candace; Appel, Aaron M; Roberts, John A S; Helm, Monte L; Kilgore, Uriah J; Yang, Jenny Y; DuBois, Daniel L; Kubiak, Clifford P
2011-08-17
[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.
NASA Technical Reports Server (NTRS)
Agrawal, Bal K.; Agrawal, Savitri
1995-01-01
The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.
Electron concentration distribution in a glow discharge in air flow
NASA Astrophysics Data System (ADS)
Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.
1989-04-01
Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.
New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications
NASA Astrophysics Data System (ADS)
Razavi, S. M.; Tahmasb Pour, S.; Najari, P.
2018-06-01
New AlGaN/GaN high electron mobility transistors (HEMTs) that their barrier layers under the gate are divided into two regions horizontally are presented in this work. Upper region is Si3N4 (SI-HEMT) or un-doped AlGaN (UN-HEMT) and lower region is AlGaN with heavier doping compared to barrier layer. Upper region in SI-HEMT and UN-HEMT reduces peak electric field in the channel and then improves breakdown voltage considerably. Lower region increases electron density in the two dimensional electron gas (2-DEG) and enhances drain current significantly. For instance, saturated drain current in SI-HEMT is about 100% larger than that in the conventional one. Moreover, the maximum breakdown voltage in the proposed structures is 65 V. This value is about 30% larger than that in the conventional transistor (50 V). Also, suggested structure reduces short channel effect such as DIBL. The maximum gm is obtained in UN-HEMT and conventional devices. Proposed structures improve breakdown voltage and saturated drain current and then enhance maximum output power density. Maximum output power density in the new structures is about 150% higher than that in the conventional.
Double-tailored nonimaging reflector optics for maximum-performance solar concentration.
Goldstein, Alex; Gordon, Jeffrey M
2010-09-01
A nonimaging strategy that tailors two mirror contours for concentration near the étendue limit is explored, prompted by solar applications where a sizable gap between the optic and absorber is required. Subtle limitations of this simultaneous multiple surface method approach are derived, rooted in the manner in which phase space boundaries can be tailored according to the edge-ray principle. The fundamental categories of double-tailored reflective optics are identified, only a minority of which can pragmatically offer maximum concentration at high collection efficiency. Illustrative examples confirm that acceptance half-angles as large as 30 mrad can be realized at a flux concentration of approximately 1000.
NASA Astrophysics Data System (ADS)
Mohammadi, Amir; Nemati, Sepideh; Mosaferi, Mohammad; Abdollahnejhad, Ali; Almasian, Mohammad; Sheikhmohammadi, Amir
2017-08-01
This study aimed to investigate the feasibility of carboxymethyl cellulose-stabilized iron nanoparticles (C-nZVI) for the removal of arsenite ions from aqueous solutions. Iron nanoparticles and carboxymethyl cellulose-stabilized iron nanoparticles were freshly synthesized. The synthesized nanomaterials had a size of 10 nm approximately. The transmission electron microscope (TEM) images depicted bulkier dendrite flocs of non-stabilized iron nanoparticles. It described nanoscale particles as not discrete resulting from the aggregation of particles. The scanning electron microscopy (SEM) image showed that C-nZVI is approximately discrete, well-dispersed and an almost spherical shape. The energy dispersive x-ray spectroscopy (EDAX) and X-ray diffraction (XRD) spectrum confirmed the presence of Fe0 in the C-nZVI composite. The central composite design under the Response Surface Methodology (RSM) was employed in order to investigate the effect of independent variables on arsenite removal and to determine the optimum condition. The reduced full second-order model indicated a well-fitted model since the experimental values were in good agreement with it. Therefore, this model is used for the prediction and optimization of arsenite removal from water. The maximum removal efficiency was estimated to be 100% when all parameters are considered simultaneously. The predicted optimal conditions for the maximum removal efficiency were achieved with initial arsenite concentration, 0.68 mg L- 1; C-nZVI, 0.3 (g L- 1); time, 31.25 (min) and pH, 5.2.
Analyses of ozone in urban and rural sites in Málaga (Spain).
Dueñas, C; Fernández, M C; Cañete, S; Carretero, J; Liger, E
2004-08-01
Ozone concentrations were measured at two (urban and a rural) sites near the city of Málaga (Spain). The aim of this study was to determine the daily, monthly and seasonal variation patterns of ozone concentrations at both sites and to study the possible regional influences. The daily variations mostly have the usual features with the afternoon maximum and the night minimum being more pronounced in the urban area. The average monthly concentrations throughout the year start to increase in March reaching their maximum values in July for the urban site. However, in the rural area, the monthly variations are smaller reaching their maximum value in June. The hourly evolution of the ozone concentrations in both sampling sites is well defined in spring and summer and not so well defined in autumn and winter. Taking into account the four seasons, the rural concentrations are higher than the urban ones. Summer is the season when there are similar concentrations at both sampling sites. Average hourly summer afternoon ozone for the hours 12:00-20:00 LST exceeded the 110 microg m(-3) European Union guidelines for human health for 8 h ozone exposure at the urban and rural sites.
Free electron laser with masked chicane
Nguyen, Dinh C.; Carlsten, Bruce E.
1999-01-01
A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.
Auroral and photoelectron fluxes in cometary ionospheres
NASA Astrophysics Data System (ADS)
Bhardwaj, A.; Haider, S. A.; Spinghal, R. P.
1990-05-01
The analytical yield spectrum method has been used to ascertain photoelectron and auroral electron fluxes in cometary ionospheres, with a view to determining the effects of cometocentric distances, solar zenith angle, and solar minimum and maximum conditions. Auroral electron fluxes are thus calculated for monoenergetic and observed primary electron spectra; auroral electrons are found to make a larger contribution to the observed electron spectrum than EUV-generated photoelectrons. Good agreement is established with extant theoretical works.
Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks.
Bakhtiari, M; Kramer, G J; Takechi, M; Tamai, H; Miura, Y; Kusama, Y; Kamada, Y
2005-06-03
Bremsstrahlung radiation of runaway electrons is found to be an energy limit for runaway electrons in tokamaks. The minimum and maximum energy of runaway electron beams is shown to be limited by collisions and bremsstrahlung radiation, respectively. It is also found that a massive injection of a high-Z gas such as xenon can terminate a disruption-generated runaway current before the runaway electrons hit the walls.
Atomic oxygen ions as ionospheric biomarkers on exoplanets
NASA Astrophysics Data System (ADS)
Mendillo, Michael; Withers, Paul; Dalba, Paul A.
2018-04-01
The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.
First-principle calculation of the electronic structure, DOS and effective mass TlInSe2
NASA Astrophysics Data System (ADS)
Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.
2017-05-01
The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.
Fluoride in the drinking water of Nagaur tehsil of Nagaur District, Rajasthan, India.
Arif, M; Hussain, I; Hussain, J; Sharma, S; Kumar, S
2012-06-01
Fluoride concentration of groundwater samples from 100 villages of Nagaur tehsil was determined, 85 villages were found to have fluoride concentration more than 1.5 mg/L. The maximum fluoride concentration was recorded 6.6 mg/L in groundwater of Singhani village, while the minimum was recorded in Kurchhi village. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by World Health Organization, the groundwater of about 85 villages of the studied sites is unfit for drinking purpose.
Toxic metals in imported fruits and vegetables marketed in Kuwait
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, A.; Baroon, Z.; Al-Khalafawi, M.
1995-12-31
The concentration of lead, cadmium, and mercury in 134 samples of imported fruits and vegetables marketed in Kuwait were determined using an atomic absorption spectrophotometer with a graphite furnace and the cold vapor technique. Results obtained showed that the concentration of these metal ions in most cases did not exceed the maximum permissible concentration of metals in fresh fruits and vegetables as restricted by some countries. Only a few samples of fruits and vegetables contained levels of mercury, cadmium, and lead which exceeded these maximum permissible levels.
Bisphenol a in canned food products from canadian markets.
Cao, Xu-Liang; Corriveau, Jeannette; Popovic, Svetlana
2010-06-01
A method based on solid phase extraction followed by derivatization and gas chromatography-mass spectrometry analysis was validated for the determination of bisphenol A (BPA) in canned food products. This method was used to analyze 78 canned food products for BPA. Concentrations of BPA in canned food products differed considerably among food types, but all were below the specific migration limit of 0.6 mg/kg set by the European Commission Directive for BPA in food or food simulants. Canned tuna products had the highest BPA concentrations in general, with mean and maximum values of 137 and 534 ng/g, respectively. BPA concentrations in the condensed soup products were considerably higher than those in the ready-to-serve soup products, with mean and maximum values of 105 and 189 ng/g, respectively, for the condensed soups and 15 and 34 ng/g, respectively, for the ready-to-serve soups. BPA concentrations in canned vegetable products were relatively low; about 60% of the products had BPA concentrations of less than 10 ng/g. Canned tomato paste products had lower BPA concentrations than did canned pure tomato products. The mean and maximum BPA concentrations were 1.1 and 2.1 ng/g, respectively, for tomato paste products and 9.3 and 23 ng/g, respectively, for the pure tomato products.
Lovley, D.R.; Goodwin, S.
1988-01-01
Factors controlling the concentration of dissolved hydrogen gas in anaerobic sedimentary environments were investigated. Results, presented here or previously, demonstrated that, in sediments, only microorganisms catalyze the oxidation of H2 coupled to the reduction of nitrate, Mn(IV), Fe(III), sulfate, or carbon dioxide. Theoretical considerations suggested that, at steady-state conditions, H2 concentrations are primarily dependent upon the physiological characteristics of the microorganism(s) consuming the H2 and that organisms catalyzing H2 oxidation, with the reduction of a more electrochemically positive electron acceptor, can maintain lower H2 concentrations than organisms using electron acceptors which yield less energy from H2 oxidation. The H2 concentrations associated with the specified predominant terminal electron-accepting reactions in bottom sediments of a variety of surface water environments were: methanogenesis, 7-10 nM; sulfate reduction, 1-1.5 nM; Fe(III) reduction, 0.2 nM; Mn(IV) or nitrate reduction, less than 0.05 nM. Sediments with the same terminal electron acceptor for organic matter oxidation had comparable H2 concentrations, despite variations in the rate of organic matter decomposition, pH, and salinity. Thus, each terminal electron-accepting reaction had a unique range of steady-state H2 concentrations associated with it. Preliminary studies in a coastal plain aquifer indicated that H2 concentrations also vary in response to changes in the predominant terminal electron-accepting process in deep subsurface environments. These studies suggest that H2 measurements may aid in determining which terminal electron-accepting reactions are taking place in surface and subsurface sedimentary environments. ?? 1988.
Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.
1983-01-01
The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.
Venkidusamy, Krishnaveni; Megharaj, Mallavarapu
2016-01-01
An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m2 (1000Ω) was generated (power density 131.65 ± 10 mW/m2) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m2; power density 720 ± 7 μW/m2, 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS. PMID:27462307
Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...
2015-10-05
The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less
NASA Technical Reports Server (NTRS)
Weiland, R. M.; Bowhill, S. A.
1981-01-01
The development and first observations of the partial-reflection drifts experiment at Urbana, Illinois (40 N) are described. The winds data from the drifts experiment are compared with electron concentration data obtained by the differential-absorption technique to study the possible meteorological causes of the winter anomaly in the mesosphere at midlatitudes. winds data obtained by the meteor-radar experiment at Urbana are also compared with electron concentration data measured at Urban. A significant correlation is shown is both cases between southward winds and increasing electron concentration measured at the same location during winter. The possibility of stratospheric/mesospheric coupling is investigated by comparing satellite-measured 0.4 mbar geopotential data with mesospheric electron concentration data. No significant coupling was observed. The winds measured at Saskatoon, Saskatchewan (52 N) are compared with the electron concentrations measured at Urban, yielding constant fixed relationship, but significant correlations for short segments of the winter. A significant coherence is observed at discrete frequencies during segments of the winter.
Unified electronic phase diagram for hole-doped high- Tc cuprates
NASA Astrophysics Data System (ADS)
Honma, T.; Hor, P. H.
2008-05-01
We have analyzed various characteristic temperatures and energies of hole-doped high- Tc cuprates as a function of a dimensionless hole-doping concentration (pu) . Entirely based on the experimental grounds, we construct a unified electronic phase diagram (UEPD), where three characteristic temperatures ( T∗ ’s) and their corresponding energies ( E∗ ’s) converge as pu increases in the underdoped regime. T∗ ’s and E∗ ’s merge together with the Tc curve and 3.5kBTc curve at pu˜1.1 in the overdoped regime, respectively. They finally go to zero at pu˜1.3 . The UEPD follows an asymmetric half-dome-shaped Tc curve, in which Tc appears at pu˜0.4 , reaches a maximum at pu˜1 , and rapidly goes to zero at pu˜1.3 . The asymmetric half-dome-shaped Tc curve is at odds with the well-known symmetric superconducting dome for La2-xSrxCuO4 (SrD-La214), in which two characteristic temperatures and energies converge as pu increases and merge together at pu˜1.6 , where Tc goes to zero. The UEPD clearly shows that pseudogap phase precedes and coexists with high temperature superconductivity in the underdoped and overdoped regimes, respectively. It is also clearly seen that the upper limit of high- Tc cuprate physics ends at a hole concentration that equals to 1.3 times the optimal doping concentration for almost all high- Tc cuprate materials and 1.6 times the optimal doping concentration for the SrD-La214. Our analysis strongly suggests that pseudogap is a precursor of high- Tc superconductivity, the observed quantum critical point inside the superconducting dome may be related to the end point of UEPD, and the normal state of the underdoped and overdoped high temperature superconductors cannot be regarded as a conventional Fermi liquid phase.
Zhang, Xiaotao; Wang, Ximing
2015-01-01
A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II)-contaminated wastewater. PMID:25647398
Morotti, Karine; Ramirez, Antonio Avalos; Jones, J Peter; Heitz, Michèle
2011-12-01
This study analyses the performance of ethanol biofiltration with percolation (biotrickling filtration, BTF) comparing to a conventional biofilter (biofiltration, BF). Two biofilters packed with clay balls were operated in a range of inlet concentrations of ethanol in the air varying from 0.47 to 2.36 g m(-3). For both the BF and BTF, the specific growth rate (mu) and the elimination capacity (EC) decreased with the ethanol inlet concentration, presenting a kinetic of substrate inhibition. A Haldane-type model was adjusted for both biofilters in order to model both EC and mu as a function of the ethanol inlet concentration in the gas. The maximum EC was similar for both biofilters, at around 46 g m(-3) h(-1), whereas the maximum mu was 0.0057 h(-1) for the BF and 0.0103 h(-1) for the BTF. The maximum of ethanol removed, occurred at the lowest inlet concentration of (0.47 gm(-3)), and reached 86% for the BF and 74% for the BTF.
Incorporation of Pr into LuAG ceramics
NASA Astrophysics Data System (ADS)
Marchewka, M. R.; Chapman, M. G.; Qian, H.; Jacobsohn, L. G.
2017-06-01
An investigation of the effects of Pr in (Lu1-xPrx)3Al5O12 (LuAG:Pr) ceramics was carried out by means of x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) measurements coupled with luminescence measurements. It was found that the Pr concentration that maximizes luminescence emission depends on the thermal processing conditions. While the calcined LuAG:Pr powder showed maximum luminescence emission for Pr concentrations between 0.18 and 0.33 at.%, maximum emission of ceramic bodies sintered at 1500 °C for 20 h was obtained with Pr concentrations between 0.018 and 0.18 at.%. Further, for short sintering times up to about 3 h, luminescence emission intensity is maximum for Pr concentrations around 0.33 at.%. Longer sintering times lead to the formation of PrAlO3 as a secondary phase, concomitant with a reduction of the intensity of luminescence emission.
Bao, Renbing; Zhang, Shaohui; Zhao, Li; Zhong, Liuxiang
2017-02-01
With sulfide as an anodic electron donor and ammonium as a cathodic substrate, the feasibility of simultaneous sulfide removal, nitrification, and electricity generation was investigated in a microbial fuel cell (MFC) equipped with an oxic cathode. Successful simultaneous sulfide removal, nitrification, and electricity generation in this MFC were achieved in 35 days, with the sulfide and ammonium removal percent of 92.7 ± 1.4 and 96.4 ± 0.3%, respectively. The maximum power density increased, but the internal resistance decreased with the increase of feeding sulfide concentration from 62.9 ± 0.3 to 238.5 ± 0.2 mg S/L. Stable ammonium removal with complete nitrification, preparing for future denitrification, was obtained throughout the current study. Sulfide removal loading significantly increased with the increase of feeding sulfide concentration at each external resistance, but no significant correlation between sulfide removal loading and external resistance was found at each feeding sulfide concentration. The charge recovery and anodic coulombic efficiency (CE) significantly decreased with the increase of external resistance. High feeding sulfide concentration led to low anodic CE. Granular sulfur deposition was found on the anode graphite fiber. The appropriate feeding sulfide concentration for sulfide removal and sulfur deposition was deemed to be 178.0 ± 1.7 mg S/L, achieving a sulfur deposition percent of 69.7 ± 0.6%.
The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.
Lusk, Bradley G; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, Cesar I
2016-12-01
We assessed the effects of pH and buffer concentration on current production and growth of biofilms of Thermincola ferriacetica - a thermophilic, Gram-positive, anode-respiring bacterium (ARB) - grown on anodes poised at a potential of -0.06V vs. SHE in microbial electrolysis cells (MECs) at 60°C. T. ferriacetica generated current in the pH range of 5.2 to 8.3 with acetate as the electron donor and 50mM bicarbonate buffer. Maximum current density was reduced by ~80% at pH5.2 and ~14% at 7.0 compared to pH8.3. Increasing bicarbonate buffer concentrations from 10mM to 100mM resulted in an increase in the current density by 40±6%, from 6.8±1.1 to 11.2±2.7Am(-2), supporting that more buffer alleviated pH depression within T. ferriacetica biofilms. Confocal laser scanning microscopy (CLSM) images indicated that higher bicarbonate buffer concentrations resulted in larger live biofilm thicknesses: from 68±20μm at 10mM bicarbonate to >150μm at 100mM, supporting that buffer availability was a strong influence on biofilm thickness. In comparison to mesophilic Geobacter sulfurreducens biofilms, the faster transport rates at higher temperature and the ability to grow at relatively lower pH allowed T. ferriacetica to produce higher current densities with lower buffer concentrations. Published by Elsevier B.V.
Tsai, Jiun H; Huang, Yao S; Shieh, Zhu X; Chiang, Hung L
2011-01-01
The electronics industry is a major business in the Central Taiwan Science Park (CTSP). Particulate samples and 11 water-soluble ionic species in the particulate phase were measured by ionic chromatography (IC). Additionally, acid and base gases were sampled by denuder absorption and analyzed by IC. Volatile organic compounds (VOCs) were collected in stainless-steel canisters four times daily and analyzed via gas chromatography/mass spectrometry. Ozone formation potential (OFP) was measured using maximum increment reactivity. In addition, airborne pollutants during (1) construction and (2) mass production were measured. Particulate matter concentration did not increase significantly near the optoelectronic plant during construction, but it was higher than during mass production. SO(2), HNO(2) and NH(3) were the dominant gases in the denuder absorption system. Nitrate, sulfate, and ammonium ions predominated both in PM(2.5) and PM(10-2.5); but calcium ion concentration was significantly higher in PM(10-2.5) samples during construction. Toluene, propane, isopentane, and n-butane may have come from vehicle exhaust. Construction equipment emitted high concentrations of ethylbenzene, m-xylene, p-xylene, o-xylene, 1,2,4-trimethylbenzene, and toluene. During mass production, methyl ethyl ketone), acetone and ethyl acetate were significantly higher than during construction, although there was continuous rain. The aromatic group constituted >50% of the VOC concentration totals and contributed >70% of OFP.
Transport properties of Y1-xNdxCo2 compounds
NASA Astrophysics Data System (ADS)
Uchima, K.; Takeda, M.; Zukeran, C.; Nakamura, A.; Arakaki, N.; Komesu, S.; Takaesu, Y.; Hedo, M.; Nakama, T.; Yagasaki, K.; Uwatoko, Y.; Burkov, A. T.
2012-12-01
Electrical resistivity ρ and thermopower S of light rare earth-based pseudo-binary Y1-xNdxCo2 alloys have been measured at temperatures from 2 K to 300 K and under pressures up to 3.5 GPa. The Curie temperature of the alloys, TC, determined from characteristic features in the temperature dependences of the transport properties, decreases with decreasing Nd concentration x and vanishes around xc = 0.3. The residual resistivity has a pronounced maximum at x = xc. The temperature coefficient of thermopower dS/dT at low temperature limit shows a complex dependence on alloy composition: it changes its sign from negative to positive at x ≍ 0.2, having a maximum at x = xc, and is nearly composition independent at x > 0.5. The pressure dependences of TC and ρ0 of Yo.6Ndo.4Co2 reveal the behavior similar to that observed in the Y1-xRxHCo2 (RH = heavy rare earth) alloy systems, which implies that the magnetic state of the Co-3d electron subsystem is responsible for the transport properties in the Y1-xNdxCo2 alloys.
Zou, Jieming; Jiang, Zhiliang; Wang, Lisheng; Li, Tingsheng; Liu, Qinye
2004-06-01
There is a fluorescence peak at 570 nm, and a maximum absorption peak at 560 nm for phloxine (PHLO) in a pH 7 water solution. Under these conditions, the ciprofloxacin cation (CPFX+) and PHLO- combine into hydrophobic CPFX-PHLO association molecule by means of static gravitation. There are stronger van der Waals forces and hydrophobic forces among the CPFX-PHLO molecules. Thus, they aggregate automatically to the (CPFX-PHLO)n association nanoparticle in red-violet color. That was characterized by scan electron microscopy (SEM), hyperfiltration and dialysis tests. In 0.04 M HCl, the red-violet nanoparticles exhibited a Rayleigh scattering peak at 470 nm, a resonance scattering peak at 580 nm, a maximum absorption wavelength at 565 nm, and a fluorescence peak at 450 nm. The fluorescence analytical conditions of CPFX have been considered. The CPFX concentration in the range of 1.0 x 10(-6)-4.0 x 10(-5) M is linear to the fluorescence intensity, F450nm. The detection limit was achieved at 4.0 x 10(-7) M CPFX. The CPFX in real samples was determined with satisfactory results.
Cui, Dongli; Liu, Zehua; Yang, Yaxing; Huang, Rijin; Cheng, Xiaojuan; Fatehi, Pedram; Sun, Bo
2016-01-01
Potato residue is vastly produced in the food industry but it is landfilled. This article describes the treatment of purified cellulose derived from potato residues by a high pressure homogenizer to produce nano-fibrillated cellulose (NFC), which was then oxidized by sodium periodate to prepare dialdehyde nano-fibrillated cellulose (DANFC). The produced NFC and DANFC were characterized by a scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The orthogonal experiment was induced to obtain the maximum degree of oxidation (DO) on DANFC. The results indicated that the optimal conditions were 40°C and pH 3. Alternatively, the isotherm and kinetic studies for the adsorption of creatinine on DANFC with different DOs (70.5 and 88.8%) were investigated, and the experimental results fitted well into Freundlich isotherm model and pseudo second-order kinetic model. The maximum adsorption capacities of DANFCs with the DO of 70.55 and 88.85% were 6.7 and 17.2 mg g(-1) , respectively, which were achieved under the conditions of 37°C and initial creatinine concentration of 100 mg L(-1). © 2015 American Institute of Chemical Engineers.
Tracking of Polycarbonate Films using Low-energy Ions Final Report CRADA No. TC-774-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musket, R. G.
2018-01-24
Ion tracking is performed almost exclusively using ions with energies near or above the maximum in electronic stopping. For the present study, we have examined the results of etching ion tracks created by ions bombarding polycarbonate films with energies corresponding to stopping well below the maximum and just above the anticipated threshold for creating etchable latent tracks. Low-energy neon and argon ions with 18-60 keV /amu and fluences of about 10 8/cm 2 were used to examine the limits for producing etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., -20 nm < SEM holemore » diameter < -100 nm), we can directly relate the energy deposition calculated for the incident ion to the creation of etchable tracks. The experimental results will be discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness the films. These results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications.« less
Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K; Beyenal, Haluk
2012-11-01
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.
Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.
2012-01-01
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, B.; Cao, B.; McLean, Jeffrey S.
2012-11-07
A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A alsomore » could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.« less
Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding
NASA Astrophysics Data System (ADS)
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-06-01
This study aims to investigate the influence of carbon nanotubes based nanofluid on interfacial tension and oil recovery efficiency. Practically multi-walled carbon nanotubes were successfully synthesized using chemical vapour deposition technique and characterized using X-ray diffraction and Field Emission Scanning Electron microscope in order to understand its structure, shape, and morphology. Nanofluids are one of the interesting new agents for enhanced oil recovery (EOR) that can change the reservoir rock-fluid properties in terms of interfacial tension and wettability. In this work, different concentration of carbon nanotubes based fluids were prepared and the effect of each concentration on surface tension was determined using pendant drop method. After specifying the optimum concentration of carbon nanotubes based nanofluid, core flooding experiment was conducted by two pore volume of brine and two pore volume of nanofluid and then oil recovery factor was calculated. The results show that carbon nanotubes can bring in additional recovery factor of 18.57% in the glass bead sample. It has been observed that nanofluid with high surface tension value gives higher recovery. It was found that the optimum value of concentration is 0.3 wt% at which maximum surface tension of 33.46 mN/m and oil recovery factor of 18.57% was observed. This improvement in recovery factor can be recognized due to interfacial tension reduction and wettability alteration.
Wang, G X; Luo, L L; Yin, T Y; Li, Y; Jiang, T; Ruan, C G; Guidoin, R; Chen, Y P; Guzman, R
2010-01-01
An eluting-stent system with mAb dispersed in the PLLA (poly (L-lactic acid)) was validated in vitro. Specifically designed spray equipment based on the principle of ultrasonic atomization was used to produce a thin continuous PLLA (poly (L-lactic acid)) polymer coating incorporating monoclonal antibody (mAb). This PLLA coating was observed in light microscopy (LM) and scanning electron microscopy (SEM). The concentration of the monoclonal antibody (mAb) to the platelet glycoprotein (GP) IIIa receptor and the eluting rate were then measured by a radioisotope technique with (125)I-labelled GP IIIa mAb. An in vitro perfusion circuit was designed to evaluate the release rates at different velocities (10 or 20 ml min(-1)). The PLLA coating was thin and transparent, uniformly distributed on the surface of the stent. Three factors influenced its thickness: PLLA concentration, duration and gas pressure. The concentration of mAb was influenced by the duration of absorption and the concentration of the mAb solution; the maximum was 1662.23 + or - 38.83 ng. The eluting rate was fast for the first 2 h, then decreased slowly and attained 80% after 2 weeks. This ultrasonic atomization spray equipment and technological process to prepare protein eluting-stents were proved to be effective and reliable.
Lavkush Bhaisare, Mukesh; Pandey, Sunil; Shahnawaz Khan, M; Talib, Abou; Wu, Hui-Fen
2015-01-01
A new and facile method for the determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants is proposed in this article. Carbon dots exhibited substantial fluorescence and therefore enhanced the sensitivity of this evaluation. Understanding the formation of surfactant micelles is vital for the applications of biomedicine such as drug fabrication and smart molecular vehicles in delivering therapeutic dosage to various molecular sites. The fluorescence property of carbon dots was utilized for the first time to estimate the critical micelle concentration of surfactants. The central concept of the approach is based on the Stokes shift determination of a system composed of constant amount of carbon dots with varying concentrations of ionic and non-ionic surfactants. The synthesized carbon dots were characterized by FTIR, TEM, XRD, Raman, UV, and fluorescence spectroscope. The carbon dots were excited at 280 nm so as to obtain maximum emission for the Stokes shift measurement. The CMC value of cetyltrimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), Triton X-100, dodecyldimethyl(3-sulfopropyl)ammonium hydroxide (SB-12) evaluated by this approach was found to be 0.98, 7.3, 0.19, and 3.5mM, respectively. The signals of spectra were assigned and explained in terms of both electron transitions between specific molecular orbital and the interaction with solvent. Copyright © 2014 Elsevier B.V. All rights reserved.
[Exploratory study of air quality in elementary schools, Coimbra, Portugal].
Ferreira, Ana Maria Conceiçã; Cardoso, Salvador Massano
2013-12-01
To analyze the air quality in elementary schools and their structural and functional conditions. Air quality in 51 elementary schools (81 classrooms) in the city of Coimbra, Portugal, both inside and outside of the rooms was evaluated during the four seasons, from 2010 to 2011. Temperature (T°), relative humidity (Hr), concentrations of carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), compounds were evaluated, as were volatile organics (VOC), formaldehyde and particulate matter (PM10), from November 2010 to February 2011 (autumn/winter) and March 2011 to June 2011 (spring/summer). A grid characterizing the structural and functional conditions of the schools was created. The statistical Student t test for paired samples and the Wilcoxon t test were applied. In 47 schools, the average CO2 concentrations were above the maximum reference concentration (984 ppm) mentioned in Portuguese legislation. The maximum concentration values found inside the rooms were critical, especially in the fall/winter (5,320 ppm). In some schools the average concentrations of VOC and PM10 within the maximum concentration exceeded the reference legislated. The values (risk) of CO, formaldehyde, NO2, SO2 and O3 detected were not relevant. There was a higher concentration of pollutants inside the rooms compared with outside. Inadequate ventilation is associated with high CO2 concentration in the classroom.
Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt
NASA Astrophysics Data System (ADS)
Abel, Bob; Thorne, Richard M.
1994-10-01
Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.
Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt
NASA Technical Reports Server (NTRS)
Abel, Bob; Thorne, Richard M.
1994-01-01
Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.
Terawatt x-ray free-electron-laser optimization by transverse electron distribution shaping
Emma, C.; Wu, J.; Fang, K.; ...
2014-11-03
We study the dependence of the peak power of a 1.5 Å Terawatt (TW), tapered x-ray free-electron laser (FEL) on the transverse electron density distribution. Multidimensional optimization schemes for TW hard x-ray free-electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to a Gaussian distribution. The optimizations are performed for a 200 m undulator and a resonant wavelength of λ r = 1.5 Å using the fully three-dimensional FEL particle code GENESIS. The study shows that the flatter transverse electron distributions enhance optical guiding in the tapered section of the undulator andmore » increase the maximum radiation power from a maximum of 1.56 TW for a transversely Gaussian beam to 2.26 TW for the parabolic case and 2.63 TW for the uniform case. Spectral data also shows a 30%–70% reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian. An analysis of the transverse coherence of the radiation shows the coherence area to be much larger than the beam spotsize for all three distributions, making coherent diffraction imaging experiments possible.« less
NASA Astrophysics Data System (ADS)
Samolov, Ana; Popovic, Svetozar; Vuskovic, Leposava; Basovic, Milos; Cuckov, Filip; Raitses, Yevgeny; Kaganovich, Igor
2013-09-01
Electron-induced Secondary Electron Emission (SEE) is important in many gas discharge applications such as Hall thrusters, surface and multipactor discharges. Often they present the inhibiting phenomena in designing and operating of these systems, examples being the Superconducting Radio Frequency (SRF) accelerator cavities. The multipactor discharges depend on the resonant field configuration and on the SEE from the cavity surface. SEE is proportional to the energy dissipated by the primary electrons near the surface. Our analysis of energy spectra of secondary electrons indicates that the fraction of dissipated energy of primary electrons in solid reaches the maximum at the primary energies that produce the maximum yield. The better understanding of this mechanism is crucial for successful modeling of the multipactor discharge and design of vacuum electronic devices. We have developed an experimental set up to measure energy distribution of SEE from Nb coupons under different incident angles, since Nb is used for manufacturing of SRF accelerating cavities. Samples are placed in carousel target manifolds which are manipulated by robotic arm providing multiple degrees of freedom of a whole target system. Work supported by JSA/DOE contract No. DE-AC05-06OR23177.
[Characterization of a diode system for in vivo dosimetry with electron beams].
Ragona, R; Rossetti, V; Lucio, F; Anglesio, S; Giglioli, F R
2001-10-01
Current quality assurance regulation stresses the basic role of in vivo dosimetry. Our study evaluates the usefulness and reliability of semiconductor diodes in determining the electron absorbed dose. P-type EDE semiconductor detectors were irradiated with electron beams of different energies produced by a CGR Saturn Therac 20. The diode and ionization chamber response were compared, and effect of energy value, collimator opening, source skin distance and gantry angle on diode response was studied. Measurements show a maximum increment of about 20% in diode response increasing the beam energy (6-20 MeV). The response also increases with: collimator opening, reaching 5% with field sizes larger than 10x10 cm2 (with the exception of 20 MeV energy); SSD increase (with a maximum of 8% for 20 MeV); transversal gantry incidence, compared with the diode longitudinal axis; it does not affect the response in the interval of +/- 45 degrees. Absorbed dose attenuation at dmax, due to the presence of diode on the axis of the beam as a function of electron energy was also determined : the maximum attenuation value is 15% in 6 MeV electron beams. A dose calculation algorithm, taking into account diode response dependence was outlined. In vivo dosimetry was performed in 92 fields for 80 patients, with an agreement of +/-4 % (1 SD) between prescribed and measured dose. It is possible to use the EDE semiconductor detectors on a quality control program of dose delivery for electron beam therapy, but particular attention should be paid to the beam incidence angle and diode dose attenuation.
Structural and optical properties of magnetron sputtered MgxZn1-xO thin films
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Gupte, Vinay; Sreenivas, K.
2006-04-01
MgxZn1-xO (MZO) thin films prepared by an rf magnetron sputtering technique are reported. The films were grown at room temperature and at relatively low rf power of 50 W. MZO thin films were found to possess preferred c-axis orientation and exhibited hexagonal wurtzite structure of ZnO up to a Mg concentration of 42 mol%. A small variation in the c-axis lattice parameter of around 0.3% was observed with increasing Mg composition, showing the complete solubility of Mg in ZnO. The band gap of the MZO films in the wurtzite phase varied linearly with the Mg concentration and a maximum band gap ~4.19 eV was achieved at x = 0.42. The refractive indices of the MgO films were found to decrease with increasing Mg content. The observed optical dispersion data are in agreement with the single oscillator model. A photoluminescence study revealed a blue shift in the near band edge emission peak with increasing Mg content in the MZO films. The results show the potential of MZO films in various opto-electronic applications.
Synthesis and photoluminescence study in Eu3+:Y2WO6 phosphors
NASA Astrophysics Data System (ADS)
Sonali, Mondal, Manisha; Rai, Vineet Kumar
2018-05-01
Eu3+ doped Y2WO6 phosphors were synthesized by solid state reaction method. The photoluminescence properties of the Eu3+:Y2WO6 phosphors were studied for different concentration of Eu3+ ions. The luminescence intensity is found maximum at 0.3 mol% of Eu3+ ions. The excitation spectra monitored at ˜617 nm lies in the 220 - 350 nm region occurs due to charge transfer state (CTS) band of the europium-oxygen interactions, which is caused by an electron transfer from oxygen 2p orbital to an empty 4f shell of europium ions. The phosphors effectively excited by ˜393 nm near-ultraviolet (NUV) light gives efficient red emission band (˜ 617 nm) corresponding to 5D0 → 7F2 transition. The concentration dependence photoluminescence study and the mechanisms behind the photoluminescence properties have been explored with the help of suitable energy level diagram. Moreover, the CIE colour coordinate lie in the near white region so the prepared phosphors can be suitably use in making visible downconverter and in making visible light display devices.
Synthesis of graphene aerogel for adsorption of bisphenol A
NASA Astrophysics Data System (ADS)
Trinh, Truong Thi Phuong Nguyet Xuan; Long, Nguyen Huynh Bach Son; Quang, Dong Thanh; Hieu, Nguyen Huu
2018-04-01
In this research, graphene aerogel (GA) was synthesized by chemical reduction method using ethylene diamine as a reducing agent. The morphology and properties of GA were characterized by calculating apparent density, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, and Brunauer-Emmett-Teller (BET) specific surface area. High-performance liquid chromatography (HPLC) was used to quantify the amount of the residual bisphenol A (BPA) concentration. The analysis results showed that GA exhibited low density ranging from 4-8 mg/cm3, hydrophobicity, high porosity, and specific surface area of 1883 m2/g according to BET. The obtained GA was used as an adsorbent for BPA. The effects of pH, contact time, and initial BPA concentration on the adsorption were investigated. The adsorption equilibrium time could be reached within 240 minutes. The adsorption data were well-fitted to pseudo-second-order kinetic equation and Langmuir isotherm model. The maximum adsorption capacity of GA for BPA calculated by the Langmuir model was 185.185 mg/g at pH 7. Accordingly, GA could be considered as promising adsorbents for BPA in water.
Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus.
Mata, Y N; Torres, E; Blázquez, M L; Ballester, A; González, F; Muñoz, J A
2009-07-30
In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.
Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution
NASA Astrophysics Data System (ADS)
Ahmad, S.; Wong, Y. C.; Veloo, K. V.
2018-04-01
Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 μm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.