Sample records for maximum energy conversion

  1. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  2. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-07

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  3. Comparison of Forecast and Observed Energetics

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Brin, Y.

    1985-01-01

    An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; and (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum Eddy conversion 12 h earlier is noted.

  4. Comparison of Forecast and Observed Energetics

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Brin, Y.

    1984-01-01

    An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast fields of the GLAS fourth order model for the 13 to 15 January 1979 cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum ddy conversion 12 h earlier is noted.

  5. A comparison of observed and forecast energetics over North America

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Brin, Y.

    1985-01-01

    The observed kinetic energy balance is calculated over North America and compared with that computed from forecast fields for the 13-15 January 1979 cyclone. The FGGE upper-air rawinsonde network serves as the observational database while the forecast energetics are derived from a numerical integration with the GLAS fourth-order general circulation model initialized at 00 GMT 13 January. Maps of the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. Both the forecast and observations exhibit the lower and upper tropospheric maxima in vertical profiles of kinetic energy generation and dissipation typically found in cyclonic disturbances. An interesting time lag is noted in the observational analysis with the maximum observed kinetic energy occurring 12 h later than the maximum eddy conversion over the same region.

  6. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  7. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  8. Cobalt and Yttrium Modified TiO2 Nanotubes Based Dye-Sensitized Solar Cells for Solar-Energy Conversion

    NASA Astrophysics Data System (ADS)

    Shabanov, N. S.; Isaev, A. B.; Orudzhev, F. F.; Murliev, E. K.

    2018-01-01

    The solar-energy conversion in eosin-sensitized solar cells based on cobalt and yttrium modified TiO2 nanotubes has been studied.It is established that the doping with metal ions shifts the absorption edge for Co and Y doped titanium dioxide samples to longer and shorter wavelengths, respectively. The efficiency of solar energy conversion depends on the wide bandgap of the semiconductor anode and reaches a maximum (4.4%) for yttrium-doped TiO2 in comparison to that (4.1%) for pure titanium dioxide.

  9. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency.

    PubMed

    Yang, Zhibin; Sun, Hao; Chen, Tao; Qiu, Longbin; Luo, Yongfeng; Peng, Huisheng

    2013-07-15

    Wired for light: Novel wire-shaped photovoltaic devices have been developed from graphene/Pt composite fibers. The high flexibility, mechanical strength, and electrical conductivity of graphene composite fibers resulted in a maximum energy conversion efficiency of 8.45 %, which is much higher than that of other wire-shaped photovoltaic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A new wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1975-01-01

    It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.

  11. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    NASA Astrophysics Data System (ADS)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  12. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  13. Kinetic energy budgets during the life cycle of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1978-01-01

    Synoptic-scale data at three- and six-hour intervals are employed to study the relationship between changing kinetic energy variables and the life cycles of two severe squall lines. The kinetic energy budgets indicate a high degree of kinetic energy generation, especially pronounced near the jet-stream level. Energy losses in the storm environment are due to the transfer of kinetic energy from grid to subgrid scales of motion; large-scale upward vertical motion carries aloft the kinetic energy generated by storm activity at lower levels. In general, the time of maximum storm intensity is also the time of maximum energy conversion and transport.

  14. Calorific values and combustion chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    Combustion chemistry and calorific value analyses are the fundamental information for evaluating different biomass waste-to-energy conversion operations. Specific chemical exergy of manure and other biomass feedstock will provide a measure for the theoretically maximum attainable energy. The specifi...

  15. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    PubMed

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage.

    PubMed

    Kano, Shinya; Fujii, Minoru

    2017-03-03

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  17. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  18. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  19. Experimental investigation on the hydrodynamic performance of a wave energy converter

    NASA Astrophysics Data System (ADS)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  20. Comparison of Predicted Thermoelectric Energy Conversion Efficiency by Cumulative Properties and Reduced Variables Approaches

    NASA Astrophysics Data System (ADS)

    Linker, Thomas M.; Lee, Glenn S.; Beekman, Matt

    2018-06-01

    The semi-analytical methods of thermoelectric energy conversion efficiency calculation based on the cumulative properties approach and reduced variables approach are compared for 21 high performance thermoelectric materials. Both approaches account for the temperature dependence of the material properties as well as the Thomson effect, thus the predicted conversion efficiencies are generally lower than that based on the conventional thermoelectric figure of merit ZT for nearly all of the materials evaluated. The two methods also predict material energy conversion efficiencies that are in very good agreement which each other, even for large temperature differences (average percent difference of 4% with maximum observed deviation of 11%). The tradeoff between obtaining a reliable assessment of a material's potential for thermoelectric applications and the complexity of implementation of the three models, as well as the advantages of using more accurate modeling approaches in evaluating new thermoelectric materials, are highlighted.

  1. Significance of the South Pacific Convergence Zone (SPCZ) in the energy budget of the Southern Hemisphere tropics

    NASA Technical Reports Server (NTRS)

    Hurrell, James W.; Vincent, Dayton G.

    1987-01-01

    An in-depth investigation of the energetics, including boundary transports, was conducted on four equal-area regions in the tropical Southern Hemisphere during the SOP-1 period in 1979. The regions, each approximately centered on one of the wave axes of maximum warm rising air, include the SPCZ (115 deg W - 155 deg E) and the Australian (155-65 deg E), the African (65 deg E - 25 deg W), and the South American (25-115 deg W) regions. Daily variations of the energy conversions were examined, and time-averaged result of energy contents, conversions, and boundary transports were compiled for January 10-27. Results show that the eddy kinetic energy (KE) exceeds the eddy available potential energy (AE) in all four regions, with the largest excess being in the SPCZ. Of the conversion and flux terms, only the conversion of AE to KE is significant (again, with the greatest value in the SPCZ). An evaluation of boundary fluxes of KE indicates that the only significant transport between regions is a flow of KE from the SPCZ region into the South American region.

  2. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewatermore » (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.« less

  3. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    NASA Astrophysics Data System (ADS)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  4. Optimization of power generating thermoelectric modules utilizing LNG cold energy

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Soo

    2017-12-01

    A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.

  5. Renewable fluid dynamic energy derived from aquatic animal locomotion.

    PubMed

    Dabiri, John O

    2007-09-01

    Aquatic animals swimming in isolation and in groups are known to extract energy from the vortices in environmental flows, significantly reducing muscle activity required for locomotion. A model for the vortex dynamics associated with this phenomenon is developed, showing that the energy extraction mechanism can be described by simple criteria governing the kinematics of the vortices relative to the body in the flow. In this way, we need not make direct appeal to the fluid dynamics, which can be more difficult to evaluate than the kinematics. Examples of these principles as exhibited in swimming fish and existing energy conversion devices are described. A benefit of the developed framework is that the potentially infinite-dimensional parameter space of the fluid-structure interaction is reduced to a maximum of eight combinations of three parameters. The model may potentially aid in the design and evaluation of unsteady aero- and hydrodynamic energy conversion systems that surpass the Betz efficiency limit of steady fluid dynamic energy conversion systems.

  6. A Comparison of Martian Transient Wave Energetics in High and Low Optical Depth Environments

    NASA Astrophysics Data System (ADS)

    Battalio, J. M.; Szunyogh, I.; Lemmon, M. T.

    2016-12-01

    The local energetics of individual transient eddies from the Mars Analysis Correction Data Assimilation (MACDA) is compared between a year with a global-scale dust storm (MY 25) and two years of relatively low optical depth conditions. Eddies in each year are considered from a period of strong wave activity in the northern hemisphere before the winter solstice (Ls=170-240°). The local growth of eddies is typically triggered by geopotential flux convergence. While all waves exhibit some baroclinic growth, baroclinic energy conversion is weaker in the waves that occur during the global-scale dust storm. The weaker baroclinic energy conversion in these waves, however, is compensated by a more intense barotropic transfer of the kinetic energy from the mean flow to the waves: the contribution from barotropic energy conversion allows eddies during the global-scale dust storm to attain roughly the same maximum eddy kinetic energy as eddies during the low optical depth years. Individual eddies in the waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation in both the high- and the low-optical-depth years.

  7. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Thermal Energy Storage and Heat Transfer Support Program. Task 4. Thermionic Energy Conversion Studies. Volume 2

    DTIC Science & Technology

    1991-03-01

    Target Temperature as a Function of the Py erot Temperature ........ .... ............. 13 2.4 Emitter Temperature as a Functio of th Liode Target...Temperatm .. ........................ 14 2.5 Experimental Calibration Data and Polynomial Fit for ASTAR-811C Diode ... . ......... . ...... 18 2.6 Actual...12.2152(V) - 0.0099 (5.2) Maximum error a 0.0093% C) TR = 420 K P = 4.5541(V)3 - 23.58 18 (V)2 + 18.1602(V) + 0.002 (5.3) Maximum error =.1.632% d) TR = 450

  9. Cloud-generated radiative heating and its generation of available potential energy

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  10. Microminiature thermionic converters

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2001-09-25

    Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  11. Piezoelectric energy harvesting computer controlled test bench

    NASA Astrophysics Data System (ADS)

    Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  12. Piezoelectric energy harvesting computer controlled test bench.

    PubMed

    Vázquez-Rodriguez, M; Jiménez, F J; de Frutos, J; Alonso, D

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  13. How coupling affects closely packed rectenna arrays used for wireless power transmission

    NASA Astrophysics Data System (ADS)

    Walls, Deidra; Choi, Sang H.; Yoon, Hargsoon; Geddis, Demetris; Song, Kyo D.

    2017-04-01

    The development of power transmission by microwave beam power harvesting attracts manufactures for use of wireless power transmission. Optimizing maximum conversion efficiency is affected by many design parameters, and has been mainly focused previously. Combining several rectennas in one array potentially aides in the amount of microwave energy that can be harvested for energy conversion. Closely packed rectenna arrays is the result of the demand to minimize size and weight for flexibility. This paper specifically focuses on the coupling effects on power; mutual coupling, comparing sparameters and gain total while varying effective parameters. This paper investigates how coupling between each dipole positively and negatively affects the microwave energy, harvesting, and the design limitations.

  14. Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation

    NASA Astrophysics Data System (ADS)

    Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.

    2018-04-01

    The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.

  15. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    NASA Astrophysics Data System (ADS)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  16. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study.

    PubMed

    Hanif, Muhammad Usman; Capareda, Sergio C; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products.

  17. Issues regarding the usage of MPPT techniques in micro grid systems

    NASA Astrophysics Data System (ADS)

    Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.

    2018-01-01

    The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.

  18. Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Pilar, Kartik

    Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.

  19. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François

    2018-03-01

    In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.

  20. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  1. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    NASA Astrophysics Data System (ADS)

    Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.

  2. Mixed Redox Catalytic Destruction of Chlorinated Solvents in Soils and Groundwater: From the Laboratory to the Field

    PubMed Central

    Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric

    2010-01-01

    A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945

  3. Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials

    DOEpatents

    Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.

    2016-08-16

    A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.

  4. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study

    PubMed Central

    Hanif, Muhammad Usman; Capareda, Sergio C.; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products. PMID:27043929

  5. Hybrid renewable energy system using doubly-fed induction generator and multilevel inverter

    NASA Astrophysics Data System (ADS)

    Ahmed, Eshita

    The proposed hybrid system generates AC power by combining solar and wind energy converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy system, the stator voltage and its frequency vary with wind speed, and in order to keep them constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel depending on their availability. It consists of a multilevel inverter which gives lower harmonic distortion in the stator voltage. Maximum power point tracking techniques have been implemented for both wind and solar power. The complete hybrid renewable energy system is implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in hardware using dSPACE controller board.

  6. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate.

    PubMed

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi

    2017-11-01

    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsyn, V. M.; Stepanov, S. A., E-mail: stepanovsa@tpu.ru; Yangyang, Ju

    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energymore » losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.« less

  8. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOEpatents

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  9. Seasonal variability of Internal tide energetics in the western Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Mohanty, S.; Rao, A. D.

    2017-12-01

    The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, seamounts, etc. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the western Bay of Bengal is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution observed data sets are available. The model is initially validated through the spectral estimate of density and the baroclinic velocities. From the estimate, it is found that its peak is associated with the semi-diurnal frequency at all the depths in both observations and model simulations for November-December and March-April. However in August, the estimate is found to be maximum near the inertial frequency at all available depths. EOF analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The phase speed, group speed and wavelength are found to be maximum for post-monsoon season compared to other two seasons. To understand the generation and propagation of internal tides over this region, barotropic-to-baroclinic M2 tidal energy conversion and energy flux are examined. The barotropic-to-baroclinic conversion occurs intensively along the shelf-slope regions and propagate towards the coast. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m2) in northern BoB and minimum in August (14kg/m2). The detailed energy budget calculation are made for all the seasons and results are analysed.

  10. Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols

    PubMed Central

    Sathiyan, S.; Ravikumar, M.

    2008-01-01

    In this study, absorbed doses were measured and compared for high-energy electrons (6, 9, 12, 16, and 20 MeV) using International Atomic Energy Agency (IAEA), Technical Reports Series No. 277 (TRS), TRS 381, and TRS 398 dosimetry protocols. Absolute dose measurements were carried out using FC65-G Farmer chamber and Nordic Association of Clinical Physicists (NACP) parallel plate chamber with DOSE1 electrometer in WP1-D water phantom for reference field size of 15 × 15 cm2 at 100 cm source-to-surface distance. The results show that the difference between TRS 398 and TRS 381 was about 0.24% to 1.3% depending upon the energy, and the maximum difference between TRS 398 and TRS 277 was 1.5%. The use of cylindrical chamber in electron beam gives the maximum dose difference between the TRS 398 and TRS 277 in the order of 1.4% for energies above 10 MeV (R50 > 4 g/cm2). It was observed that the accuracy of dose estimation was better with the protocols based on the water calibration procedures, as no conversion quantities are involved for conversion of dose from air to water. The cross-calibration procedure of parallel plate chamber with high-energy electron beams is recommended as it avoids pwall correction factor entering into the determination of kQ,Qo. PMID:19893700

  11. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    PubMed

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.

  12. Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Zhang, Diyu; Wang, Dongping; Liu, Kezhao; Kleyn, Aart W.

    2017-07-01

    We have studied carbon dioxide dissociation in inductively coupled radiofrequency plasma and microwave plasma at low gas pressure. Both systems exhibit features of non-thermal plasma. The highest energy efficiency observed is 59.3% (2.13 mmol kJ-1), exceeding the maximum value of about 45% in case of thermodynamic equilibrium, and a maximum conversion of 80.6% is achieved. Different discharge conditions, such as the source frequency, discharge gas pressure and the addition of argon, will affect the plasma parameters, especially the electron energy distribution. This plays a great role in the energy transfer from non-thermal plasma to the molecular dissociation reaction channel by enabling the ladder climbing of the carbon dioxide molecular vibration. The results indicate the importance of ladder climbing.

  13. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  14. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  15. Energy-Efficient Underwater Surveillance by Means of Hybrid Aquacopters

    DTIC Science & Technology

    2014-12-01

    life-cycle analysis, photovoltaic device maximum power point tracking (MPPT), and surface treatments for antifouling of the solar cells can be...108 3. Power Conversion and Storage...15 Figure 10. Shallow Water Analysis and Forecast System product, displaying regional ocean current vectors overlaying a sea surface

  16. Energy Harvesting for Self-Powered, Ultra-Low Power Microsystems With a Focus on Vibration-Based Electromechanical Conversion

    DTIC Science & Technology

    2009-09-01

    harmonic frequency of the system , ωn, given as ,n k m   (5) must equal the excitation frequency in order to achieve maximum power. Because of ...characteristic of persistence in mind, a management system is required to mediate the profiles of energy generation and consumption. 53 V. CONCLUSION...they do have a long-term negative environmental impact . An alternative to

  17. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W.

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m-2 K-1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm-3, 526 W cm-3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  18. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.

    PubMed

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 -0.32PbTiO 3 . Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m -2  K -1 ) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm -3 , 526 W cm -3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  19. Resonantly pumped high efficiency Ho:YAG laser.

    PubMed

    Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu

    2012-11-20

    High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.

  20. LASERS: Ultimate energy parameters of the radiation emitted from neodymium-glass laser systems

    NASA Astrophysics Data System (ADS)

    Eshmemet'eva, E. V.; Korolev, V. I.; Mesnyankin, E. P.; Serebryakov, V. A.; Shashkin, V. V.; Yashin, V. E.

    1992-09-01

    An experimental investigation was made of the energy conversion efficiency and of the effects of stimulated Brillouin scattering and of optical breakdown, limiting the maximum energy density obtained from several phosphate and silicate neodymium glasses when the duration of the output pulses was 50-150 ns. The experimental results were used to develop a numerical model for calculation of the gain allowing for these processes. A design was developed for an amplifier with ultimate radiation characteristics.

  1. Acoustic metamaterials capable of both sound insulation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2016-04-01

    Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.

  2. Indirect Measurement of Energy Density of Soft PZT Ceramic Utilizing Mechanical Stress

    NASA Astrophysics Data System (ADS)

    Unruan, Muangjai; Unruan, Sujitra; Inkong, Yutthapong; Yimnirun, Rattikorn

    2017-11-01

    This paper reports on an indirect measurement of energy density of soft PZT ceramic utilizing mechanical stress. The method works analogous to the Olsen cycle and allows for a large amount of electro-mechanical energy conversion. A maximum energy density of 350 kJ/m3/cycle was found under 0-312 MPa and 1-20 kV/cm of applied mechanical stress and electric field, respectively. The obtained result is substantially higher than the results reported in previous studies of PZT materials utilizing a direct piezoelectric effect.

  3. High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617  nm.

    PubMed

    Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao

    2014-12-01

    An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.

  4. The Effect of a Guide Field on Local Energy Conversion During Asymmetric Magnetic Reconnection: Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.; Genestreti, K. J.; Burch, J. L.; Phan, T.-D.; Shay, M. A.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Ergun, R. E.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.

    2017-11-01

    We use theory and simulations to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations (Genestreti et al., 2017). For weak guide fields, energy conversion is maximum on the magnetospheric side of the X line, midway between the X line and electron stagnation point. As the guide field increases, the electron stagnation point gets closer to the X line, and energy conversion occurs closer to the electron stagnation point. We motivate one possible nonrigorous approach to extend the theory of the stagnation point location to include a guide field. The predictions are compared to two-dimensional particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three events observed with Magnetospheric Multiscale (MMS). The predictions agree reasonably well with the simulation results, capturing trends with the guide field. The theory correctly predicts that the X line and stagnation points approach each other as the guide field increases. The results are compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and a global resistive-magnetohydrodynamics simulation of the 16 October 2015 event. The PIC simulation results agree well with the global observations and simulation but differ in the strong electric fields and energy conversion rates found in MMS observations. The observational, theoretical, and numerical results suggest that the strong electric fields observed by MMS do not represent a steady global reconnection rate.

  5. The effect of a guide field on local energy conversion during asymmetric magnetic reconnection: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Cassak, P.; Genestreti, K.; Burch, J. L.; Shay, M.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.; Phan, T.; Ergun, R.

    2017-12-01

    We use theoretical and computational techniques to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations by Genestreti et al. (J. Geophys. Res, submitted). For weak guide fields, the energy conversion rate is maximum midway between the X-line and electron stagnation point. As the guide field increases, it moves towards the electron stagnation point. We motivate how to extend the theory of the location of the stagnation points to include the effect of a guide field. The predictions are compared to two-dimensional (2D) particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three reconnection events observed with MMS. The predictions agree reasonably well with the simulation results, having captured trends with the guide field. The theory correctly predicts that the energy conversion is closer to the X-line in the absolute sense as the guide field increases. The results are then compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and global resistive magnetohydrodynamics simulations of the 2015 Oct 16 event. The PIC simulation results agree well with the global observations and simulations, but differ in the strong electric fields and energy conversion rates found in the MMS observations. The results suggest that the strong electric fields observed by MMS do not represent a steady global rate.

  6. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    NASA Astrophysics Data System (ADS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  7. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    PubMed

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  8. Creation and Optimization of Novel Solar Cell Power via Bimaterial Piezoelectric MEMS Device

    DTIC Science & Technology

    2011-12-01

    piezoelectric mechanical vibration energy harvesters ,” Integrated Ferroelectrics, vol. 71, pp. 121–160, 2005. [32] Y. C. Shu, I. C. Lien, “Efficiency of...energy conversion for a piezoelectric power harvesting system.” Journal of Micromechanics and Microengineering, vol. 16, pp. 2429–2438, 2006. [33] C. D...maximum efficiency for piezoelectric vibrations occurs at the natural, or resonant, frequency for the referenced material. If the alternative

  9. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)

  10. Random benzotrithiophene-based donor-acceptor copolymers for efficient organic photovoltaic devices.

    PubMed

    Nielsen, Christian B; Ashraf, Raja Shahid; Schroeder, Bob C; D'Angelo, Pasquale; Watkins, Scott E; Song, Kigook; Anthopoulos, Thomas D; McCulloch, Iain

    2012-06-14

    A series of benzotrithiophene-containing random terpolymers for polymer solar cells is reported. Through variations of the two other components in the terpolymers, the absorption profile and the frontier energy levels are optimized and maximum power conversion efficiencies are nearly doubled (5.14%) relative to the parent alternating copolymer.

  11. Defect Tolerant Semiconductors for Solar Energy Conversion.

    PubMed

    Zakutayev, Andriy; Caskey, Christopher M; Fioretti, Angela N; Ginley, David S; Vidal, Julien; Stevanovic, Vladan; Tea, Eric; Lany, Stephan

    2014-04-03

    Defect tolerance is the tendency of a semiconductor to keep its properties despite the presence of crystallographic defects. Scientific understanding of the origin of defect tolerance is currently missing. Here we show that semiconductors with antibonding states at the top of the valence band are likely to be tolerant to defects. Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valence band maximum. Experimental measurements indicate shallow native donors and acceptors in Cu3N thin films, leading to 10(16)-10(17) cm(-3) doping with either electrons or holes depending on the growth conditions. The experimentally measured bipolar doping and the solar-matched optical absorption onset (1.4 eV) make Cu3N a promising candidate absorber for photovoltaic and photoelectrochemical solar cells, despite the calculated indirect fundamental band gap (1.0 eV). These conclusions can be extended to other materials with antibonding character of the valence band, defining a class of defect-tolerant semiconductors for solar energy conversion applications.

  12. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisaka, Shota; Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derivemore » the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.« less

  13. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes

    NASA Astrophysics Data System (ADS)

    Lu, Na; Sun, Danfeng; Zhang, Chuke; Jiang, Nan; Shang, Kefeng; Bao, Xiaoding; Li, Jie; Wu, Yan

    2018-03-01

    Carbon dioxide conversion at atmosphere pressure and low temperature has been studied in a cylindrical dielectric barrier discharge (DBD) reactor. Pure CO2 feed flows to the discharge zone and typical filamentary discharges were obtained in each half-cycle of the applied voltage. The gas temperature increased with discharge time and discharge power, which was found to affect the CO2 decomposition deeply. As the DBD reactor was cooled to ambient temperature, both the conversion of CO2 and the CO yield were enhanced. Especially the energy efficiencies changed slightly with the increase of discharge power and were much higher in cooling condition comparing to those without cooling. At a discharge power of 40 W, the energy efficiency under cooling condition was approximately six times more than that without cooling. Gas flow rate was observed to affect CO2 conversion and 0.1 L min-1 was obtained as optimum gas flow rate under cooling condition. In addition, the CO2 conversion rate in plasma/g-C3N4 catalyst hybrid system was twice times as that in plasma-alone system. In case of cooling, the existence of g-C3N4 catalyst contributed to a 47% increase of CO2 conversion compared to the sole plasma process. The maximum energy-efficiency with g-C3N4 was 0.26 mmol kJ-1 at 20 W, which increased by 157% compared to that without g-C3N4. The synergistic effect of DBD plasma with g-C3N4 on pure CO2 conversion was verified.

  14. Numerical analysis of amplification of picosecond pulses in a THL-100 laser system with an increase in the pump energy of the XeF(C – A) amplifier

    NASA Astrophysics Data System (ADS)

    Yastremskii, A. G.; Ivanov, N. G.; Losev, V. F.

    2018-03-01

    Energy characteristics of laser radiation with a pulse width of 50 ps at an elevated pump energy of the XeF(C – A) amplifier of a hybrid THL-100 laser system are analysed numerically. The dynamics of the change in the energy and maximum intensity of laser radiation with an increase in the pump energy of the XeF(C – A) amplifier from 270 to 400 J is investigated. The results of studying the influence of the input beam divergence on the energy characteristics of the output beam are presented. It is shown that, for the existing system of mirrors, an increase in the pump energy to 400 J leads to an increase in the output energy from 3.2 to 5.5 J at a maximum radiation intensity of 57 GW cm-2. A system of amplifier mirrors with 27 laser beam passes and enlarged divergence angle of the amplified beam is considered. Theoretically, the proposed system of mirrors allows one to increase the laser pulse energy to 7.5 J at a maximum intensity of no more than 14.8 GW cm-2. The calculated efficiency of the conversion of the pump energy absorbed in the amplifier gas chamber into the lasing energy exceeds 3% in this regime.

  15. Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.

    PubMed

    Gui, Gui; Zhang, Kan; Blanchard, James P; Ma, Zhenqiang

    2016-01-01

    We have investigated the performance of 4H-SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p-n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p-n junction structure includes a p+ layer, a p- layer, an n+ layer, and an n- layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p-n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p- layer increase, whereas it is independent of the total depth of the p-n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p-n junction betavoltaic cell with a thicker and heavily doped p- layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Wave Energetics of the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph Michael

    A comprehensive assessment of the energetics of transient waves is presented for the atmosphere of Mars using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. Each hemisphere is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for each of the three Mars years available. Northern hemisphere fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the winter solstitial pause in wave activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout each year with little reduction in amplitude during the solstitial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical temperature profile around winter solstice. Traveling waves are typically triggered by geopotential flux convergence. Individual waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation. The southern hemisphere energetics is similar to the northern hemisphere in timing, but wave energetics is much weaker as a result of the high and zonally asymmetric topography. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a GDS. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.

  17. An energy harvesting type ultrasonic motor.

    PubMed

    Wang, Guangqing; Xu, Wentan; Gao, Shuaishuai; Yang, Binqiang; Lu, Guoli

    2017-03-01

    An energy harvesting type ultrasonic motor is presented in this work. The novel motor not only can drive and/or position the motion mechanism, but also can harvest and convert the vibration-induced energy of the stator into electric energy to power small electronic devices. In the new motor, the stator is a sandwich structure of two PZT rings and an elastic metal body. The PZT ring bonded on the bottom surface is used to excite the stator metal body to generate a traveling wave with converse piezoelectric effect, and the other PZT ring bonded on top surface is used to harvest and convert the vibration-induced energy of the stator into electric energy with direct piezoelectric effect. Finite element method is adopted to analyze the vibration characteristics and the energetic characteristic. After the fabrication of a prototype, the mechanical output and electric energy output abilities are measured. The maximum no-load speed and maximum output torque of the prototype are 117rpm and 0.65Nm at an exciting voltage with amplitude of 134 V p-p and frequency of 40kHz, and the maximum harvesting output power of per sector area of the harvesting PZT is 327mW under an optimal equivalent load resistance of 6.9kΩ. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels

    PubMed Central

    Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin

    2017-01-01

    Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675

  19. Role of salt concentration in blend polymer for energy storage conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com; Sadiq, M.

    2016-05-06

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO,more » PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.« less

  20. Economic analysis of small wind-energy conversion systems

    NASA Astrophysics Data System (ADS)

    Haack, B. N.

    1982-05-01

    A computer simulation was developed for evaluating the economics of small wind energy conversion systems (SWECS). Input parameters consisted of initial capital investment, maintenance and operating costs, the cost of electricity from other sources, and the yield of electricity. Capital costs comprised the generator, tower, necessity for an inverter and/or storage batteries, and installation, in addition to interest on loans. Wind data recorded every three hours for one year in Detroit, MI was employed with a 0.16 power coefficient to extrapolate up to hub height as an example, along with 10 yr of use variances. A maximum return on investment was found to reside in using all the energy produced on site, rather than selling power to the utility. It is concluded that, based on a microeconomic analysis, SWECS are economically viable at present only where electric rates are inordinately high, such as in remote regions or on islands.

  1. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal.

    PubMed

    Wang, Yuye; Tang, Longhuang; Xu, Degang; Yan, Chao; He, Yixin; Shi, Jia; Yan, Dexian; Liu, Hongxiang; Nie, Meitong; Feng, Jiachen; Yao, Jianquan

    2017-04-17

    A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

  2. Modeling of a honeycomb-shaped pyroelectric energy harvester for human body heat harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Jo, Sung-Eun; Ahn, Hye-Rin; Kim, Yong-Jun

    2015-06-01

    Pyroelectric conversion can be used for thermal energy harvesting in lieu of thermoelectric conversion. In the case of human body energy harvesting, the general pyroelectric energy harvester (PEH) cannot be applied because the weak body heat can hardly penetrate the protecting layer to reach the pyroelectric material. This paper presents the realization of a honeycomb-shaped PEH (H-PEH) and a modeling method of the electrode and hole areas. The fabricated H-PEH successfully generated electrical energy using human body heat. The H-PEH with a 1:1.5 electrode-and-hole area ratio showed the best performance. To verify the human energy harvesting, we evaluated the characteristics of conventional PEH and H-PEH when body heat was used as a heat source. The maximum power of the H-PEH was 0.06 and 0.16 μW at wind velocities of 2 and 4 m s-1, respectively. These output power values of the H-PEH were 200 and 224% larger than those of the PEH, respectively, according to the wind velocity.

  3. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    PubMed

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit

    NASA Astrophysics Data System (ADS)

    Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai

    2018-03-01

    Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].

  5. Thermoelectric Oxide Modules (TOMs) for the Direct Conversion of Simulated Solar Radiation into Electrical Energy

    PubMed Central

    Tomeš, Petr; Trottmann, Matthias; Suter, Clemens; Aguirre, Myriam Heidi; Steinfeld, Aldo; Haueter, Philipp; Weidenkaff, Anke

    2010-01-01

    The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM). These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p- (La1.98Sr0.02CuO4) and two n-type (CaMn0.98Nb0.02O3) thermoelements electrically in series and thermally in parallel. The temperature gradient ΔT was applied by a High–Flux Solar Simulator source (HFSS) which generates a spectrum similar to solar radiation. The influence of the graphite layer coated on the hot side of the Al2O3 substrate compared to the uncoated surface on ΔT, Pmax and η was studied in detail. The measurements show an almost linear temperature profile along the thermoelectric legs. The maximum output power of 88.8 mW was reached for a TOM with leg length of 5 mm at ΔT = 622 K. The highest conversion efficiency η was found for a heat flux of 4–8 W cm-2 and the dependence of η on the leg length was investigated.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Shota, E-mail: happiest3.7@gmail.com; Ueno, Toshiyuki; Yamada, Sotoshi

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversionmore » efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.« less

  7. Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Durga, Ikkurthi Kanaka; Rao, S. Srinivasa; Reddy, Araveeti Eswar; Gopi, Chandu V. V. M.; Kim, Hee-Je

    2018-03-01

    Copper sulfide is an important multifunctional semiconductor that has attracted considerable attention owing to its outstanding properties and multiple applications, such as energy storage and electrochemical energy conversion. This paper describes a cost-effective and simple low-temperature solution approach to the preparation of copper sulfide for supercapacitors (SCs) and quantum-dot sensitized solar cells (QDSSCs). X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirmed that the nickel foam with a coriander leaf like nanostructure had been coated successfully with copper sulfide. As an electrode material for SCs, the CC-3 h showed excellent specific capacitance (5029.28 at 4 A g-1), energy density (169.73 W h kg-1), and superior cycling durability with 107% retention after 2000 cycles. Interestingly, the QDSSCs equipped with CC-2 h and CC-3 h counter electrodes (CEs) exhibited a maximum power conversion efficiency of 2.52% and 3.48%, respectively. The improved performance of the CC-3 h electrode was attributed mainly to the large surface area (which could contribute sufficient electroactive species), good conductivity, and high electrocatalytic activity. Overall, this work delivers novel insights into the use of copper sulfide and offers an important guidelines for the fabrication of next level energy storage and conversion devices.

  8. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    PubMed

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  9. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  10. The Next Breakthrough for Organic Photovoltaics?

    PubMed

    Jackson, Nicholas E; Savoie, Brett M; Marks, Tobin J; Chen, Lin X; Ratner, Mark A

    2015-01-02

    While the intense focus on energy level tuning in organic photovoltaic materials has afforded large gains in device performance, we argue here that strategies based on microstructural/morphological control are at least as promising in any rational design strategy. In this work, a meta-analysis of ∼150 bulk heterojunction devices fabricated with different materials combinations is performed and reveals strong correlations between power conversion efficiency and morphology-dominated properties (short-circuit current, fill factor) and surprisingly weak correlations between efficiency and energy level positioning (open-circuit voltage, enthalpic offset at the interface, optical gap). While energy level positioning should in principle provide the theoretical maximum efficiency, the optimization landscape that must be navigated to reach this maximum is unforgiving. Thus, research aimed at developing understanding-based strategies for more efficient optimization of an active layer microstructure and morphology are likely to be at least as fruitful.

  11. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  12. Heat Evolution and Electrical Work of Batteries as a Function of Discharge Rate: Spontaneous and Reversible Processes and Maximum Work

    ERIC Educational Resources Information Center

    Noll, Robert J.; Hughes, Jason M.

    2018-01-01

    Many types of batteries power an ever-growing number of devices. Electrochemical devices like batteries and fuel cells can, in principle, exceed Carnot efficiency for energy conversion. In this novel laboratory experiment, students explore the partitioning of the enthalpy change of a battery's electrochemical reaction between useful electrical…

  13. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG.

    PubMed

    Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao

    2016-03-01

    This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A

    2011-01-01

    Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium atmore » the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.« less

  15. Influence of feedstock particle size on lignocellulose conversion--a review.

    PubMed

    Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay

    2011-08-01

    Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

  16. Atmospheric Pressure Non-Thermal Plasma Activation of CO2 in a Packed-Bed Dielectric Barrier Discharge Reactor.

    PubMed

    Mei, Danhua; Tu, Xin

    2017-11-17

    Direct conversion of CO 2 into CO and O 2 is performed in a packed-bed dielectric barrier discharge (DBD) non-thermal plasma reactor at low temperatures and atmospheric pressure. The maximum CO 2 conversion of 22.6 % is achieved when BaTiO 3 pellets are fully packed into the discharge gap. The introduction of γ-Al 2 O 3 or 10 wt % Ni/γ-Al 2 O 3 catalyst into the BaTiO 3 packed DBD reactor increases both CO 2 conversion and energy efficiency of the plasma process. Packing γ-Al 2 O 3 or 10 wt % Ni/γ-Al 2 O 3 upstream of the BaTiO 3 bed shows higher CO 2 conversion and energy efficiency compared with that of mid- or downstream packing modes because the reverse reaction of CO 2 conversion-the recombination of CO and O to form CO 2 -is more likely to occur in mid- and downstream modes. Compared with the γ-Al 2 O 3 support, the coupling of the DBD with the Ni catalyst shows a higher CO 2 conversion, which can be attributed to the presence of Ni active species on the catalyst surface. The argon plasma treatment of the reacted Ni catalyst provides extra evidence to confirm the role of Ni active species in the conversion of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    NASA Astrophysics Data System (ADS)

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  18. High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires.

    PubMed

    Jegenyes, Nikoletta; Morassi, Martina; Chrétien, Pascal; Travers, Laurent; Lu, Lu; Julien, Francois H; Tchernycheva, Maria; Houzé, Frédéric; Gogneau, Noelle

    2018-05-25

    We demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement when integrating in their volume a thick In-rich InGaN insertion. The piezoelectric response of InGaN/GaN NWs can be tuned as a function of the InGaN insertion thickness and position in the NW volume. The energy harvesting is favoured by the presence of a PtSi/GaN Schottky diode which allows to efficiently collect the piezo-charges generated by InGaN/GaN NWs. Average output voltages up to 330 ± 70 mV and a maximum value of 470 mV per NW has been measured for nanostructures integrating 70 nm-thick InGaN insertion capped with a thin GaN top layer. This latter value establishes an increase of about 35% of the piezo-conversion capacity in comparison with binary p-doped GaN NWs. Based on the measured output signals, we estimate that one layer of dense InGaN/GaN-based NW can generate a maximum output power density of about 3.3 W/cm². These results settle the new state-of-the-art for piezo-generation from GaN-based NWs and offer a promising perspective for extending the performances of the piezoelectric sources.

  19. 2.36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd:YAG MOPA system

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Yang, Ning; Li, Ye; Yang, Zhen; Han, Song; Shi, Junfeng; Zhou, Zewu

    2017-07-01

    We report on a high-energy high-repetition-rate nanosecond Nd:YAG main oscillator power amplifier (MOPA) system. Maximum output pulse energy of 2.36 J with duration of 9.4 ns at 50 Hz has been achieved. The master oscillator was a LD side-pumped electro-optical Q-switched Nd:YAG rod laser adopting unstable cavity with variable reflectivity mirror (VRM). It delivered a pulse train with energy up to 180 mJ and pulse duration of 10.7 ns. The near-field pattern demonstrated a nearly super Gaussian flat top profile. In the amplification stage, the pulse was boosted via double-pass two Nd:YAG rod amplifiers. Maximum pulse energy was obtained at the peak pump power of 37.5 kW, corresponding to an optical-optical conversion efficiency of 25.2%. The correlative peak power was deduced to be 251 MW. We also presented the result of 100 Hz nanosecond laser with average output power of >100 W.

  20. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  1. Direct thermal to electrical energy conversion using 9.5/65/35 PLZT ceramics in the ergodic relaxor phase.

    PubMed

    Chin, Thomas K; Lee, Felix Y; McKinley, Ian M; Goljahi, Sam; Lynch, Christopher S; Pilon, Laurent

    2012-11-01

    This paper reports on direct thermal to electrical energy conversion by performing the Olsen cycle on 9.5/65/35 lead lanthanum zirconate titanate (PLZT). The Olsen cycle consists of two isothermal and two isoelectric field processes in the electric displacement versus electric field diagram. It was performed by alternatively dipping the material in hot and cold dielectric fluid baths under specified electric fields. The effects of applied electric field, sample thickness, electrode material, operating temperature, and cycle frequency on the energy and power densities were investigated. A maximum energy density of 637 ± 20 J/L/cycle was achieved at 0.054 Hz with a 250-μm-thick sample featuring Pt electrodes and coated with a silicone conformal coating. The operating temperatures varied between 3°C and 140°C and the electric field was cycled between 0.2 and 6.0 MV/m. A maximum power density of 55 ± 8 W/L was obtained at 0.125 Hz under the same operating temperatures and electric fields. The dielectric strength of the material, and therefore the energy and power densities generated, increased when the sample thickness decreased from 500 to 250 μm. Furthermore, the electrode material was found to have no significant effect on the energy and power densities for samples subject to the same operating temperatures and electric fields. However, samples with electrode material possessing thermal expansion coefficients similar to that of PLZT were capable of withstanding larger temperature swings. Finally, a fatigue test showed that the power generation gradually degraded when the sample was subject to repeated thermoelectrical loading.

  2. Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1981-01-01

    The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.

  3. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 2. Properties of energy carriers and energy yield.

    PubMed

    Richter, F; Fricke, T; Wachendorf, M

    2011-04-01

    In order to determine influencing parameters on energy production of the IFBB process, herbage from a lowland hay meadow (Arrhenaterion) was sampled and ensiled at eight dates between 27 April and 21 June 2007. The silage from each date was processed in six IFBB treatments with and without hydrothermal conditioning at different temperatures. Methane yields and higher heating values were determined and an energy balance was calculated with whole-crop digestion (WCD) of the silage as reference system. Maximum net energy yields were 10.2 MWh ha(-1) for the IFBB treatment without hydrothermal conditioning and 9.0 MWh ha(-1) for the treatment with hydrothermal conditioning at 50 °C. WCD achieved a maximum net energy yield of 3.7 MWh ha(-1). Energy conversion efficiency ranged from 0.24 to 0.54 and was predicted with high accuracy by temperature of hydrothermal conditioning as well as concentration of neutral detergent fibre and dry matter in the silage (R(2)=0.90). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Kawahara, Masami; Kuhn, Lindsay; Venugopal, Vineeth; Kwak, Jiyeon; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2017-04-01

    Environmentally benign lead-free ferroelectric (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 (KNMN) thin film capacitors with a small concentration of a BiFeO3 (BF) dopant were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. 6 mol. % BF-doped KNMN thin films showed very slim hysteresis loops with high maximum and near-zero remanent polarization values due to a phase transition from the orthorhombic structure to the pseudo-cubic structure. Increasing the electric field up to 2 MV/cm, the total energy storage density (Jtotal), the effective recoverable energy density (Jeff), and the energy conversion efficiency (η) of lead-free KNMN-BF thin film capacitors were 31.0 J/cm3, 28.0 J/cm3, and 90.3%, respectively. In addition, these thin film capacitors exhibited a fast discharge time of a few μs and a high temperature stability up to 200 °C, proving their strong potential for high energy density storage and conversion applications.

  5. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  6. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons.

    PubMed

    Qi, Yi; Kim, Jihoon; Nguyen, Thanh D; Lisko, Bozhena; Purohit, Prashant K; McAlpine, Michael C

    2011-03-09

    The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.

  7. Narrowband, tunable, 2 µm optical parametric master-oscillator power amplifier with large-aperture periodically poled Rb:KTP

    NASA Astrophysics Data System (ADS)

    Coetzee, R. S.; Zheng, X.; Fregnani, L.; Laurell, F.; Pasiskevicius, V.

    2018-06-01

    A high-energy, ns, narrow-linewidth optical parametric oscillator and amplifier system based on large-aperture periodically poled Rb:KTP is presented. The 2 µm seed source is a singly resonant OPO locked with a transversely chirped volume Bragg grating, allowing a wavelength tuning of 21 nm and output linewidth of 0.56 nm. A maximum output energy of 52 mJ and conversion efficiency of 36% was obtained from the amplifier for a pump energy of 140 mJ. The high-energy and the robust and narrow dual-wavelength spectra obtained make this system an ideal pump source for difference frequency generation-based THz generation schemes.

  8. Performance Study of Salt Cavern Air Storage Based Non-Supplementary Fired Compressed Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai

    2017-10-01

    Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.

  9. Design optimization of PVDF-based piezoelectric energy harvesters.

    PubMed

    Song, Jundong; Zhao, Guanxing; Li, Bo; Wang, Jin

    2017-09-01

    Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm 3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.

  10. Generation of 1.3 μm and 1.5 μm high-energy Raman radiations in α-BaTeMo2O9 crystals

    NASA Astrophysics Data System (ADS)

    Liu, Shande; Zhang, Junjie; Gao, Zeliang; Wei, Lei; Zhang, Shaojun; He, Jingliang; Tao, Xutang

    2014-02-01

    The generations of high energy 2nd- and 3rd-order stimulated Raman scattering lasers based on the α-BaTeMo2O9 crystal were demonstrated for the first time. The Raman gain coefficient has been compared with that of the YVO4 crystal. A maximum total Stokes radiation energy of 27.3 mJ was obtained, containing 20.1 mJ 2nd-order Stokes energy at 1318 nm, together with 7.2 mJ 3rd-order Stokes energy at 1497 nm, giving an overall conversion efficiency of 35.9% and a slope efficiency of 54.5%. With an optical coating design, a total 3rd- and 4th-order Stokes energy of 16.5 mJ was generated. The maximum energy for 4th-order Stokes radiation at 1731 nm was 2 mJ. The pulse durations for the 2nd-, 3rd-, and 4th-order Stokes shift were 10 ns, 8.6 ns, and 5.2 ns, respectively. Our experimental results show that the α-BTM crystal is a promising Raman crystal for the generations of eye-safe radiations.

  11. High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.

    PubMed

    Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan

    2012-09-01

    We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  12. Chapter 11.2: Inverters, Power Optimizers, and Microinverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Christopher A

    Inverters span a wide range of sizes, topologies, and connection voltages: from utility-scale megawatt inverters to string inverters. Switch-mode power conversion relies on high frequency chopping of DC signal to periodically charge and discharge energy storage elements, such as inductors and capacitors. Additional circuit components are required to address practical issues in inverters such as voltage ripple and harmonic distortion. Inverters are beginning to incorporate components with a bandgap above should be 3 eV, such as SiC and GaN. Photovoltaic (PV) modules respond dynamically to changing temperature and irradiation conditions. Thus, maximum DC power extraction requires periodic adjustment of themore » PV voltage and current operating point. An inverter's total efficiency is measured by the product of its conversion efficiency and the maximum-power-point tracking (MPPT) efficiency. This chapter lists the primary functions of inverters that include auxiliary capabilities, such as monitoring of DC and AC performance, and other error reporting.« less

  13. High Power Orbit Transfer Vehicle

    DTIC Science & Technology

    2003-07-01

    multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted

  14. [Hydroxylamine conversion by anammox enrichment].

    PubMed

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway model presented by van de Graaf AA.

  15. Thermodynamics fundamentals of energy conversion

    NASA Astrophysics Data System (ADS)

    Dan, Nicolae

    The work reported in the chapters 1-5 focuses on the fundamentals of heat transfer, fluid dynamics, thermodynamics and electrical phenomena related to the conversion of one form of energy to another. Chapter 6 is a re-examination of the fundamental heat transfer problem of how to connect a finite-size heat generating volume to a concentrated sink. Chapter 1 extends to electrical machines the combined thermodynamics and heat transfer optimization approach that has been developed for heat engines. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the operating temperature of windings must not exceed a specified level, the power output is lower and efficiency higher. Chapter 2 addresses the fundamental problem of determining the optimal history (regime of operation) of a battery so that the work output is maximum. Chapters 3 and 4 report the energy conversion aspects of an expanding mixture of hot particles, steam and liquid water. At the elemental level, steam annuli develop around the spherical drops as time increases. At the mixture level, the density decreases while the pressure and velocity increases. Chapter 4 describes numerically, based on the finite element method, the time evolution of the expanding mixture of hot spherical particles, steam and water. The fluid particles are moved in time in a Lagrangian manner to simulate the change of the domain configuration. Chapter 5 describes the process of thermal interaction between the molten material and water. In the second part of the chapter the model accounts for the irreversibility due to the flow of the mixture through the cracks of the mixing vessel. The approach presented in this chapter is based on exergy analysis and represents a departure from the line of inquiry that was followed in chapters 3-4. Chapter 6 shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the "growth" method the structure is optimized starting from the smallest volume element of fixed size. In "design" method the overall volume is fixed, and the designer works "inward" by increasing the internal complexity of the paths for heat flow.

  16. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A theoretical analysis of the current-voltage characteristics of solar cells. [and their energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1976-01-01

    Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency.

  18. NSF presentation. [summary on energy conversion research program

    NASA Technical Reports Server (NTRS)

    Morse, F. H.

    1973-01-01

    Wind energy conversion research is considered in the framework of the national energy problem. Research and development efforts for the practical application of solar energy -- including wind energy -- as alternative energy supplies are assessed in: (1) Heating and cooling of buildings; (2) photovoltaic energy conversion; (3) solar thermal energy conversion; (4) wind energy conversion; (5) ocean thermal energy conversion; (6) photosynthetic production of organic matter; and (7) conversion of organic matter into fuels.

  19. Harvesting electrical energy from torsional thermal actuation driven by natural convection.

    PubMed

    Kim, Shi Hyeong; Sim, Hyeon Jun; Hyeon, Jae Sang; Suh, Dongseok; Spinks, Geoffrey M; Baughman, Ray H; Kim, Seon Jeong

    2018-06-07

    The development of practical, cost-effective systems for the conversion of low-grade waste heat to electrical energy is an important area of renewable energy research. We here demonstrate a thermal energy harvester that is driven by the small temperature fluctuations provided by natural convection. This harvester uses coiled yarn artificial muscles, comprising well-aligned shape memory polyurethane (SMPU) microfibers, to convert thermal energy to torsional mechanical energy, which is then electromagnetically converted to electrical energy. Temperature fluctuations in a yarn muscle, having a maximum hot-to-cold temperature difference of about 13 °C, were used to spin a magnetic rotor to a peak torsional rotation speed of 3,000 rpm. The electromagnetic energy generator converted the torsional energy to electrical energy, thereby producing an oscillating output voltage of up to 0.81 V and peak power of 4 W/kg, based on SMPU mass.

  20. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model.

    PubMed

    Ma, Fuying; Zeng, Yelin; Wang, Jinjin; Yang, Yang; Yang, Xuewei; Zhang, Xiaoyu

    2013-01-01

    Non-isothermal thermogravimetry/derivative thermogravimetry (TG/DTG) measurements are used to determine pyrolytic characteristics and kinetics of lignocellulose. TG/DTG experiments at different heating rates with corn stover pretreated with monocultures of Irpex lacteus CD2 and Auricularia polytricha AP and their cocultures were conducted. Heating rates had little effect on the pyrolysis process, but the peak of weight loss rate in the DTG curves shifted towards higher temperature with heating rate. The maximum weight loss of biopretreated samples was 1.25-fold higher than that of the control at the three heating rates, and the maximum weight loss rate of the co-culture pretreated samples was intermediate between that of the two mono-cultures. The activation energies of the co-culture pretreated samples were 16-72 kJ mol(-1) lower than that of the mono-culture at the conversion rate range from 10% to 60%. This suggests that co-culture pretreatment can decrease activation energy and accelerate pyrolysis reaction thus reducing energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  2. Solar micro-power system for self-powered wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    He, Yongtai; Li, Yangqiu; Liu, Lihui; Wang, Lei

    2008-10-01

    In self-powered wireless sensor nodes, the efficiency for environmental energy harvesting, storage and management determines the lifetime and environmental adaptability of the sensor nodes. However, the method of improving output efficiency for traditional photovoltaic power generation is not suitable for a solar micro-power system due to the special requirements for its application. This paper presents a solar micro-power system designed for a solar self-powered wireless sensor node. The Maximum Power Point Tracking (MPPT) of solar cells and energy storage are realized by the hybrid energy storage structure and "window" control. Meanwhile, the mathematical model of energy harvesting, storing and management is formulated. In the novel system, the output conversion efficiency of solar cells is 12%.

  3. LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.

    2011-06-01

    We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.

  4. EFFECTS OF LASER RADIATION ON MATTER: Influence of the ambient air pressure on short-wavelength radiation from a laser plasma

    NASA Astrophysics Data System (ADS)

    Golovin, A. F.; Zemtsov, S. S.; Fedyushin, B. T.

    1991-12-01

    A detailed experimental investigation was made of the radiation from a plasma created on an aluminum target by a pulsed CO2 laser at different ambient gas pressures. Measurements were made of the energy and angular distribution of the radiation and of the efficiency of conversion of laser energy into reemitted plasma radiation. The intensity of this radiation was found to exhibit pressure-dependent pulsations. The maximum reflection of the laser radiation from the plasma was recorded at a pressure of ~ 40 Torr. An interpretation is given of the experimental data.

  5. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    PubMed

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-06

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low-resistance ion exchange membranes (0.5 Ω cm(2)) at very small spacing intervals (50 μm).

  6. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less

  7. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.

    PubMed

    Dau, Holger; Zaharieva, Ivelina

    2009-12-21

    Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation, photoinhibitory, protective, and repair processes. The overpotential for catalysis of water oxidation at the Mn(4)Ca complex of PSII may be as low as 0.3 V. To address the specific energetics of water oxidation at the Mn complex of PSII, we propose a new conceptual framework that will facilitate quantitative considerations on the basis of oxidation potentials and pK values. In conclusion, photosynthetic water oxidation works at high efficiency and thus can serve as both an inspiring model and a benchmark in the development of future technologies for production of solar fuels.

  8. Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63Ni betavoltaic cell

    NASA Astrophysics Data System (ADS)

    Butera, S.; Whitaker, M. D. C.; Krysa, A. B.; Barnett, A. M.

    2017-08-01

    A prototype InGaP p+-i-n+ mesa photodiode was studied for its potential as the energy conversion device in a 63Ni betavoltaic cell; its electrical performance was analysed across the temperature range  -20 °C to 100 °C. The results show that the InGaP detector when illuminated with a laboratory 63Ni radioisotope beta particle source had a maximum output power of 0.92 pW at  -20 °C, this value decreased at higher temperatures. A decrease in the open circuit voltage and in the cell internal conversion efficiency were also observed when the temperature was increased: at  -20 °C, the open circuit voltage and the cell internal conversion efficiency had values of 0.69 V and 4%, respectively. A short circuit current of 4.5 pA was measured at  -20 °C.

  9. Thermionic modules

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2002-06-18

    Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

  10. Proton acceleration by irradiation of isolated spheres with an intense laser pulse

    DOE PAGES

    Ostermayr, Tobias M.; Haffa, D.; Hilz, P.; ...

    2016-09-26

    We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2–3 × 10 20 W cm –2. With a laser focal spot size of 10 μm full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 μm. Maximum proton energies of ~ 25 MeV are achieved for targets matching the focal spot size of 10 μm in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused bymore » Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. In conclusion, they make use of well-defined targets and point out pathways for future applications and experiments.« less

  11. Proton acceleration by irradiation of isolated spheres with an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostermayr, Tobias M.; Haffa, D.; Hilz, P.

    We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2–3 × 10 20 W cm –2. With a laser focal spot size of 10 μm full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 μm. Maximum proton energies of ~ 25 MeV are achieved for targets matching the focal spot size of 10 μm in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused bymore » Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. In conclusion, they make use of well-defined targets and point out pathways for future applications and experiments.« less

  12. Low power interface IC's for electrostatic energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Kempitiya, Asantha

    The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the theoretical and experimental foundation for overcoming the main challenges associated with the design of charge constrained synchronous EHC's, making electrostatic converters a possible candidate for powering emerging communication transceivers and portable electronics.

  13. Analysis of Thermal Losses for a Variety of Single-Junction Photovoltaic Cells: An Interesting Means of Thermoelectric Heat Recovery

    NASA Astrophysics Data System (ADS)

    Lorenzi, Bruno; Acciarri, Maurizio; Narducci, Dario

    2015-06-01

    Exploitation of solar energy conversion has become a fundamental aspect of satisfying a growing demand for energy. Thus, improvement of the efficiency of conversion in photovoltaic (PV) devices is highly desirable to further promote this source. Because it is well known that the most relevant efficiency constraint, especially for single-junction solar cells, is unused heat within the device, hybrid thermo-photovoltaic systems seem promising . Among several hybrid solutions proposed in the literature, coupling of thermoelectric and PV devices seems one of the most interesting. Taking full advantage of this technology requires proper definition and analysis of the thermal losses occurring in PV cells. In this communication we propose a novel analysis of such losses, decoupling source-dependent and absorber-dependent losses. This analysis enables an evaluation of the actual recoverable amount of energy, depending on the absorber used in the PV cell. It shows that for incoming solar irradiation of , and depending on the choice of material, the maximum available thermal power ranges from (for single-crystal silicon) to (for amorphous silicon).

  14. Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor.

    PubMed

    Sinha, Tridib Kumar; Ghosh, Sujoy Kumar; Maiti, Rishi; Jana, Santanu; Adhikari, Basudam; Mandal, Dipankar; Ray, Samit K

    2016-06-22

    Plasmonic characteristics of graphene-silver (GAg) nanocomposite coupled with piezoelectric property of Poly(vinylidene fluoride) (PVDF) have been utilized to realize a new class of self-powered flexible plasmonic nanogenerator (PNG). A few layer graphene has been prepared in a facile and cost-effective method and GAg doped PVDF hybrid nanocomposite (PVGAg) is synthesized in a one-pot method. The PNG exhibits superior piezoelectric energy conversion efficiency (∼15%) under the dark condition. The plasmonic behavior of GAg nanocomposite makes the PNG highly responsive to the visible light illumination that leads to ∼50% change in piezo-voltage and ∼70% change in piezo-current, leading to enhanced energy conversion efficiency up to ∼46.6%. The piezoelectric throughput of PNG (e.g., capacitor charging performance) has been monitored during the detection of the different wavelengths of visible light illumination and showed maximum selectivity to the green light. The simultaneous mechanical energy harvesting and visible-light detection capabilities of the PNG are attractive for futuristic self-powered optoelectronic smart sensors and devices.

  15. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  16. The economic production of alcohol fuels from coal-derived synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less

  17. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  18. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    PubMed

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    PubMed

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fundamental formulae for wave-energy conversion

    PubMed Central

    Falnes, Johannes; Kurniawan, Adi

    2015-01-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  1. Fundamental formulae for wave-energy conversion.

    PubMed

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  2. CW and passively Q-switched laser performance of Nd:Lu2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-01-01

    We demonstrated an efficient and controllable dual-wavelength continuous-wave (CW) laser of Nd:Lu2SiO5 (Nd:LSO) crystal. The maximum output power was 3.02 W at wavelength of 1075 nm and 1079 nm, and with increasing of absorbed pump power, the ratio of 1079 nm laser rose. The slope efficiency of 65.6% and optical-to-optical conversion efficiency of 63.3% were obtained. The passively Q-switched laser properties of Nd:LSO were investigated for the first time. The shortest pulse, maximum pulse energy and peak power were 11.58 ns, 29.05 μJ and 2.34 kW, respectively.

  3. Carbon Conversion Efficiency and Limits of Productive Bacterial Degradation of Methyl tert-Butyl Ether and Related Compounds▿

    PubMed Central

    Müller, Roland H.; Rohwerder, Thore; Harms, Hauke

    2007-01-01

    The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the YATP concept. Experiments were conducted to derive realistic maintenance coefficients and Ks values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g−1, which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient ms and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, Smin, below which growth would not further be supported. Smin strongly depended on the maximum growth rate μmax, and b and was directly correlated with the half maximum rate-associated substrate concentration Ks, meaning that any effect impacting this parameter would also change Smin. The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase Ks and Smin for MTBE. PMID:17220260

  4. High-Power Single- and Dual-Wavelength Nd:GdVO4 Lasers with Potential Application for the Treatment of Telangiectasia

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Wang, Zhengping; Yu, Haohai; Zhuang, Shidong; Han, Shuo; Zhao, Yongguang; Xu, Xinguang

    2012-11-01

    Diode-end-pumped high-power Nd:GdVO4 lasers at 1083 nm are presented. The maximum continuous-wave output power was 10.1 W with an optical conversion efficiency of 31.3%. For acoustooptic (AO) Q-switched operation, the largest pulse energy, shortest pulse width, and highest peak power were 111 µJ, 77 ns, and 1.44 kW, respectively. By decreasing the 1063 nm transmission of the output coupler, we also achieved efficient CW dual-wavelength operation at 1083 and 1063 nm. Their total output power reached 6.7 W, and the optical conversion efficiency reached 31.6%. These lasers have special requirements in the treatment of facial telangiectasia.

  5. Laser contrast and other key parameters enhancing the laser conversion efficiency in ion acceleration regime

    NASA Astrophysics Data System (ADS)

    Torrisi, Lorenzo

    2018-01-01

    Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bao-Yu; Kim, Jinwook; Li, Sibo

    The photoacoustic effect has been broadly applied to generate high frequency and broadband acoustic waves using lasers. However, the efficient conversion from laser energy to acoustic power is required to generate acoustic waves with high intensity acoustic pressure (>10 MPa). In this study, we demonstrated laser generated high intensity acoustic waves using carbon nanofibers–polydimethylsiloxane (CNFs-PDMS) thin films. The average diameter of the CNFs is 132.7 ± 11.2 nm. The thickness of the CNFs film and the CNFs-PDMS composite film is 24.4 ± 1.43 μm and 57.9 ± 2.80 μm, respectively. The maximum acoustic pressure is 12.15 ± 1.35 MPa using a 4.2 mJ, 532 nm Nd:YAG pulsed laser. The maximum acoustic pressure using the CNFs-PDMSmore » composite was found to be 7.6-fold (17.62 dB) higher than using carbon black PDMS films. Furthermore, the calculated optoacoustic energy conversion efficiency K of the prepared CNFs-PDMS composite thin films is 15.6 × 10{sup −3 }Pa/(W/m{sup 2}), which is significantly higher than carbon black-PDMS thin films and other reported carbon nanomaterials, carbon nanostructures, and metal thin films. The demonstrated laser generated high intensity ultrasound source can be useful in ultrasound imaging and therapy.« less

  7. Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.

    2013-07-01

    In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.

  8. Solar driven electrochromic photoelectrochemical fuel cells for simultaneous energy conversion, storage and self-powered sensing.

    PubMed

    Wang, Yanhu; Zhang, Lina; Cui, Kang; Xu, Caixia; Li, Hao; Liu, Hong; Yu, Jinghua

    2018-02-15

    One solar-driven electrochromic photoelectrochemical fuel cell (PFC) with highly efficient energy conversion and storage is easily constructed to achieve quantitative self-powered sensing. Layered bismuth oxyiodide-zinc oxide nanorod arrays (ZnO@BiOI NRA) with a core/shell p-n heterostructure are fabricated as the photoanode with electrochromic Prussian blue (PB) as the cathode. The core/shell p-n heterostructure for the ZnO@BiOI photoanode can effectively boost the photoelectrochemical (PEC) performance through the improvement of photon absorption and charge carrier separation. The optimal assembled PFC yields an open-circuit voltage (V OC ) of 0.48 V with the maximum power output density (P max ) as high as 155 μW cm -2 upon illumination. Benefitting from the interactive color-changing behavior of PB, the cathode not only exhibits cathodic catalytic activity in the PFC but also serves as an electrochromic display for self-powered sensing. The as-constructed PFC possesses multiple readable signal output nanochannels through the maximum power output density (P max ) of the PFC or the color change of PB. Meanwhile, the dual-signal-output makes the as-constructed self-powered sensor highly available in various operations demands with the enhanced reliability. With the advantages of high efficiency of PFCs, unique assay ability, and broad environmental suitability, the constructed self-powered platform shows broad application prospects as an integrated smart analytical device.

  9. Limits on the maximum attainable efficiency for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi

    2008-03-01

    Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.

  10. Synthesis and thermal characterization of xylan-graft-polyacrylonitrile.

    PubMed

    Ünlü, Cüneyt H; Öztekin, N Simge; Atıcı, Oya Galioğlu

    2012-10-01

    In this study emulsion polymerization of acrylonitrile using xylan from agricultural waste material (corn cob) and cerium ammonium nitrate was investigated in terms of catalyst acid. Stock ceric solutions were prepared using either nitric or perchloric acid as catalyst. Optimum conditions were determined using different parameters such as reaction time, temperature, and component concentrations. Nitric acid catalyzed reactions resulted in maximum conversion ratio (96%) at 50°C, 1 h where ceric ion, acrylonitrile, xylan, and catalyst concentrations were 21.7 mmol l(-1), 0.5 mol l(-1), 0.2% (w/v), and 0.1 mol l(-1), respectively. However, 83% conversion was obtained with perchloric acid catalysis at 27 °C, 1 h where concentrations were 5.4 mmol l(-1), 0.8 mol l(-1), 0.5% (w/v), and 0.2 mol l(-1), respectively. Copolymer synthesis using perchloric acid was realized at milder conditions than using nitric acid. Thermal analyses of obtained polymers were conducted to characterize copolymers. Results showed that calculated activation energy, maximum degradation temperature, and heat of thermal decomposition changed relying mainly on molecular weight. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Endothermic singlet fission is hindered by excimer formation

    NASA Astrophysics Data System (ADS)

    Dover, Cameron B.; Gallaher, Joseph K.; Frazer, Laszlo; Tapping, Patrick C.; Petty, Anthony J.; Crossley, Maxwell J.; Anthony, John E.; Kee, Tak W.; Schmidt, Timothy W.

    2018-03-01

    Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.

  12. Endothermic singlet fission is hindered by excimer formation.

    PubMed

    Dover, Cameron B; Gallaher, Joseph K; Frazer, Laszlo; Tapping, Patrick C; Petty, Anthony J; Crossley, Maxwell J; Anthony, John E; Kee, Tak W; Schmidt, Timothy W

    2018-03-01

    Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.

  13. Graphene rectenna for efficient energy harvesting at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Dragoman, Mircea; Aldrigo, Martino

    2016-09-01

    In this paper, we propose a graphene rectenna that encompasses two distinct functions in a single device, namely, antenna and rectifier, which till now were two separate components. In this way, the rectenna realizes an efficient energy harvesting technique due to the absence of impedance mismatch between antenna and diode. In particular, we have obtained a maximum conversion efficiency of 58.43% at 897 GHz for the graphene rectenna on n-doped GaAs, which is a very good value, close to the performance of an RF harvesting system. A comparison with a classical metallic antenna with an HfO2-based metal-insulator-metal diode is also provided.

  14. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  15. Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid

    NASA Astrophysics Data System (ADS)

    Yusof, F. A. M.; Hashim, A. S.; Tajudin, Z.

    2017-12-01

    Thermal stability and degradation kinetics of kenaf/sol-gel silica hybrid materials was investigated by thermogravimetric analysis (TGA). Model-free iso-conversion Flynn-Wall-Ozawa (FWO) and Coats-Redfern-modified (CRm) were chosen to evaluate the activation energy of the kenaf (KF) and kenaf/sol-gel silica (KFS) at heating rates (β) of 10, 20, 30 and 40 °C/min. The results shows that an apparent activation energy was increased for the kenaf/sol-gel silica hybrid (211.59 kJ/mol for FWO and 191.55 kJ/mol for CRm) as compared to kenaf fiber (202.84 kJ/mol for FWO and 186.20 kJ/mol for CRm). Other parameters such as integral procedure decomposition temperature (IPDT), final residual weight (Rf), temperature of maximum degradation rate (Tmax) and residual at maximum temperature (RTmax) were obtained from TGA curves, additionally confirmed the thermal stability of the kenaf/sol-gel silica hybrid. These activation energy values and other findings developed the simplified approach in order to understand the thermal stability and degradation kinetics behavior of kenaf/sol-gel silica hybrid materials.

  16. Recovery of energy from geothermal brine and other hot water sources

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  17. Influence of light-curing sources on polymerization reaction kinetics of a restorative system.

    PubMed

    D'Alpino, Paulo H P; Svizero, Nádia R; Pereira, José C; Rueggeberg, Frederick A; Carvalho, Ricardo M; Pashley, David H

    2007-02-01

    To determine the effect of using a variety of commercial light-curing units on polymerization of a dentin-bonding agent (Adper Single Bond) and of a resin composite (Filtek Z250). Infrared (IR) spectra were obtained kinetically at one scan/second at 2 cm(-1) resolution for a period of 5 minutes and were analyzed for: maximum conversion rate (%/s), time into exposure when maximum rate occurred (seconds), conversion at maximum rate (%), and total conversion (%) at 300 seconds by comparison of aliphatic-to-aromatic absorption IR peak ratios, before and after polymerization. Light units used were: QTH 540 mW/cm2 (XL3000); LED 750 mW/cm2 (Elipar FreeLight 2); PAC 2,130 mW/cm2 (ARC II). Exposure followed manufacturers' recommendations: dentin bonding agent for 10 seconds, RC for 20 seconds (QTH), and 10 seconds (LED and PAC). Polymerization kinetics was evaluated at the bottom surface (2.5 mm thick) for the resin composite and as a thin film for the dentin bonding agent on the diamond surface of an attenuated total reflectance accessory in the IR spectrometer. Values (n = 5) were compared using ANOVA and Tukey's pairwise post-hoc test: pre-set alpha 0.05. PAC produced the highest total conversion and conversion rate for the resin composite (P < 0.05). Total conversion was lower for dentin bonding adhesive using PAC than with LED or QTH (P < 0.05). LED provided the highest proportion of conversion at the maximum rate with respect to conversion at 300 seconds for both materials. QTH demonstrated the lowest maximum rate value that occurred at a longer time into exposure (P < 0.05). Polymerization kinetic parameters varied greatly between the restorative materials as well as among light-curing unit types when compared to values observed when using a QTH light as control.

  18. School District Financial Management and Banking.

    ERIC Educational Resources Information Center

    Dembowski, Frederick L.; Davey, Robert D.

    This chapter of "Principles of School Business Management" introduces the concept of cash management, or the process of managing an institution's moneys to ensure maximum cash availability and maximum yield on investments. Four activities are involved: (1) conversion of accounts receivable to cash receipts; (2) conversion of accounts payable to…

  19. 5 CFR 531.221 - Maximum payable rate rule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... before the reassignment. (ii) If the rate resulting from the geographic conversion under paragraph (c)(2... previous rate (i.e., the former special rate after the geographic conversion) with the rates on the current... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum payable rate rule. 531.221...

  20. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes.

    PubMed

    Hasan, Kamrul; Bekir Yildiz, Huseyin; Sperling, Eva; Conghaile, Peter Ó; Packer, Michael A; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2014-12-07

    Photosynthetic microbial fuel cells (PMFCs) are an emerging technology for renewable solar energy conversion. Major efforts have been made to explore the electrogenic activity of cyanobacteria, mostly using practically unsustainable reagents. Here we report on photocurrent generation (≈8.64 μA cm(-2)) from cyanobacteria immobilized on electrodes modified with an efficient electron mediator, an Os(2+/3+) redox polymer. Upon addition of ferricyanide to the electrolyte, cyanobacteria generate the maximum current density of ≈48.2 μA cm(-2).

  1. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  2. Efficiency of some heat engines at maximum-power conditions

    NASA Astrophysics Data System (ADS)

    De Vos, Alexis

    1985-06-01

    In the present paper a simple model is presented for a heat engine, where the power output is limited by the rate of heat supply (and/or heat release). The model leads to a variety of results. Some of them are established laws such as the Carnot law, the Curzon-Ahlborn efficiency, and the Castañs efficiency. Other results are new, and are related to phenomena as different as geothermal energy conversion and the Penfield paradox of electric circuits.

  3. A Numerical Simulation of the Energy Conversion Process in Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya

    2008-04-28

    In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.

  4. Super Turbocharging the Direct Injection Diesel engine

    NASA Astrophysics Data System (ADS)

    Boretti, Albert

    2018-03-01

    The steady operation of a turbocharged diesel direct injection (TDI) engine featuring a variable speed ratio mechanism linking the turbocharger shaft to the crankshaft is modelled in the present study. Key parameters of the variable speed ratio mechanism are range of speed ratios, efficiency and inertia, in addition to the ability to control relative speed and flow of power. The device receives energy from, or delivers energy to, the crankshaft or the turbocharger. In addition to the pistons of the internal combustion engine (ICE), also the turbocharger thus contributes to the total mechanical power output of the engine. The energy supply from the crankshaft is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, the maximum torque is drastically improved, radically expanding the load range. Additionally, moving closer to the points of operation of a balanced turbocharger, it is also possible to improve both the efficiency η, defined as the ratio of the piston crankshaft power to the fuel flow power, and the total efficiency η*, defined as the ratio of piston crankshaft power augmented of the power from the turbocharger shaft to the fuel flow power, even if of a minimal extent. The energy supply to the crankshaft is possible mostly at high speeds and high loads, where otherwise the turbine could have been waste gated, and during decelerations. The use of the energy at the turbine otherwise waste gated translates in improvements of the total fuel conversion efficiency η* more than the efficiency η. Much smaller improvements are obtained for the maximum torque, yet again moving closer to the points of operation of a balanced turbocharger. Adopting a much larger turbocharger (target displacement x speed 30% larger than a conventional turbocharger), better torque outputs and fuel conversion efficiencies η* and η are possible at every speed vs. the engine with a smaller, balanced turbocharger. This result motivates further studies of the mechanism that may considerably benefit traditional powertrains based on diesel engines.

  5. Functional interfacing of Rhodospirillum rubrum chromatophores to a conducting support for capture and conversion of solar energy.

    PubMed

    Harrold, John W; Woronowicz, Kamil; Lamptey, Joana L; Awong, John; Baird, James; Moshar, Amir; Vittadello, Michele; Falkowski, Paul G; Niederman, Robert A

    2013-09-26

    Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm(2) with a maximum current of 1.5 μA/cm(2), which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.

  6. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    Semiconductor photovoltaics (solar-to-electrical) and photocatalysis (solar-to-chemical) requires sunlight to be converted into excited charge carriers with sufficient lifetimes and mobility to drive a current or photoreaction. Thin semiconductor films are necessary to reduce the charge recombination and mobility losses, but thin films also limit light absorption, reducing the solar energy conversion efficiency. Further, in photocatalysis, the band edges of semiconductor must straddle the redox potentials of a photochemical reaction, reducing light absorption to half the solar spectrum in water splitting. Plasmonics transforms metal nanoparticles into antennas with resonances tuneable across the solar spectrum. If energy can be transferred from the plasmon to the semiconductor, light absorption in the semiconductor can be increased in thin films and occur at energies smaller than the band gap. This thesis investigates why, despite this potential, plasmonic solar energy harvesting techniques rarely appear in top performing solar architectures. To accomplish this goal, the possible plasmonic enhancement mechanisms for solar energy conversion were identified, isolated, and optimized by combining systematic sample design with transient absorption spectroscopy, photoelectrochemical and photocatalytic testing, and theoretical development. Specifically, metal semiconductor nanostructures were designed to modulate the plasmon's scattering, hot carrier, and near field interactions as well as remove heating and self-catalysis effects. Transient absorption spectroscopy then revealed how the structure design affected energy and charge carrier transfer between metal and semiconductor. Correlating this data with wavelength-dependent photoconversion efficiencies and theoretical developments regarding metal-semiconductor interactions identified the origin of the plasmonic enhancement. Using this methodology, it has first been proven that three plasmonic enhancement routes are possible: i) increasing light absorption in the semiconductor by light trapping through scattering, ii) transferring hot carriers from metal to semiconductor after light absorption in the metal, and iii) non-radiative excitation of interband transitions in the semiconductor by plasmon-induced resonant energy transfer (PIRET). The effects of the metal on charge transport and carrier recombination were also revealed. Next, it has been shown that the strength and balance of the three enhancement mechanisms is rooted in the plasmon's dephasing time, or how long it takes the collective electron oscillations to stop being collective. The importance of coherent effects in plasmonic enhancement is also shown. Based on these findings, a thermodynamic balance framework has been used to predict the theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions. These calculations have revealed how plasmonics is best used to address the different light absorption problems in semiconductors, and that not taking into account the plasmon's dephasing is the origin of low plasmonic enhancement Finally, to prove these guidelines, each of the three enhancement mechanisms has been translated into optimal device geometries, showing the plasmon's potential for solar energy harvesting. This dissertation identifies the three possible plasmonic enhancement mechanisms for the first time, discovering a new enhancement mechanism (PIRET) in the process. It has also been shown for the first time that the various plasmon-semiconductor interactions could be rooted in the plasmon's dephasing. This has allowed for the first maximum efficiency estimates which have combined all three enhancement mechanisms to be performed, and revealed that changes in the plasmon's dephasing leads to the disparity in reported plasmonic enhancements. These findings are combined to create optimal device design guidelines, which are proven by fabrication of several devices with top efficiencies in plasmonic solar energy conversion. The knowledge obtained will guide the design of efficient photovoltaics and photocatalysts, helping usher in a renewable energy economy and address current needs of climate change.

  7. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  8. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  9. Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Zhigang, Fang

    2017-03-01

    This paper focused on two rhodamine chemosensors for cysteine optical sensing. To minimize their photobleaching caused by excitation light, up-conversion NaYF4:Yb3 +/Er3 + nanocrystals were prepared and used as excitation host. Photophysical measurement on this host and the two chemosensors suggested that chemosensor absorption matched well with host emission. An efficient energy transfer between them was discussed and confirmed by their spectral analysis and emission lifetime comparison. Job's plot suggested that our chemosensors followed a simple recognition mechanism towards cysteine with binding stoichiometry of 1:1. Both chemosensors showed emission "off-on" effect triggered by cysteine and good photostability. Linear working curves with maximum sensitivity of 2.61 were obtained. S substituent was positive to improve selectivity.

  10. Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo

    2009-01-01

    Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.

  11. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates

    NASA Astrophysics Data System (ADS)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen

    2016-01-01

    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  12. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    NASA Astrophysics Data System (ADS)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach based on energy equations was performed. Considering the entire water amount and the total area of the cone, the amount of water (facing the sun per unit absorbing area in the two symmetrical parts of the system) is found to increase, which is expected to reach a maximum water temperature at a high performance. Our experimental findings show that the daily performance is around 32% and the highest water temperature of about 45°C is obtained in the system at 4 pm, according to seasons and weather conditions. An efficient and simple mathematical simulation approach for the new conical solar water heater is described then validates using experimental data.

  13. The energy crisis and energy from the sun; Proceedings of the Symposium on Solar Energy Utilization, Washington, D.C., April 30, 1974

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1974-01-01

    Papers on the state of the art and future prospects of solar energy utilization in the United States are included. Research and technologies for heating and cooling of buildings, solar thermal energy conversion, photovoltaic conversion, biomass production and conversion, wind energy conversion and ocean thermal energy conversion are covered. The increasing funding of the National Solar Energy Program is noted. Individual items are announced in this issue.

  14. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

    PubMed Central

    Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan

    2013-01-01

    The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220

  15. Design of New Power Management Circuit for Light Energy Harvesting System

    PubMed Central

    Jafer, Issa; Stack, Paul; MacNamee, Kevin

    2016-01-01

    Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300

  16. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Ren, Nanqi

    2015-11-15

    Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095.

    PubMed

    Kaewbai-Ngam, Auratai; Incharoensakdi, Aran; Monshupanee, Tanakarn

    2016-07-01

    The cellular PHB content was determined in 137 strains of cyanobacteria representing 88 species in 26 genera under six photoautotrophic nutrient conditions. One hundred and thirty-four strains were PHB producers. The PHB contents of these 134 strains were subtle under normal growth condition, but were significantly increased in 63 strains under nitrogen deprivation (-N), a higher frequency than with phosphate and/or potassium and all-nutrient deprivation. A high PHB accumulation was not associated with any particular evolutionary groups, but was strain specific. The filamentous Calothrix scytonemicola TISTR 8095 produced 356.5±63.4mg/L PHB under -N from a biomass of 1396.6±66.1mg/L, giving a PHB content of 25.4±3.5% (w/w dry weight). This PHB productivity is equivalent to the CO2 consumption of 729.2±129.8mg/L. The maximum energy conversion from solar energy to PHB obtained by C. scytonemicola TISTR 8095 was 1.42±0.30%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    PubMed

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  19. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  20. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOEpatents

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  1. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed-pump time delay

    NASA Astrophysics Data System (ADS)

    Chu, Y. X.; Liang, X. Y.; Yu, L. H.; Xu, L.; Lu, X. M.; Liu, Y. Q.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2013-05-01

    Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration.

  2. Matrix Converter Interface for a Wind Energy Conversion System: Issues and Limitations

    NASA Astrophysics Data System (ADS)

    Patki, Chetan; Agarwal, Vivek

    2009-08-01

    Variable speed grid connected wind energy systems sometimes involve AC-AC power electronic interface between the generator and the grid. Matrix converter is an attractive option for such applications. Variable speed of the wind generator demands variable voltage variable frequency at the generator terminal. Matrix converter is used in this work to generate such a supply. Also, matrix converter can be appropriately controlled to compensate the grid for non-linear, reactive loads. However, any change of power factor on the grid side reflects on the voltage magnitude on the wind generator side. It is highlighted that this may contradict the maximum power point tracking control requirements. All the results of this work are presented.

  3. Efficient Q-switched Tm:YAG ceramic slab laser.

    PubMed

    Zhang, Shuaiyi; Wang, Mingjian; Xu, Lin; Wang, Yan; Tang, Yulong; Cheng, Xiaojin; Chen, Weibiao; Xu, Jianqiu; Jiang, Benxue; Pan, Yubai

    2011-01-17

    Characteristics of Tm:YAG ceramic for high efficient 2-μm lasers are analyzed. Efficient diode end-pumped continuous-wave and Q-switched Tm:YAG ceramic lasers are demonstrated. At the absorbed pump power of 53.2W, the maximum continuous wave (cw) output power of 17.2 W around 2016 nm was obtained with the output transmission of 5%. The optical conversion efficiency is 32.3%, corresponding to a slope efficiency of 36.5%. For Q-switched operation, the shortest width of 69 ns was achieved with the pulse repetition frequency of 500 Hz and single pulse energy of 20.4 mJ, which indicates excellent energy storage capability of the Tm:YAG ceramic.

  4. Implications of supernova remnant origin model of galactic cosmic rays on gamma rays from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Banik, Prabir; Bhadra, Arunava

    2017-06-01

    It is widely believed that Galactic cosmic rays are originated in supernova remnants (SNRs), where they are accelerated by a diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. In recent theoretical developments of the DSA theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are the true generators of cosmic rays, they should accelerate not only protons but also heavier nuclei with the right proportions, and the maximum energy of the heavier nuclei should be the atomic number (Z ) times the mass of the proton. In this work, we investigate the implications of the acceleration of heavier nuclei in SNRs on energetic gamma rays produced in the hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition compared to that of pure protons to explain observations. In addition, the gamma-ray flux above a few tens of TeV would be significantly higher if cosmic ray particles could attain energies Z times the knee energy in lieu of 200 TeV, as suggested earlier for nonamplified magnetic fields. The two stated maximum energy paradigms will be discriminated in the future by upcoming gamma-ray experiments like the Cherenkov telescope array (CTA).

  5. Large-scale energy transformations in the high latitudes of the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Masters, S. E.; Corte-Real, J. A. M.

    1983-01-01

    The kinetic energy balance and kinetic energy sources are studied for high latitudes north of 55 deg N with twice daily upper air observations during a seven-year period from 1973 to 1979. Energy variables are presented for 5 deg latitudinal zones from 55 to 75 deg N and for the polar cap north of 75 deg N. Spatial distributions of important energy variables are also presented. The upper level maximum of the cross-isobaric generation in high latitudes is observed in th lower stratosphere above the tropopause level in the winter and becomes insignificant during the summer. The flux convergence of potential energy from the source in lower latitudes is identified as the single major source for kinetic energy in higher latitudes. The contribution of the baroclinic conversion is minor. Examination during the First GARP Global Experiment winter indicates that the cold air outbreaks of the Asian winter monsoon are associated with noticeable changes in the hemispherical distributions of the fields of vertical motion and energetics in the high latitudes.

  6. Renewable energy - Target for 2050

    NASA Astrophysics Data System (ADS)

    Rowe, W. D.

    1982-02-01

    The possibilities of various renewable energy technologies to supply a projected world demand for 40,000 GW years of energy each year by the year 2050 are examined. Noting that industrial processes consume 50% of all energy needs, fossil fuel reserves are shown to be sufficient for a maximum of 370 yr in the U.S., when all supplies become depleted. Breeder reactors have a doubling time which is 30 yr too long for meeting more than 0.5% of world energy demand in 2050, while fusion, even considering ocean-derived deuterium as a fuel source, will not be supplying energy for another 35-70 yr. Among the solar technologies, the installation of ten million 100 m tall 4 MW wind generators is feasible to meet all the projected energy needs, and solar cells with 10% conversion efficiency could do the same with 14 times less land. Further discussion is given to geothermal, fuel cell, and OTEC technologies, as well as the forty trillion dollars necessary to erect the fully renewable systems.

  7. A piezoelectric brace for passive suppression of structural vibration and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Chuang-Sheng Walter; Lai, Yong-An; Kim, Jin-Yeon

    2017-08-01

    Power outage after an earthquake would cause an additional chaos to the existing aftermath, greatly aggravating the situation if the outage lasts for an extended period. This research aims at developing an innovative piezoelectric brace, which provides both passive energy-dissipating and energy-harvesting capabilities—a passive suppression of structural vibrations and conversion of vibration energy into reusable electricity. The piezoelectric brace has compression modules that exert compressive loads on the piezoelectric material regardless if the brace is in compression or in tension. The compression module consists of a piezoelectric stack and rubber pads. The rubber pads are used to limit the maximum strain in the piezoelectric material below the allowable operational strain. The electro-mechanical equations of motion are derived for a 1-story and a 3-story frame model with the piezoelectric braces. To evaluate the structural behavior and the energy harvesting performance, numerical simulations are executed for the two model buildings (in downtown Los Angeles) that are equipped with the piezoelectric braces. The effects of design parameters including the geometry of the piezoelectric stack and rubber pads and the electric resistance in the electro-mechanical conversion circuit on the performance are investigated. The numerical results indicate that the piezoelectric braces passively dissipate energy through inclined oval-shaped hysteretic loops. The harvested energy is up to approximately 40% of the input energy. The structural displacements are significantly reduced, as compared to the original frames without the piezoelectric braces. Finally, a design procedure for a frame with the proposed passive piezoelectric braces is also presented.

  8. IECEC '83; Proceedings of the Eighteenth Intersociety Energy Conversion Engineering Conference, Orlando, FL, August 21-26, 1983. Volume 1 - Thermal energy systems

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055

  9. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  10. Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip

    NASA Astrophysics Data System (ADS)

    Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long

    2018-05-01

    In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.

  11. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

  12. Reversible electron-hole separation in a hot carrier solar cell

    NASA Astrophysics Data System (ADS)

    Limpert, S.; Bremner, S.; Linke, H.

    2015-09-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices.

  13. Beta Energy Determination with an Anthracene Crystal and with the Feather Method; BETA ENERGIEBEPALING MET EEN ANTHRACENE KRISTAL EN MET DE FEATHER METHODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depuydt, H.

    1958-02-25

    The beta spectra of Au/sup 198/, In/sup 114/ P/sup 32/, Y/sup 90/, and Cs/sup 137/ were determined with a scintillation counter (anthracene crystal) and an amplitude selector. The conversion electron peak of Cs/sup 137/ was used for the determination of the pulse-height energy calibration line. The maximum beta energy was determined by means of a Fermi-Curie analysis of the spectra, and the results were 0.928 plus or minus 0.05 Mev for Au/sup 198/, 2.10 plus or minus 0.02 Mev for In/sup 114/, 1/703 plus or minus 0.018 Mev for P/sup 32/, 2.42 plus or minus 0.02 Mev for Y/sup 90/,more » and 0.522 plus or minus 0.010 and 1.28 plus or minus 0.31 Mev for Cs/sup 137/. The maximum beta energy determination was made by means of the absorption curve to which the Feather analysis was applied (the absorption curve of P/sup 32/ serving as a standard). The results were 0.947 Mev for Au/sup 198/ and 2.02 Mev for In/sup 114/ . (tr-auth)« less

  14. Boosting laser-ion acceleration with multi-picosecond pulses

    PubMed Central

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  15. Preferential vibrational excitation in microwave nitrogen plasma assessed by Raman scattering

    NASA Astrophysics Data System (ADS)

    Gatti, N.; Ponduri, S.; Peeters, F. J. J.; van den Bekerom, D. C. M.; Minea, T.; Tosi, P.; van de Sanden, M. C. M.; van Rooij, G. J.

    2018-05-01

    Vibrational activation of N2 molecules in a flowing microwave plasma is investigated in the context of utilising electrical energy for chemical conversion. Spatial profiles of rotational (T r ) and vibrational (T v ) temperatures are measured by Raman scattering. Maximum values of T r = 3500 K and T v = 6000 K were observed in the centre of the plasma at low pressure (50 mbar). A detailed quantification of the local energy content shows how the strong non-equilibrium character of low pressure discharges compares with a closer-to-equilibrium energy distribution at higher pressures. Measurements performed downstream of the plasma display the ability of the microwave flowing reactor to deliver up to 48% of the specific energy input (SEI) into internal degrees of freedom of the gas molecules. Specifically, 23% of the SEI is loaded into the vibrational mode, which is potentially available to enhance chemical reactivity of endothermic reactions.

  16. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer

    NASA Astrophysics Data System (ADS)

    Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel

    2017-04-01

    Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.

  17. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  18. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    PubMed

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  19. Visible light active, nano-architectured metal oxide photo-catalysts for solar fuel applications

    NASA Astrophysics Data System (ADS)

    LaTempa, Thomas Joseph, Jr.

    Large-scale implementation of renewable energy sources such as solar requires the development of an efficient energy capture, conversion and storage scheme. Harnessing solar energy to create storable fuels, i.e., solar fuels, provides a unique strategy to meet this objective. In this regard, hydrogen generation through water photoelectrolysis and methane generation via the photocatalytic conversion of carbon dioxide and water vapor are investigated. The primary motivation of this work lies in the development of efficient, low cost materials for solar fuel applications. Metal oxide semiconductors such as n-type titanium dioxide (TiO 2) have generated significant interest in the scientific community due to their low cost, stability and high photocatalytic activity under band gap illumination. The implementation of nano-structured materials has significantly enhanced the conversion efficiency obtained with TiO2 in applications such as water photoelectrolysis. Despite these advancements, TiO2 has an inherently poor photoresponse due its wide band gap (3.0-3.2 eV), which accounts for ≈ 5% of the solar spectrum energy. Therefore, the primary objective of this work is to develop materials with a photocatalytic activity approaching that of TiO2, while shifting the photo-response to harness the visible light portion of the solar spectrum. Two differing approaches are evaluated in this work to meet this objective. Hematite (alpha-Fe2O3) has a band gap ≈ 2.2 eV, well suited for capturing solar energy, but suffers from intrinsically poor electrical characteristics. To overcome these limitations, iron oxide nanotubes were developed using a temperature controlled anodization technique. This provides greater control over the film morphology to create high aspect ratio nano-structures approximately 1-4 mum in length, sufficient to harness solar energy, with a wall thickness approaching 10 nm to improve the electrical characteristics for photocatalytic application. The performance of hematite nanotubes, formed after thermal annealing, were characterized using incident photon conversion efficiency measurements (IPCE). A maximum IPCE of 3.5% was obtained under partial bias conditions, with a photo-response extending to ≈ 600 nm. Alternatively, modification of a nano-structured material with an intrinsically poor photoresponse was evaluated. Amorphous tantalum oxide nanotubes were synthesized using an anodization technique, providing great control over the film morphology. Nanotubes of varying film thickness in the range of 240 nm -- 15 mum, and wall thickness as small as 7 nm were obtained. Subsequent crystallization and nitridation through thermal annealing in ammonia ambient was evaluated to create tantalum nitride (Ta3N5) nanotubes. Tantalum nitride has a band gap ≈ 2.1 eV, similar to that of hematite. Water photoelectrolysis performance was evaluated and a maximum IPCE of 5.3% was obtained under partial bias conditions, with a red shift in the photoresponse of ≈ 300 nm towards the visible relative to Ta2O5 nanotubes. Finally, the photocatalytic conversion of carbon dioxide and water vapor into hydrocarbons such as methane was evaluated for TiO2, alpha-Fe 2O3 and Ta3N5 nanotube arrays. A microwave assisted, solvothermal approach to load platinum nanoparticle catalysts within the nanotube structure is evaluated. Catalyst sensitization is necessary to achieve measurable yields for carbon dioxide reduction, and the composite nanotube photocatalysts were evaluated under simulated solar AM 1.5G conditions. Methane generation is achieved for TiO2 and Ta3N5 composite photocatalysts at the rate of 25 ppm / cm2-hr and 9 ppm / cm2-hr, respectively.

  20. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    PubMed Central

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  1. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.

    PubMed

    Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min

    2018-01-17

    Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.

  2. Chemical vapor deposition techniques and related methods for manufacturing microminiature thermionic converters

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2002-06-25

    Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  3. Material Problems for High-Temperature, High-Power Space Energy-Conversion Systems.

    DTIC Science & Technology

    1984-05-01

    M. Takahashi, S. Nanamaku, and M. Kimura , "The growth of ferroelectric single crystal Sr 2 Mb2 0 7 by means of F.Z. technique," J. of Crystal Growth...Holsbeke, "Preparation and characterization of high purity vanadium by EBFZM," J. of Less Common Metals, Vol. 39, 7-16 (1975). 18. S. Takai and H. Kimura ... uranium system from room temperature to 900 0C. The composition of maximum hardness increased from 40 atomic percent (a/o) zirconium at room ’ 69

  4. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  5. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    PubMed

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  6. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    PubMed Central

    Rohini, G.; Jamuna, V.

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  7. Biological Solar Energy Conversion and U.S. Energy Policy

    ERIC Educational Resources Information Center

    Pimentel, David; And Others

    1978-01-01

    Surveys energy consumption in the United States and explores the possibility of increasing the amount of energy obtained from biomass conversion (biologically produced energy). Economic and environmental concerns of biomass conversion processes are discussed. (CP)

  8. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only)

    NASA Astrophysics Data System (ADS)

    Olsson, Pär; Guillemoles, J.-F.; Domain, C.

    2008-02-01

    Present photovoltaic devices, based on p/n junctions, are limited from first principles to maximal efficiencies of 31% (40% under full solar concentration; Shockley and Queisser 1961 J. Appl. Phys. 32 510). However, more innovative schemes may overcome the Shockley-Queisser limit since the theoretical maximal efficiency of solar energy conversion is higher than 85% (Harder and Würfel 2003 Semicond. Sci. Technol. 18 S151). To date, the only practical realization of such an innovative scheme has been multi-junction devices, which at present hold the world record for efficiency at nearly 41% at significant solar concentration (US DOE news site: http://www.energy.gov/news/4503.htm). It has been proposed that one could make use of the solar spectrum in much the same way as the multi-junction devices do but in a single cell, using impurity induced intermediate levels to create gaps of different sizes. This intermediate level semiconductor (ILSC) concept (Green and Wenham 1994 Appl. Phys. Lett. 65 2907; Luque and Martí1997 Phys. Rev. Lett. 78 5014) has a maximal efficiency similar to that of multi-junction devices but suffers from prohibitively large non-radiative recombination rates. We here propose to use a ferromagnetic impurity scheme in order to reduce the non-radiative recombination rates while maintaining the high theoretical maximum efficiency of the ILSC scheme, that is about 46%. Using density functional theory calculations, the electronic and energetic properties of transition metal impurities for a wide range of semiconductors have been analysed. Of the several hundred compounds studied, only a few fulfil the design criteria that we present here. As an example, wide gap AlP is one of the most promising compounds. It was found that inclusion of significant amounts of Mn in AlP induces band structures providing conversion efficiencies potentially close to the theoretical maximum, with an estimated Curie temperature reaching above 100 K.

  9. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. IECEC '84: Advanced energy systems - Their role in our future; Proceedings of the Nineteenth Intersociety Energy Conversion Engineering Conference, San Francisco, CA, August 19-24, 1984. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.

  11. Real World Testing Of A Piezoelectric Rotational Energy Harvester For Human Motion

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.; Yeatman, E. M.; Holmes, A. S.

    2013-12-01

    Harvesting energy from human motion is challenging because the frequencies are generally low and random compared to industrial machinery that vibrates at much higher frequencies. One of the most promising and popular strategies to overcome this is frequency up-conversion. The transducing element is actuated at its optimal frequency of operation, higher than the source excitation frequency, through some kind of catch and release mechanism. This is beneficial for efficient power generation. Such devices have now been investigated for a few years and this paper takes a previously introduced piezoelectric rotational harvester, relying on beam plucking for the energy conversion, to the next step by testing the device during a half marathon race. The prototype and data acquisition system are described in detail and the experimental results presented. A comparison of the input excitation, based on an accelerometer readout, and the output voltage of the piezoelectric beam, recorded at the same time, confirm the successful implementation of the system. For a device functional volume of 1.85 cm3, a maximum power output of 7 μW was achieved when the system was worn on the upper arm. However, degradation of the piezoelectric material meant that the performance dropped rapidly from this initial level; this requires further research. Furthermore, the need for intermediate energy storage solutions is discussed, as human motion harvesters only generate power as long as the wearer is actually moving.

  12. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  13. Radiation energy conversion in space; Conference, 3rd, NASA Ames Research Center, Moffett Field, Calif., January 26-28, 1978, Technical Papers

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1978-01-01

    Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.

  14. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation.

    PubMed

    Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei

    2018-02-08

    Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m -2 h -1 ) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.

  15. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  16. Thermoelectric properties of the LaCoO3-LaCrO3 system using a high-throughput combinatorial approach

    NASA Astrophysics Data System (ADS)

    Talley, K. R.; Barron, S. C.; Nguyen, N.; Wong-Ng, W.; Martin, J.; Zhang, Y. L.; Song, X.

    2017-02-01

    A combinatorial film of the LaCo1-xCrxO3 system was fabricated using the LaCoO3 and LaCrO3 targets at the NIST Pulsed Laser Deposition (PLD) facility. As the ionic size of Cr3+ is greater than that of Co3+, the unit cell volume of the series increases with increasing x. Using a custom screening tool, the Seebeck coefficient of LaCo1-xCrxO3 approaches a measured maximum of 286 μV/K, near to the cobalt-rich end of the film library (with x ≈ 0.49). The resistivity value increases continuously with increasing x. The measured power factor, PF, of this series, which is related to the efficiency of energy conversion, also exhibits a maximum at the composition of x ≈ 0.49, which corresponds to the maximum value of the Seebeck coefficient. Our results illustrate the efficiency of applying the high-throughput combinatorial technique to study thermoelectric materials.

  17. Design analysis and simulation study of an efficiency enhanced L-band MILO

    NASA Astrophysics Data System (ADS)

    Dixit, Gargi; Kumar, Arjun; Jain, P. K.

    2017-01-01

    In this article, an experimental L-band compact magnetically insulated transmission line oscillator (MILO) has been simulated using the 3D PIC simulation code "Particle Studio," and an improvement in the device efficiency has been obtained. The detailed interaction and operating mechanism describing the role of sub-assemblies have been explained. The performance of the device was found to be the function of the distance between the end-surface of the cathode and the beam-dump disk. During simulation, a high power microwave of the TM01 mode is generated with the peak RF-power of 6 GW and the power conversion efficiency of 19.2%, at the operating voltage of ˜600 kV and at the current of 52 kA. For better impedance matching or maximum power transfer, four stubs have been placed at the λg/4 distance from the extractor cavity, which results in the stable RF power output. In this work, an improved L-band MILO along with a new type beam-dump disk is selected for performance improvement with typical design parameters and beam parameters. The total peak power of improved MILO is 7 GW, and the maximum power conversion efficiency is 22.4%. This improvement is achieved due to the formation of the virtual cathode at the load side, which helps in modulating the energy of electrons owing to maximum reflection of electrons from the mesh or foil.

  18. Sensitivity of Tropical Cyclone Spinup Time to the Initial Entropy Deficit

    NASA Astrophysics Data System (ADS)

    Tang, B.; Corbosiero, K. L.; Rios-Berrios, R.; Alland, J.; Berman, J.

    2014-12-01

    The development timescale of a tropical cyclone from genesis to the start of rapid intensification in an axisymmetric model is hypothesized to be a function of the initial entropy deficit. We run a set of idealized simulations in which the initial entropy deficit between the boundary layer and free troposphere varies from 0 to 100 J kg-1 K-1. The development timescale is measured by changes in the integrated kinetic energy of the low-level vortex. This timescale is inversely related to the mean mass flux during the tropical cyclone gestation period. The mean mass flux, in turn, is a function of the statistics of convective updrafts and downdrafts. Contour frequency by altitude diagrams show that entrainment of dry air into updrafts is predominately responsible for differences in the mass flux between the experiments, while downdrafts play a secondary role. Analyses of the potential and kinetic energy budgets indicate less efficient conversion of available potential energy to kinetic energy in the experiments with higher entropy deficits. Entrainment leads to the loss of buoyancy and the destruction of available potential energy. In the presence of strong downdrafts, there can even be a reversal of the conversion term. Weaker and more radially confined radial inflow results in less convergence of angular momentum in the experiments with higher entropy deficits. The result is a slower vortex spinup and a reduction in steady-state vortex size, despite similar steady-state maximum intensities among the experiments.

  19. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  20. Roadmap on optical energy conversion

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.

  1. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density.

    PubMed

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo

    2015-02-07

    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  2. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  3. Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system.

    PubMed

    Bohutskyi, Pavlo; Kucek, Leo A; Hill, Eric; Pinchuk, Grigoriy E; Mundree, Sagadevan G; Beliaev, Alexander S

    2018-07-01

    Growth of heterotrophic bacterium Bacillus subtilis was metabolically coupled with the photosynthetic activity of an astaxanthin-producing alga Haematococcus pluvialis for conversion of starch-containing waste stream into carotenoid-enriched biomass. The H. pluvialis accounted for 63% of the produced co-culture biomass of 2.2 g/L. Importantly, the binary system requires neither exogenous supply of gaseous substrates nor application of energy-intensive mass transfer technologies due to in-situ exchange in CO 2 and O 2 . The maximum reduction in COD, total nitrogen and phosphorus reached 65%, 55% and 30%, respectively. Conducted techno-economic assessment suggested that the astaxanthin-rich biomass may potentially offset the costs of waste treatment, and, with specific productivity enhancements (induction of astaxanthin to 2% and increase H. pluvialis fraction to 80%), provide and additional revenue stream. The outcome of this study demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into value-added products through metabolic coupling of heterotrophic and phototrophic metabolisms. Copyright © 2018. Published by Elsevier Ltd.

  4. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  5. Study the performance of photogalvanic cells for solar energy conversion and storage: Rose Bengal-D-Xylose-NaLS system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangotri, K.M.; Bhimwal, Mahesh Kumar

    2010-07-15

    The Rose Bengal is used as photosensitizer with D-Xylose as reductant and sodium lauryl sulphate (NaLS) as surfactant for the enhancement of the conversion efficiency and storage capacity of photogalvanic cell for its commercial viability. The observed value of the photogeneration of photopotential was 885.0 mV and photocurrent was 460.0 {mu}A whereas maximum power of the cell was 407.10 {mu}W. The observed power at power point was 158.72 {mu}W and the conversion efficiency was 1.52%. The fill factor 0.3151 was experimentally determined at the power point of the cell. The rate of initial generation of photocurrent was 63.88 {mu}A min{supmore » -1}. The photogalvanic cell so developed can work for 145.0 min in dark on irradiation for 165.0 min, i.e. the storage capacity of the photogalvanic cell is 87.87%. A simple mechanism for the photogeneration of photocurrent has also been proposed. (author)« less

  6. Numerical Simulation of Internal Waves in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Mohanty, Sachiko; Devendra Rao, Ambarukhana

    2017-04-01

    The interactions of barotropic tides with irregular bottom topography generate internal waves with high amplitude known as large-amplitude internal waves (LAIW) in the Andaman Sea. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. These waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing, biogeochemical processes, etc. over the shelf-slope region. In the present study, energetics analysis of M2 internal tides over the Andaman Sea is carried out in detail by using a three-dimensional MIT general circulation ocean model (MITgcm). In-situ observations of temperature, conductivity and currents with high temporal resolution are used to validate the model simulations. From the spectral energy estimate of density, it is found that the peak estimate is associated with the semi-diurnal frequency at all the depths in both observations and model simulations. The baroclinic velocity characteristics, suggests that a multi-mode features of baroclinic tides are present at the buoy location. To understand the generation and propagation of internal tides over this region, energy flux and barotropic-to-baroclinic M2 tidal energy conversion rates are examined. The model simulation suggests that the internal tide is generated at multiple sites and propagate off of their respective generation sources. Most of the energy propagation in the Andaman Sea follows the 1000m isobath. The maximum horizontal kinetic energy follows the energy flux pattern over the domain and the available potential energy is found to be maximum in the north of the Andaman Sea.

  7. Energetics characteristics accounting for the explosive development of a twin extratropical cyclone over the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Fu, Shenming

    2017-04-01

    A twin extratropical cyclone that appeared over the Northwest Pacific Ocean during the winter of 2011 is reproduced reasonably well by the fifth-generation PSU-NCAR Mesoscale Model (MM5). One cyclone in this event has developed into an extreme explosive extratropical cyclone (EEC), with a maximum deepening rate up to 2.7 Bergeron, a minimum SLP of 933 hPa, and a maximum surface wind of 33 m s-1, which means its intensity is comparable with the intensity of a typhoon. The rotational and divergent wind kinetic energy (KE) budget equations are applied to this twin cyclone event so as to understand the rapid enhancement of the wind speed in this case. Preliminary results indicate that, overall, the rotational wind KE is much larger than the divergent wind KE, however, the latter can be of comparable intensity with the rotational wind KE around the regions where the wind speed strengthened most rapidly. Different quadrants of the twin cyclone show significant unevenness, overall, the southeastern quadrant of the EEC features the rapidest enhancement of wind speed, whereas the northwestern quadrant shows the slowest wind-speed acceleration. The vertical stretching of the EEC show consistent variation features with the rotational wind KE. The transport of KE by rotational wind, the conversion from divergent wind KE to rotational wind KE, and the work done by pressure gradient force all contributed to the enhancement of rotational wind KE. In contrast, the divergent wind KE is mainly produced by the baroclinic energy conversion.

  8. A Miniaturized 0.78-mW/cm2 Autonomous Thermoelectric Energy-Harvesting Platform for Biomedical Sensors.

    PubMed

    Rozgic, Dejan; Markovic, Dejan

    2017-08-01

    In order to use thermoelectric energy harvesters (TEHs) as a truly autonomous energy source for size-limited sensing applications, it is essential to improve the power conversion efficiency and energy density. This study presents a thin-film, array-based TEH with a surface area of 0.83 cm 2 . The TEH autonomously supplies a power management IC fabricated in a 65-nm CMOS technology. The IC utilizes a single-inductor topology with integrated analog maximum power point tracking (MPPT), resulting in a 68% peak end-to-end efficiency (92% converter efficiency) and less than 20-ms MPPT. In an in-vivo test, a 645-μW regulated output power (effective 3.5 K of temperature gradient) was harvested from a rat implanted with our TEH, demonstrating true energy independence in a real environment while showing a 7.9 × improvement in regulated power density compared to the state-of-the-art. The system showed autonomous operation down to 65-mV TEH input.

  9. Energy Level Tuning of Poly(phenylene-alt-dithienobenzothiadiazole)s for Low Photon Energy Loss Solar Cells.

    PubMed

    Heuvel, Ruurd; van Franeker, Jacobus J; Janssen, René A J

    2017-03-01

    Six poly(phenylene- alt -dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The best performance is found for the polymer-fullerene combination with distinct phase separation and crystalline domains. This improves the maximum external quantum efficiency for charge formation and collection to 66%. The resulting higher photocurrent compensates for the relatively large energy loss per photon ( E loss = 0.97 eV) in achieving a high PCE. By contrast, the poly-mer that provides a reduced energy loss ( E loss = 0.49 eV) gives a lower photocurrent and a reduced PCE of 1.8% because the external quantum efficiency of 17% is limited by a suboptimal morphology and a reduced driving force for charge transfer.

  10. Solar energy, its conversion and utilization

    NASA Technical Reports Server (NTRS)

    Farber, E. A.

    1972-01-01

    The work being carried out at the University of Florida Solar Energy and Energy Conversion Laboratory in converting solar energy, our only income, into other needed and useful forms of energy is described. A treatment such as this demonstrates, in proper perspective, how solar energy can benefit mankind with its many problems of shortages and pollution. Descriptions were given of the conversion processes, equipment, and performance. The testing of materials, solar water heating, space heating, cooking and baking, solar distillation, refrigeration and air-conditioning, work with the solar furnace, conversion to mechanical power, hot air engines, solar-heated sewage digestion, conversion to electricity, and other devices will be discussed.

  11. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage.

    PubMed

    Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George; El Naggar, M Hesham

    2012-05-01

    A comparative evaluation of single-stage and two-stage anaerobic digestion processes for biomethane and biohydrogen production using thin stillage was performed to assess the impact of separating the acidogenic and methanogenic stages on anaerobic digestion. Thin stillage, the main by-product from ethanol production, was characterized by high total chemical oxygen demand (TCOD) of 122 g/L and total volatile fatty acids (TVFAs) of 12 g/L. A maximum methane yield of 0.33 L CH(4)/gCOD(added) (STP) was achieved in the two-stage process while a single-stage process achieved a maximum yield of only 0.26 L CH(4)/gCOD(added) (STP). The separation of acidification stage increased the TVFAs to TCOD ratio from 10% in the raw thin stillage to 54% due to the conversion of carbohydrates into hydrogen and VFAs. Comparison of the two processes based on energy outcome revealed that an increase of 18.5% in the total energy yield was achieved using two-stage anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A numerical analysis of transient planetary waves and the vertical structure in a meso-strato-troposphere model, part 1.4A

    NASA Technical Reports Server (NTRS)

    Zhang, K. S.; Sasamori, T.

    1984-01-01

    The structure of unstable planetary waves is computed by a quasi-geostrophic model extending from the surface up to 80 km by means of eigenvalue-eigenfunction techniques in spherical coordinates. Three kinds of unstable modes of distinct phase speeds and vertical structures are identified in the winter climate state: (1) the deep Green mode with its maximum amplitude in the stratosphere; (2) the deep Charney mode with its maximum amplitude in the troposphere: and (3) the shallow Charney mode which is largely confined to the troposphere. Both the Green mode and the deep Charney mode are characterized by very slow phase speeds. They are mainly supported by upward wave energy fluxes, but the local baroclinic energy conversion within the stratosphere also contributes in supporting these deep modes. The mesosphere and the troposphere are dynamically independent in the summer season decoupled by the deep stratospheric easterly. The summer mesosphere supports the easterly unstable waves 1-4. Waves 3 and 4 are identified with the observed mesospheric 2-day wave and 1.7-day wave, respectively.

  13. Solar thermal conversion

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.

  14. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    PubMed Central

    Maas, Ronald HW; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-01-01

    Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis). PMID:18699996

  15. High beam quality of a Q-switched 2-µm Tm,Ho:LuVO4 laser

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Xining; Shen, Yingjie; Li, Linjun; Zhou, Long; Yang, Yuqiang; Bai, Yunfeng; Xie, Wenqiang; Ye, Guangchao; Yu, Xiaoyang

    2018-05-01

    A diode-end-pumped 2.05-µm Q-switched Tm,Ho:LuVO4 laser is reported in this paper. The cryogenic Tm3+ (5.0 at.%),Ho3+ (0.5 at.%):LuVO4 crystal was pumped by an 800-nm laser diode. At a pulse repetition frequency of 10 kHz, the maximum average output power of 3.77 W was achieved at 77 K when an incident pump power of 14.7 W was used. The slope efficiency and optical-optical conversion efficiency were 28.3 and 25.6%, respectively. The maximum per pulse energy was 2.54 mJ for a pulse duration of 69.9 ns. The beam quality factor Mx 2 was approximately 1.17 and My 2 was approximately 1.01 for the Tm,Ho:LuVO4 laser.

  16. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  17. Near-infrared luminescence from Y2O3:Eu3+, Yb3+ prepared by sol-gel method.

    PubMed

    Xie, Ying; Xiao, Lin J; Yan, Feng Q; Chen, Yong J; Li, Wen Z; Geng, Xiu J

    2014-06-01

    Eu3+ and Yb3+ codoped Y2O3 phosphors were synthesized by the sol-gel method. The phosphors possess absorption in the region of 300-550 nm, exhibiting an intense NIR emission of Yb3+ around 1000 nm, which is suitable for matching the maximum spectral response of c-Si solar cells. The optimum composition of Eu3+ and Yb3+ codoped Y2O3 was (Y1.94Yb0.04Eu0.02)2O3. It is observed that two-step energy transfer occurs from the 5D2 level of Eu3+ situated around (466 nm) exciting two neighboring Yb3+ ions to the 2F5/2 level (1000 nm). The down-conversion material based on Eu(3+)- Yb3+ couple may have great potential applications in c-Si solar cells to enhance their photovoltaic conversion efficiency via spectral modification.

  18. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  19. Tiny Tool Converts Light to Electricity

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Tamamura, Yuna

    2010-01-01

    In Japan, junior high school students learn about energy conversion between kinetic and potential energy. In addition, they learn about energy conversion among different kinds of energy, such as mechanical, electrical, thermal, light and chemical. As for the conversion between electrical and light energy, teachers usually use lamps or LEDs to…

  20. DNA-mediated excitonic upconversion FRET switching

    DOE PAGES

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; ...

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less

  1. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films.

    PubMed

    Cheng, Hongbo; Ouyang, Jun; Zhang, Yun-Xiang; Ascienzo, David; Li, Yao; Zhao, Yu-Yao; Ren, Yuhang

    2017-12-08

    Dielectric capacitors have the highest charge/discharge speed among all electrical energy devices, but lag behind in energy density. Here we report dielectric ultracapacitors based on ferroelectric films of Ba(Zr 0.2 ,Ti 0.8 )O 3 which display high-energy densities (up to 166 J cm -3 ) and efficiencies (up to 96%). Different from a typical ferroelectric whose electric polarization is easily saturated, these Ba(Zr 0.2 ,Ti 0.8 )O 3 films display a much delayed saturation of the electric polarization, which increases continuously from nearly zero at remnant in a multipolar state, to a large value under the maximum electric field, leading to drastically improved recyclable energy densities. This is achieved by the creation of an adaptive nano-domain structure in these perovskite films via phase engineering and strain tuning. The lead-free Ba(Zr 0.2 ,Ti 0.8 )O 3 films also show excellent dielectric and energy storage performance over a broad frequency and temperature range. These findings may enable broader applications of dielectric capacitors in energy storage, conditioning, and conversion.

  2. Gallium Nitride Direct Energy Conversion Betavoltaic Modeling and Optimization

    DTIC Science & Technology

    2017-03-01

    require high energy density battery systems. Radioisotopes are the most energy dense materials that can be converted into electrical energy. Pure...beta radioisotopes can be used towards making a long-lasting battery. However, the process to convert the energy provided by a pure beta radioisotope ...betavoltaic. Each energy conversion method has different challenges to overcome to improve thesystem efficiency. These energy conversion methods that are

  3. Interconnected ionic domains enhance conductivity in microphase separated block copolymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe

    Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less

  4. Optimal design of vertebrate and insect sarcomeres.

    PubMed

    Otten, E

    1987-01-01

    This paper offers a model for the normalized length-tension relation of a muscle fiber based upon sarcomere design. Comparison with measurements published by Gordon et al. ('66) shows an accurate fit as long as the inhomogeneity of sarcomere length in a single muscle fiber is taken into account. Sequential change of filament length and the length of the cross-bridge-free zone leads the model to suggest that most vertebrate sarcomeres tested match the condition of optimal construction for the output of mechanical energy over a full sarcomere contraction movement. Joint optimization of all three morphometric parameters suggests that a slightly better (0.3%) design is theoretically possible. However, this theoretical sarcomere, optimally designed for the conversion of energy, has a low normalized contraction velocity; it provides a poorer match to the combined functional demands of high energy output and high contraction velocity than the real sarcomeres of vertebrates. The sarcomeres in fish myotomes appear to be built suboptimally for isometric contraction, but built optimally for that shortening velocity generating maximum power. During swimming, these muscles do indeed contract concentrically only. The sarcomeres of insect asynchronous flight muscles contract only slightly. They are not built optimally for maximum output of energy across the full range of contraction encountered in vertebrate sarcomeres, but are built almost optimally for the contraction range that they do in fact employ.

  5. Solar energy storage using surfactant micelles

    NASA Astrophysics Data System (ADS)

    Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.

    1982-09-01

    The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of surfactant micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic surfactants. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to surfactant solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-surfactant systems are viable candidates for solar energy storage for later conversion to electrical power.

  6. Lossless hybridization between photovoltaic and thermoelectric devices.

    PubMed

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).

  7. Lossless hybridization between photovoltaic and thermoelectric devices

    PubMed Central

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S.; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device). PMID:23820973

  8. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria.

    PubMed

    Sakurai, Hidehiro; Masukawa, Hajime

    2007-01-01

    This review article explores the potential of using mariculture-raised cyanobacteria as solar energy converters of hydrogen (H(2)). The exploitation of the sea surface for large-scale renewable energy production and the reasons for selecting the economical, nitrogenase-based systems of cyanobacteria for H(2) production, are described in terms of societal benefits. Reports of cyanobacterial photobiological H(2) production are summarized with respect to specific activity, efficiency of solar energy conversion, and maximum H(2) concentration attainable. The need for further improvements in biological parameters such as low-light saturation properties, sustainability of H(2) production, and so forth, and the means to overcome these difficulties through the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering are also discussed. Finally, a possible mechanism for the development of economical large-scale mariculture operations in conjunction with international cooperation and social acceptance is outlined.

  9. Improvement of energy conversion effectiveness and maximum output power of electrostatic induction-type MEMS energy harvesters by using symmetric comb-electrode structures

    NASA Astrophysics Data System (ADS)

    Honma, H.; Mitsuya, H.; Hashiguchi, G.; Fujita, H.; Toshiyoshi, H.

    2018-06-01

    We introduce symmetric comb-electrode structures for the electrostatic vibrational MEMS energy harvester to lower the electrostatic constraint force attributed to the built-in electret potential, thereby allowing the harvester device to operate in a small acceleration range of 0.05 g or lower (1 g  =  9.8 m s‑2). Given the same device structure, two different potentials for the electret are tested to experimentally confirm that the output induction current is enhanced 4.2 times by increasing the electret potential from  ‑60 V to  ‑250 V. At the same time, the harvester effectiveness has been improved to as high as 93%. The device is used to swiftly charge a 470 µF storage capacitor to 3.3 V in 120 s from small sinusoidal vibrations of 0.6 g at 124 Hz.

  10. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.

    PubMed

    Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-07-21

    Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.

    PubMed

    Abourached, Carole; Lesnik, Keaton Larson; Liu, Hong

    2014-08-01

    The production of methane from sewage sludge through the use of anaerobic digestion has been able to effectively offset energy costs for wastewater treatment. However, significant energy reserves are left unrecovered and effluent standards are not met necessitating secondary processes such as aeration. In the current study a novel cloth-electrode assembly microbial fuel cell (CEA-MFC) was used to generate electricity from sewage sludge. Fermentation pretreatment of the sludge effectively increased the COD of the supernatant and improved reactor performance. Using the CEA-MFC design, a maximum power density of 1200 mW m(-2) was reached after a fermentation pre-treatment time of 96 h. This power density represents a 275% increase over those previously observed in MFC systems. Results indicate continued improvements are possible and MFCs may be a viable modification to existing wastewater treatment infrastructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Point Defects and p -Type Doping in ScN from First Principles

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu

    2018-03-01

    Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.

  13. Roadmap on optical energy conversion

    DOE PAGES

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...

    2016-06-24

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less

  14. Performance characteristics of solar-photovoltaic flywheel-storage systems

    NASA Astrophysics Data System (ADS)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  15. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    PubMed

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  16. Compensation for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  17. A new class of variable capacitance generators based on the dielectric fluid transducer

    NASA Astrophysics Data System (ADS)

    Duranti, Mattia; Righi, Michele; Vertechy, Rocco; Fontana, Marco

    2017-11-01

    This paper introduces the novel concept of dielectric fluid transducer (DFT), which is an electrostatic variable capacitance transducer made by compliant electrodes, solid dielectrics and a dielectric fluid with variable volume and/or shape. The DFT can be employed in actuator mode and generator mode. In this work, DFTs are studied as electromechanical generators able to convert oscillating mechanical energy into direct current electricity. Beside illustrating the working principle of dielectric fluid generators (DFGs), we introduce different architectural implementations and provide considerations on limitations and best practices for their design. Additionally, the proposed concept is demonstrated in a preliminary experimental test campaign conducted on a first DFG prototype. During experimental tests a maximum energy per cycle of 4.6 {mJ} and maximum power of 0.575 {mW} has been converted, with a conversion efficiency up to 30%. These figures correspond to converted energy densities of 63.8 {mJ} {{{g}}}-1 with respect to the displaced dielectric fluid and 179.0 {mJ} {{{g}}}-1 with respect to the mass of the solid dielectric. This promising performance can be largely improved through the optimization of device topology and dimensions, as well as by the adoption of more performing conductive and dielectric materials.

  18. Physical Limits of Solar Energy Conversion in the Earth System.

    PubMed

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.

  19. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  20. Exceptional thermoelectric performance of a "star-like" SnSe nanotube with ultra-low thermal conductivity and a high power factor.

    PubMed

    Lin, Chensheng; Cheng, Wendan; Guo, Zhengxiao; Chai, Guoliang; Zhang, Hao

    2017-08-30

    Efficient thermoelectric energy conversion is both crucial and challenging, and requires new material candidates by design. From first principles simulations, we identify that a "star-like" SnSe nanotube - with alternating dense and loose rings along the tube direction - gives rise to an ultra-low lattice thermal conductivity, 0.18 W m -1 K -1 at 750 K, and a large Seebeck coefficient, compared with single crystal SnSe. The power factor of the p-type SnSe nanotube reaches its maximum value of 235 μW cm -1 K -2 at a moderate doping level of around 10 20 -10 21 cm -3 . The p-type nanotube shows better thermoelectric properties than the n-type one. The phonon anharmonic scattering rate of the SnSe nanotube is larger than that of the SnSe crystal. All of these factors lead to an exceptional figure-of-merit (ZT) value of 3.5-4.6 under the optimal conditions, compared to 0.6-2.6 for crystalline SnSe. Such a large ZT value should lead to a six-fold increase in the energy conversion efficiency to about 30%.

  1. A numerical analysis to evaluate Betz's Law for vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Thönnißen, F.; Marnett, M.; Roidl, B.; Schröder, W.

    2016-09-01

    The upper limit for the energy conversion rate of horizontal axis wind turbines (HAWT) is known as the Betz limit. Often this limit is also applied to vertical axis wind turbines (VAWT). However, a literature review reveals that early analytical and recent numerical approaches predicted values for the maximum power output of VAWTs close to or even higher than the Betz limit. Thus, it can be questioned whether the application of Betz's Law to VAWTs is justified. To answer this question, the current approach combines a free vortex model with a 2D inviscid panel code to represent the flow field of a generic VAWT. To ensure the validity of the model, an active blade pitch control system is used to avoid flow separation. An optimal pitch curve avoiding flow separation is determined for one specific turbine configuration by applying an evolutionary algorithm. The analysis yields a net power output that is slightly (≈6%) above the Betz limit. Besides the numerical result of an increased energy conversion rate, especially the identification of two physical power increasing mechanisms shows, that the application of Betz's Law to VAWTs is not justified.

  2. Development of a small-scale power system with meso-scale vortex combustor and thermo-electric device

    NASA Astrophysics Data System (ADS)

    Shimokuri, D.; Hara, T.; Matsumoto, R.

    2015-10-01

    A small-scale vortex combustion power system has been developed using a thermo-electric device (TED). The system consisted of a heat medium, TED, and cooling plates. A vortex combustion chamber (7 mm inner diameter and 27 mm long) was fabricated inside the heat medium (40  ×  40  ×  20 mm and 52 g of duralumin). It was found that a stable propane/air flame could be established in the narrow 7 mm channel even for the large heat input conditions of 213 ~ 355 W. With a couple of TEDs, the maximum of 8.1 W (9.8 V  ×  0.83 A) could be successfully obtained for 355 W heat input, which corresponded to the energy conversion rate of 2.4%. The results of the gas and the combustor wall temperature measurements showed that the heat transfer from the burned gas to combustor wall was significantly enhanced by the vortex flow, which contributed to the relatively high efficiency energy conversion on the vortex combustion power system.

  3. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  4. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes

    PubMed Central

    Im, Hyeongwook; Kim, Taewoo; Song, Hyelynn; Choi, Jongho; Park, Jae Sung; Ovalle-Robles, Raquel; Yang, Hee Doo; Kihm, Kenneth D.; Baughman, Ray H.; Lee, Hong H.; Kang, Tae June; Kim, Yong Hyup

    2016-01-01

    Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m−2 is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated. PMID:26837457

  5. Compact conductively cooled electro-optical Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Zang, Yannan; Yang, Zhen; Han, Song; Li, Ye; Yang, Ning; Shi, Junfeng; Zhou, Zewu

    2017-11-01

    We report on a compact conductively cooled high-repetition-rate nanosecond Nd:YAG laser. The oscillator was an laser diode side-pumped electro-optical (EO) Q-switched Nd:YAG rod laser adopting unstable cavity with a variable reflectivity mirror. A pulse train of 142 mJ with duration of 10 ns, repetition rate of 80 Hz at 1064 nm has been achieved. Maximum pulse energy was obtained at the pump energy of 1380 mJ, corresponding to the optical-optical conversion efficiency of 10.3%. The peak power was deduced to be 14.2 MW. The near-field pattern demonstrated a nearly super Gaussian flat top profile. To our knowledge, this is the highest repetition rate operation for a conductively cooled EO Q-switched Nd:YAG rod laser.

  6. On radiating baroclinic instability of zonally varying flow

    NASA Technical Reports Server (NTRS)

    Finley, Catherine A.; Nathan, Terrence R.

    1993-01-01

    A quasi-geostrophic, two-layer, beta-plane model is used to study the baroclinic instability characteristics of a zonally inhomogeneous flow. It is assumed that the disturbance varied slowly in the cross-stream direction, and the stability problem was formulated as a 1D initial value problem. Emphasis is placed on determining how the vertically averaged wind, local maximum in vertical wind shear, and length of the locally supercritical region combine to yield local instabilities. Analysis of the local disturbance energetics reveals that, for slowly varying basic states, the baroclinic energy conversion predominates within the locally unstable region. Using calculations of the basic state tendencies, it is shown that the net effect of the local instabilities is to redistribute energy from the baroclinic to the barotropic component of the basic state flow.

  7. Waste-to-energy conversion from a microfluidic device

    NASA Astrophysics Data System (ADS)

    López-González, B.; Jiménez-Valdés, R. J.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; García-Cordero, J. L.; Arriaga, L. G.

    2017-08-01

    This work reports the successful harvesting of energy from waste produced in a microfluidic device using a fuel cell. A miniaturized glucose air-breathing microfluidic fuel cell (ABμFFC) was designed, fabricated and tested with three different configurations according to their electrode nature: inorganic, hybrid and biofuel cell. Each ABμFFC was characterized using an ideal medium, with sterile cell culture medium, and with waste produced on a microfluidic device. The inorganic-ABμFFC exhibited the highest performance compared to the rest of the configurations. As a proof-of-concept, cancer cells were cultured on a microfluidic device and the consumed cell culture media (glucose concentration <11 mM) was used as an energy source without further treatment, into the inorganic-ABμFFC. The fuel cell generated a maximum total power of 5.2 μW, which is enough energy to power low-consumption microelectronic chips. This application demonstrates that the waste produced by microfluidic applications could be potentially scavenged to produce electrical energy. It also opens the possibility to develop truly energy self-sufficient portable devices.

  8. Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films.

    PubMed

    Hwang, Junho; Kataoka, Sho; Endo, Akira; Daiguji, Hirofumi

    2016-09-21

    Nanofluidic energy harvesting systems have attracted interest in the field of battery application, particularly for miniaturized electrical devices, because they possess excellent energy conversion capability for their size. In this study, a mesoporous silica (MPS)-based nanofluidic energy harvesting system was fabricated and selective ion transport in mesopores as a function of the salt gradient was investigated. Aqueous solutions with three different kinds of monovalent electrolytes-KCl, NaCl, and LiCl-with different diffusion coefficients (D + ) were considered. The highest power density was 3.90 W m -2 for KCl, followed by 2.39 W m -2 for NaCl and 1.29 W m -2 for LiCl. Furthermore, the dependency of power density on the type of cation employed indicates that the harvested energy increases as the cation mobility increases, particularly at high concentrations. This cation-specific dependency suggests that the maximum power density increases by increasing the diffusion coefficient ratio of cations to anions, making this ratio a critical parameter in enhancing the performance of nanofluidic energy harvesting systems with extremely small pores ranging from 2 to 3 nm.

  9. Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations

    DOE PAGES

    Meng, Zhaoxu; Bessa, Miguel A.; Xia, Wenjie; ...

    2016-12-06

    Predicting the macroscopic fracture energy of highly crosslinked glassy polymers from atomistic simulations is challenging due to the size of the process zone being large in these systems. Here, we present a scale-bridging approach that links atomistic molecular dynamics simulations to macroscopic fracture properties on the basis of a continuum fracture mechanics model for two different epoxy materials. Our approach reveals that the fracture energy of epoxy resins strongly depends on the functionality of epoxy resin and the component ratio between the curing agent (amine) and epoxide. The most intriguing part of our study is that we demonstrate that themore » fracture energy exhibits a maximum value within the range of conversion degrees considered (from 65% to 95%), which can be attributed to the combined effects of structural rigidity and post-yield deformability. Our study provides physical insight into the molecular mechanisms that govern the fracture characteristics of epoxy resins and demonstrates the success of utilizing atomistic molecular simulations towards predicting macroscopic material properties.« less

  10. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    PubMed Central

    Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  11. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    NASA Astrophysics Data System (ADS)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  12. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.

    PubMed

    Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar

    2013-05-01

    A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhaoxu; Bessa, Miguel A.; Xia, Wenjie

    Predicting the macroscopic fracture energy of highly crosslinked glassy polymers from atomistic simulations is challenging due to the size of the process zone being large in these systems. Here, we present a scale-bridging approach that links atomistic molecular dynamics simulations to macroscopic fracture properties on the basis of a continuum fracture mechanics model for two different epoxy materials. Our approach reveals that the fracture energy of epoxy resins strongly depends on the functionality of epoxy resin and the component ratio between the curing agent (amine) and epoxide. The most intriguing part of our study is that we demonstrate that themore » fracture energy exhibits a maximum value within the range of conversion degrees considered (from 65% to 95%), which can be attributed to the combined effects of structural rigidity and post-yield deformability. Our study provides physical insight into the molecular mechanisms that govern the fracture characteristics of epoxy resins and demonstrates the success of utilizing atomistic molecular simulations towards predicting macroscopic material properties.« less

  14. Optimal geometrical design of inertial vibration DC piezoelectric nanogenerators based on obliquely aligned InN nanowire arrays.

    PubMed

    Ku, Nai-Jen; Liu, Guocheng; Wang, Chao-Hung; Gupta, Kapil; Liao, Wei-Shun; Ban, Dayan; Liu, Chuan-Pu

    2017-09-28

    Piezoelectric nanogenerators have been investigated to generate electricity from environmental vibrations due to their energy conversion capabilities. In this study, we demonstrate an optimal geometrical design of inertial vibration direct-current piezoelectric nanogenerators based on obliquely aligned InN nanowire (NW) arrays with an optimized oblique angle of ∼58°, and driven by the inertial force of their own weight, using a mechanical shaker without any AC/DC converters. The nanogenerator device manifests potential applications not only as a unique energy harvesting device capable of scavenging energy from weak mechanical vibrations, but also as a sensitive strain sensor. The maximum output power density of the nanogenerator is estimated to be 2.9 nW cm -2 , leading to an improvement of about 3-12 times that of vertically aligned ZnO NW DC nanogenerators. Integration of two nanogenerators also exhibits a linear increase in the output power, offering an enormous potential for the creation of self-powered sustainable nanosystems utilizing incessantly natural ambient energy sources.

  15. [Significance of extruded feeds for trout nutrition and water protection].

    PubMed

    Steffens, W

    1993-01-01

    Extruded feeds exhibit an improved starch digestibility and are more firmly bound due to the almost complete gelatinization of the starch. This results in fewer fines and longer water stability than pelleted feeds. Extruded pellets also have the advantage that they can soak up more oil than a conventional pellet. It is therefore possible to increase the maximum oil content to more than 20%. On the other hand extruding feeds is more expensive than steam pelleting. Gelatinized starch is a useful energy source in trout diets helping to reduce feed conversion ratios. Proportions up to 35-40% in the diet are tolerable. Using high dietary levels of both gelatinized starch and oil the non-protein energy of feed may be increased and thus a protein-sparing effect results. High-energy diets enable to reduce excretion of faeces and of nitrogen via gills. In addition a decrease of phosphorus level in feeds and thus of phosphorus excretion by fish is possible. Extruded high-energy diets therefore make a contribution to improve water quality.

  16. High Performance Microbial Fuel Cells and Supercapacitors Using Micro-Electro-Mechanical System (MEMS) Technology

    NASA Astrophysics Data System (ADS)

    Ren, Hao

    A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and power density of MFCs are low compared with conventional energy conversion techniques. Since its debut in 2002, many studies have been performed by adopting a variety of new configurations and structures to improve the power density. The reported maximum areal and volumetric power densities range from 19 mW/m2 to 1.57 W/m2 and from 6.3 W/m3 to 392 W/m 3, respectively, which are still low compared with conventional energy conversion techniques. In this dissertation, the impact of scaling effect on the performance of MFCs are investigated, and it is found that by scaling down the characteristic length of MFCs, the surface area to volume ratio increases and the current and power density improves. As a result, a miniaturized MFC fabricated by Micro-Electro-Mechanical System (MEMS) technology with gold anode is presented in this dissertation, which demonstrate a high power density of 3300 W/m3. The performance of the MEMS MFC is further improved by adopting anodes with higher surface area to volume ratio, such as carbon nanotube (CNT) and graphene based anodes, and the maximum power density is further improved to a record high power density of 11220 W/m3. A novel supercapacitor by regulating the respiration of the bacteria is also presented, and a high power density of 531.2 A/m2 (1,060,000 A/m3) and 197.5 W/m2 (395,000 W/m3), respectively, are marked, which are one to two orders of magnitude higher than any previously reported microbial electrochemical techniques.

  17. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams.

    PubMed

    Lourenço, A; Wellock, N; Thomas, R; Homer, M; Bouchard, H; Kanai, T; MacDougall, N; Royle, G; Palmans, H

    2016-11-07

    Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11  ×  11 cm 2 , to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.

  18. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  19. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  20. Energy conversion alternatives study

    NASA Technical Reports Server (NTRS)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  1. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    NASA Astrophysics Data System (ADS)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  2. Refractory metal alloys and composites for space power systems

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary source to meet these high levels of electrical demand. One way to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites is discussed.

  3. Spectral optimization simulation of white light based on the photopic eye-sensitivity curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Qi, E-mail: qidai@tongji.edu.cn; Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092; Key Laboratory of Ecology and Energy-saving Study of Dense Habitat

    Spectral optimization simulation of white light is studied to boost maximum attainable luminous efficacy of radiation at high color-rendering index (CRI) and various color temperatures. The photopic eye-sensitivity curve V(λ) is utilized as the dominant portion of white light spectra. Emission spectra of a blue InGaN light-emitting diode (LED) and a red AlInGaP LED are added to the spectrum of V(λ) to match white color coordinates. It is demonstrated that at the condition of color temperature from 2500 K to 6500 K and CRI above 90, such white sources can achieve spectral efficacy of 330–390 lm/W, which is higher than the previously reportedmore » theoretical maximum values. We show that this eye-sensitivity-based approach also has advantages on component energy conversion efficiency compared with previously reported optimization solutions.« less

  4. Energy conversion at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  5. Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa.

    PubMed

    Eggert, J H; Karmon, E; Hemley, R J; Mao, A; Goncharov, A F

    1999-10-26

    We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway.

  6. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  7. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.

    PubMed

    Jian, Yongjun; Li, Fengqin; Liu, Yongbo; Chang, Long; Liu, Quansheng; Yang, Liangui

    2017-08-01

    In order to conduct extensive investigation of energy harvesting capabilities of nanofluidic devices, we provide analytical solutions for streaming potential and electrokinetic energy conversion (EKEC) efficiency through taking the combined consequences of soft nanochannel, a rigid nanochannel whose surface is covered by charged polyelectrolyte layer, and viscoelastic rheology into account. The viscoelasticity of the fluid is considered by employing the Maxwell constitutive model when the forcing frequency of an oscillatory driving pressure flow matches with the inverse of the relaxation time scale of a typical viscoelastic fluid. We compare the streaming potential and EKEC efficiency with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. Within the present selected parameter ranges, it is shown that the different peaks of maximal streaming potential and EKEC efficiency for the rigid nanochannel are larger than those for the soft nanochannel when forcing frequencies of the driving pressure gradient are close to resonating frequencies. However, more enhanced streaming potential and EKEC efficiency for a soft nanochannel can be found in most of the regions away from these resonant frequencies. Moreover, the influence of several dimensionless parameters on EKEC efficiency is discussed in detail. Finally, within the given parametric regions, the maximum efficiency at some resonant frequency obtained in present analysis is about 25%. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ultraviolet out-of-band radiation studies in laser tin plasma sources

    NASA Astrophysics Data System (ADS)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2017-11-01

    Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.

  9. Power conversion and control methods for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  10. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    PubMed

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  11. Demonstrating Energy Conversion with Piezoelectric Crystals and a Paddle Fan

    ERIC Educational Resources Information Center

    Rakbamrung, Prissana; Putson, Chatchai; Muensit, Nantakan

    2014-01-01

    A simple energy conversion system--particularly, the conversion of mechanical energy into electrical energy by using shaker flashlights--has recently been presented. This system uses hand generators, consisting of a magnet in a tube with a coil wrapped around it, and acts as an ac source when the magnet passes back and forth through the coil.…

  12. Portable Wind Energy Harvesters for Low-Power Applications: A Survey

    PubMed Central

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-01-01

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline. PMID:27438834

  13. Portable Wind Energy Harvesters for Low-Power Applications: A Survey.

    PubMed

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-07-16

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline.

  14. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.

    PubMed

    Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph

    2012-03-01

    Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.

  15. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  16. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  17. Plasmon-assisted radiolytic energy conversion in aqueous solutions

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    The field of conventional energy conversion using radioisotopes has almost exclusively focused on solid-state materials. Herein, we demonstrate that liquids can be an excellent media for effective energy conversion from radioisotopes. We also show that free radicals in liquid, which are continuously generated by beta radiation, can be utilized for electrical energy generation. Under beta radiation, surface plasmon obtained by the metallic nanoporous structures on TiO2 enhanced the radiolytic conversion via the efficient energy transfer between plasmons and free radicals. This work introduces a new route for the development of next-generation power sources. PMID:24918356

  18. Study on potency of municipal solid waste conversion into renewable energy by thermal incineration and bioconversion: case study of Medan city

    NASA Astrophysics Data System (ADS)

    Sarah, Maya; Misran, Erni

    2018-03-01

    Municipal solid waste (MSW) in Medan City is facing problems either with the quantity and management of MSW. Local authority only dumped approximately 73.9% MSW in the landfill over the years. Spontaneous phenomena of methane formation in dumping site indicates the potency of MSW conversion into energy by biochemical conversion. On the contrary, the presence of plastics, woods, papers, etc. in the MSW show the potency of MSW to be treated by thermal conversion. Both thermal incineration and anaerobic digestion may convert MSW Medan City into energy. This study evaluates potency of MSW conversion into renewable energy using proximate and ultimate analysis. Overall, MSW of Medan City has the opportunities to be converted into energy by both thermal and biochemical conversion with a special requirement such as pre-dry the MSW prior incineration process and degrade organic MSW in a bioreactor.

  19. Conversion of laser energy to gas kinetic energy

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.

    1976-01-01

    Techniques for the gas phase absorption of laser radiation for ultimate conversion to gas kinetic energy are discussed. Particular emphasis is placed on absorption by the vibration rotation bands of diatomic molecules at high pressures. This high pressure absorption appears to offer efficient conversion of laser energy to gas translational energy. Bleaching and chemical effects are minimized and the variation of the total absorption coefficient with temperature is minimal.

  20. A pantropical analysis of the impacts of forest degradation and conversion on local temperature.

    PubMed

    Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P

    2017-10-01

    Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

  1. Experimental Research of a New Wave Energy Conversion Device

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  2. Aeroelastic flutter energy harvesters self-polarized by triboelectric effects

    NASA Astrophysics Data System (ADS)

    Perez, M.; Boisseau, S.; Geisler, M.; Gasnier, P.; Willemin, J.; Despesse, G.; Reboud, J. L.

    2018-01-01

    This paper presents the performances of several electrostatic flutter energy harvesters tested in a wind tunnel between 0 and 20 m s-1. The main idea is to use the flutter capability of thin flexible films confined between lateral walls to induce simultaneously the capacitance variations and the electrostatic polarization required by the triboelectric/electrostatic conversion. This technology provides thin and flexible devices and solve the electret’s stability issue (Perez et al 2015 Smart Mater. Struct., Perez et al 2015 New Circuits and Systems). Our prototypes (<16 cm2) have a quick startup (from 3 m s-1) and an electrical power-flux density from 0.35 μW cm-2@3 m s-1 (light breeze) to 35 μW cm-2@20 m s-1 (fresh gale). A Maximum Power Point circuit has been developed to efficiently use the power provided by the energy harvesters. The energy harvester combined with its power management circuit has finally been used to supply an 868 MHz wireless sensor node with temperature and acceleration measurements, validating the complete energy harvesting chain.

  3. Toward Narrowing Fermentation Endproduct Distribution in Undefined Mixed Culture Anaerobic Conversion of Lignocellulosic Corn Fiber to Butyrate

    USDA-ARS?s Scientific Manuscript database

    Conversion of second-generation renewable energy sources to useful products is gaining attention as an alternative to traditional conversion of sugar and starch-based renewable energy crops. The natural recalcitrance of second-generation energy resources, such as (ligno)cellulosic feedstock, makes ...

  4. Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa

    PubMed Central

    Eggert, Jon H.; Karmon, Eran; Hemley, Russell J.; Mao, Ho-kwang; Goncharov, Alexander F.

    1999-01-01

    We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway. PMID:10535910

  5. Carbon nanostructures for solar energy conversion schemes.

    PubMed

    Guldi, Dirk M; Sgobba, Vito

    2011-01-14

    Developing environmentally friendly, renewable energy is one of the challenges to society in the 21st century. One of the renewable energy technologies is solar energy conversion--a technology that directly converts daylight into electricity. This highlight surveys recent breakthroughs in the field of implementing carbon nanostructures--fullerenes (0D), carbon nanotubes (1D), carbon nanohorns, and graphene (2D)--into solar energy conversion schemes, that is, bulk heterojunction and dye-sensitized solar cells.

  6. NASA’s Walter Olson poses in the New Energy Conversion Laboratory

    NASA Image and Video Library

    1963-07-21

    Walter Olson, Chief of the Chemistry and Energy Conversion Division, examines equipment in the new Energy Conversion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Energy Conversion Laboratory, built in 1961 and 1962, was a modest one-story brick structure with 30,000 square feet of working space. It was used to study fundamental elements pertaining to the conversion of energy into electrical power. The main application for this was space power, but in the 1970s it would also be applied for terrestrial applications. Olson joined the Lewis staff as a fuels and combustion researcher in 1942 and was among a handful or researchers who authored the new laboratory’s first technical report. The laboratory reorganized after the war and Olson was placed in charge of three sections of researchers in the Combustion Branch. They studied combustion and fuels for turbojets, ramjets, and small rockets. In 1950, Olson was named Chief of the entire Fuels and Combustion Research Division. In 1960 Olson was named Chief of the new Chemistry and Energy Conversion Division. It was in this role that Olson advocated for the construction of the Energy Conversion Laboratory. The new division expanded its focus from just fuels and combustion to new sources of energy and power such as solar cells, fuels cells, heat transfer, and thermionics.

  7. Conversion of energy in cross-sectional divergences under different conditions of inflow

    NASA Technical Reports Server (NTRS)

    Peters, H

    1934-01-01

    This investigation treats the conversion of energy in conically divergent channels with constant opening ratio and half included angle of from 2.6 to 90 degrees, the velocity distribution in the entrance section being varied from rectangular distribution to fully developed turbulence by changing the length of the approach. The energy conversion is not completed in the exit section of the diffuser; complete conversion requires a discharge length which depends upon the included angle and the velocity distribution in the entrance section. Lastly, a spiral fan was mounted in the extreme length and the effect of the spiral flow on the energy conversion in the cross-sectional divergence explored.

  8. Impact of novel energy sources: OTEC, wind, goethermal, biomass

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1978-01-01

    Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.

  9. Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness.

    PubMed

    Smolina, Natalia; Bruton, Joseph; Kostareva, Anna; Sejersen, Thomas

    2017-01-01

    Mitochondrial respiration is the most important generator of cellular energy under most circumstances. It is a process of energy conversion of substrates into ATP. The Seahorse equipment allows measuring oxygen consumption rate (OCR) in living cells and estimates key parameters of mitochondrial respiration in real-time mode. Through use of mitochondrial inhibitors, four key mitochondrial respiration parameters can be measured: basal, ATP production-linked, maximal, and proton leak-linked OCR. This approach requires application of mitochondrial inhibitors-oligomycin to block ATP synthase, FCCP-to make the inner mitochondrial membrane permeable for protons and allow maximum electron flux through the electron transport chain, and rotenone and antimycin A-to inhibit complexes I and III, respectively. This chapter describes the protocol of OCR assessment in the culture of primary myotubes obtained upon satellite cell fusion.

  10. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

    NASA Astrophysics Data System (ADS)

    Azad, Puneet; Singh, V. P.; Vaish, Rahul

    2018-05-01

    We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10Å. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

  11. Mold heating and cooling microprocessor conversion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D.P.

    Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessormore » board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.« less

  12. Modeling and sizing the coil in boost converters dedicated to photovoltaic sources

    NASA Astrophysics Data System (ADS)

    Atik, Lotfi; Fares, Mohammed Amine; Zaraket, Jean; Bachir, Ghalem; Aillerie, Michel

    2018-05-01

    The coil is a very important element in a wide range of power electrical systems as such as those used in converter or inverter dedicated to extract and to adapt the value and the shape of the intensity and the voltage delivered by renewable energy sources. Thus, knowing its behavior in converters is paramount to obtain a maximum conversion efficiency and reliability. In this context, this paper presents a global study of a DC/DC boost converter dedicated to photovoltaic sources based on the modeling of the behavior of the coil or the inductance as a function of the switching frequency.

  13. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C 71-butyric acid methyl ester (PC 71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  14. High efficiency graphene coated copper based thermocells connected in series

    NASA Astrophysics Data System (ADS)

    Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri

    2018-04-01

    Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  15. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  16. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions

    PubMed Central

    2011-01-01

    Background Biomechanical energy harvesting from human motion presents a promising clean alternative to electrical power supplied by batteries for portable electronic devices and for computerized and motorized prosthetics. We present the theory of energy harvesting from the human body and describe the amount of energy that can be harvested from body heat and from motions of various parts of the body during walking, such as heel strike; ankle, knee, hip, shoulder, and elbow joint motion; and center of mass vertical motion. Methods We evaluated major motions performed during walking and identified the amount of work the body expends and the portion of recoverable energy. During walking, there are phases of the motion at the joints where muscles act as brakes and energy is lost to the surroundings. During those phases of motion, the required braking force or torque can be replaced by an electrical generator, allowing energy to be harvested at the cost of only minimal additional effort. The amount of energy that can be harvested was estimated experimentally and from literature data. Recommendations for future directions are made on the basis of our results in combination with a review of state-of-the-art biomechanical energy harvesting devices and energy conversion methods. Results For a device that uses center of mass motion, the maximum amount of energy that can be harvested is approximately 1 W per kilogram of device weight. For a person weighing 80 kg and walking at approximately 4 km/h, the power generation from the heel strike is approximately 2 W. For a joint-mounted device based on generative braking, the joints generating the most power are the knees (34 W) and the ankles (20 W). Conclusions Our theoretical calculations align well with current device performance data. Our results suggest that the most energy can be harvested from the lower limb joints, but to do so efficiently, an innovative and light-weight mechanical design is needed. We also compared the option of carrying batteries to the metabolic cost of harvesting the energy, and examined the advantages of methods for conversion of mechanical energy into electrical energy. PMID:21521509

  17. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.

    PubMed

    Riemer, Raziel; Shapiro, Amir

    2011-04-26

    Biomechanical energy harvesting from human motion presents a promising clean alternative to electrical power supplied by batteries for portable electronic devices and for computerized and motorized prosthetics. We present the theory of energy harvesting from the human body and describe the amount of energy that can be harvested from body heat and from motions of various parts of the body during walking, such as heel strike; ankle, knee, hip, shoulder, and elbow joint motion; and center of mass vertical motion. We evaluated major motions performed during walking and identified the amount of work the body expends and the portion of recoverable energy. During walking, there are phases of the motion at the joints where muscles act as brakes and energy is lost to the surroundings. During those phases of motion, the required braking force or torque can be replaced by an electrical generator, allowing energy to be harvested at the cost of only minimal additional effort. The amount of energy that can be harvested was estimated experimentally and from literature data. Recommendations for future directions are made on the basis of our results in combination with a review of state-of-the-art biomechanical energy harvesting devices and energy conversion methods. For a device that uses center of mass motion, the maximum amount of energy that can be harvested is approximately 1 W per kilogram of device weight. For a person weighing 80 kg and walking at approximately 4 km/h, the power generation from the heel strike is approximately 2 W. For a joint-mounted device based on generative braking, the joints generating the most power are the knees (34 W) and the ankles (20 W). Our theoretical calculations align well with current device performance data. Our results suggest that the most energy can be harvested from the lower limb joints, but to do so efficiently, an innovative and light-weight mechanical design is needed. We also compared the option of carrying batteries to the metabolic cost of harvesting the energy, and examined the advantages of methods for conversion of mechanical energy into electrical energy.

  18. Initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds with fast semiconductor switches and energy-releasing elements

    NASA Astrophysics Data System (ADS)

    Savenkov, G. G.; Kardo-Sysoev, A. F.; Zegrya, A. G.; Os'kin, I. A.; Bragin, V. A.; Zegrya, G. G.

    2017-10-01

    The first findings concerning the initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds via the electrical explosion of a semiconductor bridge are presented. The obtained results indicate that the energy parameters of an explosive conversion depend on the mass of a combustible agent—namely, nanoporous silicon—and the silicon-doping type.

  19. Negative space charge effects in photon-enhanced thermionic emission solar converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, G.; Weisman, D.; Rosenwaks, Y.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less

  20. Impact of alternative energy forms on public utilities

    NASA Technical Reports Server (NTRS)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  1. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing

    2013-11-01

    Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d

  2. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity.

    PubMed

    Gregoire, K P; Becker, J G

    2012-09-01

    Agricultural crop residues contain high amounts of biochemical energy as cellulose and lignin. A portion of this biomass could be sustainably harvested for conversion to bioenergy to help offset fossil fuel consumption. In this study, the potential for converting lignocellulosic biomass directly to electricity in a microbial fuel cell (MFC) was explored. Design elements of tubular air cathode MFCs and leach-bed bioreactors were integrated to develop a new solid-substrate MFC in which cellulose hydrolysis, fermentation, and anode respiration occurred in a single chamber. Electricity was produced continuously from untreated corncob pellets for >60 d. Addition of rumen fluid increased power production, presumably by providing growth factors to anode-respiring bacteria. Periodic exposure to oxygen also increased power production, presumably by limiting the diversion of electrons to methanogenesis. In the absence of methanogenesis, bioaugmentation with Geobacter metallireducens further improved MFC performance. Under these conditions, the maximum power density was 230 mW/m(3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Review on the conversion of thermoacoustic power into electricity.

    PubMed

    Timmer, Michael A G; de Blok, Kees; van der Meer, Theo H

    2018-02-01

    Thermoacoustic engines convert heat energy into high amplitude acoustic waves and subsequently into electric power. This article provides a review of the four main methods to convert the (thermo)acoustic power into electricity. First, loudspeakers and linear alternators are discussed in a section on electromagnetic devices. This is followed by sections on piezoelectric transducers, magnetohydrodynamic generators, and bidirectional turbines. Each segment provides a literature review of the given technology for the field of thermoacoustics, focusing on possible configurations, operating characteristics, output performance, and analytical and numerical methods to study the devices. This information is used as an input to discuss the performance and feasibility of each method, and to identify challenges that should be overcome for a more successful implementation in thermoacoustic engines. The work is concluded by a comparison of the four technologies, concentrating on the possible areas of application, the conversion efficiency, maximum electrical power output and more generally the suggested focus for future work in the field.

  5. Energy conversion analysis of microalgal lipid production under different culture modes.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-08-01

    Growth and lipid production performance of Scenedesmus sp. under different culture modes were investigated. Under heterotrophic aerobic mode, algal biomass concentration and total lipid content reached 3.42 g L(-1) and 43.0 wt.%, which were much higher than those in autotrophic aerobic mode (0.55 g L(-1)/20.2 wt.%). The applied light exposure of 7.0 Wm(-2) was beneficial to biomass and lipid accumulation. Mixotrophic aerobic mode produced the highest biomass concentration of 3.84 g L(-1). The biomass was rich in lipids (51.3 wt.%) and low in proteins (17.9 wt.%) and carbohydrates (10.3 wt.%). However, lower algal biomass concentration (2.93 g L(-1)) and total lipid content (36.1 wt.%) were obtained in mixotrophic anaerobic mode. Mixotrophic aerobic mode gave the maximum heat value conversion efficiency of 45.7%. These results indicate that mixotrophic aerobic cultivation was a promising culture mode for lipid production by Scenedesmus sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor.

    PubMed

    Welte, Michael; Warren, Kent; Scheffe, Jonathan R; Steinfeld, Aldo

    2017-09-20

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO 2 and reforming of CH 4 using concentrated radiation as the source of process heat. The 2 kW th solar reactor prototype utilizes a cavity receiver enclosing a vertical Al 2 O 3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH 4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO 2-δ ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H 2 :CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH 4 reformed.

  7. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor

    PubMed Central

    2017-01-01

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO2−δ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H2:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH4 reformed. PMID:28966440

  8. Anaerobic digestion of cattail by rumen cultures.

    PubMed

    Hu, Zhen-Hu; Yu, Han-Qing

    2006-01-01

    The anaerobic digestion of aquatic plants could serve the dual roles for producing renewable energy and reducing waste. In this study, the anaerobic digestion of cattail (Typha latifolia linn), a lignocellulosic aquatic plant, by rumen microorganisms in batch cultures was investigated. At a substrate level of 12.4 g/l volatile solids (VS) and pH 6.7, maximum VS conversion of 66% was achieved within an incubation time of 125 h. However, a decrease in pH from 6.7 to 5.8 resulted in a marked reduction in VS conversion. The total volatile fatty acids (VFAs) yield was about 0.56 g/g VS digested. Acetate and propionate were the major aqueous fermentation products, while butyrate, i-butyrate and valerate were also formed in smaller quantities. Biogas that was produced was composed of carbon dioxide, methane and hydrogen. A modified Gompertz equation was developed to describe substrate consumption and product formation. The hydrolysis of insoluble components was the rate-limiting step in the anaerobic digestion of cattail.

  9. Thermally enhanced photoluminescence for heat harvesting in photovoltaics

    PubMed Central

    Manor, Assaf; Kruger, Nimrod; Sabapathy, Tamilarasan; Rotschild, Carmel

    2016-01-01

    The maximal Shockley–Queisser efficiency limit of 41% for single-junction photovoltaics is primarily caused by heat dissipation following energetic-photon absorption. Solar-thermophotovoltaics concepts attempt to harvest this heat loss, but the required high temperatures (T>2,000 K) hinder device realization. Conversely, we have recently demonstrated how thermally enhanced photoluminescence is an efficient optical heat-pump that operates in comparably low temperatures. Here we theoretically and experimentally demonstrate such a thermally enhanced photoluminescence based solar-energy converter. Here heat is harvested by a low bandgap photoluminescent absorber that emits thermally enhanced photoluminescence towards a higher bandgap photovoltaic cell, resulting in a maximum theoretical efficiency of 70% at a temperature of 1,140 K. We experimentally demonstrate the key feature of sub-bandgap photon thermal upconversion with an efficiency of 1.4% at only 600 K. Experiments on white light excitation of a tailored Cr:Nd:Yb glass absorber suggest that conversion efficiencies as high as 48% at 1,500 K are in reach. PMID:27762271

  10. Developing instrumentation to characterize thermoelectric generator modules.

    PubMed

    Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A J

    2015-03-01

    Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux.

  11. Recent Progress on Integrated Energy Conversion and Storage Systems.

    PubMed

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  12. Recent Progress on Integrated Energy Conversion and Storage Systems

    PubMed Central

    Luo, Bin; Ye, Delai

    2017-01-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673

  13. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    ERIC Educational Resources Information Center

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  14. Electronic transition imaging of carbon based materials: The photothreshold of melanin and thermionic field emission from diamond

    NASA Astrophysics Data System (ADS)

    Garguilo, Jacob

    This study explores electronic transitions in carbon based materials through the use of a custom built, non rastering electron emission microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The materials examined fall into two groups, melanosome films isolated from the human body and polycrystalline diamond tip arrays. A novel technique for determining the photothreshold of a heterogeneous material on a microscopic or smaller scale is developed and applied to melanosome films isolated from the hair, eyes, and brain of human donors. The conversion of the measured photothreshold on the vacuum scale to an electrochemical oxidation potential is discussed and the obtained data is considered based on this conversion. Pheomelanosomes isolated from human hair are shown to have significantly lower photoionization energy than eumelanosomes, indicating their likelihood as sources of oxidative stress. The ionization energies of the hair melanosomes are checked with complimentary procedures. Ocular melanosomes from the retinal pigment epithelium are measured as a function of patient age and melanosome shape. Lipofuscin, also found in the eye, is examined with the same microscopy technique and shown to have a significantly lower ionization threshold than RPE melanosomes. Neuromelanin from the substantia nigra is also examined and shown to have an ionization threshold close to that of eumelanin. A neuromelanin formation model is proposed based on these results. Polycrystalline diamond tip arrays are examined for their use as thermionic energy converter emitters. Thermionic energy conversion is accomplished through the combination of a hot electron emitter in conjunction with a somewhat cooler electron collector. The generated electron current can be used to do work in an external load. It is shown that the tipped structures of these samples result in enhanced emission over the surrounding flat areas, which may prove valuable in limiting the negative space charge effect in vacuum energy converting devices. Additionally, the effects of exceeding a threshold temperature for the films are shown, establishing a maximum operating regime for any device which incorporates hydrogen terminated diamond.

  15. Dependence of Seebeck coefficient on a load resistance and energy conversion efficiency in a thermoelectric composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Osamu; Odahara, Hirotaka; Ochi, Takahiro

    2007-10-02

    The thermo-emf {delta}V and current {delta}I generated by imposing the alternating temperature gradients (ATG) at a period of T and the steady temperature gradient (STG) on a thermoelectric (TE) composite were measured as a function of t, where t is the lapsed time and T was varied from 60 to or {infinity} s. The STG and ATG were produced by imposing steadily and alternatively a source voltage V in the range from 1.0 to 4.0 V on two Peltier modules sandwiching a composite. {delta}T, {delta}V, {delta}I and V{sub P} oscillate at a period T and their waveforms vary significantly withmore » a change of T, where {delta}V and V{sub P} are the voltage drops in a load resistance R{sub L} and in resistance R{sub P} of two modules. The resultant Seebeck coefficient |{alpha}| = |{delta}V|/{delta}T of a composite under the STG was found to be expressed as |{alpha}| = |{alpha}{sub 0}|(1 - R{sub comp}/R{sub T}), where R{sub T} is the total resistance of a circuit for measuring the output signals and R{sub comp} is the resistance of a composite. The effective generating power {delta}W{sub eff} has a local maximum at T = 960 s for the p-type composite and at T = 480 s for the n-type one. The maximum energy conversion efficiency {eta} of the p- and n-type composites under the ATG produced by imposing a voltage of 4.0 V at an optimum period were 0.22 and 0.23% at {delta}T{sub eff} = 50 K, respectively, which are 42 and 43% higher than those at {delta}T = 42 K under the STG. These maximum {eta} for a TE composite sandwiched between two Peltier modules, were found to be expressed theoretically in terms of R{sub P}, R{sub T}, R{sub L}, {alpha}{sub P} and {alpha}, where {alpha}{sub P} and {alpha} are the resultant Seebeck coefficients of Peltier modules and a TE composite.« less

  16. Status and summary of laser energy conversion. [for space power transmission systems

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1978-01-01

    This paper presents a survey of the status of laser energy converters. Since the inception of these devices in the early 1970's, significant advances have been made in understanding the basic conversion processes. Numerous theoretical and experimental studies have indicated that laser energy can be converted at wavelengths from the ultraviolet to the far-infrared. These converters can be classified into five general categories: photovoltaics, heat engines, thermoelectronic, optical diode, and photochemical. The conversion can be directly into electricity (such as the photovoltaic, thermoelectronic, and optical diode) or it can go through an intermediate stage of conversion to mechanical energy, as in the heat engines. The photochemical converters result in storable energy such as hydrogen. Projected conversion efficiencies range from about 30% for the photochemical to nearly 75% for the heat engines.

  17. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  18. Energy harvesting using AC machines with high effective pole count

    NASA Astrophysics Data System (ADS)

    Geiger, Richard Theodore

    In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.

  19. Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael

    Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less

  20. Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions

    DOE PAGES

    Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael; ...

    2017-10-14

    Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less

  1. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  2. Carbon nanomaterials for advanced energy conversion and storage.

    PubMed

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling.

    PubMed

    Rollin, Joseph A; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Senger, Ryan S; Zhang, Y-H Percival

    2015-04-21

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L(-1)⋅h(-1). The productivity was further enhanced to 54 mmol H2⋅L(-1)⋅h(-1) by increasing reaction temperature, substrate, and enzyme concentrations--an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.

  4. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    PubMed Central

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y.-H. Percival

    2015-01-01

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015

  5. Comparative thermometric properties of bi-functional Er3+-Yb3+ doped rare earth (RE = Y, Gd and La) molybdates

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Mahata, Manoj Kumar; Kumar, Kaushal

    2018-02-01

    The molybdate compounds as luminescent medium have received great attention of recent research due to their excellent intrinsic optical properties. Therefore, the investigation on the optical thermometry and nanoheating effect in Er3+-Yb3+ doped molybdates of yttrium (EYYMO), gadolinium (EYGMO) and lanthanum (EYLMO) nanophosphors is reported herein. The temperature dependent fluorescence intensity ratio of green (525 and 548 nm) emission bands of Er3+ ions were analyzed within 300-500 K temperature range to determine the thermal behavior. The comparative temperature sensitivity of the materials has been found to depend on the phonon energy of their own. The thermal sensitivity is higher in the materials with low phonon energy. The intensity ratio of the green emission bands has been found to alter with the laser excitation density, which can be used to estimate the induced temperature in the materials. Furthermore, the photothermal conversion efficiency is calculated in the water dispersed samples and the maximum photothermal conversion efficiency of 49.6% is achieved for EYGMO nanophosphor. Comparative experimental results explore unequal thermal sensing and induced optical heating in the three rare earth molybdates. The optical properties of the green emitting molybdates are interesting for temperature sensing and optical heating applications.

  6. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2011-12-27

    The development of organic/inorganic hybrid nanocomposite systems that enable efficient solar energy conversion has been important for applications in solar cell research. Nanostructured carbon-based systems, in particular C(60), offer attractive strategies to collect and transport electrons generated in a light harvesting assembly. We have assembled CdSe-C(60) nanocomposites by chemically linking CdSe quantum dots (QDs) with thiol-functionalized C(60). The photoinduced charge separation and collection of electrons in CdSe QD-C(60) nanocomposites have been evaluated using transient absorption spectroscopy and photoelectrochemical measurements. The rate constant for electron transfer between excited CdSe QD and C(60) increased with the decreasing size of the CdSe QD (7.9 × 10(9) s(-1) (4.5 nm), 1.7 × 10(10) s(-1) (3.2 nm), and 9.0 × 10(10) s(-1) (2.6 nm)). Slower hole transfer and faster charge recombination and transport events were found to dominate over the forward electron injection process, thus limiting the deliverance of maximum power in CdSe QD-C(60)-based solar cells. The photoinduced charge separation between CdSe QDs and C(60) opens up new design strategies for developing light harvesting assemblies.

  7. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  8. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    DOE PAGES

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; ...

    2015-04-06

    The use of hydrogen (H 2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H 2 and CO 2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H 2 with a yield of two H 2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and amore » global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H 2 productivity was increased 3-fold to 32 mmol H 2∙L ₋1∙h ₋1. The productivity was further enhanced to 54 mmol H 2∙L ₋1∙h ₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.« less

  9. Validation of Modified Wine-Rack Thermal Design for Nickel-Hydrogen Batteries in Landsat-7 Spacecraft Thermal Vacuum Test and in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.

  10. Graphene-based materials for energy conversion.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yongzheng; Li, Lin; Chan, Siew Hwa

    2012-08-08

    With the depletion of conventional energy sources, the demand for renewable energy and energy-efficient devices continues to grow. As a novel 2D nanomaterial, graphene attracts considerable research interest due to its unique properties and is a promising material for applications in energy conversion and storage devices. Recently, the fabrication of fuel cells and solar cells using graphene for various functional parts has been studied extensively. This research news summarizes and compares the advancements that have been made and are in progress in the utilization of graphene-based materials for energy conversion.

  11. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  12. Energetics of the martian atmosphere using the Mars Analysis Correction Data Assimilation (MACDA) dataset

    NASA Astrophysics Data System (ADS)

    Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark

    2016-09-01

    The energetics of the atmosphere of the northern hemisphere of Mars during the pre-winter solstice period are explored using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation, with the quasi-geostrophic omega equation providing vertical velocities. Traveling waves are typically triggered by geopotential flux convergence. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a global-scale dust storm. During the non-GDS years, results agree with that of a previous study using a general circulation model simulation. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.

  13. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  14. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  15. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes

    USGS Publications Warehouse

    Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P.

    2009-01-01

    This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12??C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1??C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1??C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily temperatures by 1??C. Overall, sensible heat flux differences between the circa 2001 and circa 1973 landscapes result in a 1 W m-2 increase in domain-wide sensible heating, and a similar order of magnitude decrease in latent heating, highlighting the importance of surface repartitioning in establishing near-surface temperature trends. In part 2 of this study, we address the role of the surface budget changes on the mesoscale dynamics/thermodynamics, in context of the large-scale environment. Copyright 2009 by the American Geophysical Union.

  16. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Topological energy conversion through the bulk or the boundary of driven systems

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  18. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    PubMed

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of MoOx interlayer on the maximum achievable open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2013-03-01

    Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.

  20. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion.

    PubMed

    Cao, Xiehong; Tan, Chaoliang; Zhang, Xiao; Zhao, Wei; Zhang, Hua

    2016-08-01

    The development of renewable energy storage and conversion devices is one of the most promising ways to address the current energy crisis, along with the global environmental concern. The exploration of suitable active materials is the key factor for the construction of highly efficient, highly stable, low-cost and environmentally friendly energy storage and conversion devices. The ability to prepare two-dimensional (2D) metal dichalcogenide (MDC) nanosheets and their functional composites in high yield and large scale via various solution-based methods in recent years has inspired great research interests in their utilization for renewable energy storage and conversion applications. Here, we will summarize the recent advances of solution-processed 2D MDCs and their hybrid nanomaterials for energy storage and conversion applications, including rechargeable batteries, supercapacitors, electrocatalytic hydrogen generation and solar cells. Moreover, based on the current progress, we will also give some personal insights on the existing challenges and future research directions in this promising field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power

    NASA Astrophysics Data System (ADS)

    Rabas, T.; Panchal, C. B.; Genens, L.

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. Different OTEC plants are described that can supply various mixes of desalinated water and vapor; the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs where appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed; 40 inch high density polyethylene pipe at Keahole Point in Hawaii.

  2. Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate

    NASA Astrophysics Data System (ADS)

    Das, Santu; Roy, Soumyajit

    Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo12O40@Mo72Fe30}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11min-1. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.

  3. Multilayer out-of-plane overlap electrostatic energy harvesting structure actuated by blood pressure for powering intra-cardiac implants

    NASA Astrophysics Data System (ADS)

    Deterre, M.; Risquez, S.; Bouthaud, B.; Dal Molin, R.; Woytasik, M.; Lefeuvre, E.

    2013-12-01

    We present an innovative multilayer out-of-plane electrostatic energy harvesting device conceived in view of scavenging energy from regular blood pressure in the heart. This concept involves the use of a deformable packaging for the implant in order to transmit the blood pressure to the electrostatic transducer. As shown in previous work, this is possible by using thin metal micro-bellows structure, providing long term hermeticity and high flexibility. The design of the electrostatic device has overcome several challenges such as the very low frequency of the mechanical excitation (1 to 2 Hz) and the small available room in the medical implant. Analytical and numerical models have been used to maximize the capacitance variation, and hence to optimize the energy conversion. We have theoretically shown that a 25-layer transducer with 6-mm diameter and 1-mm thickness could harvest at least 20 mJ per heart beat in the left ventricle under a maximum voltage of 75 V. These results show that the proposed concept is promising and could power the next generation of leadless pacemakers.

  4. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a temperature-dependent quantum efficiency term, and is directly driven by bulk photocatalyst crystal parameters: maximum phonon energy and the number of phonons allowed per unit cell. This analysis extends to multiple photocatalysts and can explain experimental observations of photocatalytic oxidation rates with varied reactant concentrations. Lastly, this dissertation applies this knowledge to a thermo-catalytic reaction (CO-oxidation) using a Au/TiO 2 catalyst. The combined photo/thereto-catalytic reaction showed a 10-25% increase in CO conversion during a temperature programmed reaction experiment.

  5. Interobserver Agreement on First-Stage Conversation Analytic Transcription

    ERIC Educational Resources Information Center

    Roberts, Felicia; Robinson, Jeffrey D.

    2004-01-01

    This investigation assesses interobserver agreement on conversation analytic (CA) transcription. Four professional CA transcribers spent a maximum of 3 hours transcribing 2.5 minutes of a previously unknown, naturally occurring, mundane telephone call. Researchers unitized transcripts into words, sounds, silences, inbreaths, outbreaths, and laugh…

  6. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    PubMed

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V.

  7. Functionalization of graphene for efficient energy conversion and storage.

    PubMed

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.

  8. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  9. Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis

    PubMed Central

    Tyystjärvi, Esa; Méndez‐Ramos, Jorge; Müller, Frank A.; Zhang, Qinyuan

    2015-01-01

    Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and—when compared to intrinsic sensitization—less‐strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will—and will not—play its role in the area of ultra‐efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale. PMID:27774377

  10. Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis.

    PubMed

    Wondraczek, Lothar; Tyystjärvi, Esa; Méndez-Ramos, Jorge; Müller, Frank A; Zhang, Qinyuan

    2015-12-01

    Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and-when compared to intrinsic sensitization-less-strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will-and will not-play its role in the area of ultra-efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale.

  11. Grey water biodegradability.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  12. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    PubMed

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  13. Energy Conversion in Natural and Artificial Photosynthesis

    PubMed Central

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W.

    2010-01-01

    Summary Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil fuel dependence has severe consequences including energy security issues and greenhouse gas emissions. The consequences of fossil fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices including photoelectrochemical cells for solar energy conversion. PMID:20534342

  14. X-ray Generation in Strongly Nonlinear Plasma Waves

    NASA Astrophysics Data System (ADS)

    Kiselev, S.; Pukhov, A.; Kostyukov, I.

    2004-09-01

    We show that a laser wake field in the “bubble” regime [

    A. Pukhov and J. Meyer-ter-Vehn Appl. Phys. BAPBOEM0946-2171 74, 355 (2002)10.1007/s003400200795
    ], works as a compact high-brightness source of x-rays. The self-trapped relativistic electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband x-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of x-ray generation by an external 28.5 GeV electron bunch injected into the bubble. γ quanta with up to GeV energies are observed in the simulation in good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  15. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  16. Three-Body Amplification of Photon Heat Tunneling

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Antezza, Mauro; Ben-Abdallah, Philippe

    2012-12-01

    Resonant tunneling of surface polaritons across a subwavelength vacuum gap between two polar or metallic bodies at different temperatures leads to an almost monochromatic heat transfer which can exceed by several orders of magnitude the far-field upper limit predicted by Planck’s blackbody theory. However, despite its strong magnitude, this transfer is very far from the maximum theoretical limit predicted in the near field. Here we propose an amplifier for the photon heat tunneling based on a passive relay system intercalated between the two bodies, which is able to partially compensate the intrinsic exponential damping of energy transmission probability thanks to three-body interaction mechanisms. As an immediate corollary, we show that the exalted transfer observed in the near field between two media can be exported at larger separation distances using such a relay. Photon heat tunneling assisted by three-body interactions enables novel applications for thermal management at nanoscale, near-field energy conversion and infrared spectroscopy.

  17. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.

    2011-09-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.

  18. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  19. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOEpatents

    DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  20. Push-n-Go: A Dynamic Energy Conversion Lesson.

    ERIC Educational Resources Information Center

    Taylor, Beverly A. P.

    1998-01-01

    Focuses on the use of push and go toys to discuss with students how the toy acquires potential energy when work is done on it and how this energy is stored in the internal mechanism for later conversion into kinetic energy. (DDR)

  1. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    PubMed

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  2. Design and Implementation of an Intrinsically Safe Liquid-Level Sensor Using Coaxial Cable

    PubMed Central

    Jin, Baoquan; Liu, Xin; Bai, Qing; Wang, Dong; Wang, Yu

    2015-01-01

    Real-time detection of liquid level in complex environments has always been a knotty issue. In this paper, an intrinsically safe liquid-level sensor system for flammable and explosive environments is designed and implemented. The poly vinyl chloride (PVC) coaxial cable is chosen as the sensing element and the measuring mechanism is analyzed. Then, the capacitance-to-voltage conversion circuit is designed and the expected output signal is achieved by adopting parameter optimization. Furthermore, the experimental platform of the liquid-level sensor system is constructed, which involves the entire process of measuring, converting, filtering, processing, visualizing and communicating. Additionally, the system is designed with characteristics of intrinsic safety by limiting the energy of the circuit to avoid or restrain the thermal effects and sparks. Finally, the approach of the piecewise linearization is adopted in order to improve the measuring accuracy by matching the appropriate calibration points. The test results demonstrate that over the measurement range of 1.0 m, the maximum nonlinearity error is 0.8% full-scale span (FSS), the maximum repeatability error is 0.5% FSS, and the maximum hysteresis error is reduced from 0.7% FSS to 0.5% FSS by applying software compensation algorithms. PMID:26029949

  3. Design and implementation of an intrinsically safe liquid-level sensor using coaxial cable.

    PubMed

    Jin, Baoquan; Liu, Xin; Bai, Qing; Wang, Dong; Wang, Yu

    2015-05-28

    Real-time detection of liquid level in complex environments has always been a knotty issue. In this paper, an intrinsically safe liquid-level sensor system for flammable and explosive environments is designed and implemented. The poly vinyl chloride (PVC) coaxial cable is chosen as the sensing element and the measuring mechanism is analyzed. Then, the capacitance-to-voltage conversion circuit is designed and the expected output signal is achieved by adopting parameter optimization. Furthermore, the experimental platform of the liquid-level sensor system is constructed, which involves the entire process of measuring, converting, filtering, processing, visualizing and communicating. Additionally, the system is designed with characteristics of intrinsic safety by limiting the energy of the circuit to avoid or restrain the thermal effects and sparks. Finally, the approach of the piecewise linearization is adopted in order to improve the measuring accuracy by matching the appropriate calibration points. The test results demonstrate that over the measurement range of 1.0 m, the maximum nonlinearity error is 0.8% full-scale span (FSS), the maximum repeatability error is 0.5% FSS, and the maximum hysteresis error is reduced from 0.7% FSS to 0.5% FSS by applying software compensation algorithms.

  4. Frequency Up-Conversion Photon-Type Terahertz Imager.

    PubMed

    Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C

    2016-05-05

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.

  5. Frequency Up-Conversion Photon-Type Terahertz Imager

    PubMed Central

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-01-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281

  6. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    PubMed

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  7. Application of an enthalpy balance model of the relation between growth and respiration to temperature acclimation of Eucalyptus globulus seedlings.

    PubMed Central

    Macfarlane, Craig; Adams, Mark A; Hansen, Lee D

    2002-01-01

    The enthalpy balance model of growth uses measurements of the rates of heat and CO(2) production to quantify rates of decarboxylation, oxidative phosphorylation and net anabolism. Enthalpy conversion efficiency (eta(H)) and the net rate of conservation of enthalpy in reduced biosynthetic products (R(SG)DeltaH(B)) can be calculated from metabolic heat rate (q) and CO(2) rate (R(CO2)). eta(H) is closely related to carbon conversion efficiency and the efficiency of conservation of available electrons in biosynthetic products. R(SG)DeltaH(B) and eta(H) can be used, together with biomass composition, to describe the rate and efficiency of growth of plant tissues. q is directly related to the rate of O(2) consumption and the ratio q:R(CO2) is inversely related to the respiratory quotient. We grew seedlings of Eucalyptus globulus at 16 and 28 degrees C for four to six weeks, then measured q and R(CO2) using isothermal calorimetry. Respiratory rate at a given temperature was increased by a lower growth temperature but eta(H) was unaffected. Enthalpy conversion efficiency - and, therefore, carbon conversion efficiency - decreased with increasing temperature from 15 to 35 degrees C. The ratio of oxidative phosphorylation to oxygen consumption (P/O ratio) was inferred in vivo from eta(H) and by assuming a constant ratio of growth to maintenance respiration with changing temperature. The P/O ratio decreased from 2.1 at 10-15 degrees C to less than 0.3 at 35 degrees C, suggesting that decreased efficiency was not only due to activity of the alternative oxidase pathway. In agreement with predictions from non-equilibrium thermodynamics, growth rate was maximal near 25 degrees C, where the calculated P/O ratio was about half maximum. We propose that less efficient pathways, such as the alternative oxidase pathway, are necessary to satisfy the condition of conductance matching whilst maintaining a near constant phosphorylation potential. These conditions minimize entropy production and maximize the efficiency of mitochondrial energy conversions as growing conditions change, while maintaining adequate finite rates of energy processing. PMID:12137581

  8. Comparison of reconnection in magnetosphere and solar corona

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  9. Preliminary results on the conversion of laser energy into electricity

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.; Manista, E. J.; Alger, D. L.

    1978-01-01

    A preliminary experiment was performed to investigate conversion of 10.6 micron laser energy to electrical energy via a laser-sustained argon plasma. Short-circuit currents of 0.7 A were measured between a thoriated-tungsten emitter and collector electrodes immersed in the laser-sustained argon plasma. Open-circuit voltages of about 1.5 V were inferred from the current-voltage load characteristics. The dominant mechanism of laser energy conversion is uncertain at this time. Much higher output powers appear possible.

  10. Temperature effects on gallium arsenide 63Ni betavoltaic cell.

    PubMed

    Butera, S; Lioliou, G; Barnett, A M

    2017-07-01

    A GaAs 63 Ni radioisotope betavoltaic cell is reported over the temperature range 70°C to -20°C. The temperature effects on the key cell parameters were investigated. The saturation current decreased with decreased temperature; whilst the open circuit voltage, the short circuit current, the maximum power and the internal conversion efficiency values decreased with increased temperature. A maximum output power and an internal conversion efficiency of 1.8pW (corresponding to 0.3μW/Ci) and 7% were observed at -20°C, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Seasonal changes of nucleotides in mussel (Mytilus galloprovincialis) mantle tissue.

    PubMed

    Blanco, S L; Suárez, M P; San Juan, F

    2006-03-01

    Seasonal variations of nucleotides in Mytilus galloprovincialis mantle tissue were analyzed. Separation and quantification was achieved by reversed-phase high-performance liquid chromatography. Total nucleotides show a pronounced seasonal variation with maximum and minimum values in autumn and spring, respectively. Adenine nucleotides accounted for the major part in spring and summer, guanosine and cytidine nucleotides in winter; uridine nucleotides were relatively constant throughout the year. Their inverse variation suggests inter-conversion among them and the maintenance of the potential cell energy in winter by other triphosphate nucleotides different from ATP. These results reflect environmental and nutritional conditions, and also the reserves and gametogenic cycles taking place in M. galloprovincialis mantle tissue.

  12. Diamond Raman laser emitting at 1194, 1419, and 597 nm

    NASA Astrophysics Data System (ADS)

    Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Konov, V. I.

    2018-03-01

    A Raman laser based on a synthetic diamond crystal pumped by nanosecond pulses of a 1030-nm Yb : YAG laser and emitting in the IR region at the first and second Stokes wavelengths of 1194 and 1419 nm, respectively, was developed. The conversion efficiency was 34% with a slope efficiency of 50% and an average power of 1.1 W at a wavelength of 1194 nm; the average power at 1419 nm was 0.52 W. Frequency doubling of the first Stokes component in a nonlinear BBO crystal resulted in orange (597.3 nm) radiation with a pulse energy of 0.15 mJ, an average power of 0.22 W, and a maximum efficiency of 20%.

  13. High-efficiency diode-pumped actively Q-switched ceramic Nd:YAG/BaWO₄ Raman laser operating at 1666 nm.

    PubMed

    Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P

    2014-05-01

    A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively.

  14. Visibly transparent polymer solar cells produced by solution processing.

    PubMed

    Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang

    2012-08-28

    Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.

  15. Introduction to Voigt's wind power plant. [energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Tompkin, J.

    1973-01-01

    The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.

  16. Thermoelectric properties of lanthanum sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Parker, J.; Zoltan, A.; Zoltan, D.

    1985-01-01

    The Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect have been studied in gamma-phase La(3-x)S4(LaS/y/) for compositions with x in the range from 0.04 to 0.3 (y in the range from 1.35 to 1.48) in order to ascertain its suitability for high-temperature (300 to 1400 K) thermoelectric energy conversion. In this temperature and composition range the material behaves as an extrinsic semiconductor whose degenerate carrier concentration is controlled by the stoichiometric ratio of La to S. A maximum figure-of-merit (Z) of approximately 0.0005 per K at a composition x = 0.3, y = 1.48 (LaS/1.48/) was obtained.

  17. An analysis of quantum coherent solar photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kirk, A. P.

    2012-02-01

    A new hypothesis (Scully et al., Proc. Natl. Acad. Sci. USA 108 (2011) 15097) suggests that it is possible to break the statistical physics-based detailed balance-limiting power conversion efficiency and increase the power output of a solar photovoltaic cell by using “noise-induced quantum coherence” to increase the current. The fundamental errors of this hypothesis are explained here. As part of this analysis, we show that the maximum photogenerated current density for a practical solar cell is a function of the incident spectrum, sunlight concentration factor, and solar cell energy bandgap and thus the presence of quantum coherence is irrelevant as it is unable to lead to increased current output from a solar cell.

  18. Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii

    PubMed Central

    Berger, Leslie Ralph; Berger, Joyce A.

    1986-01-01

    Countermeasures to biofouling in simulated ocean thermal energy conversion heat exchangers have been studied in single-pass flow systems, using cold deep and warm surface ocean waters off the island of Hawaii. Manual brushing of the loops after free fouling periods removed most of the biofouling material. However, over a 2-year period a tenacious film formed. Daily free passage of sponge rubber balls through the tubing only removed the loose surface biofouling layer and was inadequate as a countermeasure in both titanium and aluminum alloy tubes. Chlorination at 0.05, 0.07, and 0.10 mg liter-1 for 1 h day-1 lowered biofouling rates. Only at 0.10 mg liter-1 was chlorine adequate over a 1-year period to keep film formation and heat transfer resistance from rising above the maximum tolerated values. Lower chlorination regimens led to the buildup of uneven or patchy films which produced increased flow turbulence. The result was lower heat transfer resistance values which did not correlate with the amount of biofouling. Surfaces which were let foul and then treated with intermittent or continuous chlorination at 0.10 mg of chlorine or less per liter were only partially or unevenly cleaned, although heat transfer measurements did not indicate that fact. It took continuous chlorination at 0.25 mg liter-1 to bring the heat transfer resistance to zero and eliminate the fouling layer. Biofouling in deep cold seawater was much slower than in the warm surface waters. Tubing in one stainless-steel loop had a barely detectable fouling layer after 1 year in flow. With aluminum alloys sufficient corrosion and biofouling material accumulated to require that some fouling coutermeasure be used in long-term operation of an ocean thermal energy conversion plant. Images PMID:16347076

  19. Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats

    PubMed Central

    Sárvári Horváth, Ilona; Franzén, Carl Johan; Taherzadeh, Mohammad J.; Niklasson, Claes; Lidén, Gunnar

    2003-01-01

    Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual furfural concentration in the bioreactor was close to zero at all steady states obtained, and it was found that furfural was exclusively converted to furoic acid during respiratory growth. A metabolic flux analysis showed that furfural affected fluxes involved in energy metabolism. There was a 50% increase in the specific respiratory activity at the highest steady-state furfural conversion rate. Higher furfural conversion rates, obtained during pulse additions of furfural, resulted in respirofermentative metabolism, a decrease in the biomass yield, and formation of furfuryl alcohol in addition to furoic acid. Under anaerobic conditions, reduction of furfural partially replaced glycerol formation as a way to regenerate NAD+. At concentrations above the inlet concentration of furfural, which resulted in complete replacement of glycerol formation by furfuryl alcohol production, washout occurred. Similarly, when the maximum rate of oxidative conversion of furfural to furoic acid was exceeded aerobically, washout occurred. Thus, during both aerobic growth and anaerobic growth, the ability to tolerate furfural appears to be directly coupled to the ability to convert furfural to less inhibitory compounds. PMID:12839784

  20. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    NASA Astrophysics Data System (ADS)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  1. Efficiency of Energy Harvesting in Ni-Mn-Ga Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Lindquist, Paul; Hobza, Tony; Patrick, Charles; Müllner, Peter

    2018-03-01

    Many researchers have reported on the voltage and power generated while energy harvesting using Ni-Mn-Ga shape memory alloys; few researchers report on the power conversion efficiency of energy harvesting. We measured the magneto-mechanical behavior and energy harvesting of Ni-Mn-Ga shape memory alloys to quantify the efficiency of energy harvesting using the inverse magneto-plastic effect. At low frequencies, less than 150 Hz, the power conversion efficiency is less than 0.1%. Power conversion efficiency increases with (i) increasing actuation frequency, (ii) increasing actuation stroke, and (iii) decreasing twinning stress. Extrapolating the results of low-frequency experiments to the kHz actuation regime yields a power conversion factor of about 20% for 3 kHz actuation frequency, 7% actuation strain, and 0.05 MPa twinning stress.

  2. High-energy-density plasma jet generated by laser-cone interaction

    NASA Astrophysics Data System (ADS)

    Ke, Y. Z.; Yang, X. H.; Ma, Y. Y.; Xu, B. B.; Ge, Z. Y.; Gan, L. F.; Meng, L.; Wang, S. W.; Kawata, S.

    2018-04-01

    The generation of high-energy-density (HED) plasma jet from a laser ablating thin cone target is studied theoretically and by numerical simulations. Theoretical analysis and 1D simulations show that a maximum kinetic energy conversion efficiency (CE) of 26% can be achieved when nearly 80% of the foil is ablated by laser. A HED plasma jet is generated when an intense laser (˜1015 W/cm2) irradiates the cone target, inducing a great enhancement of energy density compared to that of the planar target, which is attributed to the cumulative effect of the cone shape and the new generation mechanism of jet, i.e., laser directly accelerating the cone wall onto the axis. The characteristic of jet is influenced by the cone geometry, i.e., thickness and cone angle. It is found that a cone with a half opening angle around 70 ° and the optimized thickness (˜5 μm) can induce a jet with a high CE and long duration, whose peak energy density can reach 3.5 × 1015 erg/cm3. The results can be beneficial for laser-driven novel neutron sources and other fusion related experiments, where HED plasma jet can be applied.

  3. Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser

    NASA Astrophysics Data System (ADS)

    Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan

    2017-11-01

    High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.

  4. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Lourenço, A.; Wellock, N.; Thomas, R.; Homer, M.; Bouchard, H.; Kanai, T.; MacDougall, N.; Royle, G.; Palmans, H.

    2016-11-01

    Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor {{H}\\text{pl,w}} was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11  ×  11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured H\\text{pl,w}\\exp correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.

  5. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    PubMed

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  6. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes

    PubMed Central

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044

  7. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes.

    PubMed

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xia, Xunfeng; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production.

  8. Status of photoelectrochemical production of hydrogen and electrical energy

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  9. 78 FR 31945 - Clinical Development Programs for Opioid Conversion; Public Workshop; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... gaps in existing knowledge regarding equianalgesic opioid conversion in clinical practice, to develop a... organization as well as the total number of participants based on space limitations. Registrants will receive... be based on space availability. If registration reaches maximum capacity, FDA will post a notice...

  10. Space electric power design study. [laser energy conversion

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  11. Energy conversion device with support member having pore channels

    DOEpatents

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  12. Betavoltaic Enhancement Using Defect-Engineered TiO2 Nanotube Arrays through Electrochemical Reduction in Organic Electrolytes.

    PubMed

    Ma, Yang; Wang, Na; Chen, Jiang; Chen, Changsong; San, Haisheng; Chen, Jige; Cheng, Zhengdong

    2018-06-19

    Utilizing high-energy beta particles emitted from radioisotopes for long-lifetime betavoltaic cells is a great challenge due to low energy conversion efficiency. Here, we report a betavoltaic cell fabricated using TiO 2 nanotube arrays (TNTAs) electrochemically reduced in ethylene glycol electrolyte (EGECR-TNTAs) for the enhancement of the betavoltaic effect. The electrochemical reduction of TNTAs using high cathodic bias in organic electrolytes is indeed a facile and effective strategy to induce in situ self-doping of oxygen vacancy (OV) and Ti 3+ defects. The black EGECR-TNTAs are highly stable with a significantly narrower band gap and higher electrical conductivity as well as UV-vis-NIR light absorption. A 20 mCi of 63 Ni betavoltaic cell based on the reduced TNTAs exhibits a maximum ECE of 3.79% with open-circuit voltage of 1.04 V, short-circuit current density of 117.5 nA cm -2 , and a maximum power density of 39.2 nW cm -2 . The betavoltaic enhancement can be attributed to the enhanced charge carrier transport and separation as well as multiple exciton generation of electron-hole pairs due the generation of OV and Ti 3+ interstitial bands below the conductive band of TiO 2.

  13. Energy conversion in natural and artificial photosynthesis.

    PubMed

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  14. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments Database

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  15. A Study of Energy Conversion Devices Using Photoactive Organometallic Electrocatalysts.

    DTIC Science & Technology

    1986-05-23

    arylisocyanide complexes confined to polymeric thin films in solar energy conversion systems . The chemical systems of interest were chromium...The goals of the project then became threefold: 1) examine the thermo- dynamics an- ’ kinetics of charge transfer in the systems in which we had shown...complexes confined to polymeric thin films in solar energy conversion systems . The chemical systems of interest were chromium, molybdenum and

  16. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  17. Ocean Thermal Energy Conversion (OTEC)

    NASA Technical Reports Server (NTRS)

    Lavi, A.

    1977-01-01

    Energy Research and Development Administration research progress in Ocean Thermal Energy Conversion (OTEC) is outlined. The development program is being focused on cost effective heat exchangers; ammonia is generally used as the heat exchange fluid. Projected costs for energy production by OTEC vary between $1000 to $1700 per kW.

  18. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  19. Thermodynamic limit for coherence-limited solar power conversion

    NASA Astrophysics Data System (ADS)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-09-01

    The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.

  20. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadia, Yatir, E-mail: yatttir@yahoo.com; Ohaion-Raz, Tsion; Ben-Yehuda, Ohad

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological “valley of death”, including among others, transport properties' degradation, duemore » to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410–430 °C range for GeTe rich alloys and to 510–530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter. - Graphical abstract: Evaporation rate in the GeTe and PbTe system showing the measured evaporation rates and the maximal operating temperatures for different compositions. In addition, the microstructure after evaporation is shown for PbTe, TAGS-85, and doped Pb{sub 0.13}Ge{sub 087}Te. Display Omitted - Highlights: • Evaporation rates of GeTe and PbTe based thermoelectric compounds were determined. • A criterion for their maximum operating temperature was established. • The materials showed phase separations and off-stoichiometry compositions.« less

  1. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    PubMed

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  2. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-01

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  3. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  4. Thermionic Energy Conversion (TEC) topping thermoelectrics

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Performance expectations for thermionic and thermoelectric energy conversion systems are reviewed. It is noted that internal radiation effects diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K; the effective thermal conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. It is argued that a consideration of thermoelectric power generation with high temperature heat sources should include utilization of thermionic energy conversion (TEC) topping thermoelectrics. However TEC alone or TEC topping more efficient conversion systems like steam or gas turbines, combined cycles, or Stirling engines would be more desirable generally.

  5. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less

  6. Magnetic reconnection in Earth's magnetotail: Energy conversion and its earthward-tailward asymmetry

    NASA Astrophysics Data System (ADS)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-01-01

    Magnetic reconnection, a fundamental plasma process, releases magnetic energy and converts it to particle energy, by accelerating and heating ions and electrons. This energy conversion plays an important role in the Earth's magnetotail. A two-dimensional particle-in-cell simulation is performed to study such a conversion in a magnetotail topology, one with a nonzero Bz, and the energy conversion is found to be more efficient in the earthward outflow than in the tailward outflow. Such earthward-tailward asymmetry is manifested not only in j .E but also in Poynting flux, Hall electromagnetic fields, bulk kinetic energy flux, enthalpy flux, heat flux, bulk acceleration, heating, and suprathermal particle energization, all of which are more prevalent on the earthward side. Such asymmetries are consistent with spacecraft observations reported in the literature. Our study shows that in the magnetotail, most of the energy converted by reconnection flows predominantly toward the Earth and has the potential of being geoeffective, rather than being expelled to the solar wind by the tailward flow. The energy conversion asymmetry arises from the presence of the non-zero normal magnetic field, the stronger lobe magnetic field, and the stronger cross-tail current earthward of the reconnection site in the pre-reconnecting thin current sheet.

  7. A History of Geothermal Energy Research and Development in the United States. Energy Conversion 1976-2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mines, Gregory L.

    2010-09-01

    This report, the last in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in energy conversion and to make generation of electricity from geothermal resources more cost-competitive.

  8. Rosetta Stones for Energy Problems.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1981-01-01

    Demonstrates, using specific problems, how various energy units can be converted to joules and power units to watts. Conversion tables are provided for power, energy, generation values, thermal insulation, consumption values, sunlight, with tables also on metric prefixes and time conversions. (SK)

  9. A 15 kWe (nominal) solar thermal-electric power conversion concept definition study: Steam Rankin reciprocator system

    NASA Technical Reports Server (NTRS)

    Wingenback, W.; Carter, J., Jr.

    1979-01-01

    A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.

  10. The development of two Broadband Vibration Energy Harvesters (BVEH) with adaptive conversion electronics

    NASA Astrophysics Data System (ADS)

    Clingman, Dan J.; Thiesen, Jack

    2017-04-01

    Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.

  11. Potential for Increasing the Output of Existing Hydroelectric Plants.

    DTIC Science & Technology

    1981-06-01

    existing units to higher generating capacity by rehabilitating, modifying or replacing turbines and/or generators; increasing the effective...loss in converting fluid energy (flow and head) to mechanical energy ( turbine output) to electrical energy (generator output). The significant practical...opportunity is improvement of the energy conversion efficiency of the hydraulic turbine since the energy conversion efficiency of electrical

  12. Future Directions for Selected Topics in Physics and Materials Science

    DTIC Science & Technology

    2012-07-12

    referred to as lightides (e.g. borides , nitrides, phosphides) • Materials for energy conversion, energy storage, energy transport and energy production...Distributed nanosystems and sensors • Strategy for multilayered combinatorics • lightides ( borides , nitrides, phosphides, • New applications for...Strategy for multilayered combinatorics Lightides ( borides , nitrides, phosphides) • Energy conversion, .storage and production • Precision control

  13. Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency

    NASA Astrophysics Data System (ADS)

    Ebeling, W.; Feistel, R.

    2017-06-01

    First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.

  14. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannone, Greg; Thomas, John F; Reale, Michael

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less

  15. Role of Bioreactors in Microbial Biomass and Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liang; Zhang, Biao; Zhu, Xun

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems aremore » described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.« less

  16. THE ENERGY CONVERSION APPARATUS IN PHOTOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, K.

    1962-12-01

    An analysis of outstanding problems still presenting difficulty with respect to understanding the quantumconversion process in photosynthesis is presented. Considerations of how some of these difficulties may be overcome are included. The dynamic process of energy conversion is considered in terms of photon absorption, electronic energy transfer, trapping in long-lived excited states, primary oxidants and reductants, and the electron transport chain leading to products representing stored chemical potential. The physical structure of the apparatus accomplishing this energy conversion is sought in the framework of the concept of the photosynthetic unit. The nature of this unit--its size, composition, arrangement and orientationmore » of components, internal electrical and polarizability properties, and assembly and aggregation in the chloroplast--and the problems related to its determination are essential considerations in the overall approach to the understanding of the mechanism of energy conversion. (auth)« less

  17. Laser source with high pulse energy at 3-5 μm and 8-12 μm based on nonlinear conversion in ZnGeP2

    NASA Astrophysics Data System (ADS)

    Lippert, Espen; Fonnum, Helge; Haakestad, Magnus W.

    2014-10-01

    We present a high energy infrared laser source where a Tm:fiber laser is used to pump a high-energy 2-μm cryogenically cooled Ho:YLF laser. We have achieved 550 mJ of output energy at 2.05 μm, and through non-linear conversion in ZnGeP2 generated 200 mJ in the 3-5-μm range. Using a numerical simulation tool we have also investigated a setup which should generate more than 70 mJ in the 8-12-μm range. The conversion stage uses a master-oscillator-power-amplifier architecture to enable high conversion efficiency and good beam quality.

  18. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  19. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.

  20. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Thomas

    Dye-sensitized solar cells (DSSCs) have attracted a lot of interest as they proffer the possibility of extremely inexpensive and efficient solar energy conversion. The excellent performance of the most efficient DSSCs relies on two main features: 1) a high surface area nanoparticle semiconductor photoanode to allow for excellent light absorption with moderate extinction molecular dyes and 2) slow recombination rates from the photoanode to I 3 - allowing good charge collection. The I 3 -/I - couple, however, has some disadvantages, notably the redox potential limits the maximum open-circuit voltage, and the dye regeneration requires a large driving force whichmore » constrains the light harvesting ability. Thus, the design features that allow DSSCs to perform as well as they do also prevent further significant improvements in performance. As a consequence, the most efficient device configuration, and the maximum efficiency, has remained essentially unchanged over the last 16 years. Significant gains in performance are possible; however it will likely require a substantial paradigm shift. The general goal of this project is to understand the fundamental role of dye-sensitized solar cell, DSSC, components (sensitizer, redox shuttle, and photoanode) involved in key processes in order to overcome the kinetic and energetic constraints of current generation DSSCs. For example, the key to achieving high energy conversion efficiency DSSCs is the realization of a redox shuttle which fulfills the dual requirements of 1) efficient dye regeneration with a minimal driving force and 2) efficient charge collection. In current generation DSSCs, however, only one or the other of these requirements is met. We are currently primarily interested in understanding the physical underpinnings of the regeneration and recombination reactions. Our approach is to systematically vary the components involved in reactions and interrogate them with a series of photoelectrochemical (PEC) measurements. The lessons learned will ultimately be used to develop design rules for next generation DSSCs.« less

  2. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    PubMed

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol -1 . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends. © 2016 John Wiley & Sons Ltd.

  3. Conversion of magnetic energy to runaway kinetic energy during the termination of runaway current on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team

    2018-05-01

    A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.

  4. Efficient electrochemical CO2 conversion powered by renewable energy.

    PubMed

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.

  5. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  6. Final Scientific/Technical Report -- Single-Junction Organic Solar Cells with >15% Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkenburg, Daken; Weldeab, Asmerom; Fagnani, Dan

    Organic solar cells have the potential to offer low-cost solar energy conversion due to low material costs and compatibility with low-temperature and high throughput manufacturing processes. This project aims to further improve the efficiency of organic solar cells by applying a previously demonstrated molecular self-assembly approach to longer-wavelength light-absorbing organic materials. The team at the University of Florida designed and synthesized a series of low-bandgap organic semiconductors with functional hydrogen-bonding groups, studied their assembly characteristics and optoelectronic properties in solid-state thin film, and fabricated organic solar cells using solution processing. These new organic materials absorb light up 800 nm wavelength,more » and provide a maximum open-circuit voltage of 1.05 V in the resulted solar cells. The results further confirmed the effectiveness in this approach to guide the assembly of organic semiconductors in thin films to yield higher photovoltaic performance for solar energy conversion. Through this project, we have gained important understanding on designing, synthesizing, and processing organic semiconductors that contain appropriately functionalized groups to control the morphology of the organic photoactive layer in solar cells. Such fundamental knowledge could be used to further develop new functional organic materials to achieve higher photovoltaic performance, and contribute to the eventual commercialization of the organic solar cell technology.« less

  7. Stabilization of Wide Band-Gap p-Type Wurtzite MnTe Thin Films on Amorphous Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy A; Siol, Sebastian; Han, Yanbing

    An important challenge in the development of optoelectronic devices for energy conversion applications is the search for suitable p-type contact materials. For example, p-type MnTe would be a promising alternative back contact to due to their chemical compatibility, but at normal conditions it has too narrow band gap due to octahedrally coordinated nickeline (NC) structure. The tetrahedrally coordinated wurtzite (WZ) polymorph of MnTe has not been reported, but it is especially interesting due to its predicted wider band gap, and because of better structural compatibility with CdTe and related II-VI semiconductor materials. Here, we report on the stabilization of WZ-MnTemore » thin films on amorphous indium zinc oxide (a-IZO) substrates relevant to photovoltaic applications. Optical spectroscopy of the WZ-MnTe films shows a wide direct band gap of Eg = 2.7 eV, while PES measurements reveal weak p-type doping with the Fermi level 0.6 eV above the valence band maximum. The results of electron microscopy and photoelectron spectroscopy (PES) measurements indicate that the WZ-MnTe is stabilized due to interdiffusion at the interface with IZO. The results of this work introduce a substrate stabilized WZ-MnTe polymorph as a potential p-type contact material candidate for future applications in CdTe devices for solar energy conversion and other optoelectronic technologies.« less

  8. Design and commissioning of a multi-mode prototype for thermochemical conversion of human faeces.

    PubMed

    Jurado, Nelia; Somorin, Tosin; Kolios, Athanasios J; Wagland, Stuart; Patchigolla, Kumar; Fidalgo, Beatriz; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2018-05-01

    This article describes the design and commissioning of a micro-combustor for energy recovery from human faeces, which can operate both in updraft and downdraft modes. Energy recovery from faecal matter via thermochemical conversion has recently been identified as a feasible solution for sanitation problems in low income countries and locations of high income countries where access to sewage infrastructures is difficult or not possible. This technology can be applied to waterless toilets with the additional outcome of generating heat and power that can be used to pre-treat the faeces before their combustion and to ensure that the entire system is self-sustaining. The work presented here is framed within the Nano Membrane Toilet (NMT) project that is being carried out at Cranfield University, as part of the Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation. For this study, preliminary trials using simulant faeces pellets were first carried out to find out the optimum values for the main operating variables at the scale required by the process, i.e. a fuel flowrate between 0.4 and 1.2 g/min of dry faeces. Parameters such as ignition temperature, residence time, and maximum temperature reached, were determined and used for the final design of the bench-scale combustor prototype. The prototype was successfully commissioned and the first experimental results, using real human faeces, are discussed in the paper.

  9. Thermoelectric properties of an interacting quantum dot based heat engine

    NASA Astrophysics Data System (ADS)

    Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio

    2017-06-01

    We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

  10. A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node

    NASA Astrophysics Data System (ADS)

    Lu, Y.; O'Riordan, E.; Cottone, F.; Boisseau, S.; Galayko, D.; Blokhina, E.; Marty, F.; Basset, P.

    2016-12-01

    This paper reports a batch-fabricated, low-frequency and wideband MEMS electrostatic vibration energy harvester (e-VEH), which implements corona-charged vertical electrets and nonlinear elastic stoppers. A numeric model is used to perform parametric study, where we observe a wideband bi-modality resulting from nonlinearity. The nonlinear stoppers improve the bandwidth and induce a frequency-up feature at low frequencies. When the e-VEH works with a bias of 45 V, the power reaches a maximum value of 6.6 μW at 428 Hz and 2.0 g rms, and is above 1 μW at 50 Hz. When the frequency drops below 60 Hz, a ‘frequency-up’ conversion behavior is observed with peaks of power at 34 Hz and 52 Hz. The  -3 dB bandwidth is more than 60% of its central frequency, both including and excluding the hysteresis introduced by the nonlinear stoppers. We also perform experiments with wideband Gaussian noise. The device is eventually tested with an RF data transmission setup, where a communication node with an internal temperature sensor is powered. Every 2 min, a data transmission at 868 MHz is performed by the sensor node supplied by the e-VEH, and received at a distance of up to 15 m.

  11. Series circuit of organic thin-film solar cells for conversion of water into hydrogen.

    PubMed

    Aoki, Atsushi; Naruse, Mitsuru; Abe, Takayuki

    2013-07-22

    A series circuit of bulk hetero-junction (BHJ) organic thin-film solar cells (OSCs) is investigated for electrolyzing water to gaseous hydrogen and oxygen. The BHJ OSCs applied consist of poly(3-hexylthiophene) as a donor and [6,6]-phenyl C61 butyric acid methyl ester as an acceptor. A series circuit of six such OSC units has an open circuit voltage (V(oc)) of 3.4 V, which is enough to electrolyze water. The short circuit current (J(sc)), fill factor (FF), and energy conversion efficiency (η) are independent of the number of unit cells. A maximum electric power of 8.86 mW cm(-2) is obtained at the voltage of 2.35 V. By combining a water electrolysis cell with the series circuit solar cells, the electrolyzing current and voltage obtained are 1.09 mA and 2.3 V under a simulated solar light irradiation (100 mW cm(-2), AM1.5G), and in one hour 0.65 mL hydrogen is generated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    NASA Astrophysics Data System (ADS)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  13. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    NASA Technical Reports Server (NTRS)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1990-01-01

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  14. Effect of operating parameters on bio-fuel production from waste furniture sawdust.

    PubMed

    Uzun, Basak Burcu; Kanmaz, Gülin

    2013-04-01

    Fast pyrolysis is an effective technology for conversion of biomass into energy and value-added chemicals instead of burning them directly. In this study, fast pyrolysis of waste furniture sawdust (pine sawdust) was investigated under various reaction conditions (reaction time, pyrolysis temperature, heating rate, residence time and particle size) in a tubular reactor. The optimum reaction conditions for bio-oil production was found as reaction time of 5 min, pyrolysis temperature of 500 °C, heating rate of 300 °C min(-1) under nitrogen flow rate of 400 cm(3) min(-1). At these conditions, maximum bio-oil yield was obtained as 42.09%. Pyrolysis oils were characterized by using various elemental analyses, fourier - transformation infrared (FT-IR) spectrometry and gas chromatography-mass spectrometry (GC-MS). The results of the GC-MS showed that cracking of large molecular phenolics was followed by partial conversion into phenol and alkylated phenols (45%) during the pyrolysis. According to the experimental and characterization results; the liquid product could be used as feedstock for the chemical industry or petroleum crude for refinery.

  15. AlGaAs 55Fe X-ray radioisotope microbattery

    PubMed Central

    Butera, S.; Whitaker, M. D. C.; Lioliou, G.; Barnett, A. M.

    2016-01-01

    This paper describes the performance of a fabricated prototype Al0.2Ga0.8As 55Fe radioisotope microbattery photovoltaic cells over the temperature range −20 °C to 50 °C. Two 400 μm diameter p+-i-n+ (3 μm i-layer) Al0.2Ga0.8As mesa photodiodes were used as conversion devices in a novel X-ray microbattery prototype. The changes of the key microbattery parameters were analysed in response to temperature: the open circuit voltage, the maximum output power and the internal conversion efficiency decreased when the temperature was increased. At −20 °C, an open circuit voltage and a maximum output power of 0.2 V and 0.04 pW, respectively, were measured per photodiode. The best internal conversion efficiency achieved for the fabricated prototype was only 0.95% at −20 °C. PMID:27922093

  16. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1989-01-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  17. Fluorescent material concentration dependency: Förster resonance energy transfer in quasi-solid state DSSCs

    NASA Astrophysics Data System (ADS)

    Kim, Dong Woo; Jo, Hyun-Jun; Thogiti, Suresh; Yang, Weon Ki; Cheruku, Rajesh; Kim, Jae Hong

    2017-05-01

    Förster resonance energy transfer (FRET) is critical for wide spectral absorption, an increased dye loading, and photocurrent generation of dye-sensitized solar cells (DSSCs). This process consists of organic fluorescent materials (as an energy donor), and an organic dye (as an energy acceptor on TiO2 surfaces) with quasi-solid electrolyte. The judicious choice of the energy donor and acceptor facilitates a strong spectral overlap between the emission and absorption regions of the fluorescent materials and dye. This FRET process enhances the light-harvesting characteristics of quasi-solid state DSSCs. In this study, DSSCs containing different concentrations (0, 1, and 1.5 wt%) of a fluorescent material (FM) as the energy donor are investigated using FRET. The power conversion efficiency of DSSCs containing FMs in a quasi-solid electrolyte increased by 33% over a pristine cell. The optimized cell fabricated with the quasi-solid state DSSC containing 1.0 wt% FM shows a maximum efficiency of 3.38%, with a short-circuit current density ( J SC ) of 4.32 mA/cm-2, and an open-circuit voltage ( V OC ) of 0.68 V under illumination of simulated solar light (AM 1.5G, 100 mW/cm-2). [Figure not available: see fulltext.

  18. Systems and methods for reducing transient voltage spikes in matrix converters

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-06-11

    Systems and methods are provided for delivering energy using an energy conversion module that includes one or more switching elements. An exemplary electrical system comprises a DC interface, an AC interface, an isolation module, a first conversion module between the DC interface and the isolation module, and a second conversion module between the AC interface and the isolation module. A control module is configured to operate the first conversion module to provide an injection current to the second conversion module to reduce a magnitude of a current through a switching element of the second conversion module before opening the switching element.

  19. Cogeneration technology alternatives study. Volume 6: Computer data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential technical capabilities of energy conversion systems in the 1985 - 2000 time period were defined with emphasis on systems using coal, coal-derived fuels or alternate fuels. Industrial process data developed for the large energy consuming industries serve as a framework for the cogeneration applications. Ground rules for the study were established and other necessary equipment (balance-of-plant) was defined. This combination of technical information, energy conversion system data ground rules, industrial process information and balance-of-plant characteristics was analyzed to evaluate energy consumption, capital and operating costs and emissions. Data in the form of computer printouts developed for 3000 energy conversion system-industrial process combinations are presented.

  20. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Paul; Lindsay, Edward; McDowell, Michael

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  1. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  2. Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results

    NASA Technical Reports Server (NTRS)

    Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.

    1980-01-01

    The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases.

  3. Ag Nanoparticle-Functionalized Open-Ended Freestanding TiO₂ Nanotube Arrays with a Scattering Layer for Improved Energy Conversion Efficiency in Dye-Sensitized Solar Cells.

    PubMed

    Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun

    2016-06-15

    Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large TiO₂ NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO₂ NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO₂ NPs. By introducing Ag NPs and/or large TiO₂ NPs to open-ended freestanding TiO₂ nanotube array-based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO₂ NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO₂ NPs. Moreover, compared to closed-ended freestanding TiO₂ nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO₂ nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component-Ag NPs, TiO₂ NPs, and open-ended freestanding TiO₂ nanotube arrays-enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency.

  4. 33 CFR 320.3 - Related laws.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determined by the Secretary charged with its administration. (m) The Ocean Thermal Energy Conversion Act of... of NOAA for the ownership, construction, location, and operation of ocean thermal energy conversion... Energy Regulatory Agency (FERC) to issue licenses for the construction and the operation and maintenance...

  5. Electrochemistry of the Zinc-Silver Oxide System. Part 2: Practical Measurements of Energy Conversion Using Commercial Miniature Cells.

    ERIC Educational Resources Information Center

    Smith, Michael J.; Vincent, Colin A.

    1989-01-01

    Summarizes the quantitative relationships pertaining to the operation of electrochemical cells. Energy conversion efficiency, cycle efficiency, battery power, and energy/power density of two types of zinc-silver oxide cells are discussed. (YP)

  6. Second NASA Conference on Laser Energy Conversion

    NASA Technical Reports Server (NTRS)

    Billman, K. W. (Editor)

    1976-01-01

    The possible transmission of high power laser beams over long distances and their conversion to thrust, electricity, or other useful forms of energy is considered. Specific topics discussed include: laser induced chemistry; developments in photovoltaics, including modification of the Schottky barrier devices and generation of high voltage emf'sby laser radiation of piezoelectric ceramics; the thermo electronic laser energy converter and the laser plasmadynamics converters; harmonic conversion of infrared laser radiation in molecular gases; and photon engines.

  7. One-dimension-based spatially ordered architectures for solar energy conversion.

    PubMed

    Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun

    2015-08-07

    The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.

  8. Potential active materials for photo-supercapacitor: A review

    NASA Astrophysics Data System (ADS)

    Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.

    2015-11-01

    The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.

  9. Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'<0). Observations are further compared with theory and modeling that predict the specific location and sign of the energy dissipation at fronts depending on their evolution phase (e.g., formation, propagation, braking).

  10. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    PubMed

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  11. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  12. Bioinspired model of mechanical energy harvesting based on flexoelectric membranes.

    PubMed

    Rey, Alejandro D; Servio, P; Herrera-Valencia, E E

    2013-02-01

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane electrical polarization due to bending and membrane bending under electric fields. In this paper we propose, formulate, and characterize a mechanical energy harvesting system consisting of a deformable soft flexoelectric thin membrane subjected to harmonic forcing from contacting bulk fluids. The key elements of the energy harvester are formulated and characterized, including (i) the mechanical-to-electrical energy conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces with membrane curvature and electric displacement, and (iii) the electric power generation and efficiency. The energy conversion efficiency is cast as the ratio of flexoelectric coupling to the product of electric and bending elasticity. The device is described by a second-order curvature dynamics coupled to the electric displacement equation and as such results in mechanical power absorption with a resonant peak whose amplitude decreases with bending viscosity. The electric power generation is proportional to the conversion factor and the power efficiency decreases with frequency. Under high bending viscosity, the power efficiency increases with the conversion factor and under low viscosities it decreases with the conversion factor. The theoretical results presented contribute to the ongoing experimental efforts to develop mechanical energy harvesting from fluid flow energy through solid-fluid interactions and electromechanical transduction.

  13. Evaluation of the mathematical and economic basis for conversion processes in the LEAP energy-economy model

    NASA Astrophysics Data System (ADS)

    Oblow, E. M.

    1982-10-01

    An evaluation was made of the mathematical and economic basis for conversion processes in the Long-term Energy Analysis Program (LEAP) energy economy model. Conversion processes are the main modeling subunit in LEAP used to represent energy conversion industries and are supposedly based on the classical economic theory of the firm. Questions about uniqueness and existence of LEAP solutions and their relation to classical equilibrium economic theory prompted the study. An analysis of classical theory and LEAP model equations was made to determine their exact relationship. The conclusions drawn from this analysis were that LEAP theory is not consistent with the classical theory of the firm. Specifically, the capacity factor formalism used by LEAP does not support a classical interpretation in terms of a technological production function for energy conversion processes. The economic implications of this inconsistency are suboptimal process operation and short term negative profits in years where plant operation should be terminated. A new capacity factor formalism, which retains the behavioral features of the original model, is proposed to resolve these discrepancies.

  14. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under write/read cycles for a practical silicon-based device. NanoThermoMechanical rectification is achieved experimentally--for the first time--with measurements at a high temperature of 600 K, demonstrating the feasibility of NanoThermoMechanical to operate in harsh environments. The proof-of-concept device has shown a maximum rectification of 10.9%. This dissertation proposes using meshed photonic crystal structures to enhance NFTR between surfaces. Numerical results show thermal rectification as high as 2500%. Incorporating these structures in thermal memory and rectification devices will significantly enhance their functionality and performance.

  15. Various aspects of ultrasound assisted emulsion polymerization process.

    PubMed

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. NASA-OAST photovoltaic energy conversion program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  17. Surface Plasmon-Assisted Solar Energy Conversion.

    PubMed

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  18. Harnessing surface plasmons for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  19. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.

    PubMed

    Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie

    2017-06-22

    Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Yang, Zhengbao; Zu, Jean

    2015-04-01

    Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.

  1. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  2. Green farming systems for the Southeast USA using manure-to-energy conversion platforms

    USDA-ARS?s Scientific Manuscript database

    Livestock operations in the Southeastern USA are faced with implementing holistic solutions to address effective manure treatment through efficient energy management and safeguarding of supporting natural resources. By integrating waste-to-energy conversion platforms, future green farming systems ca...

  3. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  4. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.

    PubMed

    Xie, Wenhao; Wen, Shaoting; Liu, Jingyong; Xie, Wuming; Kuo, Jiahong; Lu, Xingwen; Sun, Shuiyu; Chang, Kenlin; Buyukada, Musa; Evrendilek, Fatih

    2018-05-01

    Thermodynamic and kinetic parameters of co-combustion of textile dyeing sludge (TDS) and sugarcane bagasse (SB) were studied using thermogravimetric analysis in CO 2 /O 2 and N 2 /O 2 atmospheres. Our results showed that the comprehensive combustion characteristic index (CCI) of the blends was improved by 1.71-4.32 times. With the increased O 2 concentration, co-combustion peak temperature decreased from 329.7 to 318.2 °C, with an increase in its maximum weight loss rate from 10.04 to 14.99%/min and its CCI by 1.31 times (β = 20 °C·min -1 ). To evaluate the co-combustion characteristics, thermodynamic and kinetic parameters (entropy, Gibbs free energy and enthalpy changes, and apparent activation energy) were obtained in the five atmospheres. The lowest apparent activation energy of the TB64 blend was obtained in oxy-fuel atmosphere (CO 2 /O 2  = 7/3). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Harnessing Solar Energy Using Photosynthetic and Organic Pigments

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Toby Ryan

    Fossil fuels are a finite energy resource that must be supplemented or replaced by more stable forms of electrical energy. Solar technology research strives to supplement and provide eventual replacement for fossil fuel technology. This experiment focused on the use of natural pigments as photo-sensitizers in the current generation of solar cells called dye sensitized solar cells (DSSCs). Pigments from purified chlorophyll a, chlorophyll b, chlorophyll a/b, crude spinach (Spinacia oleracea) extract, phycocyanin, and chlorophyllin were used to construct DSSCs and evaluated, along with a control containing no pigment, for solar energy conversion. The anode of the solar cells consisted of titanium dioxide (TiO2) plates soaked in pigment solutions for twenty-four hours. The plates were assembled, along with an electrolyte sandwiched between cells, and a platinum-coated counter plate that functioned as the cathode. A gasket seal was placed between the plates and held together with rubber bands. The DSSCs were each tested for a maximum power (Pmax) point and a resistor was selected that corresponded to the resistance at that point. The cells were randomly placed into a power block assembly located in an environmental chamber with lighting that provided an average of 27,590 lumens at the surface of DSSCs. With appropriate resistors in place, the cells were subjected to twelve-hour days and twelve-hour nights for ten days, and measurements were recorded every ten minutes. Data were collected to obtain values for voltage in millivolts (mV), current in microamps (microA), and power in microwatts (microW), as well as beginning and ending efficiencies in converting light to usable energy. Voltages were substantially higher during the day than at night for all pigments, except for the control, indicating that the pigments functioned as DSSCs. Hence, only daytime values were used for data analysis. Voltage during the ten-day experiment ranged from 3.99 to 274 mV; current ranged from 0.0180 to 41.9 microA, and power ranged from 0.00 to 11.3 microW. Chlorophyllin had the highest peak and least voltage (274 and 161 mV), highest peak and least current (41.9 and 21.8 microA), and highest peak and least power (11.3 and 4.84 microW). The ranking of the pigments for peak voltage was: Chlorophyllin = Crude Extract ≥ Chlorophyll a = Chlorophyll a/b ≥ Phycocyanin = Chlorophyll b > Control. The ranking for least voltage was: Chlorophyllin > Phycocyanin ≥ Chlorophyll a/b ≥ Crude Extract ≥ Chlorophyll b ≥ Chlorophyll a ≥ Control. Ranking for peak and least values were similar for current and power. Solar energy conversion (efficiency in converting light energy to usable energy in watts per square meter) for all treatments ranged from 0.000595 to 0.0217% at the beginning of the experiment, and was highest in cells constructed with chlorophyllin. Based on rankings from peak and ending voltage values, as well as other measurements, it was concluded that DSSCs constructed with chlorophyllin performed the best and lasted the longest as photo-sensitizers, compared to other pigments used in this investigation. The DSSCs constructed with crude extract performed almost as well as those constructed with chlorophyllin at the beginning of the experiment, but degradation of this naturally-made pigment may have prevented these cells from sustaining solar energy conversion for more than a few days. Other pigments demonstrated conversion values higher than those of control DSSCs which contained no pigments. The results from this project provide evidence that DSSCs can produce useable energy. More research is needed to enhance and prolong the efficiency of DSSCs in solar energy conversion.

  6. Optical Energy Transfer and Conversion System

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  7. NASA-OAST program in photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  8. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  9. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    NASA Astrophysics Data System (ADS)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power management strategy is effective and the power flows among the different energy sources and the load demand is balanced successfully. The DG's impacts on the existing power system are also investigated in this dissertation. Analytical methods for finding optimal sites to deploy DG sources in power systems are presented and verified with simulation studies.

  10. Commercial Development Of Ovonic Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Ovshinsky, Stanford R.

    1983-09-01

    One square foot Ovonic amorphous photovoltaic devices are already in commercial production and are manufactured through a continuous web process. The next levels of commercialization required to achieve a large-volume power market will be discussed, and the device specifications correlated with the chemical and electronic properties of the materials that we are developing to achieve even higher efficiencies. It has been long considered a utopian dream to harness the energy of the sun to create electricity that would be competitive in cost to that produced from the conventional sources of energy such as oil, gas, and uranium. The impact on our society of stand-alone power generators without moving parts using the continually available, ubiquitous energy of the sun could certainly lead to a new age with consequences comparable to the first introduction of electricity which greatly accelerated the Industrial Revolution. Low cost, nonpolluting energy not dependent upon or limited by transmission costs could again make DC electricity a realistic option. The relatively young field of photovoltaics suffers from certain dogmas that are just now being questioned. For example, it is thought by many that solar cells utilizing crys-talline materials have inherently higher efficiencies than those using amorphous materials, and that somehow crystalline solar cells, whether fabricated from single crystals or polycrystalline material, in round or rectangular geometries, grown from the melt or by a rib-bon process, can be reduced in cost sufficiently that the economics become attractive enough for large-scale terrestrial generation of power. In this paper, we shall show that amorphous materials can have much higher efficiencies than do crystalline and that the answer to our power generation needs lies not in crystalline but in amorphous technology. At Energy Conversion Devices, Inc. (ECD), we have designed and built a production machine (described by my colleague, Dr. Izu, in a subsequent paper) which has clearly demonstrated that the basic barrier to low-cost production has been broken through and that one can now speak realistically of delivering power directly from the sun for under a dollar per peak watt merely by making larger versions of this basic continuous web, large-area thin-film machine. We have made one square foot amorphous silicon alloy PIN devices with conversion efficiencies in the range of 7%, and in the laboratory, we have reported smaller area PIN de-vices in the 10% conversion efficiency range. In addition, much higher energy conversion efficiencies can be obtained within the same process by using multi-cell layered or tandem thin-film solar cell structures (see Figure 1). These devices exhibit enhanced efficiency by utilizing a wider range of the solar spectrum. Since the theoretical maximum efficiency for multi-cell structures is over 60%, one can certainly realistically anticipate the pro-duction of thin-film amorphous photovoltaic devices with efficiencies as high as 30%. Our production device is already a two-cell tandem, as we have solved not only the problems of interfacing the individual cell components but also the difficulties associated with a one foot square format deposited on a continuous web. Figure 2 shows a continuous roll of Ovonic solar cells. Realistic calculations for a three-cell tandem thin-film device using amorphous semiconductor alloys with 1.8eV, 1.5eV, and 1.0eV optical band gaps indicate that solar energy conversion efficiencies of 20-30% can be achieved.

  11. Review of betavoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Olsen, Larry C.

    1993-05-01

    Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.

  12. Review of betavoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1993-01-01

    Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.

  13. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  14. Special electrical machines: Sources and converters of energy

    NASA Astrophysics Data System (ADS)

    Bertinov, A. I.; But, D. A.; Miziurin, S. R.; Alievskii, B. L.; Sineva, N. V.

    The principles underlying the operation of electromechanical and dynamic energy converters are discussed, along with those for the direct conversion of solar, thermal, and chemical energy into electrical energy. The theory for electromechanical and dynamic converters is formulated using a generalized model for the electromechanical conversion of energy. Particular attention is given to electrical machinery designed for special purposes. Features of superconductor electrical machines are discussed.

  15. Snap-through twinkling energy generation through frequency up-conversion

    NASA Astrophysics Data System (ADS)

    Panigrahi, Smruti R.; Bernard, Brian P.; Feeny, Brian F.; Mann, Brian P.; Diaz, Alejandro R.

    2017-07-01

    A novel experimental energy harvester is investigated for its energy harvesting capability by frequency up-conversion using snap-through structures. In particular, a single-degree-of-freedom (SDOF) experimental energy harvester model is built using a snap-through nonlinear element. The snap-through dynamics is facilitated by the experimental setup of a twinkling energy generator (TEG) consisting of linear springs and attracting cylindrical bar magnets. A cylindrical coil of enamel-coated magnet wire is used as the energy generator. The governing equations are formulated mathematically and solved numerically for a direct comparison with the experimental results. The experimental TEG and the numerical simulation results show 25-fold frequency up-conversion and the power harvesting capacity of the SDOF TEG.

  16. The effect of the DSSC photoanode area based on TiO2/Ag on the conversion efficiency of solar energy into electrical energy

    NASA Astrophysics Data System (ADS)

    Ibrayev, N.; Serikov, T.; Zavgorodniy, A.; Sadykova, A.

    2018-01-01

    A module based on dye-sensitized solar cells with Ag/TiO2 structure was developed. It is shown that the addition of the core-shell structure to the semiconductor film of titanium dioxide, where the nanoparticle Ag serves as the core, and the TiO2 is shell, increases the coefficient of solar energy conversion into electrical energy. The effect of the photoanode area on the efficiency of conversion of solar energy into electrical energy is studied. It is shown that the density of the photocurrent decreases with increasing of the photoanode area, which leads to a drop in the efficiency of solar cells.

  17. Synchronization of 1064 and 1319 nm Pulses Emitted from Actively Mode-Locked Nd:YAG Lasers and Its Application to 589 nm Sum-Frequency Generation

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Hayano, Yutaka; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2005-11-01

    Sum-frequency generation was carried out by mixing 1064 and 1319 nm pulses emitted from actively mode-locked neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for efficient 589 nm light generation. A radio frequency of approximately 75 MHz was split into two and fed to acousto-optic mode lockers of two lasers for mode-locked operation. The synchronization of the pulses was achieved by controlling the phase difference between the radio frequencies. The maximum output power at 589 nm reached 260 mW, which corresponded to an energy conversion efficiency of more than 13%. The output power was 3.8-fold that in continuous-wave operation.

  18. Initial technical environmental, and economic evaluation of space solar power concepts. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The SPS concepts which appear to be technically feasible are discussed in terms of the economic viability and competitive costs with other energy sources. The concepts discussed include: power station, microwave reception and conversion, space construction and maintenance, space transportation, and program costs and analysis. The conclusions presented include: (1) The maximum output of an individual microwave transmission link to earth is about 5 GW. (2) The mass of 10 GW SPS is between 47,000,000 and 124,000,00 kg. (3) The silicon solar cell arrays make up well over half the weight and cost of the satellite. (4) The SPS in equatorial orbit will be eclipsed by the earth and by other satellites.

  19. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    NASA Astrophysics Data System (ADS)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-01

    We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.

  20. A continuous-wave and passively Q-switched Nd:LaGGG laser at 937 nm

    NASA Astrophysics Data System (ADS)

    Li, Z.-Y.; Ying, H.-Y.; Yang, H.; He, J.-L.

    2013-10-01

    A diode-end-pumped continuous-wave (CW) and passively Q-switched Nd:LaGGG (GGG: gadolinium gallium garnet) laser at about 937 nm was demonstrated for the first time. The maximum CW output power of 540 mW was obtained with the optical-optical conversion efficiency of 3.2% and the slope efficiency of 4.4%. A V3+:YAG (yttrium aluminum garnet) saturable absorber with the initial transmission of 97% was used for the passive Q-switching regime. The shortest pulse width was achieved as 500 ns with the pulse repetition rate of 96 kHz. The corresponding single-pulse energy and pulse peak power were determined as 1.56 μJ and 3.12 W, respectively.

Top