Sample records for maximum field intensity

  1. The relationship between built-up areas and the spatial development of the mean maximum urban heat island in Debrecen, Hungary

    NASA Astrophysics Data System (ADS)

    Bottyán, Zsolt; Kircsi, Andrea; Szegedi, Sándor; Unger, János

    2005-03-01

    The climate of built-up regions differs significantly from rural regions and the most important modifying effect of urbanization on local climate is the urban temperature excess, otherwise called the urban heat island (UHI).This study examines the influence of built-up areas on the near-surface air temperature field in the case of the medium-sized city of Debrecen, Hungary. Mobile measurements were used under different weather conditions between March 2002 and March 2003. Efforts concentrated on the determination of the spatial distribution of mean maximum UHI intensity with special regard to land-use features such as built-up ratio and its areal extensions.In both (heating and non-heating) seasons the spatial distribution of the UHI intensity field showed a basically concentric shape with local anomalies. The mean maximum UHI intensity reaches more than 2.0 °C (heating season) and 2.5 °C (non-heating season) in the centre of the city. We established the relationship between the above-mentioned land-use parameters and mean maximum UHI intensity by means of multiple linear regression analysis. As the measured and predicted mean maximum UHI intensity patterns show, there is an obvious connection between the spatial distribution of urban thermal excess and the land-use parameters examined, so these parameters play a significant role in the development of the strong UHI intensity field over the city.

  2. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    PubMed

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  3. Photoinduced currents in pristine and ion irradiated kapton-H polyimide

    NASA Astrophysics Data System (ADS)

    Sharma, Anu; Sridharbabu, Y.; Quamara, J. K.

    2014-10-01

    The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.

  4. Photoinduced currents in pristine and ion irradiated kapton-H polyimide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anu, E-mail: sharmaanu81@gmail.com; Sridharbabu, Y., E-mail: sharmaanu81@gmail.com; Quamara, J. K., E-mail: sharmaanu81@gmail.com

    2014-10-15

    The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.

  5. Shaped superconductor cylinder retains intense magnetic field

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  6. A bi-prism interferometer for hard x-ray photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isakovic, A.F.; Siddons, D.; Stein, A.

    2010-04-06

    Micro-fabricated bi-prisms have been used to create an interference pattern from an incident hard X-ray beam, and the intensity of the pattern probed with fluorescence from a 30 nm-thick metal film. Maximum fringe visibility exceeded 0.9 owing to the nano-sized probe and the choice of single-crystal prism material. A full near-field analysis is necessary to describe the fringe field intensities, and the transverse coherence lengths were extracted at APS beamline 8-ID-I. It is also shown that the maximum number of fringes is dependent only on the complex refractive index of the prism material.

  7. Multispacecraft Observations of Solar Flare Particles in the Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Wibberenz, G.; Cane, H. V.

    2007-01-01

    For a number of impulsive solar particle events we examine variations of maximum intensities and times to maximum intensity as a function of longitude, using observations from the two Helios spacecraft and near the Earth. We find that electrons in the MeV range can be detected more than 80 deg. from the flare longitude, corresponding to a considerably wider "well connected" region than that (approx. 20 deg. half width) reported for He-3-rich impulsive solar events. This wide range and the decrease of peak intensities with increasing connection angle revive the concept of some propagation process in the low corona that has a diffusive nature. Delays to the intensity maximum are not systematically correlated with connection angles. We argue that interplanetary scattering parallel to the average interplanetary magnetic field, that varies with position in space, plays an important role in flare particle events. In a specific case variations of the time profiles with radial distance and with particle rigidity are used to quantitatively confirm spatial diffusion. For a few cases near the edges of the well connected region the very long times to maximum intensity might result from interplanetary lateral transport.

  8. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields.

    PubMed

    Taskin, Mesut; Esim, Nevzat; Genisel, Mucip; Ortucu, Serkan; Hasenekoglu, Ismet; Canli, Ozden; Erdal, Serkan

    2013-01-01

    The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.

  9. Numerical simulation of laser ion acceleration at ultra high intensity

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Popescu, Alexandra; d'Humières, Emmanuel; Vizman, Daniel

    2017-01-01

    With the latest advances in attainable laser intensity, the need to obtain better quality ion and electron beams has been a major field of research. This paper studies the effects of different target density profiles on the spatial distribution of the accelerated particles, the maximum energies achieved, and the characteristics of the electromagnetic fields using the same laser pulse parameters. The study starts by describing a baseline for a flat target which presents a proton-rich microdot on its backside. The effects of introducing a target curvature and, further on, a cone laser focusing structure are compared with the flat target baseline results. The maximum energy obtained increases when using complex structures, and also a smaller divergence of the ion beam is observed.

  10. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  11. Improving IMRT delivery efficiency using intensity limits during inverse planning.

    PubMed

    Coselmon, Martha M; Moran, Jean M; Radawski, Jeffrey D; Fraass, Benedick A

    2005-05-01

    Inverse planned intensity modulated radiotherapy (IMRT) fields can be highly modulated due to the large number of degrees of freedom involved in the inverse planning process. Additional modulation typically results in a more optimal plan, although the clinical rewards may be small or offset by additional delivery complexity and/or increased dose from transmission and leakage. Increasing modulation decreases delivery efficiency, and may lead to plans that are more sensitive to geometrical uncertainties. The purpose of this work is to assess the use of maximum intensity limits in inverse IMRT planning as a simple way to increase delivery efficiency without significantly affecting plan quality. Nine clinical cases (three each for brain, prostate, and head/neck) were used to evaluate advantages and disadvantages of limiting maximum intensity to increase delivery efficiency. IMRT plans were generated using in-house protocol-based constraints and objectives for the brain and head/neck, and RTOG 9406 dose volume objectives in the prostate. Each case was optimized at a series of maximum intensity ratios (the product of the maximum intensity and the number of beams divided by the prescribed dose to the target volume), and evaluated in terms of clinical metrics, dose-volume histograms, monitor units (MU) required per fraction (SMLC and DMLC delivery), and intensity map variation (a measure of the beam modulation). In each site tested, it was possible to reduce total monitor units by constraining the maximum allowed intensity without compromising the clinical acceptability of the plan. Monitor unit reductions up to 38% were observed for SMLC delivery, while reductions up to 29% were achieved for DMLC delivery. In general, complicated geometries saw a smaller reduction in monitor units for both delivery types, although DMLC delivery required significantly more monitor units in all cases. Constraining the maximum intensity in an inverse IMRT plan is a simple way to improve delivery efficiency without compromising plan objectives.

  12. Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations

    NASA Technical Reports Server (NTRS)

    Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.

    2002-01-01

    Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.

  13. Optimized multi-electrode stimulation increases focality and intensity at target

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Datta, Abhishek; Bikson, Marom; Su, Yuzhuo; Parra, Lucas C.

    2011-08-01

    Transcranial direct current stimulation (tDCS) provides a non-invasive tool to elicit neuromodulation by delivering current through electrodes placed on the scalp. The present clinical paradigm uses two relatively large electrodes to inject current through the head resulting in electric fields that are broadly distributed over large regions of the brain. In this paper, we present a method that uses multiple small electrodes (i.e. 1.2 cm diameter) and systematically optimize the applied currents to achieve effective and targeted stimulation while ensuring safety of stimulation. We found a fundamental trade-off between achievable intensity (at the target) and focality, and algorithms to optimize both measures are presented. When compared with large pad-electrodes (approximated here by a set of small electrodes covering 25cm2), the proposed approach achieves electric fields which exhibit simultaneously greater focality (80% improvement) and higher target intensity (98% improvement) at cortical targets using the same total current applied. These improvements illustrate the previously unrecognized and non-trivial dependence of the optimal electrode configuration on the desired electric field orientation and the maximum total current (due to safety). Similarly, by exploiting idiosyncratic details of brain anatomy, the optimization approach significantly improves upon prior un-optimized approaches using small electrodes. The analysis also reveals the optimal use of conventional bipolar montages: maximally intense tangential fields are attained with the two electrodes placed at a considerable distance from the target along the direction of the desired field; when radial fields are desired, the maximum-intensity configuration consists of an electrode placed directly over the target with a distant return electrode. To summarize, if a target location and stimulation orientation can be defined by the clinician, then the proposed technique is superior in terms of both focality and intensity as compared to previous solutions and is thus expected to translate into improved patient safety and increased clinical efficacy.

  14. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.

    PubMed

    Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5  T at laser intensities ~10 21  W cm -2 ) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

  15. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE PAGES

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; ...

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  16. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  17. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.

    PubMed

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2013-01-22

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to <40% of its present value, for which we estimate >40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.

  18. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal

    PubMed Central

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi

    2013-01-01

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR–cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama–Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to <40% of its present value, for which we estimate >40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux. PMID:23297205

  19. Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment

    USDA-ARS?s Scientific Manuscript database

    Sterilization effects of the pulsed magnetic field with a maximum intensity of 11.37 Tesla were investigated on Escherichia coli AS 1.129, Staphylococcus aureus AS 1.89, Saccharomyces cerevisiae ATTC 7552 and Bacillus subtilis AS 1.921. The well-regulated fluctuations of sterilization effects with m...

  20. Regional peculiarities in the inter-annual distribution of the red 630.0 nm line nightglow intensities over Abastumani

    NASA Astrophysics Data System (ADS)

    Toriashvili, L.; Didebulidze, G. G.; Todua, M.

    2017-12-01

    Peculiarities of the inter-annual distribution of atomic oxygen red OI 630.0 nm line nightglow intensity observed from Abastumani Astrophysical Observatory (41.75 N; 42.82 E) are considered, using the long-term dataset. This distribution demonstrates semi-annual and annual-like variations which occur during solar minimum, as well as maximum phases. The maximum values of the red line intensities are in Summer, however in June it is lower than in May and July, which may be due to regional effects. This phenomenon is considered as a the possible result of regional dynamical processes influencing the behavior of the ionosphere F2 layer which cause changes of electrons/ions densities in the 630.0 nm line luminous region (maximum luminous layer is at about 230-280 km). Using the red line intensities and ionosphere F2 layer electron density data of the IRI-12 model, the changes of meridional thermospheric wind velocities are estimated for this mid-latitude region. These meridional and vertical wind field changes causes of variations of the red line intensities in June can be caused by tidal wind and accompanied by atmospheric gravity waves activities.

  1. Evolution of the net surface shortwave radiation over the Indian Ocean during summer MONEX (1979) - A satellite description

    NASA Technical Reports Server (NTRS)

    Gautier, C.

    1986-01-01

    The evolution of the net shortwave (NSW) radiation fields during the monsoon of 1979 was analyzed, using geostationary satellite data, collected before, during, and after the monsoon onset. It is seen, from the time sequence of NSW fields, that during the preonset phase the characteristics of the NSW field are dominated by a strong maximum in the entire Arabian Sea and by a strong minimum in the central and eastern equatorial Indian Ocean, the minimum being associated with the intense convective activity occurring in that region. As the season evolves, the minima of NSW associated with the large scale convective activity propagate westward in the equatorial ocean. During the monsoon onset, there occurs an explosive onset of the convection activity in the Arabian Sea: the maximum has retreated towards the Somalia coast, and most of the sea then experiences a strong minimum of NSW associated with the intense precipitation occurring along the southwestern coast of the Indian subcontinent.

  2. CMEs, the Tail of the Solar Wind Magnetic Field Distribution, and 11-yr Cosmic Ray Modulation at 1 AU. Revised

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Richardson, I. G.

    2003-01-01

    Using a recent classification of the solar wind at 1 AU into its principal components (slow solar wind, high-speed streams, and coronal mass ejections (CMEs) for 1972-2000, we show that the monthly-averaged galactic cosmic ray intensity is anti-correlated with the percentage of time that the Earth is imbedded in CME flows. We suggest that this correlation results primarily from a CME related change in the tail of the distribution function of hourly-averaged values of the solar wind magnetic field (B) between solar minimum and solar maximum. The number of high-B (square proper subset 10 nT) values increases by a factor of approx. 3 from minimum to maximum (from 5% of all hours to 17%), with about two-thirds of this increase due to CMEs. On an hour-to-hour basis, average changes of cosmic ray intensity at Earth become negative for solar wind magnetic field values square proper subset 10 nT.

  3. Confinement of laser plasma expansion with strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  4. Fixed-head star tracker magnitude calibration on the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Pitone, Daniel S.; Twambly, B. J.; Eudell, A. H.; Roberts, D. A.

    1990-01-01

    The sensitivity of the fixed-head star trackers (FHSTs) on the Solar Maximum Mission (SMM) is defined as the accuracy of the electronic response to the magnitude of a star in the sensor field-of-view, which is measured as intensity in volts. To identify stars during attitude determination and control processes, a transformation equation is required to convert from star intensity in volts to units of magnitude and vice versa. To maintain high accuracy standards, this transformation is calibrated frequently. A sensitivity index is defined as the observed intensity in volts divided by the predicted intensity in volts; thus, the sensitivity index is a measure of the accuracy of the calibration. Using the sensitivity index, analysis is presented that compares the strengths and weaknesses of two possible transformation equations. The effect on the transformation equations of variables, such as position in the sensor field-of-view, star color, and star magnitude, is investigated. In addition, results are given that evaluate the aging process of each sensor. The results in this work can be used by future missions as an aid to employing data from star cameras as effectively as possible.

  5. Very Large Array Observations of the Sun with Related Observations Using the SMM (Solar Maximum Mission) Satellite

    DTIC Science & Technology

    1988-10-12

    white light sunspots (black dotsl but these regions are associated with intense radiation at 20 cm wave- material would, however, be invisible in X...spots. The intense , million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength Hi...capable of measuring the radio intensity and polarization with high angular and time resolution, thereby providing information about the preburst heating

  6. Electron acceleration by laser produced wake field: Pulse shape effect

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  7. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  8. Improving our knowledge of the rapid geomagnetic field intensity variation observed in Europe around 800 AD

    NASA Astrophysics Data System (ADS)

    Gómez-Paccard, M.; Chauvin, A.; Lanos, P.; Dufresne, P.; Kovacheva, M.; Hill, M. J.; Beamud, E.; Gutiérrez-Lloret, S.; Cañavate, V.; Blain, S.; Bouvier, A.; Oberlin, C.; Guibert, P.; Sapin, C.; Pringent, D.

    2011-12-01

    Available European data indicate that during the past 2500 years there have been periods of rapid intensity geomagnetic fluctuations interspersed with periods of little change. The challenge now is to precisely describe these rapid changes. The aim of this study is to obtain an improved description of the sharp geomagnetic intensity change that took place in Western Europe around 800 yrs AD as well as to investigate if this peak is observed at a continental scale. For this purpose 13 precisely dated early medieval Spanish pottery fragments, 4 archeological French kilns and a 3 collections of bricks used for the construction of different historical buildings from France and with ages ranging between 330 to 1290 AD have been studied. The material collected has been dated by archeological/historical constraints together with radiocarbon,thermoluminiscence (TL) and archeomagentic analysis. From classical Thellier experiments including TRM anisotropy and cooling rate corrections upon archeointensity estimates and conducted on 164 specimens (119 of them giving reliable results) ten new high-quality mean intensities have been obtained. The new intensity data together with a selection of the most reliable data from Western Europe have been relocated to the latitude of Paris and confirm the existence of an intensity maxima of ~85 μT centred at ~850 AD and related to intensity changes up to 20 μT per century. The results also indicate that a previous abrupt intensity change (reaching a maximum value of ~ 90 μT) took place in Western Europe around 650 AD. A selection of high-quality intensity data from Bulgaria, Italy and Greece indicate a very similar intensity trend for Eastern Europe. Although available data indicate that the duration of such periods of high intensities may be of less than one century more data are needed to infer the exact duration of these maximums. A comparison between the selected data and regional and global geomagnetic field models indicates that such models fail to reproduce the detailed evolution of geomagnetic intensity changes. These results highlight the need of new reliable and precisely dated archeointensity data if a refined description of geomagnetic field changes wants to be obtained.

  9. Estimated intensity of the EMP from lightning discharges necessary for elves initiation based on balloon experiment

    NASA Astrophysics Data System (ADS)

    Kondo, S.; Yoshida, A.; Takahashi, Y.; Chikada, S.; Adachi, T.; Sakanoi, T.

    2007-12-01

    Transient optical phenomena in the mesosphere and lower ionosphere called transient luminous events (TLEs) have been investigated extensively since the first discovery in 1989. In the lower ionosphere, elves are generated by the electromagnetic pulses (EMPs) radiated from the intense lightning current. On the ground-based observation, cameras can not always identify the occurrence of elves because elves emission is sometimes reduced significantly by the atmosphere and blocked by clouds. Therefore, it has been difficult to determine the threshold of intensity of EMPs necessary for initiation of elves. We simultaneously carried out optical and sferics measurements for TLEs and lightning discharges using a high altitude balloon launched at Sanriku Balloon Center on the night of August 25 / 26 in 2006. We fixed four CCD cameras on the gondola, each of which had horizontal FOV of ~100 degree. They cover 360 degree in horizontal direction and imaged the TLEs without atmospheric extinction nor blocking by clouds. The frame rate is 30 fps. We installed three dipole antennas at the gondola, which received the vertical and horizontal electric fields radiated from lightning discharges. The frequency range of the VLF receiver is 1-25 kHz. We also make use of VLF sferics data obtained by ground-based antennas located at Tohoku University in Sendai. We picked up six elves from the image data set obtained by the CCD cameras, and examined the maximum amplitudes of the vertical electric field for 22 lightning discharge events including the six elves events observed both at the balloon and at Sendai. It is found that the maximum amplitudes of the vertical electric field in the five elves events are much larger than those in the other lightning events. We estimate the intensity of the radiated electric field necessary for elves. About one elves event, we don't see intense vertical electric field in the balloon data.

  10. ON THE RELATIONSHIP BETWEEN SUNSPOT STRUCTURE AND MAGNETIC FIELD CHANGES ASSOCIATED WITH SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn

    Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less

  11. Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)

    2003-01-01

    A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.

  12. The Advantages of Collimator Optimization for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Doozan, Brian

    The goal of this study was to improve dosimetry for pelvic, lung, head and neck, and other cancers sites with aspherical planning target volumes (PTV) using a new algorithm for collimator optimization for intensity modulated radiation therapy (IMRT) that minimizes the x-jaw gap (CAX) and the area of the jaws (CAA) for each treatment field. A retroactive study on the effects of collimator optimization of 20 patients was performed by comparing metric results for new collimator optimization techniques in Eclipse version 11.0. Keeping all other parameters equal, multiple plans are created using four collimator techniques: CA 0, all fields have collimators set to 0°, CAE, using the Eclipse collimator optimization, CAA, minimizing the area of the jaws around the PTV, and CAX, minimizing the x-jaw gap. The minimum area and the minimum x-jaw angles are found by evaluating each field beam's eye view of the PTV with ImageJ and finding the desired parameters with a custom script. The evaluation of the plans included the monitor units (MU), the maximum dose of the plan, the maximum dose to organs at risk (OAR), the conformity index (CI) and the number of fields that are calculated to split. Compared to the CA0 plans, the monitor units decreased on average by 6% for the CAX method with a p-value of 0.01 from an ANOVA test. The average maximum dose remained within 1.1% difference between all four methods with the lowest given by CAX. The maximum dose to the most at risk organ was best spared by the CAA method, which decreased by 0.62% compared to the CA0. Minimizing the x-jaws significantly reduced the number of split fields from 61 to 37. In every metric tested the CAX optimization produced comparable or superior results compared to the other three techniques. For aspherical PTVs, CAX on average reduced the number of split fields, lowered the maximum dose, minimized the dose to the surrounding OAR, and decreased the monitor units. This is achieved while maintaining the same control of the PTV.

  13. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing

    PubMed Central

    Cheing, Alex K. K.; Ng, Gabriel Y. F.; Cheing, Gladys L. Y.

    2018-01-01

    The present study investigated the effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. Two intensities of PEMF were adopted for comparison. We randomly assigned 111 10-week-old male streptozotocin-induced diabetic Sprague-Dawley rats to two PEMF groups and a sham control group. Six-millimetre biopsy punched full thickness wounds were made on the lateral side of their hindlimbs. The PEMF groups received active PEMF delivered at 25 Hz with intensity of either 2 mT or 10 mT daily, while the sham group was handled in a similar way except they were not exposed to PEMF. Wound tissues were harvested for tensile testing on post-wounding days 3, 5, 7, 10, 14 and 21. Maximum load, maximum stress, energy absorption capacity, Young’s modulus and thickness of wound tissue were measured. On post-wounding day 5, the PEMF group that received 10-mT intensity had significantly increased energy absorption capacity and showed an apparent increase in the maximum load. However, the 10-mT PEMF group demonstrated a decrease in Young’s modulus on day 14. The 10-mT PEMF groups showed a significant increase in the overall thickness of wound tissue whereas the 2-mT group showed a significant decrease in the overall maximum stress of the wounds tissue. The present findings demonstrated that the PEMF delivered at 10 mT can improve energy absorption capacity of diabetic wounds in the early healing phase. However, PEMF (both 2-mT and 10-mT) seemed to impair the material properties (maximum stress and Young’s modulus) in the remodelling phase. PEMF may be a useful treatment for promoting the recovery of structural properties (maximum load and energy absorption capacity), but it might not be applied at the remodelling phase to avoid impairing the recovery of material properties. PMID:29324868

  14. Enhancing the lycopene in vitro bioaccessibility of tomato juice synergistically applying thermal and non-thermal processing technologies.

    PubMed

    Jayathunge, K G L R; Stratakos, Alexandros Ch; Cregenzán-Albertia, Oliver; Grant, Irene R; Lyng, James; Koidis, Anastasios

    2017-04-15

    The influence of moderate intensity pulsed electric field pre-processing on increasing the lycopene bioaccessibility of tomato fruit, and the combined effect of blanching, ultrasonic and high intensity pulsed electric field processing on further enhancement of the lycopene bioaccessibility after juicing were investigated. Maximum total lycopene bioaccessibility (9.6%) of the tomato fruit was achieved by a 4μs pre-processed treatment after 24h holding period and further processing results revealed that all treatments were effective to increase the total lycopene. Most of juice processing treatments decreased the release of lycopene from the tomato matrix during digestion. Only the treatment of blanching followed by high intensity pulsed electric field showed a significant release of trans-(4.01±0.48) and cis-(5.04±0.26μg/g) lycopene, achieving 15.6% total lycopene bioaccessibility. Thus, processing of pre-blanched juice using high intensity pulsed electric field, derived from pre-processed tomato was the best overall process to achieve the highest nutritive value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A new method for evaluating impacts of data assimilation with respect to tropical cyclone intensity forecast problem

    NASA Astrophysics Data System (ADS)

    Vukicevic, T.; Uhlhorn, E.; Reasor, P.; Klotz, B.

    2012-12-01

    A significant potential for improving numerical model forecast skill of tropical cyclone (TC) intensity by assimilation of airborne inner core observations in high resolution models has been demonstrated in recent studies. Although encouraging , the results so far have not provided clear guidance on the critical information added by the inner core data assimilation with respect to the intensity forecast skill. Better understanding of the relationship between the intensity forecast and the value added by the assimilation is required to further the progress, including the assimilation of satellite observations. One of the major difficulties in evaluating such a relationship is the forecast verification metric of TC intensity: the maximum one-minute sustained wind speed at 10 m above surface. The difficulty results from two issues : 1) the metric refers to a practically unobservable quantity since it is an extreme value in a highly turbulent, and spatially-extensive wind field and 2) model- and observation-based estimates of this measure are not compatible in terms of spatial and temporal scales, even in high-resolution models. Although the need for predicting the extreme value of near surface wind is well justified, and the observation-based estimates that are used in practice are well thought of, a revised metric for the intensity is proposed for the purpose of numerical forecast evaluation and the impacts on the forecast. The metric should enable a robust observation- and model-resolvable and phenomenologically-based evaluation of the impacts. It is shown that the maximum intensity could be represented in terms of decomposition into deterministic and stochastic components of the wind field. Using the vortex-centric cylindrical reference frame, the deterministic component is defined as the sum of amplitudes of azimuthal wave numbers 0 and 1 at the radius of maximum wind, whereas the stochastic component is represented by a non-Gaussian PDF. This decomposition is exact and fully independent of individual TC properties. The decomposition of the maximum wind intensity was first evaluated using several sources of data including Step Frequency Microwave Radiometer surface wind speeds from NOAA and Air Force reconnaissance flights,NOAA P-3 Tail Doppler Radar measurements, and best track maximum intensity estimates as well as the simulations from Hurricane WRF Ensemble Data Assimilation System (HEDAS) experiments for 83 real data cases. The results confirmed validity of the method: the stochastic component of the maximum exibited a non-Gaussian PDF with small mean amplitude and variance that was comparable to the known best track error estimates. The results of the decomposition were then used to evaluate the impact of the improved initial conditions on the forecast. It was shown that the errors in the deterministic component of the intensity had the dominant effect on the forecast skill for the studied cases. This result suggests that the data assimilation of the inner core observations could focus primarily on improving the analysis of wave number 0 and 1 initial structure and on the mechanisms responsible for forcing the evolution of this low-wavenumber structure. For the latter analysis, the assimilation of airborne and satellite remote sensing observations could play significant role.

  16. A Variational Approach to Simultaneous Image Segmentation and Bias Correction.

    PubMed

    Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong

    2015-08-01

    This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.

  17. Electric field numerical simulation of disc type electrostatic spinning spinneret

    NASA Astrophysics Data System (ADS)

    Wei, L.; Deng, ZL; Qin, XH; Liang, ZY

    2018-01-01

    Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.

  18. Alfven waves in spiral interplanetary field

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1973-01-01

    A theoretical study is presented of the Alfven waves in the spiral interplanetary magnetic field. The Alfven waves under consideration are arbitrary, large amplitude, non-monochromatic, microscale waves of any polarization. They superpose on a mesoscale background flow of thermally anisotropic plasma. Using WKB approximation, an analytical solution for the amplitude vectors is obtained as a function of the background flow properties: density, velocity, Alfven speed, thermal anisotropy, and the spiral angel. The necessary condition for the validity of the WKB solution is discussed. The intensity of fluctuations is calculated as a function of heliocentric distance. Relative intensity of fluctuations as compared with the magnitude of the background field has its maximum in the region near l au. Thus outside of this region, the solar wind is less turbulent.

  19. Scaling Laws of the Two-Electron Sum-Energy Spectrum in Strong-Field Double Ionization.

    PubMed

    Ye, Difa; Li, Min; Fu, Libin; Liu, Jie; Gong, Qihuang; Liu, Yunquan; Ullrich, J

    2015-09-18

    The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT). At higher intensities the spectra collapse into a single distribution. This behavior can be well explained within a semiclassical model providing clear evidence of the importance of multiple recollisions in the BRT regime. Here, ultrafast thermalization between both electrons is found occurring within three optical cycles only and leaving its clear footprint in the sum-energy spectra.

  20. Maximum a posteriori classification of multifrequency, multilook, synthetic aperture radar intensity data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Chellappa, R.

    1993-01-01

    We present a maximum a posteriori (MAP) classifier for classifying multifrequency, multilook, single polarization SAR intensity data into regions or ensembles of pixels of homogeneous and similar radar backscatter characteristics. A model for the prior joint distribution of the multifrequency SAR intensity data is combined with a Markov random field for representing the interactions between region labels to obtain an expression for the posterior distribution of the region labels given the multifrequency SAR observations. The maximization of the posterior distribution yields Bayes's optimum region labeling or classification of the SAR data or its MAP estimate. The performance of the MAP classifier is evaluated by using computer-simulated multilook SAR intensity data as a function of the parameters in the classification process. Multilook SAR intensity data are shown to yield higher classification accuracies than one-look SAR complex amplitude data. The MAP classifier is extended to the case in which the radar backscatter from the remotely sensed surface varies within the SAR image because of incidence angle effects. The results obtained illustrate the practicality of the method for combining SAR intensity observations acquired at two different frequencies and for improving classification accuracy of SAR data.

  1. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  2. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    PubMed

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The electromagnetic properties of plasma produced by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Zhang, Qingming; Gong, Liangfei; Ma, Yuefen; Long, Renrong; Gong, Zizheng

    2018-02-01

    The change of electron density in moving plasma in this paper is empirically determined according to multiple ground-based experimental results and the assumption of the Maxwell distribution. Moreover, the equation of the magnetic field intensity, dominated by the current due to the collective electron movement during the expansion, is presented on the basis of the Biot-Savart law, and its relationship with time and space is subsequently depicted. In addition, hypervelocity impact experiments on a 2AL12 target have been carried out using a two-stage light gas gun to accelerate a 2AL12 projectile of 6.4 mm to 6.2 km/s. Spiral coils are designed to measure the intensity of the electromagnetic field induced by this impact. The experimental results show that the magnetic field strength is an alternate pulse maintaining nearly 1 ms and its maximum is close to 15 μT, which is strong enough to interfere with the communication circuit and chip in spacecrafts. Lastly, numerical simulation of the magnetic field intensity using this experimental parameter reveals that the intensity in our estimation from our theory tends to be well consistent with the experimental data in the first peak of the pulse signal.

  4. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  5. Laser pulse heating of steel mixing with WC particles in a irradiated region

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-12-01

    Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.

  6. Field survey of earthquake effects from the magnitude 4.0 southern Maine earthquake of October 16, 2012

    USGS Publications Warehouse

    Amy L. Radakovich,; Alex J. Fergusen,; Boatwright, John

    2016-06-02

    The magnitude 4.0 earthquake that occurred on October 16, 2012, near Hollis Center and Waterboro in southwestern Maine surprised and startled local residents but caused only minor damage. A two-person U.S. Geological Survey (USGS) team was sent to Maine to conduct an intensity survey and document the damage. The only damage we observed was the failure of a chimney and plaster cracks in two buildings in East and North Waterboro, 6 kilometers (km) west of the epicenter. We photographed the damage and interviewed residents to determine the intensity distribution in the epicentral area. The damage and shaking reports are consistent with a maximum Modified Mercalli Intensity (MMI) of 5–6 for an area 1–8 km west of the epicenter, slightly higher than the maximum Community Decimal Intensity (CDI) of 5 determined by the USGS “Did You Feel It?” Web site. The area of strong shaking in East Waterboro corresponds to updip rupture on a fault plane that dips steeply east. 

  7. Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beleggia, M.; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin; Kasama, T.

    We apply off-axis electron holography and Lorentz microscopy in the transmission electron microscope to map the electric field generated by a sharp biased metallic tip. A combination of experimental data and modelling provides quantitative information about the potential and the field around the tip. Close to the tip apex, we measure a maximum field intensity of 82 MV/m, corresponding to a field k factor of 2.5, in excellent agreement with theory. In order to verify the validity of the measurements, we use the inferred charge density distribution in the tip region to generate simulated phase maps and Fresnel (out-of-focus) imagesmore » for comparison with experimental measurements. While the overall agreement is excellent, the simulations also highlight the presence of an unexpected astigmatic contribution to the intensity in a highly defocused Fresnel image, which is thought to result from the geometry of the applied field.« less

  8. Impact of Laser Radiation on Microhardness of a Semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvid', A.; Onufrijevs, P.; Chiradze, G.

    2011-12-23

    It was found that strongly absorbed Nd:YAG laser radiation leads to a non-monotonous dependence of microhardness of p- and n-type Si crystals on laser radiation. This dependence is characterized by two maxima for p-Si and one maximum for n-Si crystals. In both cases the increase of microhardness at higher laser intensity is explained by formation of mechanically compressed layer at the irradiated surface due to concentration of the interstitial atoms of Si at the surface in temperature gradient field. The decrease of the microhardness is explained by formation of nano-cones as a result of plastic deformation of the mechanically stressedmore » layer. The additional maximum at lower laser intensity for p-Si crystal is explained by p-n type inversion of Si conductivity.« less

  9. Physical understanding of the tropical cyclone wind-pressure relationship.

    PubMed

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  10. Studies on laws of stress-magnetization based on magnetic memory testing technique

    NASA Astrophysics Data System (ADS)

    Ren, Shangkun; Ren, Xianzhi

    2018-03-01

    Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.

  11. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.

    PubMed

    Sel, Davorka; Lebar, Alenka Macek; Miklavcic, Damijan

    2007-05-01

    In electrochemotherapy (ECT) electropermeabilization, parameters (pulse amplitude, electrode setup) need to be customized in order to expose the whole tumor to electric field intensities above permeabilizing threshold to achieve effective ECT. In this paper, we present a model-based optimization approach toward determination of optimal electropermeabilization parameters for effective ECT. The optimization is carried out by minimizing the difference between the permeabilization threshold and electric field intensities computed by finite element model in selected points of tumor. We examined the feasibility of model-based optimization of electropermeabilization parameters on a model geometry generated from computer tomography images, representing brain tissue with tumor. Continuous parameter subject to optimization was pulse amplitude. The distance between electrode pairs was optimized as a discrete parameter. Optimization also considered the pulse generator constraints on voltage and current. During optimization the two constraints were reached preventing the exposure of the entire volume of the tumor to electric field intensities above permeabilizing threshold. However, despite the fact that with the particular needle array holder and pulse generator the entire volume of the tumor was not permeabilized, the maximal extent of permeabilization for the particular case (electrodes, tissue) was determined with the proposed approach. Model-based optimization approach could also be used for electro-gene transfer, where electric field intensities should be distributed between permeabilizing threshold and irreversible threshold-the latter causing tissue necrosis. This can be obtained by adding constraints on maximum electric field intensity in optimization procedure.

  12. Consideration of the effects of intense tissue heating on the RF electromagnetic fields during MRI: simulations for MRgFUS in the hip

    NASA Astrophysics Data System (ADS)

    Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.

    2015-01-01

    Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.

  13. The effect of the solar field reversal on the modulation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Goldstein, B. E.

    1983-01-01

    There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given.

  14. New Late Neolithic (c. 7000-5000 BC) archeointensity data from Syria. Reconstructing 9000 years of archeomagnetic field intensity variations in the Middle East

    NASA Astrophysics Data System (ADS)

    Gallet, Yves; Molist Montaña, Miquel; Genevey, Agnès; Clop García, Xavier; Thébault, Erwan; Gómez Bach, Anna; Le Goff, Maxime; Robert, Béatrice; Nachasova, Inga

    2015-01-01

    We present new archeomagnetic intensity data from two Late Neolithic archeological sites (Tell Halula and Tell Masaïkh) in Syria. These data, from 24 groups of potsherds encompassing 15 different time levels, are obtained using the Triaxe experimental protocol, which takes into account both the thermoremanent magnetization anisotropy and cooling rate effects on intensity determinations. They allow us to recover the geomagnetic intensity variations in the Middle East, between ∼7000 BC and ∼5000 BC, i.e. during the so-called pre-Halaf, proto-Halaf, Halaf and Halaf-Ubaid Transitional cultural phases. The data are compared with previous archeointensity results of similar ages from Northern Iraq (Yarim Tepe II and Tell Sotto) and Bulgaria. We find that previous dating of the Iraqi material was in error. When corrected, all northern Mesopotamian data show a relatively good consistency and also reasonably match with the Bulgarian archeointensity dataset. Using a compilation of available data, we construct a geomagnetic field intensity variation curve for the Middle East encompassing the past 9000 years, which makes it presently the longest known regional archeomagnetic intensity record. We further use this compilation to constrain variations in dipole field moment over most of the Holocene. In particular, we discuss the possibility that a significant dipole moment maximum occurred during the third millennium BC, which cannot easily be identified in available time-varying global geomagnetic field reconstructions.

  15. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions.

    PubMed

    Schumaker, W; Nakanii, N; McGuffey, C; Zulick, C; Chyvkov, V; Dollar, F; Habara, H; Kalintchenko, G; Maksimchuk, A; Tanaka, K A; Thomas, A G R; Yanovsky, V; Krushelnick, K

    2013-01-04

    Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.

  16. On the predominance of the radial component of the magnetic field in the solar corona

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.; Woo, R.; Arnaud, J.

    2002-01-01

    In this paper, the polarized intensity measurements of the Fe XIII 10747 A line described by Arnaud are placed, for the first time, in the context of the corresponding pB images from the HAO Mauna Loa MkIII K-Coronameter, which first became available in 1980. It is shown how the predominance of the radial direction of the coronal magnetic field at solar maximum is consistent with radially expanding magnetic field lines coexisting with the large-scale structures associated with streamers.

  17. Optimization of magnetic field-assisted ultrasonication for the disintegration of waste activated sludge using Box-Behnken design with response surface methodology.

    PubMed

    Guan, Su; Deng, Feng; Huang, Si-Qi; Liu, Shu-Yang; Ai, Le-Xian; She, Pu-Ying

    2017-09-01

    This study investigated for the first time the feasibility of using a magnetic field for sludge disintegration. Approximately 41.01% disintegration degree (DD) was reached after 30min at 180mT magnetic field intensity upon separate magnetic field treatment. Protein and polysaccharide contents significantly increased. This test was optimized using a Box-Behnken design (BBD) with response surface methodology (RSM) to fit the multiple equation of the DD. The maximum DD was 43.75% and the protein and polysaccharide contents increased to 56.71 and 119.44mg/L, respectively, when the magnetic field strength was 119.69mT, reaction time was 30.49min, and pH was 9.82 in the optimization experiment. We then analyzed the effects of ultrasound alone. We are the first to combine magnetic field with ultrasound to disintegrate waste-activated sludge (WAS). The optimum effect was obtained with the application of ultrasound alone at 45kHz frequency, with a DD of about 58.09%. By contrast, 62.62% DD was reached in combined magnetic field and ultrasound treatment. This combined test was also optimized using BBD with RSM to fit the multiple equation of DD. The maximum DD of 64.59% was achieved when the magnetic field intensity was 197.87mT, ultrasonic frequency was 42.28kHz, reaction time was 33.96min, and pH was 8.90. These results were consistent with those of particle size and electron microscopy analyses. This research proved that a magnetic field can effectively disintegrate WAS and can be combined with other physical techniques such as ultrasound for optimal results. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prospect for a 60 GHz multicharged ECR ion source

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Bondoux, D.; Angot, J.; Baylac, M.; Froidefond, E.; Jacob, J.; Lamy, T.; Leduc, A.; Sole, P.; Debray, F.; Trophime, C.; Skalyga, V.; Izotov, I.

    2018-05-01

    The conceptual design of a fourth generation hybrid electron cyclotron resonance (ECR) ion source operated at 60 GHz is proposed. The axial magnetic mirror is generated with a set of three Nb3Sn coils, while the hexapole is made with room temperature (RT) copper coils. The motivations for such a hybrid development are to study further the ECR plasma physics and the intense multicharged ion beams' production and transport at a time when a superconducting (SC) hexapole appears unrealistic at 60 GHz. The RT hexapole coil designed is an evolution of the polyhelix technology developed at the French High Magnetic Field Facility. The axial magnetic field is generated by means of 3 Nb3Sn SC coils operated with a maximum current density of 350 A/mm2 and a maximum coil load line factor of 81%. The ECR plasma chamber resulting from the design features an inner radius of 94 mm and a length of 500 mm. The radial magnetic intensity is 4.1 T at the wall. Characteristic axial mirror peaks are 8 and 4.5 T, with 1.45 T minimum in between.

  19. NEUTRON SOURCE USING MAGNETIC COMPRESSION OF PLASMA

    DOEpatents

    Quinn, W.E.; Elmore, W.C.; Little, E.M.; Boyer, K.; Tuck, J.L.

    1961-10-31

    A fusion reactor is described that utilizes compression and heating of an ionized thermonuclear fuel by an externally applied magnetic field, thus avoiding reliance on the pinch effect and its associated instability problems. The device consists of a gas-confining ceramic container surrounded by a single circumferential coil having a shape such as to produce a magnetic mirror geometry. A sinusoidally-oscillating, exponentially-damped current is passed circumferentially around the container, through the coil, inducing a circumferential current in the gas. Maximum compression and plasma temperature are obtained at the peak of the current oscillations, coinciding with maximum magnetic field intensity. Enhanced temperatures are obtained in the second and succeeding half cycles because the thermal energy accumulates from one half cycle to the next. (AEC)

  20. Dynamics of Trees of Fragmenting Granules in the Quiet Sun: Hinode/SOT Observations Compared to Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.

    2018-01-01

    We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.

  1. Observations of ULF oscillations in the ion fluxes at small pitch angles with ATS 6. [low energy particle detection

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.

    1980-01-01

    The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.

  2. Earthquake-triggered liquefaction in Southern Siberia and surroundings: a base for predictive models and seismic hazard estimation

    NASA Astrophysics Data System (ADS)

    Lunina, Oksana

    2016-04-01

    The forms and location patterns of soil liquefaction induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in 1950 through 2014 have been investigated, using field methods and a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. Statistical analysis of the data has revealed regional relationships between the magnitude (Ms) of an earthquake and the maximum distance of its environmental effect to the epicenter and to the causative fault (Lunina et al., 2014). Estimated limit distances to the fault for the Ms = 8.1 largest event are 130 km that is 3.5 times as short as those to the epicenter, which is 450 km. Along with this the wider of the fault the less liquefaction cases happen. 93% of them are within 40 km from the causative fault. Analysis of liquefaction locations relative to nearest faults in southern East Siberia shows the distances to be within 8 km but 69% of all cases are within 1 km. As a result, predictive models have been created for locations of seismic liquefaction, assuming a fault pattern for some parts of the Baikal rift zone. Base on our field and world data, equations have been suggested to relate the maximum sizes of liquefaction-induced clastic dikes (maximum width, visible maximum height and intensity index of clastic dikes) with Ms and local shaking intensity corresponding to the MSK-64 macroseismic intensity scale (Lunina and Gladkov, 2015). The obtained results make basis for modeling the distribution of the geohazard for the purposes of prediction and for estimating the earthquake parameters from liquefaction-induced clastic dikes. The author would like to express their gratitude to the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences for providing laboratory to carry out this research and Russian Scientific Foundation for their financial support (Grant 14-17-00007).

  3. Evolution of singularities in a partially coherent vortex beam.

    PubMed

    van Dijk, Thomas; Visser, Taco D

    2009-04-01

    We study the evolution of phase singularities and coherence singularities in a Laguerre-Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity--a phase singularity--that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.

  4. Source parameters of the 2013 Lushan, Sichuan, Ms7.0 earthquake and estimation of the near-fault strong ground motion

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhou, L.; Liu, J.

    2013-12-01

    Abstract: The April 20, 2013 Ms 7.0 earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The Lushan earthquake caused a great of loss of property and 196 deaths. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process and calculated source spectral parameters, estimated the strong ground motion in the near-fault field based on the Brune's circle model at first. A dynamical composite source model (DCSM) has been developed further to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Based on the simulated results of the near-fault strong ground motion, described the intensity distribution of the Lushan earthquake field. The simulated intensity indicated that, the maximum intensity value is IX, and region with and above VII almost 16,000km2, which is consistence with observation intensity published online by China Earthquake Administration (CEA) on April 25. Moreover, the numerical modeling developed in this study has great application in the strong ground motion prediction and intensity estimation for the earthquake rescue purpose. In fact, the estimation methods based on the empirical relationship and numerical modeling developed in this study has great application in the strong ground motion prediction for the earthquake source process understand purpose. Keywords: Lushan, Ms7.0 earthquake; near-fault strong ground motion; DCSM; simulated intensity

  5. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features ofmore » the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)« less

  6. Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam

    NASA Astrophysics Data System (ADS)

    Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.

    2017-02-01

    We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.

  7. Carrier-envelope phase-dependent ionization of Xe in intense, ultrafast (two-cycle) laser fields

    NASA Astrophysics Data System (ADS)

    Vasa, Parinda; Dharmadhikari, Aditya K.; Mathur, Deepak

    2018-01-01

    We report an experimental study that shows the dependence of the tunnel ionization of Xe by two-cycle, intense, near infrared light on the carrier-envelope-phase (CEP) of incident laser pulses. At low values of the optical field (E), the ionization yield is found to be maximum for cos-like pulses; the CEP dependence of the ion yield becomes stronger for higher charge states. At higher E-values, the CEP dependence either washes out or flips. A simple phenomenological model is used to confirm that our results fall within the ambit of the current understanding of ionization dynamics in strong, ultrashort optical fields. In the observed tunnel ionization of Xe, CEP effects appear to persist for longer, eight-cycle, pulses. Electron rescattering is observed to play a relatively unimportant role in the observed CEP dependence. These results provide fresh perspectives in the ionization mechanisms of multielectron systems in the few-cycle regime.

  8. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, K. D.; Huang, T. W.; Zhou, C. T., E-mail: zcangtao@iapcm.ac.cn

    2016-01-15

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstratedmore » that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.« less

  9. Numerical simulation of electric field enhancement at the contact of positive and negative streamers in relation to the problem of runaway electron generation in lightning and in long laboratory sparks

    NASA Astrophysics Data System (ADS)

    Babich, Leonid; Bochkov, Evgenii

    2017-11-01

    The hypothetical mechanism of electric field amplification at contact of positive and negative streamers in a streamer corona up to magnitudes required for the generation of runaway electrons and secondary Bremsstrahlung in the x-ray range, observed in long spark discharges in the open atmosphere, is analyzed. The development of two streamers, moving towards each other in interelectrode gaps of the centimetre range, is numerically simulated at applied voltages from 73 to 250 kV. It is shown that the size of the domain with strong electric field, with intensity sufficient for the thermal electron runaway, is of 1-2 mm. The mean field intensity in this domain increases up to magnitudes of  ≈250-280 kV cm-1. The maximum energy, to which electrons are capable of energizing in such field, is in the range of 20-70 keV. However, the electron energy is limited by an extremely small life-time of the strong field domain (less than 20 ps).

  10. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  11. The substrate matters in the Raman spectroscopy analysis of cells

    NASA Astrophysics Data System (ADS)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  12. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  13. The enhancement mechanism of thin plasma layer on antenna radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai

    A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.

  14. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices

    PubMed Central

    2012-01-01

    We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices. PMID:23043773

  15. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less

  16. Trapping and rotating of a metallic particle trimer with optical vortex

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Su, L.; Yuan, X.-C.; Shen, Y.-C.

    2016-12-01

    We have experimentally observed the steady rotation of a mesoscopic size metallic particle trimer that is optically trapped by tightly focused circularly polarized optical vortex. Our theoretical analysis suggests that a large proportion of the radial scattering force pushes the metallic particles together, whilst the remaining portion provides the centripetal force necessary for the rotation. Furthermore, we have achieved the optical trapping and rotation of four dielectric particles with optical vortex. We found that, different from the metallic particles, instead of being pushed together by the radial scattering force, the dielectric particles are trapped just outside the maximum intensity ring of the focused field. The radial gradient force attracting the dielectric particles towards the maximum intensity ring provides the centripetal force for the rotation. The achieved steady rotation of the metallic particle trimer reported here may open up applications such as the micro-rotor.

  17. Investigation of acoustic and gas dynamic characteristics of strongly swirled turbulent jets

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. Yu; Maslov, VP; Mironov, AK; Toktaliev, PD

    2018-03-01

    Generalization of the series of experimental and numerical results for properties and characteristics of swirling jets with high swirling intensity W0>1 is considered. These jets are typically used in gas turbine aviation engines for intensification of mixing process and combustion process stabilization. Flow structures in swirling jets and in the near-field are analyzed. It is shown, that, in the main, the flow structure behind the swirling device can be determined by swirling intensity W 0 and acoustic fluctuations field formed far from the jet boundaries. Experimental measurements and numerical simulation of the noise levels of the highly swirling jet are performed using Ffowcs-Williams-Hawkins analogy. Maximum levels of noise axis are observed at angles of 50°-70° from the jet.

  18. Curved laser microjet in near field.

    PubMed

    Kotlyar, Victor V; Stafeev, Sergey S; Kovalev, Alexey A

    2013-06-20

    With the use of the finite-difference time-domain-based simulation and a scanning near-field optical microscope that has a metal cantilever tip, the diffraction of a linearly polarized plane wave of wavelength λ by a glass corner step of height 2λ is shown to generate a low divergence laser jet of a root-parabolic form: over a distance of 4.7λ on the optical axis, the beam path is shifted by 2.1λ. The curved laser jet of the FWHM length depth of focus=9.5λ has the diameter FWHM=1.94λ over the distance 5.5λ, and the intensity maximum is 5 times higher than the incident wave intensity. The discrepancy between the analytical and the experimental results amounts to 11%.

  19. LEVELS OF EXTREMELY LOW-FREQUENCY ELECTRIC AND MAGNETIC FIELDS FROM OVERHEAD POWER LINES IN THE OUTDOOR ENVIRONMENT OF RAMALLAH CITY-PALESTINE.

    PubMed

    Abuasbi, Falastine; Lahham, Adnan; Abdel-Raziq, Issam Rashid

    2018-05-01

    In this study, levels of extremely low-frequency electric and magnetic fields originated from overhead power lines were investigated in the outdoor environment in Ramallah city, Palestine. Spot measurements were applied to record fields intensities over 6-min period. The Spectrum Analyzer NF-5035 was used to perform measurements at 1 m above ground level and directly underneath 40 randomly selected power lines distributed fairly within the city. Levels of electric fields varied depending on the line's category (power line, transformer or distributor), a minimum mean electric field of 3.9 V/m was found under a distributor line, and a maximum of 769.4 V/m under a high-voltage power line (66 kV). However, results of electric fields showed a log-normal distribution with the geometric mean and the geometric standard deviation of 35.9 and 2.8 V/m, respectively. Magnetic fields measured at power lines, on contrast, were not log-normally distributed; the minimum and maximum mean magnetic fields under power lines were 0.89 and 3.5 μT, respectively. As a result, none of the measured fields exceeded the ICNIRP's guidelines recommended for general public exposures to extremely low-frequency fields.

  20. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23

    NASA Astrophysics Data System (ADS)

    Sierra-Porta, D.

    2018-07-01

    In the present paper a systematic study is carried out to validate the similarity or co-variability between daily terrestrial cosmic-ray intensity and three parameters of the solar corona evolution, i.e., the number of sunspots and flare index observed in the solar corona and the Ap index for regular magnetic field variations caused by regular solar radiation changes. The study is made for a period including three solar cycles starting with cycle 21 (year 1976) and ending on cycle 23 (year 2008). A cross-correlation analysis was used to establish patterns and dependence of the variables. This study focused on the time lag calculation for these variables and found a maximum of negative correlation over CC1≈ 0.85, CC2≈ 0.75 and CC3≈ 0.63 with an estimation of 181, 156 and 2 days of deviation between maximum/minimum of peaks for the intensity of cosmic rays related with sunspot number, flare index and Ap index regression, respectively.

  1. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  2. Variable rainfall intensity and tillage effects on runoff, sediment, and carbon losses from a loamy sand under simulated rainfall.

    PubMed

    Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W

    2007-01-01

    The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems.

  3. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  4. Lethal effect of electric fields on isolated ventricular myocytes.

    PubMed

    de Oliveira, Pedro Xavier; Bassani, Rosana Almada; Bassani, José Wilson Magalhães

    2008-11-01

    Defibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm . During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V(max)) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V(max) values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.

  5. Adaptive use of research aircraft data sets for hurricane forecasts

    NASA Astrophysics Data System (ADS)

    Biswas, M. K.; Krishnamurti, T. N.

    2008-02-01

    This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.

  6. The Steens Mountain (Oregon) geomagnetic polarity transition, 2. Field intensity variations and discussion of reversal models

    USGS Publications Warehouse

    Prevot, M.; Mankinen, Edward A.; Coe, Robert S.; Gromme, C. Sherman

    1985-01-01

    We carried out an extensive paleointensity study of the 15.5±0.3 m.y. Miocene reversed‐to‐normal polarity transition recorded in lava flows from Steens Mountain (south central Oregon). One hundred eighty‐five samples from the collection whose paleodirectional study is reported by Mankinen et al. (this issue) were chosen for paleointensity investigations because of their low viscosity index, high Curie point and reversibility, or near reversibility, of the strong field magnetization curve versus temperature. Application of the Thellier stepwise double heating method was very successful, yielding 157 usable paleointensity estimates corresponding to 73 distinct lava flows. After grouping successive lava flows that did not differ significantly in direction and intensity, we obtained 51 distinguishable, complete field vectors of which 10 are reversed, 28 are transitional, and 13 are normal. The record is complex, quite unlike that predicted by simple flooding or standing nondipole field models. It begins with an estimated several thousand years of reversed polarity with an average intensity of 31.5±8.5 μT, about one third lower than the expected Miocene intensity. This difference is interpreted as a long‐term reduction of the dipole moment prior to the reversal. When site directions and intensities are considered, truly transitional directions and intensities appear almost at the same time at the beginning of the transition, and they disappear simultaneously at the end of the reversal. Large deviations in declination occur during this approximately 4500±1000 year transition period that are compatible with roughly similar average magnitudes of zonal and nonzonal field components at the site. The transitional intensity is generally low, with an average of 10.9±4.9 μT for directions more than 45° away from the dipole field and a minimum of about 5 μT. The root‐mean‐square of the three field components X, Y, and Z are of the same order of magnitude for the transitional field and the historical nondipole field at the site latitude. However, a field intensity increase to pretransitional values occurs when the field temporarily reaches normal directions, which suggests that dipolar structure could have been briefly regenerated during the transition in an aborted attempt to reestablish a stationary field. Changes in the field vector are progressive but jerky, with at least two, and possibly three, large swings at astonishingly high rates. Each of those transitional geomagnetic impulses occurs when the field intensity is low (less than 10 μT) and is followed by an interval of directional stasis during which the magnitude of the field increases greatly. For the best documented geomagnetic impulse the rapid directional change corresponds to a vectorial intensity change of 6700±2700 nT yr−1, which is about 15–50 times larger than the maximum rate of change of the nondipole field observed during the last centuries. The occurrence of geomagnetic impulses seems to support reversal models assuming an increase in the level of turbulence within the liquid core during transitions. The record closes with an estimated several thousand years of normal polarity with an average intensity of 46.7±20.1 μT, agreeing with the expected Miocene value. However, the occurrence of rather large and apparently rapid intensity fluctuations accompanied by little change in direction suggests that the newly reestablished dipole was still somewhat unstable.

  7. Molecular mechanism of biological and therapeutical effect of low-intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.; Morozova, Raisa P.

    1995-05-01

    The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (i) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (ii) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (iii) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the difinite changes of the cell functional activity in the presence of static magnetic field.

  8. Biophysical principles of regulatory action of low-intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Plavskaja, Ljudmila G.

    1996-01-01

    The investigations carried out in our group on biological systems of various organization level (enzyme molecules in solution, human and animal cell cultures), allowed us to conclude, that the light-induced changes of spatial structure of cells components form the basis of biological activity (and as a consequence therapeutic effect) of various wavelength low-intensity laser emission. Photophysical mechanism of these changes lies in the reorientation of highregulated anisotropic parts (domains) with the liquid-crystalline type of ordering of the cell components due to the interaction between the electric field and the light induced integral electric dipole of the domain. The mechanism of such reorientation is well established in physics of liquid crystals of nematic type and is known as light induced analogue of Frederix's effect. The following results enable us to draw the conclusion about the determining role of the orientations effects on the biological activity mechanism of low-intensity laser radiation: (1) the possibility of reversible modification of spatial structure and enzyme molecules functional activity under the influence of laser radiation outside the band of their own or admixture absorption; (2) the dependence of biological effect of laser radiation on the functional activity of cells vs. polarization degree of the light with the maximum photobiological effects observed for linear-polarized radiation; (3) the equivalence of a static magnetic field and low-intensity laser radiation in action on functional activity of the cells and the lowering of the laser field intensity for the achieving the definite changes of the cell functional activity in the presence of static magnetic field.

  9. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

    NASA Astrophysics Data System (ADS)

    Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.

    2018-06-01

    In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

  10. Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Trujillo Bueno, J.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Lyα line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s-1, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  11. Discovery of Ubiquitous Fast Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; hide

    2016-01-01

    High cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha SpectroPolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in one or both of the chromosphere or transition region at a speed much higher than the sound speed. The CLASP/SJ instrument provides a time series of 2D images taken with broadband filters centered on the Ly(alpha) line at a 0.6 s cadence. The fast propagating intensity disturbances are detected in the quiet Sun and in an active region, and at least 20 events are clearly detected in the field of view of 527'' x 527'' during the 5-minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km/s, and they are comparable to the local Alfven speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is of about 10'', and the widths are a few arcseconds, which is almost determined by the pixel size of 1.''03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation of the fast propagating intensity disturbances observed by CLASP is magneto-hydrodynamic fast mode waves.

  12. Synthesis of Green-Emitting (La,Gd)OBr:Tb3+ Phosphors

    PubMed Central

    Kim, Sun Woog; Jyoko, Kazuya; Masui, Toshiyuki; Imanaka, Nobuhito

    2010-01-01

    Green-emitting phosphors based on lanthanum-gadolinium oxybromide were synthesized in a single phase form by the conventional solid state reaction method, and photoluminescence properties of them were characterized. The excitation peak wavelength of (La1-xGdx)OBr:Tb3+ shifted to the shorter wavelength side with the increase in the crystal field around the Tb3+ ions by doping Gd3+ ions into the La3+ site, and, as a result, the green emission intensity was successfully enhanced. The maximum emission intensity was obtained for (La0.95Gd0.05)OBr:5%Tb3+, where the relative emission intensity was 45% of that of a commercial green-emitting LaPO4:Ce3+,Tb3+ phosphor.

  13. HD{sup +} in a short strong laser pulse: Practical consideration of the observability of carrier-envelope phase effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roudnev, V.; Esry, B. D.

    2007-08-15

    We summarize the results of numerical calculations of HD{sup +} in a 7.1 fs (intensity full width at half maximum) 790 nm laser pulse. The molecule is assumed to be aligned with the linearly polarized laser field and includes two electronic and one nuclear degrees of freedom. We report total dissociation and ionization probabilities from the lowest 10 vibrational states for a range of intensities from 10{sup 13} to 7x10{sup 14} W/cm{sup 2}. The conditions for the observability of carrier-envelope phase (CEP) effects for a mixed initial state and for intensity averaging over the laser focal volume are discussed inmore » detail.« less

  14. QUASI-BIENNIAL MODULATION OF GALACTIC COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurenza, M.; Storini, M.; Vecchio, A.

    2012-04-20

    The time variability of the cosmic-ray (CR) intensity at three different rigidities has been analyzed through the empirical mode decomposition technique for the period 1964-2004. Apart from the {approx}11 yr cycle, quasi-biennial oscillations (QBOs) have been detected as a prominent scale of variability in CR data, as well as in the heliomagnetic field magnitude at 1 AU and in the sunspot area. The superposition of the {approx}11 yr and QBO contributions reproduces the general features of the CR modulation, such as most of the step-like decreases and the Gnevyshev Gap phenomenon. A significant correlation has also been found between QBOsmore » of the heliospheric magnetic field and the CR intensity during even solar activity cycles, suggesting that the former are responsible for step-like decreases in CR modulation, probably dominated by the particle diffusion/convection in such periods. In contrast, during odd-numbered cycles, no significant correlation is found. This could be explained with an enhanced drift effect also during the solar maximum or a greater influence of merged interaction regions at great heliocentric distances during odd cycles. Moreover, the QBOs of CR data are delayed with respect to sunspot activity, the lag being shorter for A > 0 periods of even cycles ({approx}1-4 months) than for A < 0 periods of odd cycles ({approx}7-9 months); we suggest that solar QBOs also affect the recovery of the CR intensity after the solar activity maximum.« less

  15. Protons and Electrons in Jupiter's Magnetic Field: Results from the University of Chicago Experiment on Pioneer 10.

    PubMed

    Simpson, J A; Hamilton, D; Lentz, G; McKibben, R B; Mogro-Campero, A; Perkins, M; Pyle, K R; Tuzzolino, A J; O'gallagher, J J

    1974-01-25

    Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere.

  16. Assessment of macroseismic intensity in the Nile basin, Egypt

    NASA Astrophysics Data System (ADS)

    Fergany, Elsayed

    2018-01-01

    This work intends to assess deterministic seismic hazard and risk analysis in terms of the maximum expected intensity map of the Egyptian Nile basin sector. Seismic source zone model of Egypt was delineated based on updated compatible earthquake catalog in 2015, focal mechanisms, and the common tectonic elements. Four effective seismic source zones were identified along the Nile basin. The observed macroseismic intensity data along the basin was used to develop intensity prediction equation defined in terms of moment magnitude. Expected maximum intensity map was proven based on the developed intensity prediction equation, identified effective seismic source zones, and maximum expected magnitude for each zone along the basin. The earthquake hazard and risk analysis was discussed and analyzed in view of the maximum expected moment magnitude and the maximum expected intensity values for each effective source zone. Moderate expected magnitudes are expected to put high risk at Cairo and Aswan regions. The results of this study could be a recommendation for the planners in charge to mitigate the seismic risk at these strategic zones of Egypt.

  17. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 27.1395 Section 27.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  18. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 25.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  19. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 29.1395 Section 29.1395 Aeronautics and Space FEDERAL AVIATION... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No...

  20. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field.

    PubMed

    Qiao, Yangzi; Cao, Hua; Zhang, Shusheng; Yin, Hui; Wan, Mingxi

    2013-01-01

    Ultrasound contrast agents (UCAs) are frequently added into the focused ultrasound field as cavitation nuclei to enhance the therapeutic efficiency. Since their presence will distort the pressure field and make the process unpredictable, comprehension of their behaviors especially the active zone spatial distribution is an important part of better monitoring and using of UCAs. As shell materials can strongly alter the acoustic behavior of UCAs, two different shells coated UCAs, lipid-shelled and polymer-shelled UCAs, in a 1.2 MHz focused ultrasound field were studied by the Sonochemiluminescence (SCL) method and compared. The SCL spatial distribution of lipid-shelled group differed from that of polymer-shelled group. The shell material and the character of focused ultrasound field work together to the SCL distribution, causing the lipid-shelled group to have a maximum SCL intensity in pre-focal region at lower input power than that of polymer-shelled group, and a brighter SCL intensity in post-focal region at high input power. The SCL inactive area of these two groups both increased with the input power. The general behavior of the UCAs can be studied by both the average SCL intensity and the backscatter signals. As polymer-shelled UCAs are more resistant to acoustic pressure, they had a higher destruction power and showed less reactivation than lipid-shelled ones. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  2. Quasi-monoenergetic proton beam from a proton-layer embedded metal foil irradiated by an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung Nam; Lee, Kitae, E-mail: klee@kaeri.re.kr; Kumar, Manoj

    A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beammore » with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.« less

  3. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.

    PubMed

    Luo, W-J

    2004-10-15

    This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.

  4. Measuring high spatiotemporal variability in saltation intensity using a low-cost Saltation Detection System: Wind tunnel and field experiments

    NASA Astrophysics Data System (ADS)

    de Winter, W.; van Dam, D. B.; Delbecque, N.; Verdoodt, A.; Ruessink, B. G.; Sterk, G.

    2018-04-01

    The commonly observed over prediction of aeolian saltation transport on sandy beaches is, at least in part, caused by saltation intermittency. To study small-scale saltation processes, high frequency saltation sensors are required on a high spatial resolution. Therefore, we developed a low-cost Saltation Detection System (SalDecS) with the aim to measure saltation intensity at a frequency of 10 Hz and with a spatial resolution of 0.10 m in wind-normal direction. Linearity and equal sensitivity of the saltation sensors were investigated during wind tunnel and field experiments. Wind tunnel experiments with a set of 7 SalDec sensors revealed that the variability of sensor sensitivity is at maximum 9% during relatively low saltation intensities. During more intense saltation the variability of sensor sensitivity decreases. A sigmoidal fit describes the relation between mass flux and sensor output measured during 5 different wind conditions. This indicates an increasing importance of sensor saturation with increasing mass flux. We developed a theoretical model to simulate and describe the effect of grain size, grain velocity and saltation intensity on sensor saturation. Time-averaged field measurements revealed sensitivity equality for 85 out of a set of 89 horizontally deployed SalDec sensors. On these larger timescales (hours) saltation variability imposed by morphological features, such as sand strips, can be recognized. We conclude that the SalDecS can be used to measure small-scale spatiotemporal variabilities of saltation intensity to investigate saltation characteristics related to wind turbulence.

  5. [INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma

    NASA Astrophysics Data System (ADS)

    Gamaly, Eugene G.; Rode, Andrei V.

    2016-08-01

    Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Ly α line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in amore » field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s{sup −1}, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.« less

  7. Time-resolved observation of coherent excitonic nonlinear response with a table-top narrowband THz pulse wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, K.; Hirori, H., E-mail: hirori@icems.kyoto-u.ac.jp; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012

    2015-11-30

    By combining a tilted-pulse-intensity-front scheme using a LiNbO{sub 3} crystal and a chirped-pulse-beating method, we generated a narrowband intense terahertz (THz) pulse, which had a maximum electric field of more than 10 kV/cm at around 2 THz, a bandwidth of ∼50 GHz, and frequency tunability from 0.5 to 2 THz. By performing THz-pump and near-infrared-probe experiments on GaAs quantum wells, we observed that the resonant excitation of the intraexcitonic 1s-2p transition induces a clear and large Autler-Townes splitting. Our time-resolved measurements show that the splitting energy observed in the rising edge region of electric field is larger than in the constant region.more » This result implies that the splitting energy depends on the time-averaged THz field over the excitonic dephasing time rather than that at the instant of the exciton creation by a probe pulse.« less

  8. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  9. Nonparaxial Dark-Hollow Gaussian Beams

    NASA Astrophysics Data System (ADS)

    Gao, Zeng-Hui; Lü, Bai-Da

    2006-01-01

    The concept of nonparaxial dark-hollow Gaussian beams (DHGBs) is introduced. By using the Rayleigh-Sommerfeld diffraction integral, the analytical propagation equation of DHGBs in free space is derived. The on-axis intensity, far-field equation and, in particular, paraxial expressions are given and treated as special cases of our result. It is shown that the parameter f = 1/kw0 with k being the wave number and w0 being the waist width determines the nonparaxiality of DHGBs. However, the parameter range, within which the paraxial approach is valid, depends on the propagation distance. The beam order affects the beam profile and position of maximum on-axis intensity.

  10. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Lee, Donghoon; Marro, Kenneth I.; Crum, Lawrence A.; Khokhlova, Vera A.; Bailey, Michael R.

    2009-01-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 °C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 °C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3×0.5×2 mm3) yielded a maximum of 73 °C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems. PMID:19354416

  11. Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1991-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.

  12. Acoustic levitator for contactless motion and merging of large droplets in air

    NASA Astrophysics Data System (ADS)

    Bjelobrk, Nada; Nabavi, Majid; Poulikakos, Dimos

    2012-09-01

    Large droplet transport in a line-focussed acoustic manipulator in terms of maximum droplet size is achieved by employing a driving voltage control mechanism. The maximum volume of the transported droplets in the order of few microliters is thereby increased by three orders of magnitude compared to the constant voltage case, widening the application field of this method significantly. A drop-on-demand droplet generator is used to supply the liquid droplets into the system. The ejected sequence of picoliter-size droplets is guided along trajectories by the acoustic field and accumulates at the selected pressure node, merging into a single large droplet. Droplet movement is achieved by varying the reflector height. This also changes the intensity of the radiation pressure during droplet movement, which in turn could atomise the droplet. The acoustic force is adjusted by regulating the driving voltage of the actuator to keep the liquid droplet suspended in air and to prevent atomisation. In the herein presented levitation concept, liquids with a wide range of surface tension (water and tetradecane were tested) can be transported over distances of several mm. The aspect ratio of the droplet in the acoustic field is shown to be a good indicator for radiation pressure intensity and is kept between 1.1 and 1.4 during droplet transport. Despite certain limitations with volatile liquids, the presented acoustic levitator concept has the potential to expand the range of analytical characterisation and manipulation methods in applications ranging from chemistry and biology.

  13. Fast Transverse Instability and Electron Cloud Measurements in Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffery; Adamson, Philip; Capista, David

    2015-03-01

    A new transverse instability is observed that may limit the proton intensity in the Fermilab Recycler. The instability is fast, leading to a beam-abort loss within two hundred turns. The instability primarily affects the first high-intensity batch from the Fermilab Booster in each Recycler cycle. This paper analyzes the dynamical features of the destabilized beam. The instability excites a horizontal betatron oscillation which couples into the vertical motion and also causes transverse emittance growth. This paper describes the feasibility of electron cloud as the mechanism for this instability and presents the first measurements of the electron cloud in the Fermilabmore » Recycler. Direct measurements of the electron cloud are made using a retarding field analyzer (RFA) newly installed in the Fermilab Recycler. Indirect measurements of the electron cloud are made by propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. The maximum betatron amplitude growth and the maximum electron cloud signal occur during minimums of the bunch length oscillation.« less

  14. Combined effects of an intense laser field, electric field and hydrostatic pressure on donor impurity states in zinc-blende InGaN/GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi

    2016-07-01

    The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.

  15. Body mass, composition, and food intake in rabbits during altered acceleration fields

    NASA Technical Reports Server (NTRS)

    Katovich, M. J.; Smith, A. H.

    1978-01-01

    Mature male Polish rabbits were subjected to varying gravitational fields in an animal centrifuge in order to evaluate the effects of acceleration and deacceleration on body mass, body composition, and food intake. The acceleration field intensity was increased by 0.25-G increments to a maximum of 2.5 G at intervals which permitted physiological adaptation at each field. Control animals of the same age were maintained at earth gravity under identical conditions of constant-light environment at a room temperature of 23 + or - 5 C. It is shown that increasing the acceleration-field intensity leads to a decrease in body mass. The regulated nature of this decreased body mass is tested by the response to an additional three-day fasting of animals adapted physiologically to 2.5 G. Ad libitum food intake per kg body mass per day tends to increase in chronically accelerated animals above 1.75 G. Increase in water content in centrifuged animals after physiological adaptation to 2.5 G is the result of decreasing body fat. Body mass and food intake returned to the precentrifuged levels of control animals within six weeks after cessation of centrifugation.

  16. Analysis of Near-field of Circular Aperture Antennas with Application to Study of High Intensity Radio Frequency (HIRF) Hazards to Aviation from JPL/NASA Deep Space Network Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Statman, Joseph

    2013-01-01

    This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required.

  17. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  18. Production of sugarcane and tropical grasses as a renewable energy source. Second annual report, 1978-1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    Reseach continued on tropical grasses from Saccharum and related genera as sources of intensively-produced, solar-dried biomass. Categories of candidate grasses include short-, intermediate-, and long-rotation species. These categories are based on the time interval required for maximum dry matter production, and on future management requirements of energy crops for intensive co-production with food crop commodities. Year 1 studies at the greenhouse and field-plot levels were continued and broadened during Year 2. This included candidate screening, importation and quarantine of new clones, breeding, controlled nitrogen and water regimes, chemical growth control, tissue expansion and maturation control, seeding rates, harvest frequency, andmore » variable row spacing. Second-year studies were extended to the project's field-scale and mechanized-harvest phases. These include initial economic anayses for the short-rotation phases. These include initial economic analyses for the short-rotation category of candidate species.« less

  19. THz Induced Nonlinear Effects in Materials at Intensities above 26 GW/cm2

    NASA Astrophysics Data System (ADS)

    Woldegeorgis, A.; Kurihara, T.; Beleites, B.; Bossert, J.; Grosse, R.; Paulus, G. G.; Ronneberger, F.; Gopal, A.

    2018-04-01

    Nonlinear refractive index and absorption coefficient are measured for common semiconductor material such as silicon and organic molecule such as lactose in the terahertz (THz) spectral regime extending from 0.1 to 3 THz. Terahertz pulses with field strengths in excess of 4.4 MV/cm have been employed. Transmittance and the transmitted spectrum were measured with Z-scan and single shot noncollinear electro-optic pump-probe techniques. The THz-induced change in the refractive index (Δn) shows frequency-dependence and a maximum change of - 0.128 at 1.37 THz in lactose and up to + 0.169 at 0.15 THz in silicon was measured for a peak incident THz intensity of 26 GW/cm2. Furthermore, the refractive index variation shows a quadratic dependence on the incident THz field, implying the dominance of third-order nonlinearity.

  20. Photorefractive InGaAs/GaAs multiple quantum wells in the Franz{endash}Keldysh geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, S.; Kageshima, H.; Yuasa, T.

    2001-06-01

    We fabricate semi-insulating InGaAs/GaAs multiple quantum wells and observe the excitonic enhancement of the photorefractivity in the Franz{endash}Keldysh geometry at wavelengths of 0.92{endash}0.94 {mu}m. A maximum two-wave mixing gain of 138 cm{sup {minus}1} and a maximum diffraction efficiency of 1.5{times}10{sup {minus}4} are obtained. The saturation intensity and the spatial resolution are also measured by four-wave mixing. The diffraction efficiency is saturated at a high external electric field. The dominant cause of this saturation is the deviation of the excitonic electroabsorption from its quadratic law. {copyright} 2001 American Institute of Physics.

  1. An interactive dynamic analysis and decision support software for MR mammography.

    PubMed

    Ertaş, Gökhan; Gülçür, H Ozcan; Tunaci, Mehtap

    2008-06-01

    A fully automated software is introduced to facilitate MR mammography (MRM) examinations and overcome subjectiveness in diagnosis using normalized maximum intensity-time ratio (nMITR) maps. These maps inherently suppress enhancements due to normal parenchyma and blood vessels that surround lesions and have natural tolerance to small field inhomogeneities and motion artifacts. The classifier embedded within the software is trained with normalized complexity and maximum nMITR of 22 lesions and tested with the features of remaining 22 lesions. Achieved diagnostic performances are 92% sensitivity, 90% specificity, 91% accuracy, 92% positive predictive value and 90% negative predictive value. DynaMammoAnalyst shortens evaluation time considerably and reduces inter and intra-observer variability by providing decision support.

  2. Intensity of the Earth's magnetic field in Greece during the last five millennia: New data from Greek pottery

    NASA Astrophysics Data System (ADS)

    Tema, Evdokia; Gómez-Paccard, Miriam; Kondopoulou, Despina; Almar, Ylenia

    2012-08-01

    New archaeointensity results have been obtained from the study of four ceramic collections coming from four different archaeological sites in Greece. The ages of the ceramic fragments, based on archaeological constrains and radiocarbon analysis, range from 2200 BC to 565 AD. Low-field magnetic susceptibility versus temperature reveals a good thermal stability for most of the samples. However, for some samples the thermomagnetic curves are not reversible indicating mineralogical changes during heating. Isothermal remanent magnetisation (IRM) acquisition curves and thermal demagnetisation of three orthogonal IRM components have also been performed. The rock magnetic results identify magnetite and/ or Ti-magnetite as the main magnetic carriers in the studied samples. Classical Thellier experiments with regular partial thermoremanent magnetisation (pTRM) checks have been conducted on 125 specimens belonging to 34 independent ceramic fragments. Only 61 archaeointensity determinations (at specimen level) that correspond to linear NRM-TRM plots were used for the calculation of the site mean archaeointensities. The effect of the anisotropy of the thermoremanent magnetisation (TRM) and cooling rate upon TRM intensity acquisition have been investigated in all specimens. The maximum difference between the TRM anisotropy corrected and uncorrected intensities is around 30% at specimen level confirming that the TRM effect can be very important in ceramic samples. Cooling rate correction factors determined per specimen are up to 10% with only one exception that reaches 35%. Despite the moderate success rate of archaeointensity determination (around 50%) reliable mean site intensities have been obtained, with in situ intensities ranging from 53.6 ± 4.1 to 69.3 ± 3.9 μT, corresponding to virtual axial dipole moments from 9.2 ± 0.7 to 11.9 ± 0.7 × 1022 Am2. The new data are reasonably consistent with other available data for the studied region as well as with the SV reference curves for Greece and the South Balkan Peninsula, and the regional and global geomagnetic field models. Combined with previously published data from the area, they confirm that important changes of the Earth's magnetic field intensity occurred in Greece during the last five millennia. For some periods, the available archaeointensity data for the Balkan area show a large dispersion, even for data corresponding to high quality intensity standards, whereas for other periods their limited number prevents an accurate description of geomagnetic field intensity changes. This evidences the need of new reliable and well dated archaeointensity data in order to obtain a robust description of geomagnetic field intensity changes during the last five millennia in this area.

  3. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  4. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.; Sinha, Chandana

    2009-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  5. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tao; Fan, Tingbo; Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focusedmore » HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.« less

  6. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    NASA Astrophysics Data System (ADS)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  7. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  8. Variability of activity profile during medium-sided games in professional soccer.

    PubMed

    Rago, Vincenzo; Silva, João R; Mohr, Magni; Barreira, Daniel; Krustrup, Peter; Rebelo, António N

    2018-04-24

    In Southern European countries it is very frequent to perform medium-sized games (MSG) as last training drill. We analyzed the individual variability and changes in activity patterns during MSG throughout the preseason. Activity profile during MSGs (10v10+goalkeepers, duration: 10-min, field length: 50 m, width: 90 m, area per player: 204.5 m2) was quantified using a GPS in 14 professional male players (6 defenders, 5 midfielders 5 and attackers). Inter-individual variability was higher for high-intensity (HIR), very-high speed (VHS), maximum acceleration (Accmax) and maximum deceleration (Decmax) distance (CV=25.2 to 43.3%), compared to total distance (TD), total acceleration (Acctot) and total deceleration (Dectot) distance (CV= 8.3 to 18.3 %). Defenders showed higher variability in TD, HIR, VHS, Acctot and Dectot (ES= 1.30 to 11.28) compared to the other field positions, whereas attackers showed higher variability in HIR, VHS Accmax and Decmax (ES=-4.92 to 2.07) than other the field positions. Variability in TD regularly increased (ES= -2.13 to -0.91) towards the end of the preseason, while HIR and VHS variability tended to increase over the 3rd and the 4th preseason week (ES=-0.94 to -3.05). However, the behavior of variability across the preseason period was more unpredictable for Acctot and Dectot, both decreasing in the 3rd week (ES= 0.70 to 1.20), while Decmax increased in the 4th week (ES=-0.91±0.59). During MSGs, individual variability of activity differs among field positions, and tends to increase with either speed or acceleration intensity, underlining the need of an individualized approach for training load monitoring.

  9. Time-dependent modulation of galactic cosmic rays by merged interaction regions

    NASA Technical Reports Server (NTRS)

    Perko, J. S.

    1993-01-01

    Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner heliosphere this model accounts for the delay experienced by lower-rigidity protons in reaching their time-intensity peak. The actual delays in this model, however, are somewhat smaller than the data. In the outer heliosphere the models sees no delays, and the data are ambiguous as to their existence. It appears that strong magnetic field compression regions (merged interaction regions) that are 3-4 times the average field strength can, at least in a helioequatorial band, disrupt effects, such as drifts, that could dominate in quieter magnetic fields. The question remains: Is the heliosphere ever quiet enough to allow such effects to be unambiguously measured, at least in the midlatitudes?

  10. [Effects of selective cutting disturbance on soil phosphorus adsorption and desorption in a Korean pine and broad-leaved mixed forest in the Xiaoxing'an Mountains, China.

    PubMed

    Zhang, Xin; Gu, Hui Yan; Chen, Xiang Wei

    2018-01-01

    This study examined the characteristics of phosphorus (P) adsorption and desorption in surface soil (0-10 cm) of a secondary forest after selective cutting disturbance at three levels of intensity (low, medium, high) in order to reveal the effects of different disturbance intensities on soil P adsorption and desorption. Maximum adsorption amount (Q m ), adsorption intensity factor, maximum buffer capacity, maximum desorption amount, average desorption rate and readily desorptable phosphorus were measured. Q m in the focal forests was 1383.93-1833.34 mg·kg -1 , and Q m in forests with middle and high disturbance intensities was significantly higher than that in forests with low disturbance intensity and in primary forests. P adsorption intensity was 0.024-0.059 L·mg -1 , and forests with high and low disturbance intensities increased the P adsorption intensity significantly. The maximum buffer capacity varied from 35.68 to 97.97 L·kg -1 , with the highest value found in the forest with the highest disturbance intensity. Selective cutting significantly reduced the potential for phosphorus supply in the forest soils. The maximum desorption amount, average desorption rate and readily desorptable phosphorus content in the focal forests were 526.32-797.54 mg·kg -1 , 14.7%-25.5% and 1.79-5.41 mg·kg -1 , respectively, indicating that the ability of soil to release phosphorus significantly decreased with increasing disturbance intensity. Selective cutting changed the phosphorus adsorption and desorption characteristics by reducing the supply and release of soil phosphorus.

  11. 3 MeV proton irradiation effects on surface, structural, field emission and electrical properties of brass

    NASA Astrophysics Data System (ADS)

    Ali, Mian Ahsan; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Faizan-ul-Haq; Hayat, Asma; Mutaza, G.; Chishti, Naveed Ahmed; Khan, M. Asad; Ahmad, Shahbaz

    2018-05-01

    Ion-induced modifications of brass in terms of surface morphology, elemental composition, phase changes, field emission properties and electrical conductivity have been investigated. Brass targets were irradiated by proton beam at constant energy of 3 MeV for various doses ranges from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2 using Pelletron Linear Accelerator. Field Emission Scanning Electron Microscope (FESEM) analysis reveals the formation of randomly distributed clusters, particulates, droplets and agglomers for lower ion doses which are explainable on the basis of cascade collisional process and thermal spike model. Whereas, at moderate ion doses, fiber like structures are formed due to incomplete melting. The formation of cellular like structure is observed at the maximum ion dose and is attributed to intense heating, melting and re-solidification. SRIM software analysis reveals that the penetration depth of 3 MeV protons in brass comes out to be 38 μm, whereas electronic and nuclear energy losses come out to be 5 × 10-1 and 3.1 × 10-4 eV/Å respectively. The evaluated values of energy deposited per atom vary from 0.01 to 1.5 eV with the variation of ion doses from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2. Both elemental analysis i.e. Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) supports each other and no new element or phase is identified. However, slight change in peak intensity and angle shifting is observed. Field emission properties of ion-structured brass are explored by measuring I-V characteristics of targets under UHV condition in diode-configuration using self designed and fabricated setup. Improvement in field enhancement factor (β) is estimated from the slope of Fowler-Nordheim (F-N) plots and it shows significant increase from 5 to 1911, whereas a reduction in turn on field (Eo) from 65 V/μm to 30 V/μm and increment in maximum current density (Jmax) from 12 μA/cm2 to 3821 μA/cm2 is observed. These enhancements in field emission characteristics are correlated with the growth of surface structures, specifically agglomers which are responsible for electric field convergence. Electrical by four probe method has been correlated with maximum current density and decreasing trend is observed with increasing ion doses.

  12. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, themore » energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.« less

  13. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    PubMed

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  14. Removal of hexavalent chromium from wastewater using PPy/Fe3O4 magnetic nanocomposite influenced by rotating magnetic field from two pole three-phase induction motor

    NASA Astrophysics Data System (ADS)

    Aigbe, U. O.; Ho, W. H.; Maity, A.; Khenfouch, M.; Srinivasu, V.

    2018-03-01

    The influence of varying rotating magnetic field using a 2-pole three-phase induction motor on the removal of hexavalent chromium ions from wastewater using polypyrrole magnetic nanocomposite was explored in this study. Hexavalent chromium removal in this study was observed to be pH dependent under the influence of rotating magnetic field, as the percentage removal of hexavalent chromium decreased with increase in pH. The percentage amount of hexavalent chromium ions removed from the aqueous solution increased as the rotating magnetic field intensity was increased from 8.96-12.15 mT in the anticlockwise direction and 10.10-13.38 mT in the clockwise direction with maximum removals of 73% and 81% observed.

  15. Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy

    PubMed Central

    Chowdhury, Mustafa H.; Catchmark, Jeffrey M.; Lakowicz, Joseph R.

    2009-01-01

    The authors introduce a technique for three-dimensional (3D) imaging of the light transmitted through periodic nanoapertures using a scanning probe to perform optical sectioning microscopy. For a 4×4 nanohole array, the transmitted light displays intensity modulations along the propagation axis, with the maximum intensity occurring at 450 μm above the surface. The propagating fields show low divergence, suggesting a beaming effect induced by the array. At distances within 25 μm from the surface, they observe subwavelength confinement of light propagating from the individual nanoholes. Hence, this technique can potentially be used to map the 3D distribution of propagating light, with high spatial resolution. PMID:19696912

  16. Experimental determination of turbulence in a GH2-GOX rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Tou, P.; Russell, R.; Ohara, J.

    1974-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.

  17. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  18. [INVITED] Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles

    NASA Astrophysics Data System (ADS)

    Layeghi, Azam; Latifi, Hamid

    2018-06-01

    A magnetic field vector sensor based on super-paramagnetic fluid and tapered Hi-Bi fiber (THB) in fiber loop mirror (FLM) is proposed. A two-dimensional detection of external magnetic field (EMF) is experimentally demonstrated and theoretically simulated by Jones matrix to analyze the physical operation in detail. A birefringence is obtained due to magnetic fluid (MF) in applied EMF. By surrounding the THB with MF, a tunable birefringence of MF affect the transmission of the sensor. Slow and fast axes of this obtained birefringence are determined by the direction of applied EMF. In this way, the transmission response of the sensor is depended on the angle between the EMF orientation and the main axes of polarization maintaining fiber (PMF) in FLM. The wavelength shift and intensity shift versus EMF orientation show a sinusoidal behavior, while the applied EMF is constant. Also, the changes in the intensity of EMF in a certain direction results in wavelength shift in the sensor spectrum. The maximum wavelength sensitivity of 214 pm/mT is observed.

  19. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  20. Influence of Earth-directed Coronal Mass Ejections on the Sun’s Shadow Observed by the Tibet-III Air Shower Array

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yuan, A. F.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.; Tibet ASγ Collaboration

    2018-06-01

    We examine the possible influence of Earth-directed coronal mass ejections (ECMEs) on the Sun’s shadow in the 3 TeV cosmic-ray intensity observed by the Tibet-III air shower (AS) array. We confirm a clear solar-cycle variation of the intensity deficit in the Sun’s shadow during ten years between 2000 and 2009. This solar-cycle variation is overall reproduced by our Monte Carlo (MC) simulations of the Sun’s shadow based on the potential field model of the solar magnetic field averaged over each solar rotation period. We find, however, that the magnitude of the observed intensity deficit in the Sun’s shadow is significantly less than that predicted by MC simulations, particularly during the period around solar maximum when a significant number of ECMEs is recorded. The χ 2 tests of the agreement between the observations and the MC simulations show that the difference is larger during the periods when the ECMEs occur, and the difference is reduced if the periods of ECMEs are excluded from the analysis. This suggests the first experimental evidence of the ECMEs affecting the Sun’s shadow observed in the 3 TeV cosmic-ray intensity.

  1. The electric field standing wave effect in infrared transflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  2. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements

    NASA Astrophysics Data System (ADS)

    Cano, M. E.; Barrera, A.; Estrada, J. C.; Hernandez, A.; Cordova, T.

    2011-11-01

    The development of a device for generating ac magnetic fields based on a resonant inverter is presented, which has been specially designed to carry out experiments of magnetic hyperthermia. By determining the electric current in the LC resonant circuit, a maximum intensity of magnetic field around of 15 mT is calculated, with a frequency around of 206 kHz. This ac magnetic field is able to heat powdered magnetic materials embedded in biological systems to be used in biomedical applications. Indeed, in order to evaluate the sensitivity of the device we also present the measurements of the specific absorption rate in phantoms performed with commercially prepared Fe3O4 and distilled water at different concentrations.

  3. Exposure assessment of extremely low frequency electric fields in Tehran, Iran, 2010.

    PubMed

    Nassiri, Parvin; Esmaeilpour, Mohammad Reza Monazzam; Gharachahi, Ehsan; Haghighat, Gholamali; Yunesian, Masoud; Zaredar, Narges

    2013-01-01

    Extremely Low-Frequency (ELF) electric and magnetic fields belonging to the nonionizing electromagnetic radiation spectrum have a frequency of 50 - 60 Hz. All people are exposed to a complex set of electric and magnetic fields that spread throughout the environment. The current study was carried out to assess people's exposure to an ELF electric field in the Tehran metropolitan area in 2010. The measurement of the electronic fields was performed using an HI-3604 power frequency field strength measurement device. A total number of 2,753 measurements were performed. Afterward, the data obtained were transferred to the base map using Arc View Version 3.2 and Arc Map Version 9.3. Finally, an interpolation method was applied to expand the intensity of the electric field to the entire city. Based on the results obtained, the electric field was divided into three parts with various intensities including 0-5 V m, 5-15 V m, and >15 V m. It should be noted that the status of high voltage transmission lines, electric substations, and specific points including schools and hospitals were also marked on the map. Minimum and maximum electric field intensities were measured tantamount to 0.31 V m and 19.80 V m, respectively. In all measurements, the electric field was much less than the amount provided in the ICNIRP Guide. The results revealed that 141 hospitals and 6,905 schools are situated in an area with electric field intensity equal to 0-5 V m, while 15 hospitals and 95 schools are located in zones of 5-15 V m and more than 15 V m. Examining high voltage transmission lines and electric substations in Tehran and its suburbs suggested that the impact of the lines on the background electric field of the city was low. Accordingly, 0.97 km of Tehran located on the city border adjacent to the high voltage transmission lines have an electric field in the range of 5 to 15 V m. The noted range is much lower than the available standards. In summary, it can be concluded that the public is not exposed to a risky background electric field in metropolitan Tehran. The result of comparing sensitive recipients showed that the schools have a more desirable status than the hospitals. Nonetheless, epidemiologic studies can lead to more understanding of the impact on public health.

  4. Nuclear resonance reflectivity from a [57Fe/Cr]30 multilayer with the Synchrotron Mössbauer Source.

    PubMed

    Andreeva, Marina A; Baulin, Roman A; Chumakov, Aleksandr I; Rüffer, Rudolf; Smirnov, Gennadii V; Babanov, Yurii A; Devyaterikov, Denis I; Milyaev, Mikhail A; Ponomarev, Dmitrii A; Romashev, Lazar N; Ustinov, Vladimir V

    2018-03-01

    Mössbauer reflectivity spectra and nuclear resonance reflectivity (NRR) curves have been measured using the Synchrotron Mössbauer Source (SMS) for a [ 57 Fe/Cr] 30 periodic multilayer, characterized by the antiferromagnetic interlayer coupling between adjacent 57 Fe layers. Specific features of the Mössbauer reflectivity spectra measured with π-polarized radiation of the SMS near the critical angle and at the `magnetic' maximum on the NRR curve are analyzed. The variation of the ratio of lines in the Mössbauer reflectivity spectra and the change of the intensity of the `magnetic' maximum under an applied external field has been used to reveal the transformation of the magnetic alignment in the investigated multilayer.

  5. Smooth 2D manifold extraction from 3D image stack

    PubMed Central

    Shihavuddin, Asm; Basu, Sreetama; Rexhepaj, Elton; Delestro, Felipe; Menezes, Nikita; Sigoillot, Séverine M; Del Nery, Elaine; Selimi, Fekrije; Spassky, Nathalie; Genovesio, Auguste

    2017-01-01

    Three-dimensional fluorescence microscopy followed by image processing is routinely used to study biological objects at various scales such as cells and tissue. However, maximum intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of voxels, obliviously creating important artifacts and possibly misleading interpretation. Here we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate the usefulness of our approach by applying it to various biological applications using confocal and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy. PMID:28561033

  6. Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization.

    PubMed

    Geldhauser, Tobias; Kolloch, Andreas; Murazawa, Naoki; Ueno, Kosei; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke; Misawa, Hiroaki

    2012-06-19

    The quantitative determination of the strength of the near-field enhancement in and around nanostructures is essential for optimizing and using these structures for applications. We combine the gaussian intensity distribution of a laser profile and two-photon-polymerization of SU-8 to a suitable tool for the quantitative experimental measurement of the near-field enhancement of a nanostructure. Our results give a feedback to the results obtained by finite-difference time-domain (FDTD) simulations. The structures under investigation are gold nanotriangles on a glass substrate with 85 nm side length and a thickness of 40 nm. We compare the threshold fluence for polymerization for areas of the gaussian intensity profile with and without the near-field enhancement of the nanostructures. The experimentally obtained value of the near-field intensity enhancement is 600 ± 140, independent of the laser power, irradiation time, and spot size. The FDTD simulation shows a pointlike maximum of 2600 at the tip. In a more extended area with an approximate size close to the smallest polymerized structure of 25 nm in diameter, we find a value between 800 and 600. Using our novel approach, we determine the threshold fluence for polymerization of the commercially available photopolymerizable resin SU-8 by a femtosecond laser working at a wavelength of 795 nm and a repetition rate of 82 MHz to be 0.25 J/cm(2) almost independent of the irradiation time and the laser power used. This finding is important for future applications of the method because it enables one to use varying laser systems.

  7. SU-F-T-349: Dosimetric Comparison of Three Different Simultaneous Integrated Boost Irradiation Techniques for Multiple Brain Metastases: Intensity-Modulatedradiotherapy, Hybrid Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, X; Sun, T; Yin, Y

    Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less

  8. Magnetosheath electrostatic turbulence

    NASA Technical Reports Server (NTRS)

    Rodriquez, P.

    1977-01-01

    The spectrum of electrostatic plasma waves in the terrestrial magnetosheath was studied using the plasma wave experiment on the IMP-6 satellite. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz- 70 kHz) r.m.s. field intensities typically 0.01 - 1.0 millivolts/m. Peak intensities of about 1.0 millivolts/m near the electron plasma frequency (30 - 60 kHz) were detected occasionally. The components usually identified in the spectrum of magnetosheath electrostatic turbulence include a high frequency ( or = 30 kHz) component peaking at the electron plasma frequency f sub pe, a low frequency component with a broad intensity maximum below the nominal ion plasma frequency f sub pi (approximately f sub pe/43), and a less well defined intermediate component in the range f sub pi f f sub pe. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath.

  9. Signatures of moderate (M-class) and low (C and B class) intensity solar flares on the equatorial electrojet current: Case studies

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.

    2013-12-01

    The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.

  10. Using digital inpainting to estimate incident light intensity for the calculation of red blood cell oxygen saturation from microscopy images.

    PubMed

    Sové, Richard J; Drakos, Nicole E; Fraser, Graham M; Ellis, Christopher G

    2018-05-25

    Red blood cell oxygen saturation is an important indicator of oxygen supply to tissues in the body. Oxygen saturation can be measured by taking advantage of spectroscopic properties of hemoglobin. When this technique is applied to transmission microscopy, the calculation of saturation requires determination of incident light intensity at each pixel occupied by the red blood cell; this value is often approximated from a sequence of images as the maximum intensity over time. This method often fails when the red blood cells are moving too slowly, or if hematocrit is too large since there is not a large enough gap between the cells to accurately calculate the incident intensity value. A new method of approximating incident light intensity is proposed using digital inpainting. This novel approach estimates incident light intensity with an average percent error of approximately 3%, which exceeds the accuracy of the maximum intensity based method in most cases. The error in incident light intensity corresponds to a maximum error of approximately 2% saturation. Therefore, though this new method is computationally more demanding than the traditional technique, it can be used in cases where the maximum intensity-based method fails (e.g. stationary cells), or when higher accuracy is required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Storage and retrieval of light pulse in coupled quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jibing, E-mail: liu0328@foxmail.com; Liu, Na; Shan, Chuanjia

    In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, themore » results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated.« less

  12. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sha; Jones, R. R.

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  13. Simulation and Analysis of Electric Field for the Disconnector Switch Incomplete Opening Position Based on 220kV GIS

    NASA Astrophysics Data System (ADS)

    Wang, Feifeng; Huang, Huimin; Su, Yi; Yan, Dandan; Lu, Yufeng; Xia, Xiaofei; Yang, Jian

    2018-05-01

    It has accounted for a large proportion of GIS equipment defects, which cause the disconnector switches to incomplete open-close position. Once opening operation is not in place, it will arouse continuous arcing between contacts to reduce insulation strength. Otherwise, the intense heat give rise to burn the contact, which has a severe effect on the safe operation of power grid. This paper analyzes some typical defection cases about the opening operation incomplete for disconnector switches of GIS. The COMSOL Multiphysics is applied to verify the influence on electric field distribution. The results show that moving contact out shield is 20 mm, the electric field distribution of the moving contact surface is uneven, and the maximum electric field value can reach 9.74 kV/mm.

  14. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE PAGES

    Li, Sha; Jones, R. R.

    2016-11-10

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  15. Morning reduction of photosynthetic capacity before midday depression.

    PubMed

    Koyama, Kohei; Takemoto, Shuhei

    2014-03-17

    Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees.

  16. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  17. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  18. Techniques used to identify tornado producing thunderstorms using geosynchronous satellite data

    NASA Technical Reports Server (NTRS)

    Schrab, Kevin J.; Anderson, Charles E.; Monahan, John F.

    1992-01-01

    Satellite imagery in the outbreak region in the time prior to and during tornado occurrence was examined in detail to obtain descriptive characteristics of the anvil plume. These characteristics include outflow strength (UMAX), departure of anvil centerline from the storm relative ambient wind (MDA), storm relative ambient wind (SRAW), and maximum surface vorticity (SFCVOR). It is shown that by using satellite derived parameters which characterize the flow field in the anvil region, the occurrence and intensity of tornadoes, which the parent thunderstorm produces, can be identified. Analysis of the censored regression models revealed that the five explanatory variables (UMAX, MDA, SRAW, UMAX-2, and SFCVOR) were all significant predictors in the identification of tornadic intensity of a particular thunderstorm.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less

  20. Laser contrast and other key parameters enhancing the laser conversion efficiency in ion acceleration regime

    NASA Astrophysics Data System (ADS)

    Torrisi, Lorenzo

    2018-01-01

    Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.

  1. Influence of vibrational states on high-order-harmonic generation and an isolated attosecond pulse from a N2 molecule

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Ge, Xin-Lei; Zhong, Huiying; Zhao, Xi; Zhang, Meixia; Jiang, Yuanfei; Liu, Xue-Shen

    2014-11-01

    The high-order-harmonic generation (HHG) from the N2 molecule in an intense laser field is investigated by applying the Lewenstein method. The initial state is constructed as a linear combination of the highest occupied molecular orbital (HOMO) and the lower-lying orbital below the HOMO, which is well described by a Gaussian wave packet generated by using the gamess-uk package. The HHG with different vibrational states of N2 are calculated and our results show that the harmonic intensity can be enhanced by higher vibrational states, which can be explained by the ionization probability. We also compared the cases with a different full width at half maximum of laser fields together, which can be well understood by the time-frequency analysis and the three-step model. Finally, the attosecond pulse generation is studied with different vibrational states, where a series of attosecond pulses can be produced with the shortest being 91 as.

  2. Characterization of laser induced damage of HR coatings with picosecond pulses

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Zhao, Yuan'an; Cui, Yun; Wang, Yueliang; Peng, Xiaocong; Shan, Chong; Zhu, Meiping; Wang, Jianguo; Shao, Jianda

    2017-11-01

    The effect of protective layer on the picosecond laser-induced damage behaviors of HfO2/SiO2 high-reflective (HR) coatings are explored. Two kinds of 1064nm HR coatings with and without protective layer are deposited by electron beam evaporation. Laser-induced damage tests are conducted with 1064nm, 30ps S-polarized and P-polarized pulses with different angle of incidence (AOI) to make the electric fields intensity in the HR coatings discrepantly. Damage morphology and cross section of damage sites were characterized by scanning electron microscope (SEM) and focused ion beam (FIB), respectively. It is found that SiO2 protective layer have a certain degree of improvement on laser induced damage threshold (LIDT) for every AOIs. The onset damage initiated very near to the Max peak of e-field, after which forms ripple-like pits. The damage morphology presents as layer delamination at high fluence. The Laser damage resistance is correspond with the maximum E-intensity in the coating stacks.

  3. VLF-HISS from electrons in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1973-01-01

    Intensities of auroral and magnetospheric hiss generated by the Cherenkov radiation process of electrons in the lower magnetosphere were calculated with respect to a realistic model of the earth's magnetosphere. In this calculation, the magnetic field was expressed by the Mead-Fairfield Model, and a static model of the iono-magnetospheric plasma distribution was constructed by accumulated data obtained by recent satellite observations. The energy range of hiss producing electrons and the frequency range of produced VLF in the computation are 100 eV to 200 keV, and 2 to 200 kHz, respectively. The maximum hiss intensity produced by soft electrons is more than one order higher than that of hard electron produced hiss. Higher rate of hiss occurrence in the daytime side, particularly in the soft electron precipitation zone in the morning sector, and less association of auroral hiss in nighttime sectors must be, therefore, due to the local time dependence of the energy spectra of precipitating electrons rather than the difference in the geomagnetic field and in the geoplasma distributions.

  4. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  5. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  6. The concept of a plasma centrifuge with a high frequency rotating magnetic field and axial circulation

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Potanin, E. P.

    2017-07-01

    The possibility of using a rotating magnetic field (RMF) in a plasma centrifuge (PC), with axial circulation to multiply the radial separation effect in an axial direction, is considered. For the first time, a traveling magnetic field (TMF) is proposed to drive an axial circulation flow in a PC. The longitudinal separation effect is calculated for a notional model, using specified operational parameters and the properties of a plasma, comprising an isotopic mixture of 20Ne-22Ne and generated by a high frequency discharge. The optimal intensity of a circulation flow, in which the longitudinal separation effect reaches its maximum value, is studied. The optimal parameters of the RMF and TMF for effective separation, as well as the centrifuge performance, are calculated.

  7. Ion acceleration in electrostatic field of charged cavity created by ultra-short laser pulses of 1020-1021 W/cm2

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu.; Singh, P. K.; Ahmed, H.; Kakolee, K. F.; Scullion, C.; Jeong, T. W.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2017-01-01

    Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (˜10-10) laser pulses with thin A l foil targets at 30° angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are measured along the target normal rear and front sides, respectively, showing intensity scaling as Ib . For the target front bf r o n t= 0.5-0.6 and for the target rear br e a r= 0.7-0.8 is observed in the intensity range 1020-1021 W/cm2. The fast scaling from the target rear ˜I0.75 can be attributed enhancement of laser energy absorption as already observed at relatively low intensities. The backward acceleration of the front side protons with intensity scaling as ˜I0.5 can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive displacement of the target electrons at the interaction of relativistic intense laser pulses with a solid target. The experimental results are in a good agreement with theoretical predictions.

  8. Chiral magnetic currents with QGP medium response in heavy-ion collisions at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    She, Duan; Feng, Sheng-Qin; Zhong, Yang; Yin, Zhong-Bao

    2018-03-01

    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.

  9. Nonsequential modeling of laser diode stacks using Zemax: simulation, optimization, and experimental validation.

    PubMed

    Coluccelli, Nicola

    2010-08-01

    Modeling a real laser diode stack based on Zemax ray tracing software that operates in a nonsequential mode is reported. The implementation of the model is presented together with the geometric and optical parameters to be adjusted to calibrate the model and to match the simulated intensity irradiance profiles with the experimental profiles. The calibration of the model is based on a near-field and a far-field measurement. The validation of the model has been accomplished by comparing the simulated and experimental transverse irradiance profiles at different positions along the caustic formed by a lens. Spot sizes and waist location are predicted with a maximum error below 6%.

  10. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.

    PubMed

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-05

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Analysis of the Impact of Fault Mechanism Radiation Patterns on Macroseismic Fields in the Epicentral Area of 1998 and 2004 Krn Mountains Earthquakes (NW Slovenia)

    PubMed Central

    2014-01-01

    Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse distribution of settlements, unusual differences in observed intensities can be explained with different radiation patterns. PMID:24772011

  12. Analysis of the impact of fault mechanism radiation patterns on macroseismic fields in the epicentral area of 1998 and 2004 Krn Mountains earthquakes (NW Slovenia).

    PubMed

    Gosar, Andrej

    2014-01-01

    Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse distribution of settlements, unusual differences in observed intensities can be explained with different radiation patterns.

  13. New Archeointensities from Mid Holocene Archeological Materials

    NASA Astrophysics Data System (ADS)

    Kapper, K.; Donadini, F.; Hirt, A. M.

    2013-12-01

    Paleointensity variation determined from mid Holocene archeomagnetic samples can improve the understanding of Earth's magnetic field and how it has changed during the past 10 000 years. It is important for models of Earth's magnetic field to fill gaps in archeomagnetic data records prior 1000 BC, which are prevalent in European data sets. New data help to complement regional reference curves, which are useful for dating of archeologic artifacts, e.g., pottery or displaced objects such as tiles, if the paleointensity of the object is known. Due to small temporal resolution and uncertainties in data records, the maximum intensity and maximum rate of change of the geomagnetic field is poorly understood. Stacks of intensity records are assumed to smooth out high frequency features in the secular variation curve such as archeomagnetic jerks and geomagnetic spikes. In previous studies it was shown that archeointensities could be measured from various archeological materials, if they were heated and obtain a pure thermoremanent magnetization. Ceramics or potsherds were the first materials to be used to measure the geomagnetic field intensity. They are usually heated to high temperatures and are abundant. In more recent years it was shown that copper slags can be used as well for archeointensity determinations. These are widespread in Europe, Asia and Africa from about 5000 BC onwards, carry a strong magnetization, and charcoal is usually close by or even embedded in the slag and can be used for radiocarbon dating. Samples from burned soils of archeological fires or hearth remains can have accurate archeointensities, provided that the samples carry a pure thermoremanent magnetization, which usually can be found in the center of the fireplace. But for some sites the center is difficult to locate, and relatively loose material may easily suffer from disturbances. In this study we report on results from archeointensity measurements on 91 specimens made of ceramics, slags, and hearth remains from central Europe, which cover a time period from 500 to 5200 BC. The ferromagnetic minerals in these materials were characterized by rock magnetic measurements. Archeointensities were obtained by using the Thellier method and the IZZI-protocol. We compare the new data with current geomagnetic field models and available archeomagnetic data. Furthermore, we demonstrate the value of burned cherts as a material that records the past geomagnetic field. We compare results of eight burned and unburned cherts to demonstrate that this material is useful for archeointensity determinations. Preliminary results show that the ceramics and slags provide reliable new archeointensity data. Hearth remains obtained in many cases a chemical remanent magnetization and therefore, do not provide useful data.

  14. Infrared x-ray pump-probe spectroscopy of the NO molecule

    NASA Astrophysics Data System (ADS)

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  15. PC index as a proxy of the solar wind energy that entered into the magnetosphere and energy accumulated in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Sormakov, Dmitry

    The PC index has been approved by the International Association of Geomagnetism and Aeronomy (Merida, Mexico, 2013) as a new international index of magnetic activity. Application of the PC index as a proxy of a solar wind energy that entered into the magnetosphere determines a principal distinction of the PC index from AL and Dst indices, which are regarded as characteristics of the energy that realized in magnetosphere in form of substorms and magnetic storms. This conclusion is based on results of analysis of relationships between the polar cap magnetic activity (PC-index) and parameters of the solar wind, on the one hand, relationships between changes of PC and development of magnetospheric substorms (AL-index) and magnetic storms (Dst-index), on the other hand. In this study the relationships between the PC and Dst indices in course of more than 200 magnetic storms observed in epoch of solar maximum (1998-2004) have been examined for different classes of storms separated by their kind and intensity. Results of statistical analysis demonstrate that depression of geomagnetic field starts to develop as soon as PC index steadily excess the threshold level ~1.5 mV/m; the storm intensity (DstMIN) follows, with delay ~ 1 hour, the maximum of PC in course of the storm. Main features of magnetic storms are determined, irrespective of their class and intensity, by the accumulated-mean PC value (PCAM): storm is developed as long as PCAM increases, comes to maximal intensity when PCAM attains the maximum, and starts to decay as soon as PCAM value displays decline. The run of “anomalous” magnetic storm on January 21-22, 2005, lasting many hours (with intensity of ≈ -100 nT) under conditions of northward or close to zero BZ component, is perfectly governed by behavior of the accumulated-mean PCAM index and, therefore, this storm should be regarded as an ordinary phenomenon. The conclusion is made that the PC index provides the unique on-line information on solar wind energy that entered into magnetosphere and PCAM index provides information on energy that accumulated in the magnetosphere.

  16. [Up-conversion luminescent materials of Y2O3: RE(RE=Er or Er/Yb) prepared by sol-gel combustion synthesis].

    PubMed

    Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu

    2010-11-01

    Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

  17. Effect of atmospheric turbulence on wind turbine wakes: An LES study

    NASA Astrophysics Data System (ADS)

    Wu, Y. T.; Porté-Agel, F.

    2012-04-01

    A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.

  18. Study on the luminous characteristics of a natural ball lightning

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yuan, Ping; Cen, Jianyong; Liu, Guorong

    2018-02-01

    According to the optical images of the whole process of a natural ball lightning recorded by two slit-less spectrographs in the Qinghai plateau of China, the simulated observation experiment on the luminous intensity of the spherical light source was carried out. The luminous intensity and the optical power of the natural ball lightning in the wavelength range of 400-690 nm were estimated based on the experimental data and the Lambert-Beer Law. The results show that the maximum luminous intensity was about 1.24 × 105 cd in the initial stage of the natural ball lightning, and the maximum luminous intensity and the maximum optical power in most time of its life were about 5.9 × 104 cd and 4.2 × 103 W, respectively.

  19. Controlling laser driven protons acceleration using a deformable mirror at a high repetition rate

    NASA Astrophysics Data System (ADS)

    Noaman-ul-Haq, M.; Sokollik, T.; Ahmed, H.; Braenzel, J.; Ehrentraut, L.; Mirzaie, M.; Yu, L.-L.; Sheng, Z. M.; Chen, L. M.; Schnürer, M.; Zhang, J.

    2018-03-01

    We present results from a proof-of-principle experiment to optimize laser driven protons acceleration by directly feeding back its spectral information to a deformable mirror (DM) controlled by evolutionary algorithms (EAs). By irradiating a stable high-repetition rate tape driven target with ultra-intense pulses of intensities ∼1020 W/ cm2, we optimize the maximum energy of the accelerated protons with a stability of less than ∼5% fluctuations near optimum value. Moreover, due to spatio-temporal development of the sheath field, modulations in the spectrum are also observed. Particularly, a prominent narrow peak is observed with a spread of ∼15% (FWHM) at low energy part of the spectrum. These results are helpful to develop high repetition rate optimization techniques required for laser-driven ion accelerators.

  20. Turbulence in a gaseous hydrogen-liquid oxygen rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Lebas, J.; Tou, P.; Ohara, J.

    1975-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a LOX-GH2 rocket combustion chamber was determined from experimental measurements of tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and a numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber, and an exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the value of the intensity of turbulence reaches a maximum of 14% at a location about 7" downstream from the injector. The Lagrangian correlation coefficient associated with this value is given by the above exponential expression where alpha = 10,000/sec.

  1. Gaussian statistics for palaeomagnetic vectors

    USGS Publications Warehouse

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  2. Gaussian statistics for palaeomagnetic vectors

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Constable, C. G.

    2003-03-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  3. Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models.

    PubMed

    Gao, Yue-Ming; Zhang, Heng-Fei; Lin, Shi; Jiang, Rui-Xin; Chen, Zhi-Ying; Lučev Vasić, Željka; Vai, Mang-I; Du, Min; Cifrek, Mario; Pun, Sio-Hang

    2018-06-05

    Intra-body communication (IBC) is one of the highlights in studies of body area networks. The existing IBC studies mainly focus on human channel characteristics of the physical layer, transceiver design for the application, and the protocol design for the networks. However, there are few safety analysis studies of the IBC electrical signals, especially for the galvanic-coupled type. Besides, the human channel model used in most of the studies is just a multi-layer homocentric cylinder model, which cannot accurately approximate the real human tissue layer. In this paper, the empirical arm models were established based on the geometrical information of six subjects. The thickness of each tissue layer and the anisotropy of muscle were also taken into account. Considering the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, the restrictions taken as the evaluation criteria were the electric field intensity lower than 1.35 × 10 4 f V/m and the specific absorption rate (SAR) lower than 4 W/kg. The physiological electrode LT-1 was adopted in experiments whose size was 4 × 4 cm and the distance between each center of adjoining electrodes was 6 cm. The electric field intensity and localized SAR were all computed by the finite element method (FEM). The electric field intensity was set as average value of all tissues, while SAR was averaged over 10 g contiguous tissue. The computed data were compared with the 2010 ICNIRP guidelines restrictions in order to address the exposure restrictions of galvanic-coupled IBC electrical signals injected into the body with different amplitudes and frequencies. The input alternating signal was 1 mA current or 1 V voltage with the frequency range from 10 kHz to 1 MHz. When the subject was stimulated by a 1 mA alternating current, the average electric field intensity of all subjects exceeded restrictions when the frequency was lower than 20 kHz. The maximum difference among six subjects was 1.06 V/m at 10 kHz, and the minimum difference was 0.025 V/m at 400 kHz. While the excitation signal was a 1 V alternating voltage, the electric field intensity fell within the exposure restrictions gradually as the frequency increased beyond 50 kHz. The maximum difference among the six subjects was 2.55 V/m at 20 kHz, and the minimum difference was 0.54 V/m at 1 MHz. In addition, differences between the maximum and the minimum values at each frequency also decreased gradually with the frequency increased in both situations of alternating current and voltage. When SAR was introduced as the criteria, none of the subjects exceeded the restrictions with current injected. However, subjects 2, 4, and 6 did not satisfy the restrictions with voltage applied when the signal amplitude was ≥ 3, 6, and 10 V, respectively. The SAR differences for subjects with different frequencies were 0.062-1.3 W/kg of current input, and 0.648-6.096 W/kg of voltage input. Based on the empirical arm models established in this paper, we came to conclusion that the frequency of 100-300 kHz which belong to LF (30-300 kHz) according to the ICNIRP guidelines can be considered as the frequency restrictions of the galvanic-coupled IBC signal. This provided more choices for both intensities of current and voltage signals as well. On the other hand, it also makes great convenience for the design of transceiver hardware and artificial intelligence application. With the frequency restrictions settled, the intensity restrictions that the current signal of 1-10 mA and the voltage signal of 1-2 V were accessible. Particularly, in practical application we recommended the use of the current signals for its broad application and lower impact on the human tissue. In addition, it is noteworthy that the coupling structure design of the electrode interface should attract attention.

  4. Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.

    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO /AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO /AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 ± 1.6 G, and the percentaged unbalanced magnetic flux is 49 ± 16%.more » The mean magnetic field density, the mean unsigned magnetic field density, and the percentaged unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38% (81%) of the unbalanced magnetic flux of coronal holes arises from only 1% (10%) of the coronal hole area, clustered in magnetic flux tubes with field strengths >50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc>0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.« less

  5. 3D SAPIV particle field reconstruction method based on adaptive threshold.

    PubMed

    Qu, Xiangju; Song, Yang; Jin, Ying; Li, Zhenhua; Wang, Xuezhen; Guo, ZhenYan; Ji, Yunjing; He, Anzhi

    2018-03-01

    Particle image velocimetry (PIV) is a necessary flow field diagnostic technique that provides instantaneous velocimetry information non-intrusively. Three-dimensional (3D) PIV methods can supply the full understanding of a 3D structure, the complete stress tensor, and the vorticity vector in the complex flows. In synthetic aperture particle image velocimetry (SAPIV), the flow field can be measured with large particle intensities from the same direction by different cameras. During SAPIV particle reconstruction, particles are commonly reconstructed by manually setting a threshold to filter out unfocused particles in the refocused images. In this paper, the particle intensity distribution in refocused images is analyzed, and a SAPIV particle field reconstruction method based on an adaptive threshold is presented. By using the adaptive threshold to filter the 3D measurement volume integrally, the three-dimensional location information of the focused particles can be reconstructed. The cross correlations between images captured from cameras and images projected by the reconstructed particle field are calculated for different threshold values. The optimal threshold is determined by cubic curve fitting and is defined as the threshold value that causes the correlation coefficient to reach its maximum. The numerical simulation of a 16-camera array and a particle field at two adjacent time events quantitatively evaluates the performance of the proposed method. An experimental system consisting of a camera array of 16 cameras was used to reconstruct the four adjacent frames in a vortex flow field. The results show that the proposed reconstruction method can effectively reconstruct the 3D particle fields.

  6. Study of large Forbush decreases in cosmic-ray intensity observed during solar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Badruddin, B.

    2016-07-01

    Neutron monitors at different geomagnetic latitude and longitude of Earth measure the cosmic-ray intensity with high precision. Sudden decreases in cosmic-ray intensity within few hours and slow recovery to pre-decrease level within a few days (Forbush decreases) are observed in neutron monitor data. We identify large-amplitude Forbush decreases (FDs), using high counting rate neutron monitor data, that occurred during previous solar cycle 23 (1995-2009) and current solar cycle 24 (2010-2015). We then search for the solar sources and the interplanetary structures responsible for these decreases. We attempt to find the relative importance of various interplanetary plasma and field parameters and the physical mechanism(s) responsible for FDs of varying amplitudes. We analyze a number of interplanetary plasma and field parameters, during both the phases (main and recovery) of FDs. The interplanetary plasma and field data analyzed in this study are the solar-wind velocity, the interplanetary magnetic field, its fluctuations, interplanetary electric field and the time variation of interplanetary electric potential. For monitoring the changes in interplanetary plasma/field conditions during the development of FDs, we also utilize plasma density, temperature and plasma beta, dynamic pressure and Mach number during the passage of interplanetary structures responsible for FDs. In addition to their amplitude, we study the recovery of FDs in detail after determining the time constant during their recovery by exponential fit to the data. As the solar magnetic polarity reversed during the maximum phase of solar cycle 23 (in the year 2000), we study the differences in amplitude, time constant of recovery and plasma/field condition to search for the polarity dependent effects, if any, on the amplitude and recovery of FDs due to implication for the models suggested to explain the Forbush decrease phenomena. The implications of these results are discussed.

  7. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. Copyright © 2016, American Association for the Advancement of Science.

  8. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less

  9. The scaling of electron and positron generation in intense laser-solid interactions

    DOE PAGES

    Chen, Hui; Link, A.; Sentoku, Y.; ...

    2015-05-27

    This study presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10 18–10 20 W cm -2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E L 2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has amore » pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. Finally, the measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.« less

  10. The scaling of electron and positron generation in intense laser-solid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hui; Link, A.; Fiuza, F.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronouncedmore » peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.« less

  11. Induction effects of torus knots and unknots

    NASA Astrophysics Data System (ADS)

    Oberti, Chiara; Ricca, Renzo L.

    2017-09-01

    Geometric and topological aspects associated with induction effects of field lines in the shape of torus knots/unknots are examined and discussed in detail. Knots are assumed to lie on a mathematical torus of circular cross-section and are parametrized by standard equations. The induced field is computed by direct integration of the Biot-Savart law. Field line patterns of the induced field are obtained and several properties are examined for a large family of knots/unknots up to 51 crossings. The intensity of the induced field at the origin of the reference system (center of the torus) is found to depend linearly on the number of toroidal coils and reaches maximum values near the boundary of the mathematical torus. New analytical estimates and bounds on energy and helicity are established in terms of winding number and minimum crossing number. These results find useful applications in several contexts when the source field is either vorticity, electric current or magnetic field, from vortex dynamics to astrophysics and plasma physics, where highly braided magnetic fields and currents are present.

  12. Dynamic-MLC leaf control utilizing on-flight intensity calculations: a robust method for real-time IMRT delivery over moving rigid targets.

    PubMed

    McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy

    2007-08-01

    An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1 +/- 3.1% and -0.5 +/- 2.8% relative to the maximum of the intensity profiles. For the same target motion, the error was shown to increase rapidly as (1) the maximum MLC leaf velocity was reduced below 75% of the maximum target velocity and (2) the system response time was increased.

  13. Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael; ., Prabhat; Reed, Kevin A.

    The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less

  14. Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations

    DOE PAGES

    Wehner, Michael; ., Prabhat; Reed, Kevin A.; ...

    2015-05-12

    The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less

  15. On the measurement of the crack tip stress field as a means of determining Delta K(sub eff) under conditions of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter

    1994-01-01

    The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.

  16. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array

    NASA Astrophysics Data System (ADS)

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-04-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm-2 in the free field in water and 40 W cm-2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  17. The role of acoustic nonlinearity in tissue heating behind the rib cage using high intensity focused ultrasound phased array

    PubMed Central

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-01-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path, and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low power sonications. Intensity levels at the face of the array elements that corresponded to formation of high amplitude shock fronts in the focal region were determined as 10 W·cm−2 in the free field in water and 40 W·cm−2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue. PMID:23528338

  18. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  19. Effects of the magnetic field gradient on the wall power deposition of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Li, Peng; Zhang, Xu; Wei, Liqiu; Sun, Hezhi; Peng, Wuji; Yu, Daren

    2017-04-01

    The effect of the magnetic field gradient in the discharge channel of a Hall thruster on the ionization of the neutral gas and power deposition on the wall is studied through adopting the 2D-3V particle-in-cell (PIC) and Monte Carlo collisions (MCC) model. The research shows that by gradually increasing the magnetic field gradient while keeping the maximum magnetic intensity at the channel exit and the anode position unchanged, the ionization region moves towards the channel exit and then a second ionization region appears near the anode region. Meanwhile, power deposition on the walls decreases initially and then increases. To avoid power deposition on the walls produced by electrons and ions which are ionized in the second ionization region, the anode position is moved towards the channel exit as the magnetic field gradient is increased; when the anode position remains at the zero magnetic field position, power deposition on the walls decreases, which can effectively reduce the temperature and thermal load of the discharge channel.

  20. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    PubMed Central

    Li, Sha; Jones, R. R.

    2016-01-01

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm

  1. Transient cosmic ray increase associated with a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1985-01-01

    On the basis of worldwide network data of cosmic ray nucleonic components, the transient cosmic ray increase due to the depression of cosmic ray cutoff rigidity during a severe geomagnetic storm was investigated in terms of the longitudinal dependence. Multiple correlation analysis among isotropic and diurnal terms of cosmic ray intensity variations and Dst term of the geomagnetic field is applied to each of various station's data. It is shown that the amplitude of the transient cosmic ray increase associated with Dst depends on the local time of the station, and that its maximum phase is found in the evening sector. This fact is consistent with the theoretical estimation based on the azimuthally asymmetric ring current model for the magnetic DS field.

  2. Nonlinear plasmonic behavior of nanohole arrays in thin gold films for imaging lipids

    NASA Astrophysics Data System (ADS)

    Subramaniyam, Nagarajan; Shah, Ali; Dreser, Christoph; Isomäki, Antti; Fleischer, Monika; Sopanen, Markku

    2018-06-01

    We demonstrate linear and nonlinear plasmonic behaviors of periodic nanohole arrays in thin gold (Au) films with varying periodicities. As expected, the linear optical transmission spectra of the nanohole arrays show a red-shift of the resonance wavelength and Wood's anomaly with increasing hole spacing. The optical transmission and electric near-field intensity distribution of the nanohole arrays are simulated using the finite element method. The nonlinear plasmonic behavior of the nanohole arrays is studied by using picosecond pulsed excitation at near-infrared wavelengths. The characteristic nonlinear signals indicating two-photon excited luminescence (TPEL), sum frequency generation, second harmonic generation, and four-wave mixing (FWM) are observed. A maximum FWM/TPEL signal intensity ratio is achieved for nanohole arrays with a periodicity of 500 nm. Furthermore, the significant FWM signal intensity and contrast compared to the background were harnessed to demonstrate the ability of surface-enhanced coherent anti-Stokes Raman scattering to visualize low concentrations of lipids deposited on the nanohole array with a periodicity of 500 nm.

  3. Measurement of secondary cosmic ray intensity at Regener-Pfotzer height using low-cost weather balloons and its correlation with solar activity

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip K.; Pal, Partha Sarathi; Bhowmick, Debashis; Bhattacharya, Arnab

    2017-09-01

    Cosmic ray flux in our planetary system is primarily modulated by solar activity. Radiation effects of cosmic rays on the Earth strongly depend on latitude due to the variation of the geomagnetic field strength. To study these effects we carried out a series of measurements of the radiation characteristics in the atmosphere due to cosmic rays from various places (geomagnetic latitude: ∼14.50°N) in West Bengal, India, located near the Tropic of Cancer, for several years (2012-2016) particularly covering the solar maximum in the 24th solar cycle. We present low energy (15-140 keV) secondary radiation measurement results extending from the ground till the near space (∼40 km) using a scintillator detector on board rubber weather balloons. We also concentrate on the cosmic ray intensity at the Regener-Pfotzer maxima and find a strong anti-correlation between this intensity and the solar activity even at low geomagnetic latitudes.

  4. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Pangam, S; Kolla, J

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less

  5. Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the Western USA

    USGS Publications Warehouse

    Moody, J.A.; Martin, D.A.

    2001-01-01

    Wildfire alters the hydrologic response of watersheds, including the peak discharges resulting from subsequent rainfall. Improving predictions of the magnitude of flooding that follows wildfire is needed because of the increase in human population at risk in the wildland-urban interface. Because this wildland-urban interface is typically in mountainous terrain, we investigated rainfall-runoff relations by measuring the maximum 30 min rainfall intensity and the unit-area peak discharge (peak discharge divided by the area burned) in three mountainous watersheds (17-26.8 km2) after a wildfire. We found rainfall-runoff relations that relate the unit-area peak discharges to the maximum 30 min rainfall intensities by a power law. These rainfall-runoff relations appear to have a threshold value for the maximum 30 min rainfall intensity (around 10 mm h-1) such that, above this threshold, the magnitude of the flood peaks increases more rapidly with increases in intensity. This rainfall intensity could be used to set threshold limits in rain gauges that are part of an early-warning flood system after wildfire. The maximum unit-area peak discharges from these three burned watersheds ranged from 3.2 to 50 m3 s-1 km-2. These values could provide initial estimates of the upper limits of runoff that can be used to predict floods after wildfires in mountainous terrain. Published in 2001 by John Wiley and Sons, Ltd.

  6. Online monitoring and conditional regression tree test: Useful tools for a better understanding of combined sewer network behavior.

    PubMed

    Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I

    2018-06-01

    A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.

    2014-12-01

    Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.

  8. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    PubMed Central

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-01-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247

  9. Detection of the secondary meridional circulation associated with the quasi-biennial oscillation

    NASA Astrophysics Data System (ADS)

    Ribera, P.; PeñA-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; HernáNdez, E.

    2004-09-01

    The quasi-biennial oscillation (QBO) signal in stratospheric zonal and meridional wind, temperature, and geopotential height fields is analyzed based on the use of the National Centers for Environmental Prediction (NCEP) reanalysis (1958-2001). The multitaper method-singular value decomposition (MTM-SVD), a multivariate frequency domain analysis method, is used to detect significant and spatially coherent narrowband oscillations. The QBO is found as the most intense signal in the stratospheric zonal wind. Then, the MTM-SVD method is used to determine the patterns induced by the QBO at every stratospheric level and data field. The secondary meridional circulation associated with the QBO is identified in the obtained patterns. This circulation can be characterized by negative (positive) temperature anomalies associated with adiabatic rising (sinking) motions over zones of easterly (westerly) wind shear and over the subtropics and midlatitudes, while meridional convergence and divergence levels are found separated by a level of maximum zonal wind shear. These vertical and meridional motions form quasi-symmetric circulation cells over both hemispheres, though less intense in the Southern Hemisphere.

  10. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  11. Compact ECR ion source with permanent magnets for carbon therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, Y.; Yamada, S.; Ogawa, H.; Drentje, A. G.; Biri, S.; Yoshida, Y.

    2004-05-01

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 e μA and better than 6% during 20 h with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such a facility we have designed an all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 32 cm and a length of 29.5 cm. Details of the design of this source and its background are described in this article.

  12. Emission of energetic protons from relativistic intensity laser interaction with a cone-wire target.

    PubMed

    Paradkar, B S; Yabuuchi, T; Sawada, H; Higginson, D P; Link, A; Wei, M S; Stephens, R B; Krasheninnikov, S I; Beg, F N

    2012-11-01

    Emission of energetic protons (maximum energy ∼18 MeV) from the interaction of relativistic intensity laser with a cone-wire target is experimentally measured and numerically simulated with hybrid particle-in-cell code, lsp [D. R. Welch et al., Phys. Plasmas 13, 063105 (2006)]. The protons originate from the wire attached to the cone after the OMEGA EP laser (670 J, 10 ps, 5 × 10^{18} W/cm^{2}) deposits its energy inside the cone. These protons are accelerated from the contaminant layer on the wire surface, and are measured in the radial direction, i.e., in a direction transverse to the wire length. Simulations show that the radial electric field, responsible for the proton acceleration, is excited by three factors, viz., (i) transverse momentum of the relativistic fast electrons beam entering into the wire, (ii) scattering of electrons inside the wire, and (iii) refluxing of escaped electrons by "fountain effect" at the end of the wire. The underlying physics of radial electric field and acceleration of protons is discussed.

  13. Influence of High Pulsed Magnetic Field on the Dislocations and Mechanical Properties of Al2O3/Al Composites

    NASA Astrophysics Data System (ADS)

    Cheng, Jiang-feng; Li, Gui-rong; Wang, Hong-ming; Li, Pei-si; Li, Chao-qun

    2018-03-01

    At T6 state, Al-Zn-Mg-Cu aluminum matrix composites reinforced with Al2O3 particles generated in situ were subjected to high pulsed magnetic fields at different magnetic induction intensities ( B = 2, 3 and 4 T). The results show that the dislocation densities in the treated samples increased with increasing B, and the magnetoplastic effect was determined to be the primary cause. The effect of the magnetic field is believed to alter the spin state of free electrons between dislocations and obstacles from the singlet state (associated with high bonding energy) to the triplet state (low bonding energy). The maximum ultimate tensile strength of 532 MPa was obtained at B = 4 T with 30 pulses, which was 20.7% higher than that of the initial sample, primarily because of dislocation strengthening. At B = 2 T, the elongation was at its maximum of 9.3%, representing an increase of 12% compared with the initial sample, while the associated ultimate tensile strength (447 MPa) was still higher than that of the untreated sample (440 MPa). The relationship between mechanical properties and microstructure was analyzed, and the improved properties observed in this work are explained by the transition of the electron spin state and the piling up of dislocations.

  14. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  15. The effects of different intensities, frequencies and exposure times of extremely low-frequency electromagnetic fields on the growth of Staphylococcus aureus and Escherichia coli O157:H7.

    PubMed

    Bayır, Ece; Bilgi, Eyüp; Şendemir-Ürkmez, Aylin; Hameş-Kocabaş, E Esin

    2015-03-01

    The impact of different types of extremely low-frequency electromagnetic fields (ELF-EMF) on the growth of Staphylococcus aureus and Escherichia coli O157:H7 was investigated. The cultures of bacteria in broth media were exposed to sinusoidal homogenous ELF-EMF with 2 and 4 mT magnetic intensities. Each intensity for each bacteria was combined with three different frequencies (20, 40 and 50 Hz), and four different exposure times (1, 2, 4 and 6 h). A cell suspension of each experiment was diluted for the appropriate range and inoculated to Mueller-Hinton Agar (MHA) plates after exposure to ELF-EMF. The number of colony forming units (CFU) of both strains was obtained after incubation at 37 °C for 24 h. Data were statistically evaluated by one-way analysis of variance (ANOVA), statistical significance was described at p < 0.05 and data were compared with their non-exposed controls. Magnetic intensity, frequency and exposure time of ELF-EMFs changed the characteristic responses for both microorganisms. Samples exposed to ELF-EMF showed a statistically significant decrease compared to their controls in colony forming capability, especially at long exposure times. An exposure to 4 mT-20 Hz ELF-EMF of 6 h produced maximum inhibition of CFU compared to their controls for both microorganisms (95.2% for S. aureus and 85% for E. coli).

  16. Influence of Different Solar Drivers on the Winds in the Middle Atmosphere and on Geomagnetic Disturbances

    DTIC Science & Technology

    2007-05-18

    number and intensity are highest in sunspot maximum. CME’s are considered the sources of the most intense geomagnetic storms (Gonzalez et al., 2002... storm . High speed solar wind The geomagnetic activity during the declining phase of the solar cycle can be even higher that at sunspot maximum. In...characteristic “calm before the storm ” – the decrease a couple of days before the maximum disturbance – in the case of high speed streams (Borovsky and

  17. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  18. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.

    2008-05-15

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10{sup -11} achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10{sup 22} W/cm{sup 2} that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energiesmore » from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 {mu}m (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.« less

  19. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    PubMed Central

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651

  20. A Comparison of the Regional Circulation in the Feet between Dialysis and Non-Dialysis Patients using Indocyanine Green Angiography.

    PubMed

    Nishizawa, M; Igari, K; Kudo, T; Toyofuku, T; Inoue, Y; Uetake, H

    2017-09-01

    Peripheral artery disease in dialysis cases is more prone to critical limb ischemia compared to non-dialysis cases, with a significantly high rate of major amputation of the lower limbs. Lesions are distributed on the more distal side in dialysis critical limb ischemia cases. The aim of this study was to investigate the usefulness of indocyanine green angiography to determine differences in the regional circulation in the foot between dialysis and non-dialysis patients. The subjects included 62 cases, among which 20 were dialysis patients and 42 were non-dialysis patients. We compared the indocyanine green angiography parameters for regions of interest in the dialysis and non-dialysis groups, which included the magnitude of intensity from indocyanine green onset to maximum intensity (Imax), the time from indocyanine green onset to maximum intensity (Tmax), the time elapsed from the fluorescence onset to half the maximum intensity (T1/2), and the time from maximum intensity to declining to 90% of the maximum intensity (Td90%). These indocyanine green angiography parameters were measured at region of interest 1 (the Chopart joint), region of interest 2 (the Lisfranc joint), and region of interest 3 (the distal region of the first metatarsal bone). In the comparison between the dialysis and non-dialysis groups, a significant difference was observed regarding Tmax, T1/2, and Td90%, especially in region of interest 3. In this study, we show that regional tissue perfusion is more deteriorated in dialysis patients compared with non-dialysis patients using indocyanine green angiography. Tmax, T1/2, and Td90% could be useful clinical parameters to compare ischemic severity of the lower limb between dialysis and non-dialysis patients.

  1. Analysis of crack propagation in roller bearings using the boundary integral equation method - A mixed-mode loading problem

    NASA Technical Reports Server (NTRS)

    Ghosn, L. J.

    1988-01-01

    Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.

  2. An experimental investigation of a three dimensional wall jet. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.

    1977-01-01

    One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).

  3. Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal

    NASA Technical Reports Server (NTRS)

    Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.

    1991-01-01

    Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.

  4. Fluorescence enhancement near single TiO2 nanodisks

    NASA Astrophysics Data System (ADS)

    Lin, H.-J.; de Oliveira Lima, K.; Gredin, P.; Mortier, M.; Billot, L.; Chen, Z.; Aigouy, L.

    2017-12-01

    We present a near-field optical study of TiO2 nanodisks by fluorescence scanning near-field optical microscopy. The localization of light and the fluorescence enhancement near the dielectric structures are visualized with a lateral resolution of ˜λ/5 using an Er/Yb-codoped fluorescent nanocrystal glued at the end of a sharp scanning tip. We observed that the intensity patterns strongly depend on the disk size, forming lobes for a diameter close to the wavelength and a single bright spot for smaller structures. Although the experiments were performed out of resonance, a maximum fluorescence enhancement of 2.3 was observed near 700 nm-wide disks. The evolution of the fluorescence pattern as a function of the disk size is in good agreement with the near-field maps calculated by the finite-difference time-domain method, in both two and three dimensions above the structures.

  5. Polar Spacecraft Based Comparisons of Intense Electric Fields and Poynting Flux Near and Within the Plasma Sheet-Tail Lobe Boundary to UVI Images: An Energy Source for the Aurora

    NASA Technical Reports Server (NTRS)

    Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; hide

    2000-01-01

    In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.

  6. Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.

    2000-08-01

    In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of c/Σp, where Σp is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.

  7. Preliminary investigation of the microwave pyrolysis mechanism of sludge based on high frequency structure simulator simulation of the electromagnetic field distribution.

    PubMed

    Ma, Rui; Yuan, Nana; Sun, Shichang; Zhang, Peixin; Fang, Lin; Zhang, Xianghua; Zhao, Xuxin

    2017-06-01

    Under microwave irradiation, raw sludge was pyrolyzed mainly by evaporation of water, with a weight loss ratio of 84.8% and a maximum temperature not exceeding 200°C. High-temperature pyrolysis of SiC sludge could be realized, with a weight loss ratio of 93.4% and a final pyrolysis temperature of 1131.7°C. Variations between the electric field intensity distribution are the main reason for the differences of pyrolysis efficiencies. HFSS simulation showed that the electric field intensity of the raw sludge gradually decreased from 2.94×10 4 V/m to 0.88×10 4 V/m when pyrolysis ends, while that of SiC sludge decreased from 3.73×10 4 V/m at the beginning to 1.28×10 4 V/m, then increased to 4.03×10 4 V/m. The electromagnetic effect is the main factor (r≥0.91) influencing the temperature increase and weight loss of raw sludge. Both the electromagnetic effect and heat conduction effect influenced temperature rise and weight loss of SiC sludge, but the former's influence was comparatively larger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Revised maximum admissible intensity (MAI) values for infrasonic noise in work environment].

    PubMed

    Pawlaczyk-Łuszczyńska, M; Augustyńska, D; Kaczmarska-Kozłowska, A; Sliwińska-Kowalska, M; Kameduła, M

    2001-01-01

    A short review of infrasound sources is presented. The measuring methods and occupational exposure limits for infrasonic noise (infrasound) are described. The amended Polish regulations on maximum admissible intensity (MAI) values for infrasonic noise in work environment and proposals of exposure limits for workers at particular risk (i.e. pregnant women and juveniles) are discussed.

  9. In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions.

    PubMed

    Puett, Connor; Phillips, Linsey C; Sheeran, Paul S; Dayton, Paul A

    2013-01-01

    Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation region can be problematic when cavitation is used to enhance heating. This study explored relationships between vaporization, ablation, and the PSNE concentration in vitro to optimize the acoustic intensity and insonation time required for spatially controlled ablation enhancement using a PSNE that included a volatile PFC component. HIFU (continuous wave at 1 MHz; insonation times of 5, 10, 15, and 20 s; cool-down times of 2, 4, and 6 s; peak negative pressures of 2, 3, and 4 MPa) was applied to albumin-acrylamide gels containing PFC agents (1:1 mix of volatile decafluorobutane and more stable dodecafluoropentane at 10(5) to 10(8) PFC ND per milliliter) or agent-free controls. Vaporization fields (microbubble clouds) were imaged by conventional ultrasound, and ablation lesions were measured directly by calipers. Controlled ablation was defined as the production of 'cigar'-shaped lesions corresponding with the acoustic focal zone. This control was considered to be lost when ablation occurred in prefocal vaporization fields having a predominantly 'tadpole' or oblong shape. Changes in the vaporization field shape and location occurred on a continuum with increasing PSNE concentration and acoustic intensity. Working with the maximum concentration-intensity combinations resulting in controlled ablation demonstrated a dose-responsive relationship between insonation time and volumes of both the vaporization fields (approximately 20 to 240 mm(3)) and the ablation lesions (1 to 135 mm(3)) within them. HIFU ablation was enhanced by this PSNE and could be achieved using intensities ≤650 W/cm(2). Although the ablation lesions were located within much larger microbubble clouds, optimum insonation times and intensities could be selected to achieve an ablation lesion of desired size and location for a given PSNE concentration. This demonstration of controllable enhancement using a PSNE that contained a volatile PFC component is another step toward developing phase-shift nanotechnology as a potential clinical tool to improve HIFU.

  10. In vitro stimulation with a strongly pulsed electromagnetic field on rat basophilic leukemia cells

    NASA Astrophysics Data System (ADS)

    Choi, J. W.; Shin, S. C.; Kim, S.; Chung, E. R.; Bang, J. H.; Cho, G. I.; Choi, S. D.; Park, Y. S.; Jang, T. S.; Yoo, Y. M.; Lee, S. S.; Hwang, D. G.

    2010-05-01

    In this study, the effects of pulsed electromagnetic field stimulation with a strong magnetic field on rat basophilic leukemia (RBL-2H3) cells were investigated to confirm the efficacy of the magnetic stimulator for biomedical applications. The maximum intensity of the magnetic field generated from the stimulation coil was 0.203 T, and the transition time was 126 μs. The oscillation time and frequency of the pulsed field were almost 0.1 ms and 8 kHz, respectively. The cell count as well as the mRNA expression and DNA sequence of the cytokine genes, such as the tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4), of the stimulated RBL-2H3 cells were analyzed with a hemocytometer and via reverse transcriptase polymerase chain reaction to determine the physiological response under a strong pulse field. After 12 h stimulation, cell death was observed at an increasing scale with the increase in the stimulation time. On the other hand, the cells that were stimulated for 10 min almost doubled as the interval time between the stimulations was extended.

  11. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minimum intensities in the horizontal plane, minimum intensities in any vertical plane, and maximum...: (1) Intensities in the horizontal plane. Each intensity in the horizontal plane (the plane containing the longitudinal axis of the rotorcraft and perpendicular to the plane of symmetry of the rotorcraft...

  12. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minimum intensities in the horizontal plane, minimum intensities in any vertical plane, and maximum...: (1) Intensities in the horizontal plane. Each intensity in the horizontal plane (the plane containing the longitudinal axis of the airplane and perpendicular to the plane of symmetry of the airplane) must...

  13. Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.

    2017-06-01

    This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.Plain Language SummaryMars, which does not have a strong magnetic field, has an induced magnetic environment from the draping of the interplanetary magnetic field from the Sun. It folds around Mars, forming two "lobes" of magnetic field behind the planet with a current sheet of electrified gas (plasma) behind it. The current sheet is not directly behind the planet but rather shifted toward the dawn or dusk direction. It is shown here that one factor controlling the location of the current sheet is the dayside ionosphere. At solar maximum, the ionosphere is dense, the magnetic field slips easily by the planet, and the current sheet is shifted toward dawn. At solar minimum, the ionosphere is relatively weak, the magnetic field slippage is slowed down, and the current sheet shifts toward dusk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19226835','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19226835"><span>Uptake of organochlorine pesticides by zucchini cultivars grown in polluted soils.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Donnarumma, L; Pompi, V; Faraci, A; Conte, E</p> <p>2008-01-01</p> <p>Aim of this trial was to verify the occurrence and the distribution of organochlorine pesticides (OCPs) in zucchini cultivated varieties grown in glasshouses and in open field with different levels of pollutants in soil. Residues of OCPs have been detected in soils and crops in the province of Latina, an intensively agricultural area of Lazio Region, in Italy. The study has been focused at crop harvest in less contaminated glasshouses and during crop life cycle in contaminated field in spring-summer time. Dieldrin distribution in different part of plant is similar among zucchini cultivars grown in contaminated field. In crop grown in field and in glasshouses with soil pollution >0.01 mg/kg, we found dieldrin in all zucchini fruits and flowers, at the same level or higher than the maximum residue limit (RML) fixed by European law for edible vegetables (0.02 mg/kg). Instead in soil with pollution < or = 0.01 mg/kg total OCPs it would be possible to grow zucchini cultivars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005564','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005564"><span>A High-resolution Model of Field-aligned Currents Through Empirical Orthogonal Functions Analysis (MFACE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>He, Maosheng; Vogt, Joachim; Luehr, Hermann; Sorbalo, Eugen; Blagau, Adrian; Le, Guan; Lu, Gang</p> <p>2012-01-01</p> <p>Ten years of CHAMP magnetic field measurements are integrated into MFACE, a model of field-aligned currents (FACs) using empirical orthogonal functions (EOFs). EOF1 gives the basic Region-1/Region-2 pattern varying mainly with the interplanetary magnetic field Bz component. EOF2 captures separately the cusp current signature and By-related variability. Compared to existing models, MFACE yields significantly better spatial resolution, reproduces typically observed FAC thickness and intensity, improves on the magnetic local time (MLT) distribution, and gives the seasonal dependence of FAC latitudes and the NBZ current signature. MFACE further reveals systematic dependences on By, including 1) Region-1/Region-2 topology modifications around noon; 2) imbalance between upward and downward maximum current density; 3) MLT location of the Harang discontinuity. Furthermore, our procedure allows quantifying response times of FACs to solar wind driving at the bow shock nose: we obtain 20 minutes and 35-40 minutes lags for the FAC density and latitude, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29543279','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29543279"><span>High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Bing; Fang, Fang; Zhang, Zuxing; Xu, Jing; Zhang, Lin</p> <p>2018-03-15</p> <p>A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP 01 and LP 11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2  pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16871959','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16871959"><span>[National system of protection against electromagnetic fields 0 Hz-300 GHz in the light of current legal regulations].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aniołczyk, Halina</p> <p>2006-01-01</p> <p>Exposure to electromagnetic fields (EMF) occurs when man is exposed to the effect of electric, magnetic and electromagnetic fields and contact currents different from those resulting from physiological processes in the organism or other natural phenomena. In Poland, the system of protection against EMF has been functioning for over 35 years. In 2001, when the Minister of Labor and Social Policy issued the regulation introducing the maximum admissible intensities (MAI) for electromagnetic fields and radiation within the range of 0 Hz-300 GHz, the system was directed mainly towards evaluation of exposure to EMF occurring in the occupational environment. The system is linked via MAI values with human protection in the natural environment. In this paper, the background, principles and the range of the national system of protection against EMF and its monitoring are presented. The project of implementation of EU directives, following Poland's accession to the European Union is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1875375','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1875375"><span>Ectoparasites of a population of urban gray squirrels in northern Florida.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, N A; Telford, S R; Forrester, D J</p> <p>1991-05-01</p> <p>Ectoparasites infesting a population of urban gray squirrels (Sciurus carolinensis Gmelin) in northern Florida were collected monthly during 1974. Eleven species were identified: one flea (Orchopeas howardi (Baker], three suckling lice (Enderleinellus longiceps Kellogg & Ferris, Hoplopleura sciuricola Ferris, and Neohaematopinus sciuri Jancke), one tick (Dermacentor variabilis Say), two mesostigmatid (gamasid) mites (Androlaelaps casalis (Berlese) and A. fahrenholzi (Berlese], and four chiggers (Eutrombicula alfreddugesi (Oudemans), E. splendens (Ewing), Leptotrombidium peromysci Vercammen-Grandjean & Langston, and Parasecia gurneyi (Ewing]. The flea and three suckling lice represent core species of ectoparasites for the gray squirrel; the remainder are probably satellite species. Only E. longiceps varied significantly in prevalence or intensity of infestation among host age groups; subadult squirrels had higher intensities than adults. Peak prevalence of O. howardi occurred in January and attained maximum intensity in March, whereas both prevalance and intensity were minimum in August. Prevalence of H. sciuricola was maximum in November and remained at similar levels through June. It then declined significantly to its minimum in September-October. Intensity of infestation, however, was greatest in August, September, and January. Maximum prevalence of N. sciuri occurred from January to March and was minimum in September; intensity of infestation reached maxima in January, June, and August.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20623855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20623855"><span>[Rainfall intensity effects on nutrients transport in surface runoff from farmlands in gentle slope hilly area of Taihu Lake Basin].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling</p> <p>2010-05-01</p> <p>To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5969043','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5969043"><span>Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Funch, Lindsey T.; Lind, Erik; Van Langen, Deborah; Hokanson, James F.</p> <p>2017-01-01</p> <p>The purpose of the study was to examine the changes in peak oxygen consumption (V˙O2peak) and running economy (RE) following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years) were divided into two training groups, matched from baseline V˙O2peak: High Intensity Training (HITrun; n = 8) and High Intensity Interval Training (HIIT; n = 6). Participants completed 12 training sessions. HITrun consisted of 30 min of high-intensity running, while HIIT consisted of a series of whole-body high intensity Tabata-style intervals (75–85% of age predicted maximum heart rate) for a total of four minutes. In addition to the interval training, the off-season training included six resistance training sessions, three team practices, and concluded with a team scrimmage. V˙O2peak was measured pre- and post-training to determine the effectiveness of the training program. A two-way mixed (group × time) ANOVA showed a main effect of time with a statistically significant difference in V˙O2peak from pre- to post-testing, F(1, 12) = 12.657, p = 0.004, partial η2 = 0.041. Average (±SD) V˙O2peak increased from 44.64 ± 3.74 to 47.35 ± 3.16 mL·kg−1·min−1 for HIIT group and increased from 45.39 ± 2.80 to 48.22 ± 2.42 mL·kg−1·min−1 for HITrun group. Given the similar improvement in aerobic power, coaches and training staff may find the time saving element of HIIT-type conditioning programs attractive. PMID:29910449</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760043954&hterms=Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DDeep%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760043954&hterms=Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DDeep%2Btime"><span>The time and spatial behavior of solar flare proton anisotropies observed in deep space on Pioneers 10 and 11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mccarthy, J.; Ogallagher, J. J.</p> <p>1975-01-01</p> <p>The anisotropy of solar flare protons from the direction of the 'garden hose' magnetic field line has been analyzed for 24 events observed by the University of Chicago experiment on Pioneers 10 and 11 in 1972 and 1973. The anisotropy versus time profiles during individual events are in general consistent with diffusive propagation, but several cases are observed where the decay is better described by an exponential time decay. The anisotropy amplitude evaluated at the time of maximum intensity for each event shows evidence for a gradual decrease with increasing distance from the sun which is qualitatively consistent with diffusive propagation and suggests that the effective interplanetary diffusion coefficient parallel to the magnetic field increases slowly with heliocentric distance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18285070','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18285070"><span>In-vivo fetal ultrasound exposimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daft, C W; Siddiqi, T A; Fitting, D W; Meyer, R A; O'Brien, W R</p> <p>1990-01-01</p> <p>An instrument has been developed to measure the acoustic pressure field in vivo during an obstetric ultrasound examination. This provides for improved intensity values for exposure calculations, to assist in assessment of bioeffects. The ultrasonic field is sampled using a calibrated seven-element linear array hydrophone of poly(vinylidene difluoride) transducers, which is placed as close as possible to the ovary, embryo, or fetus using a vaginal approach. The RF signals from the hydrophone are digitized at 50 MHz, and the maximum amplitude waveform received in the examination is recorded. The output of the clinical B-scanner is calibrated by a measurement with the hydrophone in a water bath. From the hydrophone measurements, the in vivo I(SPTA), I(SPTP), and I(SPPA) are computed. Further analysis allows the frequency-dependent tissue attenuation to be assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740007949','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740007949"><span>Radiation environment for ATS-F. [including ambient trapped particle fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stassinopoulos, E. G.</p> <p>1974-01-01</p> <p>The ambient trapped particle fluxes incident on the ATS-F satellite were determined. Several synchronous circular flight paths were evaluated and the effect of parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171393','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171393"><span>The Fraction of Interplanetary Coronal Mass Ejections That Are Magnetic Clouds: Evidence for a Solar Cycle Variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, I. G.; Cane, H. V.</p> <p>2004-01-01</p> <p>"Magnetic clouds" (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized by enhanced magnetic fields with an organized rotation in direction, and low plasma beta. Though intensely studied, MCs only constitute a fraction of all the ICMEs that are detected in the solar wind. A comprehensive survey of ICMEs in the near- Earth solar wind during the ascending, maximum and early declining phases of solar cycle 23 in 1996 - 2003 shows that the MC fraction varies with the phase of the solar cycle, from approximately 100% (though with low statistics) at solar minimum to approximately 15% at solar maximum. A similar trend is evident in near-Earth observations during solar cycles 20 - 21, while Helios 1/2 spacecraft observations at 0.3 - 1.0 AU show a weaker trend and larger MC fraction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26433787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26433787"><span>Biophotonic perception on Desmodesmus sp. VIT growth, lipid and carbohydrate content.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sriram, Srinivasan; Seenivasan, Ramasubbu</p> <p>2015-12-01</p> <p>Constant and fluctuating light intensity significantly affects the growth and biochemical composition of microalgae and it is essential to identify suitable illumination conditions for commercial microalgae biofuel production. In the present study, effects of light intensities, light:dark cycles, incremental light intensity strategies and fluctuating light intensities simulating different sky conditions in indoor photobioreactor on Desmodesmus sp. VIT growth, lipid and carbohydrate content were analyzed in batch culture. The results revealed that Desmodesmus sp. VIT obtained maximum lipid content (22.5%) and biomass production (1.033 g/L) under incremental light intensity strategy. The highest carbohydrate content of 25.4% was observed under constant light intensity of 16,000 lx and 16:08 h light:dark cycle. The maximum biomass productivity of Desmodesmus sp. VIT (53.38 mg/L/d) was occurred under fluctuating light intensity simulating intermediate overcast sky condition. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26178508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26178508"><span>[Dosimetric comparison of non-small cell lung cancer treatment with multi fields dynamic-MLC IMRT].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hao, Longying; Wang, Delin; Cao, Yujuan; Du, Fang; Cao, Feng; Liu, Chengwei</p> <p>2015-05-19</p> <p>We compared the dosimetric differences between the target and surrounding tissues/organs of the 5-field and 7,9-field (Hereinafter referred to as F5, F7, F9) treatment plan in non-small cell lung cancer (NSCLC) by the dynamic intensity-modulated radiotherapy (dIMRT), to provide reference for clinical application. Using Varian planning system (Eclipse 7.3), we randomly selected 30 cases of patients who received dIMRT to study, all patients were 5, 7, 9 fixed field dynamics intensity-modulated radiotherapy plans to meet the target prescription requirements (95% dose curve enveloping 100% of the PTV), by comparing dose-volume histogram DVH evaluation, and the maximum dose D(max), the minimum dose D(min), and the mean dose D(mean), and conformal index CI of PTV,organs at risk of spinal cord the maximum dose D(max), lung V(5), V(10), V(20), V(30), heart V(30) and esophageal V(50), V(60) of F5,F7 and F9 dIMRT plans,and compare the mu of the three treatment programs. The D(max), D(min) and D(mean) values of F5's PTV are (7 203 ± 128), (5 493 ± 331), (6 900 ± 138) cGy respectively; the D(max), D(min) and D(mean) values of F7's PTV are (7 304 ± 96), (5 526 ± 296), (6 976 ± 130) cGy respectively; and the D(max), D(min) and D(mean) values of F9's PTV are (7 356 ± 54), (5 578 ± 287), (7 019 ± 56) cGy respectively. The data shows that while we increased the numbers of fields, the isodose line surrounding the target area would also promote slightly. The conformity index CI of target became better with the increase of radiation fields. The whole lung V(5) and V(10) slightly became larger with increase of fields and the V(20) showed no significant difference in three models, V(30) of double lungs slightly decreased with the increase of fields. The above date was statistically meaningless (P > 0.05). With the increase of fields esophagus V(50) were reduced by 3% and 5% respectively, V(60) of the esophagus were reduced by 6% and 11%, the average dose reduced by 5% and 10% and spinal cord D(max) decreased by 9% and 13%. In the F7 and F9, heart V5 were lower than F5 plan by 11%, 19%. The mu of them were increased with the increase of radiation fields, Treatment time of F7 and F9 plan were longer by 15% and 25%. Through comparing the three fixed dIMRT plans, we could draw a conclusion that the three multi-field intensity-modulated radiotherapy in non-small cell lung cancer can meet the clinical target volume dose requirements. If the treatment is required to protect the patient's spinal cord, esophagus and heart, we can choose 7 or 9 fields. While other ordinary patients should be treated with 5 fields plan, to shorten the treatment time and improve the biological effects of lesions, and lower mu of plans to avoid unnecessary irradiation of normal tissues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654167-submillimeter-polarization-observation-protoplanetary-disk-around-hd','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654167-submillimeter-polarization-observation-protoplanetary-disk-around-hd"><span>SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana</p> <p></p> <p>We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. Themore » polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25570306','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25570306"><span>A cortical integrate-and-fire neural network model for blind decoding of visual prosthetic stimulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eiber, Calvin D; Morley, John W; Lovell, Nigel H; Suaning, Gregg J</p> <p>2014-01-01</p> <p>We present a computational model of the optic pathway which has been adapted to simulate cortical responses to visual-prosthetic stimulation. This model reproduces the statistically observed distributions of spikes for cortical recordings of sham and maximum-intensity stimuli, while simultaneously generating cellular receptive fields consistent with those observed using traditional visual neuroscience methods. By inverting this model to generate candidate phosphenes which could generate the responses observed to novel stimulation strategies, we hope to aid the development of said strategies in-vivo before being deployed in clinical settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985STIN...8521232V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985STIN...8521232V"><span>Natural environment design criteria for the Space Station definition and preliminary design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaughan, W. W.; Green, C. E.</p> <p>1985-03-01</p> <p>The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012922','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012922"><span>Natural environment design criteria for the Space Station definition and preliminary design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaughan, W. W.; Green, C. E.</p> <p>1985-01-01</p> <p>The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2983','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2983"><span>Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx</p> <p>1999-01-01</p> <p>Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6510E..50I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6510E..50I"><span>Point spread function based classification of regions for linear digital tomosynthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Israni, Kenny; Avinash, Gopal; Li, Baojun</p> <p>2007-03-01</p> <p>In digital tomosynthesis, one of the limitations is the presence of out-of-plane blur due to the limited angle acquisition. The point spread function (PSF) characterizes blur in the imaging volume, and is shift-variant in tomosynthesis. The purpose of this research is to classify the tomosynthesis imaging volume into four different categories based on PSF-driven focus criteria. We considered linear tomosynthesis geometry and simple back projection algorithm for reconstruction. The three-dimensional PSF at every pixel in the imaging volume was determined. Intensity profiles were computed for every pixel by integrating the PSF-weighted intensities contained within the line segment defined by the PSF, at each slice. Classification rules based on these intensity profiles were used to categorize image regions. At background and low-frequency pixels, the derived intensity profiles were flat curves with relatively low and high maximum intensities respectively. At in-focus pixels, the maximum intensity of the profiles coincided with the PSF-weighted intensity of the pixel. At out-of-focus pixels, the PSF-weighted intensity of the pixel was always less than the maximum intensity of the profile. We validated our method using human observer classified regions as gold standard. Based on the computed and manual classifications, the mean sensitivity and specificity of the algorithm were 77+/-8.44% and 91+/-4.13% respectively (t=-0.64, p=0.56, DF=4). Such a classification algorithm may assist in mitigating out-of-focus blur from tomosynthesis image slices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15658802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15658802"><span>Paraheliotropism can protect water-stressed bean (Phaseolus vulgaris L.) plants against photoinhibition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pastenes, Claudio; Porter, Victor; Baginsky, Cecilia; Horton, Peter; González, Javiera</p> <p>2004-12-01</p> <p>In order to estimate the importance of leaf movements on photosynthesis in well-watered and water-stressed field grown bean cultivars (Arroz Tuscola (AT), Orfeo INIA (OI), Bayos Titan (BT), and Hallados Dorado (HD)), CO2 assimilation, leaf temperature, and capacity for the maximum quantum yield recovery, measured as Fv/Fm, were assessed. Leaf water potential was lower in water-stressed compared to control plants throughout the day. Water status determined a decrease in the CO2 assimilation and stomatal conductance as light intensity and temperature increased up to maximal intensities at midday. Both parameters were lower in stressed compared to control plants. Even though high light intensity and water-stress induced stomatal closure is regarded as a photoinhibitory condition, the recovery of variable to maximal fluorescence (Fv/Fm) after 30min of darkness was nearly constant in both water regimes. In fact, higher values were observed in OI and AT when under stress. Photochemical and non-photochemical fluorescence quenching resulted in minor changes during the day and were similar between watered and stressed plants. It is concluded that paraheliotropism, present in the four bean cultivars, efficiently protects stressed plants from photoinhibition in the field and helps maintain leaf temperatures far below the ambient temperatures, however, it may also be responsible for low CO2 assimilation rates in watered plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10452E..3IR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10452E..3IR"><span>Teaching the concept of dispersion by diffraction of light to elementary school students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Resnick, J.; Monroy-Ramírez, F. A.</p> <p>2017-08-01</p> <p>This paper discusses the development and implementation of a practice based on Active Learning Methodology (ALM) with the aim of encouraging students from an early age to be interested in the world of science. The practical proposal is registered in the area of physics, especially in the field of wave optics, since it turns out to be very attractive to all ages especially for children. This didactic sequence was developed with students from elementary school. The experimental sequence developed is composed by several experimental activities allowing to observe and describe the phenomenon of diffraction scattering, from the entering of light through a piece of compact disc (CD) which acts as a diffraction grating. The distance between the diffraction grating and the screen on which the maximum intensity markers are projected remains constant throughout the practice. Children light up the CD with a red pointer, mark on the screen the position of the different maximum intensity markers, then repeat with the green pointer and finally with blue; from observation and the answer of guiding questions proposed by the teacher, they begin to draw conclusions to diffraction for each wavelength. In this way, the child observes that the maximum intensity markers (diffraction orders) associated with each color are located in different positions. Later, children are enquired about the result of the process when it is repeated with white light. Immediately afterwards, the experiment is tried with white light to check it. Finally, comparing the results observed with pointers in different colors with the result out of the practice with white light, a relevant discussion starts, bringing students to the concept of diffraction scattering. An important aspect is that the materials used in this experiment represents an important advantage in their application, since they are easily accessible (except for laser pointers in colors that are not very common in some places), so it is a practice affordable to any socioeconomic population besides being very striking to students.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3438148','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3438148"><span>Anaerobic Threshold: Its Concept and Role in Endurance Sport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ghosh, Asok Kumar</p> <p>2004-01-01</p> <p>aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO2 max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO2 max, because sustaining a high fractional utilization of the VO2 max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports. PMID:22977357</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22977357','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22977357"><span>Anaerobic threshold: its concept and role in endurance sport.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghosh, Asok Kumar</p> <p>2004-01-01</p> <p>aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO(2) max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO(2) max, because sustaining a high fractional utilization of the VO(2) max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.4164A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.4164A"><span>Peculiarities of cosmic ray modulation in the solar minimum 23/24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alania, M. V.; Modzelewska, R.; Wawrzynczak, A.</p> <p>2014-06-01</p> <p>We study changes of the galactic cosmic ray (GCR) intensity for the ending period of the solar cycle 23 and the beginning of the solar cycle 24 using neutron monitors experimental data. We show that an increase of the GCR intensity in 2009 is generally related with decrease of the solar wind velocity U, the strength B of the interplanetary magnetic field (IMF), and the drift in negative (A < 0) polarity epoch. We present that temporal changes of rigidity dependence of the GCR intensity variation, before reaching maximum level in 2009 and after it, do not noticeably differ from each other. The rigidity spectrum of the GCR intensity variations calculated based on neutron monitors data (for rigidities > 10 GV) is hard in the minimum and near-minimum epoch. We do not recognize any nonordinary changes in the physical mechanism of modulation of the GCR intensity in the rigidity range of GCR particles to which neutron monitors respond. We compose 2-D nonstationary model of transport equation to describe variations of the GCR intensity for 1996-2012 including the A > 0 (1996-2001) and the A < 0 (2002-2012) periods; diffusion coefficient of cosmic rays for rigidity 10-15 GV is increased by 30% in 2009 (A < 0) comparing with 1996 (A > 0). We believe that the proposed model is relatively realistic, and obtained results are satisfactorily compatible with neutron monitors data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870003482','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870003482"><span>Analysis of mixed-mode crack propagation using the boundary integral method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mendelson, A.; Ghosn, L. J.</p> <p>1986-01-01</p> <p>Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29746384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29746384"><span>Maximum Movement Workloads and High-Intensity Workload Demands by Position in NCAA Division I Collegiate Football.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanders, Gabriel J; Roll, Brad; Peacock, Corey A; Kollock, Roger O</p> <p>2018-05-02</p> <p>Sanders, GJ, Roll, B, Peacock, CA, and Kollock, RO. Maximum movement workloads and high-intensity workload demands by position in NCAA division I collegiate football. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to quantify the average and maximum (i.e., peak) movement workloads, and the percent of those workloads performed at high intensity by NCAA division I football athletes during competitive games. Using global positioning system devices (Catapult Sports), low, moderate, and high and total multidirectional movement workloads were quantified by each position. Strategically achieving maximal workloads may improve both conditioning and rehabilitation protocols for athletes as they prepare for competition or return to play after an injury. A total of 40 football athletes were included in the analysis. For the data to be included, athletes were required to participate in ≥75% of the offensive or defensive snaps for any given game. There was a total of 286 data downloads from 13 different games for 8 different football positions. Data were calculated and compared by offensive and defensive position to establish the mean, SD, and maximum workloads during competitive games. The percent high-intensity workload profile was established to assess the total number and percent of high-intensity movement workloads by position. The profile was calculated by dividing a position's maximal high-intensity movement workload by the total (e.g., sum of maximal low, moderate, and high-intensity movements) movement workload. One-way analysis of variances revealed that there was a main effect of football position for total movement workloads and the percent of workloads performed at high intensities (p ≤ 0.025 for all). Maximal high-intensity workloads were 1.6-4.3 times greater than average high-intensity workloads, and the percent of total workloads performed at high intensities varied greatly by position. Strategically training for and using maximal movement workloads can help ensure that athletes are achieving workloads that are similar to the greatest demands of a competitive game.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1016/j.coastaleng.2014.09.008','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/j.coastaleng.2014.09.008"><span>A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kelin, Hu; Qin, Chen; Wang, Hongqing</p> <p>2014-01-01</p> <p>Coastal wetlands play a unique role in extreme hurricane events. The impact of wetlands on storm surge depends on multiple factors including vegetation, landscape, and storm characteristics. The Delft3D model, in which vegetation effects on flow and turbulence are explicitly incorporated, was applied to the semi-enclosed Breton Sound (BS) estuary in coastal Louisiana to investigate the wetland impact. Guided by extensive field observations, a series of numerical experiments were conducted based on variations of actual vegetation properties and storm parameters from Hurricane Isaac in 2012. Both the vegetation-induced maximum surge reduction (MSR) and maximum surge reduction rate (MSRR) increased with stem height and stem density, and were more sensitive to stem height. The MSR and MSRR decreased significantly with increasing wind intensity. The MSRR was the highest with a fast-moving weak storm. It was also found that the MSRR varied proportionally to the expression involving the maximum bulk velocity and surge over the area of interest, and was more dependent on the maximum bulk surge. Both MSR and MSRR appeared to increase when the area of interest decreased from the whole BS estuary to the upper estuary. Within the range of the numerical experiments, the maximum simulated MSR and MSRR over the upper estuary were 0.7 m and 37%, respectively.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMB....58.6337S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMB....58.6337S"><span>The rationale for intensity-modulated proton therapy in geometrically challenging cases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safai, S.; Trofimov, A.; Adams, J. A.; Engelsman, M.; Bortfeld, T.</p> <p>2013-09-01</p> <p>Intensity-modulated proton therapy (IMPT) delivered with beam scanning is currently available at a limited number of proton centers. However, a simplified form of IMPT, the technique of field ‘patching’, has long been a standard practice in proton therapy centers. In field patching, different parts of the target volume are treated from different directions, i.e., a part of the tumor gets either full dose from a radiation field, or almost no dose. Thus, patching represents a form of binary intensity modulation. This study explores the limitations of the standard binary field patching technique, and evaluates possible dosimetric advantages of continuous dose modulations in IMPT. Specifics of the beam delivery technology, i.e., pencil beam scanning versus passive scattering and modulation, are not investigated. We have identified two geometries of target volumes and organs at risk (OAR) in which the use of field patching is severely challenged. We focused our investigations on two patient cases that exhibit these geometries: a paraspinal tumor case and a skull-base case. For those cases we performed treatment planning comparisons of three-dimensional conformal proton therapy (3DCPT) with field patching versus IMPT, using commercial and in-house software, respectively. We also analyzed the robustness of the resulting plans with respect to systematic setup errors of ±1 mm and range errors of ±2.5 mm. IMPT is able to better spare OAR while providing superior dose coverage for the challenging cases identified above. Both 3DCPT and IMPT are sensitive to setup errors and range uncertainties, with IMPT showing the largest effect. Nevertheless, when delivery uncertainties are taken into account IMPT plans remain superior regarding target coverage and OAR sparing. On the other hand, some clinical goals, such as the maximum dose to OAR, are more likely to be unmet with IMPT under large range errors. IMPT can potentially improve target coverage and OAR sparing in challenging cases, even when compared with the relatively complicated and time consuming field patching technique. While IMPT plans tend to be more sensitive to delivery uncertainties, their dosimetric advantage generally holds. Robust treatment planning techniques may further reduce the sensitivity of IMPT plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..322e2003X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..322e2003X"><span>An effective parameter optimization technique for vibration flow field characterization of PP melts via LS-SVM combined with SALS in an electromagnetism dynamic extruder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xian, Guangming</p> <p>2018-03-01</p> <p>A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50S5603A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50S5603A"><span>Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban</p> <p>2017-11-01</p> <p>An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649640-specific-features-waveguide-recombination-laser-structures-asymmetric-barrier-layers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649640-specific-features-waveguide-recombination-laser-structures-asymmetric-barrier-layers"><span>Specific features of waveguide recombination in laser structures with asymmetric barrier layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Polubavkina, Yu. S., E-mail: polubavkina@mail.ru; Zubov, F. I.; Moiseev, E. I.</p> <p>2017-02-15</p> <p>The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm{sup 2}) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding layer. This can bemore » attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840065159&hterms=active+site&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dactive%2Bsite','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840065159&hterms=active+site&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dactive%2Bsite"><span>Frequent ultraviolet brightenings observed in a solar active region with solar maximum mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Porter, J. G.; Toomre, J.; Gebbie, K. B.</p> <p>1984-01-01</p> <p>Observations of the temporal behavior of ultraviolet emission from bright points within an active region of the sun are reported. Frequent and rapid brightenings in Si IV and O IV line emission are seen. The observations suggest that intermittent heating events of modest amplitude are occurring at many sites within an active region. By selecting the brightest site at any given time within an active region and then sampling its behavior in detail within a 120 s interval, it is found that about two-thirds of the samples show variations of the Si IV line intensity. The brightenings typically last about 40-60 s; intensity increases of about 20-100 percent are frequently observed. The results suggest that heating due to magnetic field reconnection within an active region is proceeding almost stochastically. Events involving only a modest release of energy occur the most frequently.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24i3110F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24i3110F"><span>Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming</p> <p>2017-09-01</p> <p>Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..511M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..511M"><span>Simultaneous Observations of Lower Band Chorus Emissions at the Equator and Microburst Precipitating Electrons in the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mozer, F. S.; Agapitov, O. V.; Blake, J. B.; Vasko, I. Y.</p> <p>2018-01-01</p> <p>On 11 December 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 s burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One second averaged variations of the chorus intensity and the microburst electron flux were well correlated. The low-altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, 1 s averaged, low-altitude electron flux. However, the large-amplitude, <0.5 s duration, low-altitude electron pulses require nonlinear processes for their explanation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22228115-high-contrast-ion-acceleration-intensities-exceeding-sup-wcm-sup','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22228115-high-contrast-ion-acceleration-intensities-exceeding-sup-wcm-sup"><span>High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dollar, F.; Zulick, C.; Matsuoka, T.</p> <p>2013-05-15</p> <p>Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affectsmore » the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JaJAP..38.4512U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JaJAP..38.4512U"><span>Relationship between Intensity of Fullerene-Mass Spectrum and Carbon Vibrational Temperature in Microwave-Helium Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi</p> <p>1999-07-01</p> <p>Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvS..17f0401Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvS..17f0401Z"><span>High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.</p> <p>2014-06-01</p> <p>Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSWSC...8A..13L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSWSC...8A..13L"><span>The effect of turbulence strength on meandering field lines and Solar Energetic Particle event extents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laitinen, Timo; Effenberger, Frederic; Kopp, Andreas; Dalla, Silvia</p> <p>2018-02-01</p> <p>Insights into the processes of Solar Energetic Particle (SEP) propagation are essential for understanding how solar eruptions affect the radiation environment of near-Earth space. SEP propagation is influenced by turbulent magnetic fields in the solar wind, resulting in stochastic transport of the particles from their acceleration site to Earth. While the conventional approach for SEP modelling focuses mainly on the transport of particles along the mean Parker spiral magnetic field, multi-spacecraft observations suggest that the cross-field propagation shapes the SEP fluxes at Earth strongly. However, adding cross-field transport of SEPs as spatial diffusion has been shown to be insufficient in modelling the SEP events without use of unrealistically large cross-field diffusion coefficients. Recently, Laitinen et al. [ApJL 773 (2013b); A&A 591 (2016)] demonstrated that the early-time propagation of energetic particles across the mean field direction in turbulent fields is not diffusive, with the particles propagating along meandering field lines. This early-time transport mode results in fast access of the particles across the mean field direction, in agreement with the SEP observations. In this work, we study the propagation of SEPs within the new transport paradigm, and demonstrate the significance of turbulence strength on the evolution of the SEP radiation environment near Earth. We calculate the transport parameters consistently using a turbulence transport model, parametrised by the SEP parallel scattering mean free path at 1 AU, λ∥*, and show that the parallel and cross-field transport are connected, with conditions resulting in slow parallel transport corresponding to wider events. We find a scaling σφ,max∝(1/λ∥*)1/4 for the Gaussian fitting of the longitudinal distribution of maximum intensities. The longitudes with highest intensities are shifted towards the west for strong scattering conditions. Our results emphasise the importance of understanding both the SEP transport and the interplanetary turbulence conditions for modelling and predicting the SEP radiation environment at Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3417T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3417T"><span>Flow and turbulence structure in a hypertidal estuary with the world's biggest tidal bore</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tu, Junbiao; Fan, Daidu</p> <p>2017-04-01</p> <p>Turbulent and flow structure associated with breaking tidal bores are deliberately investigated on the basis of field measurements. High-resolution velocity and hydrographic data are collected in the middle Qiantang Estuary by a vertical array of acoustic Doppler velocimeters and optical backscatter sensors, collaborated with a bottom-mounted acoustic Doppler current profiler. Besides obvious variations in diurnal and spring-neap tidal cycles, the estuarine dynamics is featured by extreme asymmetry in flood and ebb tides. The flood tide is abnormally accelerated to generate tidal bores at the first 10 min or more, with breaking or undular configurations at the front. The occurrence of peak flow velocity, turbulent kinetic energy (TKE), and TKE dissipation rate (ɛ) is definitely associated with breaking bores, with their values several times to 2 orders of magnitude larger than the corresponding secondary peak values during the maximum ebb flows. Flow and turbulence dynamics are significantly affected by the tidal-bore Froude number. A sandwich ɛ structure is clear exhibited with the maximum value at the surface, secondary maximum near the bed, and the minimum at the intermediate. Dual TKE sources are indicated by an approximate local balance between shear production and dissipation near the bottom, and a top-down TKE dissipation using the modified Froude scaling in the vertical water column. The highly elevated dissipation by breaking bores is comparable to that by intense breaking waves in the surf zone, and the former potentially penetrates the entire water column to produce extreme sediment-resuspension events in combination with intense bottom shear stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20853083-coulomb-explosion-hydrogen-clusters-irradiated-ultrashort-intense-laser-pulse','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20853083-coulomb-explosion-hydrogen-clusters-irradiated-ultrashort-intense-laser-pulse"><span>Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li Hongyu; Liu Jiansheng; Wang Cheng</p> <p></p> <p>The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhRvA..74b3201L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhRvA..74b3201L"><span>Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan</p> <p>2006-08-01</p> <p>The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19206871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19206871"><span>Adaptive near-field beamforming techniques for sound source imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cho, Yong Thung; Roan, Michael J</p> <p>2009-02-01</p> <p>Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMEP...24.1340Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMEP...24.1340Z"><span>Investigation on Residual Stress Induced by Shot Peening</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Chunmei; Gao, Yukui; Guo, Jing; Wang, Qiang; Fu, Lichao; Yang, Qingxiang</p> <p>2015-03-01</p> <p>The high strength steel widely used in the aviation industry was chosen in this paper. The shot peening (SP) tests with different technical parameters were carried out, and compressive residual stress (CRS) distribution along the depth was determined. The phase structures before and after SP were analyzed by XRD and TEM. Microhardness and fatigue life were measured, and the morphology of fatigue fracture was also observed. The effects of different technical parameters on CRS field were investigated, and the CRS features with the characteristic parameters were analyzed deeply to summarize the rules. The results show that the CRS field induced by SP can be expressed by four characteristic parameters: the surface CRS σsrs, the maximum CRS σmrs, the depth of maximum CRS ξm and the depth of CRS (strengthened depth) ξ0. Martensite matrix is not changed by SP, while its boundary changes ambiguous with the formation of dislocations. After SP, the microhardness of the specimen increase, and the fatigue crack source moves inwards. The SP saturated time is 1 min. With the increase of SP intensity, σsrs, σmrs, ξm, and ξ0 all increase. While with the increase of SP angle, ξ0 grows gradually. The strengthen effect behaves more obviously as the shot size increases, and the shot material with larger hardness cause higher level of CRS field. Dual SP mainly increases σsrs value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20862252','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20862252"><span>Variability in echolocation call intensity in a community of horseshoe bats: a role for resource partitioning or communication?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schuchmann, Maike; Siemers, Björn M</p> <p>2010-09-17</p> <p>Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2941460','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2941460"><span>Variability in Echolocation Call Intensity in a Community of Horseshoe Bats: A Role for Resource Partitioning or Communication?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schuchmann, Maike; Siemers, Björn M.</p> <p>2010-01-01</p> <p>Background Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. Methodology/Principal Findings We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Conclusions/Significance Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure. PMID:20862252</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171605','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171605"><span>On the Origin of Whistler Mode Radiation in the Plasmasphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Green, James L.; Boardsen, Scott; Garcia, Leonard; Taylor, W. W. L.; Fung, Shing F.; Reinisch, B. W.</p> <p>2004-01-01</p> <p>The origin of whistler mode radiation in the plasmasphere is examined from three years of plasma wave observations from the Dynamics Explorer and three years from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. These data are used to construct plasma wave intensity maps of whistler mode radiation in the plasmasphere. The highest average intensities of the radiation in the wave maps show source locations and/or sites of wave amplification. Each type of emission is classified based on its magnetic latitude and longitude rather than any spectral feature. Equatorial electromagnetic (EM) emissions (approx. 30-330 Hz), plasmaspheric hiss (approx. 330 Hz - 3.3 kHz), chorus (approx. 2 kHz - 6 kHz), and VLF transmitters (approx. 10-50 kHz) are the main types of waves that are clearly delineated in the plasma wave maps. Observations of the equatorial EM emissions show that the most intense region is on or near the magnetic equator in the afternoon sector and that during times of negative B(sub z) (interplanetary magnetic field),the maximum intensity moves from L values of 3 to less than 2. These observations are consistent with the origin of this emission being particle-wave interactions in or near the magnetic equator. Plasmaspheric hiss shows high intensity at high latitudes and low altitudes (L shells from 2 to 4) and in the magnetic equator over L values from 2 to 3 in the early afternoon sector. The longitudinal distribution of the hiss intensity (excluding the enhancement at the equator) is similar to the distribution of lightning: stronger over continents than over the ocean, stronger in the summer than winter, and stronger on the dayside than nightside. These observations strongly support lightning as the dominant source for plasmaspheric hiss, which through particle-wave interactions, maintains the slot region in the radiation belts. The enhancement of hiss at the magnetic equator is consistent with particle-wave interactions. The chorus emissions are most intense on the morning side as previously reported. At frequencies from approx. 10-50 kHz VLF transmitters dominate the spectrum. The maximum intensity of the VLF transmitters is in the late evening or early morning with enhancements all along L shells from 1.8 to 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27015154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27015154"><span>Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Attar, Mohammad Mahdi; Haghpanahi, Mohammad</p> <p>2016-01-01</p> <p>The purpose of this study was to propose a method for constructing the software setup required for investigating thermal effect of superparamagnetic nanoparticles on three human cell lines. This article aimed to examine the required nanoparticle dose, frequency, field intensity and the exposure time. In the present study, first some general details were given about design and construction of the setup required for generating a safe magnetic field in order to examine the thermal effect of superparamagnetic nanoparticles on three human cancer cell lines, cultured under laboratory conditions. Next, a series of experimental tests were conducted to study the effect of magnetic field, on the cells. Finally, by applying three types of iron-based nanoparticles with mean diameters of 8, 15 and 20 nm, for 30 min, the temperature rise and specific absorption rate (SAR) were calculated. By conducting experimental tests, the maximum temperature rise at the resonance frequency of the coil was reported to be 80 kHz, and it was observed that all the cells died when temperature of the cells reached 42°C/30 min. Based on the experiments, it was observed that magnetic field with intensity of 8 kA/m within the frequency range of 80-180 kHz did not have any effect on the cells. Based on the results, it can be concluded that the nanoparticle dose of 80 µg/ml with diameter of 8 nm at the resonance frequency of coil for 30 min was sufficient to destroy all the cancerous cells in the flask.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BVol...74.2155A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BVol...74.2155A"><span>Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alatorre-Ibargüengoitia, Miguel A.; Delgado-Granados, Hugo; Dingwell, Donald B.</p> <p>2012-11-01</p> <p>During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles' maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum "launching" conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486165-dynamic-control-asymmetric-fano-resonance-side-coupled-fabryperot-photonic-crystal-nanobeam-cavities','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486165-dynamic-control-asymmetric-fano-resonance-side-coupled-fabryperot-photonic-crystal-nanobeam-cavities"><span>Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg</p> <p>2015-11-30</p> <p>Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity ismore » increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920062660&hterms=energetic+efficiency+united+kingdom&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Denergetic%2Befficiency%2Bunited%2Bkingdom','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920062660&hterms=energetic+efficiency+united+kingdom&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Denergetic%2Befficiency%2Bunited%2Bkingdom"><span>Energetic particle signatures of satellites and rings in Neptune's magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Selesnick, R. S.; Stone, E. C.</p> <p>1992-01-01</p> <p>The cosmic ray system on Voyager 2 found a trapped radiation environment in Neptune's inner magnetosphere which is controlled primarily by absorption at the rings and satellite surfaces. The intensity of electrons with kinetic energies approximately greater than 1 MeV shows particularly strong and narrow signatures associated with absorption by the satellite 1989N1 at an orbital radius of 4.75 Neptune radii. Closer to the planet are several signatures of the inner satellites and rings. Absorption limits the intensity of the inner radiation belt sufficiently for the maximum intensity to occur outside the orbit of 1989N1 at a magnetic L shell of about 7. Radial profiles of the electron phase space density show that electrons diffuse inward from a source in the outer magnetosphere. Many of the inward-diffusing electrons are absorbed upon reaching a satellite orbital radius, but the finite absorption efficiency allows some of the electrons to pass by unaffected. The locations of the satellite and ring signatures also provide constraints on the nondipolar components of the planetary magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790020679','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790020679"><span>Kinetic energy budgets in areas of convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fuelberg, H. E.</p> <p>1979-01-01</p> <p>Synoptic scale budgets of kinetic energy are computed using 3 and 6 h data from three of NASA's Atmospheric Variability Experiments (AVE's). Numerous areas of intense convection occurred during the three experiments. Large kinetic energy variability, with periods as short as 6 h, is observed in budgets computed over each entire experiment area and over limited volumes that barely enclose the convection and move with it. Kinetic energy generation and transport processes in the smaller volumes are often a maximum when the enclosed storms are near peak intensity, but the nature of the various energy processes differs between storm cases and seems closely related to the synoptic conditions. A commonly observed energy budget for peak storm intensity indicates that generation of kinetic energy by cross-contour flow is the major energy source while dissipation to subgrid scales is the major sink. Synoptic scale vertical motion transports kinetic energy from lower to upper levels of the atmosphere while low-level horizontal flux convergence and upper-level horizontal divergence also occur. Spatial fields of the energy budget terms show that the storm environment is a major center of energy activity for the entire area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A23E0321D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A23E0321D"><span>Simulation of Tornado over Brahmanbaria on 22 March 2013 using Doppler Weather Radar and WRF Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, M. K.; Chowdhury, M.; Das, S.</p> <p>2013-12-01</p> <p>A tornado accompanied with thunderstorm, rainfall and hailstorm affected Brahmanbaria of Bangladesh in the afternoon of 22 March 2013. The tornadic storms are studied based on field survey, ground and radar observations. Low level moisture influx by southerly flow from the Bay of Bengal coupled with upper level westerly jet stream causing intense instability and shear in the wind fields triggered a series of storms for the day. The exact time and locations of the storms are investigated by using the Agartala and Cox's Bazar Doppler Weather Radar (DWR). Subsequently, the storms are simulated by using the WRF-ARW model at 1 km horizontal resolution based on 6 hourly analyses and boundary conditions of NCEP-FNL. Among the typical characteristics of the storms, the CAPE, surface wind speed, flow patterns, T-Φ gram, rainfall, sea level pressure, vorticity and vertical velocity are studied. Results show that while there are differences of 2-3 hours between the observed and simulated time of the storms, the distances between observed and simulated locations of the storms are several tens of kilometers. The maximum CAPE was generally above 2400 J kg-1 in the case. The maximum intensity of surface wind speed simulated by the model was only 38 m sec-1. This seems to be underestimated. The highest vertical velocity (updraft) simulated by the model was 250 m sec-1 around 800-950 hPa. The updraft reached up to 150 hPa. It seems that the funnel vortex reached the ground, and might have passed some places a few meters above the surface. According to the Fujita Pearson scale, this tornado can be classified as F-2 with estimated wind speed of 50-70 ms-1. Keywords: Tornado, DWR, NCEP-FNL, T-Φ gram, CAPE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH43D..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH43D..03M"><span>Lessons Learned in the Integration of Earth Remote Sensing Data within the NOAA/NWS Damage Assessment Toolkit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Meyer, P. J.; Burks, J.; Camp, P.; Angle, K.</p> <p>2016-12-01</p> <p>Following the occurrence of a suspected or known tornado, meteorologists with NOAA's National Weather Service are tasked with performing a detailed ground survey to map the impacts of the tornado, identify specific damage indicators, and link those damage indicators to the Enhanced Fujita scale as an estimate of the intensity of the tornado at various points along the damage path. Over the past few years, NOAA/NWS meteorologists have developed the NOAA/NWS Damage Assessment Toolkit (DAT), a smartphone and web based application to support the collection of damage information, editing of the damage survey, and final publication. This allows meteorologists in the field to sample the damage track, collect geotagged photos with notations of damage areas, and aggregation of the information to provide a more detailed survey whereas previous efforts may have been limited to start and end locations, maximum width, and maximum intensity. To support these damage assessment efforts, various Earth remote sensing data sets were incorporated into the DAT to support survey efforts, following preliminary activities using remote sensing to support select NOAA/NWS field offices following the widespread outbreak of tornadoes that occurred in the southeastern United States on April 27, 2011. These efforts included the collection of various products in collaboration with multiple federal agencies and commercial providers, with particular emphasis upon the USGS Hazards Data Distribution System, hosting and sharing of these products through geospatial platforms, partnerships with forecasters to better understand their needs, and the development and delivery of training materials. This presentation will provide an overview of the project along with strengths and weaknesses, opportunities for future work and improvements, and best practices learned during the "research to applications" process supported by the NASA Applied Sciences: Disasters program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4793246-outer-radiation-belt-auroras','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4793246-outer-radiation-belt-auroras"><span>OUTER RADIATION BELT AND AURORAS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gorchakov, E.V.</p> <p>1961-01-01</p> <p>Data obtained from Sputnik IH were used to determine the high-latitude boundary of the outer radiation belt and to interpret the nature of auroras. At the heights at which the auroras were observed, the outer boundary of the belt (69 deg north geomagnetic latitude) practically coincides with the auroral zone maximum (70 deg north geomagnetic latitude), while the maximum intensity of the outer belt near the earth lies at about 55 deg north geomagnetic latitude, i.e., at latitudes 15 deg below the auroral maximum. Consequently, auroras near the zone of maximum cannot be caused by the penetration into the atmospheremore » of electrons from the outer belt with energies on the order of 0.1 Mev (the mean energy of electrons in the outer belt). Other investigators have reported the detection of lowenergy streams at 55,000 to 75,000 km from the center of the earth in the equatorial plane. Moving toward the surface of the earth along the force lines of the magnetic field, electron streams of this type will reach the earth precisely in the region of the auroral zone maximum. It is considered possible that the electron streams are trapped at these distances from the earth and are at least partially responsible for auroras in the region of maximum. The existence of two maxima in the latitudinal distribution of auroral frequency, which attests to differert mechanisms of aurora formation, favors this hypothesis. In the region of the basic auroral maximum (70 deg north geomagnetic latitude) the auroras are the result of the invasion of belt particles, while in the region of the additional maximum (about 80 deg north geomagnetic latitude) they are caused by the direct penetration of corpuscular streams into the atmosphere. (OTS)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28044315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28044315"><span>The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manoli, Zoi; Parazzini, Marta; Ravazzani, Paolo; Samaras, Theodoros</p> <p>2017-01-01</p> <p>The lack of knowledge of the electric field distribution inside the brain of stroke patients receiving transcranial direct current stimulation (tDCS) calls for estimating it computationally. Moreover, the impact on this distribution of a novel clinical management approach which involves secondary motor areas (SMA) in stroke rehabilitation needs to be evaluated. Finally, the differences in the electric field distributions due to gender and age need to be investigated. This work presents the development of two different anatomical models (young adult female and elderly male) with an ischemic stroke region of spherical volume 10 cm 3 or 50 cm 3 , using numerical models of the Virtual Population (ViP). The stroke phase was considered as acute or chronic, resulting in different electrical properties of the area. Two different electrode montages were used - One over the lesion area and the contralateral supra-orbital region and the other over the SMA and the contralateral supra-orbital region. A quasi-electrostatic solver was used to numerically solve the Laplace equation with the finite-difference technique. Both the 99th percentile of the electric field intensity distribution ("E peak value") and the percentage of the tissue volumes with electric field intensity over 50% and 70% of the E peak value were assessed inside the target areas of the primary motor cortex (M1) and the SMA, as well as in other brain tissues (hypothalamus and cerebellum). In the acute phase of an ischemic stroke, the normalized electric field intensity distributions do not differ noticeably compared to those in the brain of a healthy person (mean square difference < 2%). The difference becomes larger (up to 4.5%) for the chronic phase of a large ischemic lesion. Moreover, the maximum values of the induced electric field in the tissues in the SMA are almost equal for both electrode montages. The peak values of the electric field distribution ("E peak values") in cerebellum and hypothalamus for both electrode montages are rather small but different from those of healthy patients. The largest difference of 21% decrease with respect to a healthy subject was noticed in the elder adult model with a large chronic lesion. The comparison of the different electrode montages shows that the use of a stimulating electrode over the affected area creates larger values of the electric field in M1, by up to 26% for a small chronic lesion in the young female model. On the contrary, the montage does not affect considerably (change less than 8%) the E peak values in the SMA. This implies that for exciting M1, the M1-Fp2 montage should be favored. The presence and the phase of an ischemic stroke lesion, as well as the configuration of electrode montages affect the distribution and the maximum value of the electric field induced in tissues. Moreover, patients whom seem to benefit most from tDCS are those in the chronic phase of an ischemic stroke, since contrasts in the tissue conductivity result in a higher electric field induced around the lesion volume, which could stimulate the remaining healthy tissue in the area. © 2016 American Association of Physicists in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MARN46011Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MARN46011Y"><span>Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoder, R. B.; Travish, G.</p> <p>2013-03-01</p> <p>Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482865-high-intensity-proton-injector-facility-antiproton-ion-research','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482865-high-intensity-proton-injector-facility-antiproton-ion-research"><span>High intensity proton injector for facility of antiproton and ion research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.</p> <p></p> <p>The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBTmore » is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..199a2128N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..199a2128N"><span>Research for the Cable Layout Way of the Bypass Operation System in Agricultural Power Supply Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, Jie; Li, Jinliang; Zou, Dehua; Yang, Qi; Li, Xu; Yan, Yu; Li, Tang</p> <p>2017-05-01</p> <p>Non-blackout working of agricultural power supply network is significant to shorten the outage time, decrease the outage loss, and improve the supply reliability and safety. It is impossible to hang the wire rope first and then suspend the cable because of the poor bearing ability of the pole in agricultural power supply network. A kind of new cable arrangement way, its matching tools and the flexible cable that can bear the tension by itself are needed to be put forward and developed. It is necessary to calculate the electric field intensity of the flexible cable to verify that the electric field intensity meets the insulation demand. In this new design, the fiber layer is added into the flexible cable and its maximum tension force is measured to reach to 4000 N. Based on the features of live working in the agricultural power supply network, the new layout way of the cable is proposed; the matching tools and the new flexible cable that can bear the tension by itself are developed as well in this paper. All of the research achievements can give references for the live working of the agricultural power supply network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24592372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24592372"><span>Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Razavi, Shahnaz; Salimi, Marzieh; Shahbazi-Gahrouei, Daryoush; Karbasi, Saeed; Kermani, Saeed</p> <p>2014-01-01</p> <p>Extremely low-frequency electromagnetic fields (ELF-EMF) can effect on biological systems and alters some cell functions like proliferation rate. Therefore, we aimed to attempt the evaluation effect of ELF-EMF on the growth of human adipose derived stem cells (hADSCs). ELF-EMF was generated by a system including autotransformer, multi-meter, solenoid coils, teslameter and its probe. We assessed the effect of ELF-EMF with intensity of 0.5 and 1 mT and power line frequency 50 Hz on the survival of hADSCs for 20 and 40 min/day for 7 days by MTT assay. One-way analysis of variance was used to assessment the significant differences in groups. ELF-EMF has maximum effect with intensity of 1 mT for 20 min/day on proliferation of hADSCs. The survival and proliferation effect (PE) in all exposure groups were significantly higher than that in sham groups (P < 0.05) except in group of 1 mT and 40 min/day. Our results show that between 0.5 m and 1 mT ELF-EMF could be enhances survival and PE of hADSCs conserving the duration of exposure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8317E..1GN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8317E..1GN"><span>An automated landmark-based elastic registration technique for large deformation recovery from 4-D CT lung images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.</p> <p>2012-03-01</p> <p>The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11712485','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11712485"><span>[Verified maximum admissible intensity (MAI) values for the ultrasonic noise in work environment].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pawlaczyk-Łuszcyńska, M; Koton, J; Augustyńska, D; Sliwińska-Kowalska, M; Kameduła, M</p> <p>2001-01-01</p> <p>The measurement methods and occupational exposure limits for ultrasonic noise (airborne ultrasound) are described. Typical sources of ultrasonic noise and sound pressure levels measured at workplaces are discussed. The verified Polish regulations on maximum admissible intensity (MAI) values for ultrasonic noise in the work environment and proposals of exposure limits for workers at particular risk (i.e. pregnant women and juveniles) are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4096093','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4096093"><span>Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros</p> <p>2014-01-01</p> <p>The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25031685','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25031685"><span>Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros</p> <p>2014-03-27</p> <p>The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740002646','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740002646"><span>Radiation hazards to synchronous satellites: The IUE (SAS-D) mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stassinopoulos, E. G.</p> <p>1973-01-01</p> <p>The ambient trapped particle fluxes incident on the IUE (SAS-D) satellite were studied. Several synchronous elliptical and circular flight paths were evaluated and the effect of inclination, eccentricity, and parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 MeV, calculated for a year of maximum solar activity during the next solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19253378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19253378"><span>Counteracting radio frequency inhomogeneity in the human brain at 7 Tesla using strongly modulating pulses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boulant, N; Mangin, J-F; Amadon, A</p> <p>2009-05-01</p> <p>We report flip angle and spoiled gradient echo measurements at 7 Tesla on human brains in three-dimensional imaging, using strongly modulating pulses to counteract the transmitted radiofrequency inhomogeneity problem. Compared with the standard square pulse results, three points of improvement are demonstrated, namely: (i) the removal of the bright center (typical at high fields when using a quadrature head coil), (ii) the substantial gain of signal in the regions of low B(1) intensity, and (iii) an increased 35% signal uniformity over the whole brain at the flip angle where maximum contrast between white and gray matter occurs. We also find by means of simulations that standard BIR-4 adiabatic pulses need several times more energy to reach a similar performance at the same field strength. (c) 2009 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29610088','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29610088"><span>Fabrication and Characterization of Single-Aperture 3.5-MHz BNT-Based Ultrasonic Transducer for Therapeutic Application.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taghaddos, Elaheh; Ma, T; Zhong, Hui; Zhou, Qifa; Wan, M X; Safari, Ahmad</p> <p>2018-04-01</p> <p>This paper discusses the fabrication and characterization of 3.5-MHz single-element transducers for therapeutic applications in which the active elements are made of hard lead-free BNT-based and hard commercial PZT (PZT-841) piezoceramics. Composition of (BiNa 0.88 K 0.08 Li 0.04 ) 0.5 (Ti 0.985 Mn 0.015 )O 3 (BNKLT88-1.5Mn) was used to develop lead-free piezoelectric ceramic. Mn-doped samples exhibited high mechanical quality factor ( ) of 970, thickness coupling coefficient ( ) of 0.48, a dielectric constant ( ) of 310 (at 1 kHz), depolarization temperature ( ) of 200 °C, and coercive field ( ) of 52.5 kV/cm. Two different unfocused single-element transducers using BNKLT88-1.5Mn and PZT-841 with the same center frequency of 3.5 MHz and similar aperture size of 10.7 and 10.5 mm were fabricated. Pulse-echo response, acoustic frequency spectrum, acoustic pressure field, and acoustic intensity field of transducers were characterized. The BNT-based transducer shows linear response up to the peak-to-peak voltage of 105 V in which the maximum rarefactional acoustic pressure of 1.1 MPa, and acoustic intensity of 43 W/cm 2 were achieved. Natural focal point of this transducer was at 60 mm from the surface of the transducer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22395908-comprehensive-dosimetric-study-pancreatic-cancer-treatment-using-three-dimensional-conformal-radiation-therapy-intensity-modulated-radiation-therapy-imrt-volumetric-modulated-radiation-therapy-vmat-passive-scattering-modulated-scanning-proton-therapy-pt','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22395908-comprehensive-dosimetric-study-pancreatic-cancer-treatment-using-three-dimensional-conformal-radiation-therapy-intensity-modulated-radiation-therapy-imrt-volumetric-modulated-radiation-therapy-vmat-passive-scattering-modulated-scanning-proton-therapy-pt"><span>A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui</p> <p></p> <p>With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/60977','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/60977"><span>Seismicity map of the state of Indiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stover, C.W.; Reagor, B.G.; Algermissen, S.T.</p> <p>1987-01-01</p> <p>The latitude and longitude coordinates of each epicenter were rounded to the nearest tenth of a degree and sorted so that all identical locations were grouped and counted. These locations are represented on the map by a triangle. The number of earthquakes at each location is shown on the map by the arabic number to the right of the triangle. A Roman numeral to the left of a triangle is the maximum Modified Mercalli intensity (Wood and Neumann, 1931) of all earthquakes at that geographic location. The absence of an intensity value indicates that no intensities have been assigned to earthquakes at that location. The year shown below each triangle is the latest year for which the maximum intensity was recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/mf/1857/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/mf/1857/report.pdf"><span>Seismicity map of the state of Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stover, Carl W.; Reagor, B.G.; Algermissen, S.T.</p> <p>1991-01-01</p> <p>The latitude and longitude coordinates of each epicenter were rounded to the nearest tenth of a degree and sorted so that all identical locations were grouped and counted. These locations are represented on the map by a triangle. The number of earthquakes at each location is shown on the map by the Arabic number to the right of the triangle. A Roman numeral to the left of a triangle is the maximum Modified Mercalli intensity (Wood and Neumann, 1931) of all earthquakes at that geographic location. The absence of an intensity value indicates that no intensities have been assigned to earthquakes at that location. The year shown below each triangle is the latest year for which the maximum intensity was recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/60665','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/60665"><span>Seismicity map of the state of North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reagor, B.G.; Stover, C.W.; Algermissen, S.T.</p> <p>1987-01-01</p> <p>The latitude and longitude coordinates of each epicenter were rounded to the nearest tenth of a degree and sorted so that all identical locations were grouped and counted. These locations are represented on the map by a triangle. The number of earthquakes at each location is shown on the map by the arabic number to the right of the triangle. A Roman numeral to the left of a triangle is the maximum Modified Mercalli intensity (Wood and Neumann, 1931) of a11 earthquakes at that geographic location. The absence of an intensity value indicates that no intensities have been assigned to earthquakes at that location. The year shown below each triangle is the latest year for which the maximum intensity was recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/58791','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/58791"><span>Seismicity map of the state of Vermont</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stover, C.W.; Reagor, B.G.; Highland, L.M.; Algermissen, S.T.</p> <p>1987-01-01</p> <p>The latitude and longitude coordinates of each epicenter were rounded to the nearest tenth of a degree and sorted so that all identical locations were grouped and counted. These locations are represented on the map by a triangle. The number of earthquakes at each location is shown on the map by the arabic number to the right of the triangle. A Roman numeral to the 1eft of a triangle is the maximum Modified Mercalli intensity (Wood and Neumann, 1931) of all earthquakes at that geographic location. The absence of an intensity value indicates that no intensities have been assigned to earthquakes at that location. The year shown below each triangle is the latest year for which the maximum intensity was recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/60994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/60994"><span>Seismicity map of the state of Ohio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stover, C.W.; Reagor, B.G.; Algermissen, S.T.</p> <p>1987-01-01</p> <p>The latitude and longitude coordinates of each epicenter were rounded to the nearest tenth of a degree and sorted so that all identical locations were grouped and counted . These locations are represented on the map by a triangle. The number of earthquakes at each location is shown on the map by the arabic number to the right of the triangle. A Roman numeral to the left of a triangle is the maximum Modified Mercalli intensity (Wood and Neumann, 1931) of all earthquakes at that geographic location. The absence of an intensity value indicates that no intensities have been assigned to earthquakes at that location. The year shown below each triangle is the latest year for which the maximum intensity was recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830049370&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830049370&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy"><span>The analysis and kinetic energy balance of an upper-level wind maximum during intense convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fuelberg, H. E.; Jedlovec, G. J.</p> <p>1982-01-01</p> <p>The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19427524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19427524"><span>Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trigo, Federico F; Corrie, John E T; Ogden, David</p> <p>2009-05-30</p> <p>Rapid, localised photolytic release of neurotransmitters from caged precursors at synaptic regions in the extracellular space is greatly hampered at irradiation wavelengths in the near-UV, close to the wavelength of maximum absorption of the caged precursor, because of inner-filtering by strong absorption of light in the cage solution between the objective and cell. For this reason two-photon excitation is commonly used for photolysis, particularly at multiple points distributed over large fields; or, with near-UV, if combined with local perfusion of the cage. These methods each have problems: the small cross-sections of common cages with two-photon excitation require high cage concentrations and light intensities near the phototoxic limit, while local perfusion gives non-uniform cage concentrations over the field of view. Single-photon photolysis at 405 nm, although less efficient than at 330-350 nm, with present cages is more efficient than two-photon photolysis. The reduced light absorption in the bulk cage solution permits efficient wide-field uncaging at non-toxic intensities with uniform cage concentration. Full photolysis of MNI-glutamate with 100 micros pulses required intensities of 2 mW microm(-2) at the preparation, shown to be non-toxic with repeated exposures. Light scattering at 405 nm was estimated as 50% at 18 microm depth in 21-day rat cerebellum. Methods are described for: (1) varying the laser spot size; (2) photolysis calibration in the microscope with the caged fluorophore NPE-HPTS over the wavelength range 347-405 nm; and (3) determining the point-spread function of excitation. Furthermore, DM-Nitrophen photolysis at 405 nm was efficient for intracellular investigations of Ca2+-dependent processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22420864-single-gradient-junction-technique-replace-multiple-junction-shifts-craniospinal-irradiation-treatment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22420864-single-gradient-junction-technique-replace-multiple-junction-shifts-craniospinal-irradiation-treatment"><span>A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu</p> <p>2014-01-01</p> <p>Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70155186','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70155186"><span>On the log-normality of historical magnetic-storm intensity statistics: implications for extreme-event probabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Riley, Pete</p> <p>2015-01-01</p> <p>An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to −Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst≥850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42,2.41] times per century; a 100-yr magnetic storm is identified as having a −Dst≥880 nT (greater than Carrington) but a wide 95% confidence interval of [490,1187] nT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790011349','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790011349"><span>The magnetic anomaly of the Ivreazone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Albert, G.</p> <p>1979-01-01</p> <p>A magnetic field survey was made in the Ivreazone in 1969/70. The results were: significant anomaly of the vertical intensity is found. It follows the basic main part of the Ivrea-Verbano zone and continues to the south. The width of the anomaly is about 10 km, the maximum measures about +800 gamma. The model interpretation shows that possibly the anomaly belongs to an amphibolitic body, which in connection with the Ivrea-body was found by deep seismic sounding. Therefore, the magnetic anomaly provides further evidence for the conception that the Ivrea-body has to be regarded as a chip of earthmantle material pushed upward by tectonic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA024344','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA024344"><span>Integrated Geophysical and Geological Study of Earthquakes in Normally Aseismic Areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-01-01</p> <p>maximum Modified Mercalli Intensity X, Smith, 1962), the 1811 -1812 series of earthquakes near New Madrid , Missouri (maximum intensity XII, Fuller, 1912...sediments during the New Madrid earthquakes . Secondly, there are no known major faults with evidence of large scale movements since the Trlassic. In...1970, Seismic geology of the eastern United States: Assoc. Eng. Geologists Bull., v. 7, p. 21-43. Fuller, M.L., 1912, The New Madrid earthquake : U.S</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810043111&hterms=oso&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doso','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810043111&hterms=oso&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doso"><span>OSO-8 observations of the impulsive phase of solar flares in the transition-zone and corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lites, B. W.; Bruner, E. C., Jr.; Wolfson, C. J.</p> <p>1981-01-01</p> <p>Several solar flares were observed from their onset in C IV 1548.2 A and 1-8 A X-rays using instruments on OSO-8. It is found that impulsive brightening in C IV is often accompanied by redshifts, interpreted as downflows, of the order of 80 km/s. The maximum soft X-ray intensity usually arrives several minutes after the maximum C IV intensity. The most energetic C IV event observed shows a small blueshift just before reaching maximum intensity; estimates of the mass flux associated with this upflow through the transition zone are consistent with the increase of mass in the coronal loops as observed in soft X-rays. Finally, it is suggested that the frequent occurrence of violent dynamical processes at the onset of the flare is associated with the initial energy release mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..147a2057C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..147a2057C"><span>Electromechanical response of silicone dielectric elastomers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cârlescu, V.; Prisăcaru, G.; Olaru, D.</p> <p>2016-08-01</p> <p>This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50H5002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50H5002B"><span>Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babič, Michal; Horák, Daniel; Molčan, Matúš; Timko, Milan</p> <p>2017-08-01</p> <p>In this report, we show preparation of colloidally stable poly(N,N-dimethylacrylamide-co-acrylic acid) (DMA)- and D-mannose (MAN)-coated maghemite nanoparticles and their ability to generate heat in an alternating magnetic field, which could make the particles applicable for hyperthermic therapy of cancer. The particles are obtained by coprecipitation reaction and characterized by transmission electron microscopy, dynamic light scattering, and AC calorimetric measurement of heat generated by the particles. While the dry particles were ca. 10 nm in diameter, their hydrodynamic size in water was within the range of 100 nm. Heating characteristics were measured in an LC circuit with a maximum field intensity of 6.8 kA · m-1 and frequency 190 kHz. The specific absorption rates of γ-Fe2O3, PDM@γ-Fe2O3, and MAN@γ-Fe2O3 nanoparticles were extrapolated to 10 kA · m-1, reaching about 15 W · g-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9530L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9530L"><span>Soil moisture status in a set of rain-fed cereal fields: application of the DR2 model at monthly scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López-Vicente, M.; Navas, A.</p> <p>2012-04-01</p> <p>One important issue in agricultural management and hydrological research is the assessment of water stored during a rainfall event. In this study, the new Distributed Rainfall-Runoff (DR2) model (López-Vicente and Navas, 2012) is used to estimate the volume of actual available water (Waa) and the soil moisture status (SMS) in a set of rain-fed cereal fields (65 ha) located in the Central Spanish Pre-Pyrenees. This model makes the most of GIS techniques (ArcMapTM 10.0) and distinguishes five configurations of the upslope contributing area, infiltration processes and climatic parameters. Results are presented on a monthly basis. The study site has a relatively long history (since the 10th century) of human occupation, agricultural practices and water management. The landscape is representative of the typical former rain-fed Mediterranean agro-ecosystem where small patches of natural and anthropogenic areas are heterogeneously distributed. Climate is continental Mediterranean with a dry summer with rainfall events of high intensity (I30max, higher than 30 mm / h between May and October). Average annual precipitation was 520 mm for the reference period (1961-1990), whereas the average precipitation during the last ten years (2001-2010) was 16% lower (439 mm). Measured antecedent topsoil moisture presented the highest values in autumn (18.3 vol.%) and the lowest in summer (11.2 vol.%). Values of potential overland flow per raster cell (Q0) during maximum rainfall intensity varied notably in terms of time and space. When rainfall intensity is high (May, August, September and October), potential runoff was predicted along the surface of the crops and variability of Q0 was very low, whereas areas with no runoff production appeared when rainfall intensity was low and variability of Q0 values was high. A variance components analysis shows that values of Q0 are mainly explained by variations in the values of saturated hydraulic conductivity (76% of the variability of Q0) and, to a lesser extent, by the values of the antecedent topsoil moisture (23%) and the volumetric content of water of the soil at saturation (1%). Maps of monthly actual available water after maximum rainfall intensity presented a significant spatial variability, though values varied as a function of total rainfall depth and infiltration, and the five different scenarios of cumulative processes considered on the DR2 model. The minimum value of Waa for each month was well correlated with the average values of precipitation (Pearson's r = 0.86), whereas the mean values of Waa showed a close correlation with the values of maximum rainfall intensity (Pearson's r = 0.92). Maps of SMS and their values were reclassified in seven wetness-dryness categories. Predominant wet conditions occurred in May, September, October, November and December, whereas dry conditions appeared in February, March and July. Drying-up conditions were identified in January and June and wetting-up conditions occurred in April and August. The new DR2 model seems to be of interest to monitor humidity variations and trends in time and space in Mediterranean agricultural systems and can provide valuable information for sustainable soil and water resource management in agro-climatic analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28385368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28385368"><span>[Environmental noise levels in 2 intensive care units in a tertiary care centre].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ornelas-Aguirre, José Manuel; Zárate-Coronado, Olivia; Gaxiola-González, Fabiola; Neyoy-Sombra, Venigna</p> <p>2017-04-03</p> <p>The World Health Organisation (WHO) has established a maximum noise level of 40 decibels (dB) for an intensive care unit. The aim of this study was to compare the noise levels in 2 different intensive care units at a tertiary care centre. Using a cross-sectional design study, an analysis was made of the maximum noise level was within the intensive coronary care unit and intensive care unit using a digital meter. A measurement was made in 4 different points of each room, with 5minute intervals, for a period of 60minutes 7:30, 14:30, and 20:30. The means of the observations were compared with descriptive statistics and Mann-Whitney U. An analysis with Kruskal-Wallis test was performed to the mean noise level. The noise observed in the intensive care unit had a mean of 64.77±3.33dB (P=.08), which was similar to that in the intensive coronary care unit, with a mean of 60.20±1.58dB (P=.129). Around 25% or more of the measurements exceeded the level recommended by the WHO by up to 20 points. Noise levels measured in intensive care wards exceed the maximum recommended level for a hospital. It is necessary to design and implement actions for greater participation of health personnel in the reduction of environmental noise. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=air+AND+filter&pg=2&id=EJ742680','ERIC'); return false;" href="https://eric.ed.gov/?q=air+AND+filter&pg=2&id=EJ742680"><span>Theoretical Analysis of Maximum Flow Declination Rate versus Maximum Area Declination Rate in Phonation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Titze, Ingo R.</p> <p>2006-01-01</p> <p>Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060028134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060028134"><span>Major Geomagnetic Storms (Dst less than or equal to -100 nT) Generated by Corotating Interaction Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, I. G.; Webb, D. F.; Zhang, J.; Berdichevsky, B. D.; Biesecker, D. A.; Kasper, J. C.; Kataoka, R.; Steinberg, J. T.; Thompson, B. J.; Wu, C.-C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20060028134'); toggleEditAbsImage('author_20060028134_show'); toggleEditAbsImage('author_20060028134_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20060028134_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20060028134_hide"></p> <p>2006-01-01</p> <p>Seventy-nine major geomagnetic storms (minimum Dst less than or equal to -100 nT) observed in 1996 to 2004 were the focus of a Living with a Star Coordinated Data-Analysis Workshop (CDAW) in March, 2005. In 9 cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material (interplanetary coronal mass ejections, ICMEs). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst approx. -40 nT but is subject to a prominent seasonal variation of - 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction towards or away from the Sun. The O'Brien and McPherron [2000] equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst approx. 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September - November, 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst less than or equal to -100 nT storms in 1972 - 1995, is (Dst = -161 nT). This is consistent with the maximum storm strength (Dst approx. -180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind electric fields associated with CIRs. This suggests that CIRs alone are unlikely to generate geomagnetic storms that exceed these levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046668&hterms=Weak+signals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DWeak%2Bsignals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046668&hterms=Weak+signals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DWeak%2Bsignals"><span>Plasma waves downstream of weak collisionless shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.</p> <p>1993-01-01</p> <p>In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26479046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26479046"><span>Scientific Collaboration in Chinese Nursing Research: A Social Network Analysis Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Xiao-Ni; Hao, Yu-Fang; Cao, Jing; She, Yan-Chao; Duan, Hong-Mei</p> <p>2016-01-01</p> <p>Collaboration has become very important in research and in technological progress. Coauthorship networks in different fields have been intensively studied as an important type of collaboration in recent years. Yet there are few published reports about collaboration in the field of nursing. This article aimed to reveal the status and identify the key features of collaboration in the field of nursing in China. Using data from the top 10 nursing journals in China from 2003 to 2013, we constructed a nursing scientific coauthorship network using social network analysis. We found that coauthorship was a common phenomenon in the Chinese nursing field. A coauthorship network with 228 subnetworks formed by 1428 nodes was constructed. The network was relatively loose, and most subnetworks were of small scales. Scholars from Shanghai and from military medical system were at the center of the Chinese nursing scientific coauthorship network. We identified the authors' positions and influences according to the research output and centralities of each author. We also analyzed the microstructure and the evolution over time of the maximum subnetwork.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070002006','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070002006"><span>Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.</p> <p>2006-01-01</p> <p>A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24889372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24889372"><span>Theoretical assessment of the maximum obtainable power in wireless power transfer constrained by human body exposure limits in a typical room scenario.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xi Lin; De Santis, Valerio; Umenei, Aghuinyue Esai</p> <p>2014-07-07</p> <p>In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PMB....59.3453C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PMB....59.3453C"><span>Theoretical assessment of the maximum obtainable power in wireless power transfer constrained by human body exposure limits in a typical room scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xi Lin; De Santis, Valerio; Esai Umenei, Aghuinyue</p> <p>2014-07-01</p> <p>In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MsT..........7O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MsT..........7O"><span>Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Omidi, Nazanin</p> <p></p> <p>In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol8/pdf/CFR-2014-title21-vol8-sec1050-10.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol8/pdf/CFR-2014-title21-vol8-sec1050-10.pdf"><span>21 CFR 1050.10 - Ultrasonic therapy products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol8/pdf/CFR-2012-title21-vol8-sec1050-10.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol8/pdf/CFR-2012-title21-vol8-sec1050-10.pdf"><span>21 CFR 1050.10 - Ultrasonic therapy products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol8/pdf/CFR-2013-title21-vol8-sec1050-10.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol8/pdf/CFR-2013-title21-vol8-sec1050-10.pdf"><span>21 CFR 1050.10 - Ultrasonic therapy products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol8/pdf/CFR-2011-title21-vol8-sec1050-10.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol8/pdf/CFR-2011-title21-vol8-sec1050-10.pdf"><span>21 CFR 1050.10 - Ultrasonic therapy products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title21-vol8/pdf/CFR-2010-title21-vol8-sec1050-10.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title21-vol8/pdf/CFR-2010-title21-vol8-sec1050-10.pdf"><span>21 CFR 1050.10 - Ultrasonic therapy products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1553....3B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1553....3B"><span>The maximum entropy method of moments and Bayesian probability theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bretthorst, G. Larry</p> <p>2013-08-01</p> <p>The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22395913-volumetric-tumor-burden-its-effect-brachial-plexus-dosimetry-head-neck-intensity-modulated-radiotherapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22395913-volumetric-tumor-burden-its-effect-brachial-plexus-dosimetry-head-neck-intensity-modulated-radiotherapy"><span>Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya</p> <p>2014-07-01</p> <p>To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy.more » Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22475984-compositional-investigation-luminescence-ho-sup-doped-lead-silicate-glass','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22475984-compositional-investigation-luminescence-ho-sup-doped-lead-silicate-glass"><span>Compositional investigation of ∼2 μm luminescence of Ho{sup 3+}-doped lead silicate glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Xueqiang; Huang, Feifei; Gao, Song</p> <p>2015-11-15</p> <p>Graphical abstract: Ho{sup 3+}-doped lead silicate glass with lowest maximum phonon energy possesses highest ∼2 μm luminescence intensity. - Highlights: • With increment of lead oxide, maximum phonon energy in lead silicate glass decreased. • ∼2 μm luminescent intensity of Ho{sup 3+} increased with increment of lead oxide. • Lowest lead oxide content glass possesses highest quantum efficiency due to low maximum phonon energy. - Abstract: Lead silicate glass samples with varying lead oxide content were prepared in this study, and their luminescent properties were examined and analyzed. It was found that with increasing lead oxide content, the maximum phononmore » energies of the glass samples decreased, while their spontaneous transition probabilities first increased and then decreased. The influence of the spontaneous transition rate, A{sub 10}, and the multi-phonon relaxation rate, W{sub 10}, on the sample luminescent properties was analyzed using rate equations. As a result, it was found that with increasing lead oxide content, W{sub 10}/A{sub 10} decreased, while the quantum efficiency increased. Thus, the luminescent intensity at ∼2 μm increased in the glass samples with increased lead oxide content. The high luminescent intensity and long lifetime indicate that silicate glasses containing high levels of lead oxide could potentially be used in ∼2 μm lasers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023416','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023416"><span>Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cliver, E. W.; Richardson, I. G.; Ling, A. G.</p> <p>2011-01-01</p> <p>In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift: at such times. In 2009, the approx.2 GV GCR intensity measured by the Newark neutron monitor increased by approx.5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (approx.20deg vs. approx.14deg), while solar wind B was significantly lower (approx.3.9 nT vs. approx.5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including postshock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the approx. 1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent Be-10-based reconstruction covering the past approx. 10(exp 4) years shows nine abrupt and relatively short-lived drops of B to < or approx.= 0 nT, with the first of these corresponding to the Sporer minimum. Such dips are at variance with the recent suggestion that B has a minimum or floor value of approx.2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30-40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29071144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29071144"><span>Does sacral pulsed electromagnetic field therapy have a better effect than transcutaneous electrical nerve stimulation in patients with neurogenic overactive bladder?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fergany, Lamyaa A; Shaker, Husain; Arafa, Magdy; Elbadry, Mohamed S</p> <p>2017-06-01</p> <p>To compare the effectiveness of pulsed electromagnetic field therapy (PEMFT) and transcutaneous electrical nerve stimulation (TENS) on neurogenic overactive bladder dysfunction (OAB) in patients with spinal cord injury (SCI). In all, 80 patients [50 men and 30 women, with a mean (SD) age of 40.15 (8.76) years] with neurogenic OAB secondary to suprasacral SCI were included. They underwent urodynamic studies (UDS) before and after treatment. Patients were divided into two equal groups: Group A, comprised 40 patients who received 20 min of TENS (10 Hz with a 700 s generated pulse), three times per week for 20 sessions; Group B, comprised 40 patients who received PEMFT (15 Hz with 50% intensity output for 5 s/min for 20 min), three times per week for 20 sessions. In Group B, there was a significant increase in the maximum cystometric capacity ( P  < 0.001), volume at first uninhibited detrusor contraction ( P  < 0.002), and maximum urinary flow rate ( P  < 0.02). The UDS showed that the effects of PEMFT in patients with neurogenic OAB secondary to suprasacral SCI was better than TENS for inducing an inhibitory effect on neurogenic detrusor overactivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130009127&hterms=self+regulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dself%2Bregulation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130009127&hterms=self+regulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dself%2Bregulation"><span>Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee</p> <p>2012-01-01</p> <p>NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008cosp...37.2056M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008cosp...37.2056M"><span>Cosmic ray anisotropy along with interplanetary transients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishra, Rajesh Kumar</p> <p></p> <p>The present work deals with the study of first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1991-1994 for Deep River neutron monitoring station. It is observed that the diurnal time of maximum remains in the corotational direction; whereas, the time of maximum for both diurnal and semi-diurnal anisotropy has significantly shifted towards later hours as compared to the quiet day annual average for majority of the LAE events. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams; such as, polar coronal holes. The direction of the tri-diurnal anisotropy shows a good negative correlation with Bz component of interplanetary magnetic field. The occurrence of low amplitude events is dominant for positive polarity of Bz. The Disturbance Storm Time index i.e. Dst remains consistently negative only throughout the entire low amplitude wave train event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23927186','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23927186"><span>Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor</p> <p>2013-08-01</p> <p>The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptCo.413..212F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptCo.413..212F"><span>Generation of high-intensity sub-30 as pulses by inhomogeneous polarization gating technology in bowtie-shaped nanostructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Liqiang; Feng, A. Yuanzi</p> <p>2018-04-01</p> <p>The generation of high-order harmonics and single attosecond pulses (SAPs) from He atom driven by the inhomogeneous polarization gating technology in a bowtie-shaped nanostructure is theoretically investigated. The results show that by the proper addition of bowtie-shaped nanostructure along the driven laser polarization direction, the harmonic emission becomes sensitive to the position of the laser field, and the harmonics emitted at the maximum orders that generate SAPs occur only at one side of the region inside the nanostructure. As a result, not only the harmonic cutoff can be extended, but also the modulations of the harmonics can be decreased, showing a carrier envelope phase independent harmonic cutoff with a bandwidth of 310 eV. Further, with the proper introduction of an ultraviolet pulse, the harmonic yield can be enhanced by 2 orders of magnitude. Finally, by the Fourier transformation of the selected harmonics, some SAPs with a full width at half maximum of sub-30 as can be obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770018633','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770018633"><span>Three dimensional finite-element analysis of finite-thickness fracture specimens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Raju, I. S.; Newman, J. C., Jr.</p> <p>1977-01-01</p> <p>The stress-intensity factors for most of the commonly used fracture specimens (center-crack tension, single and double edge-crack tension, and compact), those that have a through-the-thickness crack, were calculated using a three dimensional finite-element elastic stress analysis. Three-dimensional singularity elements were used around the crack front. The stress intensity factors along the crack front were evaluated by using a force method, developed herein, that requires no prior assumption of either plane stress or plane strain. The calculated stress-intensity factors from the present analysis were compared with those from the literature whenever possible and were generally found to be in good agreement. The stress-intensity factors at the midplane for all specimens analyzed were within 3 percent of the two dimensional plane strain values. The stress intensity factors at the specimen surfaces were considerably lower than at the midplanes. For the center-crack tension specimens with large thickness to crack-length ratios, the stress-intensity factor reached a maximum near the surface of the specimen. In all other specimens considered the maximum stress intensity occurred at the midplane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvD..82d4052V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvD..82d4052V"><span>Charged anisotropic matter with linear or nonlinear equation of state</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi</p> <p>2010-08-01</p> <p>Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1253001-beam-tests-beampipe-coatings-electron-cloud-mitigation-fermilab-main-injector','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1253001-beam-tests-beampipe-coatings-electron-cloud-mitigation-fermilab-main-injector"><span>Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; ...</p> <p>2015-10-26</p> <p>Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparisonmore » between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017LPB....35..677R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017LPB....35..677R"><span>Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rączka, P.; Dubois, J.-L.; Hulin, S.; Tikhonchuk, V.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.</p> <p>2017-12-01</p> <p>Measurements are reported of the target neutralization current, the target charge, and the tangential component of the magnetic field generated as a result of laser-target interaction by pulses with the energy in the range of 45 mJ to 92 mJ on target and the pulse duration from 39 fs to 1000 fs. The experiment was performed at the Eclipse facility in CELIA, Bordeaux. The aim of the experiment was to extend investigations performed for the thick (mm scale) targets to the case of thin (micrometer thickness) targets in a way that would allow for a straightforward comparison of the results. We found that thin foil targets tend to generate 20 to 50 percent higher neutralization current and the target charge than the thick targets. The measurement of the tangential component of the magnetic field had shown that the initial spike is dominated by the 1 ns pulse consistent with the 1 ns pulse of the neutralization current, but there are some differences between targets of different type on sub-ns scale, which is an effect going beyond a simple picture of the target acting as an antenna. The sub-ns structure appears to be reproducible to surprising degree. We found that there is in general a linear correlation between the maximum value of the magnetic field and the maximum neutralization current, which supports the target-antenna picture, except for pulses hundreds of fs long.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17102825','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17102825"><span>High-frequency harmonic imaging of the eye.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silverman, Ronald H; Coleman, D Jackson; Ketterling, Jeffrey A; Lizzi, Frederic L</p> <p>2005-01-01</p> <p>PURPOSE: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. METHODS: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. RESULTS: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. CONCLUSION: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5750...16S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5750...16S"><span>High-frequency harmonic imaging of the eye</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.</p> <p>2005-04-01</p> <p>Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PMB....54.3113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PMB....54.3113S"><span>High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.</p> <p>2009-05-01</p> <p>Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTA...48.4193L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTA...48.4193L"><span>Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy Under an Axial Magnetic Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Huan; Xuan, Weidong; Xie, Xinliang; Li, Chuanjun; Wang, Jiang; Yu, Jianbo; Li, Xi; Zhong, Yunbo; Ren, Zhongming</p> <p>2017-09-01</p> <p>The effect of an axial magnetic field on the solidification structure in directionally solidified Ni-21.5Al-0.4Zr-0.1B (at. pct) alloy was investigated. The experimental results indicated that the application of a high magnetic field caused the deformation of dendrites and the occurrence of columnar-to-equiaxed transition (CET). The magnetic field tended to orient the 〈001〉 crystal direction of the equiaxed grains along the magnetic field direction. The bulk solidification experiment under a high magnetic field showed that the crystal exhibited magnetic crystalline anisotropy. Further, the thermoelectric (TE) magnetic force and TE magnetic convention were analyzed by three-dimensional (3-D) numerical simulations. The results showed that the maximum value of TE magnetic force localized in the vicinity of the secondary dendrite arm root, which should be responsible for the dendrite break and CET. Based on the high-temperature creep mechanism, a simple model was proposed to describe the magnetic field intensity needed for CET: B ≥ kG^{ - 1.5} R^{1.25} . The model is in good agreement with the experiment results. The experimental results should be attributed to the combined action of TE magnetic effects and the magnetic moment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016967','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016967"><span>Effects of electric field on micro-scale flame properties of biobutanol fuel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Tao; Chen, Qinglin; Zhang, Bingjian; Lu, Shushen; Mo, Dongchuan; Zhang, Zhengguo; Gao, Xuenong</p> <p>2016-01-01</p> <p>With the increasing need of smaller power sources for satellites, energy systems and engine equipment, microcombustion pose a potential as alternative power source to conventional batteries. As the substitute fuel source for gasoline, biobutanol shows more promising characteristics than ethanol. In this study, the diffusion microflame of liquid biobutanol under electric field have been examined through in-lab experiment and numerical simulation. It is found that traditional gas jet diffusion flame theory shows significant inconsistency with the experimental results of micro scale flame in electric field. The results suggest that with the increase of electric field intensity, the quenching flow rate decrease first and increase after it reach its minimum, while the flame height and highest flame temperature increase first and drop after its peak value. In addition, it was also observed that the flame height and highest temperature for smaller tube can reach its maximum faster. Therefore, the interaction between microscale effect and electric field plays a significant role on understanding the microcombustion of liquid fuel. Therefore, FLUENT simulation was adopted to understand and measure the impacts of microflame characteristic parameters. The final numerical results are consistent with the experimental data and show a high reliability. PMID:27609428</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9535E..0OM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9535E..0OM"><span>Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mostafa, Md. Golam; Haralambous, Haris</p> <p>2015-06-01</p> <p>In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817326S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817326S"><span>Soil heating and impact of prescribed burning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoof, Cathelijne</p> <p>2016-04-01</p> <p>Prescribed burning is highly uncommon in the Netherlands, where wildfire awareness is increasing but its risk management does not yet include fuel management strategies. A major exception is on two military bases, that need to burn their fields in winter and spring to prevent wildfires during summer shooting practice. Research on these very frequent burns has so far been limited to effects on biodiversity, yet site managers and policy makers have questions regarding the soil temperatures reached during these burns because of potential impact on soil properties and soil dwelling fauna. In March 2015, I therefore measured soil and litter temperatures under heath and grass vegetation during a prescribed burn on military terrain in the Netherlands. Soil and litter moisture were sampled pre- and post-fire, ash was collected, and fireline intensity was estimated from flame length. While standing vegetation was dry (0.13 g water/g biomass for grass and 0.6 g/g for heather), soil and litter were moist (0.21 cm3/cm3 and 1.6 g/g, respectively). Soil heating was therefore very limited, with maximum soil temperature at the soil-litter interface remaining being as low as 6.5 to 11.5°C, and litter temperatures reaching a maximum of 77.5°C at the top of the litter layer. As a result, any changes in physical properties like soil organic matter content and bulk density were not significant. These results are a first step towards a database of soil heating in relation to fuel load and fire intensity in this temperate country, which is not only valuable to increase understanding of the relationships between fire intensity and severity, but also instrumental in the policy debate regarding the sustainability of prescribed burns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21372203-postoperative-intensity-modulated-radiotherapy-low-risk-endometrial-cancers-final-results-phase-study','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21372203-postoperative-intensity-modulated-radiotherapy-low-risk-endometrial-cancers-final-results-phase-study"><span>Postoperative Intensity-Modulated Radiotherapy in Low-Risk Endometrial Cancers: Final Results of a Phase I Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.i; Cilla, Savino M.P.; Ferrandina, Gabriella</p> <p>2010-04-15</p> <p>Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated bymore » a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PlPhR..39.1035M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PlPhR..39.1035M"><span>Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malinina, A. A.; Malinin, A. N.</p> <p>2013-12-01</p> <p>Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29573138','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29573138"><span>High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Öner, Ibrahim Halil; Querebillo, Christine Joy; David, Christin; Gernert, Ulrich; Walter, Carsten; Driess, Matthias; Leimkühler, Silke; Ly, Khoa Hoang; Weidinger, Inez M</p> <p>2018-06-11</p> <p>We present the fabrication of TiO 2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochrome b 5 were observed upon covalent immobilization of the protein matrix on the TiO 2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 °C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5017993-coronal-emission-line-polarization-from-statistical-equilibrium-magnetic-sublevels-ii-fe-xiv','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5017993-coronal-emission-line-polarization-from-statistical-equilibrium-magnetic-sublevels-ii-fe-xiv"><span>Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. II. Fe XIV 5303 A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>House, L.L.; Querfeld, C.W.; Rees, D.E.</p> <p>1982-04-15</p> <p>Coronal magnetic fields influence in the intensity and linear polarization of light scattered by coronal Fe XIV ions. To interpret polarization measurements of Fe XIV 5303 A coronal emission requires a detailed understanding of the dependence of the emitted Stokes vector on coronal magnetic field direction, electron density, and temperature and on height of origin. The required dependence is included in the solutions of statistical equilibrium for the ion which are solved explicitly for 34 magnetic sublevels in both the ground and four excited terms. The full solutions are reduced to equivalent simple analytic forms which clearly show the requiredmore » dependence on coronal conditions. The analytic forms of the reduced solutions are suitable for routine analysis of 5303 green line polarimetric data obtained at Pic du Midi and from the Solar Maximum Mission Coronagraph/Polarimeter.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17029968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17029968"><span>Comparison between fluorimetry and oximetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lefebvre, Sébastien; Mouget, Jean-Luc; Loret, Pascale; Rosa, Philippe; Tremblin, Gérard</p> <p>2007-02-01</p> <p>This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29051463','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29051463"><span>Modelling Short-Term Maximum Individual Exposure from Airborne Hazardous Releases in Urban Environments. Part ΙI: Validation of a Deterministic Model with Wind Tunnel Experimental Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Efthimiou, George C; Bartzis, John G; Berbekar, Eva; Hertwig, Denise; Harms, Frank; Leitl, Bernd</p> <p>2015-06-26</p> <p>The capability to predict short-term maximum individual exposure is very important for several applications including, for example, deliberate/accidental release of hazardous substances, odour fluctuations or material flammability level exceedance. Recently, authors have proposed a simple approach relating maximum individual exposure to parameters such as the fluctuation intensity and the concentration integral time scale. In the first part of this study (Part I), the methodology was validated against field measurements, which are governed by the natural variability of atmospheric boundary conditions. In Part II of this study, an in-depth validation of the approach is performed using reference data recorded under truly stationary and well documented flow conditions. For this reason, a boundary-layer wind-tunnel experiment was used. The experimental dataset includes 196 time-resolved concentration measurements which detect the dispersion from a continuous point source within an urban model of semi-idealized complexity. The data analysis allowed the improvement of an important model parameter. The model performed very well in predicting the maximum individual exposure, presenting a factor of two of observations equal to 95%. For large time intervals, an exponential correction term has been introduced in the model based on the experimental observations. The new model is capable of predicting all time intervals giving an overall factor of two of observations equal to 100%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22341862-controlling-size-optical-properties-zno-nanoparticles-capping-sio-sub','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22341862-controlling-size-optical-properties-zno-nanoparticles-capping-sio-sub"><span>Controlling the size and optical properties of ZnO nanoparticles by capping with SiO{sub 2}</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Babu, K. Sowri, E-mail: sowribabuk@gmail.com; Reddy, A. Ramachandra; Reddy, K. Venugopal</p> <p></p> <p>Graphical abstract: - Highlights: • Small and uniform sized ZnO nanoparticles were obtained with SiO{sub 2} coating. • ZnO and ZnO–SiO{sub 2} nanocomposite exhibited excitation wavelength dependent PL. • Maximum UV emission intensity was obtained with 353 nm excitation wavelength. • Excitation processes in SiO{sub 2} were also contributed to the UV intensity. • It was found that oxygen vacancies and interstitials enhanced with SiO{sub 2} coating. - Abstract: The size and shape of the ZnO nanoparticles synthesized through sol–gel method were controlled by capping with SiO{sub 2}. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) and Highmore » Resolution Transmission Electron Microscope (HR-TEM) results demonstrated that the particle growth of the ZnO nanoparticles has been restricted to 5 nm with SiO{sub 2} capping. As a result, the absorption spectra of ZnO nanoparticles capped with SiO{sub 2} got blue shifted (toward lower wavelength side) due to strong quantum confinement effects. BET (Brunauer–Emmet–Teller) surface area pore size analyzer results showed that surface area of samples increased monotonously with increase of SiO{sub 2} concentration. It was observed that the absorption spectra of ZnO capped with SiO{sub 2} broadened with increase of SiO{sub 2} concentration. Absorption and photoluminescence excitation results (PLE) confirmed that this broadening is due to the absorption of non-bridging oxygen hole centers (NBOHC) of SiO{sub 2}. These results also indicated that ZnO nanoparticles capped with SiO{sub 2} are insensitive to Raman scattering. Maximum UV emission intensity was achieved with 353 nm excitation wavelength compared to 320 nm in ZnO as well as in SiO{sub 2} capped ZnO nanoparticles. Furthermore, there is an enhancement in the intensities of emission peaks related to oxygen vacancies and interstitials with SiO{sub 2} capping. The enhancement in the UV intensity is attributed to the surface passivation of ZnO nanoparticles and excitation processes in SiO{sub 2}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1975/0180/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1975/0180/report.pdf"><span>Prediction of maximum earthquake intensities for the San Francisco Bay region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Borcherdt, Roger D.; Gibbs, James F.</p> <p>1975-01-01</p> <p>The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28577485','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28577485"><span>Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Tuoyuan; Wei, Chun-Hai; Leiknes, TorOve</p> <p>2017-10-01</p> <p>To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14μmol/m 2 /s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m 2 /h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1377448-influence-model-resolution-simulated-sensitivity-north-atlantic-tropical-cyclone-maximum-intensity-sea-surface-temperature','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1377448-influence-model-resolution-simulated-sensitivity-north-atlantic-tropical-cyclone-maximum-intensity-sea-surface-temperature"><span>The influence of model resolution on the simulated sensitivity of North Atlantic tropical cyclone maximum intensity to sea surface temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Strazzo, S. E.; Elsner, J. B.; LaRow, T. E.; ...</p> <p>2016-07-10</p> <p>Global climate models (GCMs) are routinely relied upon to study the possible impacts of climate change on a wide range of meteorological phenomena, including tropical cyclones (TCs). Previous studies addressed whether GCMs are capable of reproducing observed TC frequency and intensity distributions. This research builds upon earlier studies by examining how well GCMs capture the physically relevant relationship between TC intensity and SST. Specifically, the influence of model resolution on the ability of a GCM to reproduce the sensitivity of simulated TC intensity to SST is examined for the MRI-AGCM (20 km), the GFDL-HiRAM (50 km), the FSU-COAPS (0.94°) model,more » and two versions of the CAM5 (1° and 0.25°). Results indicate that while a 1°C increase in SST corresponds to a 5.5–7.0 m s -1 increase in observed maximum intensity, the same 1°C increase in SST is not associated with a statistically significant increase in simulated TC maximum intensity for any of the models examined. However, it also is shown that the GCMs all capably reproduce the observed sensitivity of potential intensity to SST. The models generate the thermodynamic environment suitable for the development of strong TCs over the correct portions of the Nort h Atlantic basin, but strong simulated TCs do not develop over these areas, even for models that permit Category 5 TCs. This result supports the notion that direct simulation of TC eyewall convection is necessary to accurately represent TC intensity and intensification processes in climate models, although additional explanations are also explored.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4251056-recurrent-intensity-variations-primary-cosmic-radiation-periods-maximum-solar-activity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4251056-recurrent-intensity-variations-primary-cosmic-radiation-periods-maximum-solar-activity"><span>THE RECURRENT INTENSITY VARIATIONS OF PRIMARY COSMIC RADIATION IN PERIODS OF MAXIMUM SOLAR ACTIVITY (in French)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Freon, A.; Berry, J.; Coste, J.-P.</p> <p>1959-02-01</p> <p>Some recordings of the variations of intensity of cosmic neutrons, made since October 1956 at the observatory of the Pic du Midi and since July 1957 on the Kerguelen Islands, have shown the existence, since the beginning of the observations and during at least 20 solar rotations, of a cyclic variation with a stable period equal to 27.35 plus or minus 0.1 solar days and a maximum amplitude of 2.2% attained in October 1957. (tr-auth)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916559G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916559G"><span>Sill intrusion in volcanic calderas: implications for vent opening probability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giudicepietro, Flora; Macedonio, Giovanni; Martini, Marcello; D'Auria, Luca</p> <p>2017-04-01</p> <p>Calderas show peculiar behaviors with remarkable dynamic processes, which do not often culminate in eruptions. Observations and studies conducted in recent decades have shown that the most common cause of unrest in the calderas is due to magma intrusion; in particular, the intrusion of sills at shallow depths. Monogenic cones, with large areal dispersion, are quite common in the calderas, suggesting that the susceptibility analysis based on geological features, is not strictly suitable for estimating the vent opening probability in calderas. In general, the opening of a new eruptive vent can be regarded as a rock failure process. The stress field in the rocks that surrounds and tops the magmatic reservoirs plays an important role in causing the rock failure and creating the path that magma can follow towards the surface. In this conceptual framework, we approach the problem of getting clues about the probability of vent opening in volcanic calderas through the study of the stress field produced by the intrusion of magma, in particular, by the intrusion of a sill. We simulate the intrusion of a sill free to expand radially, with shape and dimensions which vary with time. The intrusion process is controlled by the elastic response of the rock plate above the sill, which bends because of the intrusion, and by gravity, that drives the magma towards the zones where the thickness of the sill is smaller. We calculated the stress field in the plate rock above the sill. We found that at the bottom of the rock plate above the sill the maximum intensity of tensile stress is concentrated at the front of the sill and spreads radially with it, over time. For this reason, we think that the front of the spreading sill is prone to open for eruptive vents. Even in the central area of the sill the intensity of stress is relatively high, but at the base of the rock plate stress is compressive. Under isothermal conditions, the stress soon reaches its maximum value (time interval depending on the model parameters) and then decreases over time during the intrusion. However, if we consider the effect of the cooling of magma, with the temperature which decreases with time and the viscosity that increases, we'll find that the stress in the rock above the sill gradually increases with time and becomes higher than in isothermal case. In order to investigate the role of the physical properties of magma and rock above the sill in the generation of the stress field we have carried out different simulations by varying the viscosity of magma and the rigidity of the rock and found that high viscosity magma produces a relatively high stress intensity, as well as a high rock rigidity does.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24168428','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24168428"><span>Physiological demands of women's rugby union: time-motion analysis and heart rate response.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Virr, Jody Lynn; Game, Alex; Bell, Gordon John; Syrotuik, Daniel</p> <p>2014-01-01</p> <p>The aim of this study was to determine the physical demands of women's rugby union match play using time-motion analysis and heart rate (HR) response. Thirty-eight premier club level female rugby players, ages 18-34 years were videotaped and HRs monitored for a full match. Performances were coded into 12 different movement categories: 5 speeds of locomotion (standing, walking, jogging, striding, sprinting), 4 forms of intensive non-running exertion (ruck/maul/tackle, pack down, scrum, lift) and 3 discrete activities (kick, jump, open field tackle). The main results revealed that backs spend significantly more time sprinting and walking whereas forwards spend more time in intensive non-running exertion and jogging. Forwards also had a significantly higher total work frequency compared to the backs, but a higher total rest frequency compared to the backs. In terms of HR responses, forwards displayed higher mean HRs throughout the match and more time above 80% of their maximum HR than backs. In summary, women's rugby union is characterised by intermittent bursts of high-intensity activity, where forwards and backs have similar anaerobic energy demands, but different specific match demands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.5339A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.5339A"><span>Quasi-linear diffusion coefficients for highly oblique whistler mode waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albert, J. M.</p> <p>2017-05-01</p> <p>Quasi-linear diffusion coefficients are considered for highly oblique whistler mode waves, which exhibit a singular "resonance cone" in cold plasma theory. The refractive index becomes both very large and rapidly varying as a function of wave parameters, making the diffusion coefficients difficult to calculate and to characterize. Since such waves have been repeatedly observed both outside and inside the plasmasphere, this problem has received renewed attention. Here the diffusion equations are analytically treated in the limit of large refractive index μ. It is shown that a common approximation to the refractive index allows the associated "normalization integral" to be evaluated in closed form and that this can be exploited in the numerical evaluation of the exact expression. The overall diffusion coefficient formulas for large μ are then reduced to a very simple form, and the remaining integral and sum over resonances are approximated analytically. These formulas are typically written for a modeled distribution of wave magnetic field intensity, but this may not be appropriate for highly oblique whistlers, which become quasi-electrostatic. Thus, the analysis is also presented in terms of wave electric field intensity. The final results depend strongly on the maximum μ (or μ∥) used to model the wave distribution, so realistic determination of these limiting values becomes paramount.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16437109','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16437109"><span>Laser acceleration of quasi-monoenergetic MeV ion beams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C</p> <p>2006-01-26</p> <p>Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PMB....63b5034A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PMB....63b5034A"><span>Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian</p> <p>2018-01-01</p> <p>Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28500890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28500890"><span>Effect of static magnetic field on trichloroethylene removal in a biotrickling filter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quan, Yue; Wu, Hao; Yin, Zhenhao; Fang, Yingyu; Yin, Chengri</p> <p>2017-09-01</p> <p>A laboratory-scale biotrickling filter combined with a magnetic field (MF-BTF) and a single BTF (S-BTF) were set up to treat trichloroethylene (TCE) gas. The influences of phenol alone and NaAc-phenol as co-substrates and different MF intensities were investigated. At low MF intensity, MF-BTF displayed better performance with 0.20g/L of phenol, 53.6-337.1mg/m 3 of TCE, and empty bed residence times of 202.5s. The performances followed the order MF-BTF (60.0mT)>MF-BTF (30.0mT)>S-BTF (0mT)>MF-BTF (130.0mT), and the removal efficiencies (REs) and maximum elimination capacities (ECs) corresponded to: 92.2%-45.5%, 2656.8mg/m 3 h; 89.8%-37.2%, 2169.1mg/m 3 h; 89.8%-29.8%, 1967.7mg/m 3 h; 76.0%-20.8%, 1697.1mg/m 3 h, respectively. High-throughput sequencing indicated that the bacterial diversity was lower, whereas the relative abundances of Acinetobacter, Chryseobacterium, and Acidovorax were higher in MF-BTF. Results confirmed that a proper MF could improve TCE removal performance in BTF. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3928843','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3928843"><span>Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Razavi, Shahnaz; Salimi, Marzieh; Shahbazi-Gahrouei, Daryoush; Karbasi, Saeed; Kermani, Saeed</p> <p>2014-01-01</p> <p>Background: Extremely low-frequency electromagnetic fields (ELF-EMF) can effect on biological systems and alters some cell functions like proliferation rate. Therefore, we aimed to attempt the evaluation effect of ELF-EMF on the growth of human adipose derived stem cells (hADSCs). Materials and Methods: ELF-EMF was generated by a system including autotransformer, multi-meter, solenoid coils, teslameter and its probe. We assessed the effect of ELF-EMF with intensity of 0.5 and 1 mT and power line frequency 50 Hz on the survival of hADSCs for 20 and 40 min/day for 7 days by MTT assay. One-way analysis of variance was used to assessment the significant differences in groups. Results: ELF-EMF has maximum effect with intensity of 1 mT for 20 min/day on proliferation of hADSCs. The survival and proliferation effect (PE) in all exposure groups were significantly higher than that in sham groups (P < 0.05) except in group of 1 mT and 40 min/day. Conclusion: Our results show that between 0.5 m and 1 mT ELF-EMF could be enhances survival and PE of hADSCs conserving the duration of exposure. PMID:24592372</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8c5025H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8c5025H"><span>Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Chen-Guang; Zhou, You-He</p> <p>2018-03-01</p> <p>As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.7983E..2HY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.7983E..2HY"><span>Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian</p> <p>2011-04-01</p> <p>Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9698E..0NK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9698E..0NK"><span>Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min</p> <p>2016-03-01</p> <p>Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JCrGr.327..258T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JCrGr.327..258T"><span>Thin films of a ferroelectric phenazine/chloranilic acid organic cocrystal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, Nicholas J.; Jandl, Adam C.; Spalenka, Josef W.; Evans, Paul G.</p> <p>2011-07-01</p> <p>Phenazine-chloranilic acid cocrystal thin films can be formed by vacuum evaporation of the component molecules onto cooled substrates. Fluxes of phenazine and chloranilic acid were provided from separate sublimation sources, from which the cocrystalline phase can be formed under a wide range of impingement rates of the component molecules. Substrates consisted of Au or Ni thin films on Si wafers, cooled to 100-140 K during deposition. X-ray diffraction and scanning electron microscopy show that this process yields polycrystalline thin films of the cocrystal with voids between crystalline grains. The relative intensities of X-ray reflections differ from reported intensities of polycrystalline powders, suggesting that the films have an anisotropic distribution of crystallographic orientations. The cocrystalline thin films have an effective dielectric constant of 13 at room temperature, increasing at lower temperatures and exhibiting a broad maximum near 200 K. The means to grow thin films of organic ferroelectric materials will allow the integration of new functionalities into organic electronic device structures, including capacitors and field-effect transistors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12580663','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12580663"><span>Effects of different set configurations on barbell velocity and displacement during a clean pull.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haff, G Gregory; Whitley, Adrian; McCoy, Lora B; O'Bryant, Harold S; Kilgore, J Lon; Haff, Erin E; Pierce, Kyle; Stone, Michael H</p> <p>2003-02-01</p> <p>The effects of 3 types of set configurations (cluster, traditional, and undulating) on barbell kinematics were investigated in the present study. Thirteen men (track and field = 8; Olympic weightlifters = 5) (mean +/- SEM age, 23.4 +/- 1.1 years; height, 181.3 +/- 2.1 cm; body mass, 89.8 +/- 4.2 kg) performed 1 set of 5 repetitions in a cluster, traditional, and undulating fashion at 90 and 120% of their 1 repetition maximum (1RM) power clean (119.0 +/- 4.3 kg). All data were collected at 50 Hz and analyzed with a V-Scope Weightlifting Analysis System. Peak velocity (PV) and peak displacement (PD) were analyzed for each repetition and averaged for each set type. Results indicated that a significantly (p < 0.016) higher PV occurred during the cluster set when compared with the traditional sets at both intensities. PD was significantly higher than traditional sets at the 120% intensity. The present study suggests set configuration can affect PV and PD during clean pulls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890034677&hterms=stress+fatigue&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dstress%2Bfatigue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890034677&hterms=stress+fatigue&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dstress%2Bfatigue"><span>Resolved shear stress intensity coefficient and fatigue crack growth in large crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Q.; Liu, H. W.</p> <p>1988-01-01</p> <p>Fatigue crack growth tests were carried out on large-grain Al 7029 aluminum alloy and the finite element method was used to calculate the stress field near the tip of a zigzag crack. The resolved shear stresses on all 12 slip systems were computed, and the resolved shear stress intensity coefficient (RSSIC) was defined. The RSSIC was used to analyze the irregular crack path and was correlated with the rate of single-slip-plane shear crack growth. Fatigue crack growth was found to be caused primarily by shear decohesion at a crack tip. When the RSSIC on a single-slip system was much larger than all the others, the crack followed a single-slip plane. When the RSSICs on two conjugate slip systems were comparable, a crack grew in a zigzag manner on these planes and the macrocrack-plane bisected the two active slip planes. The maximum RSSIC on the most active slip system is proposed as a parameter to correlate with the shear fatigue crack growth rate in large crystals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4687997','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4687997"><span>Vocal Parameters of Elderly Female Choir Singers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aquino, Fernanda Salvatico de; Ferreira, Léslie Piccolotto</p> <p>2015-01-01</p> <p>Introduction Due to increased life expectancy among the population, studying the vocal parameters of the elderly is key to promoting vocal health in old age. Objective This study aims to analyze the profile of the extension of speech of elderly female choristers, according to age group. Method The study counted on the participation of 25 elderly female choristers from the Choir of Messianic Church of São Paulo, with ages varying between 63 and 82 years, and an average of 71 years (standard deviation of 5.22). The elders were divided into two groups: G1 aged 63 to 71 years and G2 aged 72 to 82. We asked that each participant count from 20 to 30 in weak, medium, strong, and very strong intensities. Their speech was registered by the software Vocalgrama that allows the evaluation of the profile of speech range. We then submitted the parameters of frequency and intensity to descriptive analysis, both in minimum and maximum levels, and range of spoken voice. Results The average of minimum and maximum frequencies were respectively 134.82–349.96 Hz for G1 and 137.28–348.59 Hz for G2; the average for minimum and maximum intensities were respectively 40.28–95.50 dB for G1 and 40.63–94.35 dB for G2; the vocal range used in speech was 215.14 Hz for G1 and 211.30 Hz for G2. Conclusion The minimum and maximum frequencies, maximum intensity, and vocal range presented differences in favor of the younger elder group. PMID:26722341</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4464799','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4464799"><span>Prognostic value of metabolic metrics extracted from baseline PET images in NSCLC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Carvalho, Sara; Leijenaar, Ralph T.H.; Velazquez, Emmanuel Rios; Oberije, Cary; Parmar, Chintan; van Elmpt, Wouter; Reymen, Bart; Troost, Esther G.C.; Oellers, Michel; Dekker, Andre; Gillies, Robert; Aerts, Hugo J.W.L.; Lambin, Philippe</p> <p>2015-01-01</p> <p>Background Maximum, mean and peak SUV of primary tumor at baseline FDG-PET scans, have often been found predictive for overall survival in non-small cell lung cancer (NSCLC) patients. In this study we further investigated the prognostic power of advanced metabolic metrics derived from Intensity-Volume Histograms (IVH) extracted from PET imaging. Methods A cohort of 220 NSCLC patients (mean age, 66.6 years; 149 men, 71 women), stages I-IIIB, treated with radiotherapy with curative intent were included (NCT00522639). Each patient underwent standardized pre-treatment CT-PET imaging. Primary GTV was delineated by an experienced radiation oncologist on CT-PET images. Common PET descriptors such as maximum, mean and peak SUV, and metabolic tumor volume (MTV) were quantified. Advanced descriptors of metabolic activity were quantified by IVH. These comprised 5 groups of features: Absolute and Relative Volume above Relative Intensity threshold (AVRI and RVRI), Absolute and Relative Volume above Absolute Intensity threshold (AVAI and RVAI), and Absolute Intensity above Relative Volume threshold (AIRV). MTV was derived from the IVH curves for volumes with SUV above 2.5, 3 and 4, and of 40% and 50% maximum SUV. Univariable analysis using Cox Proportional Hazard Regression was performed for overall survival assessment. Results Relative volume above higher SUV (80 %) was an independent predictor of OS (p = 0.05). None of the possible surrogates for MTV based on volumes above SUV of 3, 40% and 50% of maximum SUV showed significant associations with OS (p (AVAI3) = 0.10, p (AVAI4) = 0.22, p (AVRI40%) = 0.15, p (AVRI50%) = 0.17). Maximum and peak SUV (r = 0.99) revealed no prognostic value for OS (p (maximum SUV) = 0.20, p (peak SUV) = 0.22). Conclusions New methods using more advanced imaging features extracted from PET were analyzed. Best prognostic value for OS of NSCLC patients was found for relative portions of the tumor above higher uptakes (80% SUV). PMID:24047338</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.131..573C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.131..573C"><span>On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel</p> <p>2018-01-01</p> <p>The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor ( k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series. [Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738921','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738921"><span>The effect of exercise mode and intensity of sub-maximal physical activities on salivary testosterone to cortisol ratio and α-amylase in young active males</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>AZARBAYJANI, MOHAMMAD ALI; FATOLAHI, HOSEYN; RASAEE, MOHAMMAD JAVAD; PEERI, MAGHSOD; BABAEI, ROHOLAH</p> <p>2011-01-01</p> <p>We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F5, 45=3.15, P=0.02). However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate (t=2.94, P=0.02) and 85% maximum heart rate (t=0.53, P=0.03). Salivary α-amylase significantly varied among exercise sessions (F5, 45=3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill (t=3.55, P=0.006) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed. PMID:27182369</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27182369','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27182369"><span>The effect of exercise mode and intensity of sub-maximal physical activities on salivary testosterone to cortisol ratio and α-amylase in young active males.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Azarbayjani, Mohammad Ali; Fatolahi, Hoseyn; Rasaee, Mohammad Javad; Peeri, Maghsod; Babaei, Roholah</p> <p></p> <p>We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F 5, 45 =3.15, P=0.02) . However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate ( t=2.94, P=0.02 ) and 85% maximum heart rate ( t=0.53, P=0.03 ). Salivary α-amylase significantly varied among exercise sessions (F 5, 45 =3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill ( t=3.55, P=0.006 ) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040035792&hterms=Skinner&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSkinner','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040035792&hterms=Skinner&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSkinner"><span>Characterization and Prediction of the SPI Background</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Teegarden, B. J.; Jean, P.; Knodlseder, J.; Skinner, G. K.; Weidenspointer, G.</p> <p>2003-01-01</p> <p>The INTEGRAL Spectrometer, like most gamma-ray instruments, is background dominated. Signal-to-background ratios of a few percent are typical. The background is primarily due to interactions of cosmic rays in the instrument and spacecraft. It characteristically varies by +/- 5% on time scales of days. This variation is caused mainly by fluctuations in the interplanetary magnetic field that modulates the cosmic ray intensity. To achieve the maximum performance from SPI it is essential to have a high quality model of this background that can predict its value to a fraction of a percent. In this poster we characterize the background and its variability, explore various models, and evaluate the accuracy of their predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..90i4113H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..90i4113H"><span>Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.</p> <p>2014-09-01</p> <p>Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25c3111S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25c3111S"><span>Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.</p> <p>2018-03-01</p> <p>Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750005795','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750005795"><span>Ordered structures and jet noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petersen, R. A.; Kaplan, R. E.; Laufer, J.</p> <p>1974-01-01</p> <p>A series of measurements of near field pressures and turbulent velocity fluctuations were made in a jet having a Reynolds number of about 50,000 in order to investigate more quantitatively the character and behavior of the large scale structures, and to ascertain their importance to the jet noise problem. It was found that the process of interaction between vortices can be inhibited by artificially exciting the shear layers with periodic disturbances of certain frequency. The turbulent fluctuation amplitudes measured at four diameters downstream decreased considerably. Finally, it was observed that the passage frequency of the structures decreased with x in a similar manner as the frequency corresponding to the maximum intensity radiation emanating from the same value of x.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090001279&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtopology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090001279&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtopology"><span>Bifurcation and Hysteresis of the Magnetospheric Structure with a varying Southward IMF: Field Topology and Global Three-dimensional Full Particle Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cai, DongSheng; Tao, Weinfeng; Yan, Xiaoyang; Lembege, Bertrand; Nishikawa, Ken-Ichi</p> <p>2007-01-01</p> <p>Using a three-dimensional full electromagnetic particle model (EMPM), we have performed global simulations of the interaction between the solar wind and the terrestrial magnetosphere, and have investigated its asymptotic stability. The distance between the dayside magnetopause subsolar point and the Earth center, R(sub mp) is measured, as the intensity of southward IMF |B(sub z)| is slowly varying. Based on the field topology theory, one analyzes the variation of R(sub mp) as a reference index of the dynamics of this interaction, when IMF |B(sub z)| successively increases and decreases to its original value. Two striking results are observed. First, as the IMF |B(sub z)| increases above a critical value, the variation of R(sub mp) suddenly changes (so called 'bifurcation' process in field topology). Above this critical value, the overall magnetic field topology changes drastically and is identified as being the signature of magnetic reconnection at the subsolar point on the magnetopause. Second, this subsolar point recovers its original location R(sub mp) by following different paths as the IMF |B(sub z)| value increases (from zero to a maximum fixed value) and decreases (from this maximum to zero) passing through some critical values. These different paths are the signature of 'hysteresis' effect, and are characteristic of the so-called 'subcritical-type' bifurcation. This hysteresis signature indicates that dissipation processes take place via an energy transfer from the solar wind to the magnetosphere by some irreversible way, which leads to a drastic change in the magnetospheric field topology. This hysteresis is interpreted herein as a consequence of the magnetic reconnection taking place at the dayside magnetopause. The field topology reveals to be a very powerful tool to analyze the signatures of three-dimensional magnetic reconnection without the obligation for determining the mechanisms responsible for, and the consequences of the reconnection on the overall magnetospheric dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AIPC..552.1185R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AIPC..552.1185R"><span>Solar energetic particles and space weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.</p> <p>2001-02-01</p> <p>The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000120034','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000120034"><span>Solar Energetic Particles and Space Weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.</p> <p>2001-01-01</p> <p>The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990092490&hterms=harmonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dharmonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990092490&hterms=harmonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dharmonics"><span>Backus Effect on a Perpendicular Errors in Harmonic Models of Real vs. Synthetic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Voorhies, C. V.; Santana, J.; Sabaka, T.</p> <p>1999-01-01</p> <p>Measurements of geomagnetic scalar intensity on a thin spherical shell alone are not enough to separate internal from external source fields; moreover, such scalar data are not enough for accurate modeling of the vector field from internal sources because of unmodeled fields and small data errors. Spherical harmonic models of the geomagnetic potential fitted to scalar data alone therefore suffer from well-understood Backus effect and perpendicular errors. Curiously, errors in some models of simulated 'data' are very much less than those in models of real data. We analyze select Magsat vector and scalar measurements separately to illustrate Backus effect and perpendicular errors in models of real scalar data. By using a model to synthesize 'data' at the observation points, and by adding various types of 'noise', we illustrate such errors in models of synthetic 'data'. Perpendicular errors prove quite sensitive to the maximum degree in the spherical harmonic expansion of the potential field model fitted to the scalar data. Small errors in models of synthetic 'data' are found to be an artifact of matched truncation levels. For example, consider scalar synthetic 'data' computed from a degree 14 model. A degree 14 model fitted to such synthetic 'data' yields negligible error, but amplifies 4 nT (rmss) added noise into a 60 nT error (rmss); however, a degree 12 model fitted to the noisy 'data' suffers a 492 nT error (rmms through degree 12). Geomagnetic measurements remain unaware of model truncation, so the small errors indicated by some simulations cannot be realized in practice. Errors in models fitted to scalar data alone approach 1000 nT (rmss) and several thousand nT (maximum).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22492629-enhanced-focus-steering-abilities-multi-element-therapeutic-arrays-operating-nonlinear-regimes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22492629-enhanced-focus-steering-abilities-multi-element-therapeutic-arrays-operating-nonlinear-regimes"><span>Enhanced focus steering abilities of multi-element therapeutic arrays operating in nonlinear regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Ilyin, S.; Gavrilov, L.</p> <p>2015-10-28</p> <p>Steering abilities of a typical HIFU therapeutic array operated in linear and nonlinear regimes were compared using numerical simulation with the 3D Westervelt equation. The array included 256 elements of 1.2 MHz frequency and 6.6 mm diameter distributed in a quasi-random pattern over a spherical shell with a 130 mm aperture and a focal length of 120 mm. In the case of linear focusing, thermal effects are proportional to the intensity level and the criterion for safe array operation is that the intensity in the grating lobes should be less than 10% of the intensity in the main focus. Inmore » the case of nonlinear focusing, the heating effect is no longer proportional to intensity; therefore the heat deposition rate was chosen as the relevant metric, using the same 10% threshold for the secondary lobe in comparison with the focal maximum. When steering the focus, the same linearly predicted intensity level at the main focus was maintained by increasing the array power. Numerical simulations of the acoustic field were performed for nonlinear propagation both in water and in tissue. It was shown that for shock-forming conditions in the main focus, the steering range of safe electronic focusing is larger than that for linear propagation conditions. Nonlinear sonication regimes therefore can be used to enlarge tissue volumes that can be sonicated using electronic steering of the focus of HIFU arrays.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6198V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6198V"><span>Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vishnevsky, O. V.; Pankov, V. M.; Erokhine, N. S.</p> <p></p> <p>Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropical cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's numbers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation coefficient (~ 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.5584V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.5584V"><span>Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vishnevsky, O.; Pankov, V.; Erokhine, N.</p> <p></p> <p>Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropi- cal cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's num- bers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation co- efficient ( 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20702062','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20702062"><span>Effects of vocal training on singing and speaking voice characteristics in vocally healthy adults and children based on choral and nonchoral data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siupsinskiene, Nora; Lycke, Hugo</p> <p>2011-07-01</p> <p>This prospective cross-sectional study examines the effects of voice training on vocal capabilities in vocally healthy age and gender differentiated groups measured by voice range profile (VRP) and speech range profile (SRP). Frequency and intensity measurements of the VRP and SRP using standard singing and speaking voice protocols were derived from 161 trained choir singers (21 males, 59 females, and 81 prepubescent children) and from 188 nonsingers (38 males, 89 females, and 61 children). When compared with nonsingers, both genders of trained adult and child singers exhibited increased mean pitch range, highest frequency, and VRP area in high frequencies (P<0.05). Female singers and child singers also showed significantly increased mean maximum voice intensity, intensity range, and total VRP area. The logistic regression analysis showed that VRP pitch range, highest frequency, maximum voice intensity, and maximum-minimum intensity range, and SRP slope of speaking curve were the key predictors of voice training. Age, gender, and voice training differentiated norms of VRP and SRP parameters are presented. Significant positive effect of voice training on vocal capabilities, mostly singing voice, was confirmed. The presented norms for trained singers, with key parameters differentiated by gender and age, are suggested for clinical practice of otolaryngologists and speech-language pathologists. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864349','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864349"><span>Magnetic resonance apparatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Jackson, Jasper A.; Cooper, Richard K.</p> <p>1982-01-01</p> <p>Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29228079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29228079"><span>Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schenkman, Margaret; Moore, Charity G; Kohrt, Wendy M; Hall, Deborah A; Delitto, Anthony; Comella, Cynthia L; Josbeno, Deborah A; Christiansen, Cory L; Berman, Brian D; Kluger, Benzi M; Melanson, Edward L; Jain, Samay; Robichaud, Julie A; Poon, Cynthia; Corcos, Daniel M</p> <p>2018-02-01</p> <p>Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the moderate-intensity group (P < .001). The mean change in Unified Parkinson's Disease Rating Scale motor score in the high-intensity group was 0.3 (95% CI, -1.7 to 2.3) compared with 3.2 (95% CI, 1.4 to 5.1) in the usual care group (P = .03). The high-intensity group, but not the moderate-intensity group, reached the predefined nonfutility threshold compared with the control group. Anticipated adverse musculoskeletal events were not severe. High-intensity treadmill exercise may be feasible and prescribed safely for patients with Parkinson disease. An efficacy trial is warranted to determine whether high-intensity treadmill exercise produces meaningful clinical benefits in de novo Parkinson disease. clinicaltrials.gov Identifier: NCT01506479.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92c2107K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92c2107K"><span>Unification of field theory and maximum entropy methods for learning probability densities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kinney, Justin B.</p> <p>2015-09-01</p> <p>The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26465426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26465426"><span>Unification of field theory and maximum entropy methods for learning probability densities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kinney, Justin B</p> <p>2015-09-01</p> <p>The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1249330-propagation-distance-resolved-characteristics-filament-induced-copper-plasma','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1249330-propagation-distance-resolved-characteristics-filament-induced-copper-plasma"><span>Propagation distance-resolved characteristics of filament-induced copper plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ghebregziabher, Isaac; Hartig, Kyle C.; Jovanovic, Igor</p> <p>2016-03-02</p> <p>Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Lastly, optimal line emissionmore » is measured near the geometric focus of the lens used to produce the filament.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19233292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19233292"><span>T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen</p> <p>2009-06-01</p> <p>At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by transmit B(1) heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T(1) contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2700263','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2700263"><span>T1 weighted Brain Images at 7 Tesla Unbiased for Proton Density, T2* contrast and RF Coil Receive B1 Sensitivity with Simultaneous Vessel Visualization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen</p> <p>2009-01-01</p> <p>At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by Transmit B1 heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T1 contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio. PMID:19233292</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SuMi..111..744C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SuMi..111..744C"><span>Characterization of emitted light from travelling Gunn domains in Al0.08Ga0.92As alloy based Gunn devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cetinkaya, Caglar; Mutlu, Selman; Donmez, Omer; Erol, Ayse</p> <p>2017-11-01</p> <p>We report room temperature operation of light emitters based on Al0.08Ga0.92As Gunn devices fabricated in a simple bar geometry with wedged-shaped electrodes. High-speed I-V measurements reveal that, at the threshold of negative differential resistance region at around 3.8 kV/cm, current instabilities, i.e., Gunn oscillations, are created with a 3.8 ns period. Both edge and surface light emission are observed when the device is biased at an electric field of onset of the negative differential resistance (NDR) region at around 3.8 kV/cm and the intensity of the light exponentially increases at applied fields just above NDR threshold likewise in a conventional laser. The origin of the light emission, which has peak wavelength is around 816 nm corresponds to the band-gap energy of Al0.08Ga0.92As, is recombination of electrons and holes generated by impact ionisation process in travelling space charge domains, i.e., Gunn domains. We demonstrate that, with increasing applied field, the amplitude of Gunn domains increases which is a result of the enhanced generation of electrons and holes via impact ionisation. The intensity of the emitted light is observed to be dependent on applied electric field. At low electric fields, light intensity increases linearly then, when applied electric field reaches the onset of NDR region, increases exponentially. Besides, as applied field is increased, full width at half maximum (FWHM) of emitted light decreases to 56.5 nm from 62 nm, evolving into higher selective emission line in wavelength. The light emission from the device is determined to be independent of the polarity of the applied voltage. A comparison of surface emission and edge emission characteristics of the waveguided device are different from each other. Edge emission has higher electroluminescence intensity and better spectral purity than surface emission with well-defined longitudinal modes of Fabry-Pérot cavity, which indicates that, in such a device, lasing action arises from the recombination of excess carriers generated via impact ionisation in travelling Gunn domains. Besides, the edge emission peak of waveguided Al0.08Ga0.92As Gunn device at 4.1 kV/cm is split into two peaks with FWHM of 8 and 6 nm as well as neighbouring sharper minor peaks due to stimulated emission dominates by building-up photons in the cavity. Our results reveal that the proposed Gunn device can be a promising alternative to conventional diode lasers with its simpler design, only one type doped active region and voltage polarity-independent operation, but the duty cycle has to be chosen small enough to make the device operate at room temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27984497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27984497"><span>Acute Effects of the Different Intensity of Static Stretching on Flexibility and Isometric Muscle Force.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kataura, Satoshi; Suzuki, Shigeyuki; Matsuo, Shingo; Hatano, Genki; Iwata, Masahiro; Yokoi, Kazuaki; Tsuchida, Wakako; Banno, Yasuhiro; Asai, Yuji</p> <p>2017-12-01</p> <p>Kataura, S, Suzuki, S, Matsuo, S, Hatano, G, Iwata, M, Yokoi, K, Tsuchida, W, Banno, Y, and Asai, Y. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31(12): 3403-3410, 2017-In various fields, static stretching is commonly performed to improve flexibility, whereas the acute effects of different stretch intensities are unclear. Therefore, we investigated the acute effects of different stretch intensities on flexibility and muscle force. Eighteen healthy participants (9 men and 9 women) performed 180-second static stretches of the right hamstrings at 80, 100, and 120% of maximum tolerable intensity without stretching pain, in random order. The following outcomes were assessed as markers of lower limb function and flexibility: static passive torque (SPT), range of motion (ROM), passive joint (muscle-tendon) stiffness, passive torque (PT) at onset of pain, and isometric muscle force. Static passive torque was significantly decreased after all stretching intensities (p ≤ 0.05). Compared with before stretching at 100 and 120% intensities, ROM and PT were significantly increased after stretching (p ≤ 0.05), and passive stiffness (p = 0.05) and isometric muscle force (p ≤ 0.05) were significantly decreased. In addition, ROM was significantly greater after stretching at 100 and 120% than at 80%, and passive stiffness was significantly lower after 120% than after 80% (p ≤ 0.05). However, all measurements except SPT were unchanged after 80% intensity. There was a weak positive correlation between the intensities of stretching and the relative change for SPT (p ≤ 0.05), a moderate positive correlation with ROM (p ≤ 0.05), and a moderate positive correlation with passive stiffness (p ≤ 0.05). These results indicate that static stretching at greater intensity is more effective for increasing ROM and decreasing passive muscle-tendon stiffness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1145/ofr20161145.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1145/ofr20161145.pdf"><span>Faulting, damage, and intensity in the Canyondam earthquake of May 23, 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chapman, K.; Gold, M.B.; Boatwright, John; Sipe, J.; Quitoriano, V.; Dreger, D.; Hardebeck, Jeanne</p> <p>2016-09-23</p> <p>On Thursday evening, May 23, 2013 (0347 May 24 UTC), a moment magnitude (Mw) = 5.7 earthquake occurred northeast of Canyondam, California. A two-person team of U.S. Geological Survey scientists went to the area to search for surface rupture and to canvass damage in the communities around Lake Almanor. While the causative fault had not been identified at the time of the field survey, surface rupture was expected to have occurred just south of Lake Almanor, approximately 2–4 kilometers south of the epicenter. No surface rupture was discovered. Felt intensity among the communities around Lake Almanor appeared to vary significantly. Lake Almanor West (LAW), Lake Almanor Country Club (LACC), and Hamilton Branch (HB) experienced Modified Mercalli Intensity (MMI) ≥7, whereas other communities around the lake experienced MMI ≤6; the maximum observed intensity was MMI 8, in LAW. Damage in the high intensity areas consisted of broken and collapsed chimneys, ruptured pipes, and some damage to foundations and to structural elements within houses. Although this shaking damage is not usually expected for an Mw 5.7 earthquake, the intensities at Lake Almanor Country Club correlate with the peak ground acceleration (38 percent g) and peak ground velocity (30 centimeters per second) recorded by the California Strong Motion Instrumentation Program accelerometer located at the nearby Lake Almanor Fire Station. The intensity distribution for the three hardest hit areas (LAW, LACC, and HB) appears to increase as the azimuth from epicenter to the intensity sites approaches the fault strike. The small communities of Almanor and Prattville on the southwestern shore of Lake Almanor experienced somewhat lower intensities. The town of Canyondam experienced a lower intensity as well, despite its location up-dip of the earthquake rupture. This report contains information on the earthquake itself, the search for surface rupture, and the damage we observed and compiled from other sources. </p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AnGeo..26.2899L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AnGeo..26.2899L"><span>On nonstationarity and rippling of the quasiperpendicular zone of the Earth bow shock: Cluster observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lobzin, V. V.; Krasnoselskikh, V. V.; Musatenko, K.; Dudok de Wit, T.</p> <p>2008-09-01</p> <p>A new method for remote sensing of the quasiperpendicular part of the bow shock surface is presented. The method is based on analysis of high frequency electric field fluctuations corresponding to Langmuir, upshifted, and downshifted oscillations in the electron foreshock. Langmuir waves usually have maximum intensity at the upstream boundary of this region. All these waves are generated by energetic electrons accelerated by quasiperpendicular zone of the shock front. Nonstationary behavior of the shock, in particular due to rippling, should result in modulation of energetic electron fluxes, thereby giving rise to variations of Langmuir waves intensity. For upshifted and downshifted oscillations, the variations of both intensity and central frequency can be observed. For the present study, WHISPER measurements of electric field spectra obtained aboard Cluster spacecraft are used to choose 48 crossings of the electron foreshock boundary with dominating Langmuir waves and to perform for the first time a statistical analysis of nonstationary behavior of quasiperpendicular zone of the Earth's bow shock. Analysis of hidden periodicities in plasma wave energy reveals shock front nonstationarity in the frequency range 0.33 fBi<f<fBi, where fBi is the proton gyrofrequency upstream of the shock, and shows that the probability to observe such a nonstationarity increases with Mach number. The profiles observed aboard different spacecraft and the dominating frequencies of the periodicities are usually different. Hence nonstationarity and/or rippling seem to be rather irregular both in space and time rather than resembling a quasiregular wave propagating on the shock surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89e5116W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89e5116W"><span>Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng</p> <p>2018-05-01</p> <p>The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26745782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26745782"><span>Cardiorespiratory demands during an inline speed skating marathon race: a case report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K</p> <p>2016-09-01</p> <p>This study was designed to investigate the intensity profile during an inline speed skating marathon road race. A highly-trained male athlete (20 y, 73.4 kg, 178 cm, V̇O2 peak: 60.8 mL·kg-1·min-1) participated in a marathon road race. Oxygen uptake (V̇O2), respiratory exchange ratio (RER), heart rate (HR) and speed were measured using a portable gas analysis system with a HR monitor and GPS-Sensor integrated. The athlete´s peak V̇O2, HR and speed at ventilatory thresholds were assessed during an incremental field test (22 km·h-1, increase 2 km·h-1 every 5 min) one week before the race. During the race, the absolute time spent in the "easy intensity zone" (V̇O2 below VT1) was 1 min, 49 min "moderate intensity zone" (V̇O2 between VT1 and VT2), and 26 min in the "hard intensity zone" (V̇O2 above VT2). The average HR was 171±6 bpm, corresponding to 95% of the maximum. This study shows that inline speed skating road races over a marathon are conducted at moderate to high V̇O2 and heart rate levels. The physiological racing pattern is very intermittent, requiring both a high level of aerobic and anaerobic capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6316799','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6316799"><span>Magnetic resonance apparatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Jackson, J.A.; Cooper, R.K.</p> <p>1980-10-10</p> <p>The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......180S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......180S"><span>The vertical structure of tangential winds in tropical cyclones: Observations, theory, and numerical simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, Daniel P.</p> <p></p> <p>The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to observations. Also in contrast to observations, M generally increases with height along the RMW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJMPB..3150214K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJMPB..3150214K"><span>Stochastic resonance in the majority vote model on regular and small-world lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krawiecki, A.</p> <p>2017-11-01</p> <p>The majority vote model with two states on regular and small-world networks is considered under the influence of periodic driving. Monte Carlo simulations show that the time-dependent magnetization, playing the role of the output signal, exhibits maximum periodicity at nonzero values of the internal noise parameter q, which is manifested as the occurrence of the maximum of the spectral power amplification; the location of the maximum depends in a nontrivial way on the amplitude and frequency of the periodic driving as well as on the network topology. This indicates the appearance of stochastic resonance in the system as a function of the intensity of the internal noise. Besides, for low frequencies and for certain narrow ranges of the amplitudes of the periodic driving double maxima of the spectral power amplification as a function of q occur, i.e., stochastic multiresonance appears. The above-mentioned results quantitatively agree with those obtained from numerical simulations of the mean-field equations for the time-dependent magnetization. In contrast, analytic solutions for the spectral power amplification obtained from the latter equations using the linear response approximation deviate significanlty from the numerical results since the effect of the periodic driving on the system is not small even for vanishing amplitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........95G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........95G"><span>Experimental studies of protozoan response to intense magnetic fields and forces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guevorkian, Karine</p> <p></p> <p>Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860053209&hterms=kinematics+reverse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dkinematics%2Breverse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860053209&hterms=kinematics+reverse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dkinematics%2Breverse"><span>Meso-beta scale perturbations of the wind field by thunderstorm cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ulanski, S. L.; Heymsfield, G. M.</p> <p>1986-01-01</p> <p>Data from the high density storm-scale rawinsonde network of the Severe Environmental Storms and Mesoscale Experiment revealed temporal and spatial changes in the divergence fields of the troposphere in response to severe storm evolution on May 2, 1979; these changes were detectable on the meso-beta scale. This unique set of data was subsequently used to study the evolution of the wind, divergence and vertical motion fields in the presence of intense convection. Mid- and upper-tropospheric divergence was superimposed over low-level convergence. The divergence, which has a maximum value of .0004/s, occurred 75 to 100 km upwind as well as over the tornadic cells. To the south of the storm cells, the kinematic pattern was in reverse, upper level convergence was superimposed over low-level divergence. A vertical motion doublet was found to ascend over the squall line and descend about 70 km south of the squall line. It is suggested that the following effects are accountable for the nature of the kinematic fields: (1) blocking of tropospheric environmental flow by the storm cells, (2) anvil outflows, particularly from the tornadic cells, and (3) divergence from the exit region of the jet stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20821164','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20821164"><span>Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kohno, Ryosuke; Hirano, Eriko; Nishio, Teiji; Miyagishi, Tomoko; Goka, Tomonori; Kawashima, Mitsuhiko; Ogino, Takashi</p> <p>2008-01-01</p> <p>Dosimetric characteristics of a metal oxide-silicon semiconductor field effect transistor (MOSFET) detector are studied with megavoltage photon beams for patient dose verification. The major advantages of this detector are its size, which makes it a point dosimeter, and its ease of use. In order to use the MOSFET detector for dose verification of intensity-modulated radiation therapy (IMRT) and in-vivo dosimetry for radiation therapy, we need to evaluate the dosimetric properties of the MOSFET detector. Therefore, we investigated the reproducibility, dose-rate effect, accumulated-dose effect, angular dependence, and accuracy in tissue-maximum ratio measurements. Then, as it takes about 20 min in actual IMRT for the patient, we evaluated fading effect of MOSFET response. When the MOSFETs were read-out 20 min after irradiation, we observed a fading effect of 0.9% with 0.9% standard error of the mean. Further, we applied the MOSFET to the measurement of small field total scatter factor. The MOSFET for dose measurements of small field sizes was better than the reference pinpoint chamber with vertical direction. In conclusion, we assessed the accuracy, reliability, and usefulness of the MOSFET detector in clinical applications such as pinpoint absolute dosimetry for small fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28960059','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28960059"><span>Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan</p> <p>2017-10-18</p> <p>The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......430S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......430S"><span>Research on Vacuum Laser Accelerator and Proof-of Principle Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shao, Lei</p> <p></p> <p>This thesis discovers a proof-of-principle theory of Vacuum Laser Acceleration (VLA) and proposes a new acceleration mechanism---Capture and Acceleration Scenario (CAS) in our far-field laser acceleration research, which is a promising new scheme in advanced acceleration field. In this thesis, I studied electrons' dynamic behaviors while interacting with intense laser beam. There are two kinds of dynamics trajectories, namely IS (Inelastic Scattering) and CAS. In CAS, electrons can be captured and moving along the laser beam for a long time and receive considerable energy exchange from the laser field, rather than quickly expelled from the intense field region of the laser as predicted by the conventional Ponderomotive Potential Model (PPM). This thesis shows the research on most parameters of both laser beam and electron beam which will affect this VLA scheme. One of the primary factors is the laser intensity. Relatively high laser intensity is critically required for VLA, and there are thresholds of intensity a0( th) for CAS occurrence; the thresholds are different under different laser beam waist widths which is also a very important parameter of laser beam. Laser intensity is still a big obstacle nowadays. In the last decade there are only a few laboratories have the laser power to ˜1019 W/cm2 and above. Our simulation shows that laser intensity threshold of CAS is around a0 = 5˜8, in correspondence to laser power around 1019˜1022 W/cm 2 depending on different wave length and waist width. The interaction is also sensitive to various electron beam parameters, such as the optimal initial electron energy falls in the range of 4--15 MeV, electron incident angle and position, and so on. At last the thesis presents out experimental work on this new VLA scheme. The collaboration is between our UCLA group and Brookhaven National Lab - Accelerator Test Facility (BNL-ATF). At BNL-ATF, they have both intense laser beam and high quality electron beam. The characters of BNL-ATF fit our project very well. The laser system at ATF is a short pulse CO2 laser. Under present ATF condition, the peak power of the CO2 laser is around 5J with pulse duration 5ps. Therefore the maximum laser intensity can reach a 0 ≈ 1.0. Such level of laser intensity is not sufficient to perform violent electron acceleration-CAS according to the threshold we defined. However this level intensity is already high enough to see basic proof-of-principle signal based on our extensive simulations with exact practical ATF experimental conditions. Another important factor is the electron beam condition. ATF uses photoinjector Radio Frequency (RF) gun system for electron beam. The working frequency is at constant level 2856MHz. Generally the electron beam deliver energy around 40MeV˜60MeV to the transport beam line. However as we mentioned before with relatively low laser intensity the electron initial energy is required to be lower as well correspondently. We tried best to tuned ATF electron beam energy down to 15MeV. With laser intensity around a 0 ≈ 1.0 and electron beam 15MeV, our simulation indicates to see energy spread expansion after interaction, and this effect increases while the laser intensity increases (even slightly change from a 0 ≈ 0.9 to 2.2). The experiment design is completed based on ATF beam line condition. The design and layout are presented. All the optical devices are acquired and machined. Installation and alignment have been done a few times for testing. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1286793-magnetic-structure-magnetocalorics-gdpo4','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1286793-magnetic-structure-magnetocalorics-gdpo4"><span>Magnetic structure and magnetocalorics of GdPO 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Palacios, E.; Rodriguez-Velamazsn, J. A.; Evangelisti, Marco; ...</p> <p>2014-12-12</p> <p>The magnetic ordering structure of GdPO 4 is determined at T = 60 mK by diffraction of hot neutrons with wavelength = 0.4696 Å. It corresponds to a non-collinear antiferromagnetic arrangement of the Gd moments with propagation vector k = (1/2, 0, 1/2). This arrangement is found to minimize the dipole-dipole interaction and the crystal field anisotropy energy, the magnetic superexchange being much smaller. The intensity of the magnetic reflections decreases with increasing temperature and vanishes at T ≈ 0.8 K, in agreement with the magnetic ordering temperature T N = 0.77 K, as reported in previous works based onmore » heat capacity and magnetic susceptibility measurements. The magnetocaloric parameters have been determined from heat capacity data at constant applied fields up to 7 T, as well as from isothermal magnetization data. Lastly, the magnetocaloric effect, for a field change ΔB = 0 – 7T, reaches –ΔS T = 375.8mJ / cm 3K –1 at T = 2.1 K, largely exceeding the maximum values reported to date for Gd-based magnetic refrigerants.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860055344&hterms=Dwarf+stars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDwarf%2Bstars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860055344&hterms=Dwarf+stars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDwarf%2Bstars"><span>Millisecond radio spikes from the dwarf M flare star AD Leonis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lang, K. R.; Willson, R. F.</p> <p>1986-01-01</p> <p>Arecibo radio observations of millisec bursts of radio signals at 1415 MHz from AD Leonis are reported. The observed burst had an ellipticity of 0.95, 50-100 percent circular polarization, and a flux density maximum of 30 mJy. The 50 sec burst featured five quasi-periodic oscillations with a mean periodicity of about 3.2 sec. A second, less intense burst that occurred 20 sec later was 100 percent circularly polarized. The area emitting the bursts covered an estimated 0.005 of the radius of AD Leonis and had an electron density of 6 billion/cu cm and a longitudinal magnetic field strength of 250 gauss, if the source was an electron-cyclotron maser. A coherent plasma source would require, for the first harmonic, an electron density of 20 billion/cu cm and a magnetic field much less than 500 gauss. A second harmonic of the plasma frequency would require an electron density of 6 billion/cu cm and a field strength much less than 250 gauss. The possibility that the source was periodic oscillations in coronal loops is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JMagR.170..127S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JMagR.170..127S"><span>Direct-detected rapid-scan EPR at 250 MHz</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoner, James W.; Szymanski, Dennis; Eaton, Sandra S.; Quine, Richard W.; Rinard, George A.; Eaton, Gareth R.</p> <p>2004-09-01</p> <p>EPR spectra at 250 MHz for a single crystal of lithium phthalocyanine (LiPc) in the absence of oxygen and for a deoxygenated aqueous solution of a Nycomed triarylmethyl (trityl-CD 3) radical were obtained at scan rates between 1.3 × 10 3 and 3.4 × 10 5 G/s. These scan rates are rapid relative to the reciprocals of the electron spin relaxation times (LiPc: T1=3.5 μs and T2=2.5 μs; trityl: T1=12 μs and T2=11.5 μs) and cause characteristic oscillations in the direct-detected absorption spectra. For a given scan rate, shorter values of T2 and increased inhomogeneous broadening cause less deep oscillations that damp out more quickly than for longer T2. There is excellent agreement between experimental and calculated lineshapes and signal amplitudes as a function of radiofrequency magnetic field ( B1) and scan rate. When B1 is adjusted for maximum signal amplitude as a function of scan rate, signal intensity for constant number of scans is enhanced by up to a factor of three relative to slow scans. The number of scans that can be averaged in a defined period of time is proportional to the scan rate, which further enhances signal amplitude per unit time. Longer relaxation times cause the maximum signal intensity to occur at slower scan rates. These experiments provide the first systematic characterization of direct-detected rapid-scan EPR signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3617071','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3617071"><span>The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. Conclusions The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts. PMID:23497628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16481688','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16481688"><span>Control of thermal therapies with moving power deposition field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B</p> <p>2006-03-07</p> <p>A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27036591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27036591"><span>A general model for stray dose calculation of static and intensity-modulated photon radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hauri, Pascal; Hälg, Roger A; Besserer, Jürgen; Schneider, Uwe</p> <p>2016-04-01</p> <p>There is an increasing number of cancer survivors who are at risk of developing late effects caused by ionizing radiation such as induction of second tumors. Hence, the determination of out-of-field dose for a particular treatment plan in the patient's anatomy is of great importance. The purpose of this study was to analytically model the stray dose according to its three major components. For patient scatter, a mechanistic model was developed. For collimator scatter and head leakage, an empirical approach was used. The models utilize a nominal beam energy of 6 MeV to describe two linear accelerator types of a single vendor. The parameters of the models were adjusted using ionization chamber measurements registering total absorbed dose in simple geometries. Whole-body dose measurements using thermoluminescent dosimeters in an anthropomorphic phantom for static and intensity-modulated treatment plans were compared to the 3D out-of-field dose distributions calculated by a combined model. The absolute mean difference between the whole-body predicted and the measured out-of-field dose of four different plans was 11% with a maximum difference below 44%. Computation time of 36 000 dose points for one field was around 30 s. By combining the model-calculated stray dose with the treatment planning system dose, the whole-body dose distribution can be viewed in the treatment planning system. The results suggest that the model is accurate, fast and can be used for a wide range of treatment modalities to calculate the whole-body dose distribution for clinical analysis. For similar energy spectra, the mechanistic patient scatter model can be used independently of treatment machine or beam orientation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP21A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP21A..01H"><span>Fast geomagnetic Field Intensity Variations between 1400 and 400 BCE: New Archaeointensity Data from Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hervé, G.; Schnepp, E.; Metzler-Nebelsick, C.; Lhuillier, F.; Gilder, S.; Genevey, A.; Fassbinder, J.; Gallet, Y.</p> <p>2017-12-01</p> <p>Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of 70 μT around 1000-900 BCE and another up to 90 μT around 600-500 BCE. The maximum rate of variation was 0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 20 ZA·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPI..270..143H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPI..270..143H"><span>Fast geomagnetic field intensity variations between 1400 and 400 BCE: New archaeointensity data from Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hervé, Gwenaël; Faβbinder, Jörg; Gilder, Stuart A.; Metzner-Nebelsick, Carola; Gallet, Yves; Genevey, Agnès; Schnepp, Elisabeth; Geisweid, Leonhard; Pütz, Anja; Reuβ, Simone; Wittenborn, Fabian; Flontas, Antonia; Linke, Rainer; Riedel, Gerd; Walter, Florian; Westhausen, Imke</p> <p>2017-09-01</p> <p>Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of ∼70 μT around 1000-900 BCE and another up to ∼90 μT around 600-500 BCE. The maximum rate of variation was ∼0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 2·1022 A·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23497628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23497628"><span>The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René</p> <p>2013-03-15</p> <p>Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7917','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7917"><span>Sampling considerations for establishment of baseline loadings from forested watersheds for TMDL application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Pamela J. Edwards; Karl W.J. Williard; James N. Kochenderfer</p> <p>2004-01-01</p> <p>Five methods for estimating maximum daily and annual nitrate (NO3) and suspended sediment loads using periodic sampling of varying intensities were compared to actual loads calculated from intensive stormflow and baseflow sampling from small, forested watersheds in north central West Virginia to determine if the less intensive sampling methods were accurate and could...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9473','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9473"><span>Effects of intensive forest management practices on insect infestation levels and loblolly pine growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John T. Nowak; C. Wayne Berisford</p> <p>2000-01-01</p> <p>Intensive forest management practices have been shown to increase tree growth and shorten rotation time. However, they may also lead to an increased need for insect pest management because of higher infestation levels and lower action thresholds. To investigate the relationship between intensive management practices arid insect infestation, maximum growth potential...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM32A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM32A..02L"><span>On the Log-Normality of Historical Magnetic-Storm Intensity Statistics: Implications for Extreme-Event Probabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Love, J. J.; Rigler, E. J.; Pulkkinen, A. A.; Riley, P.</p> <p>2015-12-01</p> <p>An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to -Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, -Dst > 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100-yr magnetic storm is identified as having a -Dst > 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. This work is partially motivated by United States National Science and Technology Council and Committee on Space Research and International Living with a Star priorities and strategic plans for the assessment and mitigation of space-weather hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994PhDT........41V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994PhDT........41V"><span>a Study of the Bioluminescence of Larger Zooplankton and the Effects of Low-Level Light Changes on Their Behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Keuren, Jeffrey Robert</p> <p></p> <p>A bio-optical study was undertaken to quantify the relationships which exist between counter-illuminating organisms and the downwelling spectral light field in which they exist. The basic hypothesis behind counter-illumination is that the animal emits light using ventrally-oriented photophores to disrupt or eliminate the shadowed area on ventral surfaces. An organism lacking photophores sharply silhouettes against the highly directional downwelling irradiance, whereas by distributing photophores over the ventral surface of the body and closely matching the spectral and intensity characteristics of the downwelling light, this silhouette is obscured. Analysis carried out on changes in vertical distribution patterns in response to low-level intensity changes in ambient surface light suggested that diel migrating organisms begin to shift vertically in the water column when surface scalar irradiance decreased below or increased above 1.0 times10^{-2} muEin m^{-2} sec^ {-1}. Maximum aggregations of organisms, as defined by MOCNESS net sampling or single-frequency acoustic backscatter, appeared to remain within definable in situ blue-green isolume ranges varying less than a factor of ten throughout each night. Comparisons made between organism counter-illumination capacity and modeled in situ downwelling irradiance levels suggested that euphausiids, decapods and myctophids use between 1-10 percent of their maximum counter-illumination capacity to match the ambient downwelling light conditions. Modeling also suggested that up to 40 percent of the maximum measured bioluminescence output is required to match ambient irradiance in the shallower surface zones where aggregations of copepods, potential food sources, were commonly found at night. An optical study to quantify the radiative transfer of bioluminescence from a point source revealed that non -isotropic point sources produce radiance patterns that cannot be simply explained by inverse square losses. Therefore simple inverse-square estimates of bioluminescent propagation loss rates from organisms in the ocean are an oversimplification of the radiative transfer processes that occur when these emissions occur. Additionally, in evaluating counter-illumination, the distance of the receptor, such as the eyes of a potential predator, is critical in determining the effectiveness of the organisms in matching the uniform light field of their surrounding environment and ultimately avoiding detection and predation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918135P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918135P"><span>Geological and seismotectonic characteristics of the broader area of the October 15, 2016, earthquake (Ioannina, Greece)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavlides, Spyros; Ganas, Athanasios; Chatzipetros, Alexandros; Sboras, Sotiris; Valkaniotis, Sotiris; Papathanassiou, George; Thomaidou, Efi; Georgiadis, George</p> <p>2017-04-01</p> <p>This paper examines the seismotectonic setting of the moderate earthquake of October 15, 2016, Μw=5.3 (or 5.5), in the broader area of ​​Ioannina (Epirus, Greece). In this region the problem of reviewing the geological structure with new and modern methods and techniques, in relation to the geological-seismological evidence of the recent seismic sequence, is addressed. The seismic stimulation of landslides and other soil deformations is also examined. The earthquake is interpreted as indicative of a geotectonic environment of lithospheric compression, which comprises the backbone of Pindos mountain range. It starts from southern Albania and traverses western Greece, in an almost N-S direction. This is a seismically active region with a history of strong and moderate earthquakes, such as these of 1969 (Ms=5.8), 1960 (South Albania, M> 6.5, maximum intensity VIII+) and 1967 (Arta-Ioannina, M = 6.4, maximum intensity IX). The recent earthquake is associated with a known fault zone as recorded and identified in the Greek Database of Seismogenic Sources (GreDaSS, www.gredass.unife.it). Focal mechanism data indicate that the seismic fault is reverse or high-angle thrust, striking NNW-SSE and dipping to the E. The upper part of Epirus crust (brittle), which have an estimated maximum thickness of 10 km, do not show any significant seismicity. The deeper seismicity of 10-20 km, such as this of the recent earthquake, is caused by deep crustal processes with reverse - high-angle thrust faults. We suggest that the case of this earthquake is peculiar, complex and requires careful study and attention. The precise determination of the seismogenic fault and its dimensions, although not possible to be identified by direct field observations, can be assessed through the study of seismological and geodetic data (GPS, satellite images, stress transfer), as well as its seismic behavior. Field work in the broader area, in combination with instrumental data, can contribute to determine if the activated fault is a secondary fault capable of producing earthquakes in the range of 5.0 to 5.5, such as the earthquake of October 15, 2016, or part (seismogenic segment) of a larger fault or a fault zone of a capacity comparable to the historical earthquakes in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdSpR..58.1997M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdSpR..58.1997M"><span>The number distribution of weak Explosive Events observed by SUMER/SoHO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mendoza-Torres, J. E.</p> <p>2016-11-01</p> <p>Explosive Events (EEs) observed by SUMER on SoHO at the 1393.8 Å Si IV line are analyzed. We look for EEs to study their number distribution at low energies. Eight data sets taken in June 1996 in raster observations are used. In these observations a field on the solar disk is scanned several times during a period considerably longer than the typical timelife of an EE. To look for EE, we first identified the maxima and locations of spectral line increases. The maxima that took place at inner locations of the rastered fields were considered as possible EEs. From this sample, the cases where the spectral line underwent Doppler shifts at most ±3″ from the location of the maximum were considered EEs. After a selection, the region within 5″ of the event was ignored for 5 min either side of the EE in order to conclusively select a different maxima. Based on the analysis of the locations of EEs, it was seen that the more intense EEs tend to take place at given regions while at the intermediate regions the observed EEs are less intense. Therefore we refer to them as Regions of Enhanced Emission (REE) and Quiet Regions (QR), respectively. The width of the REE regions, as seen in North-South direction is about 10-30″. In this work, a total of 487 EEs are analyzed, 266 at REE and 221 at QR. Also, Histograms are made of the maxima of the amplitude of the spectral line during EEs at both REE and QR. At the Histogram for EEs at QR the number grows as the flux decreases with a slope of -1.8. For EEs at REE the Histogram has a maximum about 1 Watts m-2 sr-1 Å-1 with a high energy slope of about -1.6. These numbers are both below the value required to give an important input of energy for coronal heating, as analyzed in the case of microflares (Hudson, 1991). The averages of the maxima of EEs at each set for the REE and QR are computed. The scatter plot of the average values indicates that there is a linear relation between them and the maximum amplitudes of EEs at REE are about two times larger than the amplitudes for EEs at QR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3807540','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3807540"><span>Optical Limiting Using the Two-Photon Absorption Electrical Modulation Effect in HgCdTe Photodiode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cui, Haoyang; Yang, Junjie; Zeng, Jundong; Tang, Zhong</p> <p>2013-01-01</p> <p>The electrical modulation properties of the output intensity of two-photon absorption (TPA) pumping were analyzed in this paper. The frequency dispersion dependence of TPA and the electric field dependence of TPA were calculated using Wherrett theory model and Garcia theory model, respectively. Both predicted a dramatic variation of TPA coefficient which was attributed into the increasing of the transition rate. The output intensity of the laser pulse propagation in the pn junction device was calculated by using function-transfer method. It shows that the output intensity increases nonlinearly with increasing intensity of incident light and eventually reaches saturation. The output saturation intensity depends on the electric field strength; the greater the electric field, the smaller the output intensity. Consequently, the clamped saturation intensity can be controlled by the electric field. The prior advantage of electrical modulation is that the TPA can be varied extremely continuously, thus adjusting the output intensity in a wide range. This large change provides a manipulate method to control steady output intensity of TPA by adjusting electric field. PMID:24198721</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22462428-evaluations-secondary-cancer-risk-spine-radiotherapy-using-imrt-vmat-phantom-study','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22462428-evaluations-secondary-cancer-risk-spine-radiotherapy-using-imrt-vmat-phantom-study"><span>Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.</p> <p>2015-04-01</p> <p>This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.959a2005R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.959a2005R"><span>Strong electromagnetic pulses generated in high-intensity laser-matter interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rączka, P.; Dubois, J.-L.; Hulin, S.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.</p> <p>2018-01-01</p> <p>Results are reported of an experiment performed at the Eclipse laser facility in CELIA, Bordeaux, on the generation of strong electromagnetic pulses. Measurements were performed of the target neutralization current, the total target charge and the tangential component of the magnetic field for the laser energies ranging from 45 mJ to 92 mJ with the pulse duration approximately 40 fs, and for the pulse durations ranging from 39 fs to 1000 fs, with the laser energy approximately 90 mJ. It was found that the values obtained for thick (mm scale) Cu targets are visibly higher than values reported in previous experiments, which is argued to be a manifestation of a strong dependence of the target electric polarization process on the laser contrast and hence on the amount of preplasma. It was also found that values obtained for thin (μm scale) Al foils were visibly higher than values for thick Cu targets, especially for pulse durations longer than 100 fs. The correlations between the total target charge versus the maximum value of the target neutralization current, and the maximum value of the tangential component of the magnetic field versus the total target charge were analysed. They were found to be in very good agreement with correlations seen in data from previous experiments, which provides a good consistency check on our experimental procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27367381','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27367381"><span>Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Santis, C; Di Felice, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S A; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Potgieter, M S; Vos, E E</p> <p>2016-06-17</p> <p>Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhyU...58...95N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhyU...58...95N"><span>Quantum-electrodynamic cascades in intense laser fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narozhny, N. B.; Fedotov, A. M.</p> <p>2015-01-01</p> <p>It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4767180','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4767180"><span>Constrained Maximum Likelihood Estimation of Relative Abundances of Protein Conformation in a Heterogeneous Mixture from Small Angle X-Ray Scattering Intensity Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee</p> <p>2015-01-01</p> <p>In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..705D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..705D"><span>Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daloz, Anne Sophie; Camargo, Suzana J.</p> <p>2018-01-01</p> <p>A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5748810','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5748810"><span>Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Domínguez, Raul; Garnacho-Castaño, Manuel Vicente; Cuenca, Eduardo; García-Fernández, Pablo; Muñoz-González, Arturo; de Jesús, Fernando; Lozano-Estevan, María Del Carmen; Veiga-Herreros, Pablo</p> <p>2017-01-01</p> <p>Background: Beetroot juice (BJ) is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO) levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg) undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3−) or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6%) (p = 0.034), average power 0–15 s (6.7%) (p = 0.048) and final blood lactate levels (82.6%) (p < 0.001), and there was a trend towards a shorter time taken to attain peak power (−8.4%) (p = 0.055). Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test. PMID:29244746</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26187519','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26187519"><span>[Equivalent continuous noise level in neonatal intensive care unit associated to burnout syndrome].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garrido Galindo, A P; Camargo Caicedo, Y; Vélez-Pereira, A M</p> <p>2015-01-01</p> <p>Noise levels in neonatal intensive care units allow the appearance of symptoms associated with burnout such as stress, irritability, fatigue and emotional instability on health care personnel. The aim of this study was to evaluate the equivalent continuous noise levels in the neonatal intensive care unit and compare the results with noise levels associated with the occurrence of burnout syndrome on the care team. Continuous sampling was conducted for 20 days using a type I sound level meter on the unit. The maximum, the ninetieth percentile and the equivalent continuous noise level (Leq) values were recorded. Noise level is reported in the range of 51.4-77.6 decibels A (dBA) with an average of 64 dBA, 100.6 dBA maximum, and average background noise from 57.9 dBA. Noise levels exceed the standards suggested for neonatal intensive care units, are close to maximum values referred for noise exposure in the occupational standards and to noise levels associated with the onset of burnout; thus allowing to infer the probability of occurrence of high levels of noise present in the unit on the development of burnout in caregivers. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740013314','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740013314"><span>The 3.5 micron light curves of long period variable stars. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strecker, D. W.</p> <p>1973-01-01</p> <p>Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AdSpR..45.1178M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AdSpR..45.1178M"><span>Measurements of the radiation quality factor Q at aviation altitudes during solar minimum (2006-2008)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, Matthias M.; Hubiak, Melina</p> <p>2010-05-01</p> <p>In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860018300&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860018300&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWave%2BEnergy"><span>Gravity wave vertical energy flux at 95 km</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacob, P. G.; Jacka, F.</p> <p>1985-01-01</p> <p>A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045388&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045388&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dconvection%2Bcurrents"><span>Ground-based studies of ionospheric convection associated with substorm expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kamide, Y.; Richmond, A. D.; Emery, B. A.; Hutchins, C. F.; Ahn, B.-H.; De La Beaujardiere, O.; Foster, J. C.; Heelis, R. A.; Kroehl, H. W.; Rich, F. J.</p> <p>1994-01-01</p> <p>The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in general, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the expansion and maximum phases of the substorm show the first clear evidence of the coexistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward IMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5062466','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5062466"><span>A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco</p> <p>2016-01-01</p> <p>In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.tmp...24P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.tmp...24P"><span>Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pińskwar, Iwona; Choryński, Adam; Graczyk, Dariusz; Kundzewicz, Zbigniew W.</p> <p>2018-01-01</p> <p>Several episodes of extreme precipitation excess and extreme precipitation deficit, with considerable economic and social impacts, have occurred in Europe and in Poland in the last decades. However, the changes of related indices exhibit complex variability. This paper analyses changes in indices related to observed abundance and deficit of precipitated water in Poland. Among studied indices are maximum seasonal 24-h precipitation for the winter half-year (Oct.-March) and the summer half-year (Apr.-Sept.), maximum 5-day precipitation, maximum monthly precipitation and number of days with intense or very intense precipitation (respectively, in excess of 10 mm or 20 mm per day). Also, the warm-seasonal maximum number of consecutive dry days (longest period with daily precipitation below 1 mm) was examined. Analysis of precipitation extremes showed that daily maximum precipitation for the summer half-year increased for many stations, and increases during the summer half-year are more numerous than those in the winter half-year. Also, analysis of 5-day and monthly precipitation sums show increases for many stations. Number of days with intense precipitation increases especially in the north-western part of Poland. The number of consecutive dry days is getting higher for many stations in the summer half-year. Comparison of these two periods: colder 1961-1990 and warmer 1991-2015, revealed that during last 25 years most of statistical indices, such as 25th and 75th percentiles, median, mean and maximum are higher. However, many changes discussed in this paper are weak and statistically insignificant. The findings reported in this paper challenge results based on earlier data that do not include 2007-2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8914317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8914317"><span>Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sulter, A M; Wit, H P</p> <p>1996-11-01</p> <p>Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1016/S0065-2687(09)05108-5','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/S0065-2687(09)05108-5"><span>Chapter 3 – Phenomenology of Tsunamis: Statistical Properties from Generation to Runup</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geist, Eric L.</p> <p>2015-01-01</p> <p>Observations related to tsunami generation, propagation, and runup are reviewed and described in a phenomenological framework. In the three coastal regimes considered (near-field broadside, near-field oblique, and far field), the observed maximum wave amplitude is associated with different parts of the tsunami wavefield. The maximum amplitude in the near-field broadside regime is most often associated with the direct arrival from the source, whereas in the near-field oblique regime, the maximum amplitude is most often associated with the propagation of edge waves. In the far field, the maximum amplitude is most often caused by the interaction of the tsunami coda that develops during basin-wide propagation and the nearshore response, including the excitation of edge waves, shelf modes, and resonance. Statistical distributions that describe tsunami observations are also reviewed, both in terms of spatial distributions, such as coseismic slip on the fault plane and near-field runup, and temporal distributions, such as wave amplitudes in the far field. In each case, fundamental theories of tsunami physics are heuristically used to explain the observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27808236','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27808236"><span>Human vision is determined based on information theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Delgado-Bonal, Alfonso; Martín-Torres, Javier</p> <p>2016-11-03</p> <p>It is commonly accepted that the evolution of the human eye has been driven by the maximum intensity of the radiation emitted by the Sun. However, the interpretation of the surrounding environment is constrained not only by the amount of energy received but also by the information content of the radiation. Information is related to entropy rather than energy. The human brain follows Bayesian statistical inference for the interpretation of visual space. The maximization of information occurs in the process of maximizing the entropy. Here, we show that the photopic and scotopic vision absorption peaks in humans are determined not only by the intensity but also by the entropy of radiation. We suggest that through the course of evolution, the human eye has not adapted only to the maximum intensity or to the maximum information but to the optimal wavelength for obtaining information. On Earth, the optimal wavelengths for photopic and scotopic vision are 555 nm and 508 nm, respectively, as inferred experimentally. These optimal wavelengths are determined by the temperature of the star (in this case, the Sun) and by the atmospheric composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...636038D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...636038D"><span>Human vision is determined based on information theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delgado-Bonal, Alfonso; Martín-Torres, Javier</p> <p>2016-11-01</p> <p>It is commonly accepted that the evolution of the human eye has been driven by the maximum intensity of the radiation emitted by the Sun. However, the interpretation of the surrounding environment is constrained not only by the amount of energy received but also by the information content of the radiation. Information is related to entropy rather than energy. The human brain follows Bayesian statistical inference for the interpretation of visual space. The maximization of information occurs in the process of maximizing the entropy. Here, we show that the photopic and scotopic vision absorption peaks in humans are determined not only by the intensity but also by the entropy of radiation. We suggest that through the course of evolution, the human eye has not adapted only to the maximum intensity or to the maximum information but to the optimal wavelength for obtaining information. On Earth, the optimal wavelengths for photopic and scotopic vision are 555 nm and 508 nm, respectively, as inferred experimentally. These optimal wavelengths are determined by the temperature of the star (in this case, the Sun) and by the atmospheric composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5093619','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5093619"><span>Human vision is determined based on information theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Delgado-Bonal, Alfonso; Martín-Torres, Javier</p> <p>2016-01-01</p> <p>It is commonly accepted that the evolution of the human eye has been driven by the maximum intensity of the radiation emitted by the Sun. However, the interpretation of the surrounding environment is constrained not only by the amount of energy received but also by the information content of the radiation. Information is related to entropy rather than energy. The human brain follows Bayesian statistical inference for the interpretation of visual space. The maximization of information occurs in the process of maximizing the entropy. Here, we show that the photopic and scotopic vision absorption peaks in humans are determined not only by the intensity but also by the entropy of radiation. We suggest that through the course of evolution, the human eye has not adapted only to the maximum intensity or to the maximum information but to the optimal wavelength for obtaining information. On Earth, the optimal wavelengths for photopic and scotopic vision are 555 nm and 508 nm, respectively, as inferred experimentally. These optimal wavelengths are determined by the temperature of the star (in this case, the Sun) and by the atmospheric composition. PMID:27808236</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10619E..11R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10619E..11R"><span>Influence of pitting defects on quality of high power laser light field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong</p> <p>2018-01-01</p> <p>With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JaJAP..56l7301Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JaJAP..56l7301Z"><span>Sound intensity probe for ultrasonic field in water using light-emitting diodes and piezoelectric elements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, Xi; Mizuno, Yosuke; Nakamura, Kentaro</p> <p>2017-12-01</p> <p>The sound intensity vector provides useful information on the state of an ultrasonic field in water, since sound intensity is a vector quantity expressing the direction and magnitude of the sound field. In the previous studies on sound intensity measurement in water, conventional piezoelectric sensors and metal cables were used, and the transmission distance was limited. A new configuration of a sound intensity probe suitable for ultrasonic measurement in water is proposed and constructed for trial in this study. The probe consists of light-emitting diodes and piezoelectric elements, and the output signals are transmitted through fiber optic cables as intensity-modulated light. Sound intensity measurements of a 26 kHz ultrasonic field in water are demonstrated. The difference in the intensity vector state between the water tank with and without sound-absorbing material on its walls was successfully observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JTePh..57.1307K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JTePh..57.1307K"><span>Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krakov, M. S.; Nikiforov, I. V.</p> <p>2012-09-01</p> <p>Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10-4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29457909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29457909"><span>Droplet Translation Actuated by Photoelectrowetting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palma, Cesar; Deegan, Robert D</p> <p>2018-03-13</p> <p>In traditional electrowetting-on-dielectric (EWOD) devices, droplets are moved about a substrate using electric fields produced by an array of discrete electrodes. In this study, we show that a drop can be driven across a substrate with a localized light beam by exploiting the photoelectrowetting (PEW) effect, a light-activated variant of EWOD. Droplet transport actuated by PEW eliminates the need for electrode arrays and the complexities entailed in their fabrication and control, and offers a new approach for designing lab-on-a-chip applications. We report measurements of the maximum droplet speed as a function of frequency and magnitude of the applied bias, intensity of illumination, volume of the droplet, and viscosity and also introduce a model that reproduces these data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950039545&hterms=Electromagnetic+Pulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DElectromagnetic%2BPulse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950039545&hterms=Electromagnetic+Pulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DElectromagnetic%2BPulse"><span>The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taranenko, Y. N.; Inan, U. S.; Bell, T. F.</p> <p>1993-01-01</p> <p>A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870011464','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870011464"><span>Constraints on filament models deduced from dynamical analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simon, G.; Schmieder, B.; Demoulin, P.; Malherbe, J. M.; Poland, A. I.</p> <p>1986-01-01</p> <p>The conclusions deduced from simultaneous observations with the Ultra-Violet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission satellite, and the Multichannel Subtractive Double Pass (MSPD) spectrographs at Meudon and Pic du Midi observatories are presented. The observations were obtained in 1980 and 1984. All instruments have almost the same field of view and provide intensity and velocity maps at two temperatures. The resolution is approx. 0.5 to 1.5" for H alpha line and 3" for C IV. The high resolution and simultaneity of the two types of observations allows a more accurate description of the flows in prominences as functions of temperature and position. The results put some contraints on the models and show that dynamical aspects must be taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJMPB..2942047J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJMPB..2942047J"><span>Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.</p> <p>2015-09-01</p> <p>The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21164754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21164754"><span>Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, H; Fraanje, R; Schitter, G; Kroese, H; Vdovin, G; Verhaegen, M</p> <p>2010-11-08</p> <p>In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N=9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N+5=14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N+4=13 intensity measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97e4311C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97e4311C"><span>Low-temperature vibrational dynamics of fused silica and binary silicate glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Ling; Shi, Ying; Hrdina, Ken; Moore, Lisa; Wu, Jingshi; Daemen, Luke L.; Cheng, Yongqiang</p> <p>2018-02-01</p> <p>Inelastic neutron scattering was used to study the vibrational dynamics of fused silica and its mixed binary glasses that were doped with either TiO2 or K2O . The energy transfer was measured from zero to 180 meV where the so-called Boson peaks (BP) at low energy and molecular vibrations at high energy are included. Although most of the vibrational spectra at the high energy resemble those reported in earlier literature, a defect-mode-like peak is observed for the doped binary systems near 120 meV . At very low temperature, the BP intensity increases rapidly with temperature and then, at higher temperature, the peak intensity decreases. As a result, a maximum is observed in the temperature dependence of the BP intensity. This maximum was shown in all four samples, but the pure SiO2 sample shows the highest intensity peak and the lowest temperature for peak position. Broadband energy spectra reveal a shift of intensity from BP to the more localized modes at higher energy. Temperature evolution of BP and its relationship with heat conduction and thermal expansion are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4535580','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4535580"><span>Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Springer, Yuri P.; Taylor, Jeffrey R.; Travers, Patrick D.</p> <p>2015-01-01</p> <p>Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. PMID:26160803</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARS37009M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARS37009M"><span>Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing</p> <p></p> <p>In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27853016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27853016"><span>Trends in impact factors of ophthalmology journals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vainer, Igor; Mimouni, Francis; Blumenthal, Eytan Z; Mimouni, Michael</p> <p>2016-09-01</p> <p>To test whether there is an association between the growth in the number of ophthalmic journals in the past years and their mean and maximum impact factor (IF) as a common sign of scientific proliferation. Using data from the 2013 Journal Citation Report database a study of the major clinical medical fields was conducted to assess the correlation between the number of journals and maximum IF in a given field in the year 2013. In the field of ophthalmology, we examined the correlation between year, number of journals, mean IF and maximum IF in the field of ophthalmology throughout the years 2000-2013. In the major medical fields, a positive correlation was found between the number of journals and the maximum IF (quadratic R2 = 0.71, P< 0.001). When studying the field of ophthalmology a positive correlation between the number of journals and mean IF (R2 = 0.84, P< 0.001) and between number of journals and maximum IF (R2 = 0.71, P< 0.001) was detected. Our findings suggest that the variation in the IF can be explained by the number of journals in the field of ophthalmology. In the future, the formation of additional ophthalmology journals is likely to further increase the IFs of existing journals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5151158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5151158"><span>Trends in impact factors of ophthalmology journals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vainer, Igor; Mimouni, Francis; Blumenthal, Eytan Z; Mimouni, Michael</p> <p>2016-01-01</p> <p>Purpose: To test whether there is an association between the growth in the number of ophthalmic journals in the past years and their mean and maximum impact factor (IF) as a common sign of scientific proliferation. Methods: Using data from the 2013 Journal Citation Report database a study of the major clinical medical fields was conducted to assess the correlation between the number of journals and maximum IF in a given field in the year 2013. In the field of ophthalmology, we examined the correlation between year, number of journals, mean IF and maximum IF in the field of ophthalmology throughout the years 2000–2013. Results: In the major medical fields, a positive correlation was found between the number of journals and the maximum IF (quadratic R2 = 0.71, P < 0.001). When studying the field of ophthalmology a positive correlation between the number of journals and mean IF (R2 = 0.84, P < 0.001) and between number of journals and maximum IF (R2 = 0.71, P < 0.001) was detected. Conclusions: Our findings suggest that the variation in the IF can be explained by the number of journals in the field of ophthalmology. In the future, the formation of additional ophthalmology journals is likely to further increase the IFs of existing journals. PMID:27853016</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25920013','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25920013"><span>Individualized Low-Amplitude Seizure Therapy: Minimizing Current for Electroconvulsive Therapy and Magnetic Seizure Therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H</p> <p>2015-08-01</p> <p>Electroconvulsive therapy (ECT) at conventional current amplitudes (800-900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112-174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27079452','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27079452"><span>Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D</p> <p>2016-05-27</p> <p>We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SuMi...87..143R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SuMi...87..143R"><span>Intense laser field effects on a Woods-Saxon potential quantum well</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.</p> <p>2015-11-01</p> <p>This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3472891','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3472891"><span>Development and Application of Integrated Optical Sensors for Intense E-Field Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zeng, Rong; Wang, Bo; Niu, Ben; Yu, Zhanqing</p> <p>2012-01-01</p> <p>The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs) have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI), coupler interferometer (CI) and common path interferometer (CPI). The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics. PMID:23112663</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptSp.121..455S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptSp.121..455S"><span>The influence of an external cavity on the emission spectrum of a mercury germicidal lamp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solomonov, V. I.; Surkov, Yu. S.; Gorbunkov, V. I.</p> <p>2016-09-01</p> <p>The spectrum of emission from the cylindrical duralumin cavity of a TUV 8wG8 T5 UV industrial germicidal mercury lamp is studied. It is shown that, due to reflection from the inner surface of the cavity and reabsorption in the gas discharge, the resonance line of a mercury atom is significantly weakened. The dependence of the resonance line intensity on the discharge current has a maximum, and the discharge current corresponding to the intensity maximum depends on the reflection coefficient of the inner surface of the cavity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4908660','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4908660"><span>Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.</p> <p>2016-01-01</p> <p>We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...627889C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...627889C"><span>Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.</p> <p>2016-06-01</p> <p>We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19523704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19523704"><span>Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smeenk, Robert Jan; van Lin, Emile N J Th; van Kollenburg, Peter; Kunze-Busch, Martina; Kaanders, Johannes H A M</p> <p>2009-10-01</p> <p>To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22701366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22701366"><span>Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pattanayak, Sujata; Mohanty, U C; Osuri, Krishna K</p> <p>2012-01-01</p> <p>The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24594677','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24594677"><span>Is the inherent potential of maize roots efficient for soil phosphorus acquisition?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping</p> <p>2014-01-01</p> <p>Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1), and the threshold indicating a significant environmental risk was about 15 mg kg(-1), which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1), indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29116148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29116148"><span>Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting</p> <p>2017-11-07</p> <p>Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3940875','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3940875"><span>Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping</p> <p>2014-01-01</p> <p>Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg−1, and the threshold indicating a significant environmental risk was about 15 mg kg−1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg−1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots. PMID:24594677</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790002499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790002499"><span>Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.</p> <p>1978-01-01</p> <p>A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28092748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28092748"><span>Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mao, Fangjie; Zhou, Guomo; Li, Pingheng; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing</p> <p>2017-04-15</p> <p>The selective cutting method currently used in Moso bamboo forests has resulted in a reduction of stand productivity and carbon sequestration capacity. Given the time and labor expense involved in addressing this problem manually, simulation using an ecosystem model is the most suitable approach. The BIOME-BGC model was improved to suit managed Moso bamboo forests, which was adapted to include age structure, specific ecological processes and management measures of Moso bamboo forest. A field selective cutting experiment was done in nine plots with three cutting intensities (high-intensity, moderate-intensity and low-intensity) during 2010-2013, and biomass of these plots was measured for model validation. Then four selective cutting scenarios were simulated by the improved BIOME-BGC model to optimize the selective cutting timings, intervals, retained ages and intensities. The improved model matched the observed aboveground carbon density and yield of different plots, with a range of relative error from 9.83% to 15.74%. The results of different selective cutting scenarios suggested that the optimal selective cutting measure should be cutting 30% culms of age 6, 80% culms of age 7, and all culms thereafter (above age 8) in winter every other year. The vegetation carbon density and harvested carbon density of this selective cutting method can increase by 74.63% and 21.5%, respectively, compared with the current selective cutting measure. The optimized selective cutting measure developed in this study can significantly promote carbon density, yield, and carbon sink capacity in Moso bamboo forests. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H13B1351K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H13B1351K"><span>New Estimates of Land Use Intensity of Potential Bioethanol Production in the U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kheshgi, H. S.; Song, Y.; Torkamani, S.; Jain, A. K.</p> <p>2016-12-01</p> <p>We estimate potential bioethanol land use intensity (the inverse of potential bioethanol yield per hectare) across the United States by modeling crop yields and conversion to bioethanol (via a fermentation pathway), based on crop field studies and conversion technology analyses. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to estimate the potential yield of four crops - corn, Miscanthus, and two variants of switchgrass (Cave-in-Rock and Alamo) - across the U.S.A. landscape for the 14-year period from 1999 through 2012, for the case with fertilizer application but without irrigation. We estimate bioethanol yield based on recent experience for corn bioethanol production from corn kernel, and current cellulosic bioethanol process design specifications under the assumption of the maximum practical harvest fraction for the energy grasses (Miscanthus and switchgrasses) and a moderate (30%) harvest fraction of corn stover. We find that each of four crops included has regions where that crop is estimated to have the lowest land use intensity (highest potential bioethanol yield per hectare). We find that minimizing potential land use intensity by including both corn and the energy grasses only improves incrementally to that of corn (using both harvested kernel and stover for bioethanol). Bioethanol land use intensity is one fundamental factor influencing the desirability of biofuels, but is not the only one; others factors include economics, competition with food production and land use, water and climate, nitrogen runoff, life-cycle emissions, and the pace of crop and technology improvement into the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26160803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26160803"><span>Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Springer, Yuri P; Taylor, Jeffrey R; Travers, Patrick D</p> <p>2015-01-01</p> <p>Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4744235','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4744235"><span>Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Rongxiao; Gladstone, David J.; Williams, Benjamin B.; Glaser, Adam K.; Pogue, Brian W.; Jarvis, Lesley A.</p> <p>2016-01-01</p> <p>Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R2 = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R2 = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. Conclusions: Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments. PMID:26843259</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22579865-cherenkov-imaging-method-rapid-optimization-clinical-treatment-geometry-total-skin-electron-beam-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22579865-cherenkov-imaging-method-rapid-optimization-clinical-treatment-geometry-total-skin-electron-beam-therapy"><span>Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K.; Zhang, Rongxiao</p> <p>2016-02-15</p> <p>Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, compositemore » images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R{sup 2} = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. Conclusions: Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..197..221S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..197..221S"><span>Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.</p> <p>2017-10-01</p> <p>A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.189..761F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.189..761F"><span>Core surface magnetic field evolution 2000-2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, C. C.; Jackson, A.; Gillet, N.; Olsen, N.</p> <p>2012-05-01</p> <p>We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm-sat, are based on CHAMP, Ørsted and SAC-C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical harmonics up to degree and order 24 and a temporal parametrization of sixth-order B-splines with 0.25 yr knot spacing is employed. Models were constructed by minimizing an absolute deviation measure of misfit along with measures of spatial and temporal complexity at the core surface. We investigate traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10612E..16D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10612E..16D"><span>Light focusing through a multiple scattering medium: ab initio computer simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danko, Oleksandr; Danko, Volodymyr; Kovalenko, Andrey</p> <p>2018-01-01</p> <p>The present study considers ab initio computer simulation of the light focusing through a complex scattering medium. The focusing is performed by shaping the incident light beam in order to obtain a small focused spot on the opposite side of the scattering layer. MSTM software (Auburn University) is used to simulate the propagation of an arbitrary monochromatic Gaussian beam and obtain 2D distribution of the optical field in the selected plane of the investigated volume. Based on the set of incident and scattered fields, the pair of right and left eigen bases and corresponding singular values were calculated. The pair of right and left eigen modes together with the corresponding singular value constitute the transmittance eigen channel of the disordered media. Thus, the scattering process is described in three steps: 1) initial field decomposition in the right eigen basis; 2) scaling of decomposition coefficients for the corresponding singular values; 3) assembling of the scattered field as the composition of the weighted left eigen modes. Basis fields are represented as a linear combination of the original Gaussian beams and scattered fields. It was demonstrated that 60 independent control channels provide focusing the light into a spot with the minimal radius of approximately 0.4 μm at half maximum. The intensity enhancement in the focal plane was equal to 68 that coincided with theoretical prediction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptFT..31...83T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptFT..31...83T"><span>Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.</p> <p>2016-09-01</p> <p>The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanop...7..106Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanop...7..106Y"><span>Terahertz light-emitting graphene-channel transistor toward single-mode lasing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi</p> <p>2018-03-01</p> <p>A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27420157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27420157"><span>Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nezammahalleh, Hassan; Ghanati, Faezeh; Adams, Thomas A; Nosrati, Mohsen; Shojaosadati, Seyed Abbas</p> <p>2016-10-01</p> <p>An electric field (EF) generator device was fabricated and applied to the treatment of Chlorella vulgaris ISC33 at three distinct concentrations before cultivation. The EF of moderate intensity (2.7kVcm(-1)) has a hormetic effect on algal growth. The highest growth stimulation of 51% was observed after 50min treatment of 0.4gL(-1) algal suspension. The influence of EF on the system was then studied from both theoretical and experimental perspectives. The growth rate increased with treatment time up to a maximum because of improved membrane permeability, and then declined afterwards due to peroxide accumulation in the medium. The contents of chlorophylls, carotenoids, soluble carbohydrates, lipids, and proteins were also measured to understand possible changes on algal metabolism. The EF treatment of algal suspension has no observable effect on the cell metabolism while both algal growth and metabolism was significantly affected by the inoculum size. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034510','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034510"><span>Short-term sandbar variability based on video imagery: Comparison between Time-Average and Time-Variance techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Guedes, R.M.C.; Calliari, L.J.; Holland, K.T.; Plant, N.G.; Pereira, P.S.; Alves, F.N.A.</p> <p>2011-01-01</p> <p>Time-exposure intensity (averaged) images are commonly used to locate the nearshore sandbar position (xb), based on the cross-shore locations of maximum pixel intensity (xi) of the bright bands in the images. It is not known, however, how the breaking patterns seen in Variance images (i.e. those created through standard deviation of pixel intensity over time) are related to the sandbar locations. We investigated the suitability of both Time-exposure and Variance images for sandbar detection within a multiple bar system on the southern coast of Brazil, and verified the relation between wave breaking patterns, observed as bands of high intensity in these images and cross-shore profiles of modeled wave energy dissipation (xD). Not only is Time-exposure maximum pixel intensity location (xi-Ti) well related to xb, but also to the maximum pixel intensity location of Variance images (xi-Va), although the latter was typically located 15m offshore of the former. In addition, xi-Va was observed to be better associated with xD even though xi-Ti is commonly assumed as maximum wave energy dissipation. Significant wave height (Hs) and water level (??) were observed to affect the two types of images in a similar way, with an increase in both Hs and ?? resulting in xi shifting offshore. This ??-induced xi variability has an opposite behavior to what is described in the literature, and is likely an indirect effect of higher waves breaking farther offshore during periods of storm surges. Multiple regression models performed on xi, Hs and ?? allowed the reduction of the residual errors between xb and xi, yielding accurate estimates with most residuals less than 10m. Additionally, it was found that the sandbar position was best estimated using xi-Ti (xi-Va) when xb was located shoreward (seaward) of its mean position, for both the first and the second bar. Although it is unknown whether this is an indirect hydrodynamic effect or is indeed related to the morphology, we found that this behavior can be explored to optimize sandbar estimation using video imagery, even in the absence of hydrodynamic data. ?? 2011 Elsevier B.V..</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017InJPh..91..711B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017InJPh..91..711B"><span>Solar and interplanetary activities of isolated and non-isolated coronal mass ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.</p> <p>2017-07-01</p> <p>We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of activities with respect to the onset of flare/CME.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptMa..58..107Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptMa..58..107Y"><span>Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.</p> <p>2016-08-01</p> <p>In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25422528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25422528"><span>Slew-rate dependence of tracer magnetization response in magnetic particle imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shah, Saqlain A; Ferguson, R M; Krishnan, K M</p> <p>2014-10-28</p> <p>Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ 0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude ( H o ) and frequency ( ω ). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ 0 . For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate ( ωH o ) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308167-slew-rate-dependence-tracer-magnetization-response-magnetic-particle-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308167-slew-rate-dependence-tracer-magnetization-response-magnetic-particle-imaging"><span>Slew-rate dependence of tracer magnetization response in magnetic particle imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shah, Saqlain A.; Krishnan, K. M., E-mail: kannanmk@uw.edu; Ferguson, R. M.</p> <p>2014-10-28</p> <p>Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ{sub 0} excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (H{sub o}) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particlemore » Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ{sub 0}. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωH{sub o}) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JApSp..84..900Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JApSp..84..900Z"><span>Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Zh.; Sheng, L.; Su, B.; Tao, C.; Jing, W.</p> <p>2017-11-01</p> <p>The interaction between rhodamine 6G (Rh6G) and cerium sulfate was studied by the fluorescence quenching method. In a sulfuric acid medium, the interaction of Ce(IV) with Rh6G results in Rh6G fluorescence quenching. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 530 nm and 555 nm, respectively. A good linearity between the relative fl uorescence intensity (ΔF) and Ce(IV) was observed in the range 0.12-1.08 μg/mL. The detection limit was 1.4 × 10-3 μg/mL. The optimum reaction conditions, influencing factors, and effect of coexisting substances were investigated in the experiment. We found that the concentration of Rh6G was 3.2 × 10-6 mol/L, and the fl uorescence intensity was maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3731659','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3731659"><span>Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dregely, Daniel; Neubrech, Frank; Duan, Huigao; Vogelgesang, Ralf; Giessen, Harald</p> <p>2013-01-01</p> <p>Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light–matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either diffraction-limited far-field methods or intricate near-field scanning techniques. Here, using diffraction-unlimited far-field spectroscopy in the infrared, we directly map the intensity of the electric field close to plasmonic nanoantennas. We place a patch of probe molecules with 10 nm accuracy at different locations in the near-field of a resonant antenna and extract the molecular vibrational excitation. We map the field intensity along a dipole antenna and gap-type antennas. Moreover, this method is able to assess the near-field intensity of complex buried plasmonic structures. We demonstrate this by measuring for the first time the near-field intensity of a three-dimensional plasmonic electromagnetically induced transparency structure. PMID:23892519</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPhCS.406a2028R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPhCS.406a2028R"><span>The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.</p> <p>2012-12-01</p> <p>The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/942227','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/942227"><span>Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>M. J. Haugh and M. B. Schneider</p> <p>2008-10-31</p> <p>The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21266585-flat-field-anomalies-ray-charge-coupled-device-camera-measured-using-manson-ray-source','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21266585-flat-field-anomalies-ray-charge-coupled-device-camera-measured-using-manson-ray-source"><span>Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Haugh, M. J.; Schneider, M. B.</p> <p>2008-10-15</p> <p>The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPA..3330011H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPA..3330011H"><span>Strong field QED in lepton colliders and electron/laser interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartin, Anthony</p> <p>2018-05-01</p> <p>The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-1317.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-1317.pdf"><span>14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1317.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1317.pdf"><span>14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec27-1317.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec27-1317.pdf"><span>14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec27-1317.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec27-1317.pdf"><span>14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1317.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1317.pdf"><span>14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec23-1308.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec23-1308.pdf"><span>14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF... Equipment General § 23.1308 High-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>