[The dynamic binding of resources for health in Brazil: 1995 to 2004].
de França, José Rivaldo Melo; do Rosário Costa, Nilson
2011-01-01
The aim of this study is to discuss the Brazilian Federal participation in the financing health sector from 1995 to 2004, having the basis the resources of the institutional initiatives related to the indexation of expenses, considering the macroeconomic adjustment practiced in that period and the institutions role to protect the cash flow. Examining the performances of the institutional mechanism actually adopted with the purpose of guarantee the flow regularity and extension of the values, by the analisys of the Temporary Contribution on the Financial Movement (TCFM) and the Constitutional Amendment Number 29 (CA 29) whose initiatives has their efficiency questioned. It demonstrates the impact of the destination of such measures from the statistics analysis of the use of the resources of the TCFM regarding its levies and the indexation of Union resources effects measures from the CA 29 before and after the application of its determinations.
Thin Film Technology of High-Critical-Temperature Superconducting Electronics.
1985-12-11
ANALISIS OF THIN-FILM SUPERCONDUCTORS J. Talvacchio, M. A. Janocko, J. R. Gavaler, and A...in the areas of substrate preparation, niobum nitride, nlobium-tin, and molybdenum-rhenium. AN INTEGRATED DEPOSITION AND ANALISI - FACILITT The four...mobility low (64). The voids are separating 1-3 nm clusters of dense deposit. At low deposition temperatures this microstructure will persist near
Sulter, A M; Wit, H P
1996-11-01
Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).
A criterion for maximum resin flow in composite materials curing process
NASA Astrophysics Data System (ADS)
Lee, Woo I.; Um, Moon-Kwang
1993-06-01
On the basis of Springer's resin flow model, a criterion for maximum resin flow in autoclave curing is proposed. Validity of the criterion was proved for two resin systems (Fiberite 976 and Hercules 3501-6 epoxy resin). The parameter required for the criterion can be easily estimated from the measured resin viscosity data. The proposed criterion can be used in establishing the proper cure cycle to ensure maximum resin flow and, thus, the maximum compaction.
Modelling information flow along the human connectome using maximum flow.
Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung
2018-01-01
The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Elaborazione dei dati sperimentali
NASA Astrophysics Data System (ADS)
Dapor, M.; Ropele, M.
L'analisi statistica dei dati sperimentali, la loro elaborazione ed una corretta stima degli errori sono conoscenze necessarie agli studenti di fisica, biologia, chimica, ingegneria e dei corsi di specializzazione tecnico-scientifici in cui a di laboratorio. Chi si occupa di problemi tecnici e di misure, per studio o per lavoro, deve possedere gli strumenti matematici di calcolo e di analisi necessari ad una corretta interpretazione dei dati sperimentali. Il testo fornisce in modo sintetico, chiaro ed esaustivo, tutte le nozioni e le conoscenze utili allo scopo.
Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods
NASA Astrophysics Data System (ADS)
Lin, Chia-Hsien; Chou, Dean-Yi
2018-06-01
The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.
NASA Astrophysics Data System (ADS)
Davila Montanez, Melissa
Esta investigacion de naturaleza cualitativa se ocupo de realizar un analisis de contenido documental de los Documentos Normativos del Programa de Ciencias en el area de biologia de la escuela superior del sistema de educacion publica de Puerto Rico del periodo 1993-2012. Los documentos analizados fueron: Guia Curricular, 1995; Marco Curricular, 2003; Estandares de Excelencia, 1996, 2000 y Estandares de Contenido y Expectativas de Grado, 2007. Se indago si hubo cambios en significados en los Componentes Estructurales: Naturaleza de la ciencia, Paradigmas para la ensenanza de la ciencia, Funcion del curriculo formal, Mision de la ensenanza de la ciencia; Contenidos, destrezas y competencias, Estrategias de ensenanza y Evaluacion/Assessment del aprendizaje. El analisis sugiere que no hubo cambios sustanciales en los significados de los Componentes Estructurales. Los documentos estudiados muestran mayormente caracteristicas similares, aunque los documentos mas recientes eran mas descriptivos, explicativos y especificos.
Spatial distribution of impacts to channel bed mobility due to flow regulation, Kootenai River, USA
Michael Burke; Klaus Jorde; John M. Buffington; Jeffrey H. Braatne; Rohan Benjakar
2006-01-01
The regulated hydrograph of the Kootenai River between Libby Dam and Kootenay Lake has altered the natural flow regime, resulting in a significant decrease in maximum flows (60% net reduction in median 1-day annual maximum, and 77%-84% net reductions in median monthly flows for the historic peak flow months of May and June, respectively). Other key hydrologic...
ERIC Educational Resources Information Center
Titze, Ingo R.
2006-01-01
Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…
Correlation between Reynolds number and eccentricity effect in stenosed artery models.
Javadzadegan, Ashkan; Shimizu, Yasutomo; Behnia, Masud; Ohta, Makoto
2013-01-01
Flow recirculation and shear strain are physiological processes within coronary arteries which are associated with pathogenic biological pathways. Distinct Quite apart from coronary stenosis severity, lesion eccentricity can cause flow recirculation and affect shear strain levels within human coronary arteries. The aim of this study is to analyse the effect of lesion eccentricity on the transient flow behaviour in a model of a coronary artery and also to investigate the correlation between Reynolds number (Re) and the eccentricity effect on flow behaviour. A transient particle image velocimetry (PIV) experiment was implemented in two silicone based models with 70% diameter stenosis, one with eccentric stenosis and one with concentric stenosis. At different times throughout the flow cycle, the eccentric model was always associated with a greater recirculation zone length, maximum shear strain rate and maximum axial velocity; however, the highest and lowest impacts of eccentricity were on the recirculation zone length and maximum shear strain rate, respectively. Analysis of the results revealed a negative correlation between the Reynolds number (Re) and the eccentricity effect on maximum axial velocity, maximum shear strain rate and recirculation zone length. As Re number increases the eccentricity effect on the flow behavior becomes negligible.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
USDA-ARS?s Scientific Manuscript database
Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...
The Influence of Baker Bay and Sand Island on Circulations in the Mouth of the Columbia River
2014-06-01
the presence of Baker Bay, a shallow sub -embayment, adds further complexity. Drifter velocities were greatest during maximum ebb flows and were...Drifters occasionally entered Baker Bay via Baker Inlet during flood flows , especially in conjunction with strong southwesterly winds. During ebb flows ...occurred in the vicinity of the pile dikes, including reversed (upriver) flow between the pile dikes during maximum ebb . Understanding unique flow
Veenhuis, Jack E.
2002-01-01
In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak flows. The frequency of larger stormflows also increased in response to the effects of the wildfires in both canyons. In Frijoles Canyon, the number of peak stormflows greater than the pre-fire maximum flow of 19 cubic feet per second was 15 in 1977, 9 in 1978, and 5 in 1979, which is about the magnitude of the maximum pre-fire peak flow in both canyons. Again the hydrologic effects of a wildfire seem to be more pronounced for the 3 years following the date of the fire. Likewise, larger peakflows occurred more frequently in Capulin Canyon for the first 3 years after the 1996 wildfire. Median suspended-sediment concentrations in samples collected in Frijoles Canyon in 1977 were 1,330 milligrams per liter; median concentrations were 16 milligrams per liter after the watershed stabilized in 1993-95. The annual load calculated from regression equations for load compared to flow for the first year after the wildfire was 220 times the annual load for the post-recovery period. To convey the increased frequency and magnitude of average flows in Capulin Canyon after the 1996 Dome wildfire, the stream channel in Capulin Canyon increased in flow capacity by widening and downcutting. As Capulin Canyon peak flows have decreased in both magnitude and frequency with vegetative recovery, the stream channel also has slowly begun to readjust. The channel at the most downstream crest-stage gage, which has the shallowest initial valley slope, is showing the first signs of aggradation.
Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan
2017-11-01
This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rutkowska, Agnieszka; Kohnová, Silvia; Banasik, Kazimierz
2018-04-01
Probabilistic properties of dates of winter, summer and annual maximum flows were studied using circular statistics in three catchments differing in topographic conditions; a lowland, highland and mountainous catchment. The circular measures of location and dispersion were used in the long-term samples of dates of maxima. The mixture of von Mises distributions was assumed as the theoretical distribution function of the date of winter, summer and annual maximum flow. The number of components was selected on the basis of the corrected Akaike Information Criterion and the parameters were estimated by means of the Maximum Likelihood method. The goodness of fit was assessed using both the correlation between quantiles and a version of the Kuiper's and Watson's test. Results show that the number of components varied between catchments and it was different for seasonal and annual maxima. Differences between catchments in circular characteristics were explained using climatic factors such as precipitation and temperature. Further studies may include circular grouping catchments based on similarity between distribution functions and the linkage between dates of maximum precipitation and maximum flow.
Shear thinning effects on blood flow in straight and curved tubes
NASA Astrophysics Data System (ADS)
Cherry, Erica M.; Eaton, John K.
2013-07-01
Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.
NASA Technical Reports Server (NTRS)
Hauser, Cavour H; Plohr, Henry W
1951-01-01
The nature of the flow at the exit of a row of turbine blades for the range of conditions represented by four different blade configurations was evaluated by the conservation-of-momentum principle using static-pressure surveys and by analysis of Schlieren photographs of the flow. It was found that for blades of the type investigated, the maximum exit tangential-velocity component is a function of the blade geometry only and can be accurately predicted by the method of characteristics. A maximum value of exit velocity coefficient is obtained at a pressure ratio immediately below that required for maximum blade loading followed by a sharp drop after maximum blade loading occurs.
A double-gaussian, percentile-based method for estimating maximum blood flow velocity.
Marzban, Caren; Illian, Paul R; Morison, David; Mourad, Pierre D
2013-11-01
Transcranial Doppler sonography allows for the estimation of blood flow velocity, whose maximum value, especially at systole, is often of clinical interest. Given that observed values of flow velocity are subject to noise, a useful notion of "maximum" requires a criterion for separating the signal from the noise. All commonly used criteria produce a point estimate (ie, a single value) of maximum flow velocity at any time and therefore convey no information on the distribution or uncertainty of flow velocity. This limitation has clinical consequences especially for patients in vasospasm, whose largest flow velocities can be difficult to measure. Therefore, a method for estimating flow velocity and its uncertainty is desirable. A gaussian mixture model is used to separate the noise from the signal distribution. The time series of a given percentile of the latter, then, provides a flow velocity envelope. This means of estimating the flow velocity envelope naturally allows for displaying several percentiles (e.g., 95th and 99th), thereby conveying uncertainty in the highest flow velocity. Such envelopes were computed for 59 patients and were shown to provide reasonable and useful estimates of the largest flow velocities compared to a standard algorithm. Moreover, we found that the commonly used envelope was generally consistent with the 90th percentile of the signal distribution derived via the gaussian mixture model. Separating the observed distribution of flow velocity into a noise component and a signal component, using a double-gaussian mixture model, allows for the percentiles of the latter to provide meaningful measures of the largest flow velocities and their uncertainty.
Three-Dimensional Effects in Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.
2003-01-01
In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
Three-Dimensional Effects on Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.
2002-01-01
In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.
Static Flow Characteristics of a Mass Flow Injecting Valve
NASA Technical Reports Server (NTRS)
Mattern, Duane; Paxson, Dan
1995-01-01
A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.
Slope Instability Risk Analysys of the Municipality of Comala, Colima , Mexico
NASA Astrophysics Data System (ADS)
Ramirez-Ruiz, J. J.
2017-12-01
Every year during the rainy season occur the problem of mass landslide in some areas of the community of Comala, Colima Mexico. Slope instability is studied in this volcanic region which is located in the southern part of the Volcan de Fuego de Colima. It occurs due to the combination of different factors existing in this area as: Precipitation, topography contrast, type and mechanical properties of deposits that constitute the rocks and soils of the region and the erosion due to the elimination of vegetation deck to develop and grow urban areas. To these geological factors we can extend the tectonic activity of the Western part of Mexico that originate high seismicity by the interaction of Cocos plate and North America plate forming the region of Graben de Colima, were is located this area. Here we will present a Zonification and determination of Slope Instability Risk Maps due to the rain and seismicity accelerators factors. This Study is parto of a proyect to reduce the risk of this phenomenon, it was carried out as part of the National Risk Map of Mexico analized using the CENAPRED methodology to zonificate the risk areas. The instability of slopes is determined both in its origin and in its development, by different mechanisms. In such a way that this process of instability can be grouped into four main categories: Falls or landslides, Flows, Slips and expansions or lateral landslides. Here it is presented the Risk analisis to this volcanic area that cover the municipality of Comala in the State of Colima, Mexico using the Susceptibility map, Risk Map and Risk analisis of the Municipality.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
The Significance of the Record Length in Flood Frequency Analysis
NASA Astrophysics Data System (ADS)
Senarath, S. U.
2013-12-01
Of all of the potential natural hazards, flood is the most costly in many regions of the world. For example, floods cause over a third of Europe's average annual catastrophe losses and affect about two thirds of the people impacted by natural catastrophes. Increased attention is being paid to determining flow estimates associated with pre-specified return periods so that flood-prone areas can be adequately protected against floods of particular magnitudes or return periods. Flood frequency analysis, which is conducted by using an appropriate probability density function that fits the observed annual maximum flow data, is frequently used for obtaining these flow estimates. Consequently, flood frequency analysis plays an integral role in determining the flood risk in flood prone watersheds. A long annual maximum flow record is vital for obtaining accurate estimates of discharges associated with high return period flows. However, in many areas of the world, flood frequency analysis is conducted with limited flow data or short annual maximum flow records. These inevitably lead to flow estimates that are subject to error. This is especially the case with high return period flow estimates. In this study, several statistical techniques are used to identify errors caused by short annual maximum flow records. The flow estimates used in the error analysis are obtained by fitting a log-Pearson III distribution to the flood time-series. These errors can then be used to better evaluate the return period flows in data limited streams. The study findings, therefore, have important implications for hydrologists, water resources engineers and floodplain managers.
[Governance and health: the rise of the managerialism in public sector reform].
Denis, Jean L; Lamothe, Lise; Langley, Ann; Stéphane, Guérard
2010-01-01
The article examines various healthcare systems reform projects in Canada and some Canadian provinces and reveals some tendencies in governance renewal. The analisis is based on the hypothesis that reform is an exercise aiming at the renewal of governance conception and practices. In renewing governance, reform leaders hope to use adequate and effective levers to attain announced reform objectives. The article shows that the conceptions and operational modalities of governance have changed over time and that they reveal tensions inherent to the transformation and legitimation process of public healthcare systems. The first section discusses the relationships between reform and change. The second section defines the conception of gouvernance used for the analisis. Based on a content analisis of the various reform reports, the third section reveals the evolution of the conception of governance in healthcare systems in Canada. In order to expose the new tendencies, ideologies and operational principles at the heart of the reform projects are analysed. Five ideologies are identified: the democratic ideology, the "population health" ideology, the business ideology, the managerial ideology and the ideology of equity and humanism. This leads to a discussion on the dominant influence of the managerial ideology in the current reform projects.
NASA Astrophysics Data System (ADS)
Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.
2018-03-01
In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.
Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen
2016-02-01
Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.
Research on configuration of railway self-equipped tanker based on minimum cost maximum flow model
NASA Astrophysics Data System (ADS)
Yang, Yuefang; Gan, Chunhui; Shen, Tingting
2017-05-01
In the study of the configuration of the tanker of chemical logistics park, the minimum cost maximum flow model is adopted. Firstly, the transport capacity of the park loading and unloading area and the transportation demand of the dangerous goods are taken as the constraint condition of the model; then the transport arc capacity, the transport arc flow and the transport arc edge weight are determined in the transportation network diagram; finally, the software calculations. The calculation results show that the configuration issue of the tankers can be effectively solved by the minimum cost maximum flow model, which has theoretical and practical application value for tanker management of railway transportation of dangerous goods in the chemical logistics park.
Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids.
Xi, Li; Graham, Michael D
2010-05-28
Turbulent channel flow of drag-reducing polymer solutions is simulated in minimal flow geometries. Even in the Newtonian limit, we find intervals of "hibernating" turbulence that display many features of the universal maximum drag reduction asymptote observed in polymer solutions: weak streamwise vortices, nearly nonexistent streamwise variations, and a mean velocity gradient that quantitatively matches experiments. As viscoelasticity increases, the frequency of these intervals also increases, while the intervals themselves are unchanged, leading to flows that increasingly resemble maximum drag reduction.
An approach for the regularization of a power flow solution around the maximum loading point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, Y.
1992-08-01
In the conventional power flow solution, the boundary conditions are directly specified by active power and reactive power at each node, so that the singular point coincided with the maximum loading point. For this reason, the computations are often disturbed by ill-condition. This paper proposes a new method for getting the wide-range regularity by giving some modifications to the conventional power flow solution method, thereby eliminating the singular point or shifting it to the region with the voltage lower than that of the maximum loading point. Then, the continuous execution of V-P curves including maximum loading point is realized. Themore » efficiency and effectiveness of the method are tested in practical 598-nodes system in comparison with the conventional method.« less
Optimal behavior of viscoelastic flow at resonant frequencies.
Lambert, A A; Ibáñez, G; Cuevas, S; del Río, J A
2004-11-01
The global entropy generation rate in the zero-mean oscillatory flow of a Maxwell fluid in a pipe is analyzed with the aim of determining its behavior at resonant flow conditions. This quantity is calculated explicitly using the analytic expression for the velocity field and assuming isothermal conditions. The global entropy generation rate shows well-defined peaks at the resonant frequencies where the flow displays maximum velocities. It was found that resonant frequencies can be considered optimal in the sense that they maximize the power transmitted to the pulsating flow at the expense of maximum dissipation.
Analysis of pedestrian dynamics in counter flow via an extended lattice gas model.
Kuang, Hua; Li, Xingli; Song, Tao; Dai, Shiqiang
2008-12-01
The modeling of human behavior is an important approach to reproduce realistic phenomena for pedestrian flow. In this paper, an extended lattice gas model is proposed to simulate pedestrian counter flow under the open boundary conditions by considering the human subconscious behavior and different maximum velocities. The simulation results show that the presented model can capture some essential features of pedestrian counter flows, such as lane formation, segregation effect, and phase separation at higher densities. In particular, an interesting feature that the faster walkers overtake the slower ones and then form a narrow-sparse walkway near the central partition line is discovered. The phase diagram comparison and analysis show that the subconscious behavior plays a key role in reducing the occurrence of jam cluster. The effects of the symmetrical and asymmetrical injection rate, different partition lines, and different combinations of maximum velocities on pedestrian flow are investigated. An important conclusion is that it is needless to separate faster and slower pedestrians in the same direction by a partition line. Furthermore, the increase of the number of faster walkers does not always benefit the counter flow in all situations. It depends on the magnitude and asymmetry of injection rate. And at larger maximum velocity, the obtained critical transition point corresponding to the maximum flow rate of the fundamental diagram is in good agreement with the empirical results.
Davids, Jeffrey C; van de Giesen, Nick; Rutten, Martine
2017-07-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and accurate but expensive monitoring equipment at limited numbers of sites. Consequently, observation frequency and costs are high, but spatial coverage of the data is limited. Citizen Hydrology can possibly overcome these challenges by leveraging easily scaled mobile technology and local residents to collect hydrologic data at many sites. However, understanding of how decreased observational frequency impacts the accuracy of key streamflow statistics such as minimum flow, maximum flow, and runoff is limited. To evaluate this impact, we randomly selected 50 active United States Geological Survey streamflow gauges in California. We used 7 years of historical 15-min flow data from 2008 to 2014 to develop minimum flow, maximum flow, and runoff values for each gauge. To mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, and their respective distributions, from 50 subsample iterations with four different subsampling frequencies ranging from daily to monthly. Minimum flows were estimated within 10% for half of the subsample iterations at 39 (daily) and 23 (monthly) of the 50 sites. However, maximum flows were estimated within 10% at only 7 (daily) and 0 (monthly) sites. Runoff volumes were estimated within 10% for half of the iterations at 44 (daily) and 12 (monthly) sites. Watershed flashiness most strongly impacted accuracy of minimum flow, maximum flow, and runoff estimates from subsampled data. Depending on the questions being asked, lower frequency Citizen Hydrology observations can provide useful hydrologic information.
Radiant energy receiver having improved coolant flow control means
Hinterberger, H.
1980-10-29
An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.
[Analysis of factors predicting early unplanned readmissions].
Di Domenico, Gabriella; Tersigni, Ivan; Federico, Bruno; Leuter, Cinzia
2016-01-01
OBIETTIVI: determinare i fattori associati ai ricoveri ripetuti per identificare i pazienti a rischio di riospedalizzazione entro i 30 giorni dalla dimissione. DISEGNO: analisi retrospettiva delle dimissioni nell'anno 2013 attraverso le schede di dimissione ospedaliera (SDO). 3.900 pazienti ricoverati presso il presidio ospedaliero "Fabrizio Spaziani" di Frosinone. PRINCIPALI MISURE DI OUTCOME: analisi bivariata per l'analisi dell'associazione tra variabili. La regressione logistica è stata utilizzata per identificare i fattori di rischio associati al ricovero ripetuto. RISULTATI: tra i 3.900 pazienti considerati, il 12,8% ha avuto una riammissione non programmata entro un mese dalla dimissione precedente per le stesse categorie diagnostiche principali (MCD). Sono state rilevate differenze statisticamente significative tra i pazienti con e senza ricovero ripetuto per età, durata della degenza, titolo di studio, condizione occupazionale e diagnosi. I fattori che aumentano la probabilità di una riospedalizzazione sono il vivere da solo, la condizione di pensionato o casalinga, una degenza più lunga e alcune diagnosi, fra cui malattie dell'apparato respiratorio, del sistema nervoso e dell'apparato urinario. CONCLUSIONE: alcune caratteristiche sociodemografiche e la diagnosi dei pazienti ospedalizzati sono associate al rischio di riospedalizzazione entro 30 giorni dalla dimissione. I dati disponibili nell'archivio delle SDO possono essere utilizzati per un'identificazione dei pazienti a rischio sui quali definire specifici piani di dimissione.
Wake Flow About the Mars Pathfinder Entry Vehicle
NASA Technical Reports Server (NTRS)
Mitcheltree, R. A.; Gnoffo, P. A.
1995-01-01
A computational approach is used to describe the aerothermodynamics of the Mars Pathfinder vehicle entering the Mars atmosphere at the maximum heating and maximum deceleration points in its trajectory. Ablating and nonablating boundary conditions are developed which produce maximum recombination of CO2 on the surface. For the maximum heating trajectory point, an axisymmetric, nonablating calculation predicts a stagnation-point value for the convective heating of 115 W/cm(exp 2). Radiative heating estimates predict an additional 5-12 W/cm(exp 2) at the stagnation point. Peak convective heating on the afterbody occurs on the vehicle's flat stern with a value of 5.9% of the stagnation value. The forebody flow exhibits chemical nonequilibrium behavior, and the flow is frozen in the near wake. Including ablation injection on the forebody lowers the stagnation-point convective heating 18%.
Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Cheong, R. Y.; Gabda, D.
2017-09-01
Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.
Stability analysis for capillary channel flow: 1d and 3d computations
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.
NASA Astrophysics Data System (ADS)
Hertzberg, Jean
2005-11-01
Cough generated infectious aerosols are of interest while developing strategies for the mitigation of disease risks ranging from the common cold to SARS. In this work, the velocity field of human cough was measured using particle image velocimetry (PIV). The project subjects (total 29) coughed into an enclosure seeded with stage fog for most measurements. Cough flow speed profiles, average widths of the cough jet, waveform, and maximum cough speeds were measured. Maximum cough speeds ranged from 1.5 m/s to 28.8 m/s. No correlation was found for maximum cough flow speeds to height or gender. The slow growth of the width of the cough flow suggests that a cough may penetrate farther into a room than a steady jet of similar volume. The velocity profile was found to scale with the square root of downstream distance.
NASA Astrophysics Data System (ADS)
Lee, Ji-Seok; Song, Ki-Won
2015-11-01
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.
Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A
2017-06-06
Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.
NASA Astrophysics Data System (ADS)
Sharma, Pankaj; Jain, Ajai
2014-12-01
Stochastic dynamic job shop scheduling problem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatching rules in such shop from makespan, mean flow time, maximum flow time, mean tardiness, maximum tardiness, number of tardy jobs, total setups and mean setup time performance measures viewpoint. A discrete event simulation model of a stochastic dynamic job shop manufacturing system is developed for investigation purpose. Nine dispatching rules identified from literature are incorporated in the simulation model. The simulation experiments are conducted under due date tightness factor of 3, shop utilization percentage of 90% and setup times less than processing times. Results indicate that shortest setup time (SIMSET) rule provides the best performance for mean flow time and number of tardy jobs measures. The job with similar setup and modified earliest due date (JMEDD) rule provides the best performance for makespan, maximum flow time, mean tardiness, maximum tardiness, total setups and mean setup time measures.
Spike Code Flow in Cultured Neuronal Networks.
Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei
2016-01-01
We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.
Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.
Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth
2015-04-01
The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (<1 % for both methods), while larger deviations were seen using Cartesian readouts (-2.3 and 13 %, respectively). Peak pressure drop calculations from 3D through-plane PC and 4D PC spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.
Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas
2018-03-01
Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Modeled future peak streamflows in four coastal Maine rivers
Hodgkins, Glenn A.; Dudley, Robert W.
2013-01-01
To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.
NASA Astrophysics Data System (ADS)
Li, Chang-Feng; Sureshkumar, Radhakrishna; Khomami, Bamin
2015-10-01
Self-consistent direct numerical simulations of turbulent channel flows of dilute polymer solutions exhibiting friction drag reduction (DR) show that an effective Deborah number defined as the ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction remains O (1) from the onset of DR to the maximum drag reduction (MDR) asymptote. However, the ratio of the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time decreases with increasing DR, and the maximum drag reduction asymptote is achieved when these two time scales become nearly equal. Based on these observations, a simple framework is proposed that adequately describes the influence of polymer additives on the extent of DR from the onset of DR to MDR as well as the universality of the MDR in wall-bounded turbulent flows with polymer additives.
Li, Chang-Feng; Sureshkumar, Radhakrishna; Khomami, Bamin
2015-10-01
Self-consistent direct numerical simulations of turbulent channel flows of dilute polymer solutions exhibiting friction drag reduction (DR) show that an effective Deborah number defined as the ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction remains O(1) from the onset of DR to the maximum drag reduction (MDR) asymptote. However, the ratio of the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time decreases with increasing DR, and the maximum drag reduction asymptote is achieved when these two time scales become nearly equal. Based on these observations, a simple framework is proposed that adequately describes the influence of polymer additives on the extent of DR from the onset of DR to MDR as well as the universality of the MDR in wall-bounded turbulent flows with polymer additives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffey, R.B.; Rohatgi, U.S.
Maximum power limits for hypothetical designs of natural circulation plants can be described analytically. The thermal hydraulic design parameters are those which limit the flow, being the elevations, flow areas, and loss coefficients. WE have found some simple ``design`` equations for natural circulation flow to power ratio, and for the stability limit. The analysis of historical and available data for maximum capacity factor estimation shows 80% to be reasonable and achievable. The least cost is obtained by optimizing both hypothetical plant performance for a given output,a nd the plant layout and design. There is also scope to increase output andmore » reduce cost by considering design variations of primary and secondary pressure, and by optimizing component elevations and loss coefficients. The design limits for each are set by stability and maximum flow considerations, which deserve close and careful evaluation.« less
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.
What is the relationship between free flow and pressure flow studies in women?
Duckett, Jonathan; Cheema, Katherine; Patil, Avanti; Basu, Maya; Beale, Sian; Wise, Brian
2013-03-01
The relationship between free flow (FFS) and pressure flow (PFS) voiding studies remains uncertain and the effect of a urethral catheter on flow rates has not been determined. The relationship between residuals obtained at FF and PFS has yet to be established. This was a prospective cohort study based on 474 consecutive women undergoing cystometry using different sized urethral catheters at different centres. FFS and PFS data were compared for different conditions and the relationship of residuals analysed for FFS and PFS. The null hypothesis was that urethral catheters do not produce an alteration in maximum flow rates for PFS and FF studies. Urethral catheterisation results in lower flow rates (p < 0.01) and this finding is confirmed when flows are corrected for voided volume (p < 0.01). FFS and PFS maximum flow rates are lower in women with DO than USI (p < 0.01). A 6-F urethral catheter does not have a significantly greater effect than a 4.5-F urethral catheter. A mathematical model can be applied to transform FFS to PFS flow rates and vice versa. There was no significant difference between the mean residuals of the two groups (FFS vs PFS-two-tailed t = 0.54, p = 0.59). Positive residuals in FFS showed a good association with positive residuals in the PFS (r = 0.53, p < 0.01) Urethral catheterisation results in lower maximum flow rates. The relationship can be compared mathematically. The null hypothesis can be rejected.
An entropy-based method for determining the flow depth distribution in natural channels
NASA Astrophysics Data System (ADS)
Moramarco, Tommaso; Corato, Giovanni; Melone, Florisa; Singh, Vijay P.
2013-08-01
A methodology for determining the bathymetry of river cross-sections during floods by the sampling of surface flow velocity and existing low flow hydraulic data is developed . Similar to Chiu (1988) who proposed an entropy-based velocity distribution, the flow depth distribution in a cross-section of a natural channel is derived by entropy maximization. The depth distribution depends on one parameter, whose estimate is straightforward, and on the maximum flow depth. Applying to a velocity data set of five river gage sites, the method modeled the flow area observed during flow measurements and accurately assessed the corresponding discharge by coupling the flow depth distribution and the entropic relation between mean velocity and maximum velocity. The methodology unfolds a new perspective for flow monitoring by remote sensing, considering that the two main quantities on which the methodology is based, i.e., surface flow velocity and flow depth, might be potentially sensed by new sensors operating aboard an aircraft or satellite.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-06-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-01-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257
Code of Federal Regulations, 2010 CFR
2010-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...
Vortex shedding flow meter performance at high flow velocities
NASA Technical Reports Server (NTRS)
Siegwarth, J. D.
1986-01-01
In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.
Zhang, Kun; Yin, Xiao-ning; Liu, Xiao-yong; Wang, Fa-lin
2010-11-01
Aiming at the seasonal drought in the dry land orchards of Longdong, Gansu Province, a sand-covering experiment was conducted with 15-year-old Nagafu No. 2 apple trees, with the soil water content, temperature, stem sap flow velocity, leaf stomatal conductance, and fruit quality measured. In the orchard covered with 5-cm-thick riversand, the increment of soil temperature in February-April was lower than 1 degrees C, while in June-July, it was 2.44 degrees C and 2.61 degrees C on sunny and cloudy days, respectively. The soil water content was over 60% of field capacity throughout the growing season. On sunny days with high soil water content (H season), the stem sap flow curve presented a wide peak. Under sand- covering, the sap flow started 0.6 h earlier, and the maximum sap flow velocity was 25.5% higher than the control. On cloudy days of H season, the maximum sap flow velocity was 165.6% higher than the control. On sunny days with low soil water content (L season), the sap flow curve had a single peak, and under sand covering, the sap flow started 0.5-1 h earlier than the control on sunny days. The maximum sap flow velocity was 794 g x h(-1). On cloudy days of L season, the sap flow started 1 h earlier, and the maximum sap flow velocity was 311.0% higher than the control. The evaporation of the control was 156.0% higher than that of sand-covering from March to July, suggesting that excessive ground water evaporation was the main reason to cause soil drought. Under sand-covering, single fruit mass was improved obviously whereas fruit firmness was reduced slightly, and soluble solids, vitamin C, total sugar, and organic acid contents were somewhat promoted.
Floods of June 4 and 12, 1976, at Culbertson, Montana
Johnson, M.V.
1978-01-01
Runoff from rainfall caused flooding in the town of Culbertson, Montana, on June 4 and 12, 1976. Flood damage was mostly to business and residential structures within Culberston. Two small drainage contributed the peak flows, which at one site exceeded 1,200 cubic feet per second per square mile of contributing area. Flow from the Missouri River tributary No 5 at Culbertson consisted of flow through a pipe-arch at the State Highway 16 crossing and flow that overtopped the right bank of the main channel. Maximum combined pipe-arch and bypass flow for the June 12 flood was 1,30030 cubic feet per second. Flow from Diamond Creek consisted of flow through a culvert at the U.S. Highway 2 crossing west of Culbertson and flow that overtopped a road. Maximum combined culvert and bypass flow for the June 4 flood was 1,320 cubic feet per second. Failure of small dam increased the flow volume of the flood.
Initial testing of a 3D printed perfusion phantom using digital subtraction angiography
NASA Astrophysics Data System (ADS)
Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.
2015-03-01
Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.
Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.
Numerical studies of transverse curvature effects on transonic flow stability
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows
Wang, Di; Kleinberg, Robert D.
2009-01-01
Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596
Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.
Wang, Di; Kleinberg, Robert D
2009-11-28
Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.
NASA Astrophysics Data System (ADS)
Mangeney, A.; Farin, M.; de Rosny, J.; Toussaint, R.; Trinh, P. T.
2017-12-01
Landslides, rock avalanche and rockfalls represent a major natural hazard in steep environments. However, owing to the lack of visual observations, the dynamics of these gravitational events is still not well understood. A burning challenge is to deduce the landslide dynamics (flow potential energy, involved volume, particle size…) from the characteristics of the generated seismic signal (radiated seismic energy, maximum amplitude, frequencies,...). Laboratory experiments of granular columns collapse are conducted on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular flow are constituted with steel beads of same diameter. We compare the dynamic parameters of the granular flows, deduced from the movie of the experiments, to the seismic parameters deduced from the measured seismic signals. The ratio of radiated seismic energy to potential energy lost is shown to slightly decrease with slope angle and is between 0.2% and 9%. It decreases as time, slope angle and flow volume increase and when the particle diameter decreases. These results explain the dispersion over several orders of magnitude of the seismic efficiency of natural landslides. We distinguish two successive phases of rise and decay in the time profiles if the amplitude of the seismic signal and of the mean frequency of the signal generated by the granular flows. The rise phase and the maximum are shown to be independent of the slope angle. The maximum seismic amplitude coincides with the maximum flow speed in the direction normal to the slope but not with the maximum downslope speed. We observe that the shape of the seismic envelope and frequencies as a function of time changes after a critical slope angle, between 10° and 15° with respect to the horizontal, with a decay phase lasting much longer as slope angle increases, due to a change in the flow regime, from a dense to a more agitated flow. In addition, we propose a semi-empirical scaling law to describe how the seismic energy radiated by a granular flow increases when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter.
NASA Astrophysics Data System (ADS)
Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei
Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.
Influence of time of concentration on variation of runoff from a small urbanized watershed
Devendra Amatya; Agnieszka Cupak; Andrzej Walega
2015-01-01
The main objective of the paper is to estimate the influence of time of concentration (TC) on maximum flow in an urbanized watershed. The calculations of maximum flow have been carried out using the Rational method, Technical Release 55 (TR55) procedure based on NRCS (National Resources Conservation Services) guidelines, and NRCS-UH rainfall-runoff model. Similarly,...
Numerical optimization using flow equations.
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
Numerical optimization using flow equations
NASA Astrophysics Data System (ADS)
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.
2015-08-01
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.
[Dopplerography of the large hepatic veins in the diagnosis of tricuspid valve insufficiency].
Korytnikov, K I; Martyniuk, A D; Pustovit, L K
1991-01-01
During pulse dopplerography of the large hepatic veins in patients with tricuspid valve failure, the differences in the shape of the spectrum of Doppler's frequencies were revealed as dependent on cardiac rhythm. In sinus rhythm, the curve of the systolic flow is recordable beneath the baseline, in atrial fibrillation, over the baseline. In scanning of the large hepatic veins in patients with tricuspid valve failure, the shape of the curves of the spectrum of Doppler's frequencies coincides with the shape of the curves of liver pulsation. Tricuspid valve failure in sinus rhythm leads to a decrease of the maximum velocity of the systolic flow in the hepatic veins. There is a close correlation between the maximum velocity of the systolic flow of tricuspid regurgitation and the maximum velocity of the systolic flow in the large hepatic veins. Pulse dopplerography of the large hepatic veins is a safe enough method of the diagnosis of tricuspid valve failure and can be used in difficult cases when analysing the tricuspid blood flow from standard projections.
Harada, Kenji; Toyono, Manotomo; Tamura, Masamichi
2004-06-01
Transthoracic Doppler echocardiography provides noninvasive measurements of coronary blood flow in the left anterior descending coronary artery (LAD). This method has the potential to show the effects of acute changes in loading conditions on blood flow. Coil closure of patent ductus arteriosus (PDA) is a model of acute changes in blood pressure and left ventricular (LV) preload that influences coronary blood flow. We applied this technique to assess the coronary blood flow changes for patients with PDA before and immediately after PDA coil closure. We examined 9 patients (1.8 +/- 1.1 years) with simple PDA and 8 age-matched healthy children. LV dimensions and LV mass were measured. Maximum peak flow velocity and flow volume in the LAD were measured. Pulmonary to systemic flow ratios (Qp/Qs) were obtained by cardiac catheterization. After PDA coil closure, LV end-diastolic dimension decreased, and systolic and diastolic blood pressures increased significantly. The maximum peak flow velocity, LAD flow volume, and the ratio of LAD flow volume to LV mass increased significantly. The changes in maximum peak flow velocity and the ratio of LAD flow volume to LV mass (F/M) correlated positively with the changes in diastolic pressure and Qp/Qs. In 5 patients who had Qp/Qs > 1.5, the mean F/M was significantly lower compared with control subjects, but they increased to normal values after coil closure of PDA. PDA coil closure increases diastolic pressure and decreases Qp/Qs, resulting in improvement of myocardial perfusion. These findings provide new insights into the relationship between cardiac function and coronary circulation in pediatric patients with heart diseases associated with PDA.
NASA Astrophysics Data System (ADS)
Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui
2016-04-01
The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.
Large-eddy simulation of flow around an airfoil on a structured mesh
NASA Technical Reports Server (NTRS)
Kaltenbach, Hans-Jakob; Choi, Haecheon
1995-01-01
The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.
NASA Astrophysics Data System (ADS)
Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei
2018-05-01
The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.
40 CFR 89.415 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The controlling...
NASA Astrophysics Data System (ADS)
Kubota, Kouhei; Nuruki, Atsuo; Tamari, Youzou; Yunokuchi, Kazutomo
Recently, the stiff shoulder accompanying the muscle fatigue becomes an issue of public concern. Therefore, we paid attention to the effect of the thermal and magnetic stimulation for the muscle fatigue. The maximum voluntary contraction has recovered significantly, and also peripheral blood flow has increased by stimulation. In order to evaluate if the thermal and magnetic stimulation has any effects, three parameters was measured, which are the maximum voluntary contraction, peripheral blood flow and skin temperature. The skin temperature, however, did not changed significantly.
The constructal law of design and evolution in nature
Bejan, Adrian; Lorente, Sylvie
2010-01-01
Constructal theory is the view that (i) the generation of images of design (pattern, rhythm) in nature is a phenomenon of physics and (ii) this phenomenon is covered by a principle (the constructal law): ‘for a finite-size flow system to persist in time (to live) it must evolve such that it provides greater and greater access to the currents that flow through it’. This law is about the necessity of design to occur, and about the time direction of the phenomenon: the tape of the design evolution ‘movie’ runs such that existing configurations are replaced by globally easier flowing configurations. The constructal law has two useful sides: the prediction of natural phenomena and the strategic engineering of novel architectures, based on the constructal law, i.e. not by mimicking nature. We show that the emergence of scaling laws in inanimate (geophysical) flow systems is the same phenomenon as the emergence of allometric laws in animate (biological) flow systems. Examples are lung design, animal locomotion, vegetation, river basins, turbulent flow structure, self-lubrication and natural multi-scale porous media. This article outlines the place of the constructal law as a self-standing law in physics, which covers all the ad hoc (and contradictory) statements of optimality such as minimum entropy generation, maximum entropy generation, minimum flow resistance, maximum flow resistance, minimum time, minimum weight, uniform maximum stresses and characteristic organ sizes. Nature is configured to flow and move as a conglomerate of ‘engine and brake’ designs. PMID:20368252
The constructal law of design and evolution in nature.
Bejan, Adrian; Lorente, Sylvie
2010-05-12
Constructal theory is the view that (i) the generation of images of design (pattern, rhythm) in nature is a phenomenon of physics and (ii) this phenomenon is covered by a principle (the constructal law): 'for a finite-size flow system to persist in time (to live) it must evolve such that it provides greater and greater access to the currents that flow through it'. This law is about the necessity of design to occur, and about the time direction of the phenomenon: the tape of the design evolution 'movie' runs such that existing configurations are replaced by globally easier flowing configurations. The constructal law has two useful sides: the prediction of natural phenomena and the strategic engineering of novel architectures, based on the constructal law, i.e. not by mimicking nature. We show that the emergence of scaling laws in inanimate (geophysical) flow systems is the same phenomenon as the emergence of allometric laws in animate (biological) flow systems. Examples are lung design, animal locomotion, vegetation, river basins, turbulent flow structure, self-lubrication and natural multi-scale porous media. This article outlines the place of the constructal law as a self-standing law in physics, which covers all the ad hoc (and contradictory) statements of optimality such as minimum entropy generation, maximum entropy generation, minimum flow resistance, maximum flow resistance, minimum time, minimum weight, uniform maximum stresses and characteristic organ sizes. Nature is configured to flow and move as a conglomerate of 'engine and brake' designs.
Critical capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.
El aprendizaje significativo en las ciencias al participar en proyectos de investigacion cientifica
NASA Astrophysics Data System (ADS)
Mora Polanco, Miguelena
La ciencia es el eje fundamental a traves del cual se desarrollan las habilidades necesarias para el pensar cientifico que va a la busqueda del conocimiento cientifico. La intencion de este estudio fue indagar en el tema de investigacion cientifica desde el punto de vista de los participantes en los siguientes aspectos relacionados con la experiencia de investigacion cientifica: a) conceptos, b) proceso, c) destrezas y d) disposicion. Tambien se analizaron: a) las perspectivas del metodo cientifico, b) la estrategia de ensenanza, c) la cultura cientifica y d) la exposicion del proyecto investigativo en la Feria Cientifica; como parte del aprendizaje significativo de la ciencias de los participantes. Esta investigacion cualitativa propuso como diseno el estudio de caso. Los aspectos relacionados a la experiencia de participar en proyecto de investigacion cientifica son el fenomeno o caso bajo estudio. En el estudio participaron cinco (5) estudiantes egresados de escuela publica o privada que cursaban hasta el tercer ano de estudios universitarios, conducentes a un bachillerato en educacion secundaria en ciencias o en ciencias naturales. Las tecnicas utilizadas para recopilar los datos fueron: analisis de documentos del DEPR, revision de artefactos y entrevistas profundas. Para el analisis de los datos de las entrevistas se utilizo el modelo de Wolcott (1994). Del analisis de documentos del DEPR se identificaron areas a mejorar en las guias de las cartas circulares con relacion a la investigacion escolar y la feria cientifica. El analisis de los artefactos proveyo evidencia de como los internados, simposios e investigaciones fomentan el que los estudiantes se superen en el aspecto cognitivo, se conviertan en creadores del conocimiento, al hacer suyo los conceptos para poder explicarlos al publico. De las entrevistas los participantes manifestaron que la experiencia de investigacion fue una de aprendizaje significativo que los marco para toda la vida y les expandio su curiosidad de modo que lo aplican en su vida. La experiencia los ayudo en el entendimiento y la aplicacion de conceptos, procesos y destrezas relacionados con la ciencia. Finalmente, los participantes proveyeron las estrategias didacticas que desde su perspectiva facilitan la ensenanza-aprendizaje de la ciencia.
Low-latitude zonal and vertical ion drifts seen by DE 2
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.
1989-01-01
Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.
Estimation of additive forces and moments for supersonic inlets
NASA Technical Reports Server (NTRS)
Perkins, Stanley C., Jr.; Dillenius, Marnix F. E.
1991-01-01
A technique for estimating the additive forces and moments associated with supersonic, external compression inlets as a function of mass flow ratio has been developed. The technique makes use of a low order supersonic paneling method for calculating minimum additive forces at maximum mass flow conditions. A linear relationship between the minimum additive forces and the maximum values for fully blocked flow is employed to obtain the additive forces at a specified mass flow ratio. The method is applicable to two-dimensional inlets at zero or nonzero angle of attack, and to axisymmetric inlets at zero angle of attack. Comparisons with limited available additive drag data indicate fair to good agreement.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field
NASA Astrophysics Data System (ADS)
Razavi, Alireza; Sarkar, Partha P.
2018-03-01
To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.
Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed to produce similar run-out distances and maximum head velocities. Strongly cohesive bentonite flows were able to create a stronger network of particle bonds than weakly cohesive kaolinite flows of a similar concentration, thus producing the lower maximum head velocities and run-out distances observed. The lack of cohesion in the silica-flour laden flows meant that extremely high suspended sediment concentrations, i.e. close to the cubic packing density, were required to produce a high enough frictional strength to reduce the forward momentum of these flows. These experimental results can be used to improve our understanding of the deposit geometry and run-out distance of fine-grained SGFs in the natural environment. We suggest that natural SGFs that carry weakly cohesive clays (e.g. kaolinite) reach a greater distance from their origin than flows that contain strongly cohesive clays (e.g. bentonite) at similar suspended sediment concentrations, whilst equivalent fine-grained, non-cohesive SGFs travel the furthest. In addition, weakly cohesive SGFs may cover a larger surface area and have thinner deposits, with important ramifications for the architecture of stacked event beds.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...
Performance Investigations of a Large Centrifugal Compressor from an Experimental Turbojet Engine
NASA Technical Reports Server (NTRS)
Ginsburg, Ambrose; Creagh, John W. R.; Ritter, William K.
1948-01-01
An investigation was conducted on a large centrifugal compressor from an experimental turbojet engine to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the compressor indicated that the compressor would not meet the desired engine-design air-flow requirements (78 lb/sec) because of an air-flow restriction in the vaned collector (diffuser). Revision of the vaned collector resulted in an increased air-flow capacity over the speed range and showed improved matching of the impeller and diffuser components. At maximum flow, the original compressor utilized approximately 90 percent of the available geometric throat area at the vaned-collector inlet and the revised compressor utilized approximately 94 percent, regardless of impeller speed. The ratio of the maximum weight flows of the revised and original compressors were less than the ratio of effective critical throat areas of the two compressors because of the large pressure losses in the impeller near the impeller inelt and the difference increased with an increase in impeller speed. In order to further increase the pressure ratio and maximum weight flow of the compressor, the impeller must be modified to eliminate the pressure losses therein.
Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons
NASA Astrophysics Data System (ADS)
Wang, Tianju; Zhong, Zhong; Wang, Ju
2018-05-01
Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.
CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Sarbani; Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i
2010-07-01
We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find thatmore » the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.« less
The analysis and kinetic energy balance of an upper-level wind maximum during intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Jedlovec, G. J.
1982-01-01
The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.
Sudden Morphometric Changes Induced by Diffuse Mass Wasting Processes
NASA Astrophysics Data System (ADS)
Moretti, S.; Casagli, N.; Catani, F.; Battistini, A.; Raspini, F.
2010-12-01
On October 1st, 2009, an exceptionally intense and prolonged rainfall event, preceded by two similar storms on 16 and 23-24 September, triggered a large number of shallow landslides in the province of Messina (Sicily), causing human losses and extensive damages. In a follow-up study a detailed geomorphological survey was carried out as well as a LIDAR digital elevation model. In this paper we present an attempt at using such data to model and understand the mass wasting processes and their consequences in terms of slope morphometry changes in one of the affected watersheds, the Briga creek. Here, the event was characterized by a sudden triggering of many similar shallow soil failures, generating in turn a sediment flow that moved along the main directions of drainage with high velocities and modalities ranging from debris flow to mud flow. The main damages were registered at the channel junctions and at the watershed outlet, where the major mass concentration was reached. Starting from the landslide inventory mapping carried out a few days after the event, we performed an analisys of mobilized volumes, using a method that numerically compares the pre-event and the post-event DEMs. Afterwards, we generated a very accurate, morphology-based reconstruction of flow directions for the entire watershed, in order to understand which were the main avenues of mass flow over the area and where most of the mobilized sediment was deposited. Finally, combining the extensive data connected with landslide scars with a statistical model for the prediction of regolith thickness, we propose a distributed model of colluvium depth for the Briga watershed. The use of this dataset together with present-day topography as derived from LIDAR data allows for the definition of topographic and bedrock gradient maps which, in turn, constitute an important step towards the definition of the actual boundary conditions for slope stability analysis. We believe that this will be a fundamental component for the definition of the residual risk in the area
Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi
2017-01-01
Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996
Performance tests of a single-cylinder compression-ignition engine with a displacer piston
NASA Technical Reports Server (NTRS)
Moore, C S; Foster, H H
1935-01-01
Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.
Fontaine, Richard A.; Hill, Barry R.
2002-01-01
A combination of several meteorologic and topographic factors produced extreme rainfall over the eastern part of the island of Hawaii on November 1-2, 2000. Storm rainfall was concentrated in two distinct areas, the Waiakea and Kapapala areas, where maximum rainfall totals of 32.47 and 38.97 inches were recorded. Resultant flooding caused damages in excess of 70 million dollars, among the highest totals associated with flooding in the State's history. Storm rainfall had recurrence intervals that ranged from 10 years or less for maximum 1-hour totals to 100 years or more for maximum 24-hour totals As part of this study, peak flow and/or erosion data were collected at 41 sites. Analyses of these data indicated that peak discharges of record occurred at 6 of 12 sites where historic data were available. Peak flows with estimated recurrence intervals from 50 to over 100 years were recorded at 4 of 11 sites. Peak flows were poorly correlated with total storm rainfall. Critical rainfall durations associated with peak flows ranged from 1 to 12 hours and were about 3 hours at most sites. Rainfall-runoff computations and field observations indicated that infiltration-excess overland flow alone was not sufficient to have caused the observed flood peaks and therefore saturation-excess overland flow and subsurface flow probably contributed to peak flows at most sites Most hillslope erosion associated with the storm took place along or near the Kaoiki Pali in the Kapapala area. Hillslope erosion was predominately caused by overland flow.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.
Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V
2009-06-01
The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.
Traffic jam dynamics in stochastic cellular automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, K.; Schreckenberg, M.
1995-09-01
Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less
Reyes, Alvaro; Castillo, Adrián; Castillo, Javiera; Cornejo, Isabel
2018-05-01
To compare the effects of an inspiratory versus and expiratory muscle-training program on voluntary and reflex peak cough flow in patients with Parkinson disease. A randomized controlled study. Home-based training program. In all, 40 participants with diagnosis of Parkinson's disease were initially recruited in the study and randomly allocated to three study groups. Of them, 31 participants completed the study protocol (control group, n = 10; inspiratory training group, n = 11; and expiratory training group, n = 10) Intervention: The inspiratory and expiratory group performed a home-based inspiratory and expiratory muscle-training program, respectively (five sets of five repetitions). Both groups trained six times a week for two months using a progressively increased resistance. The control group performed expiratory muscle training using the same protocol and a fixed resistance. Spirometric indices, maximum inspiratory pressure, maximum expiratory pressure, and peak cough flow during voluntary and reflex cough were assessed before and at two months after training. The magnitude of increase in maximum expiratory pressure ( d = 1.40) and voluntary peak cough flow ( d = 0.89) was greater for the expiratory muscle-training group in comparison to the control group. Reflex peak cough flow had a moderate effect ( d = 0.27) in the expiratory group in comparison to the control group. Slow vital capacity ( d = 0.13) and forced vital capacity ( d = 0.02) had trivial effects in the expiratory versus the control group. Two months of expiratory muscle-training program was more beneficial than inspiratory muscle-training program for improving maximum expiratory pressure and voluntary peak cough flow in patients with Parkinson's disease.
Preferred modes in jets: comparison between different measures of the receptivity
NASA Astrophysics Data System (ADS)
Garnaud, Xavier; Lesshafft, Lutz; Schmid, Peter J.; Huerre, Patrick
2012-11-01
The response of jets to frequency forcing is usually measured experimentally in terms of the maximum amplitude of velocity fluctuations reached along the axis (Crow & Champagne (1971)). In the present work, the preferred mode of isothermal jets is discussed in terms of the linear flow response to time-harmonic forcing (Trefethen et al. (1993)). The optimal frequency response is computed for different choices of the objective functional: the usual energy (L2) norm and the maximum amplitude over the entire domain (L∞ norm). The relevance and limitations of the different objective functionals are critically analyzed. Although the dominant flow structures are robustly identified in all cases, the measure of the flow response in terms of the maximum amplitude does not suffer from the continually slow axial growth of low frequency perturbations. The financial support of the EADS Foundation is gratefully acknowledged.
40 CFR 141.719 - Additional filtration toolbox components.
Code of Federal Regulations, 2011 CFR
2011-07-01
... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... Detection Limit) (5) Challenge testing must be conducted at the maximum design flow rate for the filter as... representative hydraulic conditions at the maximum design flux and maximum design process recovery specified by...
40 CFR 141.719 - Additional filtration toolbox components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... Detection Limit) (5) Challenge testing must be conducted at the maximum design flow rate for the filter as... representative hydraulic conditions at the maximum design flux and maximum design process recovery specified by...
Observed and Predicted Pier Scour in Maine
Hodgkins, Glenn A.; Lombard, Pamela J.
2002-01-01
Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.
Debris flow-induced topographic changes: effects of recurrent debris flow initiation.
Chen, Chien-Yuan; Wang, Qun
2017-08-12
Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.
On the connection between Maximum Drag Reduction and Newtonian fluid flow
NASA Astrophysics Data System (ADS)
Whalley, Richard; Park, Jae-Sung; Kushwaha, Anubhav; Dennis, David; Graham, Michael; Poole, Robert
2014-11-01
To date, the most successful turbulence control technique is the dissolution of certain rheology-modifying additives in liquid flows, which results in a universal maximum drag reduction (MDR) asymptote. The MDR asymptote is a well-known phenomenon in the turbulent flow of complex fluids; yet recent direct numerical simulations of Newtonian fluid flow have identified time intervals showing key features of MDR. These intervals have been termed ``hibernating turbulence'' and are a weak turbulence state which is characterised by low wall-shear stress and weak vortical flow structures. Here, in this experimental investigation, we monitor the instantaneous wall-shear stress in a fully-developed turbulent channel flow of a Newtonian fluid with a hot-film probe whilst simultaneously measuring the streamwise velocity at various distances above the wall with laser Doppler velocimetry. We show, by conditionally sampling the streamwise velocity during low wall-shear stress events, that the MDR velocity profile is approached in an additive-free, Newtonian fluid flow. This result corroborates recent numerical investigations, which suggest that the MDR asymptote in polymer solutions is closely connected to weak, transient Newtonian flow structures.
Microspheres as resistive elements in a check valve for low pressure and low flow rate conditions.
Ou, Kevin; Jackson, John; Burt, Helen; Chiao, Mu
2012-11-07
In this paper we describe a microsphere-based check valve integrated with a micropump. The check valve uses Ø20 μm polystyrene microspheres to rectify flow in low pressure and low flow rate applications (Re < 1). The microspheres form a porous medium in the check valve increasing fluidic resistance based on the direction of flow. Three check valve designs were fabricated and characterized to study the microspheres' effectiveness as resistive elements. A maximum diodicity (ratio of flow in the forward and reverse direction) of 18 was achieved. The pumping system can deliver a minimum flow volume of 0.25 μL and a maximum flow volume of 1.26 μL under an applied pressure of 0.2 kPa and 1 kPa, respectively. A proof-of-concept study was conducted using a pharmaceutical agent, docetaxel (DTX), as a sample drug showing the microsphere check valve's ability to limit diffusion from the micropump. The proposed check valve and pumping concept shows strong potential for implantable drug delivery applications with low flow rate requirements.
Khani, Mohammadreza; Xing, Tao; Gibbs, Christina; Oshinski, John N; Stewart, Gregory R; Zeller, Jillynne R; Martin, Bryn A
2017-08-01
A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
Development of flow in a square mini-channel: Effect of flow oscillation
NASA Astrophysics Data System (ADS)
Lobo, Oswald Jason; Chatterjee, Dhiman
2018-04-01
In this research paper, we present a numerical prediction of steady and fully oscillatory flows in a square mini-channel connected between two plenums. Flow separation occurs at the contraction of the plenum into the channel which causes an asymmetry in the development of flow in the entrance region. The entrance length and recirculation length are found, for both steady and fully oscillatory flows. It is shown that the maximum entrance length decreases with an increase in the oscillating frequency while the maximum recirculation length and recirculation area increase with an increase in oscillating frequency. The phase of a velocity signal is shown to be a strong function of its location. The phase difference between the velocities with respect to the different points along the centerline and those at the middle of the channel show a significant dependence on the driving frequency. There is a significant variation in the phase angles of the velocity signals computed between a point near the wall and that at the centerline. This phase difference decreases along the channel length and does not change beyond the entrance length. This feature can then be used to determine the maximum entrance length, which is otherwise problematic to ascertain in the case of fully oscillatory flows. The entrance length, thus obtained, is compared with that obtained from the velocity profile consideration and shows good similarity. The phase difference between pressure and velocity is also brought out in this work.
Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.
2015-01-01
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560
Studies on unsteady pressure fields in the region of separating and reattaching flows
NASA Astrophysics Data System (ADS)
Govinda Ram, H. S.; Arakeri, V. H.
1990-12-01
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Searching for the fastest dynamo: laminar ABC flows.
Alexakis, Alexandros
2011-08-01
The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.
End-of-life flows of multiple cycle consumer products.
Tsiliyannis, C A
2011-11-01
Explicit expressions for the end-of-life flows (EOL) of single and multiple cycle products (MCPs) are presented, including deterministic and stochastic EOL exit. The expressions are given in terms of the physical parameters (maximum lifetime, T, annual cycling frequency, f, number of cycles, N, and early discard or usage loss). EOL flows are also obtained for hi-tech products, which are rapidly renewed and thus may not attain steady state (e.g., electronic products, passenger cars). A ten-step recursive procedure for obtaining the dynamic EOL flow evolution is proposed. Applications of the EOL expressions and the ten-step procedure are given for electric household appliances, industrial machinery, tyres, vehicles and buildings, both for deterministic and stochastic EOL exit, (normal, Weibull and uniform exit distributions). The effect of the physical parameters and the stochastic characteristics on the EOL flow is investigated in the examples: it is shown that the EOL flow profile is determined primarily by the early discard dynamics; it also depends strongly on longevity and cycling frequency: higher lifetime or early discard/loss imply lower dynamic and steady state EOL flows. The stochastic exit shapes the overall EOL dynamic profile: Under symmetric EOL exit distribution, as the variance of the distribution increases (uniform to normal to deterministic) the initial EOL flow rise becomes steeper but the steady state or maximum EOL flow level is lower. The steepest EOL flow profile, featuring the highest steady state or maximum level, as well, corresponds to skew, earlier shifted EOL exit (e.g., Weibull). Since the EOL flow of returned products consists the sink of the reuse/remanufacturing cycle (sink to recycle) the results may be used in closed loop product lifecycle management operations for scheduling and sizing reverse manufacturing and for planning recycle logistics. Decoupling and quantification of both the full age EOL and of the early discard flows is useful, the latter being the target of enacted legislation aiming at increasing reuse. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modeling Food Delivery Dynamics For Juvenile Salmonids Under Variable Flow Regimes
NASA Astrophysics Data System (ADS)
Harrison, L.; Utz, R.; Anderson, K.; Nisbet, R.
2010-12-01
Traditional approaches for assessing instream flow needs for salmonids have typically focused on the importance of physical habitat in determining fish habitat selection. This somewhat simplistic approach does not account for differences in food delivery rates to salmonids that arise due to spatial variability in river morphology, hydraulics and temporal variations in the flow regime. Explicitly linking how changes in the flow regime influences food delivery dynamics is an important step in advancing process-based bioenergetic models that seek to predict growth rates of salmonids across various life-stages. Here we investigate how food delivery rates for juvenile salmonids vary both spatially and with flow magnitude in a meandering reach of the Merced River, CA. We utilize a two-dimensional (2D) hydrodynamic model and discrete particle tracking algorithm to simulate invertebrate drift transport rates at baseflow and a near-bankfull discharge. Modeling results indicate that at baseflow, the maximum drift density occurs in the channel thalweg, while drift densities decrease towards the channel margins due to the process of organisms settling out of the drift. During high-flow events, typical of spring dam-releases, the invertebrate drift transport pathway follows a similar trajectory along the high velocity core and the drift concentrations are greatest in the channel centerline, though the zone of invertebrate transport occupies a greater fraction of the channel width. Based on invertebrate supply rates alone, feeding juvenile salmonids would be expected to be distributed down the channel centerline where the maximum predicted food delivery rates are located in this reach. However, flow velocities in these channel sections are beyond maximum sustainable swimming speeds for most juvenile salmonids. Our preliminary findings suggest that a lack of low velocity refuge may prevent juvenile salmonids from deriving energy from the areas with maximum drift density in this reach. Future efforts will focus on integration of food delivery and bioenergetic models to account for conflicting demands of maximizing food intake while minimizing the energetic costs of swimming.
Heusch, Philipp; Wittsack, Hans-Jörg; Kröpil, Patric; Blondin, Dirk; Quentin, Michael; Klasen, Janina; Pentang, Gael; Antoch, Gerald; Lanzman, Rotem S
2013-01-01
To evaluate the impact of renal blood flow on apparent diffusion coefficients (ADC) and fractional anisotropy (FA) using time-resolved electrocardiogram (ECG)-triggered diffusion-tensor imaging (DTI) of the human kidneys. DTI was performed in eight healthy volunteers (mean age 29.1 ± 3.2) using a single slice coronal echoplanar imaging (EPI) sequence (3 b-values: 0, 50, and 300 s/mm(2)) at the timepoint of minimum (20 msec after R wave) and maximum renal blood flow (200 msec after R wave) at 3T. Following 2D motion correction, region of interest (ROI)-based analysis of cortical and medullary ADC- and FA-values was performed. ADC-values of the renal cortex at maximum blood flow (2.6 ± 0.19 × 10(-3) mm(2)/s) were significantly higher than at minimum blood flow (2.2 ± 0.11 × 10(-3) mm(2)/s) (P < 0.001), while medullary ADC-values did not differ significantly (maximum blood flow: 2.2 ± 0.18 × 10(-3) mm(2)/s; minimum blood flow: 2.15 ± 0.14 × 10(-3) mm(2)/s). FA-values of the renal medulla were significantly greater at maximal blood (0.53 ± 0.05) than at minimal blood flow (0.47 ± 0.05) (P < 0.01). In contrast, cortical FA-values were comparable at different timepoints of the cardiac cycle. ADC-values in the renal cortex as well as FA-values in the renal medulla are influenced by renal blood flow. This impact has to be considered when interpreting renal ADC- and FA-values. Copyright © 2012 Wiley Periodicals, Inc.
An analysis of effect of land use change on river flow variability
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang
2018-02-01
Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.
Simulated effects of groundwater withdrawals from aquifers in Ocean County and vicinity, New Jersey
Cauller, Stephen J.; Voronin, Lois M.; Chepiga, Mary M.
2016-10-21
Rapid population growth since the 1930s in Ocean County and vicinity, New Jersey, has placed increasing demands upon the area’s freshwater resources. To examine effects of groundwater withdrawals, a three-dimensional groundwater-flow model was developed to simulate the groundwater-flow systems of five area aquifers: the unconfined Kirkwood-Cohansey aquifer system and Vincentown aquifer, and three confined aquifers— the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, and the Piney Point aquifer. The influence of withdrawals is evaluated by using transient groundwater-flow model simulations that incorporate three withdrawal schemes. These are (1) no-withdrawal conditions; (2) 2000–03 withdrawal conditions, using reported monthly withdrawals at all production wells from January 2000 through December 2003; and (3) maximum-allocation withdrawal conditions using the maximum withdrawal allowed by New Jersey Department of Environmental Protection permits at each well. Particle tracking analysis, using results from model simulations, delineated particle flow paths from production wells to the point of recharge, and estimated particle travel times.Compared with no-withdrawal conditions, 2000–03 withdrawal conditions reduced the amount of groundwater flow out of the Kirkwood-Cohansey aquifer system into streams, increased the net flow of water into other layers, reduced net flow into or out of storage, and reduced flow from the Kirkwood-Cohansey aquifer system to constant head cells.Freshwater discharging to the Barnegat Bay-Little Egg Harbor estuary from streams and groundwater is essential to maintaining the ecology of the bay. Examination of selected stress periods indicates that simulated base flow in streams flowing into the Barnegat Bay-Little Egg Harbor estuary is reduced by as much as 49 cubic feet per second for 2000 to 2003 withdrawal conditions when compared with no-withdrawal conditions.In the three confined aquifers, water levels during periods of low recharge and high withdrawals, and high recharge and low withdrawals, were examined to determine seasonal effects on the confined flow systems. The simulated potentiometric surface of the Rio Grande water-bearing zone and the Atlantic City 800-foot sand during selected stress periods indicates substantial declines from no-withdrawal conditions to 2000–03 conditions as a result of groundwater withdrawals. Cones of depression in Toms River Township, Seaside Heights and Seaside Park Boroughs, and Barnegat Light Borough developed in the potentiometric surface of the Piney Point aquifer in response to withdrawals.Maximum-allocation withdrawals decreased flow out of the Kirkwood-Cohansey aquifer system to constant head cells, increased flow out of the aquifer system to adjacent and lower layers, and reduced groundwater discharge to streams when compared with 2000–03 withdrawal conditions. Increases in withdrawals from the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, and the Piney Point aquifer result in an increase in simulated net groundwater flow into these aquifers. Base-flow reduction from 2000–03 conditions to maximum-allocation conditions of 25 to 29 cubic feet per second in all streams draining to the Barnegat Bay-Little Egg Harbor also is indicated. Potentiometric surfaces of the Rio Grande water-bearing zone, Atlantic City 800-foot sand, and the Piney Point aquifer during two stress periods of simulated maximum-allocation withdrawal conditions indicated the expansion of several cones of depression developed during 2000–03 withdrawals.Simulation of average 2000–03 withdrawal conditions indicated the extent to which the groundwater-flow system is susceptible to potential saltwater intrusion into near-shore wells. Travel time from recharge to discharge location ranged from 11 to approximately 50,700 years in near-shore Kirkwood-Cohansey aquifer system wells. Those in Seaside Heights Borough, in Island Beach State Park (Berkeley Township), and in Ship Bottom Borough have particle travel times from 140 to 12,000 years and flow paths that originated under Barnegat Bay or the Atlantic Ocean from the simulation of average maximum-allocation withdrawal conditions.Travel time along flow paths to wells screened in the Rio Grande water-bearing zone and the Atlantic City 800-foot sand from recharge to discharge point ranged from nearly 530 years to greater than 3.73 million years from the simulation of average 2000–03 withdrawal conditions. Particle tracking indicated that most wells screened in these aquifers derived a large part of their recharge from the Oswego River Basin, with a small portion of flow originating either beneath Barnegat Bay or to the east beneath the Atlantic Ocean. Travel time along flow paths that start beneath either Barnegat Bay or the Atlantic Ocean ranged from 2,300 to approximately 134,000 years from the simulation of average maximum-allocation withdrawal conditions."
Maximum drag reduction simulation using rodlike polymers.
Gillissen, J J J
2012-10-01
Simulations of maximum drag reduction (MDR) in channel flow using constitutive equations for suspensions of noninteracting rods predict a few-fold larger turbulent kinetic energy than in experiments using rodlike polymers. These differences are attributed to the neglect of interactions between polymers in the simulations. Despite these inconsistencies the simulations correctly reproduce the essential features of MDR, with universal profiles of the mean flow and the shear stress budgets that do not depend on the polymer concentration.
Re-injection feasibility study of fracturing flow-back fluid in shale gas mining
NASA Astrophysics Data System (ADS)
Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao
2018-02-01
Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.
[National epidemiological surveillance systems of mesothelioma cases].
Ferrante, Pierpaolo; Binazzi, Alessandra; Branchi, Claudia; Marinaccio, Alessandro
2016-01-01
INTRODUZIONE: sebbene la relazione causale tra esposizione ad amianto e malattie neoplastiche sia ben nota, in molti Paesi il consumo del materiale è ancora rilevante e crescente. A causa della lunga latenza, nei Paesi dove è stato bandito (come in Italia) è oggi in corso un'epidemia di malattie correlate ad amianto. OBIETTIVI: descrivere i sistemi di sorveglianza dei mesoteliomi attivi nel mondo mediante un'analisi comparativa. è stata condotta una revisione bibliografica della letteratura disponibile sui sistemi di sorveglianza epidemiologica dei mesoteliomi attivi nel mondo, comparando metodi e risultati disponibili. RISULTATI: sistemi di ricerca dei casi incidenti e di analisi anamnestica dei soggetti ammalati sono attivi solo in Italia, Francia e Corea del Sud. I Paesi presso i quali sono attivi sistemi di rilevazione e controllo dei casi incidenti di mesotelioma sono quelli in cui vige il bando dell'amianto e che hanno sperimentato consumi rilevanti in passato. Non sono stati istituiti sistemi epidemiologici di sorveglianza in molti Paesi dove il consumo di amianto è ancora importante (inclusi Russia, Cina, India e Brasile). CONCLUSIONI: si conferma l'importanza dei sistemi di sorveglianza epidemiologica dei mesoteliomi per la sanità pubblica, il sostegno alle politiche di welfare e la prevenzione dei rischi. Lo sviluppo di progetti per tendere a una maggiore uniformità nei metodi di ricerca dei casi, di classificazione delle diagnosi e dell'esposizione e nelle tecniche di analisi dei dati potrebbe consentire una maggiore fruibilità dei dati aggregati. La disponibilità di dati internazionali confrontabili può essere di stimolo all'adozione di provvedimenti di bando internazionale.
Giuliani, Jacopo; Bonetti, Andrea
2017-12-01
Riassunto. L'analisi è stata condotta al fine di valutare l'effetto sia sulla sopravvivenza globale (OS) sia sulla sopravvivenza libera da progressione di malattia (PFS) della chemioterapia di combinazione in prima linea per il carcinoma pancreatico in fase avanzata di malattia. La presente analisi è limitata agli studi randomizzati controllati (RCT) di fase III. Successivamente è stata applicata la European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) agli RCT di fase III analizzati per ricavare uno score relativo all'entità del beneficio clinico ottenuto per ciascun RCT. Sono state calcolate inoltre le differenze in termini di PFS tra i diversi bracci di trattamento rapportandole con i costi dei farmaci necessari per ottenere il beneficio di PFS. La nostra analisi ha valutato 11 RCT di fase III, per un totale di 4572 pazienti. Combinando i costi della terapia con la misura dell'efficacia espressa dalla PFS, è stato ottenuto un costo di 74,12 euro (€) per mese di vita guadagnato in termini di PFS con la combinazione di 5-fluorouracil, leucovorin, irinotecan e oxaliplatino (FOLFIRINOX), 90,14 € per la combinazione di gemcitabina e oxaliplatino (GEMOX) e 4708,7 € per la combinazione di nab-paclitaxel e gemcitabina. Da questo punto di vista riteniamo che l'utilizzo delle "vecche chemioterapie di combinazione" (per es., GEMOX) non dovrebbe essere completamente abbandonato, ma valutato sul singolo paziente, sulla base di diversi fattori (età, ECOG PS, comorbilità, carico di malattia), al fine di ottenere una reale "tailored therapy".
Novak, Vera; Yang, Albert C C; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang
2004-10-25
This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 +/- 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.
Small Scale Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan
2015-01-01
A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
33 CFR Appendix A to Part 154 - Guidelines for Detonation Flame Arresters
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CG-522). 1. Scope 1.1This standard provides the minimum requirements for design, construction.../Circ. 373/Rev. 1—Revised Standards for the Design, Testing and Locating of Devices to Prevent the... maximum design pressure drop for that maximum flow rate. 6.1.10Maximum operating pressure. 7. Materials 7...
ERIC Educational Resources Information Center
Hart, Vincent G.
1981-01-01
Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)
Investigations on cooling with forced flow of He II. Part 2
NASA Astrophysics Data System (ADS)
Srinivasan, R.; Hofmann, A.
The measurements described in Part 1 of this Paper have been extended to a pressure of 7 bar . The value of the conductivity function, f( T), at a temperature greater than Tmax, at which it exhibits a maximum, drops rapidly with increasing pressure. Below Tmax the change in f( T) with pressure is less drastic. The Gorter-Mellink constant, AGM, increases linearly with pressure in the range 1.5-2 K and its pressure coefficient at 1 bar is 0.038 ± 0.01 per bar, independent of temperature. The superfilter is tested at 1.8 K. The flow through the superfilter is Gorter-Mellink flow. The maximum flow rate decreases as the pressure increases. The temperature distribution in the test section with and without flow is adequately described by the one-dimensional model discussed in Part 1. It is concluded that for heat transfer to He II in forced flow there is no advantage in working at pressures > 1 bar. 1 bar = 100 kPa
Traffic flow behavior at a single-lane urban roundabout
NASA Astrophysics Data System (ADS)
Lakouari, N.; Oubram, O.; Ez-Zahraouy, H.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.
In this paper, we propose a stochastic cellular automata model to study the traffic behavior at a single-lane roundabout. Vehicles can enter the interior lane or exit from it via N intersecting lane, the boundary conditions are stochastic. The traffic is controlled by a self-organized scheme. It has turned out that depending on the rules of insertion to the roundabout, five distinct traffic phases can appear, namely, free flow, congestion, maximum current, jammed and gridlock. The transition between the free flow and the gridlock is forbidden. The density profiles are used to study the traffic pattern at the interior lane of the roundabout. In order to quantify the interactions between vehicles in the interior lane of the roundabout, the velocity correlation coefficient (VCC) is also studied. Besides, the spatiotemporal diagrams corresponding to the entry/exit lanes are derived numerically. Furthermore, we have investigated the effect of displaying signal (PIn), as the PIn decreases, the maximum current increases at the expense of the free flow and the jamming phase. Finally, we have investigated the effect of the braking probability P on the interior lane of the roundabout. We have found that the increase of P raises the spontaneous jam formation on the ring. Thus, enlarges the maximum current and the jamming phase while the free flow phase decreases.
Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Ghaffari, Farhad
2012-01-01
Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.
NASA Astrophysics Data System (ADS)
Rivera Pacheco, Andres
El proposito de esta investigacion, un estudio cualitativo de caso, fue comparar y contrastar el curriculo vigente de la Escuela de Optometria de la UIAPR con las competencias y estandares requeridos por las agencias de acreditacion y de revalida. Con este proposito, decidimos realizar una revision y un analisis de documentos: el prontuario de cada uno de los cursos de los curriculos implantados en el 1993 y en el 2001; las competencias y estandares establecidos por las agencias de revalida y de acreditacion; y las estadisticas en las que se analiza el porcentaje de estudiantes que aprueban cada una de las partes de los examenes de revalida entre el 1998 al 2003. Se realizaron entrevistas dirigidas para dar apoyo y complementar la revision y el analisis de estos documentos. Los participantes de las entrevistas fueron tres estudiantes de la clase de optometria del 2004 (ultima clase del curriculo del 1993); tres estudiantes de la clase de optometria del 2005 (primera clase graduanda del curriculo vigente) y tres profesores y/o directores de los Departamentos de Ciencias Basicas, Ciencias Clinicas y Cuidado al Paciente. Esta investigacion se enmarco en el modelo de evaluacion curricular de discrepancia de Malcolm Provus y en el modelo de desarrollo basado en competencias. Uno de los hallazgos mas importantes del estudio es que los cambios que se implantaron al curriculo del 2001 no han logrado que los estudiantes mejoren su ejecucion en los examenes de revalida. Por otro lado, se encontro que el curriculo vigente atiende completamente los estandares de la practica de Optometria, pero no las competencias. Esta informacion fue validada mediante el uso de una tabla de cotejo para el analisis de los cursos y de la informacion obtenida de las entrevistas. El estudio determina y concluye que existen discrepancias entre los prontuarios de los cursos del curriculo y las competencias requeridas por la agencia de revalida. Segundo, que el Departamento de Ciencias Basicas es el que presenta mas deficiencias en el desarrollo de las competencias. El investigador recomienda disenar e implantar un curriculo basado en competencias y proveer formacion en didactica y procesos de aprendizaje a los profesores.
NASA Astrophysics Data System (ADS)
Delgado, Isabel C.
Los modelos de eensenanza y aprendizaje constructivistas conceptualizan el aprendizaje como un proceso activo. El modelo de Aprendizaje Basado en Proyectos (ABPr) se distingue por una serie de componentes, entre los cuales se destaca el aspecto colaborativo y cooperativo como un reto al momento de su implantacion. Son pocas las investigaciones que se concentran en este aspecto del modelo. En este estudio, se analizaron las diversas interacciones que surgen durante la implantacion de una unidad curricular sobre el tema de Geologia de Puerto Rico, la cual se diseno con el modelo ABPr cuyo enfoque es orientacion a proyectos. Particularmente, se examinaron las interacciones sociales que surgen entre los pares y entre pares y docente durante el proceso de planificacion y desarrollo de los productos finales, al igual que las interacciones entre los estudiantes y el material didactico en estas etapas del modelo. La investigacion es de tipo cualitativo e incorpora como diseno el estudio de caso. Las diversas interacciones constituyen la unidad de analisis. En el estudio participaron 19 estudiantes de 9no grado, a quienes se organizaron en 5 grupos colaborativos por temas de interes (Pangea, Placas tectonicas, Volcanes, Tsunamis y Terremotos). Las tecnicas que se utilizaron para recopilar los datos fueron: observaciones participativas, grupos focales y analisis de documentos (cuadernos reflexivos y respuestas de los estudiantes a la pregunta central del proyecto). Para el analisis de los datos se aplico la teoria de actividad (CHAT) que concentra la unidad de analisis en la actividad humana en un contexto particular. Los resultados del estudio senalan que las interacciones entre pares, entre pares y docente, asi como entre estudiantes y material didactico son fundamentales en el proceso de aprendizaje. Una mayor interaccion entre pares durante las etapas de planificar y desarrollar los productos finales de la unidad, promueve una mejor comprension de los conceptos de la unidad, segun evidencia los productos finales del ABPr. La interaccion con el docente es muy importante para mediar los conflictos y desacuerdos que surgen como parte de las interacciones entre pares. Por lo tanto, el uso de diversas estrategias de andamiaje por parte del docente durante las reuniones de los grupos colaborativos es esencial para el exito del modelo ABPr.
Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.
1993-01-01
Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.
Floods of December 1964 and January 1965 in the Far Western States; Part 1 Description
Waananen, A.O.; Harris, D.D.; Williams, R.C.
1971-01-01
The floods of December 1964 and January 1965 in the Far Western States were extreme; in many areas, the greatest in the history of recorded streamflow and substantially greater than those of December 1955. An unusually large area--Oregon, most of Idaho, northern California, southern Washington, and small areas in western and northern Nevada--was involved. It exceeded the area flooded in 1955. Outstanding features included recordbreaking peak discharges, high sediment concentrations, large sediment loads, and extensive flood damage. The loss of 47 lives and direct property damage of more than $430 million was attributable to the floods. Yet, storage in reservoirs and operation of flood-control facilities were effective in preventing far greater damages in many areas, particularly in the Central Valley in California and the Willamette River basin in Oregon. The floods were caused by three principal storms during the period December 19 to January 31. The December 19-23 storm was the greatest in overall intensity and areal extent. Crests occurred on many major streams December 23, 1964, 9 years to the day after the great flood of December 23, 1955. The January 2-7 storm produced extreme floods in some basins in California. The January 21-31 storm produced maximum stages in some streams in northeastern Oregon and southeastern Washington and a repetition of high flows in part of the Willamette River basin and in some basins in coastal Oregon. All the storms, and particularly the warm torrential rain December 21-23, reflected the combined effect of moist unstable airmasses, strong west-southwest winds, and mountain ranges oriented nearly at right angles to the flow of air. High air temperatures and strong winds associated with the storms caused melting of snow, and the meltwater augmented the rain that fell on frozen ground. The coastal areas of northern California and southern Oregon had measurable rain on as many as 50 days in December and January. A maximum precipitation of nearly 69 inches in the 2-month period was recorded in southern Oregon, and recorded runoff at several streamflow-measurement stations indicates that greater precipitation probably occurred at higher altitudes in these areas. Flood runoff in streams, not affected by regulation, exceeded any previously recorded throughout much of the area. Some streams that had particularly notable floods are: Deep and Plush Creeks in the Great Basin ix Oregon, where the maximum flows were nearly twice those of the record floods of 1963 ; Thomes Creek, a west-side Sacramento River tributary in the Central Valley, where the maximum flow was 160 percent of the record peak of 1955; Eel, Klamath, and Smith Rivers in north-coastal California, where the catastrophic peak flows were about 1-1/3 times the floods of 1955 and the legendary winter floods of 1861-62 and inundated, damaged, or destroyed nearly all communities along the main rivers; Grande Ronde River in the lower Snake River basin, where the peak discharge at La Grande was 1.6 times the previous maximum flow during 57 years of record; John Day River in the lower Columbia River basin, where the peak discharge at the McDonald Ferry gaging station exceeded the historic peak of 1894; many Willamette River tributaries, where maximum flows exceeded previous record flows; and the Rogue River in coastal Oregon, where the maximum flow of about 500,000 cfs below the Illinois River near Agness was 86,000 cfs greater than the previous maximum in a 74-year record. The partly regulated flow of the Willamette River far exceeded that in 1955. The suspended-sediment concentration and load of most streams greatly exceeded any that had been measured previously in the flood area. In Idaho, Washington, and Oregon, the ground thaw that preceded the period of high runoff resulted in conditions conducive to severe erosion of the uplands and subsequent deposition on flooded stream terraces. The greatest concentrations of suspended sedimen
Fluid-dynamic design optimization of hydraulic proportional directional valves
NASA Astrophysics Data System (ADS)
Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo
2014-10-01
This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.
NASA Astrophysics Data System (ADS)
Sumariyah; Kusminart; Hermanto, A.; Nuswantoro, P.
2016-11-01
EHD flow or ionic wind yield corona discharge is a stream coming from the ionized gas. EHD is generated by a strong electric field and its direction follows the electric field lines. In this study, the efficiency of the EHD flow generators utilizing pin-multi concentric rings electrodes (P-MRE) and the EHD pin-single ring electrode (P-SRE) have been measured. The comparison of efficiencies two types of the generator has been done. EHD flow was generated by using a high-voltage DC 0-10 KV on the electrode pin with a positive polarity and electrode ring/ multi-concentric rings of negative polarity. The efficiency was calculated by comparison between the mechanical power of flow to the electrical power that consumed. We obtained that the maximum efficiency of EHD flow generator utilizing pin-multi concentric rings electrodes was 0.54% and the maximum efficiency of EHD flow generator utilizing a pin-single ring electrode was 0.23%. Efficiency of EHD with P-MRE 2.34 times Efficiency of EHD with P-SRE
Analyzing Flows In Rocket Nuclear Reactors
NASA Technical Reports Server (NTRS)
Clark, J. S.; Walton, J. T.; Mcguire, M.
1994-01-01
CAC is analytical prediction program to study heat-transfer and fluid-flow characteristics of circular coolant passage. Predicts, as function of time, axial and radial fluid conditions, temperatures of passage walls, rates of flow in each coolant passage, and approximate maximum material temperatures. Written in ANSI standard FORTRAN 77.
Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar
2017-01-01
Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen
2015-11-01
Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.
1980-05-28
Total Deviation Angles and Measured Inlet Axial Velocity . . . . 55 ix LIST OF FIGURES (Continued) Figure Page 19 Points Defining Blade Sections of...distance from leading edge to point of maximum camber along chord line ar tip vortex core radius AVR axial velocity ratio (Vx /V x c chord length CL tip...yaw ceoefficient d longitudinal distance from leading edge to tip vortex calculation point G distance from chord line to maximum camber point K cascade
Consistent maximum entropy representations of pipe flow networks
NASA Astrophysics Data System (ADS)
Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael
2017-06-01
The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.
Influence Small State Force Design
2012-03-22
Intelligence, Surveillance, and Reconnaissance (ISR), and sustainment formations, become clusters of joint combat power that have the capacity for operations...Global System: Analisis and Ilustrationd from the Case of Island, (Aldershod: Ashgate, 1998), 8-10. 4 Davif Vital, The inequality of States: A
NASA Technical Reports Server (NTRS)
Montogomery, Leslie D.; Ku, Yu-Tsuan E.; Webbon, Bruce W. (Technical Monitor)
1995-01-01
We have prepared a computer program (RHEOSYS:RHEOencephalographic impedance trace scanning SyStem) that can be used to automate the analysis of segmental impedance blood flow waveforms. This program was developed to assist in the post test analysis of recorded impedance traces from multiple segments of the body. It incorporates many of the blood flow, segmental volume, and vascular state indices reported in the world literature. As it is currently programmed, seven points are selected from each blood flow pulse and associated ECG waveforrn: 1. peak of the first ECG QRS complex, 2. start of systolic slope on the blood flow trace, 3. maximum amplitude of the impedance pulse, 4. position of the dicrotic notch, 5. maximum amplitude of the postdicrotic segment, 6. peak of the second ECG QRS complex, and 7. start of the next blood flow pulse. These points we used to calculate various geometric, area, and time-related values associated with the impedance pulse morphology. RHEOSYS then calculates a series of 34 impedance and cardiac cycle parameters which include pulse amplitudes; areas; pulse propagation times; cardiac cycle times; and various measures of arterial and various tone, contractility, and pulse volume. We used this program to calculate the scalp and intracranial blood flow responses to head and neck cooling as it may be applied to lower the body temperatures of multiple sclerosis patients. Twelve women and twelve men were tested using a commercially available head and neck cooling system operated at its maximum cooling capacity for a period of 30 minutes. Head and neck cooling produced a transient change in scalp blood flow and a significant, (P<0.05) decrease of approx. 30% in intracranial blood flow. Results of this experiment will illustrate how REG and RHEOSYS can be used in biomedical applications.
NASA Astrophysics Data System (ADS)
Loomis, John; McTernan, James
2014-03-01
Whitewater river kayaking and river rafting require adequate instream flows that are often adversely affected by upstream water diversions. However, there are very few studies in the USA of the economic value of instream flow to inform environmental managers. This study estimates the economic value of instream flow to non-commercial kayakers derived using a Travel Cost Method recreation demand model and Contingent Valuation Method (CVM), a type of Contingent Behavior Method (CBM). Data were obtained from a visitor survey administered along the Poudre River in Colorado. In the dichotomous choice CVM willingness to pay (WTP) question, visitors were asked if they would still visit the river if the cost of their trip was Y higher, and the level of Y was varied across the sample. The CVM yielded an estimate of WTP that was sensitive to flows ranging from 55 per person per day at 300 Cubic Feet per Second (CFS) to a maximum 97 per person per day at flows of 1900 CFS. The recreation demand model estimated a boater's number of trips per season. We found the number of trips taken was also sensitive to flow, ranging from as little as 1.63 trips at 300 CFS to a maximum number of 14 trips over the season at 1900 CFS. Thus, there is consistency between peak benefits per trip and number of trips, respectively. With an average of about 100 non-commercial boaters per day, the maximum marginal values per acre foot averages about 220. This value exceeds irrigation water values in this area of Colorado.
A quantitative study on accumulation of age mass around stagnation points in nested flow systems
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Wei; Wan, Li; Ge, Shemin; Cao, Guo-Liang; Hou, Guang-Cai; Hu, Fu-Sheng; Wang, Xu-Sheng; Li, Hailong; Liang, Si-Hai
2012-12-01
The stagnant zones in nested flow systems have been assumed to be critical to accumulation of transported matter, such as metallic ions and hydrocarbons in drainage basins. However, little quantitative research has been devoted to prove this assumption. In this paper, the transport of age mass is used as an example to demonstrate that transported matter could accumulate around stagnation points. The spatial distribution of model age is analyzed in a series of drainage basins of different depths. We found that groundwater age has a local or regional maximum value around each stagnation point, which proves the accumulation of age mass. In basins where local, intermediate and regional flow systems are all well developed, the regional maximum groundwater age occurs at the regional stagnation point below the basin valley. This can be attributed to the long travel distances of regional flow systems as well as stagnancy of the water. However, when local flow systems dominate, the maximum groundwater age in the basin can be located around the local stagnation points due to stagnancy, which are far away from the basin valley. A case study is presented to illustrate groundwater flow and age in the Ordos Plateau, northwestern China. The accumulation of age mass around stagnation points is confirmed by tracer age determined by 14C dating in two boreholes and simulated age near local stagnation points under different dispersivities. The results will help shed light on the relationship between groundwater flow and distributions of groundwater age, hydrochemistry, mineral resources, and hydrocarbons in drainage basins.
NASA Astrophysics Data System (ADS)
Wang, Siru; Sun, Jinhua; Lei, Huimin; Zhu, Qiande; Jiang, Sanyuan
2017-04-01
Topography has a considerable influence on eco-hydrological processes resulting from the patterns of solar radiation distribution and lateral water flow. However, not much quantitative information on the contribution of lateral groundwater flow on ecological processes such as vegetation growth and evapo-transpiration is available. To fill this gap, we used a simple eco-hydrological model based on water balance with a 3D groundwater module that uses Darcy's law. This model was applied to a non-contributing area of 50km2 dominated by grassland and shrubland with an underlying shallow aquifer. It was calibrated using manually and remotely sensed vegetation data and water flux data observed by eddy covariance system of two flux towers as well as water table data obtained from HOBO recorders of 40 wells. The results demonstrate that the maximum hydraulic gradient and the maximum flux of lateral groundwater flow reached to 0.156m m-1 and 0.093m3 s-1 respectively. The average annual maximum LAI in grassland, predominantly in low-lying areas, improved by about 5.9% while that in shrubland, predominantly in high-lying areas, remained the same when lateral groundwater flow is considered adequately compared to the case without considering lateral groundwater flow. They also show that LAI is positively and nonlinearly related to evapotranspiration, and that the greater the magnitude of evapotranspiration, the smaller the rate of increase of LAI. The results suggest that lateral groundwater flow should not be neglected when simulating eco-hydrological process in areas with a shallow aquifer.
NASA Technical Reports Server (NTRS)
Hantzsche, W.; Wendt, H.
1942-01-01
For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.
NASA Technical Reports Server (NTRS)
Hartmann, Melvin J.; Graham, Robert C.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ-55-FF-1 turbo Jet engine. The test unit consisted of a row of inlet guide vanes and a supersonic rotor; the stator vanes after the rotor were omitted. The maximum pressure ratio produced in the single stage was 2.28 at an equivalent tip speed or 1814 feet per second with an adiabatic efficiency of approximately 0.61, equivalent weight flow of 13.4 pounds per second. The maximum efficiency of 0.79 was obtained at an equivalent tip speed of 801 feet per second.
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
The turbulence structure of katabatic flows below and above wind-speed maximum
NASA Astrophysics Data System (ADS)
Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher
2015-04-01
Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat (buoyancy) flux is completely cancelled by the generation of turbulence due to the horizontal heat (buoyancy) flux. Turbulence in the layer above the wind-speed maximum is decoupled from the surface and it is consistent with the classical local z-less predictions for stably stratified boundary layer.
Computing the Envelope for Stepwise Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2001-01-01
Estimating tight resource level is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with noises equal to the events and edges equal to the necessary predecessor links between events. The incremental solution of a staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. The staged algorithm has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible for use in the inner loop of search-based scheduling algorithms.
Computing the Envelope for Stepwise-Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2002-01-01
Computing tight resource-level bounds is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with nodes equal to the events and edges equal to the necessary predecessor links between events. A staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. Each stage has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible and promising for use in the inner loop of flexible-time scheduling algorithms.
The dynamics of the Venus ionosphere
NASA Technical Reports Server (NTRS)
Miller, K. L.
1988-01-01
Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.
Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity
NASA Technical Reports Server (NTRS)
Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi
2003-01-01
Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.
Novak, Vera; Yang, Albert CC; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang
2004-01-01
Background This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. Methods We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. Results A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. Conclusion In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure. PMID:15504235
Chen, Chi-Hau; Hsiao, Sheng-Mou; Chang, Ting-Chen; Wu, Wen-Yih; Lin, Ho-Hsiung
2016-05-01
To investigate the efficacy and urodynamic effects of baclofen in women with functional bladder outlet obstruction. Between January 2011 and December 2012, women who underwent baclofen treatment for functional bladder outlet obstruction, defined as <15 mL/s maximum flow rate and >20 cmH2 O detrusor pressure at maximum flow rate, but without significant anatomic causes, were retrospectively reviewed. Urodynamic variables at baseline and after 12 weeks of treatment were compared. Twenty women with functional bladder outlet obstruction underwent 12 weeks of baclofen treatment (oral baclofen 5 mg, three times daily). All patients reported improvement in voiding dysfunction symptoms after treatment, and no significant adverse effects were found on review of medical records. All patients underwent urodynamic studies after 12 weeks' treatment. Voided volume, voiding efficiency and maximum flow rate at voiding cystometry were significantly improved (mean, 273 vs. 368 mL, P = 0.002; 62.8% vs. 73.6%, P <0.001, and 10.3 vs. 11.6 mL/s, P = 0.046; respectively). Moreover, baclofen did not affect continence function, as indicated by non-significant changes in the parameters of urethral pressure profiles. Oral baclofen can improve symptoms of voiding dysfunction, voided volume, voiding efficiency and maximum flow rate in women with functional bladder outlet obstruction. None of the patients experienced intolerable side-effects. Thus, oral baclofen may be used as an initial treatment for women with symptoms of voiding dysfunction. © 2016 Japan Society of Obstetrics and Gynecology.
Montinari, Maria Rosa; Gianicolo, Emilio Antonio Luca; Vigotti, Maria Angela
2016-01-01
OBIETTIVI: valutare l'andamento temporale della mortalità per patologie respiratorie nelle province pugliesi utilizzando dati omogenei per fonte e metodologia di calcolo. DISEGNO: analisi ecologica storica degli andamenti temporali di mortalità per tumori e patologie dell'apparato respiratorio nelle province pugliesi, in Puglia e nelle ripartizioni geografiche italiane dal 1933 al 2010. SETTING E PARTECIPANTI: i dati di mortalità e le popolazioni residenti sono di fonte Istat. Sono state esaminate tutte le cause di decesso, il tumore della laringe, il tumore del polmone, l'insieme dei tumori respiratori, la bronchite, la polmonite e la broncopolmonite considerate congiuntamente, e l'insieme delle patologie respiratorie. Le analisi sono disaggregate per sesso dal 1969. PRINCIPALI MISURE DI OUTCOME: rapporti standardizzati di mortalità (SMR%) in riferimento all'Italia, con intervalli di confidenza al 95%, e tassi di mortalità standardizzati col metodo diretto (TSD ) in riferimento alla popolazione standard europea. RISULTATI: dal 1933 al 2010, i TSD per tumori respiratori e per bronchiti diminuiscono in tutte le aree analizzate. Tuttavia, nelle province di Taranto, Brindisi e Lecce, l'SMR% per tumori respiratori, inferiore al riferimento nazionale fino agli anni Sessanta, si allinea (a Brindisi) e supera (a Lecce e Taranto) il riferimento negli anni successivi. Nelle province di Foggia e Bari il numero dei decessi per tumore del polmone è costantemente inferiore all'atteso. CONCLUSIONI: la ricostruzione storica e l'analisi dei trend temporali di mortalità dal 1933 al 2010 mostrano alcune criticità sanitarie in periodi specifici. L'elaborazione dei dati di mortalità per un arco temporale di circa 80 anni ha messo in evidenza la maggiore rilevanza di queste criticità con l'avvio dello sviluppo industriale.
NASA Astrophysics Data System (ADS)
Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan
2015-10-01
In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
Decker, Gifford Z; Thomson, Scott L
2007-05-01
The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.
Petersson, Sven; Dyverfeldt, Petter; Sigfridsson, Andreas; Lantz, Jonas; Carlhäll, Carl-Johan; Ebbers, Tino
2016-03-01
Evaluate spiral three-dimensional (3D) phase contrast MRI for the assessment of turbulence and velocity in stenotic flow. A-stack-of-spirals 3D phase contrast MRI sequence was evaluated in vitro against a conventional Cartesian sequence. Measurements were made in a flow phantom with a 75% stenosis. Both spiral and Cartesian imaging were performed using different scan orientations and flow rates. Volume flow rate, maximum velocity and turbulent kinetic energy (TKE) were computed for both methods. Moreover, the estimated TKE was compared with computational fluid dynamics (CFD) data. There was good agreement between the turbulent kinetic energy from the spiral, Cartesian and CFD data. Flow rate and maximum velocity from the spiral data agreed well with Cartesian data. As expected, the short echo time of the spiral sequence resulted in less prominent displacement artifacts compared with the Cartesian sequence. However, both spiral and Cartesian flow rate estimates were sensitive to displacement when the flow was oblique to the encoding directions. Spiral 3D phase contrast MRI appears favorable for the assessment of stenotic flow. The spiral sequence was more than three times faster and less sensitive to displacement artifacts when compared with a conventional Cartesian sequence. © 2015 Wiley Periodicals, Inc.
The Effects of Tooth Brushing on Whole Salivary Flow Rate in Older Adults
Trottier, K.; Garrick, R.; Mascarenhas, T.; Jang, Y.
2018-01-01
Objectives (1) To determine whether manual (MTB), or electric, tooth brushing (ETB) modulates whole salivary flow rate in older adults who are free of systemic disease. (2) To determine the duration of the brushing-related modulation of salivary flow rate. (3) To compare salivary flow rate modulation associated with MTB and ETB. Method Twenty-one adults aged 60 years and older participated in two experimental sessions during which they used a manual, or electric, toothbrush to brush their teeth, tongue, and palate. Whole salivary flow rates were determined using the draining method before, during, and after brushing. Differences in salivary flow rates across time periods, and between conditions, were examined using paired samples t-tests applying a Holm-Bonferroni sequential procedure (pcorr < 0.0045). The relationship between tooth brushing and age with respect to maximum salivary flow rate increase was examined using Pearson's correlation coefficient (p < 0.05). Results/Conclusion Whole salivary flow rates increased during, and for up to 5 minutes following, tooth brushing in adults aged 60 years and older who were free of systemic disease. The salivary effects of MTB and ETB were not significantly different. A moderate, positive correlation was observed between tooth-brushing-related maximum salivary flow rate increase and age. PMID:29682540
Research on the Stress and Material Flow with Single Particle—Simulations and Experiments
NASA Astrophysics Data System (ADS)
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-04-01
The scratching process of particle is a complex material removal process involving cutting, plowing, and rubbing. In this study, scratch experiments under different loads are performed on a multifunctional tester for material surface. Natural diamond and Fe-Cr-Ni stainless steel are chosen as indenter and workpiece material, respectively. The cutting depth and side flow height of scratch are measured using a white light interferometer. The finite element model is developed, and the numerical simulation of scratching is conducted using AdvantEdgeTM. The simulated forces and side flow height under different cutting depths correspond well with experimental results, validating the accuracy of the scratching simulation. The mises stress distribution of the particle is presented, with the maximum stress occurring inside the particle rather than on the surface. The pressure distribution of the particle is also given, and results show that the maximum pressure occurs on the contact surface of particle and workpiece. The material flow contour is presented, and material flow direction and velocity magnitude are analyzed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
Moroni, Monica; Cicci, Agnese; Bravi, Marco
2014-04-01
The present work deals with the experimental fluid mechanics analysis of a wavy-bottomed cascade photobioreactor, to characterize the extent and period of recirculatory and straight-flowing streams establishing therein as a function of reactor inclination and liquid flow rate. The substream characterization via Feature Tracking (FT) showed that a local recirculation zone establishes in each vane only at inclinations ≤6° and that its location changes from the lower (≤3°) to the upper part of each vane (6°). A straight-flowing stream flows opposite (above or below) the local recirculation stream. The recirculation time ranges from 0.86 s to 0.23 s, corresponding, respectively, to the minimum flow rate at the minimum inclination and to the maximum flow rate at the maximum inclination where recirculation was observed. The increase of photosynthetic activity, resulting from the entailed "flash effect", was estimated to range between 102 and 113% with respect to equivalent tubular and bubble column photobioreactors. Copyright © 2013 Elsevier Ltd. All rights reserved.
COMPLEMENTARITY OF ECOLOGICAL GOAL FUNCTIONS
This paper summarizes, in the framework of network environ analysis, a set of analyses of energy-matter flow and storage in steady state systems. The network perspective is used to codify and unify ten ecological orientors or external principles: maximum power (Lotka), maximum st...
DOT National Transportation Integrated Search
2001-12-01
Identificar los problemas de coordinacin Intersectoriales entre dependencias pblicas de Mxico, los problemas originados por la falta de Coordinacin Binacional en los Puertos Fronterizos y los costos que se derivan de estos problemas. Desarrol...
Features and perspectives of automatized construction crane-manipulators
NASA Astrophysics Data System (ADS)
Stepanov, Mikhail A.; Ilukhin, Peter A.
2018-03-01
Modern construction industry still has a high percentage of manual labor, and the greatest prospects of improving the construction process are lying in the field of automatization. In this article automatized construction manipulator-cranes are being studied in order to achieve the most rational design scheme. This is done through formulating a list of general conditions necessary for such cranes and a set of specialized kinematical conditions. A variety of kinematical schemes is evaluated via these conditions, and some are taken for further dynamical analisys. The comparative dynamical analisys of taken schemes was made and the most rational scheme was defined. Therefore a basis for a more complex and practical research of manipulator-cranes design is given and ways to implement them on practical level can now be calculated properly. Also, the perspectives of implementation of automated control systems and informational networks on construction sites in order to boost the quality of construction works, safety of labour and ecological safety are shown.
Design and analytical study of a rotor airfoil
NASA Technical Reports Server (NTRS)
Dadone, L. U.
1978-01-01
An airfoil section for use on helicopter rotor blades was defined and analyzed by means of potential flow/boundary layer interaction and viscous transonic flow methods to meet as closely as possible a set of advanced airfoil design objectives. The design efforts showed that the first priority objectives, including selected low speed pitching moment, maximum lift and drag divergence requirements can be met, though marginally. The maximum lift requirement at M = 0.5 and most of the profile drag objectives cannot be met without some compromise of at least one of the higher order priorities.
Hydraulic shock waves in an inclined chute contraction
NASA Astrophysics Data System (ADS)
Jan, C.-D.; Chang, C.-J.
2009-04-01
A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave. The dimensionless relations for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave are obtained by regression analysis. These empirical regression relations, basically relating to the sidewall deflection angle, bottom angle and approach Froude number, are very useful for further practical engineering applications in chute contraction design for avoiding flow overtopping.
Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion
NASA Astrophysics Data System (ADS)
Dias, Eduardo; Miranda, Jose
2013-11-01
As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.
Maximum Oxygen Content of Flowing Eutectic NaK in a Stainless Steel System.
EUTECTICS, ALKALI METAL ALLOYS), (*LIQUID METALS, OXYGEN), (*POTASSIUM ALLOYS, SODIUM ALLOYS), LIQUID METAL PUMPS , FLUID FLOW, CONCENTRATION...CHEMISTRY), HIGH TEMPERATURE, FLOWMETERS, STAINLESS STEEL, ELECTROMAGNETIC PUMPS , TEMPERATURE, SAMPLING, LIQUID METAL COOLANTS, OXIDES, CRYSTALLIZATION.
V/STOL model fan stage rig design report
NASA Technical Reports Server (NTRS)
Cheatham, J. G.; Creason, T. L.
1983-01-01
A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com
2014-09-30
Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Prediction of blood pressure and blood flow in stenosed renal arteries using CFD
NASA Astrophysics Data System (ADS)
Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul
2018-04-01
In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.
Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol
2013-10-01
Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.
NASA Astrophysics Data System (ADS)
Geete, Ankur; Dubey, Akash; Sharma, Ankush; Dubey, Anshul
2018-05-01
In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun's cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun's cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.
Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling
2016-12-12
In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.
Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.
Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P
1995-01-01
Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.
Simulated Altitude Investigation of Stewart-Warner Model 906-B Combustion Heater
NASA Technical Reports Server (NTRS)
Ebersbach, Frederick R.; Cervenka, Adolph J.
1947-01-01
An investigation has been conducted to determine thermal and pressure-drop performance and the operational characteristics of a Stewart-Warner model 906-B combustion heater. The performance tests covered a range of ventilating-air flows from 500 to 3185 pounds per hour, combustion-air pressure drops from 5 to 35 inches of water, and pressure altitudes from sea level to 41,000 feet. The operational characteristics investigated were the combustion-air flows for sustained combustion and for consistent ignition covering fuel-air ratios ranging from 0.033 to 0.10 and pressure altitudes from sea level to 45,000 feet. Rated heat output of 50,000 Btu per hour was obtained at pressure altitudes up to 27,000 feet for ventilating-air flows greater than 800 pounds per hour; rated output was not obtained at ventilating-air flow below 800 pounds per hour at any altitude. The maximum heater efficiency was found to be 60.7 percent at a fuel-air ratio of 0.050, a sea-level pressure altitude, a ventilating-air temperature of 0 F, combustion-air temperature of 14 F, a ventilating-air flow of 690 pounds per hour, and a combustion-air flow of 72.7 pounds per hour. The minimum combustion-air flow for sustained combustion at a pressure altitude of 25,000 feet was about 9 pounds per hour for fuel-air ratios between 0.037 and 0.099 and at a pressure altitude of 45,000 feet increased to 18 pounds per hour at a fuel-air ratio of 0.099 and 55 pounds per hour at a fuel-air ratio of 0.036. Combustion could be sustained at combustion-air flows above values of practical interest. The maximum flow was limited, however, by excessively high exhaust-gas temperature or high pressure drop. Both maximum and minimum combustion-air flows for consistent ignition decrease with increasing pressure altitude and the two curves intersect at a pressure altitude of approximately 25,000 feet and a combustion-air flow of approximately 28 pounds per hour.
NASA Technical Reports Server (NTRS)
Kuchemann, Dietrich; Weber, Johanna
1952-01-01
The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.
NASA Astrophysics Data System (ADS)
Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino
2016-12-01
Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.
Analysis of microfluidic flow driven by electrokinetic and pressure forces
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsin
2011-12-01
This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.
An Economic Analysis of Naval Integrated vs Conventional Personnel Systems.
1983-06-01
kiso, EPICS training is clustered by levels; training for subsequent levels is not administered until individual trainees demonstrate competence (and...instructional modules, JPAs, and staff support, are ccmbined with training costs. B. TBESIS COST ANALISIS 1. Asmpigi Cne of the underlying assumptions of he
Pathobiology of HIV in the Human Monocyte-Macrophage
1991-10-24
of the general transcription T 1P I 1 - C machinery. In vitro analisis of PMA-inducible transcription. In itro transcription experiments were used to...inducible factoris interacts s ith associated protein is responsible. It has been established that nucleolide sequences downstream from the HIV KB site
Cobertura desarrollada de Puerto Rico
William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez
2008-01-01
Este mapa representa la cobertura desarrollada en Puerto Rico (Martinuzzi et al. 2007). Cobertura desarrollada se define aqui como areas urbanas, construidas y sin vegetacion, que resultan de actividad humana. Tipicamente, estas incluyen estructuras construidas, concreto, asfalto, u otra infraestructura. La cobertura desarrollada se creo mediante el analisis de...
H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell
2010-01-01
Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...
NASA Astrophysics Data System (ADS)
Novikova, Y.; Zubanov, V.
2018-01-01
The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.
Karl von Frisch lecture. Signals and flexibility in the dance communication of honeybees.
Michelsen, Axel
2003-03-01
Progress in understanding dance communication in honeybees is reviewed. The behaviour of both dancers and follower bees contain flexible and stereotypic elements. The transfer of specific information about direction and distance probably involves more than one sensory modality. The follower bees need to stay behind the dancer (within the angle of wagging) during at least one waggle run in order to perceive the specific information. Within this zone, a small stationary air-flow receiver (like the antenna of a follower bee) experiences a well-defined maximum when the abdomen of the wagging dancer passes by. Within 1 mm from the tip of the abdomen, the maximum may be caused by oscillating flows generated by the wagging motion. At other positions and distances (up to several millimetres from the dancer) the maximum is due to a spatially narrow jet air flow generated by the vibrating wings. The time pattern of these maxima is a function of the angular position of the receiver relative to the axis of the waggle run and thus a potential cue for direction. In addition to the narrow jet air flows, the dancers can generate a broad jet. The jets are not automatic by-products of wing vibration, since they can be switched on and off when the dancer adjusts the position of her wings.
Quantifying the capacity of compost buffers for treating agricultural runoff
NASA Astrophysics Data System (ADS)
Naranjo, S. A.; Beighley, R. E.; Buyuksonmez, F.
2007-12-01
Agricultural operations, specifically, avocado and commercial nurseries require frequent and significant fertilizing and irrigating which tends to result in excessive nutrient leaching and off-site runoff. The increased runoff contains high concentrations of nutrients which negatively impacts stream water quality. Researcher has demonstrated that best management practices such as compost buffers can be effective for reducing nutrient and sediment concentrations in agricultural runoff. The objective of this research is to evaluate both the hydraulic capacity and the nutrient removal efficiency of: (a) compost buffers and (b) buffers utilizing a combination of vegetation and compost. A series of experiments will be performed in the environmental hydraulics laboratory at San Diego State University. A tilting flume 12-m long, 27-cm wide and 25-cm deep will be used. Discharge is propelled by an axial flow pump powered by a variable speed motor with a maximum capacity of 30 liters per second. The experiments are designed to measure the ratio compost mass per flow rate per linear width. Two different discharges will be measured: (a) treatment discharge (maximum flow rate such that the buffer decreases the incoming nitrogen and phosphorus concentrations below a maximum allowable limit) and (b) breaking discharge (maximum flow rate the buffer can tolerate without structural failure). Experimental results are presented for the hydraulic analysis, and preliminary results are presented for the removal of nitrogen and phosphorus from runoff. The results from this project will be used to develop guidelines for installing compost buffers along the perimeters of nursery sites and avocado groves in southern California.
Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim
2008-07-19
Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.
1991-01-01
the permit. Monthly maximum and average test results are submitted to the USEPA with an approximation of the weekly flow rate . The quantity of flow is...flow rate . The storm flow data and drainage system hydraulic capacity are being reviewed by Sajan. Inc., Seattle. Figure 2. Visible Soil Staining at...approach is to collect composite samples of the flow, which will reduce fluctuations and allow a more accu- rate determination of total loadings with
NASA Astrophysics Data System (ADS)
Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovol'skaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Kobylchenko Kuksina, L. V.; Litvin, L. F.; Sudnitsyn, I. I.
2018-02-01
It has been shown in experiments in a hydraulic flume with a knee-shaped bend that the rate of soil erosion more than doubles at the flow impact angles to the channel side from 0° to 50°. At higher channel bends, the experiment could not be performed because of backwater. Results of erosion by water stream approaching the sample surface at angles between 2° and 90° are reported. It has been found that the maximum erosion rate is observed at flow impact angles of about 45°, and the minimum rate at 90°. The minimum soil erosion rate is five times lower than the maximum erosion rate. This is due to the difference in the rate of free water penetration into the upper soil layer, and the impact of the hydrodynamic pressure, which is maximum at the impact angle of 90°. The penetration of water into the interaggregate space results in the breaking of bonds between aggregates, which is the main condition for the capture of particles by the flow.
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.
1993-01-01
Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.
Experimental modeling of gravity underflow in submarine channels
NASA Astrophysics Data System (ADS)
Islam, Mohammad Ashraful
Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. Unlike natural rivers, few attempts have been made to explore the process of channel meandering in the submarine environment. This research focuses on resolving the flow field of submarine channels by conducting experiments in a large laboratory basin. Saline and particulate density flows were studied in a straight channel, a single bend sinuous channel with vertical sidewalls and a multiple-bend sinuous channel with sloping sidewalls. Instantaneous velocities in steady developed currents were measured using 3-component acoustic Doppler velocity probes. Excess fractional density was measured at selected locations by collecting water sample using a siphon rake. Turbulent kinetic energy and Reynolds stress components are derived from the instantaneous velocity data of the straight channel experiments. Structure functions for mean velocity, Reynolds stress and turbulent kinetic energy profiles are derived by fitting normalized data. The normalized Reynolds-averaged velocity shows excellent similarity collapse while the Reynolds-stress and the turbulent kinetic energy profiles display reasonable similarity. Vertical profiles of the turbulent kinetic energy display two peaks separated by a zone of low turbulence; the ratio of the maximum to the depth-averaged turbulent kinetic energy is approximately 1.5. Theoretical profile of turbulent kinetic energy is derived. Comparisons of experimentally and theoretically derived turbulent kinetic energy profiles show reasonable agreement except at the position of velocity maximum where the theoretical profile displays a very small value. Velocity profiles derived from the measurements with confined flow in the single bend channel reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to fluvial channels where a near-bed flow is directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity opposite to the lower cell. The lower circulation cell can be reasonably approximated by open channel flow theory. The curvature induced mixing is found to shift the position of the maximum streamwise velocity in the upward direction. Experiments conducted in the multiple-bend channel reveals that the channel side slope does not alter the structure of the secondary flow as long as the flow remains confined within the channel. However, if flow spilling occurs at the channel bend, the lateral convection suppresses the upper circulation cell. The lateral slope promotes high superelevation of the dense-light fluid interface at a channel bend and the current almost entirely separates from the inner bank. Compared with the saline flow, the silt-laden flow has larger thickness and thus easily experiences spilling at the bend apex. The overbank flow approximately follows the pre-bend direction of the in-channel flow. Unlike the flow in the channel with vertical sidewalls, the maximum velocity position does not experience an upward shift. This may be attributed to the highly superelevated current interface. The saline flow experiences little reduction in flow velocity while the velocity of the particulate flow drops significantly in the downstream direction primarily due to in-channel sediment deposit.
Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle volcano, Mexico
NASA Astrophysics Data System (ADS)
Cañón-Tapia, Edgardo; Walker, George P. L.; Herrero-Bervera, Emilio
1995-05-01
We sampled five basaltic lava flow-units from Xitle volcano, Mexico City, to study the variation of anisotropy of magnetic susceptibility within their cooling boundaries. We find that the mean maximum susceptibility parallels the geologically-inferred flow direction in the units that were emplaced on a steeper slope, whereas for those on a negligible slope the mean intermediate susceptibility points in the flow direction. We propose, however, that the maximum susceptibility always points in the direction of local movement, and that a change in slope produces a deviation of the local motion from that of the unit as a whole. The axis of susceptibility closest to the geologically-inferred flow direction usually plunges upflow in the basal part of the flow unit, comprising an imbrication which clearly marks the flow azimuth of the lava. Thus, the scenario of emplacement may influence the results in a predictable way. We suggest that the degree of anisotropy could bear a direct relationship to either the viscosity of the lava, the morphology of the flows or both, based on a comparison with lavas from Azufre (Argentina) and Ko'olau (O'ahu) volcanoes. Also, we suggest that the shape of the susceptibility ellipsoid may be related to the degree of internal deformation of the lava flows. We also compare the two methods currently available to calculate regions of confidence around the mean principal susceptibilities.
The effect of stretch-and-flow voice therapy on measures of vocal function and handicap.
Watts, Christopher R; Diviney, Shelby S; Hamilton, Amy; Toles, Laura; Childs, Lesley; Mau, Ted
2015-03-01
To investigate the efficacy of stretch-and-flow voice therapy as a primary physiological treatment for patients with hyperfunctional voice disorders. Prospective case series. Participants with a diagnosis of primary muscle tension dysphonia or phonotraumatic lesions due to hyperfunctional vocal behaviors were included. Participants received stretch-and-flow voice therapy structured once weekly for 6 weeks. Outcome variables consisted of two physiologic measures (s/z ratio and maximum phonation time), an acoustic measure (cepstral peak prominence [CPP]), and a measure of vocal handicap (voice handicap index [VHI]). All measures were obtained at baseline before treatment and within 2 weeks posttreatment. The s/z ratio, maximum phonation time, sentence CPP, and VHI showed statistically significant (P < 0.05) improvement through therapy. Effect sizes reflecting the magnitude of change were large for s/z ratio and VHI (d = 1.25 and 1.96 respectively), and moderate for maximum phonation time and sentence CPP (d = 0.79 and 0.74, respectively). This study provides supporting evidence for preliminary efficacy of stretch-and-flow voice therapy in a small sample of patients. The treatment effect was large or moderate for multiple outcome measures. The data provide justification for larger, controlled clinical trials on the application of stretch-and-flow voice therapy in the treatment of hyperfunctional voice disorders. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Marshall, Nicole R.; Piper, David J. W.; Saint-Ange, Francky; Campbell, D. Calvin
2014-10-01
Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.
Unstop the Logjams in Your Cash Flow.
ERIC Educational Resources Information Center
Everett, R. E.
1989-01-01
A cash flow analysis is charting expenditures and revenues against a factor of time. Explains how school systems can, by charting the congruency of revenues and expenditures carefully, develop an investment program to take maximum advantage of a positive cash position. (MLF)
Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.
1976-01-01
A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.
NASA Astrophysics Data System (ADS)
Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.
1990-11-01
RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS
Laboratory Experiments to Investigate Breakout and Bifurcation of Lava Flows on Mars
NASA Astrophysics Data System (ADS)
Miyamoto, H.; Zimbelman, J. R.; Tokunaga, T.; Tosaka, H.
2001-05-01
Mars Orbiter Camera (MOC) images show that many lava flows on Mars have morphologies quite similar to aa lava flows. Such flows often have many lobes and branches that overlap each other, making a compound flow unit. These features cannot be explained by any simple flow model because longer effusion duration will simply make the flow longer, although actual lavas often will bifurcate to make additonal flow units. Similarly, formation of a lava tube is difficult to predict by a model that does not contain preset conditions for their formation. Treatment of the surface crust is very important to the flow morphology, especially for effusion over a long duration. To understand the effect of a crust on flow morphology, paraffin wax is especially useful in laboratory experiments. In our experiments, a flow on a constant slope typically progresses with a constant width at first. Then, the flow front cools to form a crust, which inhibits the progress of the flow. At that time, the flow sometimes becomes sinuous or ceases its movement. With a sufficient flux after that, uplift of thickness (inflation) can occur. Uplift sometimes attains a sufficient thickening to produce a breakout at the side of the flow, bifurcating to form a new cooling unit. Bifurcated flows do not always follow the main flow (some branches moved several cm away from the initial flow). The bifurcations continue to develop into a complicated flow field, given a sufficiently long duration of effusion. Although the movement of the flow with a surface crust is difficult to predict, our simple analysis suggests that the maximum thickness attained by the inflation (by fluid continuing to enter a stopped flow) before a breakout can occur is roughly estimated by a balance between the overpressure and the crust tensile strength. The maximum extent of a bifurcated flow after a breakout can probably be constrained, which will be a significant goal for future modeling of compound flows.
Maximum likelihood phase-retrieval algorithm: applications.
Nahrstedt, D A; Southwell, W H
1984-12-01
The maximum likelihood estimator approach is shown to be effective in determining the wave front aberration in systems involving laser and flow field diagnostics and optical testing. The robustness of the algorithm enables convergence even in cases of severe wave front error and real, nonsymmetrical, obscured amplitude distributions.
Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C < 47% reflected off the end of the 5-m long tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just below the cubic packing density of spheres of C = 52%. These experimental results also imply that natural flows may be able to transport vast volumes of non-cohesive sediment with relative ease, especially considering that the experimental flows moved on a horizontal slope. References Bagnold, R. A. (1954). Experiments on a Gravity-Free Dispersion of Large Solid Spheres in Newtonian Fluid under Shear. Proceedings of the Royal Society series A: Mathematical, Physical and Engineering Sciences, 225(1160), 49-63. Bagnold, R. A. (1963). Beach and nearshore processes: Part 1. Mechanics of marine sedimentation. In: Hill, M. N. (Ed.) The Earth Beneath the Sea, vol. 3. Wiley-Interscience, London, 507-533.
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2016-02-02
Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.
NASA Astrophysics Data System (ADS)
Bunte, K.; Swingle, K. W.; Abt, S. R.; Cenderelli, D.
2012-12-01
Effective discharge (Qeff) is defined as the flow at which the product of flow frequency and bedload transport rates obtains its maximum. Qeff is often reported to correspond with bankfull flow (Qbf), where Qeff approximates the 1.5 year recurrence interval flow (Q1.5). Because it transports the majority of all bedload, Qeff is considered a design flow for stream restoration and flow management. This study investigates the relationship between Qeff and Q1.5 for gravel bedload in high elevation Rocky Mountain streams. Both the flow frequency distribution (FQ = a × Qbin-b) where Qbin is the flow class, and the bedload transport rating curve (QB = c × Qd) can be described by power functions. The product FQ × QB = (a × c × Q(-b + d)) is positive if d + -b >0, and negative if d + -b <0. FQ × QB can only attain a maximum (=Qeff) if either FQ or QB exhibit an inflection point. In snowmelt regimes, low flows prevail for much of the year, while high flows are limited to a few days, and extreme floods are rare. In log-log plotting scale, this distribution causes the longterm flow frequency function FQ to steepen in the vicinity of Q1.5. If the bedload rating curve exponent is small, e.g., = 3 as is typical of Helley-Smith bedload samples, d + -b shifts from >0 to <0, causing FQ × QB to peak, and Qeff to be around Q1.5. For measurements thought to be more representative of actual gravel transport obtained using bedload traps and similar devices, large rating curve exponents d of 6 - 16 are typical. In this case, d + -b remains >0, and FQ × QB reaches its maximum near the largest flow on record (Qeff,BT = Qmax). Expression of FQ by negative exponential functions FQ = k × e(Qbin×-m) smooths the product function FQ × QB that displays its maximum as a gentle hump rather than a sharp peak, but without drastically altering Qeff. However, a smooth function FQ × QB allows Qeff to react to small changes in rating curve exponents d. As d increases from <1 to >10, Qeff increases from Qmin to Qmax. The S-shaped relationship of Qeff vs. d shows that changes in d between about 4 and 8 exert the largest influence on Qeff. Not only FQ, but also QB may change its steepness. QB may flatten during floods as flows overtop banks. Many high elevation Rocky Mountain streams are entrenched due to floodplain buildup (overbank deposition and beaver activity) and downcutting. Preliminary flow modeling suggests that bank overtopping starts when Q1.5 >150%, and flows are fully out-of-bank past 200-250% Q1.5. A flattening of the bedload rating curve shifts Qeff from Qmax to within 150-250% Q1.5. Study results suggest that Qeff likely occurs within 150-250% Q1.5, and the often-quoted similarity of Qeff and Qbf (assuming Qbf = Q1.5) does not hold for the study streams, but is rather an artifact of using a Helley-Smith sampler that produces low rating curve exponents near 3. This finding calls into question the utility of Q1.5 or "bankfull flow" as a morphological design flow in high elevation Rocky Mountain streams.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the dam until further orders: (b) Excepting as specially provided in this section the normal flow of... when the natural flow of the Mississippi River is falling or when such natural flow is less than..., such permit to state the period which such ponding may cover and the maximum variation in stage below...
Influence of perched groundwater on base flow
Niswonger, Richard G.; Fogg, Graham E.
2008-01-01
Analysis with a three‐dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine‐sediment unit and the hydraulic conductivity of the fine‐sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000‐m stream reach. Generally, the rate of perched‐groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine‐sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine‐sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched‐groundwater discharge nearly 75%.
Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts
NASA Astrophysics Data System (ADS)
Abroshan, Hamid
2018-02-01
Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.
The Limits to Parapatric Speciation: Dobzhansky–Muller Incompatibilities in a Continent–Island Model
Bank, Claudia; Bürger, Reinhard; Hermisson, Joachim
2012-01-01
How much gene flow is needed to inhibit speciation by the accumulation of Dobzhansky–Muller incompatibilities (DMIs) in a structured population? Here, we derive these limits in a classical migration–selection model with two haploid or diploid loci and unidirectional gene flow from a continent to an island. We discuss the dependence of the maximum gene-flow rate on ecological factors (exogeneous selection), genetic factors (epistasis, recombination), and the evolutionary history. Extensive analytical and numerical results show the following: (1) The maximum rate of gene flow is limited by exogeneous selection. In particular, maintenance of neutral DMIs is impossible with gene flow. (2) There are two distinct mechanisms that drive DMI evolution in parapatry, selection against immigrants in a heterogeneous environment and selection against hybrids due to the incompatibility. (3) Depending on the mechanism, opposite predictions result concerning the genetic architecture that maximizes the rate of gene flow a DMI can sustain. Selection against immigrants favors evolution of tightly linked DMIs of arbitrary strength, whereas selection against hybrids promotes the evolution of strong unlinked DMIs. In diploids, the fitness of the double heterozygotes is the decisive factor to predict the pattern of DMI stability. PMID:22542972
Asymptotic scalings of developing curved pipe flow
NASA Astrophysics Data System (ADS)
Ault, Jesse; Chen, Kevin; Stone, Howard
2015-11-01
Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.
NASA Technical Reports Server (NTRS)
Cho, Y. I.; Back, L. H.; Crawford, D. W.
1985-01-01
Changes in an arterial flow field due to mild atherosclerosis were determined using a main coronary artery casting with a maximum obstruction of about 50 percent by area. Local pressure changes were measured using six pressure tap holes along the wall of the casting. The test-fluid was a 33 percent sugar-water solution of approximately the same viscosity as human blood. Flow visualization results were obtained by injecting blue-dye through the pressure tap holes. Measurement of local pressure demonstrated a significant Reynolds number effect. At Reynolds numbers of 80-710, a local pressure rise was observed downstream of the mild atherosclerotic constriction due to momentum changes. The Reynolds number necessary for flow separation in the divergent region of the coronary casting was about 330. The experimental results can be used to obtain a quantitative relation between coronary morphology and the fluid dynamic consequences of mild diffuse disease under conditions of maximum cardiac demand i.e., higher coronary flow rates and Reynolds numbers associated with space and atmospheric flight.
Isolation-by-distance in landscapes: considerations for landscape genetics
van Strien, M J; Holderegger, R; Van Heck, H J
2015-01-01
In landscape genetics, isolation-by-distance (IBD) is regarded as a baseline pattern that is obtained without additional effects of landscape elements on gene flow. However, the configuration of suitable habitat patches determines deme topology, which in turn should affect rates of gene flow. IBD patterns can be characterized either by monotonically increasing pairwise genetic differentiation (for example, FST) with increasing interdeme geographic distance (case-I pattern) or by monotonically increasing pairwise genetic differentiation up to a certain geographical distance beyond which no correlation is detectable anymore (case-IV pattern). We investigated if landscape configuration influenced the rate at which a case-IV pattern changed to a case-I pattern. We also determined at what interdeme distance the highest correlation was measured between genetic differentiation and geographic distance and whether this distance corresponded to the maximum migration distance. We set up a population genetic simulation study and assessed the development of IBD patterns for several habitat configurations and maximum migration distances. We show that the rate and likelihood of the transition of case-IV to case-I FST–distance relationships was strongly influenced by habitat configuration and maximum migration distance. We also found that the maximum correlation between genetic differentiation and geographic distance was not related to the maximum migration distance and was measured across all deme pairs in a case-I pattern and, for a case-IV pattern, at the distance where the FST–distance curve flattens out. We argue that in landscape genetics, separate analyses should be performed to either assess IBD or the landscape effects on gene flow. PMID:25052412
NASA Astrophysics Data System (ADS)
Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Melnikov, Dmitry
2015-12-01
Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012-13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1-4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.
Streambed stresses and flow around bridge piers
Parola, A.C.; Ruhl, K.J.; Hagerty, D.J.; Brown, B.M.; Ford, D.L.; Korves, A.A.
1996-01-01
Scour of streambed material around bridge foundations by floodwaters is the leading cause of catastrophic bridge failure in the United States. The potential for scour and the stability of riprap used to protect the streambed from scour during extreme flood events must be known to evaluate the likelihood of bridge failure. A parameter used in estimating the potential for scour and removal of riprap protection is the time-averaged shear stress on the streambed often referred to as boundary stress. Bridge components, such as bridge piers and abutments, obstruct flow and induce strong vortex systems that create streambed or boundary stresses significantly higher than those in unobstructed flow. These locally high stresses can erode the streambed around pier and abutment foundations to the extent that the foundation is undermined, resulting in settlement or collapse of bridge spans. The purpose of this study was to estimate streambed stresses at a bridge pier under full-scale flow conditions and to compare these stresses with those obtained previously in small-scale model studies. Two-dimensional velocity data were collected for three flow conditions around a bridge pier at the Kentucky State Highway 417 bridge over the Green River at Greensburg in Green County, Ky. Velocity vector plots and the horizontal component of streambed stress contour plots were developed from the velocity data. The streambed stress contours were developed using both a near-bed velocity and velocity gradient method. Maximum near-bed velocities measured at the pier for the three flow conditions were 1.5, 1.6, and 2.0 times the average near-bed velocities measured in the upstream approach flow. Maximum streambed stresses for the three flow conditions were determined to be 10, 15, and 36 times the streambed stresses of the upstream approach flow. Both the near-bed velocity measurements and approximate maximum streambed stresses at the full-scale pier were consistent with those observed in experiments using small-scale models in which similar data were collected, except for a single observation of the near-bed velocity data and the corresponding streambed stress determination. The location of the maximum streambed stress was immediately downstream of a 90 degree radial of the upstream cylinder (with the center of the upstream cylinder being the origin) for the three flow conditions. This location was close to the flow wake separation point at the upstream cylinder. Other researchers have observed the maximum streambed stress around circular cylinders at this location or at a location immediately upstream of the wake separation point. Although the magnitudes of the estimated streambed stresses measured at the full-scale pier were consistent with those measured in small-scale model studies, the stress distributions were significantly different than those measured in small-scale models. The most significant discrepancies between stress contours developed in this study and those developed in the small-scale studies for flow around cylindrical piers on a flat streambed were associated with the shape of the stress contours. The extent of the high stress region of the streambed around the full-scale pier was substantially larger than the diameter of the upstream cylinder, while small-scale models had small regions compared to the diameter of the model cylinders. In addition, considerable asymmetry in the stress contours was observed. The large region of high stress and asymmetry was attributed to several factors including (1) the geometry of the full-scale pier, (2) the non-planar topography of the streambed, (3) the 20 degree skew of the pier to the approaching flow, and (4) the non-uniformity of the approach flow. The extent of effect of the pier on streambed stresses was found to be larger for the full-scale site than for model studies. The results from the model studies indicated that the streambed stresses created by the obstruction of flow by the 3-foot wide pi
Summer Leeside Rainfall Maxima over the Island of Hawaii
NASA Astrophysics Data System (ADS)
Huang, Y. F.; Chen, Y. L.
2016-12-01
The Kona area on the leeside in the island of Hawaii has distinctive summer rainfall maxima. The primary physical processes for the summer rainfall maxima in Kona are analyzed by comparing it with the winter rainfall. The annual and diurnal cycles there are investigated by employing the Fifth-generation Pennsylvania State University-NCAR Mesoscale Model coupled with the advanced land surface model from June 2004 and February 2010. During the summer, the nocturnal rainfall maximum adjacent to the Kona coast is larger than in winter because of the stronger, moister westerly reversed flow and offshore flow in summer. Comparisons between winter trade-wind days and winter mean show that the leeside Kona rainfall offshore in winter mainly occurs under trade-wind conditions. Moreover, the model results also attest to the impact of moisture content on the Kona leeside rainfall offshore. Comparisons between winter and summer trade-wind days indicate that upslope flows on the Kona slopes are stronger and the moisture content from the westerly reversed flow is higher in summer than in winter. The rainfall maximum on the lower Kona slopes is more pronounced in summer than in winter as a result of enhanced orographic lifting due to stronger upslope flow in the afternoon hours and the moister westerly reversed flow offshore, which merges with the upslope flow inland.
Bit Threads and Holographic Entanglement
NASA Astrophysics Data System (ADS)
Freedman, Michael; Headrick, Matthew
2017-05-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.
Follicle vascularity coordinates corpus luteum blood flow and progesterone production.
de Tarso, S G S; Gastal, G D A; Bashir, S T; Gastal, M O; Apgar, G A; Gastal, E L
2017-03-01
Colour Doppler ultrasonography was used to compare the ability of preovulatory follicle (POF) blood flow and its dimensions to predict the size, blood flow and progesterone production capability of the subsequent corpus luteum (CL). Cows (n=30) were submitted to a synchronisation protocol. Follicles ≥7mm were measured and follicular wall blood flow evaluated every 12h for approximately 3.5 days until ovulation. After ovulation, cows were scanned daily for 8 days and similar parameters were evaluated for the CL. Blood samples were collected and plasma progesterone concentrations quantified. All parameters were positively correlated. Correlation values ranged from 0.26 to 0.74 on data normalised to ovulation and from 0.31 to 0.74 on data normalised to maximum values. Correlations between calculated ratios of both POF and CL in data normalised to ovulation and to maximum values ranged from moderate (0.57) to strong (0.87). Significant (P<0.0001) linear regression analyses were seen in all comparisons. In conclusion, higher correlations were observed between the dimensions of POF and/or CL and blood flow of both structures, as well as POF and/or CL blood flow with plasma progesterone concentrations of the resultant CL. These findings indicate that follicle vascularity coordinates CL blood flow and progesterone production in synchronised beef cows.
Non-equilibrium flow and sediment transport distribution over mobile river dunes
NASA Astrophysics Data System (ADS)
Hoitink, T.; Naqshband, S.; McElroy, B. J.
2017-12-01
Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.
Zhao, Jingbo; Chen, Pengmin; Gregersen, Hans
2013-09-27
Investigation of intestinal motility in a genetic model of GK rats abandons the possible neurotoxic effect of streptozotocin in streptozotocin-induced diabetic model. Seven GK male rats (GK group) and nine normal Wistar rats (Normal group) were used in the study. The motility experiments were carried out in an organ bath containing physiological Krebs solution. Before and after 10(-5)M carbachol application, the pressure and diameter changes of jejunum were obtained in relation to (1) basic contraction, (2) flow-induced contraction with different outlet resistance pressures and (3) contractions induced by ramp distension. The frequency and amplitude of contractions were analyzed from pressure-diameter curves. Distension-induced contraction thresholds and maximum contraction amplitude of basic and flow-induced contractions were calculated in terms of stress and strain. (1) The contraction amplitude increased to the peak value in less than 10s after adding carbachol. More than two peaks were observed in the GK group. (2) Carbachol decreased the pressure and stress threshold and Young's modulus in the GK group (P<0.01). (3) Carbachol increased the maximum pressure and stress of flow-induced contractions at most outlet pressure levels in both two groups (P<0.001). Furthermore, the flow-induced contractions were significantly bigger at low outlet pressure levels in GK group (P<0.05 and P<0.01). (4) The contraction frequency, the strain threshold and the maximum contraction strain did not differ between the two groups (P>0.05) and between before and after carbachol application (P>0.05). In GK diabetic rats, the jejunal contractility was hypersensitive to flow and distension stimulation after carbachol application. Copyright © 2013 Elsevier Ltd. All rights reserved.
Study on C-S and P-R EOS in pseudo-potential lattice Boltzmann model for two-phase flows
NASA Astrophysics Data System (ADS)
Peng, Yong; Mao, Yun Fei; Wang, Bo; Xie, Bo
Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P-R) and Carnahan and Starling (C-S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P-R and C-S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P-R and C-S EOS agree with the analytical solutions although P-R EOS may perform better. The prediction of liquid phase by P-R EOS is more accurate than that of air phase and the contrary is true for C-S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting T. The P-R EOS can achieve larger maximum density ratio than C-S EOS under the same τ. Besides, no matter the C-S EOS or the P-R EOS, if τ tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P-R is larger than that of C-S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.
Prajapati, Parna; Shah, Pankhil; King, Hollis H; Williams, Arthur G; Desai, Pratikkumar; Downey, H Fred
2010-09-01
Osteopathic lymphatic pump treatments (LPT) are used to treat edema, but their direct effects on lymph flow have not been studied. In the current study, we examined the effects of LPT on lymph flow in the thoracic duct of instrumented conscious dogs in the presence of edema produced by constriction of the inferior vena cava (IVC). Six dogs were surgically instrumented with an ultrasonic flow transducer on the thoracic lymph duct and catheters in the descending thoracic aorta and in IVC. After postoperative recovery, lymph flow and hemodynamic variables were measured 1) pre-LPT, 2) during 4 min LPT, 3) post-LPT, in the absence and presence of edema produced by IVC constriction. This constriction increased abdominal girth from 60 +/-2.6 to 75 +/- 2.9 cm. Before IVC constriction, LPT increased lymph flow (P < 0.05) from 1.9 +/- 0.2 ml/min to a maximum of 4.7 +/-1.2 ml/min, whereas after IVC constriction, LPT increased lymph flow (P < 0.05) from 7.9 +/-2.2 to a maximum of 11.7 +/-2.2 ml/min. The incremental lymph flow mobilized by 4 min of LPT (ie, the flow that exceeded 4 min of baseline flow), was 10.6 ml after IVC constriction. This incremental flow was not significantly greater than that measured before IVC constriction. Edema caused by IVC constriction markedly increased lymph flow in the thoracic duct. LPT increased thoracic duct lymph flow before and after IVC constriction. The lymph flow mobilized by 4 min of LPT in presence of edema was not significantly greater than that mobilized prior to edema.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2011 CFR
2011-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2013 CFR
2013-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2014 CFR
2014-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2012 CFR
2012-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
33 CFR 154.1029 - Worst case discharge.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facility. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on... vessel regardless of the presence of secondary containment; plus (2) The discharge from all piping...
An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models
ERIC Educational Resources Information Center
Lee, Taehun
2010-01-01
In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…
Rip currents and alongshore flows in single channels dredged in the surf zone
NASA Astrophysics Data System (ADS)
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-05-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
NASA Technical Reports Server (NTRS)
Clemmons, D. R.
1973-01-01
An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.
Rip currents and alongshore flows in single channels dredged in the surf zone
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-01-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
Temporal flow instability for Magnus-Robins effect at high rotation rates
NASA Astrophysics Data System (ADS)
Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.
2003-06-01
The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.
Saleh, Dina K.
2010-01-01
Statistical summaries of streamflow data for all long-term streamflow-gaging stations in the Tigris River and Euphrates River Basins in Iraq are presented in this report. The summaries for each streamflow-gaging station include (1) a station description, (2) a graph showing annual mean discharge for the period of record, (3) a table of extremes and statistics for monthly and annual mean discharge, (4) a graph showing monthly maximum, minimum, and mean discharge, (5) a table of monthly and annual mean discharges for the period of record, (6) a graph showing annual flow duration, (7) a table of monthly and annual flow duration, (8) a table of high-flow frequency data (maximum mean discharge for 3-, 7-, 15-, and 30-day periods for selected exceedance probabilities), and (9) a table of low-flow frequency data (minimum mean discharge for 3-, 7-, 15-, 30-, 60-, 90-, and 183-day periods for selected non-exceedance probabilities).
Multi-bottle, no compressor, mean pressure control system for a Stirling engine
Corey, John A.
1990-01-01
The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maze, Grace M.
STREAM II is the aqueous transport model of the Weather Information Display (WIND) emergency response system at Savannah River Site. It is used to calculate transport in the event of a chemical or radiological spill into the waterways on the Savannah River Site. Improvements were made to the code (STREAM II V7) to include flow from all site tributaries to the Savannah River total flow and utilize a 4 digit year input. The predicted downstream concentrations using V7 were generally on the same order of magnitude as V6 with slightly lower concentrations and quicker arrival times when all onsite streammore » flows are contributing to the Savannah River flow. The downstream arrival time at the Savannah River Water Plant ranges from no change to an increase of 8.77%, with minimum changes typically in March/April and maximum changes typically in October/November. The downstream concentrations are generally no more than 15% lower using V7 with the maximum percent change in January through April and minimum changes in June/July.« less
Optimization of multi-element airfoils for maximum lift
NASA Technical Reports Server (NTRS)
Olsen, L. E.
1979-01-01
Two theoretical methods are presented for optimizing multi-element airfoils to obtain maximum lift. The analyses assume that the shapes of the various high lift elements are fixed. The objective of the design procedures is then to determine the optimum location and/or deflection of the leading and trailing edge devices. The first analysis determines the optimum horizontal and vertical location and the deflection of a leading edge slat. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This design procedure does not require that flow separation effects be modeled. The second analysis determines the slat and flap deflection required to maximize the lift of a three element airfoil. This approach requires that the effects of flow separation from one or more of the airfoil elements be taken into account. The theoretical results are in good agreement with results of a wind tunnel test used to corroborate the predicted optimum slat and flap positions.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wei; He, Zhiguo; Jiang, Houshuo
2017-11-01
Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.
Regulation of water flux through tropical forest canopy trees: do universal rules apply?
Meinzer, F C; Goldstein, G; Andrade, J L
2001-01-01
Tropical moist forests are notable for their richness in tree species. The presence of such a diverse tree flora presents potential problems for scaling up estimates of water use from individual trees to entire stands and for drawing generalizations about physiological regulation of water use in tropical trees. We measured sapwood area or sap flow, or both, in 27 co-occurring canopy species in a Panamanian forest to determine the extent to which relationships between tree size, sapwood area and sap flow were species-specific, or whether they were constrained by universal functional relationships between tree size, conducting xylem area, and water use. For the 24 species in which active xylem area was estimated over a range of size classes, diameter at breast height (DBH) accounted for 98% of the variation in sapwood area and 67% of the variation in sapwood depth when data for all species were combined. The DBH alone also accounted for > or = 90% of the variation in both maximum and total daily sap flux density in the outermost 2 cm of sapwood for all species taken together. Maximum sap flux density measured near the base of the tree occurred at about 1,400 h in the largest trees and 1,130 h in the smallest trees studied, and DBH accounted for 93% of the variation in the time of day at which maximum sap flow occurred. The shared relationship between tree size and time of maximum sap flow at the base of the tree suggests that a common relationship between diurnal stem water storage capacity and tree size existed. These results are consistent with a recent hypothesis that allometric scaling of plant vascular systems, and therefore water use, is universal.
Evolution of a Planar Wake in Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Driver, David M.; Mateer, George G.
2016-01-01
In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
NASA Astrophysics Data System (ADS)
Fytanidis, D. K.; Wu, H.; Landry, B. J.; Garcia, M. H.
2017-12-01
Abandoned Unexploded Ordnances (UXOs) from wartime events, accidents, training or other military activities can be found in coastal environments. While the interest for these hazardous submerged objects is increased, there are still existing knowledge gaps regarding the mechanisms of incipient motion and flow behavior around UXOs lying on the seafloor. Numerical modeling of flow around near bed placed UXOs is conducted for unidirectional and oscillatory flow conditions using Computational Fluid Dynamics techniques. The Reynolds-Averaged Navier-Stokes (RANS) approach is used to simulate the complex turbulent flow field around UXOs. The numerical results are compared with two-dimensional Particle Image Velocimetry measurements from experiments conducted in unidirectional and oscillatory flow facilities within the Ven Te Chow Hydrosystems Laboratory to evaluate the accuracy of the applied RANS-based solver. Realistic boundary conditions are imposed in the numerical models to mimic the experimental conditions in the laboratory facilities. The comparison between the numerical results and the experimental data agrees well. In addition, the effect of the angle of attack on the forces that UXOs experience is examined. Numerical results suggest that the orientation of UXOs with respect to the mean flow is an important parameter for incipient motion under critical flow conditions which is in agreement with prior laboratory experimental results regarding the identification of critical flow conditions for the initiation of motion of UXOs. Finally, an extensive parametric analysis is conducted to evaluate the effect of the maximum current velocity and wave characteristics (maximum velocity and period) on the flow forces and the mean flow pattern around the objects.
NASA Astrophysics Data System (ADS)
Liu, Gang; He, Jing; Luo, Zhiyong; Yang, Wunian; Zhang, Xiping
2015-05-01
It is important to study the effects of pedestrian crossing behaviors on traffic flow for solving the urban traffic jam problem. Based on the Nagel-Schreckenberg (NaSch) traffic cellular automata (TCA) model, a new one-dimensional TCA model is proposed considering the uncertainty conflict behaviors between pedestrians and vehicles at unsignalized mid-block crosswalks and defining the parallel updating rules of motion states of pedestrians and vehicles. The traffic flow is simulated for different vehicle densities and behavior trigger probabilities. The fundamental diagrams show that no matter what the values of vehicle braking probability, pedestrian acceleration crossing probability, pedestrian backing probability and pedestrian generation probability, the system flow shows the "increasing-saturating-decreasing" trend with the increase of vehicle density; when the vehicle braking probability is lower, it is easy to cause an emergency brake of vehicle and result in great fluctuation of saturated flow; the saturated flow decreases slightly with the increase of the pedestrian acceleration crossing probability; when the pedestrian backing probability lies between 0.4 and 0.6, the saturated flow is unstable, which shows the hesitant behavior of pedestrians when making the decision of backing; the maximum flow is sensitive to the pedestrian generation probability and rapidly decreases with increasing the pedestrian generation probability, the maximum flow is approximately equal to zero when the probability is more than 0.5. The simulations prove that the influence of frequent crossing behavior upon vehicle flow is immense; the vehicle flow decreases and gets into serious congestion state rapidly with the increase of the pedestrian generation probability.
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
NASA Astrophysics Data System (ADS)
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
NASA Astrophysics Data System (ADS)
Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan
2017-06-01
In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.
Sanford, W.E.; Buapeng, S.
1996-01-01
A study was undertaken to understand the groundwater flow conditions in the Bangkok Basin, Thailand, by comparing 14C-based and simulated groundwater ages. 14C measurements were made on about 50 water samples taken from wells throughout the basin. Simulated ages were obtained using 1) backward-pathline tracking based on the well locations, and 2) results from a three-dimensional groundwater flow model. Comparisons of ages at these locations reveal a large difference between 14C-based ages and ages predicted by the steady-state groundwater flow model. Mainly, 14C and 13C analyses indicate that groundwater in the Bangkok area is about 20,000 years old, whereas steady-state flow and transport simulations imply that groundwater in the Bangkok area is 50,000-100,000 years old. One potential reason for the discrepancy between simulated and 14C-based ages is the assumption in the model of steady-state flow. Groundwater velocities were probably greater in the region before about 10,000 years ago, during the last glacial maximum, because of the lower position of sea level and the absence of the surficial Bangkok Clay. Paleoflow conditions were estimated and then incorporated into a second set of simulations. The new assumption was that current steady-state flow conditions existed for the last 8,000 years but were preceded by steady-state conditions representative of flow during the last glacial maximum. This "transient" paleohydrologic simulation yielded a mean simulated age that more closely agrees with the mean 14C-based age, especially if the 14C-based age is corrected for diffusion into clay layers. Although the uncertainties in both the simulated and 14C-based ages are nontrivial, the magnitude of the improved match in the mean age using a paleohydrologic simulation instead of a steady-state simulation suggests that flow conditions in the basin have changed significantly over the last 10,000-20,000 years. Given that the valid age range of 14C-dating methods and the timing of the last glacial maximum are of similar magnitude, adjustments for paleohydrologic conditions may be required for many such studies.
Unsteady Navier-Stokes computations over airfoils using both fixed and dynamic meshes
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Anderson, W. Kyle
1989-01-01
A finite volume implicit approximate factorization method which solves the thin layer Navier-Stokes equations was used to predict unsteady turbulent flow airfoil behavior. At a constant angle of attack of 16 deg, the NACA 0012 airfoil exhibits an unsteady periodic flow field with the lift coefficient oscillating between 0.89 and 1.60. The Strouhal number is 0.028. Results are similar at 18 deg, with a Strouhal number of 0.033. A leading edge vortex is shed periodically near maximum lift. Dynamic mesh solutions for unstalled airfoil flows show general agreement with experimental pressure coefficients. However, moment coefficients and the maximum lift value are underpredicted. The deep stall case shows some agreement with experiment for increasing angle of attack, but is only qualitatively comparable past stall and for decreasing angle of attack.
Local viscosity distribution in bifurcating microfluidic blood flows
NASA Astrophysics Data System (ADS)
Kaliviotis, E.; Sherwood, J. M.; Balabani, S.
2018-03-01
The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.
Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.
Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte
2016-08-01
The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Analisis de las Condiciones de Salud del Nino de 0-6 anos en Honduras.
ERIC Educational Resources Information Center
Matamoros, Douglas Alberto
1987-01-01
Examines the National Pediatric Service and the research program of the Maternity-Infant-Hospital-School in Honduras. Reports that health conditions of young children (birth to six years) in Honduras are appalling and that available funds for health services are inadequate, reflecting the country's economic and social crisis. (NH)
Analisis espacial de las areas protegidas terrestres de Puerto Rico
M. Quinones; W.A. Gould; J. Castro-Prieto; S. Martinuzzi
2013-01-01
En este mapa de investigacion describimos las areas protegidas terrestres de Puerto Rico basado en elementos naturales y antropogenicos del paisaje. Utilizamos datos geoespaciales para calcular la extension y representatividad de elementos del paisaje dentro de las areas protegidas de Puerto Rico, i.e., cobertura del terreno (Gould et al. 2007), asentamientos urbanos...
Stavyts'kyĭ, S O; Avetikov, D S; Lokes, K P; Rozkolupa, O O; Boĭko, I V
2014-05-01
The experience of application of various methods of closure was presented for the head and neck cutaneous wound surfaces after elective operative interventions. The variant of the postoperative results estimation and optimization of the wounds healing by primary closure was proposed.
Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah
Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.
2009-01-01
Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.
Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions
NASA Astrophysics Data System (ADS)
Gao, C.; Xu, B.; Gilchrist, J. F.
2009-03-01
We investigate the mixing and segregation of mono- and bidispersed microsphere suspensions in microchannel flows. These flows are common in biological microelectromechanical systems (BioMEMS) applications handling blood or suspensions of DNA. Suspension transport in pressure driven flows is significantly hindered by shear-induced migration, where particles migrate away from the walls and are focused in the center due to multibody hydrodynamic interactions. The microchannels used in this study have geometries that induce chaotic advection in Newtonian fluids. Our results show that mixing in straight, herringbone and staggered herringbone channels depends strongly on volume fraction. Due to this complex interplay of advection and shear-induced migration, a staggered herringbone channel that typically results in chaotic mixing is not always effective for dispersing particles. The maximum degree of segregation is observed in a straight channel once the maximum packing fraction is reached at channel center. We modify a one-dimensional suspension balance model [R. Miller and J. Morris, J. Non-Newtonian Fluid Mech. 135, 149 (2006)] to describe the behavior at the center of the straight channel. The degree of mixing is then calculated as a function of bulk volume fraction, predicting the volume fraction that results in the maximum degree of segregation. In bidispersed suspension flow, it is shown that mixing of the larger species is enhanced in straight and staggered herringbone channels while segregation is enhanced at moderate volume fractions in herringbone channels. This suggests mixing and separations can be tailored by adjusting both the suspension properties and the channel geometry.
Flow and turbulence structure in a hypertidal estuary with the world's biggest tidal bore
NASA Astrophysics Data System (ADS)
Tu, Junbiao; Fan, Daidu
2017-04-01
Turbulent and flow structure associated with breaking tidal bores are deliberately investigated on the basis of field measurements. High-resolution velocity and hydrographic data are collected in the middle Qiantang Estuary by a vertical array of acoustic Doppler velocimeters and optical backscatter sensors, collaborated with a bottom-mounted acoustic Doppler current profiler. Besides obvious variations in diurnal and spring-neap tidal cycles, the estuarine dynamics is featured by extreme asymmetry in flood and ebb tides. The flood tide is abnormally accelerated to generate tidal bores at the first 10 min or more, with breaking or undular configurations at the front. The occurrence of peak flow velocity, turbulent kinetic energy (TKE), and TKE dissipation rate (ɛ) is definitely associated with breaking bores, with their values several times to 2 orders of magnitude larger than the corresponding secondary peak values during the maximum ebb flows. Flow and turbulence dynamics are significantly affected by the tidal-bore Froude number. A sandwich ɛ structure is clear exhibited with the maximum value at the surface, secondary maximum near the bed, and the minimum at the intermediate. Dual TKE sources are indicated by an approximate local balance between shear production and dissipation near the bottom, and a top-down TKE dissipation using the modified Froude scaling in the vertical water column. The highly elevated dissipation by breaking bores is comparable to that by intense breaking waves in the surf zone, and the former potentially penetrates the entire water column to produce extreme sediment-resuspension events in combination with intense bottom shear stress.
NASA Astrophysics Data System (ADS)
Davids, J. C.; Rutten, M.; Van De Giesen, N.
2016-12-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and costs are high. Achieving adequate maintenance of sophisticated monitoring equipment often exceeds local technical and resource capacity, and permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of Citizen Hydrology, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is repeatable and scalable. However, there is currently a limited understanding of the impact of decreased observational frequency on the accuracy of key streamflow statistics like minimum flow, maximum flow, and runoff. As a first step towards evaluating the tradeoffs between traditional continuous monitoring approaches and emerging Citizen Hydrology methods, we randomly selected 50 active U.S. Geological Survey (USGS) streamflow gauges in California. We used historical 15 minute flow data from 01/01/2008 through 12/31/2014 to develop minimum flow, maximum flow, and runoff values (7 year total) for each gauge. In order to mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, along with their respective distributions, from 50 subsample iterations with four different subsampling intervals (i.e. daily, three day, weekly, and monthly). Based on our results we conclude that, depending on the types of questions being asked, and the watershed characteristics, Citizen Hydrology streamflow measurements can provide useful and accurate information. Depending on watershed characteristics, minimum flows were reasonably estimated with subsample intervals ranging from daily to monthly. However, maximum flows in most cases were poorly characterized, even at daily subsample intervals. In general, runoff volumes were accurately estimated from daily, three day, weekly, and even in some cases, monthly observations.
NASA Technical Reports Server (NTRS)
Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.
1999-01-01
OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.
Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T.; Charles, C.; Boswell, R. W.
2011-08-15
It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm andmore » a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.« less
NASA Astrophysics Data System (ADS)
Thongdaeng, S.; Bubphachot, B.; Rittidech, S.
2016-11-01
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
NASA Astrophysics Data System (ADS)
Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi
2017-09-01
There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2017-08-29
Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.
2018-03-01
Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.
Almatouq, Abdullah; Babatunde, Akintunde O.
2016-01-01
This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, −550 ± 10 mV and 50 mL/min respectively, for COD, pHcathode, ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m2 power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584
Almatouq, Abdullah; Babatunde, Akintunde O
2016-03-29
This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.
Modeling and optimization of an enhanced battery thermal management system in electric vehicles
NASA Astrophysics Data System (ADS)
Li, Mao; Liu, Yuanzhi; Wang, Xiaobang; Zhang, Jie
2018-06-01
This paper models and optimizes an air-based battery thermal management system (BTMS) in a battery module with 36 battery lithium-ion cells. A design of experiments is performed to study the effects of three key parameters (i.e., mass flow rate of cooling air, heat flux from the battery cell to the cooling air, and passage spacing size) on the battery thermal performance. Three metrics are used to evaluate the BTMS thermal performance, including (i) the maximum temperature in the battery module, (ii) the temperature uniformity in the battery module, and (iii) the pressure drop. It is found that (i) increasing the total mass flow rate may result in a more non-uniform distribution of the passage mass flow rate among passages, and (ii) a large passage spacing size may worsen the temperature uniformity on the battery walls. Optimization is also performed to optimize the passage spacing size. Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 to 2.1 K by 91.2%, and the maximum temperature difference among the battery cells is reduced from 25.7 to 6.4 K by 75.1%.
Hydrodynamic parameters estimation from self-potential data in a controlled full scale site
NASA Astrophysics Data System (ADS)
Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore
2015-03-01
A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
Yoganand, Aradhana; Wood, Rachel P; Jimenez, Carlos; Siddiqui, Adnan; Snyder, Kenneth; Nagesh, S V Setlur; Bednarek, D R; Rudin, S; Baier, Robert; Ionita, Ciprian N
2015-02-21
Digital Subtraction Angiography (DSA) is the main diagnostic tool for intracranial aneurysms (IA) flow-diverter (FD) assisted treatment. Based on qualitative contrast flow evaluation, interventionists decide on subsequent steps. We developed a novel fully Retrievable Asymmetric Flow-Diverter (RAFD) which allows controlled deployment, repositioning and detachment achieve optimal flow diversion. The device has a small low porosity or solid region which is placed such that it would achieve maximum aneurysmal in-jet flow deflection with minimum impairment to adjacent vessels. We tested the new RAFD using a flow-loop with an idealized and a patient specific IA phantom in carotid-relevant physiological conditions. We positioned the deflection region at three locations: distally, center and proximally to the aneurysm orifice and analyzed aneurysm dome flow using DSA derived maps for mean transit time (MTT) and bolus arrival times (BAT). Comparison between treated and untreated (control) maps quantified the RAFD positioning effect. Average MTT, related to contrast presence in the aneurysm dome increased, indicating flow decoupling between the aneurysm and parent artery. Maximum effect was observed in the center and proximal position (~75%) of aneurysm models depending on their geometry. BAT maps, correlated well with inflow jet direction and magnitude. Reduction and jet dispersion as high as about 50% was observed for various treatments. We demonstrated the use of DSA data to guide the placement of the RAFD and showed that optimum flow diversion within the aneurysm dome is feasible. This could lead to more effective and a safer IA treatment using FDs.
A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
Blake, James R; Easson, William J; Hoskins, Peter R
2009-09-01
A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.
Comparison between uroflowmetry and sonouroflowmetry in recording of urinary flow in healthy men.
Krhut, Jan; Gärtner, Marcel; Sýkora, Radek; Hurtík, Petr; Burda, Michal; Luňáček, Libor; Zvarová, Katarína; Zvara, Peter
2015-08-01
To evaluate the accuracy of sonouroflowmetry in recording urinary flow parameters and voided volume. A total of 25 healthy male volunteers (age 18-63 years) were included in the study. All participants were asked to carry out uroflowmetry synchronous with recording of the sound generated by the urine stream hitting the water level in the urine collection receptacle, using a dedicated cell phone. From 188 recordings, 34 were excluded, because of voided volume <150 mL or technical problems during recording. Sonouroflowmetry recording was visualized in a form of a trace, representing sound intensity over time. Subsequently, the matching datasets of uroflowmetry and sonouroflowmetry were compared with respect to flow time, voided volume, maximum flow rate and average flow rate. Pearson's correlation coefficient was used to compare parameters recorded by uroflowmetry with those calculated based on sonouroflowmetry recordings. The flow pattern recorded by sonouroflowmetry showed a good correlation with the uroflowmetry trace. A strong correlation (Pearson's correlation coefficient 0.87) was documented between uroflowmetry-recorded flow time and duration of the sound signal recorded with sonouroflowmetry. A moderate correlation was observed in voided volume (Pearson's correlation coefficient 0.68) and average flow rate (Pearson's correlation coefficient 0.57). A weak correlation (Pearson's correlation coefficient 0.38) between maximum flow rate recorded using uroflowmetry and sonouroflowmetry-recorded peak sound intensity was documented. The present study shows that the basic concept utilizing sound analysis for estimation of urinary flow parameters and voided volume is valid. However, further development of this technology and standardization of recording algorithm are required. © 2015 The Japanese Urological Association.
NASA Astrophysics Data System (ADS)
Yoganand, Aradhana; Wood, Rachel P.; Jimenez, Carlos; Siddiqui, Adnan; Snyder, Kenneth; Setlur Nagesh, S. V.; Bednarek, D. R.; Rudin, S.; Baier, Robert; Ionita, Ciprian N.
2015-03-01
Digital Subtraction Angiography (DSA) is the main diagnostic tool for intracranial aneurysms (IA) flow-diverter (FD) assisted treatment. Based on qualitative contrast flow evaluation, interventionists decide on subsequent steps. We developed a novel fully Retrievable Asymmetric Flow-Diverter (RAFD) which allows controlled deployment, repositioning and detachment achieve optimal flow diversion. The device has a small low porosity or solid region which is placed such that it would achieve maximum aneurysmal in-jet flow deflection with minimum impairment to adjacent vessels. We tested the new RAFD using a flow-loop with an idealized and a patient specific IA phantom in carotid-relevant physiological conditions. We positioned the deflection region at three locations: distally, center and proximally to the aneurysm orifice and analyzed aneurysm dome flow using DSA derived maps for mean transit time (MTT) and bolus arrival times (BAT). Comparison between treated and untreated (control) maps quantified the RAFD positioning effect. Average MTT, related to contrast presence in the aneurysm dome increased, indicating flow decoupling between the aneurysm and parent artery. Maximum effect was observed in the center and proximal position (~75%) of aneurysm models depending on their geometry. BAT maps, correlated well with inflow jet direction and magnitude. Reduction and jet dispersion as high as about 50% was observed for various treatments. We demonstrated the use of DSA data to guide the placement of the RAFD and showed that optimum flow diversion within the aneurysm dome is feasible. This could lead to more effective and a safer IA treatment using FDs.
77 FR 7005 - Airworthiness Directives; Eurocopter Deutschland GMBH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... delivered fuel flow than the engine fuel flow demand needed to achieve the OEI rating at high altitude. They...-engine-inoperative (OEI) rating at altitudes above 10,000 feet. This condition could result in high... AD would require installing a placard that corresponds to the maximum permissible flight altitude...
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
Preliminary characterization of a water vaporizer for resistojet applications
NASA Technical Reports Server (NTRS)
Morren, W. Earl
1992-01-01
A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.
Static and aerothermal tests of a superalloy honeycomb prepackaged thermal protection system
NASA Technical Reports Server (NTRS)
Gorton, Mark P.; Shideler, John L.; Webb, Granville L.
1993-01-01
A reusable metallic thermal protection system has been developed for vehicles with maximum surface temperatures of up to 2000 F. An array of two 12- by 12-in. panels was subjected to radiant heating tests that simulated Space Shuttle entry temperature and pressure histories. Results indicate that this thermal protection system, with a mass of 2.201 lbm/ft(exp 2), can successfully prevent typical aluminum primary structure of an entry vehicle like the Space Shuttle from exceeding temperatures greater than 350 F at a location on the vehicle where the maximum surface temperature is 1900 F. A flat array of 20 panels was exposed to aerothermal flow conditions, at a Mach number of 6.75. The panels were installed in a worst-case orientation with the gaps between panels parallel to the flow. Results from the aerothermal tests indicated that convective heating occurred from hot gas flow in the gaps between the panels. Proposed design changes to prevent gap heating occurred from hot gas flow in the gaps between the panels. Proposed design changes to prevent gap heating include orienting panels so that gaps are not parallel to the flow and using a packaged, compressible gap-filler material between panels to block hot gas flow in the gaps.
Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.
2000-01-01
A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.
Welhan, J.A.; Reed, M.F.
1997-01-01
The regional spatial correlation structure of bulk horizontal hydraulic conductivity (Kb) estimated from published transmissivity data from 79 open boreholes in the fractured basalt aquifer of the eastern Snake River Plain was analyzed with geostatistical methods. The two-dimensional spatial correlation structure of In Kb shows a pronounced 4:1 range anisotropy, with a maximum correlation range in the north-northwest- south-southeast direction of about 6 km. The maximum variogram range of In Kb is similar to the mean length of flow groups exposed at the surface. The In Kb range anisotropy is similar to the mean width/length ratio of late Quaternary and Holocene basalt lava flows and the orientations of the major volcanic structural features on the eastern Snake River Plain. The similarity between In Kb correlation scales and basalt flow dimensions and between basalt flow orientations and correlation range anisotropy suggests that the spatial distribution of zones of high hydraulic conductivity may be controlled by the lateral dimensions, spatial distribution, and interconnection between highly permeable zones which are known to occur between lava flows within flow groups. If hydraulic conductivity and lithology are eventually shown to be cross correlative in this geologic setting, it may be possible to stochastically simulate hydraulic conductivity distributions, which are conditional on a knowledge of volcanic stratigraphy.
Rheology of surface granular flows
NASA Astrophysics Data System (ADS)
Orpe, Ashish V.; Khakhar, D. V.
Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameter d and velocity by a characteristic shear rate dot{gamma}_C = [gsin(beta_m-beta_s)/dcosbeta_s](1/2) and the particle diameter, where beta_m is the maximum dynamic angle of repose and beta_s is the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length lambda=1.1d. The r.m.s. velocity shows similar behaviour but with lambda=1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity eta with r.m.s. velocity u shows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity eta˜ u(-1.5) . The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
Unsteady fluid dynamics around a hovering wing
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Green, Melissa; Mulleners, Karen
2017-11-01
The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.
Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E
2017-02-22
Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elasto-Inertial Turbulence: From Subcritical Turbulence to Maximum Drag Reduction
NASA Astrophysics Data System (ADS)
Dubief, Yves; Sid, Samir; Egan, Raphael; Terrapon, Vincent
2015-11-01
Elasto Inertial Turbulence (EIT) is a turbulence state found so far in polymer solutions. Upon the appropriate initial perturbation, an autonomous regeneration cycle emerges between polymer dynamics, pressure and velocity fluctuations. This cycle is best explained by the Poisson equation derived from viscoelastic flow models such as FENE-P (used in this study). This presentation provides an overview of the structure of EIT in 2D channel flows for Reynolds numbers ranging from Reτ = 10 to 100 and for 3D simulations up to Ret au = 300 . For flows below the Newtonian critical Reynolds number, EIT increases the drag. For higher Reynolds numbers, EIT is surmised to be the energetic bound of Maximum Drag Reduction (MDR), the asymptotic state of drag reduction in polymer solutions. The very existence of EIT at low Reynolds numbers (Reτ < 60) highlights a backward energy transfer from the small scale polymer dynamics to larger flow scales. Similar dynamics is identified at higher Reynolds numbers, which could explain why polymer flows never become fully laminar. The authors acknowledge computational resources from CÉCI (F.R.S.-FNRS grant No.2.5020.11), the PRACE infrastructure, and the Vermont Advanced Computing Core.
Fuselage ventilation due to wind flow about a postcrash aircraft
NASA Technical Reports Server (NTRS)
Stuart, J. W.
1980-01-01
Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates.
Probable flood predictions in ungauged coastal basins of El Salvador
Friedel, M.J.; Smith, M.E.; Chica, A.M.E.; Litke, D.
2008-01-01
A regionalization procedure is presented and used to predict probable flooding in four ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. The flood-prediction problem is sequentially solved for two regions: upstream mountains and downstream alluvial plains. In the upstream mountains, a set of rainfall-runoff parameter values and recurrent peak-flow discharge hydrographs are simultaneously estimated for 20 tributary-basin models. Application of dissimilarity equations among tributary basins (soft prior information) permitted development of a parsimonious parameter structure subject to information content in the recurrent peak-flow discharge values derived using regression equations based on measurements recorded outside the ungauged study basins. The estimated joint set of parameter values formed the basis from which probable minimum and maximum peak-flow discharge limits were then estimated revealing that prediction uncertainty increases with basin size. In the downstream alluvial plain, model application of the estimated minimum and maximum peak-flow hydrographs facilitated simulation of probable 100-year flood-flow depths in confined canyons and across unconfined coastal alluvial plains. The regionalization procedure provides a tool for hydrologic risk assessment and flood protection planning that is not restricted to the case presented herein. ?? 2008 ASCE.
NASA Astrophysics Data System (ADS)
Jiao, Peng; Yang, Er; Ni, Yong Xin
2018-06-01
The overland flow resistance on grassland slope of 20° was studied by using simulated rainfall experiments. Model of overland flow resistance coefficient was established based on BP neural network. The input variations of model were rainfall intensity, flow velocity, water depth, and roughness of slope surface, and the output variations was overland flow resistance coefficient. Model was optimized by Genetic Algorithm. The results show that the model can be used to calculate overland flow resistance coefficient, and has high simulation accuracy. The average prediction error of the optimized model of test set is 8.02%, and the maximum prediction error was 18.34%.
Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects
Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L
2004-01-01
Aims/background: To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. Methods: The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. Results: None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. Conclusions: These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency. PMID:15031172
Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects.
Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L
2004-04-01
To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency.
High-Flow Jet Exit Rig Designed and Fabricated
NASA Technical Reports Server (NTRS)
Buehrle, Robert J.; Trimarchi, Paul A.
2003-01-01
The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.
NASA Astrophysics Data System (ADS)
Mögelin, H.; Yao, G.; Zhong, H.; dos Santos, A. R.; Barascu, A.; Meyer, R.; Krenkel, S.; Wassersleben, S.; Hickmann, T.; Enke, D.; Turek, T.; Kunz, U.
2018-02-01
The improvement of redox-flow batteries requires the development of chemically stable and highly conductive separators. Porous glass membranes can be an attractive alternative to the nowadays most common polymeric membranes. Flat porous glass membranes with a pore size in the range from 2 to 50 nm and a thickness of 300 and 500 μm have been used for that purpose. Maximum values for voltage efficiency of 85.1%, coulombic efficiency of 97.9% and energy efficiency of 76.3% at current densities in the range from 20 to 60 mA cm-2 have been achieved. Furthermore, a maximum power density of 95.2 mW cm-2 at a current density of 140 mA cm-2 was gained. These results can be related to small vanadium crossover, high conductivity and chemical stability, confirming the great potential of porous glass membranes for vanadium redox-flow applications.
Design and construction of an impulse turbine
NASA Astrophysics Data System (ADS)
Hernández, E.
2013-11-01
Impulse turbine has been constructed to be used in the program of Hydraulic Machines, Faculty of Mechanical Engineering at the Universidad Pontificia Bolivariana, sede Bucaramanga. For construction of the impulse turbine (Pelton) detailed plans were drawn up taking into account the design and implementation of the fundamental equations of hydraulic turbomachinery. From the experimental data found maximum mechanical efficiency of 0.6 ± 0.03 for a water flow of 2.1 l/s. The maximum overall efficiency was 0.23 ± 0.02 for a water flow of 0.83 l/s. The design parameter used was a power of 1 kW, as flow regulator built a needle type regulator, which performed well, the model of the bucket or vane is built on a machine type CNC (Computer Numerical Control). For the construction of the impeller and blades was used aluminium because of chemical and physical characteristics and the casing was manufactured in acrylic.
NASA Astrophysics Data System (ADS)
Singleton, V. L.; Gantzer, P.; Little, J. C.
2007-02-01
An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.
NASA Astrophysics Data System (ADS)
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
Addla, Sanjai Kumar; Marri, Rajender Reddy; Daayana, Sai Lakshmi; Irwin, Paul
2010-09-01
The aim of our study was to access the variability of maximum flow rate (Q(max)), average flow rate (Q(av)) and flow pattern while varying the point of impact of flow on the flowmeter. Water was delivered through a motorised tube holder in a standardised experimental set up. Flow was directed in 4 different directions on the funnel; 1) Periphery, 2) Base, 3) Centre and, 4) in a cruising motion from the periphery of the funnel to the centre and back again. The variation in the Q(max), Q(av) and the flow pattern were studied at 4 different flow rates. The variables recorded when the flow was directed at the centre of the funnel was taken as baseline. There was a significant difference in the Q(max) and Q(av)when the point of impact was at the periphery or in a cruising motion compared to the centre. The difference was more marked with cruising motion with a characteristic flow pattern. The maximum percentage difference in Q(av) was 4.1%, whereas the difference in Q(max) was higher at 16.6% on comparing crusing motion with the values from the centre. We have demonstrated a significant variation in Q(max), Q(av) and flow pattern with change in the point of impact on the flowmeter. Though the changes in Q(av) were statistically significant, the alteration in the recorded Q(max) values was more striking. Our study emphasizes the importance of combining Q(av) and flow pattern along with Q(max) in interpretation of results of uroflowmetry. © 2010 Wiley-Liss, Inc.
Simulating pedestrian flow by an improved two-process cellular automaton model
NASA Astrophysics Data System (ADS)
Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Dong, Li-Yun
In this paper, we study the pedestrian flow with an Improved Two-Process (ITP) cellular automaton model, which is originally proposed by Blue and Adler. Simulations of pedestrian counterflow have been conducted, under both periodic and open boundary conditions. The lane formation phenomenon has been reproduced without using the place exchange rule. We also present and discuss the flow-density and velocity-density relationships of both uni-directional flow and counterflow. By the comparison with the Blue-Adler model, we find the ITP model has higher values of maximum flow, critical density and completely jammed density under different conditions.
ERIC Educational Resources Information Center
Bussi, Maria G. Bartolini; Boni, Mara
1995-01-01
Presents a methodology for analyzing verbal interaction in mathematical discussion which is both a product and an instrument of a research project in grades one through eight. Analyzes an example of discussion from a first-grade classroom about point of view. (Author/MKR)
Doppler ultrasound to detect pulpal blood flow changes during local anaesthesia.
Yoon, M J; Lee, S J; Kim, E; Park, S H
2012-01-01
To examine whether Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia. Changes in pulpal blood flow in maxillary central incisor teeth of 18 patients (mean age 26.7 years, 13 men, five women) after infiltration anaesthesia were examined. Before infiltration anaesthesia, the pulpal blood flow was measured using Doppler ultrasound. A local anaesthetic solution containing 2% lidocaine with 1:80,000 epinephrine was injected into the submucosa above the experimental tooth. The Doppler ultrasound test was carried out at 5, 10, 20, 30, 45 and 60 min after infiltration. The parameters were Vas (maximum linear velocity, cm s(-1) ), Vam (average linear velocity, cm s(-1) ) and Vakd (minimum linear velocity, cm s(-1) ), which are indicators of the level of blood flow. The mixed procedure at the 95% confidence interval was used to examine the changes in pulpal blood flow after the injection. The linear velocity profiles (Vas, Vam, and Vakd) decreased sharply 5 min after anaesthesia and then reduced continuously for 30 min. The maximum degree of blood flow reduction in Vas, Vam and Vakd was 58%, 83% and 82%, respectively. After 30 min, the linear velocities increased gradually. The Vam returned to the pre-anaesthesia state at 60 minutes but the Vas and Vakd did not recover completely. Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia. In the future, Doppler ultrasound can be used as a tool for measuring pulpal blood flow. © 2011 International Endodontic Journal.
Time-dependent onshore tsunami response
Apotsos, Alex; Gelfenbaum, Guy R.; Jaffe, Bruce E.
2012-01-01
While bulk measures of the onshore impact of a tsunami, including the maximum run-up elevation and inundation distance, are important for hazard planning, the temporal evolution of the onshore flow dynamics likely controls the extent of the onshore destruction and the erosion and deposition of sediment that occurs. However, the time-varying dynamics of actual tsunamis are even more difficult to measure in situ than the bulk parameters. Here, a numerical model based on the non-linear shallow water equations is used to examine the effects variations in the wave characteristics, bed slope, and bottom roughness have on the temporal evolution of the onshore flow. Model results indicate that the onshore flow dynamics vary significantly over the parameter space examined. For example, the flow dynamics over steep, smooth morphologies tend to be temporally symmetric, with similar magnitude velocities generated during the run-up and run-down phases of inundation. Conversely, on shallow, rough onshore topographies the flow dynamics tend to be temporally skewed toward the run-down phase of inundation, with the magnitude of the flow velocities during run-up and run-down being significantly different. Furthermore, for near-breaking tsunami waves inundating over steep topography, the flow velocity tends to accelerate almost instantaneously to a maximum and then decrease monotonically. Conversely, when very long waves inundate over shallow topography, the flow accelerates more slowly and can remain steady for a period of time before beginning to decelerate. These results indicate that a single set of assumptions concerning the onshore flow dynamics cannot be applied to all tsunamis, and site specific analyses may be required.
Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.
Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan
2015-09-01
To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.
Human Cough as a Two-Stage Jet and Its Role in Particle Transport
Li, Yuguo
2017-01-01
The human cough is a significant vector in the transmission of respiratory diseases in indoor environments. The cough flow is characterized as a two-stage jet; specifically, the starting jet (when the cough starts and flow is released) and interrupted jet (after the source supply is terminated). During the starting-jet stage, the flow rate is a function of time; three temporal profiles of the exit velocity (pulsation, sinusoidal and real-cough) were investigated in this study, and our results showed that the cough flow’s maximum penetration distance was in the range of a 50.6–85.5 opening diameter (D) under our experimental conditions. The real-cough and sinusoidal cases exhibited greater penetration ability than the pulsation cases under the same characteristic Reynolds number (Rec) and normalized cough expired volume (Q/AD, with Q as the cough expired volume and A as the opening area). However, the effects of Rec and Q/AD on the maximum penetration distances proved to be more significant; larger values of Rec and Q/AD reflected cough flows with greater penetration distances. A protocol was developed to scale the particle experiments between the prototype in air, and the model in water. The water tank experiments revealed that although medium and large particles deposit readily, their maximum spread distance is similar to that of small particles. Moreover, the leading vortex plays an important role in enhancing particle transport. PMID:28046084
Tripathi, Dharmendra; Yadav, Ashu; Bég, O Anwar
2017-01-01
Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
The Inverse Problem for Confined Aquifer Flow: Identification and Estimation With Extensions
NASA Astrophysics Data System (ADS)
Loaiciga, Hugo A.; MariñO, Miguel A.
1987-01-01
The contributions of this work are twofold. First, a methodology for estimating the elements of parameter matrices in the governing equation of flow in a confined aquifer is developed. The estimation techniques for the distributed-parameter inverse problem pertain to linear least squares and generalized least squares methods. The linear relationship among the known heads and unknown parameters of the flow equation provides the background for developing criteria for determining the identifiability status of unknown parameters. Under conditions of exact or overidentification it is possible to develop statistically consistent parameter estimators and their asymptotic distributions. The estimation techniques, namely, two-stage least squares and three stage least squares, are applied to a specific groundwater inverse problem and compared between themselves and with an ordinary least squares estimator. The three-stage estimator provides the closer approximation to the actual parameter values, but it also shows relatively large standard errors as compared to the ordinary and two-stage estimators. The estimation techniques provide the parameter matrices required to simulate the unsteady groundwater flow equation. Second, a nonlinear maximum likelihood estimation approach to the inverse problem is presented. The statistical properties of maximum likelihood estimators are derived, and a procedure to construct confidence intervals and do hypothesis testing is given. The relative merits of the linear and maximum likelihood estimators are analyzed. Other topics relevant to the identification and estimation methodologies, i.e., a continuous-time solution to the flow equation, coping with noise-corrupted head measurements, and extension of the developed theory to nonlinear cases are also discussed. A simulation study is used to evaluate the methods developed in this study.
Winter monsoon circulation of the northern Arabian Sea and Somali Current
NASA Astrophysics Data System (ADS)
Schott, Friedrich A.; Fischer, Jürgen
2000-03-01
The winter monsoon circulation in the northern inflow region of the Somali Current is discussed on the basis of an array of moored acoustic Doppler current profiler and current meter stations deployed during 1995-1996 and a ship survey carried out in January 1998. It is found that the westward inflow into the Somali Current regime occurs essentially south of 11°N and that this inflow bifurcates at the Somali coast, with the southward branch supplying the equatorward Somali Current and the northward one returning into the northwestern Arabian Sea. This northward branch partially supplies a shallow outflow through the Socotra Passage between the African continent and the banks of Socotra and partially feeds into eastward recirculation directly along the southern slopes of Socotra. Underneath this shallow surface flow, southwestward undercurrent flows are observed. Undercurrent inflow from the Gulf of Aden through the Socotra Passage occurs between 100 and 1000 m, with its current core at 700-800 m, and is clearly marked by the Red Sea Water (RSW) salinity maximum. The observations suggest that the maximum RSW inflow out of the Gulf of Aden occurs during the winter monsoon season and uses the Socotra Passage as its main route into the Indian Ocean. Westward undercurrent inflow into the Somali Current regime is also observed south of Socotra, but this flow lacks the RSW salinity maximum. Off the Arabian peninsula, eastward boundary flow is observed in the upper 800 m with a compensating westward flow to the south. The observed circulation pattern is qualitatively compared with recent high-resolution numerical model studies and is found to be in basic agreement.
Bathymetric and hydraulic survey of the Matanuska River near Circle View Estates, Alaska
Conaway, Jeffrey S.
2008-01-01
An acoustic Doppler current profiler interfaced with a differentially corrected global positioning system was used to map bathymetry and multi-dimensional velocities on the Matanuska River near Circle View Estates, Alaska. Data were collected along four spur dikes and a bend in the river during a period of active bank erosion. These data were collected as part of a larger investigation into channel processes being conducted to aid land managers with development of a long-term management plan for land near the river. The banks and streambed are composed of readily erodible material and the braided channels frequently scour and migrate. Lateral channel migration has resulted in the periodic loss of properties and structures along the river for decades.For most of the survey, discharge of the Matanuska River was less than the 25th percentile of long-term streamflow. Despite this relatively low flow, measured water velocities were as high as 15 feet per second. The survey required a unique deployment of the acoustic Doppler current profiler in a tethered boat that was towed by a small inflatable raft. Data were collected along cross sections and longitudinal profiles. The bathymetric and velocity data document river conditions before the installation of an additional spur dike in 2006 and during a period of bank erosion. Data were collected along 1,700 feet of river in front of the spur dikes and along 1,500 feet of an eroding bank.Data collected at the nose of spur dikes 2, 3, and 4 were selected to quantify the flow hydraulics at the locations subject to the highest velocities. The measured velocities and flow depths were greatest at the nose of the downstream-most spur dike. The maximum point velocity at the spur dike nose was 13.3 feet per second and the maximum depth-averaged velocity was 11.6 feet per second. The maximum measured depth was 12.0 feet at the nose of spur dike 4 and velocities greater than 10 feet per second were measured to a depth of 10 feet.Data collected along an eroding bank provided details of the spatial distribution and variability in magnitude of velocities and flow depths while erosion was taking place. Erosion was concentrated in an area just downstream of the apex of a river bend. Measured velocities and flow depths were greater in the apex of the bend than in the area of maximum bank erosion. The maximum measured velocity was 12.9 feet per second at the apex and 11.2 feet per second in front of the eroding bank. The maximum measured depth was 10.2 feet at the apex and 5.2 feet in front of the eroding bank.
Supersonic Particle Impact Test Capabilities: Investigative Report
NASA Technical Reports Server (NTRS)
Rosales, Keisa
2007-01-01
NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact flow tests to determine the maximum capabilities of the particle impact test systems in different configurations. Additional flow tests were performed to determine the target pressures at given upstream conditions to supplement the WSTF data located in ASTM Manual 36 (2000).
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
46 CFR 38.10-15 - Safety relief valves-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...
46 CFR 38.10-15 - Safety relief valves-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...
46 CFR 38.10-15 - Safety relief valves-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...
46 CFR 38.10-15 - Safety relief valves-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...
NASA Technical Reports Server (NTRS)
Graham, Robert C.; Hartmann, Melvin J.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
The maximum drag reduction asymptote
NASA Astrophysics Data System (ADS)
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
The effect of CNC and manual laser machining on electrical resistance of HDPE/MWCNT composite
NASA Astrophysics Data System (ADS)
Mohammadi, Fatemeh; Farshbaf Zinati, Reza; Fattahi, A. M.
2018-05-01
In this study, electrical conductivity of high-density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composite was investigated after laser machining. To this end, produced using plastic injection process, nano-composite samples were laser machined with various combinations of input parameters such as feed rate (35, 45, and 55 mm/min), feed angle with injection flow direction (0°, 45°, and 90°), and MWCNT content (0.5, 1, and 1.5 wt%). The angle between laser feed and injected flow direction was set via either of two different methods: CNC programming and manual setting. The results showed that the parameters of angle between laser line and melt flow direction and feed rate were both found to have statistically significance and physical impacts on electrical resistance of the samples in manual setting. Also, maximum conductivity was seen when the angle between laser line and melt flow direction was set to 90° in manual setting, and maximum conductivity was seen at feed rate of 55 mm/min in both of CNC programming and manual setting.
Tomographic PIV of flow through ordered thin porous media
NASA Astrophysics Data System (ADS)
Larsson, I. A. Sofia; Lundström, T. Staffan; Lycksam, Henrik
2018-06-01
Pressure-driven flow in a model of a thin porous medium is investigated using tomographic particle image velocimetry. The solid parts of the porous medium have the shape of vertical cylinders placed on equal interspatial distance from each other. The array of cylinders is confined between two parallel plates, meaning that the permeability is a function of the diameter and height of the cylinders, as well as their interspatial distance. Refractive index matching is applied to enable measurements without optical distortion and a dummy cell is used for the calibration of the measurements. The results reveal that the averaged flow field changes substantially as Reynolds number increases, and that the wakes formed downstream the cylinders contain complex, three-dimensional vortex structures hard to visualize with only planar measurements. An interesting observation is that the time-averaged velocity maximum changes position as Reynolds number increases. For low Reynolds number flow, the maximum is in the middle of the channel, while, for the higher Reynolds numbers investigated, two maxima appear closer to each bounding lower and upper wall.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1948-01-01
As part of an investigation of the performance and operational characteristics of the axial-flow gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100 R. The highest compressor pressure ratio obtained was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475 R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
Pressure fluctuations and time scales in turbulent channel flow
NASA Astrophysics Data System (ADS)
Septham, Kamthon; Morrison, Jonathan; Diwan, Sourabh
2015-11-01
Pressure fluctuations in turbulent channel flow subjected to globally stabilising linear feedback control are investigated at Reτ = 400 . The passivity-based control is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al. Phys. Fluids 2011). The linear control operates via vU' ; the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The responses of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control are investigated using the Green's function representations. It demonstrates that the linear control operates via the linear source terms of the Poisson equation for pressure fluctuations. Landahl's timescales of the minimal flow unit (MFU) in turbulent channel flow are examined at y+ = 20 . It shows that the timescales of MFU agree well with the theoretical values proposed by Landahl (1993). Therefore, the effectiveness of the linear control to attenuate wall turbulence is explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is significantly shorter than both the nonlinear and viscous timescales.
Mean flow characteristics for the oblique impingement of an axisymmetric jet
NASA Technical Reports Server (NTRS)
Foss, J. F.; Kleis, S. J.
1975-01-01
The oblique impingement of an axisymmetric jet has been investigated. A summary of the data and the analytical interpretations of the dominant mechanisms which influence the flow are reported. The major characteristics of the shallow angle oblique jet impingement flow field are: (1) minimal dynamic spreading as revealed by the surface pressure field, (2) pronounced kinematic spreading as revealed by the jet flow velocity field, (3) a pronounced upstream shift of the stagnation point from the maximum pressure point, (4) the production of streamwise vorticity by the impingement process.
Assessing the direct effects of streamflow on recreation: a literature review
Brown, Thomas C.; Taylor, Jonathan G.; Shelby, Bo
1991-01-01
A variety of methods have been used to learn about the relation between streamflow and recreation quality. Regardless of method, nearly all studies found a similar nonlinear relation of recreation to flow, with quality increasing with flow to a point, and then decreasing for further increases in flow. Points of minimum, optimum, and maximum flow differ across rivers and activities. Knowledge of the effects of streamflow on recreation, for the variety of relevant activities and skill levels, is an important ingredient in the determination of wise streamflow policies.
Thermal effects of dams in the Willamette River basin, Oregon
Rounds, Stewart A.
2010-01-01
Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm
The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico
Macias, J.L.; Capra, L.; Scott, K.M.; Espindola, J.M.; Garcia-Palomo, A.; Costa, J.E.
2004-01-01
The eruptions of El Chicho??n between 28 March and 4 April 1982 produced a variety of pyroclastic deposits. The climactic phase, on 3 April at 07:35 (4 April at 01:35 GMT), destroyed the central andesitic dome and fed pyroclastic surges and flows that dammed nearby drainages, including the Magdalena River. By late April, a lake had formed, 4 km long and 300-400 m wide, containing a volume of 26 ?? 106 m3 of hot water. At 01:30 on 26 May, the pyroclastic dam was breached and surges of sediment and hot water soon inundated the town of Ostuaca??n, 10 km downstream. This hot flood was finally contained at Pen??itas Hydroelectric Dam, 35 km downstream, where one fatality occurred and three workers were badly scalded. Stratigraphic and sedimentologic evidence indicates that the rapidly draining lake initially discharged two debris flows, followed by five smaller debris flows and water surges. The main debris flows became diluted with distance, and by the time they reached Ostuaca??n, they merged into a single hyperconcentrated flow with a sediment concentration of ???30 vol%. Deposits from this hyperconcentrated flow were emplaced for 15 km, as far as the confluence with another river, the Mas-Pac, below which the flow was diluted to sediment-laden streamflow. The minimum volume of the breakout-flow deposits is estimated at 17 ?? 106 m3. From high-water marks, flow profiles, and simulations utilizing the DAMBRK code from the National Weather Service, we calculated a maximum peak discharge of 11,000 m3/s at the breach; this maximum peak discharge occurred 1 h after initial breaching. The calculations indicated that ???2 h were required to drain the lake.
Ecohydrological Index, Native Fish, and Climate Trends and Relationships in the Kansas River Basin.
Sinnathamby, Sumathy; Douglas-Mankin, Kyle R; Muche, Muluken E; Hutchinson, Stacy L; Anandhi, Aavudai
2018-01-01
This study quantified climatological and hydrological trends and relationships to presence and distribution of two native aquatic species in the Kansas River Basin over the past half-century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) at 34 streamgages over a 50-year period (1962-2012). Results showed a significant negative trend in annual streamflow for 10 of 12 western streamgages (up to -7.65 mm/50 yr) and smaller negative trends for most other streamgages. Significant negative trends in western Basin streamflow were more widespread in summer (12 stations) than winter or spring (6 stations). The negative-trend magnitude and significance decreased from west to east for maximum-flow IHAs. Minimum- flow IHAs, however, significantly decreased at High Plains streamgages but significantly increased at Central Great Plains streamgages. Number of zero-flow days showed positive trends in the High Plains. Most streamgages showed negative trends in low- and high-flow pulse frequency and high-flow pulse duration, and positive trends in low-flow pulse duration. These results were consistent with increasing occurrence of drought. Shift in occurrence from present (1860-1950) to absent (2000-2012) was significantly related (p<0.10) to negative trends of 1-day maximum flows (both species) and indices associated with reduced spawning-season flows for Plains Minnow and shifting annual-flow timing and increased flow intermittency for Common Shiner. Both species were absent for all western Basin sites and had different responses to hydrological index trends at eastern Basin sites. These results demonstrate ecohydrological index changes impact distributions of native fish and suggest target factors for assessment or restoration activities.
A Realization of Theoretical Maximum Performance in IPSec on Gigabit Ethernet
NASA Astrophysics Data System (ADS)
Onuki, Atsushi; Takeuchi, Kiyofumi; Inada, Toru; Tokiniwa, Yasuhisa; Ushirozawa, Shinobu
This paper describes “IPSec(IP Security) VPN system" and how it attains a theoretical maximum performance on Gigabit Ethernet. The Conventional System is implemented by software. However, the system has several bottlenecks which must be overcome to realize a theoretical maximum performance on Gigabit Ethernet. Thus, we newly propose IPSec VPN System with the FPGA(Field Programmable Gate Array) based hardware architecture, which transmits a packet by the pipe-lined flow processing and has 6 parallel structure of encryption and authentication engines. We show that our system attains the theoretical maximum performance in the short packet which is difficult to realize until now.
Carroll, Carlos; McRae, Brad H; Brookes, Allen
2012-02-01
Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity. ©2011 Society for Conservation Biology.
Autogenic dynamics of debris-flow fans
NASA Astrophysics Data System (ADS)
van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten
2015-04-01
Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Banks, Daniel W.; Richwine, David M.
1990-01-01
Pressure distributions measured on the forebody and the leading-edge extensions (LEX's) of the NASA F-18 high alpha research vehicle (HARV) were reported at 10 and 50 degree angles of attack and at Mach 0.20 to 0.60. The results were correlated with HARV flow visualization and 6-percent scale F-18 wind-tunnel-model test results. The general trend in the data from the forebody was for the maximum suction pressure peaks to first appear at an angle of attack (alpha) of approximately 19 degrees and increase in magnitude with angle of attack. The LEX pressure distribution general trend was the inward progression and increase in magnitude of the maximum suction peaks up to vortex core breakdown and then the decrease and general flattening of the pressure distribution beyond that. No significant effect of Mach number was noted for the forebody results. However, a substantial compressibility effect on the LEX's resulted in a significant reduction in vortex-induced suction pressure as Mach number increased. The forebody primary and the LEX secondary vortex separation lines, from surface flow visualization, correlated well with the end of pressure recovery, leeward and windward, respectively, of maximum suction pressure peaks. The flight to wind-tunnel correlations were generally good with some exceptions.
Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate
LaBelle, Edward V.; May, Harold D.
2017-01-01
It was hypothesized that a lack of acetogenic biomass (biocatalyst) at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvanostatic control and continuous media flow through a reticulated vitreous carbon (RVC) foam cathode. The combination of galvanostatic control and the high surface area cathode reduced the electron limitation and the continuous flow overcame the nutrient limitation while avoiding the accumulation of products and potential inhibitors. These conditions were set with the intention of operating the biocathode through the production of H2. Biofilm growth occurred on and within the unmodified RVC foam regardless of vigorous H2 generation on the cathode surface. A maximum volumetric rate or space time yield for acetate production of 0.78 g/Lcatholyte/h was achieved with 8 A/Lcatholyte (83.3 A/m2projected surface area of cathode) supplied to the continuous flow/culture bioelectrochemical reactors. The total Coulombic efficiency in H2 and acetate ranged from approximately 80–100%, with a maximum of 35% in acetate. The overall energy efficiency ranged from approximately 35–42% with a maximum to acetate of 12%. PMID:28515713
Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate.
LaBelle, Edward V; May, Harold D
2017-01-01
It was hypothesized that a lack of acetogenic biomass (biocatalyst) at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvanostatic control and continuous media flow through a reticulated vitreous carbon (RVC) foam cathode. The combination of galvanostatic control and the high surface area cathode reduced the electron limitation and the continuous flow overcame the nutrient limitation while avoiding the accumulation of products and potential inhibitors. These conditions were set with the intention of operating the biocathode through the production of H 2 . Biofilm growth occurred on and within the unmodified RVC foam regardless of vigorous H 2 generation on the cathode surface. A maximum volumetric rate or space time yield for acetate production of 0.78 g/L catholyte /h was achieved with 8 A/L catholyte (83.3 A/m 2 projected surface area of cathode) supplied to the continuous flow/culture bioelectrochemical reactors. The total Coulombic efficiency in H 2 and acetate ranged from approximately 80-100%, with a maximum of 35% in acetate. The overall energy efficiency ranged from approximately 35-42% with a maximum to acetate of 12%.
Continuous protein concentration via free-flow moving reaction boundary electrophoresis.
Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi
2017-07-28
In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical study on air-structure coupling dynamic characteristics of the axial fan blade
NASA Astrophysics Data System (ADS)
Chen, Q. G.; Xie, B.; Li, F.; Gu, W. G.
2013-12-01
In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design.
Design and analysis of a double superimposed chamber valveless MEMS micropump.
Zordan, E; Amirouche, F
2007-02-01
The newly designed micropump model proposed consists of a valveless double chamber pump completely simulated and optimized for drug delivery conditions. First, the inertia force and viscous loss in relation to actuation, pressure, and frequency is considered, and then a model of the nozzle/diffuser elements is introduced. The value of the flowrate obtained from the first model is then used to determine the loss coefficients starting from geometrical properties and flow velocity. From the developed model IT analysis is performed to predict the micropump performance based on the actuation parameters and no energy loss. A single-chamber pump with geometrical dimensions equal to each of the chambers of the double-chamber pump was also developed, and the results from both models are then compared for equally applied actuation pressure and frequency. Results show that the proposed design gives a maximum flow working frequency that is about 30 per cent lower than the single chamber design, with a maximum flowrate that is 140 per cent greater than that of the single chamber. Finally, the influences of geometrical properties on flowrate, maximum flow frequency, loss coefficients, and membrane strain are examined. The results show that the nozzle/ diffuser initial width and chamber side length are the most critical dimensions of the design.
NASA Astrophysics Data System (ADS)
Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar statistics if the preceding flow history is similar.
Flow acceleration structure of Aurelia aurita: implications on propulsion
NASA Astrophysics Data System (ADS)
Kim, Jin-Tae; Piper, Matthew; Chamorro, Leonardo P.
2017-11-01
The jetting and paddling mechanisms used by Aurelia aurita jellyfish allows for one of the most efficient propulsion among other metazoans. Characterization of the induced flow acceleration is critical to uncover distinctive patterns. We found four acceleration structures using 3D measurements of body and flow dynamics in Lagrangian frame of reference. Two intense structures occur near the bell margin and are generated by paddling; the other two around the center of the jellyfish and half magnitude are a result of jetting. Their interaction leads to the maximum flow velocity in the middle of the relaxation, where relatively straight flow trajectories occur. The jellyfish achieves an efficient relaxation by generating flow deceleration with minor body deceleration.
System for Repairing Cracks in Structures
NASA Technical Reports Server (NTRS)
Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)
2014-01-01
A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.
Code of Federal Regulations, 2011 CFR
2011-07-01
... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge... mercury (Hg) sorbent flow rate Hourly Once per hour ✔ ✔ Minimum pressure drop across the wet scrubber or...
A classification scheme for the morphology of lava flow fields
NASA Technical Reports Server (NTRS)
Wilson, L.; Pinkerton, H.; Head, James W.; Roberts, K. Magee
1993-01-01
Analysis of the processes controlling the advance of lava flows shows that, if no other factors intervene, thermal constraints will act to limit the maximum length of a flow being fed at a given volume or mass effusion rate from a vent. These constraints can be characterized through the Gratz number, which takes on a large value at the vent and decreases down flow. Early application of this principle showed that, despite the many subtleties of modes of heat loss from flows, motion apparently ceases when the Gratz number has decreased to a value close to 300. Recent analyses of flow units from the 1983-86 Pu'u 'O'o eruption of Kilauea and of other, more silicic lava flow units confirm this finding.
de Vries, P J; de Hooge, P; Hoekstra, J B; van Hattum, J
1994-12-01
To establish the effects of a meal on portal venous flow and the prognostic value of this parameter, 46 patients with chronic liver disease and 28 healthy subjects were examined with duplex Doppler before and after a meal. The measurements were completed in 40 patients and 21 healthy subjects. Postprandial portal venous diameter, blood velocity and quantitative flow were measured for 60 min. Mean baseline values were: 11.4 mm versus 10.2 mm (p = 0.019), 10.8 cm.s-1 versus 13.4 cm.s-1 (p = 0.015) and 668 ml.min-1 versus 646 ml.min-1 (p = 0.7) respectively. Spleen size was 15.0 cm versus 10.6 cm (p = 0.0001) respectively. Postprandial diameter, velocity and flow increased significantly in patients and controls (p = 0.0001 for all). Mean postprandial flow could best be described by a polynomial equation with a parabolic curve. Patients' curves were more blunted than controls', with significantly different regression constants (p = 0.025 and p = 0.029). All subjects were followed up for survival and variceal haemorrhage. The mean follow-up time was 47 months. Early maximum postprandial velocity (p = 0.041) and large spleen size (p = 0.002) were significantly related to an unfavourable prognosis for survival. Early maximum velocity was also related to increased variceal haemorrhage. This study shows that postprandial portal venous flow is blunted in patients with chronic liver disease. Postprandial portal venous flow may have prognostic significance.
Simulating the effect of climate extremes on groundwater flow through a lakebed
Virdi, Makhan L.; Lee, Terrie M.; Swancar, Amy; Niswonger, Richard G.
2012-01-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area.
Pulsatile pressure driven rarefied gas flow in long rectangular ducts
NASA Astrophysics Data System (ADS)
Tsimpoukis, Alexandros; Valougeorgis, Dimitris
2018-04-01
The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.
Effects of Stochastic Traffic Flow Model on Expected System Performance
2012-12-01
NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs
NASA Technical Reports Server (NTRS)
Brent, J. A.; Cheatham, J. G.
1973-01-01
Stage B, composed of tandem-airfoil rotor B and stator B, was tested with uniform inlet flow and with hub radial, tip radial and 90 degree one-per-revolution circumferential distortion of the inlet flow as part of an overall program to evaluate the effectiveness of tandem airfoils for increasing the design point loading capability and stable operating range of rotor and stator blading. The results of this series of tests provide overall performance and blade element data for evaluating: (1) the potential of tandem blading for extending the loading limit and stable operating range of a stage representative of a middle stage of an advanced high pressure compressor, (2) the effect of loading split between the two airfoils in tandem on the performance of tandem blading, and (3) the effects of inlet flow distortion on the stage performance. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. With uniform inlet flow, rotor B achieved a maximum adiabatic efficiency of 88.4% at design equivalent rotor speed and a pressure ratio of 1.31. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 82.5% at a pressure ratio of 1.28. Tip radial and circumferential distortion of the inlet flow caused substantial reductions in surge margin.
Water table variability and runoff generation in an eroded peatland, South Pennines, UK
NASA Astrophysics Data System (ADS)
Daniels, S. M.; Agnew, C. T.; Allott, T. E. H.; Evans, M. G.
2008-10-01
SummaryHydrological monitoring in an eroded South Pennine peatland shows that persistent and frequent water table drawdowns occur at gully edge locations, defining a deeper and thicker acrotelm than is observed in intact peatlands (an erosional acrotelm). Antecedent water table elevation is a key control on the hydrological response to precipitation events, in particular runoff percent, the timing of peak discharges and maximum water table elevations. Significant discharge is generated whilst water table elevations are relatively low at gully edge locations, and this has a strong influence on flow pathways. Four characteristics of runoff response are recognised: (i) the rapid development of macropore/pipe flow at the start of the storm; (ii) peat rewetting, water table elevation increase and continued macropore/pipe flow; (iii) maximum water table elevations and peak stream discharge with throughflow occurring within the erosional acrotelm and rapid flow through the subsurface macropore/pipe network; (iv) rapidly declining water table elevations and stream flow following the cessation of rainfall. Gully edge peats provide a key linkage between the hillslope hydrological system and channel flow so that their influence on the hydrological functioning of the peatlands is disproportionate to their aerial extent within the catchment. Future climate change may lead to further degradation of the bogs and a reinforcement of the importance of erosion gullies to runoff generation and water quality.
Characteristics of the turbulence in the flow at a tidal stream power site.
Milne, I A; Sharma, R N; Flay, R G J; Bickerton, S
2013-02-28
This paper analyses a set of velocity time histories which were obtained at a fixed point in the bottom boundary layer of a tidal stream, 5 m from the seabed, and where the mean flow reached 2.5 m s(-1). Considering two complete tidal cycles near spring tide, the streamwise turbulence intensity during non-slack flow was found to be approximately 12-13%, varying slightly between flood and ebb tides. The ratio of the streamwise turbulence intensity to that of the transverse and vertical intensities is typically 1 : 0.75 : 0.56, respectively. Velocity autospectra computed near maximum flood tidal flow conditions exhibit an f(-2/3) inertial subrange and conform reasonably well to atmospheric turbulence spectral models. Local isotropy is observed between the streamwise and transverse spectra at reduced frequencies of f>0.5. The streamwise integral time scales and length scales of turbulence at maximum flow are approximately 6 s and 11-14 m, respectively, and exhibit a relatively large degree of scatter. They are also typically much greater in magnitude than the transverse and vertical components. The findings are intended to increase the levels of confidence within the tidal energy industry of the characteristics of the higher frequency components of the onset flow, and subsequently lead to more realistic performance and loading predictions.
NASA Astrophysics Data System (ADS)
Hu, W.-R.
1984-09-01
The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
NASA Astrophysics Data System (ADS)
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.
Basewide Energy Study, Fort Wainwright Alaska: Volume 1-Executive Summary
1982-04-01
more accurate condensate wiett?Ing. 2.2 ENERGY OSAGE ANALISIS 4 top~down anay2ts was mad" of FY’•0 ener;’ uxage’ t Fort wrtsvrigFnt. The spporiIonments...vice, at each receptacle cluster . It should be thermally sensitlve. rtdtcing through-put from 600 watts at -SOOT to0soer power at 100? outside air
1982-09-01
characteristics) for one or more aircraft which had been tempor- arily excluded from the data base. Provided these results proved satis- factory , all of the...8217 . ; ;AI - U .*- .. ." ... , -Lt" U :% 170.,, ..’ ,:, -:iZ,: . APPENDIX G FACTOR ANALYSIS INITIAL 1 71 239= RUN UKI FACTOR ANALISIS
Uso de terreno urbano y rural en Puerto Rico
Sebastian Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez; Maya Quinones; Michael E. Jimenez
2008-01-01
El Proyecto de Analisis de Gap de Puerto Rico (PRGAP) (Gould et al. 2008) desarrollo tres usos de terrenos para Puerto Rico: Urbano, Suburbano, y Rural (Martinuzzi et al. 2007). Estas regiones tambien pueden ser consideradas como urbano, densamente-poblado rural, y escasamente-poblado rural, o como urbano y area silvestre con una interfase de area silvestre-urbana. La...
Chaotic behaviour of high Mach number flows
NASA Technical Reports Server (NTRS)
Varvoglis, H.; Ghosh, S.
1985-01-01
The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.
Analysis of flow patterns in a patient-specific aortic dissection model.
Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y
2010-05-01
Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.
Observations and a model of undertow over the inner continental shelf
Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent
2008-01-01
Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.
Duckett, Jonathan; Chakani, Dorothy
2013-12-01
To assess whether specific changes in bladder neck morphology, caused by an anterior repair operation, are associated with resolution of overactive bladder and improved urinary flow rates. Sixty-four women with urgency documented on the urgency perception scale (UPS) underwent an anterior repair. Their preoperative flow studies were compared to those 8 weeks postoperatively. Flow rates were compared in those women who reported improved or cured urgency to those who reported no effect. Resolution of urgency was correlated with the change in bladder neck angulation (posterior urethrovesical angle-PUA). 55% (35/64) women reported no urgency after the anterior repair. A further 19% (12/64) were improved and 26% (17/64) were no better. Patients who were cured or improved showed a significant increase in their flow rates after surgery (mean flow=15 before and 17.6 ml/s after) (Mann-Whitney p=0.04). There was a significant change (increase in the PUA angle/straightening of the angle between the bladder and urethra) from a mean value of 123 degrees (SD 49.3) preoperatively to a mean value of 146.8 (SD 29.2) post operatively (p<0.001). Despite an increase in PUA, this was not correlated with an increase in the maximum flow rate centile (p=0.45, r=0.10). An anterior repair results in increased maximum urinary flow rates but this does not correlate to changes in the appearance of the bladder neck. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Simulation of water-table aquifers using specified saturated thickness
Sheets, Rodney A.; Hill, Mary C.; Haitjema, Henk M.; Provost, Alden M.; Masterson, John P.
2014-01-01
Simulating groundwater flow in a water-table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model-calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified-thickness approximation often relies on the use of the “confined” option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified-thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified-thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady-state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified-thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
NASA Astrophysics Data System (ADS)
Srinil, Narakorn; Ma, Bowen; Zhang, Licong
2018-05-01
This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously excited. Overall VIV phenomena caused by the system asymmetry should be recognised in a prediction model and design codes to capture the combined effects of curved configuration and approaching flow direction.
Design of a Slotted, Natural-Laminar-Flow Airfoil for Business-Jet Applications
NASA Technical Reports Server (NTRS)
Somers, Dan M.
2012-01-01
A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-jet applications has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The drag-divergence Mach number is predicted to be greater than 0.70.
CNT Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing (Postscript)
2016-11-07
hairs. The moment sensitivity is shown to scale inversely with the CNT length and stiffness to a typical maximum of 1.3 ± 0.4% resistance change nN−1...determined air flow is obtained using theory and measurement for various lengths of hairs. The moment sensitivity is shown to scale inversely with the
A Pressure-Based Analysis of Vortex Ring Pinch-Off
NASA Astrophysics Data System (ADS)
Schlueter, Kristy; Braun, Noah; Dabiri, John
2014-11-01
This study investigated the development of vortex rings over a range of maximum stroke ratios, and analyzed vorticity and pressure data for clues to the physical mechanisms underlying vortex pinch-off. An impulsive piston velocity profile and Reynolds number of 3000 were used for all cases. The formation number was consistently found to be 3.6 +/-0.3. A recently developed algorithm was used to generate pressure fields by integrating the pressure gradient along several paths through the velocity field and taking the median to get explicit values for pressure. The formation time at the occurrence of a local maximum in the pressure between the vortex ring and the lip of the nozzle, known as the trailing pressure maximum, was found to occur concurrently with the formation number for each case, within the error associated with the temporal resolution of the data. This suggests that the trailing pressure maximum is an indicator of vortex ring pinch-off. This is consistent with the results of Lawson and Dawson (2014), who found that the appearance of the trailing pressure maximum was coincident with the formation number. This pressure based approach to determining vortex ring pinch-off will be applied to a biological flow to examine the efficiency of such a flow. This research was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct
NASA Astrophysics Data System (ADS)
Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.
2018-03-01
Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small (<7% of duct height) but finite (> boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.
Modification of near-wall coherent structures in polymer drag reduced flow: simulation
NASA Astrophysics Data System (ADS)
Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva
2002-11-01
Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.
Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao
2018-02-01
Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.
NASA Astrophysics Data System (ADS)
Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao
2018-03-01
The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.
Kamp, Marcel A; Slotty, Philipp; Turowski, Bernd; Etminan, Nima; Steiger, Hans-Jakob; Hänggi, Daniel; Stummer, Walter
2012-03-01
Intraoperative measurements of cerebral blood flow are of interest during vascular neurosurgery. Near-infrared indocyanine green (ICG) fluorescence angiography was introduced for visualizing vessel patency intraoperatively. However, quantitative information has not been available. To report our experience with a microscope with an integrated dynamic ICG fluorescence analysis system supplying semiquantitative information on blood flow. We recorded ICG fluorescence curves of cortex and cerebral vessels using software integrated into the surgical microscope (Flow 800 software; Zeiss Pentero) in 30 patients undergoing surgery for different pathologies. The following hemodynamic parameters were assessed: maximum intensity, rise time, time to peak, time to half-maximal fluorescence, cerebral blood flow index, and transit times from arteries to cortex. For patients without obvious perfusion deficit, maximum fluorescence intensity was 177.7 arbitrary intensity units (AIs; 5-mg ICG bolus), mean rise time was 5.2 seconds (range, 2.9-8.2 seconds; SD, 1.3 seconds), mean time to peak was 9.4 seconds (range, 4.9-15.2 seconds; SD, 2.5 seconds), mean cerebral blood flow index was 38.6 AI/s (range, 13.5-180.6 AI/s; SD, 36.9 seconds), and mean transit time was 1.5 seconds (range, 360 milliseconds-3 seconds; SD, 0.73 seconds). For 3 patients with impaired cerebral perfusion, time to peak, rise time, and transit time between arteries and cortex were markedly prolonged (>20, >9 , and >5 seconds). In single patients, the degree of perfusion impairment could be quantified by the cerebral blood flow index ratios between normal and ischemic tissue. Transit times also reflected blood flow perturbations in arteriovenous fistulas. Quantification of ICG-based fluorescence angiography appears to be useful for intraoperative monitoring of arterial patency and regional cerebral blood flow.
Brothers, R. Matthew; Wingo, Jonathan E.; Hubing, Kimberly A.
2010-01-01
Skin blood flow responses in the human forearm, assessed by three commonly used technologies—single-point laser-Doppler flowmetry, integrated laser-Doppler flowmetry, and laser-Doppler imaging—were compared in eight subjects during normothermic baseline, acute skin-surface cooling, and whole body heat stress (Δ internal temperature = 1.0 ± 0.2°C; P < 0.001). In addition, while normothermic and heat stressed, subjects were exposed to 30-mmHg lower-body negative pressure (LBNP). Skin blood flow was normalized to the maximum value obtained at each site during local heating to 42°C for at least 30 min. Furthermore, comparisons of forearm blood flow (FBF) measures obtained using venous occlusion plethysmography and Doppler ultrasound were made during the aforementioned perturbations. Relative to normothermic baseline, skin blood flow decreased during normothermia + LBNP (P < 0.05) and skin-surface cooling (P < 0.01) and increased during whole body heating (P < 0.001). Subsequent LBNP during whole body heating significantly decreased skin blood flow relative to control heat stress (P < 0.05). Importantly, for each of the aforementioned conditions, skin blood flow was similar between the three measurement devices (main effect of device: P > 0.05 for all conditions). Similarly, no differences were identified across all perturbations between FBF measures using plethysmography and Doppler ultrasound (P > 0.05 for all perturbations). These data indicate that when normalized to maximum, assessment of skin blood flow in response to vasoconstrictor and dilator perturbations are similar regardless of methodology. Likewise, FBF responses to these perturbations are similar between two commonly used methodologies of limb blood flow assessment. PMID:20634360
Brothers, R Matthew; Wingo, Jonathan E; Hubing, Kimberly A; Crandall, Craig G
2010-09-01
Skin blood flow responses in the human forearm, assessed by three commonly used technologies-single-point laser-Doppler flowmetry, integrated laser-Doppler flowmetry, and laser-Doppler imaging-were compared in eight subjects during normothermic baseline, acute skin-surface cooling, and whole body heat stress (Δ internal temperature=1.0±0.2 degrees C; P<0.001). In addition, while normothermic and heat stressed, subjects were exposed to 30-mmHg lower-body negative pressure (LBNP). Skin blood flow was normalized to the maximum value obtained at each site during local heating to 42 degrees C for at least 30 min. Furthermore, comparisons of forearm blood flow (FBF) measures obtained using venous occlusion plethysmography and Doppler ultrasound were made during the aforementioned perturbations. Relative to normothermic baseline, skin blood flow decreased during normothermia+LBNP (P<0.05) and skin-surface cooling (P<0.01) and increased during whole body heating (P<0.001). Subsequent LBNP during whole body heating significantly decreased skin blood flow relative to control heat stress (P<0.05). Importantly, for each of the aforementioned conditions, skin blood flow was similar between the three measurement devices (main effect of device: P>0.05 for all conditions). Similarly, no differences were identified across all perturbations between FBF measures using plethysmography and Doppler ultrasound (P>0.05 for all perturbations). These data indicate that when normalized to maximum, assessment of skin blood flow in response to vasoconstrictor and dilator perturbations are similar regardless of methodology. Likewise, FBF responses to these perturbations are similar between two commonly used methodologies of limb blood flow assessment.
The behavior of self-compacting concrete (SCC) with bagasse ash
NASA Astrophysics Data System (ADS)
Hanafiah, Saloma, Whardani, Putri Nurul Kusuma
2017-11-01
Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.
High density 3D printed microfluidic valves, pumps, and multiplexers.
Gong, Hua; Woolley, Adam T; Nordin, Gregory P
2016-07-07
In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.
2018-04-01
Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.
Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng
2016-03-01
Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results show that both of the temperature and H2O concentration rose with the arrival of detonation wave. With the increase of the vertical distance between the detonation tube nozzle and the laser path, the time of temperature and concentration coming to the peak delayed, and the temperature variation trend tended to slow down. At 20 cm from detonation tube nozzle, the maximum temperature hit 1 329 K and the maximum H2O concentration of 0.19 occurred at 4 ms after ignition. The research can provide with us the support for expanding the detonation test field with absorption spectroscopy technology, and can also help to promote the detonation mechanism research and to enhance the level of detonation engine control technology.
Unsteady pressure and structural response measurements of an elastic supercritical wing
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.
1988-01-01
Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjunction with the flow separating and reattaching in the trailing edge region.
Unsteady pressure and structural response measurements on an elastic supercritical wing
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.
1988-01-01
Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjuction with the flow separating and reattaching in the trailing edge region.
On the design of airfoils in which the transition of the boundary layer is delayed
NASA Technical Reports Server (NTRS)
Tani, Itiro
1952-01-01
A method is presented for designing suitable thickness distributions and mean camber lines for airfoils permitting extensive chordwise laminar flow. Wind tunnel and flight tests confirming the existence of laminar flow; possible maintenance of laminar flow by area suction; and the effects of wind tunnel turbulence and surface roughness on the promotion of premature boundary layer transition are discussed. In addition, estimates of profile drag and scale effect on maximum lift of the derived airfoils are made.
Lightweight ozonizer for field and airborne use
NASA Astrophysics Data System (ADS)
Stone, E. J.; Caldwell, J. R.; de Waal, C.; Horvath, J. J.; Pearson, R., Jr.; Stedman, D. H.
1982-12-01
An efficient, lightweight apparatus for the production of ozone in flowing oxygen or air has been constructed and tested. The exciter is an automotive electronic ignition running from a 28-V dc power source. The discharge tube consists of coaxial conductive-coated flint glass tubing fitting into Teflon end pieces. A single such unit will produce 4% ozone in oxygen flowing at 0.2 l/min, or a maximum of 0.020 l of ozone per minute in a total flow of 1.0 l/min.
Development of Improved Design and 3D Printing Manufacture of Cross-Flow Fan Rotor
2016-06-01
the design study, each solver run was monitored. Plotting the value of the mass flows, as well as the torque on the rotor blades , allowed a simple...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) This study determined the optimum blade stagger angle for a cross-flow fan rotor and evaluated the...parametric study determined optimum blade stagger angle using thrust, power, and thrust-to-power ratio as desired output variables. A MarkForged Mark One 3D
1981-08-01
provide the lowest rate of momentum outflow and thus yield maximum diffuser efficiency. In their study, Wolf and Johnston (Ref. 1.12) used screens made...other words, the uniform velocity at the diffuser exit implies the lowest exit velocity attainable for a given flow rate and lowest rate of momentum ... momentum , and energy and the equation of state. The procedures of manipulating these partial differential iations into an analytical model for analyzing
Phlegethon flow: A proposed origin for spicules and coronal heating
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.; Mayr, Hans G.
1986-01-01
A model was develped for the mass, energy, and magnetic field transport into the corona. The focus is on the flow below the photosphere which allows the energy to pass into, and be dissipated within, the solar atmosphere. The high flow velocities observed in spicules are explained. A treatment following the work of Bailyn et al. (1985) is examined. It was concluded that within the framework of the model, energy may dissipate at a temperature comparable to the temperature where the waves originated, allowing for an equipartition solution of atmospheric flow, departing the sun at velocities approaching the maximum Alfven speed.
Aerodynamic pressures and heating rates on surfaces between split elevons at Mach 6.6
NASA Technical Reports Server (NTRS)
Hunt, L. Roane
1988-01-01
An aerothermal study was performed in the Langley 8-Foot High Temperature Tunnel at Mach number 6.6 to define the pressures and heating rates on the surfaces between split elevons similar to those used on the Space Shuttle. Tests were performed with both laminar and turbulent boundary layers on the wing surface upstream of the elevons. The flow in the chordwise gap between the elevons was characterized by flow separation at the gap entrance and flow reattachment at a depth into the gap inversely proportional to the gap width. The gap pressure and heating rate increased significantly with decrease of elevon gap width, and the maximum gap heating rate was proportional to the maximum gap pressure. Correlation of the present results indicate that the gap heating was directly proportional to the elevon windward surface pressure and was not dependent upon whether the boundary layer on the windward elevon surface was laminar or turbulent.
Particle-in-cell study of the ion-to-electron sheath transition
Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; ...
2016-08-09
The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within T e/2 e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electronmore » sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. In conclusion, the flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.« less
NASA Astrophysics Data System (ADS)
Gatti, Davide; Güttler, Andreas; Frohnapfel, Bettina; Tropea, Cameron
2015-05-01
In the present work, wall oscillations for turbulent skin friction drag reduction are realized in an air turbulent duct flow by means of spanwise-oscillating active surfaces based on dielectric electroactive polymers. The actuator system produces spanwise wall velocity oscillations of 820 mm/s semi-amplitude at its resonance frequency of 65 Hz while consuming an active power of a few 100 mW. The actuators achieved a maximum integral drag reduction of 2.4 %. The maximum net power saving, budget of the power benefit and cost of the control, was measured for the first time with wall oscillations. Though negative, the net power saving is order of magnitudes higher than what has been estimated in previous studies. Two new direct numerical simulations of turbulent channel flow show that the finite size of the actuator only partially explains the lower values of integral drag reduction typically achieved in laboratory experiments compared to numerical simulations.
High heat flux burnout in subcooled flow boiling
NASA Astrophysics Data System (ADS)
Celata, G. P.; Cumo, M.; Mariani, A.
1995-09-01
The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling. The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80 °C), channel orientation (vertical and horizontal). A maximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: T in=30°, p=2.5 MPa, u=40 m/s, D=2.5 mm (smooth channel) Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.
Soukup, W.G.; Gillies, D.C.; Myette, C.F.
1984-01-01
In the Cyrus-Benson area/ model results indicate that tinder 1980 development and average area! recharge/ dynamic equilibrium would be reached in less than 4 years and additional drawdown would be less than 2 feet. A 3-year drought coupled with increased pumping from irrigation wells operated during 1980 would lower water levels as much as 6 feet and reduce flow in the Chippewa River by about 26 cubic feet per second. At maximum hypothetical development in terms of the number of wells and normal area! recharge/ water levels would be lowered as much as 9 feet and streamflow would be reduced about 12 cubic feet per second. At maximum hypothetical development/ drought conditions and increased pumping would lower water levels as much as 12 feet and reduce flow in the Chippewa River by about 30 cubic feet per second/ which equals about 75 percent of available streamflow at the 70-percent flow duration.
Performance analysis of a large-grain dataflow scheduling paradigm
NASA Technical Reports Server (NTRS)
Young, Steven D.; Wills, Robert W.
1993-01-01
A paradigm for scheduling computations on a network of multiprocessors using large-grain data flow scheduling at run time is described and analyzed. The computations to be scheduled must follow a static flow graph, while the schedule itself will be dynamic (i.e., determined at run time). Many applications characterized by static flow exist, and they include real-time control and digital signal processing. With the advent of computer-aided software engineering (CASE) tools for capturing software designs in dataflow-like structures, macro-dataflow scheduling becomes increasingly attractive, if not necessary. For parallel implementations, using the macro-dataflow method allows the scheduling to be insulated from the application designer and enables the maximum utilization of available resources. Further, by allowing multitasking, processor utilizations can approach 100 percent while they maintain maximum speedup. Extensive simulation studies are performed on 4-, 8-, and 16-processor architectures that reflect the effects of communication delays, scheduling delays, algorithm class, and multitasking on performance and speedup gains.
Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network
NASA Astrophysics Data System (ADS)
Zhu, J.
2017-12-01
A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.
Rezaeetalab, Fariba; Kazemian, Mozhgan; Vaezi, Touraj; Shaban, Barratollah
2015-12-01
Bimaxillary orthognathic surgery can cause changes to respiration and the airways. We used body plethysmography to evaluate its effect on airway resistance and lung volumes in 20 patients with class III malocclusions (8 men and 12 women, aged 17 - 32 years). Lung volumes (forced vital capacity; forced inspiratory volume/one second; forced expiratory volume/one second: forced vital capacity; peak expiratory flow; maximum expiratory flow 25-75; maximum inspiratory flow; total lung capacity; residual volume; residual volume:total lung capacity), and airway resistance were evaluated one week before, and six months after, operation. Bimaxillary operations to correct class III malocclusions significantly increased airway resistance, residual volume, total lung capacity, and residual volume:total lung capacity. Other variables also changed after operation but not significantly so. Orthognathic operations should be done with caution in patients who have pre-existing respiratory diseases. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Exploiting Bounded Signal Flow for Graph Orientation Based on Cause-Effect Pairs
NASA Astrophysics Data System (ADS)
Dorn, Britta; Hüffner, Falk; Krüger, Dominikus; Niedermeier, Rolf; Uhlmann, Johannes
We consider the following problem: Given an undirected network and a set of sender-receiver pairs, direct all edges such that the maximum number of "signal flows" defined by the pairs can be routed respecting edge directions. This problem has applications in communication networks and in understanding protein interaction based cell regulation mechanisms. Since this problem is NP-hard, research so far concentrated on polynomial-time approximation algorithms and tractable special cases. We take the viewpoint of parameterized algorithmics and examine several parameters related to the maximum signal flow over vertices or edges. We provide several fixed-parameter tractability results, and in one case a sharp complexity dichotomy between a linear-time solvable case and a slightly more general NP-hard case. We examine the value of these parameters for several real-world network instances. For many relevant cases, the NP-hard problem can be solved to optimality. In this way, parameterized analysis yields both deeper insight into the computational complexity and practical solving strategies.
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang
2016-10-14
First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.
Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang
2016-01-01
First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow. PMID:27754412
Preliminary hydraulic analysis and implications for restoration of Noyes Slough, Fairbanks, Alaska
Burrows, Robert L.; Langley, Dustin E.; Evetts, David M.
2000-01-01
The present-day channels of the Chena River and Noyes Slough in downtown Fairbanks, Alaska, were formed as sloughs of the Tanana River, and part of the flow of the Tanana River occupied these waterways. Flow in these channels was reduced after the completion of Moose Creek Dike in 1945, and flow in the Chena River was affected by regulation from the Chena River Lakes Flood Control Project, which was completed in 1980. In 1981, flow in the Chena River was regulated for the first time by Moose Creek Dam, located about 20 miles upstream from Fairbanks. Constructed as part of the Chena River Lakes Flood Control Project, the dam was designed to reduce maximum flows to 12,000 cubic feet per second in downtown Fairbanks. Cross-section measurements made near the entrance to Noyes Slough show that the channel bed of the Chena River has been downcutting, thereby reducing the magnitude and duration of flow in the slough. Consequently the slough slowly is drying up. The slough provides habitat for wildlife such as ducks, beaver, and muskrat and is a fishery for anadromous and other resident species. Beavers have built 10 dams in the slough. Declining flow in the slough may endanger the remaining habitat. Residents of the community wish to restore flow in Noyes Slough to create a clean, flowing waterway during normal summer flows. The desire is to enhance the slough as a fishery and habitat for other wildlife and for recreational boating. During this study, existing and new data were compiled to determine past and present hydraulic interaction between the Chena River and Noyes Slough. The U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System (HECRAS) computer program was used to construct a model to use in evaluating alternatives for increasing flow in the slough. Under present conditions, the Chena must flow at about 2,400 cubic feet per second or more for flow to enter Noyes Slough. In an average year, water flows in Noyes Slough for 106 days during the open-water season, and maximum flow is about 1,050 cubic feet per second. The model was used to test a single method of increasing flow in Noyes Slough. A modified channel 40 feet wide and about 2 feet deeper within the existing slough channel was simulated by changing the cross-section geometry in the HECRAS model. The resulting model showed that flow in such a modified slough channel would begin at a flow of about 830 cubic feet per second in the Chena River and would increase to a maximum flow of about 1,440 cubic feet per second. In an average year, flow would continue for 158 days during the open-water season. Theoretically, enlarging the slough channel by lowering its bed could increase flow, but other solutions are possible. Possible obstacles to excavating the channel, such as bridges and utility crossings, and the destruction of desirable features such as beaver dams were not considered in the study. Further engineering and economic analyses would be needed to assess the cost of excavation and future maintenance of the modified channel. A computer-modeling program such as HECRAS may provide a means for testing other solutions.
Simulation of interior ballistics flows in a shock tube
NASA Astrophysics Data System (ADS)
Seiler, F.
1983-07-01
The flow in front of and behind a projectile was investigated in a interior ballistics shock tube simulator. Flow patterns and heat flow were examined for flows with and without gas leakage. The boundary layers behind the piston can clearly be shown by differential interferograms. The dependence of the heat flow into the measuring tube wall on the base form is smaller than the signal perturbations. Flow patterns show no appreciable effect of gas leakage on the flow behind the piston; strong flow effects arise in front of the piston. The same effects are shown by heat flow measurements. In case of gas leakage heat flows into the tube wall before the piston reaches the wall. In the slit between piston and wall a maximum heat flow is found. High temperature gradients, due to the fact that hot gases come closer to the tube wall than in the boundary layer flow behind the piston, lead to high thermal loading of the wall materials which can cause cracks.
Stability limits of unsteady open capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.
This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.
Regalado, Carlos M; Ritter, Axel
2007-08-01
Calibration of the Granier thermal dissipation technique for measuring stem sap flow in trees requires determination of the temperature difference (DeltaT) between a heated and an unheated probe when sap flow is zero (DeltaT(max)). Classically, DeltaT(max) has been estimated from the maximum predawn DeltaT, assuming that sap flow is negligible at nighttime. However, because sap flow may continue during the night, the maximum predawn DeltaT value may underestimate the true DeltaT(max). No alternative method has yet been proposed to estimate DeltaT(max) when sap flow is non-zero at night. A sensitivity analysis is presented showing that errors in DeltaT(max) may amplify through sap flux density computations in Granier's approach, such that small amounts of undetected nighttime sap flow may lead to large diurnal sap flux density errors, hence the need for a correct estimate of DeltaT(max). By rearranging Granier's original formula, an optimization method to compute DeltaT(max) from simultaneous measurements of diurnal DeltaT and micrometeorological variables, without assuming that sap flow is negligible at night, is presented. Some illustrative examples are shown for sap flow measurements carried out on individuals of Erica arborea L., which has needle-like leaves, and Myrica faya Ait., a broadleaf species. We show that, although DeltaT(max) values obtained by the proposed method may be similar in some instances to the DeltaT(max) predicted at night, in general the values differ. The procedure presented has the potential of being applied not only to Granier's method, but to other heat-based sap flow systems that require a zero flow calibration, such as the Cermák et al. (1973) heat balance method and the T-max heat pulse system of Green et al. (2003).
Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows
NASA Astrophysics Data System (ADS)
Zhuromskii, V. M.
2018-01-01
The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.
Overview of the Dissertation Process within the Framework of Flow Theory: A Qualitative Study
ERIC Educational Resources Information Center
Cakmak, Esra; Oztekin, Ozge; Isci, Sabiha; Danisman, Sahin; Uslu, Fatma; Karadag, Engin
2015-01-01
The purpose of this study is to examine the flow of doctoral students who are also research assistants and in the dissertation process. The study was designed using the case study method. The case undertaken in the study was the dissertation process. Eleven participants were selected into the study using maximum variation sampling. Face-to-face,…
NASA Astrophysics Data System (ADS)
Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.
2014-07-01
Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
Portable device and method for determining permeability characteristics of earth formations
Shuck, Lowell Z.
1977-01-01
The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.
NASA Astrophysics Data System (ADS)
Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman
2017-01-01
Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.
McCarthy, Peter M.
2006-01-01
The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and concentrations for the Yellowstone River requires information about the flow velocity throughout the 520 mi of river in the study area. Dye-tracer studies would provide the best data about flow velocities and would provide the best verification of instream travel times and concentrations estimated from this computer program; however, data from such studies does not currently (2006) exist and new studies would be expensive and time-consuming. An alternative approach used in this study for verification of instream travel times is based on the use of flood-wave velocities determined from recorded streamflow hydrographs at selected mainstem streamflow-gaging stations along the Yellowstone River. The ratios of flood-wave velocity to the most probable velocity for the base flow estimated from the computer program are within the accepted range of 2.5 to 4.0 and indicate that flow velocities estimated from the computer program are reasonable for the Yellowstone River. The ratios of flood-wave velocity to the maximum probable velocity are within a range of 1.9 to 2.8 and indicate that the maximum probable flow velocities estimated from the computer program, which corresponds to the shortest travel times and maximum probable concentrations, are conservative and reasonable for the Yellowstone River.
Crewstation Assessment of Reach as Applied to the OH-58A Helicopter
1984-12-13
CLUSTER ENO ENO OFICE FIELD 0gMA BR? OMR BRI T CONSOLE LTS NST LTSI OFF OFF NO BRT MVO ANTI COLLISION FOS LTS Lii LTS OFF *OFF CFF OFF OFr AUTO Hyp...gINTER)-- 2 ANALISIS OPION(1-ALL OPERATORq,2-OPZRATORS ON LOS ONLY)--L 1 RFACH ALCORITHNl(lPASS THROUGH CONTROL,2-TERNINAIE &T CONTROL)-- 2 ***OPERATOR NO
ERIC Educational Resources Information Center
Titone, Renzo
1987-01-01
Discusses the contribution of the little-known linguist Gemelli who favors a holistic approach to human language emphasizing the human personality as an essential factor in the expression of speech. Gemelli makes clear the breadth of the field of language psychology in contrast with the narrowness of psycholinguistics. (CFM)
2010-11-27
analysis and verification. While at Wisconsin, Dr. Gopan was awarded the CISCO fellowship for two consecutive years. Mr. John Phillips has many years...using short (56-bit) keys for encryption (e.g., with DES or RC5) [45]. Today, it is used to understand protein folding [10]. IBM‘s World Community...Bicocca. Dipartimento di Informatica, Sistemistica e Comunicazione. Laboratorio di Test e Analisi del Software, Milano. Technical Report LTA:2004:05
Army Training Study: Training Effectiveness Analysis (TEA) Summary. Volume 1. Armor.
1978-08-08
c. r tf(e rx =r) rfs it ,, 0’( r’( r , a S’ f "’ u nn Ir Irf I I. * 222 ARM’- NN :TuDY TWANINC EFFCIUENEZ-: ANALISIS TEA : MMARY ’JLUM~ I ARMOR U...marginally above 50%, however, probably is not. 22 TABLE 10 TANK CREW QUALIFICATION PERFORMANCE ON TASK STANDARDS S TANDARD SATI S FACTORY Day
ERIC Educational Resources Information Center
Estepa, A.; And Others
1992-01-01
The recording of the interaction between pupil and computer is one of the data sources frequently used in research on the use of computers in teaching. Describes the analysis methodology of these recordings to determine the use of computers in statistics and its adaptation to other research work on the use of computers in education. (Author/MDH)
Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan
2007-01-01
The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.
Apparent dispersion in transient groundwater flow
Goode, Daniel J.; Konikow, Leonard F.
1990-01-01
This paper investigates the effects of large-scale temporal velocity fluctuations, particularly changes in the direction of flow, on solute spreading in a two-dimensional aquifer. Relations for apparent longitudinal and transverse dispersivity are developed through an analytical solution for dispersion in a fluctuating, quasi-steady uniform flow field, in which storativity is zero. For transient flow, spatial moments are evaluated from numerical solutions. Ignored or unknown transients in the direction of flow primarily act to increase the apparent transverse dispersivity because the longitudinal dispersivity is acting in a direction that is not the assumed flow direction. This increase is a function of the angle between the transient flow vector and the assumed steady state flow direction and the ratio of transverse to longitudinal dispersivity. The maximum effect on transverse dispersivity occurs if storativity is assumed to be zero, such that the flow field responds instantly to boundary condition changes.
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.
Flow volume loops in patients with goiters.
Geraghty, J G; Coveney, E C; Kiernan, M; O'Higgins, N J
1992-01-01
Plain radiology is the standard means of assessing upper airway obstruction in patients with goiters. Flow volume loop curves will provide additional information, because they allow a quantitative assessment of airflow dynamics in the respiratory cycle. Fifty-one patients had flow volume loops performed before and after thyroidectomy. There was a significant increase in the maximum inspiratory flow rate (3.9 +/- 0.2 versus 4.9 +/- 0.2 L/second, p less than 0.01) after thyroidectomy. Eight of twelve patients with normal tracheal radiology had improved airflow dynamics in the postoperative period. The flow volume loop curve is a simple noninvasive means of assessing airflow dynamics in patients with goiters and may be superior to conventional radiology. PMID:1731653
Boutin, Henri; Smith, John; Wolfe, Joe
2015-07-01
Analysis of published depth-kymography data [George, de Mul, Qiu, Rakhorst, and Schutte (2008). Phys. Med. Biol. 53, 2667-2675] shows that, for the subject studied, the flow due to the longitudinal sweeping motion of the vocal folds contributes several percent of a typical acoustic flow at the larynx. This sweeping flow is a maximum when the glottis is closed. This observation suggests that assumption of zero laryngeal flow during the closed phase as a criterion when determining parameters in inverse filtering should be used with caution. Further, these data suggest that the swinging motion contributes work to overcome mechanical losses and thus to assist auto-oscillation.
Calibration of sonic valves for the laminar flow control, leading-edge flight test
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.
1985-01-01
Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.
Simulating the effect of climate extremes on groundwater flow through a lakebed.
Virdi, Makhan L; Lee, Terrie M; Swancar, Amy; Niswonger, Richard G
2013-03-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Flowfield measurements in a separated and reattached flat plate turbulent boundary layer
NASA Technical Reports Server (NTRS)
Patrick, William P.
1987-01-01
The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.
Celler, B G; Stella, A; Golin, R; Zanchetti, A
1996-08-01
In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.
System Design Verification for Closed Loop Control of Oxygenation With Concentrator Integration.
Gangidine, Matthew M; Blakeman, Thomas C; Branson, Richard D; Johannigman, Jay A
2016-05-01
Addition of an oxygen concentrator into a control loop furthers previous work in autonomous control of oxygenation. Software integrates concentrator and ventilator function from a single control point, ensuring maximum efficiency by placing a pulse of oxygen at the beginning of the breath. We sought to verify this system. In a test lung, fraction of inspired oxygen (FIO2) levels and additional data were monitored. Tests were run across a range of clinically relevant ventilator settings in volume control mode, for both continuous flow and pulse dose flow oxygenation. Results showed the oxygen concentrator could maintain maximum pulse output (192 mL) up to 16 breaths per minute. Functionality was verified across ranges of tidal volumes and respiratory rates, with and without positive end-expiratory pressure, in continuous flow and pulse dose modes. For a representative test at respiratory rate 16 breaths per minute, tidal volume 550 mL, without positive end-expiratory pressure, pulse dose oxygenation delivered peak FIO2 of 76.83 ± 1.41%, and continuous flow 47.81 ± 0.08%; pulse dose flow provided a higher FIO2 at all tested setting combinations compared to continuous flow (p < 0.001). These tests verify a system that provides closed loop control of oxygenation while integrating time-coordinated pulse-doses from an oxygen concentrator. This allows the most efficient use of resources in austere environments. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Vieira, L G T; Fazolo, A; Zaiat, M; Foresti, E
2003-01-01
This paper presents the conception and discusses the results obtained from the operation of an integrated biological anaerobic/aerobic/anaerobic system composed of horizontal-flow anaerobic and radial-flow aerobic reactors for domestic sewage treatment. The performance of a horizontal-flow anaerobic immobilized biomass reactor, with five stages,followed by a radial-flow aerobic immobilized biomass reactor was evaluated along 22 weeks. After the 14th week, the last stage of the HAIB reactor was used as a denitrifying unit. Polyurethane foam cubic matrices with 1-cm sides were used as support for biomass immobilization in all the units. The influent domestic sewage presented mean chemical oxygen demand of 365 +/- 71 mg. 1(-1) and the temperature was 23 +/- 3degrees C. The integrated system achieved COD removal efficiency of 90% while the maximum ammonium removal efficiency was 97% in the aerobic post-treatment unit. The nitrification process was found to be better represented by first-order reactions in series model. The apparent first-order kinetic coefficient for nitrate formation was about 50 times higher than that estimated for the nitrite formation. The denitrification process was well represented by a Monod-type kinetic model. The maximum specific denitrifying rate and the half-saturation coefficient were 2.9 x 10(-4) mg NO(3)(-)-N mg(-1) VSS h(-1) and 19.4 mg NO(3)(-)-N 1(-1), respectively.
Laboratory Study of MHD Effects on Stability of Free-surface Liquid Metal Flow
NASA Astrophysics Data System (ADS)
Burin, M. J.; Ji, H.; McMurtry, K.; Peterson, L.; Giannakis, D.; Rosner, R.; Fischer, P.
2006-10-01
The dynamics of free-surface MHD shear flows is potentially important to both astrophysics (e.g. in the mixing of dense plasma accreted upon neutron star surfaces) and fusion reactors (e.g. in liquid metal ‘first walls’). To date however few relevant experiments exist. In order to study the fundamental physics of such flows, a small-scale laboratory experiment is being built using a liquid gallium alloy flowing in an open- channel geometry. The flow dimensions are nominally 10cm wide, 1cm deep, and 70cm long under an imposed magnetic field up to 7kG, leading to maximum Hartman number of 2000 and maximum Reynolds number of 4x10^5. Two basic physics issues will ultimately be addressed: (1) How do MHD effects modify the stability of the free surface? For example, is the flow more stable (through the suppression of cross-field motions), or less stable (through the introduction of new boundary layers)? We also investigate whether internal shear layers and imposed electric currents can control the surface stability. (2) How do MHD effects modify free-surface convection driven by a vertical and/or horizontal temperature gradient? We discuss aspects of both of these issues, along with detailed descriptions of the experimental device. Pertinent theoretical stability analyses and initial hydrodynamic results are presented in companion posters. This work is supported by DoE under contract #DE-AC02-76-CH03073.
Surface waters of Elk Creek basin in southwestern Oklahoma
Westfall, A.O.
1963-01-01
The purpose of this study is to (1) determine the average discharge during a period that is representative of average streamflow conditions, (2) determine the range of discharge, and (3) determine the storage required to supplement natural flows during drought periods. Elk Creek drains 587 square miles of the North Fork Red River basin. The climate is subhumid, and precipitation averages about 23 inches per year. The average discharge at the gaging station near Hobart is 50 cfs (cubic feet per second) or 36,200 acre-feet per year during a 19-year base period, water years 1938-56. The yearly average discharge ranged from 4.6 cfs in 1940 to 146 cfs in 1957. Maximum runoff generally occurs during May and June. The maximum monthly runoff was 64,520 acre-feet in May 1957. The maximum yearly runoff was 105,500 acre-feet in 1957. There is no sustained base flow in the basin. Severe droughts occurred in 1938-40 and 1952-56. The most extended drought occurred from June 1951 to March 1957, during which time there was a prolonged period of no flow of 182 days in 1954-55. A usable storage of 28,000 acre-feet would have been required to provide a regulated discharge of 1,500 acre-feet per month throughout these drought periods. (available as photostat copy only)
Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow
NASA Astrophysics Data System (ADS)
Zhu, Hong-jun; Lin, Peng-zhi
2018-06-01
A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the Newtonian fluid. For the non-Newtonian fluid the wall shear stress minimum is 2.94 mPa; the maximum is 9.14 Pa. The lowest value of the wall shear stress for both fluids was obtained at the dome of the aneurysm while the highest wall shear stress was at the beginning of the outlet segment. The vortex in the aneurysm region is unstable during the cardiac cycle. The clockwise rotation of the streamlines at the inlet segment for Newtonian and non-Newtonian fluid is shown. The results of the present study are in agreement with the hemodynamics theory of aneurysm genesis. Low value of wall shear stress is observed at the aneurysm dome which can cause a rupture of an aneurysm.
Code of Federal Regulations, 2011 CFR
2011-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...
1978-08-01
dam is a concrete gravity dam with earth abutments. It is 730 ft. long and the maximum height of it is 54 ft. The dam is assessed to be in poor...concrete gravity dam with earth abutments constructed in 1920. Overall length is 730 feet and maximum height is 54 feet. The Spicket River flows 5...the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region ( greatest reasonably possible storm runoff), or fractions
Eggleston, Jack R.; Zarriello, Phillip J.; Carlson, Carl S.
2015-12-31
Model simulations indicate that under average base-flow conditions, the Birch Road wells have a small effect on flow in the Sudbury River during most months, even at the maximum pumping rate of 4.9 ft3/s (3.17 Mgal/d). Maximum percent streamflow depletion in the Sudbury River caused by simulated pumping takes place during simulated drought conditions, when streamflow decreased by as much as 21 percent under maximum continuous pumping. Simulations also indicate that groundwater withdrawals at the Birch Road site could be managed so that adverse streamflow impacts are substantially ameliorated. Under the most ecologically conservative simulated drought conditions, simulated streamflow depletion was reduced from 21 percent to 3 percent by pumping at the maximum rate for 6 months rather than for 12 months. Simulations that return 10 percent of the Birch Road well withdrawals to Pod Meadow Pond indicate a modest reduction in the Sudbury River streamflow depletion and provide a larger percentage increase to streamflow just downstream of the pond. The groundwater model also indicates that well locations can have a large effect on the sustainable pumping rate and so should be chosen carefully. The model provides a tool for evaluating alternative pumping rates and schedules not included in this analysis.
Jordan, P.R.; Hart, R.J.
1985-01-01
A streamflow routing model was used to calculate the transit losses and traveltimes. Channel and aquifer characteristics, and the model control parameters, were estimated from available data and then verified to the extent possible by comparing model simulated streamflow to observed streamflow at streamflow gaging stations. Transit losses and traveltimes for varying reservoir release rates and durations then were simulated for two different antecedent streamflow (drought) conditions. For the severe-drought antecedent-streamflow condition, it was assumed that only the downstream water use requirement would be released from the reservoir. For a less severe drought (LSD) antecedent streamflow condition, it was assumed than any releases from Marion Lake for water supply use downstream, would be in addition to a nominal dry weather release of 5 cu ft/sec. Water supply release rates of 10 and 25 cu ft/sec for the severe drought condition and 5, 10, and 25 cu ft/sec for the less severe drought condition were simulated for periods of 28 and 183 days commencing on July 1. Transit losses for the severe drought condition for all reservoir release rates and durations ranged from 12% to 78% of the maximum downstream flow rate and from 27% to 91% of the total volume of reservoir storage released. For the LSD condition, transit losses ranged from 7% to 29% of the maximum downstream flow rate and from 10% to 48% of the total volume of release. The 183-day releases had larger total transit losses, but losses on a percentage basis were less than the losses for the 28-day release period for both antecedent streamflow conditions. Traveltimes to full response (80% of the maximum downstream flow rate), however, showed considerable variation. For the release of 5 cu ft/sec during LSD conditions, base flow exceeded 80% of the maximum flow rate near the confluence; the traveltime to full response was undefined for those simulations. For the releases of 10 and 25 cu ft/sec during the same drought condition, traveltimes to full response ranged from 4.4 to 6.5 days. For releases of 10 and 25 cu ft/sec during severe drought conditions, traveltimes to full response near the confluence with the Neosho River ranged from 8.3 to 93 days. (Lantz-PTT)
EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE
NASA Technical Reports Server (NTRS)
Glass, C. E.
1994-01-01
New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow-field information for the various shock-wave interference patterns and their associated maximum surface pressure and heat flux predictions. EASI is written in FORTRAN 77 for a DEC VAX 8500 series computer using the VAX/VMS operating system, and requires 75K of memory. The program is available on a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. EASI was developed in 1989. DEC, VAX, and VMS are registered trademarks of the Digital Equipment Corporation.
NASA Astrophysics Data System (ADS)
Vega-Jácome, Fiorella; Lavado-Casimiro, Waldo Sven; Felipe-Obando, Oscar Gustavo
2018-04-01
Hydrological changes were assessed considering possible changes in precipitation and regulation or hydraulic diversion projects developed in the basin since 1960s in terms of improving water supply of the Rimac River, which is the main source of fresh water of Peru's capital. To achieve this objective, a trend analysis of precipitation and flow series was assessed using the Mann-Kendall test. Subsequently, the Eco-flow and Indicators of Hydrologic Alteration (IHA) methods were applied for the characterization and quantification of the hydrological change in the basin, considering for the analysis, a natural period (1920-1960) and an altered period (1961-2012). Under this focus, daily hydrologic information of the "Chosica R-2" station (from 1920 to 2013) and monthly rainfall information related to 14 stations (from 1964 to 2013) were collected. The results show variations in the flow seasonality of the altered period in relation to the natural period and a significant trend to increase (decrease) minimum flows (maximum flows) during the analyzed period. The Eco-flow assessment shows a predominance of Eco-deficit from December to May (rainy season), strongly related to negative anomalies of precipitation. In addition, a predominance of Eco-surplus was found from June to November (dry season) with a behavior opposite to precipitation, attributed to the regulations and diversion in the basin during that period. In terms of magnitude, the IHA assessment identified an increase of 51% in the average flows during the dry season and a reduction of 10% in the average flows during the rainy season (except December and May). Furthermore, the minimum flows increased by 35% with shorter duration and frequency, and maximum flows decreased by 29% with more frequency but less duration. Although there are benefits of regulation and diversion for developing anthropic activities, the fact that hydrologic alterations may result in significant modifications in the Rimac River ecosystem must be taken into account.
Float-zone processing in a weightless environment
NASA Technical Reports Server (NTRS)
Fowle, A. A.; Haggerty, J. S.; Perron, R. R.; Strong, P. F.; Swanson, J. L.
1976-01-01
The results were reported of investigations to: (1) test the validity of analyses which set maximum practical diameters for Si crystals that can be processed by the float zone method in a near weightless environment, (2) determine the convective flow patterns induced in a typical float zone, Si melt under conditions perceived to be advantageous to the crystal growth process using flow visualization techniques applied to a dimensionally scaled model of the Si melt, (3) revise the estimates of the economic impact of space produced Si crystal by the float zone method on the U.S. electronics industry, and (4) devise a rational plan for future work related to crystal growth phenomena wherein low gravity conditions available in a space site can be used to maximum benefit to the U.S. electronics industry.
How long will the traffic flow time series keep efficacious to forecast the future?
NASA Astrophysics Data System (ADS)
Yuan, PengCheng; Lin, XuXun
2017-02-01
This paper investigate how long will the historical traffic flow time series keep efficacious to forecast the future. In this frame, we collect the traffic flow time series data with different granularity at first. Then, using the modified rescaled range analysis method, we analyze the long memory property of the traffic flow time series by computing the Hurst exponent. We calculate the long-term memory cycle and test its significance. We also compare it with the maximum Lyapunov exponent method result. Our results show that both of the freeway traffic flow time series and the ground way traffic flow time series demonstrate positively correlated trend (have long-term memory property), both of their memory cycle are about 30 h. We think this study is useful for the short-term or long-term traffic flow prediction and management.
Amini, Reza; Kaczka, David W.
2013-01-01
To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936
Dzięcioł, Michał; Stańczyk, Ewa; Noszczyk-Nowak, Agnieszka; Michlik, Katarzyna; Kozdrowski, Roland; Niżański, Wojciech; Pasławskab, Urszula; Mrowiec, Jacek; Twardoń, Jan
2014-03-01
The aim of the study was to evaluate the influence of the Sildenafil citrate on the blood flow in the uterus of cows during dioestrus. Uterine blood flow was examined in five, healthy, adult cows. Between day 6-8 of the ovarian cycle, each cow received 200mg of sildenafil diluted in 10ml of warm saline into the body of the uterus. Analysis of the blood pressure, ECG and the maximum velocity in m/s (V max) in the aorta was performed and selected parameters of the blood flow (PI, pulsatile index; RI, resistance index; SPV, systolic peak velocity; EDV, end diastolic velocity; FVI, flow velocity integral; SV/DV, systolic peak velocity: end-diastolic velocity ratio) were measured in the uterine artery (Arteria uterine) before and after sildenafil infusion. In addition, Color Doppler examination of the uterine wall perfusion was analyzed. A significant decrease of values of PI and SV/DV ratio as well as an increase of end diastolic velocity and time averaged maximum velocity was noted. With the use of color coded sonography, the increased intensity of the blood flow in the uterine wall was observed. It was concluded that intrauterine administration of sildenafil during dioestrus can increase uterine tissue perfusion. Copyright © 2013 Elsevier GmbH. All rights reserved.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
Real Time Ferrograph Development.
1979-11-01
differential temperature of 65 0 C. Since opteo- electronic devices (photodiodes, photoresistors, etc.) have a maximum operating temperature around 85 0 C, it is...flow during the precipitation cycle. This regulator must keep the flow rate constant at any given temperature regardless of the differential pressure...across the sensing head. The pressure regulator achieved this by using the differential pressure across a fixed re;7trictor to move a bellows diaphragm
2015-09-01
OPTICAL FLOW SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE by Tarek M. Nejah September 2015...SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE 5. FUNDING NUMBERS 6. AUTHOR(S) Nejah, Tarek M. 7...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) A novel approach for dead reckoning, heading reference, obstacle detection, and obstacle
Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)
2016-05-06
10.1002/9781119296126.ch29 14. ABSTRACT (Maximum 200 words) Advances in the fundamental understanding of microstructure evolution and plastic flow during...Abstract Advances in the fundamental understanding of microstructure evolution and plastic flow during primary and secondary processing of titanium...generation of rolling-direction secondary tension stresses. Important factors in such failures have been deduced to include the plastic properties and the
Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum
ERIC Educational Resources Information Center
Velasco, S.; White, J. A.; Roman, F. L.
2010-01-01
The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…
NASA Astrophysics Data System (ADS)
Messham, R. L.; Tucker, W. K.
1986-09-01
A metalorganic chemical vapor deposition (MOCVD) facility designed to safely handle highly toxic and pyrophoric growth materials is described. The system concept is based on remote operation, passive flow restriction, and forced air dilution to maintain safe gas concentrations under normal running and catastrophic system failure conditions. MOCVD is a key materials technology for advanced high-frequency optical and microwave devices. At this time, the use of highly toxic arsine as an arsenic source is dictated by critical device purity, reproducibility, and doping control requirements. The handling and use of this gas is a primary feature in the design of any safe facility for MOCVD growth of high-quality GaAs/AlGaAs. After a critical review of presently available effluent treatment techniques, it was concluded that a combination of flow restriction and dilution presented the most reliable treatment. Measured flow rates through orifices from 0.002 to 0.005 inch in diameter were compared to calculated values. A 0.002 inch orifice located in the cylinder valve or CGA fitting, combined with a cylinder of pure liquid arsine (205 psi), limits the maximum gas flow to ≪1 lpm. Such a flow can then be vented through a dedicated exhaust system where an additional forced injection of diluting air reduces the gas concentration to acceptable levels. In the final Westinghouse R&D Center design, the use of low-pressure pure arsine, flow restriction, and stack air injection has reduced the maximum stack exist gas concentration to below 25% of the IDLH level for arsine under total and catastrophic MOCVD facility equipment failure conditions. The elimination of potential problems with purging behind such orifices using carefully designed purging procedures and a microprocessor-controlled purging system are described. The IDLH level is defined by the OSHA and NIOSH standards completion program and represents the maximum level from which one could escape within 30 min without any escape-impairing symptoms or irreversible health effects.
Thorogood, Robert M.
1986-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, Robert M.
1983-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, R.M.
1983-12-27
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.
In vivo vascular flow profiling combined with optical tweezers based blood routing
NASA Astrophysics Data System (ADS)
Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia
2017-07-01
In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
NASA Astrophysics Data System (ADS)
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
NASA Technical Reports Server (NTRS)
Kandula, M.; Pearce, D. G.
1991-01-01
A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external tank/orbiter propellant feed line disconnect flapper valves with upstream elbows. The Navier-Stokes code, INS3D, is modified to handle interior obstacles and a simple turbulence model. The flow solver is tested for stability and convergence in the presence of interior flappers. An under-relaxation scheme has been incorporated to improve the solution stability. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 million. The predicted hydrodynamical stability of the flappers correlates well with the measurements.
Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978
Childers, Joseph M.; Kernodle, Donald R.
1981-01-01
Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)
NASA Astrophysics Data System (ADS)
Schubert, Jochen E.; Burns, Matthew J.; Fletcher, Tim D.; Sanders, Brett F.
2017-10-01
This research outlines a framework for the case-specific assessment of Green Infrastructure (GI) performance in mitigating flood hazard in small urban catchments. The urban hydrologic modeling tool (MUSIC) is coupled with a fine resolution 2D hydrodynamic model (BreZo) to test to what extent retrofitting an urban watershed with GI, rainwater tanks and infiltration trenches in particular, can propagate flood management benefits downstream and support intuitive flood hazard maps useful for communicating and planning with communities. The hydrologic and hydraulic models are calibrated based on current catchment conditions, then modified to represent alternative GI scenarios including a complete lack of GI versus a full implementation of GI. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 1-63% and durations from 10 min to 24 h. Flood hazard benefits mapped by the framework include maximum flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Application of the system to the Little Stringybark Creek (LSC) catchment shows that across the range of AEPs tested and for storm durations equal or less than 3 h, presently implemented GI reduces downstream flooded area on average by 29%, while a full implementation of GI would reduce downstream flooded area on average by 91%. A full implementation of GI could also lower maximum flow intensities by 83% on average, reducing the drowning hazard posed by urban streams and improving the potential for access by emergency responders. For storm durations longer than 3 h, a full implementation of GI lacks the capacity to retain the resulting rainfall depths and only reduces flooded area by 8% and flow intensity by 5.5%.
Flood Frequency Analysis For Partial Duration Series In Ganjiang River Basin
NASA Astrophysics Data System (ADS)
zhangli, Sun; xiufang, Zhu; yaozhong, Pan
2016-04-01
Accurate estimation of flood frequency is key to effective, nationwide flood damage abatement programs. The partial duration series (PDS) method is widely used in hydrologic studies because it considers all events above a certain threshold level as compared to the annual maximum series (AMS) method, which considers only the annual maximum value. However, the PDS has a drawback in that it is difficult to define the thresholds and maintain an independent and identical distribution of the partial duration time series; this drawback is discussed in this paper. The Ganjiang River is the seventh largest tributary of the Yangtze River, the longest river in China. The Ganjiang River covers a drainage area of 81,258 km2 at the Wanzhou hydrologic station as the basin outlet. In this work, 56 years of daily flow data (1954-2009) from the Wanzhou station were used to analyze flood frequency, and the Pearson-III model was employed as the hydrologic probability distribution. Generally, three tasks were accomplished: (1) the threshold of PDS by percentile rank of daily runoff was obtained; (2) trend analysis of the flow series was conducted using PDS; and (3) flood frequency analysis was conducted for partial duration flow series. The results showed a slight upward trend of the annual runoff in the Ganjiang River basin. The maximum flow with a 0.01 exceedance probability (corresponding to a 100-year flood peak under stationary conditions) was 20,000 m3/s, while that with a 0.1 exceedance probability was 15,000 m3/s. These results will serve as a guide to hydrological engineering planning, design, and management for policymakers and decision makers associated with hydrology.
Marcano, Mariano; Layton, Anita T; Layton, Harold E
2010-02-01
In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2017-01-01
Providers of payloads carried aboard the International Space Station must conduct analyses to demonstrate that any planned gaseous venting events generate no more than a certain level of material that may interfere with optical measurements from other experiments or payloads located nearby. This requirement is expressed in terms of a maximum column number density (CND). Depending on the level of rarefaction, such venting may be characterized by effusion for low flow rates, or by a sonic distribution at higher levels. Since the relative locations of other sensitive payloads are often unknown because they may refer to future projects, this requirement becomes a search for the maximum CND along any path.In another application, certain astronomical observations make use of CND to estimate light attenuation from a distant star through gaseous plumes, such as the Fermi Bubbles emanating from the vicinity of the black hole at the center of our Milky Way galaxy, in order to infer the amount of material being expelled via those plumes.This paper presents analytical CND expressions developed for general straight paths based upon a free molecule point source model for steady effusive flow and for a distribution fitted to model flows from a sonic orifice. Among other things, in this Mach number range it is demonstrated that the maximum CND from a distant location occurs along the path parallel to the source plane that intersects the plume axis. For effusive flows this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43.
Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua
2012-08-01
Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.
The effect of skin moisture on the density distribution of OH and O close to the skin surface
NASA Astrophysics Data System (ADS)
Wu, F.; Li, J.; Liu, F.; Zhou, X.; Lu, X.
2018-03-01
OH radicals and O atoms are believed to be two of the most important reactive species in various biomedical applications of atmospheric pressure plasma jets. In this study, the effect of the skin moisture on the density distribution of OH and O close to the surface of the ex vivo pig skin is investigated by using laser-induced fluorescence technology. The skin moistures used in this study are 20%, 40%, 60%, and 80%, respectively. The experiment results indicate that, at a gas flow rate of 0.5 L/min, when the skin moisture is increased, the OH density close to the skin surface increases, while the O density decreases. On the other hand, when the gas flow rate is increased to 1 L/min, the OH density close to the skin surface is less sensitive with the moisture of the skin surface. Besides, when the skin moisture is 80%, the OH density increases with the increase in the concentration of H2O in the working gas and it reaches its maximum 7.9 × 1013 cm-3 when the concentration of H2O in the working gas is about 500 ppm. The OH density starts to decrease while the H2O concentration in the working gas keeps increasing. On the order hand, the O density shows a maximum 7.4 × 1014 cm-3 when the gas flow rate is 0.5 L/min with no O2 added and the skin moisture is 20%. But, when the gas flow rate is increased to about 1 to 2 L/min, the O density achieves its maximum when 0.5% of O2 is added to the working gas. The possible reasons for these observations are discussed.
Maximum Entropy for the International Division of Labor.
Lei, Hongmei; Chen, Ying; Li, Ruiqi; He, Deli; Zhang, Jiang
2015-01-01
As a result of the international division of labor, the trade value distribution on different products substantiated by international trade flows can be regarded as one country's strategy for competition. According to the empirical data of trade flows, countries may spend a large fraction of export values on ubiquitous and competitive products. Meanwhile, countries may also diversify their exports share on different types of products to reduce the risk. In this paper, we report that the export share distribution curves can be derived by maximizing the entropy of shares on different products under the product's complexity constraint once the international market structure (the country-product bipartite network) is given. Therefore, a maximum entropy model provides a good fit to empirical data. The empirical data is consistent with maximum entropy subject to a constraint on the expected value of the product complexity for each country. One country's strategy is mainly determined by the types of products this country can export. In addition, our model is able to fit the empirical export share distribution curves of nearly every country very well by tuning only one parameter.
Natural convection heat transfer in water near its density maximum
NASA Astrophysics Data System (ADS)
Yen, Yin-Chao
1990-12-01
This monograph reviews and summarizes to date the experimental and analytical results on the effect of water density near its maximum convection, transient flow and temperature structure characteristics: (1) in a vertical enclosure; (2) in a vertical annulus; (3) between horizontal concentric cylinders; (4) in a square enclosure; (5) in a rectangular enclosure; (6) in a horizontal layer; (7) in a circular confined melt layer; and (8) in bulk water during melting. In a layer of water containing a maximum density temperature of 4 C, the onset of convection (the critical number) is found not to be a constant value as in the classical normal fluid but one that varies with the imposed thermal and hydrodynamic boundaries. In horizontal layers, a nearly constant temperature zone forms and continuously expands between the warm and cold boundaries. A minimum heat transfer exists in most of the geometries studied and, in most cases, can be expressed in terms of a density distribution parameter. The effect of this parameter on a cells formation, disappearance and transient structure is discussed, and the effect of split boundary flow on heat transfer is presented.
Maximum Entropy for the International Division of Labor
Lei, Hongmei; Chen, Ying; Li, Ruiqi; He, Deli; Zhang, Jiang
2015-01-01
As a result of the international division of labor, the trade value distribution on different products substantiated by international trade flows can be regarded as one country’s strategy for competition. According to the empirical data of trade flows, countries may spend a large fraction of export values on ubiquitous and competitive products. Meanwhile, countries may also diversify their exports share on different types of products to reduce the risk. In this paper, we report that the export share distribution curves can be derived by maximizing the entropy of shares on different products under the product’s complexity constraint once the international market structure (the country-product bipartite network) is given. Therefore, a maximum entropy model provides a good fit to empirical data. The empirical data is consistent with maximum entropy subject to a constraint on the expected value of the product complexity for each country. One country’s strategy is mainly determined by the types of products this country can export. In addition, our model is able to fit the empirical export share distribution curves of nearly every country very well by tuning only one parameter. PMID:26172052
Effect of density feedback on the two-route traffic scenario with bottleneck
NASA Astrophysics Data System (ADS)
Sun, Xiao-Yan; Ding, Zhong-Jun; Huang, Guo-Hua
2016-12-01
In this paper, we investigate the effect of density feedback on the two-route scenario with a bottleneck. The simulation and theory analysis shows that there exist two critical vehicle entry probabilities αc1 and αc2. When vehicle entry probability α≤αc1, four different states, i.e. free flow state, transition state, maximum current state and congestion state are identified in the system, which correspond to three critical reference densities. However, in the interval αc1<α<αc2, the free flow and transition state disappear, and there is only congestion state when α≥αc2. According to the results, traffic control center can adjust the reference density so that the system is in maximum current state. In this case, the capacity of the traffic system reaches maximum so that drivers can make full use of the roads. We hope that the study results can provide good advice for alleviating traffic jam and be useful to traffic control center for designing advanced traveller information systems.
NASA Astrophysics Data System (ADS)
Deepak, G. Divya; Joshi, N. K.; Prakash, Ram
2018-05-01
In this study, both model analysis and electrical characterization of a dielectric barrier discharge based argon plasma jet have been carried at atmospheric pressure in a pin electrode configuration. The plasma and fluid dynamics modules of COMSOL multi-physics code have been used for the modeling of the plasma jet. The plasma parameters, such as, electron density, electron temperature and electrical potential have been analyzed with respect to the electrical parameters, i.e., supply voltage and supply frequency with and without the flow of gas. In all the experiments, gas flow rate has been kept constant at 1 liter per minute. This electrode configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6.5 kV). The power consumed by the device has been estimated at different applied combinations (supply voltage & frequency) for optimum power consumption at maximum jet length. The maximum power consumed by the device in this configuration for maximum jet length of ˜26 mm is just ˜1 W.
Optimal translational swimming of a sphere at low Reynolds number.
Felderhof, B U; Jones, R B
2014-08-01
Swimming velocity and rate of dissipation of a sphere with surface distortions are discussed on the basis of the Stokes equations of low-Reynolds-number hydrodynamics. At first the surface distortions are assumed to cause an irrotational axisymmetric flow pattern. The efficiency of swimming is optimized within this class of flows. Subsequently, more general axisymmetric polar flows with vorticity are considered. This leads to a considerably higher maximum efficiency. An additional measure of swimming performance is proposed based on the energy consumption for given amplitude of stroke.
1998-01-01
Parabolic Boundary Control Problem ARIELA BRIANI AND MAURIZIO FALCONE Dipartimento di Matematica Universitä di Pisa Dipartimento di Matematica ...Ministry for University and Scientific Research (MURST Project "Analisi Numerica e Matematica Computazionale"). 50 A Priori Estimates for the...Briani Dipartimento di Matematica Universitä di Pisa Via Buonarroti 2 1-56126 Pisa e-mail:briani@dm.unipi.it Maurizio Falcone Dipartimento di
Applicability of Thermal Storage Systems to Air Force Facilities
1990-09-01
Analisis of Region 6 Upper Limit Retrofit Scenario 30% Reduction .... ............. 4.52 4.58 Economic Analysis of Region 7 Upper Limit Retrofit Scenario...or a dynamic-direct contact type. They usually include all the controls, chilling and storage equipment in one self-contained, skid mounted, factory ...SCS technology. One promising trend in reducing system construction costs is the factory -packaged thermal storage cooling unit. As of February 1989
ERIC Educational Resources Information Center
Amato, Antonio
1979-01-01
The development of an intensive Italian course for science students attending Somalia's National University is described. The historical background for this project, sponsored by the Italian Government and staffed by Italian teachers, is outlined. Course objectives, methods, and organization are illustrated by samples of instructional materials,…
Integrated System Safety Program for the MX Weapon System.
1979-09-25
Quantitative AnalIsis Of Specified Undesired Events Nuclr Safey Anisis Reports ISARI Contractor Inpu To AFWL Technical Nucler Sa An. Is FIGURE 1...Launch Includes all functions from initiation of launch se- quence to missile first motion, such as transfer from ground power to airborne power ...all credible contingency or emergency condi- tions, such as Toxic gases/fluid release, inadvertently armed ordnance, electric power loss, and destruct
Method and system for gas flow mitigation of molecular contamination of optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, Gildardo; Johnson, Terry; Arienti, Marco
A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less
Numerical investigation of flow past 17-cylinder array of square cylinders
NASA Astrophysics Data System (ADS)
Shams-ul-Islam, Nazeer, Ghazala; Ying, Zhou Chao
2018-06-01
In this work, flow past 17-cylinder array is simulated using the two-dimensional lattice Boltzmann method. Effect of gap spacings (0.5 ≤ gx* ≤ 3, 0.5 ≤ gy* ≤ 3) and Reynolds number (Re = 75 - 150) is analyzed in details. Results are presented in the form of vorticity contours plots, time-histories of drag and lift coefficients and power spectrum of lift coefficient. Six distinct flow regimes are identified for different gap spacings and Reynolds numbers: steady flow regime, single bluff body flow regime, non-fully developed flow regime, chaotic flow regime, quasi-periodic-I flow regime and quasi-periodic-II flow regime. Chaotic flow regime is the mostly observed flow regime while the single bluff body flow regime rarely occurs for this configuration. It is observed that drag force along each cylinder in 17-cylinder array decreases in the streamwise direction for fixed Reynold number and gap spacing. C1 and C2 cylinders experience the maximum drag at small gap spacing and Reynolds number. Also the Reynolds number is found to be more effective on flow characteristics as compared to gap spacings.
The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.
Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert
2008-01-01
Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.
Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk
2012-04-01
To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P < 0.001) between MIN (ADC(mono) = 2.14 ± 0.08 × 10(-3) mm(2)/s) and MAX (ADC(mono) = 2.37 ± 0.04 × 10(-3) mm(2)/s). The correlation between renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.
[Low flow anaesthesia with isoflurane in the dog].
Kramer, Sabine; Alyakine, Hassan; Nolte, Ingo
2005-01-01
The aim of the present study was to compare the safety of two low flow (LF) regimes [fresh gas flow (FGF) 20 ml/kg/min (group 2) and 14 ml/kg/min (group 3)] with the high flow (HF) technique (FGF 50 ml/kg/min; group 1) of isoflurane anaesthesia. Data were gathered from ninety dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs had an anaesthetic induction with 0,6 mg/kg I-methadone (maximum 25 mg) and 1 mg/kg diazepam (maximum 25 mg) i.v. Anaesthesia was maintained with isoflurane in a mixture of 50% O2 and 50% N2O as carrier gases, with controlled ventilation. The Monitoring included electrocardiogramm, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane). The consumption of isoflurane and carrier gases as well as the recovery times were evaluated for the three groups. The inspired oxygen concentrations always ranged above the minimum value of 30 Vol.-% during low flow anaesthesia. The arterial oxygen saturation ranged between 92-98%, the end tidal concentration of CO2 between 35 and 45 mmHg. Heart rate and arterial blood pressure were within normal limits. Recovery time was significantly shorter after LF than after HF anaesthesia. The highest decrease in body temperature occurred in the HF group 1 because of a significantly lower anaesthetic gas temperature. Despite this, LF anaesthesia resulted in a reduced consumption of carrier gases and volatiles. In conclusion, low flow anaesthesia with isoflurane is a safe technique and offers substantial economic advantages over high flow techniques and is moreover better tolerated by the patients.
NASA Astrophysics Data System (ADS)
Huang, Bolin; Yin, Yueping; Wang, Shichang; Tan, Jianmin; Liu, Guangning
2017-05-01
A rocky granular flow is commonly formed after the failure of rocky bank slopes. An impulse wave disaster may also be initiated if the rocky granular flow rushes into a river with a high velocity. Currently, the granular mass-water body coupling study is an important trend in the field of landslide-induced impulse waves. In this paper, a full coupling numerical model for landslide-induced impulse waves is developed based on a non-coherent granular flow equation, i.e., the Mih equation. In this model, the Mih equation for continuous non-coherent granular flow controls movements of sliding mass, the two-phase flow equation regulates the interaction between sliding mass and water, and the renormalization group (RNG) turbulence model governs the movement of the water body. The proposed model is validated and applied for the 2014 Tangjiaxi landslide of the Zhexi Reservoir located in Hunan Province, China, to analyze the characteristics of both landslide motion and its following impulse waves. On 16 July 2014, a rocky debris flow was formed after the failure of the Tangjiaxi landslide, damming the Tangjiaxi stream and causing an impulse wave disaster with three dead and nine missing bodies. Based on the full coupling numerical analysis, the granular flow impacts the water with a maximum velocity of about 22.5 m s-1. Moreover, the propagation velocity of the generated waves reaches up to 12 m s-1. The maximum calculated run-up of 21.8 m is close enough to the real value of 22.7 m. The predicted landslide final deposit and wave run-up heights are in a good agreement with the field survey data. These facts verify the ability of the proposed model for simulating the real impulse wave generated by rocky granular flow events.
Harwell, Glenn R.; Mobley, Craig A.
2009-01-01
This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact recreation criterion. All water temperature measurements at sampling sites in the lower West Fork Trinity River watershed were less than the maximum criterion for water temperature for the lower West Fork Trinity segment. Of the measurements at sampling sites in the Elm Fork Trinity River watershed, 95 percent were less than the maximum criterion for water temperature for the Elm Fork Trinity River segment. All dissolved oxygen concentrations were greater than the minimum criterion for stream segments classified as exceptional aquatic life use. Nearly all pH measurements were within the pH criterion range for the classified segments in both watersheds, except for those at one airport site. For sampling sites in the lower West Fork Trinity River watershed, all annual average dissolved solids concentrations were less than the maximum criterion for the lower West Fork Trinity segment. For sampling sites in the Elm Fork Trinity River, nine of the 13 sites (six airport, three non-airport) had annual averages that exceeded the maximum criterion for that segment. For ammonia, 23 samples from 12 different sites had concentrations that exceeded the screening level for ammonia. Of these 12 sites, only one non-airport site had more than the required number of exceedances to indicate a screening level concern. Stormflow total suspended solids concentrations were significantly higher than low-flow concentrations at the two integrator sites. For sampling sites in the lower West Fork Trinity River watershed, all annual average chloride concentrations were less than the maximum annual average chloride concentration criterion for that segment. For the 13 sampling sites in the Elm Fork Trinity River watershed, one non-airport site had an annual average concentration that exceeded the maximum annual average chloride concentration criterion for that segment.
1986-04-01
Adams, R., Venna, P., Jackson, A., and Miller, R. TITLE: Plasma pharmacokinetics of intravenously administered atropine in normal human subjects Journal...atropine by i.v. route and inhalation. Measurements of respiratory airway resistance, N2 closing volume, maximal expiratory flow volume, pressure volume...maximum flow -static recoil and esophageal elasticity were compared to non-atropinized values. FINDINGS: "I.V. administration produced a marked
Transition of unsteady velocity profiles with reverse flow
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.
1998-11-01
This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.
Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon
2016-01-01
A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567
NASA Astrophysics Data System (ADS)
Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan
2016-01-01
A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.
On the rotation and pitching of flat plates
NASA Astrophysics Data System (ADS)
Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.
2016-11-01
Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.
Analysis of Change in the Wind Speed Ratio according to Apartment Layout and Solutions
Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo
2014-01-01
Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended. PMID:24688430
NASA Astrophysics Data System (ADS)
Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.
2017-11-01
Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.
Velocity and pressure fields associated with near-wall turbulence structures
NASA Technical Reports Server (NTRS)
Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John
1990-01-01
Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.
Analysis of change in the wind speed ratio according to apartment layout and solutions.
Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo
2014-01-01
Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1993-01-01
The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.
A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow
NASA Technical Reports Server (NTRS)
Oseguera, Rosa M.; Bowles, Roland L.
1988-01-01
A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.
Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions
NASA Astrophysics Data System (ADS)
Stafford, J.; Jeffers, N.
2014-07-01
This paper experimentally examines the bulk aerodynamic performance of a vibrating fan operating in the first mode of vibration. The influence of operating condition on the local velocity field has also been investigated to understand the flow distribution at the exit region and determine the stalling condition for vibrating fans. Fan motion has been generated and controlled using a piezoelectric ceramic attached to a stainless steel cantilever. The frequency and amplitude at resonance were 109.4 Hz and 12.5 mm, respectively. A test facility has been developed to measure the pressure-flow characteristics of the vibrating fan and simultaneously conduct local velocity field measurements using particle image velocimetry. The results demonstrate the impact of system characteristics on the local velocity field. High momentum regions generated due to the oscillating motion exist with a component direction that is tangent to the blade at maximum displacement. These high velocity zones are significantly affected by increasing impedance while flow reversal is a dominant feature at maximum pressure rise. The findings outlined provide useful information for design of thermal management solutions that may incorporate this air cooling approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blijderveen, Maarten van; University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede; Bramer, Eddy A.
Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of themore » used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szkutnik, P. D., E-mail: pierre.szkutnik@cea.fr; Jiménez, C.; Angélidès, L.
2016-02-15
A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd){sub 3} solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min{sup −1} in specified conditions) and the critical mass (defined as the minimum amount of precursor ablemore » to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In{sub 2}O{sub 3} layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions.« less
Design and operation of a bio-inspired micropump based on blood-sucking mechanism of mosquitoes
NASA Astrophysics Data System (ADS)
Leu, Tzong-Shyng; Kao, Ruei-Hung
2018-05-01
The study is to develop a novel bionic micropump, mimicking blood-suck mechanism of mosquitos with a similar efficiency of 36%. The micropump is produced by using micro-electro-mechanical system (MEMS) technology, PDMS (polydimethylsiloxane) to fabricate the microchannel, and an actuator membrane made by Fe-PDMS. It employs an Nd-FeB permanent magnet and PZT to actuate the Fe-PDMS membrane for generating flow rate. A lumped model theory and the Taguchi method are used for numerical simulation of pulsating flow in the micropump. Also focused is to change the size of mosquito mouth for identifying the best waveform for the transient flow processes. Based on computational results of channel size and the Taguchi method, an optimization actuation waveform is identified. The maximum pumping flow rate is 23.5 μL/min and the efficiency is 86%. The power density of micropump is about 8 times of that produced by mosquito’s suction. In addition to using theoretical design of the channel size, also combine with Taguchi method and asymmetric actuation to find the optimization actuation waveform, the experimental result shows the maximum pumping flowrate is 23.5 μL/min and efficiency is 86%, moreover, the power density of micropump is 8 times higher than mosquito’s.