Sample records for maximum frequency response

  1. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, P. J. de, E-mail: p.j.devisser@tudelft.nl; Yates, S. J. C.; Guruswamy, T.

    2015-06-22

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creationmore » efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.« less

  2. Preferred modes in jets: comparison between different measures of the receptivity

    NASA Astrophysics Data System (ADS)

    Garnaud, Xavier; Lesshafft, Lutz; Schmid, Peter J.; Huerre, Patrick

    2012-11-01

    The response of jets to frequency forcing is usually measured experimentally in terms of the maximum amplitude of velocity fluctuations reached along the axis (Crow & Champagne (1971)). In the present work, the preferred mode of isothermal jets is discussed in terms of the linear flow response to time-harmonic forcing (Trefethen et al. (1993)). The optimal frequency response is computed for different choices of the objective functional: the usual energy (L2) norm and the maximum amplitude over the entire domain (L∞ norm). The relevance and limitations of the different objective functionals are critically analyzed. Although the dominant flow structures are robustly identified in all cases, the measure of the flow response in terms of the maximum amplitude does not suffer from the continually slow axial growth of low frequency perturbations. The financial support of the EADS Foundation is gratefully acknowledged.

  3. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei

    2017-04-01

    The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.

  4. Features of the low-frequency polarization response in the region of the ferroelectric phase transition in multiferroic TbMnO 3

    DOE PAGES

    Trepakov, V. A.; Kvyatkovskii, O. E.; Savinov, M. E.; ...

    2016-10-01

    The unusual behavior of the low-frequency (10 Hz–1 MHz) permittivity in single crystals of ferroelectric multiferroic TbMnO3 has been experimentally and theoretically studied in detail in the region of the narrow temperature peak of the permittivity, associated with the ferroelectric phase transition (T C ~ 27.4 K). It has been found that the ε c(ω, T) maximum sharply decreases with increasing measured field frequency, while the temperature position of the maximum is independent of frequency. It has been shown that the observed features of the polarization response can be satisfactorily described within the Landau–Khalatnikov polarization relaxation theory.

  5. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

    PubMed

    Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer

    2011-04-01

    The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the EEG/fMRI analysis of the transient event-related potentials (ERPs) in terms of expecting more reliable and consistent correlations between EEG and fMRI responses, when the analyses are carried out on evoked or induced oscillations (spectral perturbations) in separate frequency bands instead of the time-domain ERP peaks.

  6. An increased rectal maximum tolerable volume and long anal canal are associated with poor short-term response to biofeedback therapy for patients with anismus with decreased bowel frequency and normal colonic transit time.

    PubMed

    Rhee, P L; Choi, M S; Kim, Y H; Son, H J; Kim, J J; Koh, K C; Paik, S W; Rhee, J C; Choi, K W

    2000-10-01

    Biofeedback is an effective therapy for a majority of patients with anismus. However, a significant proportion of patients still failed to respond to biofeedback, and little has been known about the factors that predict response to biofeedback. We evaluated the factors associated with poor response to biofeedback. Biofeedback therapy was offered to 45 patients with anismus with decreased bowel frequency (less than three times per week) and normal colonic transit time. Any differences in demographics, symptoms, and parameters of anorectal physiologic tests were sought between responders (in whom bowel frequency increased up to three times or more per week after biofeedback) and nonresponders (in whom bowel frequency remained less than three times per week). Thirty-one patients (68.9 percent) responded to biofeedback and 14 patients (31.1 percent) did not. Anal canal length was longer in nonresponders than in responders (4.53 +/- 0.5 vs. 4.08 +/- 0.56 cm; P = 0.02), and rectal maximum tolerable volume was larger in nonresponders than in responders. (361 +/- 87 vs. 302 +/- 69 ml; P = 0.02). Anal canal length and rectal maximum tolerable volume showed significant differences between responders and nonresponders on multivariate analysis (P = 0.027 and P = 0.034, respectively). This study showed that a long anal canal and increased rectal maximum tolerable volume are associated with poor short-term response to biofeedback for patients with anismus with decreased bowel frequency and normal colonic transit time.

  7. Dynamic Behaviour and Seismic Response of Ground Supported Cylindrical Water Tanks

    NASA Astrophysics Data System (ADS)

    Asha, Joseph; Glory, Joseph

    2018-05-01

    Liquid storage tank such as in water distribution systems, petroleum plants etc., constitute a vital component of life line systems. Reducing earthquake effects on liquid storage tanks, to minimize the environmental and economic impact of these effects, have always been an important engineering concern. In this paper, the dynamic behavior of cylindrical ground supported concrete water tanks with different aspect ratios is investigated using finite element software ANSYS. The natural frequencies and modal responses are obtained for impulsive and convective modes of vibration. The natural frequency of vibration of the tank is observed to be the lowest at maximum water depth. The fundamental impulsive frequency increases as water level reduces and for water level less than 1/3 of tank height, there is significantly no change in impulsive frequency. The effect of wall flexibility on dynamic behavior of the tank is investigated by performing the modal analysis of flexible and rigid tanks. For a partially filled tank, the results of the present study are of significant relevance. The response of the tank to the transient loading as horizontal ground motion of El Centro earthquake is studied for various water heights. As the height of water on the tank increases, the ultimate maximum seismic response parameters are also observed to be increased. The location of maximum hoop stress varies in accordance with the variations in input ground motion and water fill condition whereas shear and bending moment are maximum at the base.

  8. Pyrotechnic shock measurement and data analysis requirements

    NASA Technical Reports Server (NTRS)

    Albers, L.

    1975-01-01

    A study of laboratory measurement and analysis of pyrotechnic shock prompted by a discrepancy in preliminary Mariner Jupiter/Saturn shock test data is reported. It is shown that before generating shock response plots from any recorded pyrotechnic event, a complete review of each instrumentation and analysis system must be made. In addition, the frequency response capability of the tape recorder used should be as high as possible; the discrepancies in the above data were due to inadequate frequency response in the FM tape recorders. The slew rate of all conditioning amplifiers and input converters must be high enough to prevent signal distortion at maximum input voltage; amplifier ranges should be selected so that the input pulse is approximately 50% of full scale; the Bessel response type should be chosen for digital shock analysis if antialiasing filters are employed; and transducer selection must consider maximum acceleration limit, mounted resonance frequency, flat clean mounting surfaces, base bending sensitivity, and proper torque.

  9. Integrated optic single-ring filter for narrowband phase demodulation

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.

    2017-05-01

    Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.

  10. Approximate bandpass and frequency response models of the difference of Gaussian filter

    NASA Astrophysics Data System (ADS)

    Birch, Philip; Mitra, Bhargav; Bangalore, Nagachetan M.; Rehman, Saad; Young, Rupert; Chatwin, Chris

    2010-12-01

    The Difference of Gaussian (DOG) filter is widely used in optics and image processing as, among other things, an edge detection and correlation filter. It has important biological applications and appears to be part of the mammalian vision system. In this paper we analyse the filter and provide details of the full width half maximum, bandwidth and frequency response in order to aid the full characterisation of its performance.

  11. Non-adrenergic, non-cholinergic neural activation in guinea-pig bronchi: powerful and frequency-dependent stabilizing effect on tone.

    PubMed Central

    Lindén, A.; Ullman, A.; Löfdahl, C. G.; Skoogh, B. E.

    1993-01-01

    1. We examined non-adrenergic, non-cholinergic (NANC) stimulation for its stabilizing effect on bronchial smooth-muscle tone with respect to its regulatory power and the effect of variations in neural impulse frequency. 2. The guinea-pig isolated main bronchus (n = 4-12) was pretreated with indomethacin (10 microM) and incubated with atropine (1 microM) and guanethidine (10 microM). Electrical field stimulation (EFS: 1200 mA, 0.5 ms, 240 s) was applied at various levels of tone prior to EFS: first without tone, then at a moderate tone induced by histamine (0.3 microM) and, finally, at a high tone induced by histamine (6 microM). Three different stimulation frequencies (1, 3 or 10 Hz) were used in order to produce moderate to near-maximum contractile and relaxant NANC neural responses. Both the contractile and the relaxant NANC responses were tetrodotoxin-sensitive in the guinea-pig isolated main bronchus (3 Hz). 3. Without tone prior to EFS, NANC activation (1, 3 or 10 Hz) induced a pronounced contractile response. At a moderate level of tone prior to EFS, NANC activation induced a less pronounced contractile response. At the highest level of tone prior to EFS, NANC activation induced a relaxant response. All these NANC responses adjusted the tone towards a similar level and this 'stabilization level' was 56(6)% at 1 Hz, 65(3)% at 3 Hz and 56(5)% at 10 Hz, expressed as a percentage of the maximum histamine-induced (0.1 mM) tone in each airway preparation. 4. There was a difference of approximately 90% of maximum between the highest and the lowest tone level prior to NANC activation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8358575

  12. Mechanics of the Mammalian Cochlea

    PubMed Central

    Robles, Luis; Ruggero, Mario A.

    2013-01-01

    In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the “base” of the cochlea (near the stapes) and low-frequency waves approaching the “apex” of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the “cochlear amplifier.” This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers. PMID:11427697

  13. Mesopic and Photopic Rod and Cone Photoreceptor-Driven Visual Processes in Mice With Long-Wavelength-Shifted Cone Pigments.

    PubMed

    Tsai, Tina I; Joachimsthaler, Anneka; Kremers, Jan

    2017-10-01

    The clearer divergence in spectral sensitivity between native rod and human L-cone (L*-cone) opsins in the transgenic Opn1lwLIAIS mouse (LIAIS) allows normal visual processes mediated by these photoreceptor subtypes to be isolated effectively using the silent substitution technique. The objective of this study was to further characterize the influence of mean luminance and temporal frequency on the functional properties of signals originating in each photoreceptor separately and independently of adaptation state in LIAIS mice. Electroretinographic (ERG) recordings to sine-wave rod and L*-cone modulation at different mean luminances (0.1-130.0 cd/m2) and temporal frequencies (6-26 Hz) were examined in anesthetized LIAIS (N = 17) and C57Bl/6 mice (N = 8). We report maximum rod-driven response with 8-Hz modulation at 0.1 to 0.5 cd/m2, which was almost four times larger than maximum cone-driven response at 8 Hz, 21.5 to 130 cd/m2. Over these optimal luminances, both rod- and cone-driven response amplitudes exhibited low-pass functions with similar frequency resolution limits, albeit their distinct luminance sensitivities. There were, however, two distinguishing features: (1) the frequency-dependent amplitude decrease of rod-driven responses was more profound, and (2) linear relationships describing rod-driven response phases as a function of stimulus frequency were steeper. Employing the silent substitution method with stimuli of appropriate luminance on the LIAIS mouse (as on human observers) increases the specificity, robustness, and scope to which photoreceptor-driven responses can be reliably assayed compared to the standard photoreceptor isolation methods.

  14. [Some Features of Sound Signal Envelope by the Frog's Cochlear Nucleus Neurons].

    PubMed

    Bibikov, N G

    2015-01-01

    The responses of single neurons in the medullar auditory center of the grass frog were recorded extracellularly under the action of long tonal signals of the characteristic frequency modulated by repeating fragments of low-frequency (0-15 Hz, 0-50 Hz or 0-150 Hz) noise. Correlation method was used for evaluating the efficacy of different envelope fragments to ensure generation of a neuron pulse discharge. Carrying out these evaluations at different time intervals between a signal and a response the maximum delays were assessed. Two important envelope fragments were revealed. In majority of units the most effective was the time interval of the amplitude rise from mean value to maximum, and the fragment where the amplitude fall from maximum to mean value was the second by the efficacy. This type of response was observed in the vast majority of cells in the range of the envelope frequency bands 0-150 and 0-50 Hz. These cells performed half-wave rectification of such type of the envelope. However, in some neurons we observed more strong preference toward a time interval with growing amplitude, including even those where the amplitude value was smaller than the mean one. These properties were observed mainly for low-frequency (0-15 Hz) modulated signals at high modulation depth. The data show that even in medulla oblongata specialization of neural elements of the auditory pathway occurs with respect to time interval features of sound stimulus. This diversity is most evident for signals with a relatively slowly varying amplitude.

  15. Synthesis of nonlinear frequency responses with experimentally extracted nonlinear modes

    NASA Astrophysics Data System (ADS)

    Peter, Simon; Scheel, Maren; Krack, Malte; Leine, Remco I.

    2018-02-01

    Determining frequency response curves is a common task in the vibration analysis of nonlinear systems. Measuring nonlinear frequency responses is often challenging and time consuming due to, e.g., coexisting stable or unstable vibration responses and structure-exciter-interaction. The aim of the current paper is to develop a method for the synthesis of nonlinear frequency responses near an isolated resonance, based on data that can be easily and automatically obtained experimentally. The proposed purely experimental approach relies on (a) a standard linear modal analysis carried out at low vibration levels and (b) a phase-controlled tracking of the backbone curve of the considered forced resonance. From (b), the natural frequency and vibrational deflection shape are directly obtained as a function of the vibration level. Moreover, a damping measure can be extracted by power considerations or from the linear modal analysis. In accordance with the single nonlinear mode assumption, the near-resonant frequency response can then be synthesized using this data. The method is applied to a benchmark structure consisting of a cantilevered beam attached to a leaf spring undergoing large deflections. The results are compared with direct measurements of the frequency response. The proposed approach is fast, robust and provides a good estimate for the frequency response. It is also found that direct frequency response measurement is less robust due to bifurcations and using a sine sweep excitation with a conventional force controller leads to underestimation of maximum vibration response.

  16. Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force.

    PubMed

    Pyragas, Kestutis; Novičenko, Viktor

    2015-07-01

    The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.

  17. Shock spectra applications to a class of multiple degree-of-freedom structures system

    NASA Technical Reports Server (NTRS)

    Hwang, Shoi Y.

    1988-01-01

    The demand on safety performance of launching structure and equipment system from impulsive excitations necessitates a study which predicts the maximum response of the system as well as the maximum stresses in the system. A method to extract higher modes and frequencies for a class of multiple degree-of-freedom (MDOF) Structure system is proposed. And, along with the shock spectra derived from a linear oscillator model, a procedure to obtain upper bound solutions for maximum displacement and maximum stresses in the MDOF system is presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Wang, Jianhui

    To release the 'hidden inertia' of variable-speed wind turbines for temporary frequency support, a method of torque-limit based inertial control is proposed in this paper. This method aims to improve the frequency support capability considering the maximum torque restriction of a permanent magnet synchronous generator. The advantages of the proposed method are improved frequency nadir (FN) in the event of an under-frequency disturbance; and avoidance of over-deceleration and a second frequency dip during the inertial response. The system frequency response is different, with different slope values in the power-speed plane when the inertial response is performed. The proposed method ismore » evaluated in a modified three-machine, nine-bus system. The simulation results show that there is a trade-off between the recovery time and FN, such that a gradual slope tends to improve the FN and restrict the rate of change of frequency aggressively while causing an extension of the recovery time. These results provide insight into how to properly design such kinds of inertial control strategies for practical applications.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Wang, Jianhui

    To release the 'hidden inertia' of variable-speed wind turbines for temporary frequency support, a method of torque-limit-based inertial control is proposed in this paper. This method aims to improve the frequency support capability considering the maximum torque restriction of a permanent magnet synchronous generator. The advantages of the proposed method are improved frequency nadir (FN) in the event of an under-frequency disturbance; and avoidance of over-deceleration and a second frequency dip during the inertial response. The system frequency response is different, with different slope values in the power-speed plane when the inertial response is performed. The proposed method is evaluatedmore » in a modified three-machine, nine-bus system. The simulation results show that there is a trade-off between the recovery time and FN, such that a gradual slope tends to improve the FN and restrict the rate of change of frequency aggressively while causing an extension of the recovery time. These results provide insight into how to properly design such kinds of inertial control strategies for practical applications.« less

  20. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  1. Delay of cognitive gamma responses in Alzheimer's disease

    PubMed Central

    Başar, Erol; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Yener, Görsev G.

    2016-01-01

    Event-related oscillations (EROs) reflect cognitive brain dynamics, while sensory-evoked oscillations (SEOs) reflect sensory activities. Previous reports from our lab have shown that those with Alzheimer's disease (AD) or mild cognitive impairment (MCI) have decreased activity and/or coherence in delta, theta, alpha and beta cognitive responses. In the current study, we investigated gamma responses in visual SEO and ERO in 15 patients with AD and in 15 age-, gender- and education-matched healthy controls. The following parameters were analyzed over the parietal-occipital regions in both groups: (i) latency of the maximum gamma response over a 0–800 ms time window; (ii) the maximum peak-to-peak amplitudes for each participant's averaged SEO and ERO gamma responses in 3 frequency ranges (25–30, 30–35, 40–48 Hz); and (iii) the maximum peak-to-peak amplitudes for each participant's averaged SEO and ERO gamma responses over a 0–800 ms time block containing four divided time windows (0–200, 200–400, 400–600, and 600–800 ms). There were main group effects in terms of both latency and peak-to-peak amplitudes of gamma ERO. However, peak-to-peak gamma ERO amplitude differences became noticeable only when the time block was divided into four time windows. SEO amplitudes in the 25–30 Hz frequency range of the 0–200 ms time window over the left hemisphere were greater in the healthy controls than in those with AD. Gamma target ERO latency was delayed up to 138 ms in AD patients when compared to healthy controls. This finding may be an effect of lagged neural signaling in cognitive circuits, which is reflected by the delayed gamma responses in those with AD. Based on the results of this study, we propose that gamma responses should be examined in a more detailed fashion using multiple frequency and time windows. PMID:26937378

  2. Rotorcraft Blade Mode Damping Identification from Random Responses Using a Recursive Maximum Likelihood Algorithm

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.

    1982-01-01

    An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.

  3. QRS analysis using wavelet transformation for the prediction of response to cardiac resynchronization therapy: a prospective pilot study.

    PubMed

    Vassilikos, Vassilios P; Mantziari, Lilian; Dakos, Georgios; Kamperidis, Vasileios; Chouvarda, Ioanna; Chatzizisis, Yiannis S; Kalpidis, Panagiotis; Theofilogiannakos, Efstratios; Paraskevaidis, Stelios; Karvounis, Haralambos; Mochlas, Sotirios; Maglaveras, Nikolaos; Styliadis, Ioannis H

    2014-01-01

    Wider QRS and left bundle branch block morphology are related to response to cardiac resynchronization therapy (CRT). A novel time-frequency analysis of the QRS complex may provide additional information in predicting response to CRT. Signal-averaged electrocardiograms were prospectively recorded, before CRT, in orthogonal leads and QRS decomposition in three frequency bands was performed using the Morlet wavelet transformation. Thirty eight patients (age 65±10years, 31 males) were studied. CRT responders (n=28) had wider baseline QRS compared to non-responders and lower QRS energies in all frequency bands. The combination of QRS duration and mean energy in the high frequency band had the best predicting ability (AUC 0.833, 95%CI 0.705-0.962, p=0.002) followed by the maximum energy in the high frequency band (AUC 0.811, 95%CI 0.663-0.960, p=0.004). Wavelet transformation of the QRS complex is useful in predicting response to CRT. © 2013.

  4. Probabilistic analysis of bladed turbine disks and the effect of mistuning

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Nagpal, V. K.; Chamis, Christos C.

    1990-01-01

    Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping are included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.

  5. Probabilistic analysis of bladed turbine disks and the effect of mistuning

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin; Nagpal, V. K.; Chamis, C. C.

    1990-01-01

    Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping have been included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.

  6. Frequency domain analysis of droplet-based electrostatic transducers

    NASA Astrophysics Data System (ADS)

    Allegretto, Graham; Dobashi, Yuta; Dixon, Katelyn; Wyss, Justin; Yao, Dickson; Madden, John D. W.

    2018-07-01

    Squeezing a water droplet between two electrodes can generate a potential difference by converting some of the mechanical energy in vibrations into electrical energy. By utilizing the high capacitance inherent to electric double layers, and the surface charging at a polymer/water interface, we demonstrate a sensor that generates up to 892 mV peak-to-peak between 1 and 100 Hz, in response to a 250 μm deformation. This frequency response is described and explained using a linearized model in which the interfacial charge acts as the priming voltage, removing the need for external charging normally required in capacitive generators. The model suggests how to design the cell for maximum power output and provides an intuitive understanding of the high pass nature of the sensor. It successfully predicts the point of maximum power transfer.

  7. Assessment of System Frequency Support Effect of PMSG-WTG Using Torque-Limit-Based Inertial Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Wang, Jianhui

    2017-02-16

    To release the 'hidden inertia' of variable-speed wind turbines for temporary frequency support, a method of torque-limit based inertial control is proposed in this paper. This method aims to improve the frequency support capability considering the maximum torque restriction of a permanent magnet synchronous generator. The advantages of the proposed method are improved frequency nadir (FN) in the event of an under-frequency disturbance; and avoidance of over-deceleration and a second frequency dip during the inertial response. The system frequency response is different, with different slope values in the power-speed plane when the inertial response is performed. The proposed method ismore » evaluated in a modified three-machine, nine-bus system. The simulation results show that there is a trade-off between the recovery time and FN, such that a gradual slope tends to improve the FN and restrict the rate of change of frequency aggressively while causing an extension of the recovery time. These results provide insight into how to properly design such kinds of inertial control strategies for practical applications.« less

  8. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    PubMed

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    PubMed

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  10. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  11. Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads

    NASA Technical Reports Server (NTRS)

    Gold, Harold; Otto, Edward W; Ransom, Victor L

    1953-01-01

    An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors.

  12. Spin Multiphoton Antiresonance at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Hicke, Christian; Dykman, Mark

    2007-03-01

    Weakly anisotropic S>1 spin systems display multiphoton antiresonance. It occurs when an Nth overtone of the radiation frequency coincides with the distance between the ground and the Nth excited energy level (divided by ). The coherent response of the spin displays a sharp minimum or maximum as a function of frequency, depending on which state was initially occupied. We find the spectral shape of the response dips/peaks. We also study the stationary response for zero and finite temperatures. The response changes dramatically with increasing temperature, when excited states become occupied even in the absence of radiation. The change is due primarily to the increasing role of single-photon resonances between excited states, which occur at the same frequencies as multiphoton resonances. Single-photon resonances are broad, because the single-photon Rabi frequencies largely exceed the multi-photon ones. This allows us to separate different resonances and to study their spectral shape. We also study the change of the spectrum due to relaxational broadening of the peaks, with account taken of both decay and phase modulation.

  13. Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle

    PubMed Central

    Van Teeffelen, Jurgen W G E; Segal, Steven S

    2000-01-01

    The effect of motor unit recruitment on functional vasodilatation was investigated in hamster retractor muscle. Recruitment (i.e. peak tension) was controlled with voltage applied to the spinal accessory nerve (high = maximum tension; intermediate = ∼50% maximum; low = ∼25% maximum). Vasodilatory responses (diameter × time integral, DTI) to rhythmic contractions (1 per 2 s for 65 s) were evaluated in first, second and third orderarterioles and in feed arteries. Reciprocal changes in duty cycle (range, 2·5–25 %) effectively maintained the total active tension (tension × time integral, TTI) constant across recruitment levels. With constant TTI and stimulation frequency (40 Hz), DTI in all vessels increased with motor unit recruitment. DTI increased from distal arterioles up through proximal feed arteries. To determine whether the effect of recruitment on DTI was due to increased peak tension, the latter was controlled with stimulation frequency (15, 20 and 40 Hz) during maximum (high) recruitment. With constant TTI, DTI then decreased as peak tension increased. To explore the interaction between recruitment and duty cycle on DTI, each recruitment level was applied at 2.5, 10 and 20 % duty cycle (at 40 Hz). For a given increase in TTI, recruitment had a greater effect on DTI than did duty cycle. Functional vasodilatation in response to rhythmic contractions is facilitated by motor unit recruitment. Thus, vasodilatory responses are determined not only by the total tension produced, but also by the number of active motor units. PMID:10747197

  14. Input-output characterization of an ultrasonic testing system by digital signal analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.

    1986-01-01

    Ultrasonic test system input-output characteristics were investigated by directly coupling the transmitting and receiving transducers face to face without a test specimen. Some of the fundamentals of digital signal processing were summarized. Input and output signals were digitized by using a digital oscilloscope, and the digitized data were processed in a microcomputer by using digital signal-processing techniques. The continuous-time test system was modeled as a discrete-time, linear, shift-invariant system. In estimating the unit-sample response and frequency response of the discrete-time system, it was necessary to use digital filtering to remove low-amplitude noise, which interfered with deconvolution calculations. A digital bandpass filter constructed with the assistance of a Blackman window and a rectangular time window were used. Approximations of the impulse response and the frequency response of the continuous-time test system were obtained by linearly interpolating the defining points of the unit-sample response and the frequency response of the discrete-time system. The test system behaved as a linear-phase bandpass filter in the frequency range 0.6 to 2.3 MHz. These frequencies were selected in accordance with the criterion that they were 6 dB below the maximum peak of the amplitude of the frequency response. The output of the system to various inputs was predicted and the results were compared with the corresponding measurements on the system.

  15. Vibration characteristics of bone conducted sound in vitro.

    PubMed

    Stenfelt, S; Håkansson, B; Tjellström, A

    2000-01-01

    A dry skull added with damping material was used to investigate the vibratory pattern of bone conducted sound. Three orthogonal vibration responses of the cochleae were measured, by means of miniature accelerometers, in the frequency range 0.1-10 kHz. The exciter was attached to the temporal, parietal, and frontal bones, one at the time. In the transmission response to the ipsilateral cochlea, a profound low frequency antiresonance (attenuation) was found, verified psycho-acoustically, and shown to yield a distinct lateralization effect. It was also shown that, for the ipsilateral side, the direction of excitation coincides with that of maximum response. At the contralateral cochlea, no such dominating response direction was found for frequencies above the first skull resonance. An overall higher response level was achieved, for the total energy transmission in general and specifically for the direction of excitation, at the ipsilateral cochlea when the transducer was attached to the excitation point closest to the cochlea. The transranial attenuation was found to be frequency dependent, with values from -5 to 10 dB for the energy transmission and -30 to 40 dB for measurements in a single direction, with a tendency toward higher attenuation at the higher frequencies.

  16. Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2016-01-01

    This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240

  17. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, themore » energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.« less

  18. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.

  19. Characteristics of Physical Training Activities of West Coast U.S. Navy Sea-Air-Land Personnel (SEALS)

    DTIC Science & Technology

    1992-11-01

    REPETITIONS, OR LOADS VARY. USE TIHE AVERAGE FOR YOUR RESPONSE TO THIESE QUESTIONS Body Weight: _ pounds I Repetition Average Exercise Maximum Sets...Sea, Air, Land (SEAL) personnel undergoing advanced training. Responses to this questionnaire provided information on the types, frequencies, and...their responses were used to characterize training activity according to the American College of Sports Medicine guidelines for maintenance of aerobic

  20. High-frequency magnetodielectric response in yttrium iron garnet at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming

    2018-05-01

    Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.

  1. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    NASA Astrophysics Data System (ADS)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC) simulation. The MC simulation identifies combinations of the PR and decays that can meet the SRS requirement at each band center frequency. Decomposed input time histories are produced by summing the converged damped sinusoids with the MC simulation of the phase lag distribution.

  2. Predictors of early change in bulimia nervosa after a brief psychoeducational therapy.

    PubMed

    Fernàndez-Aranda, Fernando; Álvarez-Moya, Eva M; Martínez-Viana, Cristina; Sànchez, Isabel; Granero, Roser; Penelo, Eva; Forcano, Laura; Peñas-Lledó, Eva

    2009-06-01

    We aimed to examine baseline predictors of treatment response in bulimic patients. 241 seeking-treatment females with bulimia nervosa completed an exhaustive assessment and were referred to a six-session psychoeducational group. Regression analyses of treatment response were performed. Childhood obesity, lower frequency of eating symptomatology, lower body mass index, older age, and lower family's and patient's concern about the disorder were predictors of poor abstinence. Suicidal ideation, alcohol abuse, higher maximum BMI, higher novelty seeking and lower baseline purging frequency predicted dropouts. Predictors of early symptom changes and dropouts were similar to those identified in longer CBT interventions.

  3. Flattop wideband wavelength converters based on cascaded sum and difference-frequency generation using step-chirped gratings

    NASA Astrophysics Data System (ADS)

    Tehranchi, Amirhossein; Kashyap, Raman

    2011-03-01

    We investigate the role of step-chirped gratings (SCG) for flattening of conversion efficiency response and enhancing the pump bandwidth in cascaded sum and difference frequency generation (SFG + DFG) with a large pump wavelength difference. To obtain a flat response with maximum efficiency, using SCG instead of uniform grating with the same length, the appropriate critical period shifts are presented for the reasonable number of sections and chirp steps feasible for fabrication. Furthermore, it is shown that adding the section numbers for SCG structure increases the pump bandwidth.

  4. Voluntary control of arm movement in athetotic patients

    PubMed Central

    Neilson, Peter D.

    1974-01-01

    Visual tracking tests have been employed to provide a quantitative description of voluntary control of arm movement in a group of patients suffering from athetoid cerebral palsy. Voluntary control was impaired in all patients in a characteristic manner. Maximum velocity and acceleration of arm movement were reduced to about 30-50% of their values in normal subjects and the time lag of the response to a visual stimulus was two or three times greater than in normals. Tracking transmission characteristics indicated a degree of underdamping which was not presnet in normal or spastic patients. This underdamping could be responsible for a low frequency (0·3-0·6 Hz) transient oscillation in elbow-angle movements associated with sudden voluntary movement. The maximum frequency at which patients could produce a coherent tracking response was only 50% of that in normal subjects and the relationship between the electromyogram and muscle contraction indicated that the mechanical load on the biceps muscle was abnormal, possibly due to increased stiffness of joint movement caused by involuntary activity in agonist and antagonist muscles acting across the joint. Images PMID:4362243

  5. Vibrational response and mechanical properties characterization of aluminium alloy 6061/Sic composite

    NASA Astrophysics Data System (ADS)

    Kumbhar, A. P.; Vyavahare, R. T.; Kulkarni, S. G.

    2018-05-01

    Aluminium alloy based metal matrix composites (AAMMC) are mainly used in sliding wear application, automobile, Aircraft and aerospace components, Marine fittings, Transport and other industry are becoming highly advantageous due to their excellent wear resistance, lighter weight, higher strength and durability. In this paper the effect of reinforcement percentage on vibration response and mechanical properties of metal matrix composite has been investigated. Composite material was prepared by varying Sic (0, 3, 6, and 9 wt. %) by stir casting method. Natural frequency, tensile strength, rockwell hardness and compressive strength were analyzed. The result shows that, addition of sic in aluminium matrix increases natural frequency, hardness, tensile strength, compressive strength and 9 wt. % showed maximum natural frequency, hardness, tensile strength, compressive strength.

  6. Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators.

    PubMed

    Sugimoto, N; Masuda, M; Hashiguchi, T

    2003-10-01

    Nonlinear cubic theory is developed to obtain a frequency response of shock-free, forced oscillations of an air column in a closed tube with an array of Helmholtz resonators connected axially. The column is assumed to be driven by a plane piston sinusoidally at a frequency close or equal to the lowest resonance frequency with its maximum displacement fixed. By applying the method of multiple scales, the equation for temporal modulation of a complex pressure amplitude of the lowest mode is derived in a case that a typical acoustic Mach number is comparable with the one-third power of the piston Mach number, while the relative detuning of a frequency is comparable with the quadratic order of the acoustic Mach number. The steady-state solution gives the asymmetric frequency response curve with bending (skew) due to nonlinear frequency upshift in addition to the linear downshift. Validity of the theory is checked against the frequency response obtained experimentally. For high amplitude of oscillations, an effect of jet loss at the throat of the resonator is taken into account, which introduces the quadratic loss to suppress the peak amplitude. It is revealed that as far as the present check is concerned, the weakly nonlinear theory can give quantitatively adequate description up to the pressure amplitude of about 3% to the equilibrium pressure.

  7. Influence of the oscillation frequency of different side-to-side toothbrushes on noncontact biofilm removal.

    PubMed

    Schmidt, Julia C; Astasov-Frauenhoffer, Monika; Waltimo, Tuomas; Weiger, Roland; Walter, Clemens

    2018-01-22

    The objective of this study was to investigate the influence of different oscillation frequencies of three powered toothbrushes with side-to-side action for noncontact biofilm removal in an artificial interdental space model. A three-species biofilm (Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus sanguinis) was formed in vitro on protein-coated titanium disks using a flow chamber system combined with a static biofilm growth model. The oscillation frequencies of three commercial side-to-side toothbrushes were evaluated by means of a dose response. The frequency was decreased in steps (100, 85, 70, 55, and 40%). Subsequently, the biofilm-coated substrates were exposed to the side-to-side toothbrushes. The biofilm volumes were measured using volumetric analyses (Imaris 8.1.2) with confocal laser scanning microscope images (Zeiss LSM700). Compared to maximum oscillation frequency (100%), lower oscillation frequencies (up to 40%) resulted in reduced median percentages of biofilm reduction (median biofilm reduction up to 53% for maximum oscillation frequency, and up to 13% for 40% oscillation frequency) (p ≥ 0.03). In addition, decreasing the oscillation frequencies of the side-to-side toothbrushes showed an enhanced variety in the results of repeated experiments. The oscillation frequency of the tested side-to-side toothbrushes affected the biofilm reduction in an interdental space model. Within a toothbrush, higher oscillation frequencies may lead to beneficial effects on interdental biofilm removal by noncontact brushing.

  8. Implicit learning and emotional responses in nine-month-old infants.

    PubMed

    Angulo-Barroso, Rosa M; Peciña, Susana; Lin, Xu; Li, Mingyan; Sturza, Julia; Shao, Jie; Lozoff, Betsy

    2017-08-01

    To study the interplay between motor learning and emotional responses of young infants, we developed a contingent learning paradigm that included two related, difficult, operant tasks. We also coded facial expression to characterise emotional response to learning. In a sample of nine-month-old healthy Chinese infants, 44.7% achieved learning threshold during this challenging arm-conditioning test. Some evidence of learning was observed at the beginning of the second task. The lowest period of negative emotions coincided with the period of maximum movement responses after the initiation of the second task, and movement responses negatively correlated with the frequency of negative emotions. Positive emotions, while generally low throughout the task, increased during peak performance especially for learners. Peak frequency of movement responses was positively correlated with the frequency of positive emotions. Despite the weak evidence of learning this difficult task, our results from the learners would suggest that increasing positive emotions, and perhaps down-regulating negative emotional responses, may be important for improving performance and learning a complex operant task in infancy. Further studies are necessary to determine the role of emotions in learning difficult tasks in infancy.

  9. Maximum-likelihood block detection of noncoherent continuous phase modulation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1993-01-01

    This paper examines maximum-likelihood block detection of uncoded full response CPM over an additive white Gaussian noise (AWGN) channel. Both the maximum-likelihood metrics and the bit error probability performances of the associated detection algorithms are considered. The special and popular case of minimum-shift-keying (MSK) corresponding to h = 0.5 and constant amplitude frequency pulse is treated separately. The many new receiver structures that result from this investigation can be compared to the traditional ones that have been used in the past both from the standpoint of simplicity of implementation and optimality of performance.

  10. Analysis of the time-varying energy of brain responses to an oddball paradigm using short-term smoothed Wigner-Ville distribution.

    PubMed

    Tağluk, M E; Cakmak, E D; Karakaş, S

    2005-04-30

    Cognitive brain responses to external stimuli, as measured by event related potentials (ERPs), have been analyzed from a variety of perspectives to investigate brain dynamics. Here, the brain responses of healthy subjects to auditory oddball paradigms, standard and deviant stimuli, recorded on an Fz electrode site were studied using a short-term version of the smoothed Wigner-Ville distribution (STSW) method. A smoothing kernel was designed to preserve the auto energy of the signal with maximum time and frequency resolutions. Analysis was conducted mainly on the time-frequency distributions (TFDs) of sweeps recorded during successive trials including the TFD of averaged single sweeps as the evoked time-frequency (ETF) brain response and the average of TFDs of single sweeps as the time-frequency (TF) brain response. Also the power entropy and the phase angles of the signal at frequency f and time t locked to the stimulus onset were studied across single trials as the TF power-locked and the TF phase-locked brain responses, respectively. TFDs represented in this way demonstrated the ERP spectro-temporal characteristics from multiple perspectives. The time-varying energy of the individual components manifested interesting TF structures in the form of amplitude modulated (AM) and frequency modulated (FM) energy bursts. The TF power-locked and phase-locked brain responses provoked ERP energies in a manner modulated by cognitive functions, an observation requiring further investigation. These results may lead to a better understanding of integrative brain dynamics.

  11. Low frequency dove coos vary across noise gradients in an urbanized environment.

    PubMed

    Guo, Fengyi; Bonebrake, Timothy C; Dingle, Caroline

    2016-08-01

    Urbanization poses a challenge to bird communication due to signal masking by ambient noise and reflective surfaces that lead to signal degradation. Bird species (especially oscines) have been shown to alter their singing behaviour to increase signal efficiency in highly urbanized environments. However, few studies on the effects of noise on song structure have included birds with low frequency vocal signals which may be especially vulnerable to noise pollution due to significant frequency overlap of their signals with traffic noise. We compared the perch coos of spotted doves (Streptopelia chinensis), a species with very low frequency vocalizations, in different background noise levels across urban and peri-urban areas in Hong Kong. We documented a 10% upward shift in the minimum frequency of coos of spotted doves across the noise gradient (a relatively small but significant shift), and a reduced maximum frequency in urban habitats with a higher density of built up area. Hong Kong doves had significantly higher minimum and maximum frequencies than doves from throughout their range (from mostly rural sites). Our results indicate that urban species with extremely low sound frequencies such as doves can alter their vocalizations in response to variable urban acoustic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Wavevector-Frequency Analysis with Applications to Acoustics

    DTIC Science & Technology

    1988-06-13

    Investigator W . A. Strawderman (code 213). The funding for this work was provided by the NUSC In-House Independent Research and Exploratory Development...Wavevector-Frequency .. Response of a Damped, Infinite Plate .. ........... .... 3-53 3-11 Locus of the Maximum Magnitude of G(k, w ) for a Damped, Infinite...Simply Supported Plate .4.... ....... 4-18 d.... i ii . .’ . • IW"’,,’ .’,j,,,.,,.+,,,’- ’- w " % - % ’N, ". ". % .% .’ w V

  13. Rectification of Atmospheric Intraseasonal Oscillations on Seasonal to Interannual Sea Surface Temperature in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Han, W.

    2010-12-01

    An ocean general circulation model (the Hybrid Coordinate Ocean Model, HYCOM) is used to examine the rectification of atmospheric intraseasonal oscillations (ISOs) on lower-frequency seasonal to interannual sea surface temperatures (SSTs) in the Indian Ocean (IO). Existing studies have shown that ISOs rectify on low-frequency equatorial surface currents, suggesting that they may also have important impacts on low-frequency SST variability. To evaluate these impacts, a hierarchy of experiments is run with HYCOM that isolates the ocean response to atmospheric forcing by 10-30 day (submonthly), 30-90 day (dominated by the Madden-Julian Oscillation), and 10-90 day (all ISO) events. Other experiments isolate the ocean response to a range of forcing processes including shortwave radiation, precipitation, and winds. Results indicate that ISOs have a non-negligible effect on the seasonal and annual cycles of SST in the Arabian Sea. The maximum seasonal SST variability in the Arabian Sea is 1.6°C, while the ISO-forced seasonal SST variability has a maximum of 0.4°C. Because SSTs in the Arabian Sea are already warm (>28°C), a change of 0.4°C can affect convection there. ISOs also have non-negligible effects on the seasonal variability of SST in the south- and west- equatorial IO. The ISO contribution to the seasonal cycle of mixed layer thickness (hmix) in the eastern equatorial IO has a maximum of 9m, while the total hmix seasonal cycle has a maximum of 14m. ISOs affect the hmix seasonal cycle by up to 10m in the Arabian Sea, where the total seasonal cycle has a maximum of 75m. Further work will seek to explain the causes of this observed rectification of ISOs on seasonal SST and mixed layer variability, and to extend our results to include interannual timescales.

  14. Frequency Support of PMSG-WTG Based on Improved Inertial Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z.; Wang, X.; Gao, W.

    2016-03-15

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point trackingmore » operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.« less

  15. Frequency Support of PMSG-WTG Based on Improved Inertial Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z.; Wang, X.; Gao, W.

    2016-11-14

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point trackingmore » operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.« less

  16. Capabilities of electrodynamic shakers when used for mechanical shock testing

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1973-01-01

    The results of a research task to investigate the capabilities of electrodynamic vibrators (shakers) to perform mechanical shock tests are presented. The simulation method employed was that of developing a transient whose shock response spectrum matched the desired shock response spectrum. Areas investigated included the maximum amplitude capabilities of the shaker systems, the ability to control the shape of the resultant shock response spectrum, the response levels induced at frequencies outside the controlled bandwidth, and the nonlinearities in structural response induced by a change in test level.

  17. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness.

    PubMed Central

    Li, Y; Goldbeter, A

    1989-01-01

    Cells often communicate by means of periodic signals, as exemplified by a large number of hormones and by the aggregation of Dictyostelium discoideum amebas in response to periodic pulses of cyclic AMP. Periodic signaling allows bypassing the phenomenon of desensitization brought about by constant stimuli. To gain further insight into the efficiency of pulsatile signaling, we analyze the effect of periodic stimulation on the dynamic behavior of a receptor system capable of desensitization toward its ligand. We first show that the receptor system adapts to square-wave stimuli, i.e., the response eventually reaches a steady, periodic pattern after a transient phase. By analyzing the dependence of the response on the characteristics of the square-wave stimulation, we show that there exist a waveform and a period of that signal that result in maximum responsiveness of the target system. Similar results are obtained when the signal takes the more realistic form of a periodically repeated stimulation followed by exponential decay of the ligand. The results are discussed with respect to the role of pulsatile secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus and of periodic signaling by cyclic AMP pulses in Dictyostelium. The analysis accounts for the existence, in both cases, of an optimal frequency and waveform of the periodic stimulus that correspond to maximum target cell responsiveness. PMID:2930817

  18. Analysis of a Van de Graaff Generator for EMP Direct Current Survivability Testing

    DTIC Science & Technology

    2013-03-01

    voltage source, VS , equals the voltage load, VL, as shown in the schematic of Figure 12. When impedance is matched, maximum power is transferred...maximum power is 42 transmitted, and VS =VL. The voltage drops shown in Table 7 are from the skin effect at frequencies above 1 MHz, as well... voltage . 46 3.1.6 Response to CVR Location The purpose of these experiments was to find the best cable and connector attachment that would

  19. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  20. Synchronization of unidirectionally coupled Mackey-Glass analog circuits with frequency bandwidth limitations.

    PubMed

    Kim, Min-Young; Sramek, Christopher; Uchida, Atsushi; Roy, Rajarshi

    2006-07-01

    Synchronization of chaotic systems has been studied extensively, and especially, the possible applications to the communication systems motivated many research areas. We demonstrate the effect of the frequency bandwidth limitations in the communication channel on the synchronization of two unidirectionally coupled Mackey-Glass (MG) analog circuits, both numerically and experimentally. MG system is known to generate high dimensional chaotic signals. The chaotic signal generated from the drive MG system is modified by a low pass filter and is then transmitted to the response MG system. Our results show that the inclusion of the dominant frequency component of the original drive signals is crucial to achieve synchronization between the drive and response circuits. The maximum cross correlation and the corresponding time shift reveal that the frequency-dependent coupling introduced by the low pass filtering effect in the communication channel change the quality of synchronization.

  1. Topographic aspects of photic driving in the electroencephalogram of children and adolescents.

    PubMed

    Lazarev, V V; Infantosi, A F C; Valencio-de-Campos, D; deAzevedo, L C

    2004-06-01

    The electroencephalogram amplitude spectra at 11 fixed frequencies of intermittent photic stimulation of 3 to 24 Hz were combined into driving "profiles" for 14 scalp points in 8 male and 7 female normal subjects aged 9 to 17 years. The driving response varied over frequency and was detected in 70 to 100% of cases in the occipital areas (maximum) and in 27 to 77% of cases in the frontal areas (minimum) using as a criterion peak amplitude 20% higher than those of the neighbors. Each subject responded, on average, to 9.7 +/- 1.15 intermittent photic stimulation frequencies in the right occipital area and to 6.8 +/- 1.97 frequencies in the right frontal area. Most of the driving responses (in relation to the previous background) were significant according to the spectral F-test (alpha = 0.05), which also detected changes in some cases of low amplitude responses not revealed by the peak criterion. The profiles had two maxima in the alpha and theta bands in all leads. The latter was not present in the background spectra in the posterior areas and was less pronounced in the anterior ones. The weight of the profile theta maximum increased towards the frontal areas where the two maxima were similar, while the profile amplitudes decreased. The profiles repeated the shape of the background spectra, except for the theta band. The interhemispheric correlation between profiles was high. The theta driving detected in all areas recorded suggests a generalized influence of the theta generators in prepubertal and pubertal subjects.

  2. Noise effect on performance of IR PVDF pyroelectric detector

    NASA Astrophysics Data System (ADS)

    Abdullah, K. Al; Batal, M. Anwar; Hamdan, Rawad; Khalil, Toni; Salame, Chafic

    2018-05-01

    The spin-casting and casting technology were used to make IR pyroelectric PVDF detectors, where the operational amplifier, TC75S63TU, is used to amplify pyroelectrical signal. The pyroelectric coefficient is measured by charge integration method, which is 23 µC/m2K. The voltage responsivity and noise equivalent power depending on the dielectric constant, specific conductivity and loss tangent, which are measured at various frequencies, is estimated where changing of detector capacitance and resistor with frequency is taken into account. Maximum voltage responsivity was for detector thickness d=116.05 µm at chopping frequency (f=0.8Hz). Influence of thermal, Johnson and amplifier noises on output voltage are studied. At frequencies (<1kHz), Johnson noise dominates whereas at frequencies (>1kHz), amplifier voltage noise dominates. The thinner detector, the lower noise affects on output voltage. The optimal signal to noise ratio (SNR) of pyroelectrical detector is for thickness d=30.1 µm at frequency f=20Hz. The reducing electrode area decreases slightly total noise at low frequency and enhances slightly SNR of pyroelectrical detector.

  3. JANNAF Lessons Learned Panel: Selected Saturn V History

    NASA Technical Reports Server (NTRS)

    Urquhart, Skip

    2010-01-01

    Pogo occurs when the natural frequency of a propellant feed line comes close to a readily excited rocket longitudinal structural vibration natural frequency. Maximum Pogo response corresponds to close tuning of the structural and hydraulic frequencies. On Saturn V, accelerations up to 17 g's (Zero To Peak) at the Launch Vehicle/Payload Interface and up to 34 g's at an Engine have been observed. Nicknamed Pogo because it causes the Rocket to stretch and compress like a Pogo stick. First recognized with the Titan II in 1962, Pogo remains a prime consideration in design of launch vehicles today

  4. Microearthquake spectra from the Anza, California, seismic network: site response and source scaling

    USGS Publications Warehouse

    Frankel, Arthur D.; Wennerberg, Leif

    1989-01-01

    We analyzed spectra of local microearthquakes recorded by the Anza, California, seismic network to isolate the effects of site response and to investigate the scaling of source parameters for small earthquakes. Spectra of microearthquakes (M < 2; Mo< 1019 dyne-cm) at Anza have shapes characteristic of the receiver sites and are generally independent of the source region. Thus, the site response is a major conditioner of the observed spectral shape. To remove the effects of site response from the spectra of a M ∼ 3 event and isolate its source spectrum, we divided by the spectra of an adjacent aftershock used as an empirical Green's function event. The spectral ratios indicate that the apparent corner frequencies of small earthquakes (Mo < 1019dyne-cm) observed at even the high-fmax stations on hard rock are much lower than the source corner frequencies. The spectral ratios are consistent with stress drop remaining constant with decreasing seismic moment, for events with moments as small as 1018 dyne-cm. The spectral ratios display remarkable agreement between sites which showed vast differences in their original spectra, indicating that the spectral division effectively removed the site response. The source spectrum of the M ∼ 3 event has a high-frequency spectral fall-off of about ω−2. An apparent dependence of high-frequency fall-off with seismic moment in the original spectra can also be explained by the effects of site response. The difference between the P- and S-wave corner frequencies and high-frequency roll-offs in the observed spectra for these events is the result of the site response and is not a source property. The shapes of the spectra of microearthquakes at Anza can largely be explained by attenuation at shallow depth with a frequency-independent Q. For some sites, near-surface resonances are also apparent in the spectra of microearthquakes. It is indicated by t* values determined for each site that Qp ∼ Qsfor the shallow low-Q layer. Further evidence of low near-surface Q is observed in the anomalous spectra of an unusually shallow earthquake (source depth ∼ 1 km) in the network. The spectra from this shallow event are depleted in high-frequency energy at most stations, relative to those of deeper events. This observation can be explained by a low-Q surficial zone. For stations of the network situated on alluvium, this low-Q layer has a maximum thickness of about 3 km and maximum P- and S-wave Q values of 30 to 50.

  5. Free-running waveform characterization using a delay-time tunable laser based delay-line-free electro-optic sampling oscilloscope

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru

    2002-12-01

    We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.

  6. Audiogram of a striped dolphin (Stenella coeruleoalba)

    NASA Astrophysics Data System (ADS)

    Kastelein, Ronald A.; Hagedoorn, Monique; Au, Whitlow W. L.; de Haan, Dick

    2003-02-01

    The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 13 oct). Maximum sensitivity (42 dB re 1 μPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.

  7. Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)

    2003-01-01

    A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.

  8. The effect of sampling rate and anti-aliasing filters on high-frequency response spectra

    USGS Publications Warehouse

    Boore, David M.; Goulet, Christine

    2013-01-01

    The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using linear time interpolation for the resamplin

  9. Evidence for an involvement of 5-hydroxytryptaminergic neurones in the maintenance of operant behaviour by positive reinforcement.

    PubMed

    Wogar, M A; Bradshaw, C M; Szabadi, E

    1991-01-01

    The possible involvement of the ascending 5-hydroxytryptaminergic (5HTergic) pathways in the maintenance of operant behaviour by positive reinforcement was examined using a quantitative paradigm based on Herrnstein's (1970) equation which defines a hyperbolic relationship between steady-state response rate and reinforcement frequency in variable-interval schedules. Nine rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei; 12 rats received sham injections. The rats were trained to steady-state in a series of variable-interval schedules of sucrose reinforcement affording a range of reinforcement frequencies. Herrnstein's equation was fitted to the data obtained from each rat and to the averaged data obtained from the two groups. The value of KH (the parameter expressing the reinforcement frequency needed to obtain the half-maximum response rate) was significantly lower in the lesioned group than in the control group; the values of Rmax (the parameter expressing the maximum response rate) did not differ significantly between the two groups. The levels of 5HT and 5-hydroxyindoleacetic acid in the parietal cortex, hippocampus, nucleus accumbens and hypothalamus were markedly reduced in all four regions in the lesioned group, but the levels of noradrenaline and dopamine were not significantly affected. The results indicate that damage to the central 5HTergic pathways resulted in an increase in the "value" of the sucrose reinforcer, without affecting the animals' response capacity. The results are consistent with the suggestion that the 5HTergic pathways may exert some limiting control on the "values" of certain reinforcers.

  10. Telemetry Standards

    DTIC Science & Technology

    1999-01-01

    fMr- ir ») 5<s © oo vo «o vo vo t- 3 -6 TABLE 3 - 3 . REFERENCE SIGNAL USAGE Reference Frequencies for Tape Speed and Flutter Compensation...maximum frequency response of tables 3 -1 and 3 -2, !K. M. Uglow, Noise and Bandwidth in FM/FM Radio Telemetry. IRE Transaction on Telemetry and...t4 u N s O i Q • I-H D-12 Bit Rate Clock Input ’ r if ir it if , IF RNRZ-L Data 1 2 3 15 - Stage Shift Register 13

  11. Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization

    DOE PAGES

    Yang, Dejian; Kang, Moses; Muljadi, Eduard; ...

    2017-11-14

    This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less

  12. Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dejian; Kang, Moses; Muljadi, Eduard

    This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less

  13. Improved inertial control for permanent magnet synchronous generator wind turbine generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziping; Gao, Wenzhong; Wang, Xiao

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response through the inherent kinetic energy stored in their rotating masses and fast power converter control. In this study, an improved inertial control method based on the maximum power point trackingmore » operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and alleviate the secondary frequency dip while imposing no negative impact on the major mechanical components of the wind turbine.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta

    As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events,more » including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).« less

  15. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing

    2018-05-01

    The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.

  16. Modeling lateral geniculate nucleus response with contrast gain control. Part 2: Analysis

    PubMed Central

    Cope, Davis; Blakeslee, Barbara; McCourt, Mark E.

    2014-01-01

    Cope, Blakeslee and McCourt (2013) proposed a class of models for LGN ON-cell behavior consisting of a linear response with divisive normalization by local stimulus contrast. Here we analyze a specific model with the linear response defined by a difference-of-Gaussians filter and a circular Gaussian for the gain pool weighting function. For sinusoidal grating stimuli, the parameter region for band-pass behavior of the linear response is determined, the gain control response is shown to act as a switch (changing from “off” to “on” with increasing spatial frequency), and it is shown that large gain pools stabilize the optimal spatial frequency of the total nonlinear response at a fixed value independent of contrast and stimulus magnitude. Under- and super-saturation as well as contrast saturation occur as typical effects of stimulus magnitude. For circular spot stimuli, it is shown that large gain pools stabilize the spot size that yields the maximum response. PMID:24562034

  17. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Responses of Middle-Frequency Modulations in Vocal Fundamental Frequency to Different Vocal Intensities and Auditory Feedback.

    PubMed

    Lee, Shao-Hsuan; Fang, Tuan-Jen; Yu, Jen-Fang; Lee, Guo-She

    2017-09-01

    Auditory feedback can make reflexive responses on sustained vocalizations. Among them, the middle-frequency power of F0 (MFP) may provide a sensitive index to access the subtle changes in different auditory feedback conditions. Phonatory airflow temperature was obtained from 20 healthy adults at two vocal intensity ranges under four auditory feedback conditions: (1) natural auditory feedback (NO); (2) binaural speech noise masking (SN); (3) bone-conducted feedback of self-generated voice (BAF); and (4) SN and BAF simultaneously. The modulations of F0 in low-frequency (0.2 Hz-3 Hz), middle-frequency (3 Hz-8 Hz), and high-frequency (8 Hz-25 Hz) bands were acquired using power spectral analysis of F0. Acoustic and aerodynamic analyses were used to acquire vocal intensity, maximum phonation time (MPT), phonatory airflow, and MFP-based vocal efficiency (MBVE). SN and high vocal intensity decreased MFP and raised MBVE and MPT significantly. BAF showed no effect on MFP but significantly lowered MBVE. Moreover, BAF significantly increased the perception of voice feedback and the sensation of vocal effort. Altered auditory feedback significantly changed the middle-frequency modulations of F0. MFP and MBVE could well detect these subtle responses of audio-vocal feedback. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  19. Presence of strong harmonics during visual entrainment: a magnetoencephalography study.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2012-09-01

    Visual neurons are known to synchronize their firing with stimuli that flicker at a constant rate (e.g. 12Hz). These so-called visual steady-state responses (VSSR) are a well-studied phenomenon, yet the underlying mechanisms are widely disagreed upon. Furthermore, there is limited evidence that visual neurons may simultaneously synchronize at harmonics of the stimulation frequency. We utilized magnetoencephalography (MEG) to examine synchronization at harmonics of the visual stimulation frequency (18Hz). MEG data were analyzed for event-related-synchronization (ERS) at the fundamental frequency, 36, 54, and 72Hz. We found strong ERS in all bands. Only 31% of participants showed maximum entrainment at the fundamental; others showed stronger entrainment at either 36 or 54Hz. The cortical foci of these responses indicated that the harmonics involved cortices that were partially distinct from the fundamental. These findings suggest that spatially-overlapping subpopulations of neurons are simultaneously entrained at different harmonics of the stimulus frequency. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE PUSH-PULL MECHANISM IN THE ORGAN OF CORTI.

    PubMed

    Yoon, Yongjin; Puria, Sunil; Steele, Charles R

    2009-09-05

    In our previous work, the basilar membrane velocity V(BM) for a gerbil cochlea was calculated and compared with physiological measurements. The calculated V(BM) showed excessive phase excursion and, in the active case, a best-frequency place shift of approximately two fifths of an octave higher. Here we introduce a refined model that uses the time-averaged Lagrangian for the conservative system to resolve the phase excursion issues. To improve the overestimated best-frequency place found in the previous feed-forward active model, we implement in the new model a push-pull mechanism from the outer hair cells and phalangeal process. Using this new model, the V(BM) for the gerbil cochlea was calculated and compared with animal measurements, The results show excellent agreement for mapping the location of the maximum response to frequency, while the agreement for the response at a fixed point as a function of frequency is excellent for the amplitude and good for the phase.

  1. A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE PUSH-PULL MECHANISM IN THE ORGAN OF CORTI

    PubMed Central

    YOON, YONGJIN; PURIA, SUNIL; STEELE, CHARLES R.

    2010-01-01

    In our previous work, the basilar membrane velocity VBM for a gerbil cochlea was calculated and compared with physiological measurements. The calculated VBM showed excessive phase excursion and, in the active case, a best-frequency place shift of approximately two fifths of an octave higher. Here we introduce a refined model that uses the time-averaged Lagrangian for the conservative system to resolve the phase excursion issues. To improve the overestimated best-frequency place found in the previous feed-forward active model, we implement in the new model a push-pull mechanism from the outer hair cells and phalangeal process. Using this new model, the VBM for the gerbil cochlea was calculated and compared with animal measurements, The results show excellent agreement for mapping the location of the maximum response to frequency, while the agreement for the response at a fixed point as a function of frequency is excellent for the amplitude and good for the phase. PMID:20485540

  2. Variable frequency iteration MPPT for resonant power converters

    DOEpatents

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  3. Effect of substrate bending on the piezoelectric measurement of PZT thin film

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Tang, Jianhong; He, Liangna

    2009-05-01

    Bonding conditions between PZT thin film and sample holder greatly affect the strain measurement of the PZT sample. The influence of various bonding conditions on the measured displacement were analyzed using finite element analysis (FEA). One-end fixed sample induces the maximum bending displacement. Experiments were performed on sol-gel derived PZT thin film. The voltage-displacement curve and "butterfly" loop were measured using laser Doppler method with phase detection. Experimental results agreed well with the simulated ones. The measured frequency dependence of piezoelectric response of PZT thin film indicated that, if the operating frequency was lower than 2 kHz, good bonding effect could be obtained when the entire back surface of the sample was glued to a rigid supporter using epoxy resin. A simple bonding model which considered the adhesives as a spring was used to estimate the frequency response of PZT thin film sample.

  4. A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters

    NASA Astrophysics Data System (ADS)

    De Geeter, N.; Crevecoeur, G.; Dupré, L.; Van Hecke, W.; Leemans, A.

    2012-04-01

    Accurate simulations on detailed realistic head models are necessary to gain a better understanding of the response to transcranial magnetic stimulation (TMS). Hitherto, head models with simplified geometries and constant isotropic material properties are often used, whereas some biological tissues have anisotropic characteristics which vary naturally with frequency. Moreover, most computational methods do not take the tissue permittivity into account. Therefore, we calculate the electromagnetic behaviour due to TMS in a head model with realistic geometry and where realistic dispersive anisotropic tissue properties are incorporated, based on T1-weighted and diffusion-weighted magnetic resonance images. This paper studies the impact of tissue anisotropy, permittivity and frequency dependence, using the anisotropic independent impedance method. The results show that anisotropy yields differences up to 32% and 19% of the maximum induced currents and electric field, respectively. Neglecting the permittivity values leads to a decrease of about 72% and 24% of the maximum currents and field, respectively. Implementing the dispersive effects of biological tissues results in a difference of 6% of the maximum currents. The cerebral voxels show limited sensitivity of the induced electric field to changes in conductivity and permittivity, whereas the field varies approximately linearly with frequency. These findings illustrate the importance of including each of the above parameters in the model and confirm the need for accuracy in the applied patient-specific method, which can be used in computer-assisted TMS.

  5. A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sameallah, S.; Legrand, V.; Saint-Sulpice, L.; Kadkhodaei, M.; Arbab Chirani, S.

    2015-02-01

    Stabilized dissipated energy is an effective parameter on the fatigue life of shape memory alloys (SMAs). In this study, a formula is proposed to directly evaluate the stabilized dissipated energy for different values of the maximum and minimum applied stresses, as well as the loading frequency, under cyclic tensile loadings. To this aim, a one-dimensional fully coupled thermomechanical constitutive model and a cycle-dependent phase diagram are employed to predict the uniaxial stress-strain response of an SMA in a specified cycle, including the stabilized one, with no need of obtaining the responses of the previous cycles. An enhanced phase diagram in which different slopes are defined for the start and finish of a backward transformation strip is also proposed to enable the capture of gradual transformations in a CuAlBe shape memory alloy. It is shown that the present approach is capable of reproducing the experimental responses of CuAlBe specimens under cyclic tensile loadings. An explicit formula is further presented to predict the fatigue life of CuAlBe as a function of the maximum and minimum applied stresses as well as the loading frequency. Fatigue tests are also carried out, and this formula is verified against the empirically predicted number of cycles for failure.

  6. Use of piezoelectric foil for flow diagnostics

    NASA Technical Reports Server (NTRS)

    Carraway, Debra L.; Bertelrud, Arild

    1989-01-01

    A laboratory investigation was conducted to characterize two piezoelectric-film sensor configurations, a rigidly mounted sensor and a sensor mounted over an air cavity. The sensors are evaluated for sensitivity and frequency response, and methods to optimize data are presented. The cavity-mounted sensor exhibited a superior frequency response and was more sensitive to normal pressure fluctuations and less sensitive to vibrations through the structure. Both configurations were sensitive to large-scale structural vibrations. Flight-test data are shown for cavity-mounted sensors, illustrating practical aspects to consider when designing sensors for application in such harsh environments. The relation of the data to skin friction and maximum shear stress, transition detection, and turbulent viscous layers is derived through analysis of the flight data.

  7. Dynamic memory of a single voltage-gated potassium ion channel: A stochastic nonequilibrium thermodynamic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Kinshuk, E-mail: kbpchem@gmail.com

    2015-05-14

    In this work, we have studied the stochastic response of a single voltage-gated potassium ion channel to a periodic external voltage that keeps the system out-of-equilibrium. The system exhibits memory, resulting from time-dependent driving, that is reflected in terms of dynamic hysteresis in the current-voltage characteristics. The hysteresis loop area has a maximum at some intermediate voltage frequency and disappears in the limits of low and high frequencies. However, the (average) dissipation at long-time limit increases and finally goes to saturation with rising frequency. This raises the question: how diminishing hysteresis can be associated with growing dissipation? To answer this,more » we have studied the nonequilibrium thermodynamics of the system and analyzed different thermodynamic functions which also exhibit hysteresis. Interestingly, by applying a temporal symmetry analysis in the high-frequency limit, we have analytically shown that hysteresis in some of the periodic responses of the system does not vanish. On the contrary, the rates of free energy and internal energy change of the system as well as the rate of dissipative work done on the system show growing hysteresis with frequency. Hence, although the current-voltage hysteresis disappears in the high-frequency limit, the memory of the ion channel is manifested through its specific nonequilibrium thermodynamic responses.« less

  8. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  9. Dynamic properties of symmetric optothermal microactuator

    NASA Astrophysics Data System (ADS)

    You, Q. Y.; Zhang, H. J.; Wang, Y. D.; Chen, J. J.

    2017-10-01

    This paper proposes a method of a symmetric optothermal microactuator (S-OTMA) directly driven by laser pulse. Based on the principle of thermal flux, a dynamic model is established describing the laser-induced optothermal temperature rise and optothermal expansion of the S-OTMA’s expansion arm. The dynamic optothermal expansion and the relationship between the expansion amplitude and laser pulse frequency are simulated, indicating that the expansion arm expands and reverts periodically with the same frequency of the laser pulse, and that the expansion amplitude decreases with the increase of laser pulse frequency. Experiments have been further conducted on a micro-fabricated S-OTMA under a laser pulse of 3.3 mW power and 2-18 Hz frequency. It is shown that the S-OTMA can periodically deflect in accordance with the same frequency of the laser pulse, with a maximum response frequency of at least 18 Hz. The maximum deflection (vibration) amplitude is measured to be 13.7 µm (at 2 Hz), and the amplitude decreases as the frequency increases. Both the theoretical model and experiments prove that the S-OTMA is capable of implementing direct laser-controlled microactuation in which only ~3 mW laser power is demanded. Furthermore, bi-directional actuation of the optothermal microactuator (such as S-OTMA) can be easily achieved by alternately irradiating either arm of the microactuator. This work may broaden the applications of the S-OTMA, as well as optothermal microactuators in MEMS/MOEMS and micro/nano-technology.

  10. Communication methods, systems, apparatus, and devices involving RF tag registration

    DOEpatents

    Burghard, Brion J [W. Richland, WA; Skorpik, James R [Kennewick, WA

    2008-04-22

    One technique of the present invention includes a number of Radio Frequency (RF) tags that each have a different identifier. Information is broadcast to the tags from an RF tag interrogator. This information corresponds to a maximum quantity of tag response time slots that are available. This maximum quantity may be less than the total number of tags. The tags each select one of the time slots as a function of the information and a random number provided by each respective tag. The different identifiers are transmitted to the interrogator from at least a subset of the RF tags.

  11. Modeling of classical swirl injector dynamics

    NASA Astrophysics Data System (ADS)

    Ismailov, Maksud M.

    The knowledge of the dynamics of a swirl injector is crucial in designing a stable liquid rocket engine. Since the swirl injector is a complex fluid flow device in itself, not much work has been conducted to describe its dynamics either analytically or by using computational fluid dynamics techniques. Even the experimental observation is limited up to date. Thus far, there exists an analytical linear theory by Bazarov [1], which is based on long-wave disturbances traveling on the free surface of the injector core. This theory does not account for variation of the nozzle reflection coefficient as a function of disturbance frequency, and yields a response function which is strongly dependent on the so called artificial viscosity factor. This causes an uncertainty in designing an injector for the given operational combustion instability frequencies in the rocket engine. In this work, the author has studied alternative techniques to describe the swirl injector response, both analytically and computationally. In the analytical part, by using the linear small perturbation analysis, the entire phenomenon of unsteady flow in swirl injectors is dissected into fundamental components, which are the phenomena of disturbance wave refraction and reflection, and vortex chamber resonance. This reveals the nature of flow instability and the driving factors leading to maximum injector response. In the computational part, by employing the nonlinear boundary element method (BEM), the author sets the boundary conditions such that they closely simulate those in the analytical part. The simulation results then show distinct peak responses at frequencies that are coincident with those resonant frequencies predicted in the analytical part. Moreover, a cold flow test of the injector related to this study also shows a clear growth of instability with its maximum amplitude at the first fundamental frequency predicted both by analytical methods and BEM. It shall be noted however that Bazarov's theory does not predict the resonant peaks. Overall this methodology provides clearer understanding of the injector dynamics compared to Bazarov's. Even though the exact value of response is not possible to obtain at this stage of theoretical, computational, and experimental investigation, this methodology sets the starting point from where the theoretical description of reflection/refraction, resonance, and their interaction between each other may be refined to higher order to obtain its more precise value.

  12. Non-synchronous control of self-oscillating resonant converters

    DOEpatents

    Glaser, John Stanley; Zane, Regan Andrew

    2002-01-01

    A self-oscillating switching power converter has a controllable reactance including an active device connected to a reactive element, wherein the effective reactance of the reactance and the active device is controlled such that the control waveform for the active device is binary digital and is not synchronized with the switching converter output frequency. The active device is turned completely on and off at a frequency that is substantially greater than the maximum frequency imposed on the output terminals of the active device. The effect is to vary the average resistance across the active device output terminals, and thus the effective output reactance, thereby providing converter output control, while maintaining the response speed of the converter.

  13. Exposure system to study hypotheses of ELF and RF electromagnetic field interactions of mobile phones with the central nervous system.

    PubMed

    Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels

    2012-09-01

    A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD). Copyright © 2012 Wiley Periodicals, Inc.

  14. An approximation function for frequency constrained structural optimization

    NASA Technical Reports Server (NTRS)

    Canfield, R. A.

    1989-01-01

    The purpose is to examine a function for approximating natural frequency constraints during structural optimization. The nonlinearity of frequencies has posed a barrier to constructing approximations for frequency constraints of high enough quality to facilitate efficient solutions. A new function to represent frequency constraints, called the Rayleigh Quotient Approximation (RQA), is presented. Its ability to represent the actual frequency constraint results in stable convergence with effectively no move limits. The objective of the optimization problem is to minimize structural weight subject to some minimum (or maximum) allowable frequency and perhaps subject to other constraints such as stress, displacement, and gage size, as well. A reason for constraining natural frequencies during design might be to avoid potential resonant frequencies due to machinery or actuators on the structure. Another reason might be to satisy requirements of an aircraft or spacecraft's control law. Whatever the structure supports may be sensitive to a frequency band that must be avoided. Any of these situations or others may require the designer to insure the satisfaction of frequency constraints. A further motivation for considering accurate approximations of natural frequencies is that they are fundamental to dynamic response constraints.

  15. 47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...

  16. 47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...

  17. 47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...

  18. 47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...

  19. Biodynamic response at the palm of the human hand subjected to a random vibration.

    PubMed

    Dong, Ren G; McDowell, Thomas W; Welcome, Daniel E

    2005-01-01

    This study investigated the biodynamic response (BR) distributed at the palm of the hand subjected to a random vibration. Twelve male subjects were used in the experiment. Each subject applied three coupling actions (grip-only, push-only, and combined grip and push) on a simulated tool handle at three different levels (50, 75, and 100 N) of palm force. This study found that the hand-arm system resonated mostly in the frequency range of 20 to 50 Hz, depending on the specific test treatment and individual characteristics. The maximum vibration power transmission through the palm occurred at the resonant frequency. Increasing the effective palm force generally increased the BR magnitude and resonant frequency. The apparent stiffness measured at the middle frequencies (80-100 Hz) is correlated to the BR in almost the entire frequency range (20-1,000 Hz). Under the same palm force, the push-only action corresponded to the highest BR values while the grip-only action generally produced the lowest values. Since the resonant frequency range matches the dominant vibration frequency range of many percussive tools, it is anticipated that the palm BR and vibration power transmission may have an association with vibration-induced injuries or disorders in the wrist-arm system among the workers using these tools.

  20. Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters

    NASA Astrophysics Data System (ADS)

    Kim, T.; Kim, Y. S.

    2017-12-01

    The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results show that probabilistic daily snowfall depth by frequency analysis is decreased at most stations, and most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics. Acknowledgment.This research was supported by a grant(MPSS-NH-2015-79) from Disaster Prediction and Mitigation Technology Development Program funded by Korean Ministry of Public Safety and Security(MPSS).

  1. Nonlinear response in runoff magnitude to fluctuating rain patterns.

    PubMed

    Curtu, R; Fonley, M

    2015-03-01

    The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.

  2. Electrostatic Graphene Loudspeaker

    DTIC Science & Technology

    2013-06-01

    millennia, with classic examples being drum- heads and whistles for long-range communications and entertainment .4 In modern society, efficient small...harmonic oscilla- tor. Unlike most insect or musical instrument resonators which exhibit lightly damped sharp frequency response, a wide-band audio...sound signal is introduced from a signal generator or from a commercial laptop or digital music player. The maximum amplitude of the input signal Vin

  3. Phase-sensitive reflection technique for characterization of a fabry-perot interferometer.

    PubMed

    Slagmolen, B J; Gray, M B; Baigent, K G; McClelland, D E

    2000-07-20

    Using a radio frequency coherent modulation and demodulation technique, we explicitly measure both the amplitude and the phase response of Fabry-Perot interferometers in reflection. This allows us to differentiate clearly between overcoupled and undercoupled cavities and allows a detailed measurement of the full width at half-maximum, the free spectral range, and the finesse of the cavities.

  4. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  5. Steady-state MEG responses elicited by a sequence of amplitude-modulated short tones of different carrier frequencies.

    PubMed

    Kuriki, Shinya; Kobayashi, Yusuke; Kobayashi, Takanari; Tanaka, Keita; Uchikawa, Yoshinori

    2013-02-01

    The auditory steady-state response (ASSR) is a weak potential or magnetic response elicited by periodic acoustic stimuli with a maximum response at about a 40-Hz periodicity. In most previous studies using amplitude-modulated (AM) tones of stimulus sound, long lasting tones of more than 10 s in length were used. However, characteristics of the ASSR elicited by short AM tones have remained unclear. In this study, we examined magnetoencephalographic (MEG) ASSR using a sequence of sinusoidal AM tones of 0.78 s in length with various tone frequencies of 440-990 Hz in about one octave variation. It was found that the amplitude of the ASSR was invariant with tone frequencies when the level of sound pressure was adjusted along an equal-loudness curve. The amplitude also did not depend on the existence of preceding tone or difference in frequency of the preceding tone. When the sound level of AM tones was changed with tone frequencies in the same range of 440-990 Hz, the amplitude of ASSR varied in a proportional manner to the sound level. These characteristics are favorable for the use of ASSR in studying temporal processing of auditory information in the auditory cortex. The lack of adaptation in the ASSR elicited by a sequence of short tones may be ascribed to the neural activity of widely accepted generator of magnetic ASSR in the primary auditory cortex. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Self-Paced Exercise, Affective Response, and Exercise Adherence: A Preliminary Investigation Using Ecological Momentary Assessment.

    PubMed

    Williams, David M; Dunsiger, Shira; Emerson, Jessica A; Gwaltney, Chad J; Monti, Peter M; Miranda, Robert

    2016-06-01

    Affective response to exercise may mediate the effects of self-paced exercise on exercise adherence. Fiftynine low-active (exercise <60 min/week), overweight (body mass index: 25.0-39.9) adults (ages 18-65) were randomly assigned to self-paced (but not to exceed 76% maximum heart rate) or prescribed moderate intensity exercise (64-76% maximum heart rate) in the context of otherwise identical 6-month print-based exercise promotion programs. Frequency and duration of exercise sessions and affective responses (good/bad) to exercise were assessed via ecological momentary assessment throughout the 6-month program. A regression-based mediation model was used to estimate (a) effects of experimental condition on affective response to exercise (path a = 0.20, SE = 0.28, f 2 = 0.02); (b) effects of affective response on duration/latency of the next exercise session (path b = 0.47, SE = 0.25, f 2 = 0.04); and (c) indirect effects of experimental condition on exercise outcomes via affective response (path ab = 0.11, SE = 0.06, f 2 = 0.10). Results provide modest preliminary support for a mediational pathway linking self-paced exercise, affective response, and exercise adherence.

  7. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  8. Improvement of analytical dynamic models using modal test data

    NASA Technical Reports Server (NTRS)

    Berman, A.; Wei, F. S.; Rao, K. V.

    1980-01-01

    A method developed to determine maximum changes in analytical mass and stiffness matrices to make them consistent with a set of measured normal modes and natural frequencies is presented. The corrected model will be an improved base for studies of physical changes, boundary condition changes, and for prediction of forced responses. The method features efficient procedures not requiring solutions of the eigenvalue problem, and the ability to have more degrees of freedom than the test data. In addition, modal displacements are obtained for all analytical degrees of freedom, and the frequency dependence of the coordinate transformations is properly treated.

  9. Dynamic response of a riser under excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Lou, Min; Yu, Chenglong; Chen, Peng

    2015-12-01

    In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.

  10. Damage assessment of RC buildings subjected to the different strong motion duration

    NASA Astrophysics Data System (ADS)

    Mortezaei, Alireza; mohajer Tabrizi, Mohsen

    2015-07-01

    An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.

  11. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    PubMed

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.

  12. Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection.

    PubMed

    Rajesh; Singal, Shobhita; Kotnala, Ravinder K

    2017-10-01

    A biofunctionalized reduced graphene oxide (rGO)-modified screen-printed carbon electrode (SPCE) was constructed as an immunosensor for C-reactive protein (CRP) detection, a biomarker released in early stage acute myocardial infarction. A different approach of single frequency analysis (SFA) study was utilized for the biomolecular sensing, by monitoring the response in phase angle changes obtained at an optimized frequency resulting from antigen-antibody interactions. A set of measurements were carried out to optimize a frequency where a maximum change in phase angle was observed, and in this case, we found it at around 10 Hz. The bioelectrode was characterized by contact angle measurements, scanning electron microscopy, and electrochemical techniques. A concentration-dependent response of immunosensor to CRP with the change in phase angle, at a fixed frequency of 10 Hz, was found to be in the range of 10 ng mL -1 to 10 μg mL -1 in PBS and was fit quantitative well with the Hill-Langmuir equation. Based on the concentration-response data, the dissociation constant (K d ) was found to be 3.5 nM (with a Hill coefficient n = 0.57), which indicated a negative cooperativity with high anti-CRP (antibody)-CRP (antigen) binding at the electrode surface. A low-frequency analysis of sensing with an ease of measurement on a disposable electroactive rGO-modified electrode with high selectivity and sensitivity makes it a potential tool for biological sensors.

  13. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work, it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the effects of the various choices.

  14. Design and optimization of a modal- independent linear ultrasonic motor.

    PubMed

    Zhou, Shengli; Yao, Zhiyuan

    2014-03-01

    To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.

  15. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion.

    PubMed

    Florian, John P; Simmons, Erin E; Chon, Ki H; Faes, Luca; Shykoff, Barbara E

    2013-11-01

    The physiological responses to water immersion (WI) are known; however, the responses to stress following WI are poorly characterized. Ten healthy men were exposed to three physiological stressors before and after a 6-h resting WI (32-33°C): 1) a 2-min cold pressor test, 2) a static handgrip test to fatigue at 40% of maximum strength followed by postexercise muscle ischemia in the exercising forearm, and 3) a 15-min 70° head-up-tilt (HUT) test. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), cardiac output (Q), limb blood flow (BF), stroke volume (SV), systemic and calf or forearm vascular resistance (SVR and CVR or FVR), baroreflex sensitivity (BRS), and HR variability (HRV) frequency-domain variables [low-frequency (LF), high-frequency (HF), and normalized (n)] were measured. Cold pressor test showed lower HR, SBP, SV, Q, calf BF, LFnHRV, and LF/HFHRV and higher CVR and HFnHRV after than before WI (P < 0.05). Handgrip test showed no effect of WI on maximum strength and endurance and lower HR, SBP, SV, Q, and calf BF and higher SVR and CVR after than before WI (P < 0.05). During postexercise muscle ischemia, HFnHRV increased from baseline after WI only, and LFnHRV was lower after than before WI (P < 0.05). HUT test showed lower SBP, DBP, SV, forearm BF, and BRS and higher HR, FVR, LF/HFHRV, and LFnHRV after than before WI (P < 0.05). The changes suggest differential activation/depression during cold pressor and handgrip (reduced sympathetic/elevated parasympathetic) and HUT (elevated sympathetic/reduced parasympathetic) following 6 h of WI.

  16. Broadband linear high-voltage amplifier for radio frequency ion traps.

    PubMed

    Kuhlicke, Alexander; Palis, Klaus; Benson, Oliver

    2014-11-01

    We developed a linear high-voltage amplifier for small capacitive loads consisting of a high-voltage power supply and a transistor amplifier. With this cost-effective circuit including only standard parts sinusoidal signals with a few volts can be amplified to 1.7 kVpp over a usable frequency range at large-signal response spanning four orders of magnitude from 20 Hz to 100 kHz under a load of 10 pF. For smaller output voltages the maximum frequency shifts up to megahertz. We test different capacitive loads to probe the influence on the performance. The presented amplifier is sustained short-circuit proof on the output side, which is a significant advantage over other amplifier concepts. The amplifier can be used to drive radio frequency ion traps for single charged nano- and microparticles, which will be presented in brief.

  17. Storage Free Smart Energy Management for Frequency Control in a Diesel-PV-Fuel Cell-Based Hybrid AC Microgrid.

    PubMed

    Sekhar, P C; Mishra, S

    2016-08-01

    This paper proposes a novel, smart energy management scheme for a microgrid, consisting of a diesel generator and power electronic converter interfaced renewable energy-based generators, such as photovoltaic (PV) and fuel cell, for frequency regulation without any storage. In the proposed strategy, output of the PV is controlled in coordination with other generators using neurofuzzy controller, either only for transient frequency regulation or for both transient and steady-state frequency regulation, depending on the load demand, thereby eliminating the huge storage requirements. The option of demand response control is also explored along with the generation control. For accurate and quick tracking of maximum power point and its associated reserve power from the PV generator, this paper also proposes a novel adaptive-predictor-corrector-based tracking mechanism.

  18. [Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].

    PubMed

    Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin

    2015-04-01

    The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.

  19. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1993-01-01

    Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses, respectively, elicited in the rat during linear translation in the horizontal head plane. In addition, the data suggest a spatially and temporally specific and selective otolith/canal convergence. We propose that the central otolith system is organized in canal coordinates such that there is a close alignment between the plane of angular acceleration (canal) sensitivity and the plane of linear acceleration (otolith) sensitivity in otolith/canal-convergent vestibular nuclei neurons.

  20. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (

  1. Distributed fiber optic vibration sensor with enhanced response bandwidth and high signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Chen, Dian; Liu, Qingwen; Fan, Xinyu; He, Zuyuan

    2017-04-01

    A novel distributed fiber-optic vibration sensor (DVS) is proposed based on multi-pulse time-gated digital optical frequency domain reflectometry (TGD-OFDR), which can solve both the trade-off between the maximum measurable distance and the spatial resolution, and the one between the measurement distance and the vibration response bandwidth. A 21-kHz vibration is detected experimentally over 10-kilometer-long fiber, with a signal-to-noise ratio approaching 25 dB and a spatial resolution of 10 m.

  2. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    PubMed

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem responses in long-term severely-hearing impaired CI users could be an attribute of processes associated with long-term hearing impairment and/or electrical stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of Degeneration on Fluid-Solid Interaction within Intervertebral Disk Under Cyclic Loading - A Meta-Model Analysis of Finite Element Simulations.

    PubMed

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.

  4. Three-dimensional wideband electromagnetic modeling on massively parallel computers

    NASA Astrophysics Data System (ADS)

    Alumbaugh, David L.; Newman, Gregory A.; Prevost, Lydie; Shadid, John N.

    1996-01-01

    A method is presented for modeling the wideband, frequency domain electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources operating at frequencies where EM diffusion dominates the response (less than 100 kHz) up into the range where propagation dominates (greater than 10 MHz). The scheme employs the modified form of the vector Helmholtz equation for the scattered electric fields to model variations in electrical conductivity, dielectric permitivity and magnetic permeability. The use of the modified form of the Helmholtz equation allows for perfectly matched layer ( PML) absorbing boundary conditions to be employed through the use of complex grid stretching. Applying the finite difference operator to the modified Helmholtz equation produces a linear system of equations for which the matrix is sparse and complex symmetrical. The solution is obtained using either the biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with preconditioning; in general we employ the QMR method with Jacobi scaling preconditioning due to stability. In order to simulate larger, more realistic models than has been previously possible, the scheme has been modified to run on massively parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon has indicated a maximum model size of 280 × 260 × 200 cells with a maximum flop rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source types and polarizations. The simulations show that the scheme is correctly able to model the air-earth interface and the jump in the electric and magnetic fields normal to discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be employed to incorporate absorbing boundaries while below this normal (real) grid stretching can be employed.

  5. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    PubMed Central

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  6. Experimental and theoretical studies of Sub-THz detection using strained-Si FETs

    NASA Astrophysics Data System (ADS)

    Delgado Notario, J. A.; Javadi, E.; Clericò, V.; Fobelets, K.; Otsuji, T.; Diez, E.; Velázquez-Pérez, J. E.; Meziani, Y. M.

    2017-10-01

    We report on experimental and theoretical studies of nanoscale gate-lengths strained Silicon MODFETs as room temperature non resonant detectors. Devices were excited at room temperature by an electronic source at 150 and 300 GHz to characterize their sub-THz response. The maximum of the photovoltaic response was obtained when the FET gate was biased at a value close to the threshold voltage. Simulations based on a bi-dimensional hydrodynamic model for the charge transport coupled to a Poisson equation solver were performed by using Synopsys TCAD. A charge boundary condition for the floating drain contact was implemented to obtain the photovoltaic response. Results from numerical simulations are in agreement with experimental ones. To understand the coupling between terahertz radiation and devices, the devices were rotated at different angles under excitation at both sub-terahertz frequencies and their response measured. Both NEP (Noise Equivalent Power) and Responsivity were calculated from measurements. To demonstrate their utility, devices were used as sensors in a terahertz imaging system for inspection of hidden objects at both frequencies.

  7. Study on Frequency content in seismic hazard analysis in West Azarbayjan and East Azarbayjan provinces (Iran)

    NASA Astrophysics Data System (ADS)

    Behzadafshar, K.; Abbaszadeh Shahri, A.; Isfandiari, K.

    2012-12-01

    ABSTRACT: Iran plate is prone to earthquake, occurrence of destructive earthquakes approximately every 5 years certify it. Due to existence of happened great earthquakes and large number of potential seismic sources (active faults) which some of them are responsible for great earthquakes the North-West of Iran which is located in junction of Alborz and Zagros seismotectonic provinces (Mirzaii et al, 1998) is an interesting area for seismologists. Considering to population and existence of large cities like Tabriz, Ardabil and Orumiyeh which play crucial role in industry and economy of Iran, authors decided to focus on study of seismic hazard assessment in these two provinces to achieve ground acceleration in different frequency content and indicate critical frequencies in the studied area. It is important to note that however lots of studies have been done in North -West of Iran, but building code modifications also need frequency content analysis to asses seismic hazard more precisely which has been done in the present study. Furthermore, in previous studies have been applied free download softwares which were provided before 2000 but the most important advantage of this study is applying professional industrial software which has been written in 2009 and provided by authors. This applied software can cover previous software weak points very well such as gridding potential sources, attention to the seismogenic zone and applying attenuation relationships directly. Obtained hazard maps illustrate that maximum accelerations will be experienced in North West to South East direction which increased by frequency reduction from 100 Hz to 10 Hz then decreased by frequency reduce (to 0.25 Hz). Maximum acceleration will be occurred in the basement in 10 HZ frequency content. Keywords: hazard map, Frequency content, seismogenic zone, Iran

  8. Quantifying uncertainties in the structural response of SSME blades

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.

    1987-01-01

    To quantify the uncertainties associated with the geometry and material properties of a Space Shuttle Main Engine (SSME) turbopump blade, a computer code known as STAEBL was used. A finite element model of the blade used 80 triangular shell elements with 55 nodes and five degrees of freedom per node. The whole study was simulated on the computer and no real experiments were conducted. The structural response has been evaluated in terms of three variables which are natural frequencies, root (maximum) stress, and blade tip displacements. The results of the study indicate that only the geometric uncertainties have significant effects on the response. Uncertainties in material properties have insignificant effects.

  9. [Myasthenia gravis with the electrographic response of a myasthenic syndrome. Report of a case].

    PubMed

    Werneck, L C; Bittencourt, P C; Nóvak, E M

    1985-06-01

    It is reported a case of a 61 years-old man with progressive asthenia, disfagia, disphonia and diplopia, of variable intensity during the day, who had a very good response to anticolinesterasic drugs and corticosteroids. The repetitive stimulation tests at low frequency, resulted in large increment (maximum 275%) of the basal voltage after exercise. At high frequency he also had a large increment. Radiological and laboratory investigation three times in a seven-year period was normal, without evidence of any neoplasia. Muscle biopsy showed a type II muscle fiber atrophy. The repetitive stimulation tests repeated three times, was typical of myasthenia gravis in one occasion and in the other two, typical of myasthenic syndrome (increment of 418%). A discussion about other cases with similar findings is made after a review of the literature.

  10. A minimax technique for time-domain design of preset digital equalizers using linear programming

    NASA Technical Reports Server (NTRS)

    Vaughn, G. L.; Houts, R. C.

    1975-01-01

    A linear programming technique is presented for the design of a preset finite-impulse response (FIR) digital filter to equalize the intersymbol interference (ISI) present in a baseband channel with known impulse response. A minimax technique is used which minimizes the maximum absolute error between the actual received waveform and a specified raised-cosine waveform. Transversal and frequency-sampling FIR digital filters are compared as to the accuracy of the approximation, the resultant ISI and the transmitted energy required. The transversal designs typically have slightly better waveform accuracy for a given distortion; however, the frequency-sampling equalizer uses fewer multipliers and requires less transmitted energy. A restricted transversal design is shown to use the least number of multipliers at the cost of a significant increase in energy and loss of waveform accuracy at the receiver.

  11. Studies on the positive inotropic effect of phenylephrine: a comparison with isoprenaline.

    PubMed

    Ledda, F; Marchetti, P; Mugelli, A

    1975-05-01

    1. The effects of phenylephrine and isoprenaline on the isometric contraction of guinea-pig ventricle were compared over the whole range of their respective dose-response curves. 2. In preparations driven at 2.5 Hz the increase in contractile force induced by either isoprenaline of phenylephrine was linearly correlated to an increase in maximum velocity of force development. The relaxation time was shortened by isoprenaline but not by phenylephrine. 3. The negative inotropic effect induced by delta [N-(3,4-dimethoxyphenethyl)-N-methyl-amino]-alpha-(3,4,5-trimethoxyphenyl)alpha-isopropylvaleronitrile hydrochloride (D(600)) was reversed by isoprenaline, but little influenced by phenylephrine. 4. The study of the interval-force relationship shows that the increase in contractile force induced by phenylephrine (3 X 10(-5) M) was relatively greater at low frequencies of stimulation, and that the maximum effect was reached at the frequency of 1 Hz. 5. The positive inotropic effect of phenylephrine (10-4 M) was significantly higher at a frequency of 1 Hz than at 2.5 Hz; the effect of isoprenaline (3 x 10-8 M) was not significantly different at the two driving frequencies. 6. In preparations driven at 1 Hz the inotropic effect of the lower concentrations of phenylephrine was due to an increase in the time to peak tension without any change of the maximum velocity of force development; however an increase of this parameter became evident only after higher concentrations of the amine (10-5 M or more), associated with a progressive shortening of the time to peak. 7. A correlation between mechanical and electrophysiological effects of phenylephrine is attempted; the suggestion is advanced that the prolongation of the action potential and of the active state duration may be an important factor in the inotropic effect of phenylephrine.

  12. Hypoxia attenuates the respiratory response to injection of substance P into the nucleus of the solitary tract of the rat.

    PubMed

    Mazzone, S B; Hinrichsen, C F; Geraghty, D P

    1998-10-30

    Prolonged or repetitive bouts of hypoxia may desensitize the brain stem respiratory centres leading to reduced stimulation of ventilation. We investigated the possible involvement of changes in the sensitivity of the commissural nucleus of the solitary tract (cNTS) to the tachykinin peptide, substance P (SP). Urethane-anaesthetised rats were allowed to breath room air (normoxic) or subjected to four, 30 s bouts of hypoxia (10% O2/90% N2) prior to the injection of SP (750 pmol) into the cNTS. In normoxic rats (n = 5), SP produced a fall in frequency (f, 88+/-4% control) after 4 min and a maximum rise in tidal volume (VT) after 6 min (138+/-10% control) leading to an overall increase in minute ventilation (VE, maximum, 127+/-12% control after 2 min). In rats (n = 5) exposed to four bouts of hypoxia and allowed to recover for 10 min, injection of SP produced a similar fall in f but a delayed and significantly (P < 0.001) reduced VT (maximum after 10 min, 110+/-1% control) and hence, VE response (104+/-3% control). Sixty min after hypoxia, the f, VT and VE responses to SP were identical to those of normoxic rats. These data suggest that hypoxia desensitizes SP receptors in the cNTS and this may partly explain why the respiratory response to hypoxia declines over time.

  13. The design of a turboshaft speed governor using modern control techniques

    NASA Technical Reports Server (NTRS)

    Delosreyes, G.; Gouchoe, D. R.

    1986-01-01

    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient.

  14. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide.

    PubMed

    Lu, Chih-Cheng; Huang, Jeff

    2015-06-19

    A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  15. Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices

    PubMed Central

    Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.

    2015-01-01

    The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451

  16. Some Notes on Wideband Feedback Amplifiers

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-03-16

    The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.

  17. A new visually evoked cerebral blood flow response analysis using a low-frequency estimation.

    PubMed

    Rey, Beatriz; Naranjo, Valery; Parkhutik, Vera; Tembl, José; Alcañiz, Mariano

    2010-03-01

    Transcranial Doppler (TCD) has been widely used to monitor cerebral blood flow velocity (BFV) during the performance of cognitive tasks compared with repose periods. Although one of its main advantages is its high temporal resolution, only some of the previous functional TCD studies have focused on the analysis of the temporal evolution of the BFV signal and none of them has performed a spectral analysis of the signal. In this study, maximum BFV data in both posterior cerebral arteries was monitored during a visual perception task (10 cycles of alternating darkness and illumination) for 23 subjects. A peak was located in the low-frequency band of the spectrum of the maximum BFV of each subject both during visual stimulation and repose periods. The frequency of this peak was in the range between 0.037 and 0.098Hz, depending on the subject, the vessel and the experimental condition. The component of the signal at this frequency, which is associated with the slow variations caused by the visual stimuli, was estimated. That way, the variations in BFV caused by the experimental stimuli were isolated from the variations caused by other factors. This low-frequency estimation signal was used to obtain parameters about the temporal evolution and the magnitude variations of the BFV in a reliable way, thus, characterizing the neurovascular coupling of the participants. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Analysis of the dynamics of renal vascular resistance and urine flow rate in the cat following electrical stimulation of the renal nerves.

    PubMed

    Celler, B G; Stella, A; Golin, R; Zanchetti, A

    1996-08-01

    In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.

  19. Enhanced modulation rates via field modulation in spin torque nano-oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.

    Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less

  20. Spin-torque diode frequency tuning via soft exchange pinning of both magnetic layers

    NASA Astrophysics Data System (ADS)

    Khudorozhkov, A. A.; Skirdkov, P. N.; Zvezdin, K. A.; Vetoshko, P. M.; Popkov, A. F.

    2017-12-01

    A spin-torque diode, which is a magnetic tunnel junction with magnetic layers softly pinned at some tilt to each other, is proposed. The resonance operating frequency of such a dual exchange-pinned spin-torque diode can be significantly higher (up to 9.5 GHz) than that of a traditional free layer spin-torque diode, and, at the same time, the sensitivity remains rather high. Using micromagnetic modeling we show that the maximum microwave sensitivity of the considered diode is reached at the bias current densities slightly below the self-sustained oscillations initiating. The dependence of the resonance frequency and the sensitivity on the angle between pinning exchange fields is presented. Thus, a way of designing spin-torque diode with a given resonance response frequency in the microwave region in the absence of an external magnetic field is proposed.

  1. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    PubMed

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-02

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.

  2. Responsive upper limb and cognitive fatigue measures during light precision work: an 8-hour simulated micro-pipetting study.

    PubMed

    Yung, Marcus; Wells, Richard P

    2017-07-01

    Many contemporary occupations are characterised by long periods of low loads. These lower force levels, which are relevant to the development of work-related musculoskeletal disorders, are usually not the focus of fatigue studies. In studies that did measure fatigue in light manual or precision work, within and between measurement responses were inconsistent. The aim of this study was to identify fatigue measures that were responsive at lower force levels (<10% MVC) over the course of an 8-h period. A complementary set of fatigue measures, reflecting both neuromuscular and cognitive mechanisms, was measured during a light precision micro-pipetting task performed by 11 participants. Nine measures were found to be significantly responsive over the 8-h period, including: ratings of perceived fatigue, postural tremor, blink frequency and critical flicker fusion frequency threshold. Common field measures, specifically electromyography RMS amplitude and maximum voluntary contractions, did not lead to extraordinary time effects. Practitioner summary: The findings provide insight towards the responsiveness of a complementary set of field usable fatigue measures at low work intensities Although commonly used measures did not reveal significant increases in fatigue, nine alternative measures were significantly responsive over the 8-h period.

  3. An advanced real-time digital signal processing system for linear systems emulation, with special emphasis on network and acoustic response characterization

    NASA Astrophysics Data System (ADS)

    Gaydecki, Patrick; Fernandes, Bosco

    2003-11-01

    A fast digital signal processing (DSP) system is described that can perform real-time emulation of a wide variety of linear audio-bandwidth systems and networks, such as reverberant spaces, musical instrument bodies and very high order filter networks. The hardware design is based upon a Motorola DSP56309 operating at 110 million multiplication-accumulations per second and a dual-channel 24 bit codec with a maximum sampling frequency of 192 kHz. High level software has been developed to express complex vector frequency responses as both infinite impulse response (IIR) and finite impulse response (FIR) coefficients, in a form suitable for real-time convolution by the firmware installed in the DSP system memory. An algorithm has also been devised to express IIR filters as equivalent FIR structures, thereby obviating the potential instabilities associated with recursive equations and negating the traditional deficiencies of FIR filters respecting equivalent analogue designs. The speed and dynamic range of the system is such that, when sampling at 48 kHz, the frequency response can be specified to a spectral precision of 22 Hz when sampling at 10 kHz, this resolution increases to 0.9 Hz. Moreover, it is also possible to control the phase of any frequency band with a theoretical precision of 10-5 degrees in all cases. The system has been applied in the study of analogue filter networks, real-time Hilbert transformation, phase-shift systems and musical instrument body emulation, where it is providing valuable new insights into the understanding of psychoacoustic mechanisms.

  4. Dynamic characterization of Galfenol

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.

    2015-04-01

    A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.

  5. Dynamic Characterization of Galfenol

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.

    2015-01-01

    A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.

  6. Real-time ultrasound angiography using superharmonic dual-frequency (2.25MHz/30MHz) cylindrical array: In vitro study.

    PubMed

    Wang, Zhuochen; Martin, K Heath; Dayton, Paul A; Jiang, Xiaoning

    2018-01-01

    Recent studies suggest that dual-frequency intravascular ultrasound (IVUS) transducers allow detection of superharmonic bubble signatures, enabling acoustic angiography for microvascular and molecular imaging. In this paper, a dual-frequency IVUS cylindrical array transducer was developed for real-time superharmonic imaging. A reduced form-factor lateral mode transmitter (2.25MHz) was used to excite microbubbles effectively at 782kPa with single-cycle excitation while still maintaining the small size and low profile (5Fr) (3Fr=1mm) for intravascular imaging applications. Superharmonic microbubble responses generated in simulated microvessels were captured by the high frequency receiver (30MHz). The axial and lateral full-width half-maximum of microbubbles in a 200-μm-diameter cellulose tube were measured to be 162μm and 1039μm, respectively, with a contrast-to-noise ratio (CNR) of 16.6dB. Compared to our previously reported single-element IVUS transducers, this IVUS array design achieves a higher CNR (16.6dBvs 11dB) and improved axial resolution (162μmvs 616μm). The results show that this dual-frequency IVUS array transducer with a lateral-mode transmitter can fulfill the native design requirement (∼3-5Fr) for acoustic angiography by generating nonlinear microbubble responses as well as detecting their superharmonic responses in a 5Fr form factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.

    PubMed

    Yao, K; Koc, B; Uchino, K

    2001-07-01

    Longitudinal-bending mode ultrasonic motors with a diameter of 3 mm were fabricated using stacked multilayer piezoelectric actuators, which were self-developed from hard lead zirconate titanate (PZT) ceramic. A bending vibration was converted from a longitudinal vibration with a longitudinal-bending coupler. The motors could be bidirectionally operated by changing driving frequency. Their starting and braking torque were analyzed based on the transient velocity response. With a load of moment of inertia 2.5 x 10(-7) kgm2, the motor showed a maximum starting torque of 127.5 microNm. The braking torque proved to be a constant independent on the motor's driving conditions and was roughly equivalent to the maximum starting torque achievable with our micromotors.

  8. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  9. Self-reported sleep disturbances due to railway noise: exposure-response relationships for nighttime equivalent and maximum noise levels.

    PubMed

    Aasvang, Gunn Marit; Moum, Torbjorn; Engdahl, Bo

    2008-07-01

    The objective of the present survey was to study self-reported sleep disturbances due to railway noise with respect to nighttime equivalent noise level (L(p,A,eq,night)) and maximum noise level (L(p,A,max)). A sample of 1349 people in and around Oslo in Norway exposed to railway noise was studied in a cross-sectional survey to obtain data on sleep disturbances, sleep problems due to noise, and personal characteristics including noise sensitivity. Individual noise exposure levels were determined outside of the bedroom facade, the most-exposed facade, and inside the respondents' bedrooms. The exposure-response relationships were analyzed by using logistic regression models, controlling for possible modifying factors including the number of noise events (train pass-by frequency). L(p,A,eq,night) and L(p,A,max) were significantly correlated, and the proportion of reported noise-induced sleep problems increased as both L(p,A,eq,night) and L(p,A,max) increased. Noise sensitivity, type of bedroom window, and pass-by frequency were significant factors affecting noise-induced sleep disturbances, in addition to the noise exposure level. Because about half of the study population did not use a bedroom at the most-exposed side of the house, the exposure-response curve obtained by using noise levels for the most-exposed facade underestimated noise-induced sleep disturbance for those who actually have their bedroom at the most-exposed facade.

  10. Otoacoustic emission responses of the cochlea to acute and total ischemia.

    PubMed

    Yıldırım, Yavuz Selim; Aksoy, Fadlullah; Ozturan, Orhan; Veyseller, Bayram; Demirhan, Hasan

    2013-12-01

    In the present experimental study, we sought to monitor distortion product otoacoustic emissions (DPOAEs) as an indicator of cochlear function, after sudden, total, and irreversible interruption of cochlear blood flow, to provide information on the time course of cochlear response to ischemia. Twenty rats with normal hearing function were included. Complete and abrupt ischemia was provided by decapitation. DPOAEs at 3-8 kHz frequencies were recorded at baseline and exactly every consecutive minute after decapitation, until emissions in all frequencies disappeared completely. Mean DPOAE values decreased significantly and progressively after decapitation for all frequencies. The mean duration of emissions was 8.20 ± 1.96 min (minimum 3 min, maximum 11 min). The longest durations of DPOAEs were observed with 4 and 5 kHz frequencies, and 3 and 6 kHz had the shortest durations. The outer hair cells exposed to acute ischemia seem to exhibit a rapid functional loss; thus, cautious handling of the cochlear vasculature and surrounding structures is necessary in surgical interventions. Additionally, our results provide some idea of the normal tolerance range of the cochlea to ischemia, which could be useful for future studies.

  11. Effect of Training Frequency on Maximum Expiratory Pressure

    ERIC Educational Resources Information Center

    Anand, Supraja; El-Bashiti, Nour; Sapienza, Christine

    2012-01-01

    Purpose: To determine the effects of expiratory muscle strength training (EMST) frequency on maximum expiratory pressure (MEP). Method: We assigned 12 healthy participants to 2 groups of training frequency (3 days per week and 5 days per week). They completed a 4-week training program on an EMST trainer (Aspire Products, LLC). MEP was the primary…

  12. Advanced probabilistic methods for quantifying the effects of various uncertainties in structural response

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.

    1988-01-01

    The effects of actual variations, also called uncertainties, in geometry and material properties on the structural response of a space shuttle main engine turbopump blade are evaluated. A normal distribution was assumed to represent the uncertainties statistically. Uncertainties were assumed to be totally random, partially correlated, and fully correlated. The magnitude of these uncertainties were represented in terms of mean and variance. Blade responses, recorded in terms of displacements, natural frequencies, and maximum stress, was evaluated and plotted in the form of probabilistic distributions under combined uncertainties. These distributions provide an estimate of the range of magnitudes of the response and probability of occurrence of a given response. Most importantly, these distributions provide the information needed to estimate quantitatively the risk in a structural design.

  13. Stochastic resonance in the majority vote model on regular and small-world lattices

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    2017-11-01

    The majority vote model with two states on regular and small-world networks is considered under the influence of periodic driving. Monte Carlo simulations show that the time-dependent magnetization, playing the role of the output signal, exhibits maximum periodicity at nonzero values of the internal noise parameter q, which is manifested as the occurrence of the maximum of the spectral power amplification; the location of the maximum depends in a nontrivial way on the amplitude and frequency of the periodic driving as well as on the network topology. This indicates the appearance of stochastic resonance in the system as a function of the intensity of the internal noise. Besides, for low frequencies and for certain narrow ranges of the amplitudes of the periodic driving double maxima of the spectral power amplification as a function of q occur, i.e., stochastic multiresonance appears. The above-mentioned results quantitatively agree with those obtained from numerical simulations of the mean-field equations for the time-dependent magnetization. In contrast, analytic solutions for the spectral power amplification obtained from the latter equations using the linear response approximation deviate significanlty from the numerical results since the effect of the periodic driving on the system is not small even for vanishing amplitude.

  14. Investigation of the performances of PZT vs rare earth (BaLaTiO3) vibration based energy harvester

    NASA Astrophysics Data System (ADS)

    Pak, Nehemiah; Aris, Hasnizah; Nadia Taib, Bibi

    2017-11-01

    This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3) performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  15. Enhanced Broadband Vibration Energy Harvesting Using a Multimodal Nonlinear Magnetoelectric Converter

    NASA Astrophysics Data System (ADS)

    Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping

    2016-07-01

    In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).

  16. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading

    PubMed Central

    Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima

    2016-01-01

    In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress–strain responses for each cycle, and the hysteresis stress–strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given. PMID:26937465

  17. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.

    PubMed

    Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima

    2016-03-01

    In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress-strain responses for each cycle, and the hysteresis stress-strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given.

  18. Chiral magnetic currents with QGP medium response in heavy-ion collisions at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    She, Duan; Feng, Sheng-Qin; Zhong, Yang; Yin, Zhong-Bao

    2018-03-01

    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.

  19. Functional and cellular responses to laser injury in the rat snake retina

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Elliott, W. Rowe, III; Kumar, Neeru

    2007-02-01

    Acute (1-hr, 6-hr) and longer term (24-hr) effects of laser injury on retinal function and cellular responses have been studied in the Great Plains rat snake, Elaphe guttata emoryi. This animal is of interest for vision research because its eye has an all-cone retina. A linear array of 5 thermal lesions was placed in the retina of anesthetized animals, near the area centralis, using a Nd:VO 4 laser (532 nm), that delivered 50 mW per 10-msec pulse. Retinal function was assessed with the pattern electroretinogram (PERG), recorded before and after the placement of the lesions. PERGs were elicited with counterphased square-wave gratings, and were analyzed by Fourier analysis. The fate of lesioned cells was assessed by immunohistological staining for the transcription factor, NF-κB (which is activated by ionizing and nonionizing radiation), as well as for the apoptosis marker, caspase-9. The normal snake PERG had the maximum, real amplitude frequency component, determined by Fourier analysis, at the reversal frequency of the grating (i.e. shifts/sec). In the hour following the lesion-producing laser exposures, the PERG response exhibited frequency doubling, i.e. a new response waveform appeared at twice the reversal frequency. By 24-hr post exposure, many lesioned photoreceptors stained positively for both NF-κB and caspase 9. Because the PERG largely reflects retinal ganglion cell activity, the appearance of frequency doubling in the PERG suggests that complementary (push-pull) inputs to ganglion cells are disrupted by the laser lesions. The immunohistological results indicate that activation of NF- B is not necessarily associated with photoreceptor survival after a laser injury.

  20. LEOS 1992 - Summer Topical Meeting Digest Held in Santa Barbara, California on July 29-12 August, 1992

    DTIC Science & Technology

    1992-01-01

    careful design of the device to maximise the relaxation oscillation resonance frequency [2], minimize leakage currents [2,3], and optimize other...and determines the maximum frequency of operation. With hybrid circuit construction this maximum frequency would generally be in the order of a few...operating at a frequency of 335.48 MHz. The resultant timing jitter is determined by sending both pulse trains into a rotating mirror optical

  1. Polycrystalline diamond RF MOSFET with MoO3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Ren, Zeyang; Zhang, Jinfeng; Zhang, Jincheng; Zhang, Chunfu; Chen, Dazheng; Quan, Rudai; Yang, Jiayin; Lin, Zhiyu; Hao, Yue

    2017-12-01

    We report the radio frequency characteristics of the diamond metal-oxide-semiconductor field effect transistor with MoO3 gate dielectric for the first time. The device with 2-μm gate length was fabricated on high quality polycrystalline diamond. The maximum drain current of 150 mA/mm at VGS = -5 V and the maximum transconductance of 27 mS/mm were achieved. The extrinsic cutoff frequency of 1.2 GHz and the maximum oscillation frequency of 1.9 GHz have been measured. The moderate frequency characteristics are attributed to the moderate transconductance limited by the series resistance along the channel. We expect that the frequency characteristics of the device can be improved by increasing the magnitude of gm, or fundamentally decreasing the gate-controlled channel resistance and series resistance along the channel, and down-scaling the gate length.

  2. Effect of current on the maximum possible reward.

    PubMed

    Gallistel, C R; Leon, M; Waraczynski, M; Hanau, M S

    1991-12-01

    Using a 2-lever choice paradigm with concurrent variable interval schedules of reward, it was found that when pulse frequency is increased, the preference-determining rewarding effect of 0.5-s trains of brief cathodal pulses delivered to the medial forebrain bundle of the rat saturates (stops increasing) at values ranging from 200 to 631 pulses/s (pps). Raising the current lowered the saturation frequency, which confirms earlier, more extensive findings showing that the rewarding effect of short trains saturates at pulse frequencies that vary from less than 100 pps to more than 800 pps, depending on the current. It was also found that the maximum possible reward--the magnitude of the reward at or beyond the saturation pulse frequency--increases with increasing current. Thus, increasing the current reduces the saturation frequency but increases the subjective magnitude of the maximum possible reward.

  3. Assessment of power step performances of variable speed pump-turbine unit by means of hydro-electrical system simulation

    NASA Astrophysics Data System (ADS)

    Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.

    2017-04-01

    The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.

  4. The discrete prolate spheroidal filter as a digital signal processing tool

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.; Breakall, J. K.; Karawas, G. K.

    1983-01-01

    The discrete prolate spheriodall (DPS) filter is one of the glass of nonrecursive finite impulse response (FIR) filters. The DPS filter is superior to other filters in this class in that it has maximum energy concentration in the frequency passband and minimum ringing in the time domain. A mathematical development of the DPS filter properties is given, along with information required to construct the filter. The properties of this filter were compared with those of the more commonly used filters of the same class. Use of the DPS filter allows for particularly meaningful statements of data time/frequency resolution cell values. The filter forms an especially useful tool for digital signal processing.

  5. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    NASA Astrophysics Data System (ADS)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  6. Intra-arterial pressure measurement in neonates: dynamic response requirements.

    PubMed

    van Genderingen, H R; Gevers, M; Hack, W W

    1995-02-01

    A computer simulation of a catheter manometer system was used to quantify measurement errors in neonatal blood pressure parameters. Accurate intra-arterial pressure recordings of 21 critically ill newborns were fed into this simulated system. The dynamic characteristics, natural frequency and damping coefficient, were varied from 2.5 to 60 Hz and from 0.1 to 1.4, respectively. As a result, errors in systolic, diastolic and pulse arterial pressure were obtained as a function of natural frequency and damping coefficient. Iso-error curves for 2%, 5% and 10% were constructed. Using these curves, the maximum inaccuracy of any neonatal catheter manometer system can be determined and used in the clinical setting.

  7. Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Ali, Mayahsa M.; Rezazadeh, Ali A.

    2018-07-01

    Nonlinearity analysis using two-tone intermodulation distortion (IMD) technique for 0.5 μm gate-length AlGaAs/GaAs based high electron mobility transistor have been investigated based on biasing conditions, input power, frequency and temperature. The outcomes indicate a significant modification on the output IMD power and as well as the minimum distortion level. The input IMD power effects the output current and subsequently the threshold voltage reduces, resulting to an increment in the output IMD power. Both frequency and temperature reduces the magnitude of the output IMDs. In addition, the threshold voltage response with temperature alters the notch point of the nonlinear output IMD’s accordingly. The aforementioned investigation will help the circuit designers to evaluate the best biasing option in terms of minimum distortion, maximum gain for future design optimizations.

  8. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearitiesmore » for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.« less

  9. Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency.

    PubMed

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-09-15

    Laminar flows are a common problem in high rate algal ponds (HRAP) due to their long channels and gentle mixing by a single paddlewheel. Sustained laminar flows may modify the amount of light microalgal cells are exposed to, increase the boundary layer between the cell and the environment and increase settling out of cells onto the pond bottom. To date, there has been little focus on the effects of the time between mixing events (frequency of mixing) on the performance of microalgae in wastewater treatment HRAPs. This paper investigates the performance of three morphologically distinct microalgae in wastewater treatment high rate algal mesocosms operated at four different mixing frequencies (continuous, mixed every 45 min, mixed every 90 min and no mixing). Microalgal performance was measured in terms of biomass concentration, nutrient removal efficiency, light utilisation and photosynthetic performance. Microalgal biomass increased significantly with increasing mixing frequency for the two colonial species but did not differ for the single celled species. All three species were more efficient at NH4-N uptake as the frequency of mixing increased. Increased frequency of mixing supported larger colonies with improved harvest-ability by gravity but at the expense of efficient light absorption and maximum rate of photosynthesis. However, maximum quantum yield was highest in the continuously mixed cultures due to higher efficiency of photosynthesis under light limited conditions. Based on these results, higher microalgal productivity, improved wastewater treatment and better gravity based harvest-ability can be achieved with the inclusion of more mixing points and reduced laminar flows in full-scale HRAP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of Propellant Feed System Coupling and Hydraulic Parameters on Analysis of Chugging

    NASA Technical Reports Server (NTRS)

    Wood, Don J.; Dorsch, Robert G.

    1967-01-01

    A digital distributed parameter model was used to study the effects of propellant-feed- system coupling and various hydraulic parameters on the analytical prediction of chugging instabilities. Coupling between the combustion chamber and feed system was controlled by varying the compliance of the injector-dome region. The coupling with the feed system above the pump was varied by changing the amount of cavitation compliance at the pump inlet. The stability limits and chugging frequencies proved to be strongly dependent on the degree of feed-system coupling. The maximum stability condition occurred with intermediate coupling. Under conditions of a high degree of feed-system-combustor coupling, the stability limits and chugging frequencies were primarily dependent on the feed-system characteristics; the responses were characterized by beating patterns. For the system analyzed, the pump suction line had little effect on the stability limits or chugging frequencies. Beating, present under the condition of near zero injector -dome compliance, was eliminated when the suction line was decoupled by employing a sufficiently high value of pump-inlet compliance. Under conditions of maximum feed-system coupling, the magnitude and distribution of line losses in the discharge line had a significant effect on the stability limits but had negligible effect on the chugging frequency and beating characteristics. Also, the length of the discharge line greatly affected the stability limits, chugging frequency, and beating characteristics. The length of the suction line, however, had little effect on the stability limits and chugging frequency but did influence the beating pattern. A resistive-shunt device attached to the pump discharge line to suppress chugging was investigated. The analysis showed that the device was effective under conditions of high feed-system coupling.

  11. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Torabi, Amir; Kolahan, Farhad

    2018-07-01

    Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.

  12. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide

    PubMed Central

    Lu, Chih-Cheng; Huang, Jeff

    2015-01-01

    A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics. PMID:26102496

  13. Graded behavioral responses and habituation to sound in the common cuttlefish Sepia officinalis.

    PubMed

    Samson, Julia E; Mooney, T Aran; Gussekloo, Sander W S; Hanlon, Roger T

    2014-12-15

    Sound is a widely available and vital cue in aquatic environments, yet most bioacoustic research has focused on marine vertebrates, leaving sound detection in invertebrates poorly understood. Cephalopods are an ecologically key taxon that likely use sound and may be impacted by increasing anthropogenic ocean noise, but little is known regarding their behavioral responses or adaptations to sound stimuli. These experiments identify the acoustic range and levels that elicit a wide range of secondary defense behaviors such as inking, jetting and rapid coloration change. Secondarily, it was found that cuttlefish habituate to certain sound stimuli. The present study examined the behavioral responses of 22 cuttlefish (Sepia officinalis) to pure-tone pips ranging from 80 to 1000 Hz with sound pressure levels of 85-188 dB re. 1 μPa rms and particle accelerations of 0-17.1 m s(-2). Cuttlefish escape responses (inking, jetting) were observed between frequencies of 80 and 300 Hz and at sound levels above 140 dB re. 1 μPa rms and 0.01 m s(-2) (0.74 m s(-2) for inking responses). Body patterning changes and fin movements were observed at all frequencies and sound levels. Response intensity was dependent upon stimulus amplitude and frequency, suggesting that cuttlefish also possess loudness perception with a maximum sensitivity around 150 Hz. Cuttlefish habituated to repeated 200 Hz tone pips, at two sound intensities. Total response inhibition was not reached, however, and a basal response remained present in most animals. The graded responses provide a loudness sensitivity curve and suggest an ecological function for sound use in cephalopods. © 2014. Published by The Company of Biologists Ltd.

  14. Physiological responses during continuous work in hot dry and hot humid environments in Indians

    NASA Astrophysics Data System (ADS)

    Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.

    1984-06-01

    Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work.

  15. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  16. Moderate therapeutic efficacy of positron emission tomography‐navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomised, controlled pilot study

    PubMed Central

    Plewnia, C; Reimold, M; Najib, A; Reischl, G; Plontke, S K; Gerloff, C

    2007-01-01

    Background Tinnitus has been shown to respond to modulations of cortical activity by high‐frequency and low‐frequency repetitive transcranial magnetic stimulation (rTMS). Objective To determine the tinnitus‐attenuating effects of a 2‐week daily regimen of rTMS, navigated to the maximum of tinnitus‐related increase in regional cerebral blood flow. Methods Six patients with chronic tinnitus were enrolled in this sham‐controlled crossover study and treated with 2×2 weeks of suprathreshold 1 Hz rTMS (30 min) applied to the region with maximal tinnitus‐related increase in regional cerebral blood flow delineated by functional imaging with [15O]H2O positron emission tomography and a control area. Tinnitus‐related distress was assessed before and after each treatment and 2 weeks after the end of the 4‐week course of stimulation using a validated tinnitus questionnaire. Additional self‐assessment scores of tinnitus change, loudness and annoyance were obtained. Results In five of six patients, rTMS induced greater reduction of the tinnitus questionnaire score than sham stimulation. In two patients, all parameters measured (tinnitus change score, tinnitus loudness, tinnitus annoyance) showed unequivocal improvement. At the group level, the degree of response in the tinnitus questionnaire score was correlated with tinnitus‐associated activation of the anterior cingulate cortex. Two weeks after the final stimulation, tinnitus had returned to baseline in all patients but one. Conclusion Tinnitus can be attenuated by low‐frequency rTMS navigated to each person's maximum tinnitus‐related cortical hyperactivity. The effects are only moderate; interindividual responsiveness varies and the attenuation seems to wear off within 2 weeks after the last stimulation session. Notably, tinnitus‐related anterior cingulate cortex activation seems to predict the response to rTMS treatment. PMID:16891384

  17. Design and characterization of MEMS interferometric sensing

    NASA Astrophysics Data System (ADS)

    Snyder, R.; Siahmakoun, A.

    2010-02-01

    A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.

  18. An experimental study on pseudoelasticity of a NiTi-based damper for civil applications

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Bassani, Enrico; Della Torre, Davide; Donnini, Riccardo; Villa, Elena; Passaretti, Francesca

    2017-10-01

    In this work, a pseudoelastic damper composed by NiTi wires is tested at 0.5, 1 and 2 Hz for 1000 mechanical cycles. The damping performances were evaluated by three key parameters: the damping capacity, the dissipated energy per cycle and the maximum force. During testing, the temperature of the pseudoelastic elements was registered as well. Results show that the damper assures a bi-directional motion throughout the 1000 cycles together with the maintenance of the recentering. It was observed a stabilization process in the first 50 mechanical cycles, where the key parameters reach stable values; in particular it was found that the damping capacity and the dissipated energy both decrease with frequency. Besides, the mean temperature of the pseudoleastic elements reaches a stable value during tests and confirms the different response of the pseudoelastic wires accordingly with the specific length and stain. Finally, interesting thermal effects were observed at 1 and 2 Hz: at these frequencies and at high strains, the maximum force increases but the temperature of the NiTi wire decreases being in contraddiction with the Clausius-Clapeyron law.

  19. Vestibular evoked myogenic potential (VEMP) testing: normative threshold response curves and effects of age.

    PubMed

    Janky, Kristen L; Shepard, Neil

    2009-09-01

    Vestibular evoked myogenic potential (VEMP) testing has gained increased interest in the diagnosis of a variety of vestibular etiologies. P13/N23 latency, amplitude and threshold response curves have been used to compare pathologic groups to normal controls. Appropriate characterization of these etiologies requires normative data across the frequency spectrum and age range. The objective of the current study was to test the hypothesis that significant changes in VEMP responses occur as a function of increased age across all test stimuli as well as characterize the VEMP threshold response curve across age. This project incorporated a prospective study design using a sample of convenience. Openly recruited subjects were assigned to groups according to age. Forty-six normal controls ranging between 20 and 76 years of age participated in the study. Participants were separated by decade into five age categories from 20 to 60 plus years. Normal participants were characterized by having normal hearing sensitivity, no history of neurologic or balance/dizziness involvement, and negative results on a direct office vestibular examination. VEMP responses were measured at threshold to click and 250, 500, 750, and 1000 Hz tone burst stimuli and at a suprathreshold level to 500 Hz toneburst stimuli at123 dB SPL. A mixed group factorial ANOVA (analysis of variance) and linear regression were performed to examine the effects of VEMP characteristics on age. There were no significant differences between ears for any of the test parameters. There were no significant differences between age groups for n23 latency or amplitude in response to any of the stimuli. Significant mean differences did exist between age groups for p13 latency (250, 750, and 1000 Hz) and threshold (500 and 750 Hz). Age was significantly correlated with VEMP parameters. VEMP threshold was positively correlated (250, 500, 750, 1000 Hz); and amplitude was negatively correlated (500 Hz maximum). The threshold response curves revealed best frequency tuning at 500 Hz with the highest thresholds in response to click stimuli. However, this best frequency tuning dissipated with increased age. VEMP response rates also decreased with increased age. We have demonstrated that minor differences in VEMP responses occur with age. Given the reduced response rates and flattened frequency tuning curve for individuals over the age of 60, frequency tuning curves may not be a good diagnostic indicator for this age group.

  20. Equatorial electrojet and its response to external electromagnetic effects

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Savina, O. N.

    2012-09-01

    In the quiet low-latitude Earth's ionosphere, a sufficiently developed current system that is responsible for the Sq magnetic-field variations is formed in quiet Sun days under the action of tidal streams. The density of the corresponding currents is maximum in the midday hours at the equatorial latitudes, where the so-called equatorial electrojet is formed. In this work, we discuss the nature of the equatorial electrojet. This paper studies the value of its response to external effects. First of all, it is concerned with estimating the possibility of using the equatorial electrojet for generating low-frequency electromagnetic signals during periodic heating of the ionosphere by the heating-facility radiation. The equatorial electrojet can also produce electrodynamic response to the natural atmospheric processes, e.g., an acoustic-gravity wave.

  1. Evaluation of a lower-powered analyzer and sampling system for eddy-covariance measurements of nitrous oxide fluxes

    NASA Astrophysics Data System (ADS)

    Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia

    2018-03-01

    Nitrous oxide (N2O) fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2). The system features a relatively small, single-pass sample cell (200 mL) that provides good frequency response with a lower-powered pump ( ˜ 250 W). A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016) in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: -26.1 to 31.6 °C). The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz) and similar to that of a closed-path CO2 eddy-covariance system (4.05 Hz), using shorter tubing and no dryer, that was also collocated at the site. Values of the N2O fluxes were similar between the two spectrometer systems (slope = 1.01, r2 = 0.96); CO2 fluxes as measured by the short-tubed eddy-covariance system and the two spectrometer systems correlated well (slope = 1.03, r2 = 0.998). The new lower-powered tunable diode laser absorption spectrometer configuration with the filterless intake and single-tube dryer showed promise for deployment in remote areas.

  2. Underwater detection of tonal signals between 0.125 and 100 kHz by harbor seals (Phoca vitulina).

    PubMed

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Verboom, Willem C; Terhune, John M

    2009-02-01

    The underwater hearing sensitivities of two 1-year-old female harbor seals were quantified in a pool built for acoustic research, using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not (go/no-go response). Pure tones (0.125-0.25 kHz) and narrowband frequency modulated (tonal) signals (center frequencies 0.5-100 kHz) of 900 ms duration were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. The audiograms of the two seals did not differ statistically: both plots showed the typical mammalian U-shape, but with a wide and flat bottom. Maximum sensitivity (54 dB re 1 microPa, rms) occurred at 1 kHz. The frequency range of best hearing (within 10 dB of maximum sensitivity) was from 0.5 to 40 kHz (6(1/3) octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 and above 40 kHz. Thresholds below 4 kHz were lower than those previously described for harbor seals, which demonstrates the importance of using quiet facilities, built specifically for acoustic research, for hearing studies in marine mammals. The results suggest that under unmasked conditions many anthropogenic noise sources and sounds from conspecifics are audible to harbor seals at greater ranges than formerly believed.

  3. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  4. Improved MIMO radar GMTI via cyclic-shift transmission of orthogonal frequency division signals

    NASA Astrophysics Data System (ADS)

    Li, Fuyou; He, Feng; Dong, Zhen; Wu, Manqing

    2018-05-01

    Minimum detectable velocity (MDV) and maximum detectable velocity are both important in ground moving target indication (GMTI) systems. Smaller MDV can be achieved by longer baseline via multiple-input multiple-output (MIMO) radar. Maximum detectable velocity is decided by blind velocities associated with carrier frequencies, and blind velocities can be mitigated by orthogonal frequency division signals. However, the scattering echoes from different carrier frequencies are independent, which is not good for improving MDV performance. An improved cyclic-shift transmission is applied in MIMO GMTI system in this paper. MDV performance is improved due to the longer baseline, and maximum detectable velocity performance is improved due to the mitigation of blind velocities via multiple carrier frequencies. The signal model for this mode is established, the principle of mitigating blind velocities with orthogonal frequency division signals is presented; the performance of different MIMO GMTI waveforms is analysed; and the performance of different array configurations is analysed. Simulation results by space-time-frequency adaptive processing proves that our proposed method is a valid way to improve GMTI performance.

  5. Issues in vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-05-01

    In this study, fundamental issues related to bandwidth and nonlinear resonance in vibrational energy harvesting devices are investigated. The results show that using bandwidth as a criterion to measure device performance can be misleading. For a linear device, an enlarged bandwidth is achieved at the cost of sacrificing device performance near resonance, and thus widening the bandwidth may offer benefits only when the natural frequency of the linear device cannot match the dominant excitation frequency. For a nonlinear device, since the principle of superposition does not apply, the ''broadband" performance improvements achieved for single-frequency excitations may not be achievable for multi-frequency excitations. It is also shown that a large-amplitude response based on the traditional ''nonlinear resonance" does not always result in the optimal performance for a nonlinear device because of the negative work done by the excitation, which indicates energy is returned back to the excitation. Such undesired negative work is eliminated at global resonance, a generalized resonant condition for both linear and nonlinear systems. While the linear resonance is a special case of global resonance for a single-frequency excitation, the maximum potential of nonlinear energy harvesting can be reached for multi-frequency excitations by using global resonance to simultaneously harvest energy distributed over multiple frequencies.

  6. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.

  7. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, T.E.

    1997-10-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.

  8. Conference Digest LEOS Summer Topical Meetings 1992

    DTIC Science & Technology

    1992-12-09

    of the circuit and determines the maximum frequency of operation. With...operating at a frequency of 335.48 MHz. The resultant timing jitter is determined by sending both pulse trains into a rotating mirror optical correlator with...length of 1.5 un and a gate width of 100 um. have a maximum transconductance of 160 mS/mm and a cut-off frequency of 10 GHz. To determine the

  9. The spatial and temporal representation of a tone on the guinea pig basilar membrane

    NASA Astrophysics Data System (ADS)

    Nilsen, K. E.; Russell, I. J.

    2000-10-01

    School of Biological Sciences, University of Sussex, Falmer Brighton, BN1 9QG, United Kingdom In the mammalian cochlea, the basilar membrane's (BM) mechanical responses are amplified, and frequency tuning is sharpened through active feedback from the electromotile outer hair cells (OHCs). To be effective, OHC feedback must be delivered to the correct region of the BM and introduced at the appropriate time in each cycle of BM displacement. To investigate when OHCs contribute to cochlear amplification, a laser-diode interferometer was used to measure tone-evoked BM displacements in the basal turn of the guinea pig cochlea. Measurements were made at multiple sites acrossthe width of the BM, which are tuned to the same characteristic frequency (CF). In response to CF tones, the largest displacements occur in the OHC region and phase lead those measured beneath the outer pillar cells and adjacent to the spiral ligament by about 90°. Postmortem, responses beneath the OHCs are reduced by up to 65 dB, and all regions across the width of the BM move in unison. We suggest that OHCs amplify BM responses to CF tones when the BM is moving at maximum velocity. In regions of the BM where OHCs contribute to its motion, the responses are compressive and nonlinear. We measured the distribution of nonlinear compressive vibrations along the length of the BM in response to a single frequency tone and estimated that OHC amplification is restricted to a 1.25- to 1.40-mm length of BM centered on the CF place.

  10. A fluctuating plume dispersion model for the prediction of odour-impact frequencies from continuous stationary sources

    NASA Astrophysics Data System (ADS)

    Mussio, P.; Gnyp, A. W.; Henshaw, P. F.

    A fluctuating plume dispersion model has been developed to facilitate the prediction of odour-impact frequencies in the communities surrounding elevated point sources. The model was used to predict the frequencies of occurrence of odours of various magnitudes for 1 h periods. In addition, the model predicted the maximum odour level. The model was tested with an extensive set of data collected in the residential areas surrounding the paint shop of an automotive assembly plant. Most of the perceived odours in the vicinity of the 64, 46 m high stacks ranged between 2 and 7 odour units and generally persisted for less than 30 s. Ninety-eight different field determinations of odour impact frequencies within 1 km of the plant were conducted during the course of the study. To simplify evaluation, the frequencies of occurrence of different odour levels were summed to give the total frequency of occurrence of all readily detectable (>2 OU) odours. The model provided excellent simulation of the total frequencies of occurrence where the odour was frequent (i.e . readily detectable more than 30% of the time). At lower frequencies of occurrence the model prediction was poor. The stability class did not seem to affect the model's ability to predict field frequency values. However, the model provided excellent predictions of the maximum odour levels without being sensitive to either stability class or distance from the source. Ninety-five percent of the predicted maximum values were within a factor of two of the measured field maximum values.

  11. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.

    PubMed

    Bleeker, H J; Lewin, P A

    2000-01-01

    A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.

  12. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  13. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio of 922.5 for this sensor, at 500 Hz, translated into a maximum Violin-Mode (AC) responsivity of (1.16 ± 0.05) MV m(-1), at that frequency.

  14. Internal resonance and low frequency vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Towfighian, Shahrzad

    2017-09-01

    A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.

  15. In vivo characterization of ultrasound contrast agents: microbubble spectroscopy in a chicken embryo.

    PubMed

    Faez, Telli; Skachkov, Ilya; Versluis, Michel; Kooiman, Klazina; de Jong, Nico

    2012-09-01

    The dynamics of coated microbubbles was studied in an in vivo model. Biotinylated lipid-coated microbubbles were prepared in-house and were injected into a chick embryo chorioallantoic membrane (CAM) model on the fifth day of incubation. The microbubbles, ranging between 1.0 and 3.5 μm in diameter, were insonified in the frequency range of 4-7 MHz. Two amplitudes of acoustic pressure were applied: 300 kPa and 400 kPa. The fundamental and subharmonic responses were recorded optically with an ultra-fast camera (Brandaris 128) at 20 million frames per second. A subharmonic response was observed for 44% of the studied bubbles. From the data the frequency of the maximum fundamental and subharmonic response was derived for each individual bubble and resulted in the resonance curves of the microbubbles. All the bubbles showed shell (strain) hardening behavior for a higher acoustic pressure. We conclude that the subharmonic oscillations observed in this study belonged to the transmit at resonance (TR) regime. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  17. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    NASA Astrophysics Data System (ADS)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.

  18. Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate

    NASA Astrophysics Data System (ADS)

    Pan, Diankun; Ma, Benbiao; Dai, Fuhong

    2017-03-01

    In this work, a bi-stable vibration energy harvester is presented to scavenge energy from ambient vibrations over a wide frequency range. This bi-stable harvester consists of a bi-stable hybrid composite plate as host structure and several pieces of piezoelectric ceramics. Three linear harvesters with the same geometry were employed as the control samples to illustrate the advantages of this bi-stable harvester. The voltage-frequency responses were measured with different g-level excitations, and the output powers across various resistances were measured at different frequencies and accelerations. Unlike the linear harvesters which are effective only near their natural frequencies, the obvious nonlinearities of this bi-stable harvester broaden its working bandwidth. Additionally, the characteristics of this bi-stable host structure contribute to the output power. Under the same condition, when this bi-stable harvester is under cross-well oscillation pattern the maximum output powers are several times higher than those of the linear harvesters. The measured highest output power of this bi-stable harvester is 36.2 mW with 38 Hz frequency and 5g acceleration (g = 9.8 m s-2).

  19. Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Shah, Santosh K.; Zhirnova, Dina F.

    2018-05-01

    Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees ( Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.

  20. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  1. A novel piezo vibration platform for probe dynamic performance calibration

    NASA Astrophysics Data System (ADS)

    Liang, Rong; Jusko, Otto; Lüdicke, Frank; Neugebauer, Michael

    2001-09-01

    A novel piezo vibration platform of compact size (120×120×120 mm3) for probe dynamic performance calibration has been developed. A piezo tube is employed to generate movement which is measured in real time by a miniature fibre interferometer and close-loop controlled by a fast digital signal processor, thus the calibration can be made traceable to the national length standard. 20 kHz control-loop frequency with 1.71 nm uncertainty has been achieved. The maximum calibration range is 20 µm with 0.3 nm resolution. The piezo vibration platform can generate up to 300 Hz sinusoidal signal and various other waveforms, such as square, triangle and saw tooth. It can also work in sweep mode to shift the frequency up to 100 Hz continuously, which is a very useful function when the amplitude-frequency response of the probe is to be investigated.

  2. Tunable surface acoustic wave device based on acoustoelectric interaction in ZnO/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Rui; Reyes, Pavel I.; Ragavendiran, Sowmya; Shen, H.; Lu, Yicheng

    2015-08-01

    A tunable surface acoustic wave (SAW) device is developed on a multilayer structure which consists of an n-type semiconductor ZnO layer and a Ni-doped piezoelectric ZnO layer deposited on a GaN/c-Al2O3 substrate. The unique acoustic dispersion relationship between ZnO and GaN generates the multi-mode SAW response in this structure, facilitating high frequency operation. A dc bias voltage is applied to a Ti/Au gate layer deposited on the path of SAW delay line to modulate the electrical conductivity for tuning the acoustic velocity. For devices operating at 1.25 GHz, a maximum SAW velocity change of 0.9% is achieved, equivalent to the frequency change of 11.2 MHz. This voltage-controlled frequency tuning device has potential applications in resettable sensors, adaptive signal processing, and secure wireless communication.

  3. Event terms in the response spectra prediction equation and their deviation due to stress drop variations

    NASA Astrophysics Data System (ADS)

    Kawase, H.; Nakano, K.

    2015-12-01

    We investigated the characteristics of strong ground motions separated from acceleration Fourier spectra and acceleration response spectra of 5% damping calculated from weak and moderate ground motions observed by K-NET, KiK-net, and the JMA Shindokei Network in Japan using the generalized spectral inversion method. The separation method used the outcrop motions at YMGH01 as reference where we extracted site responses due to shallow weathered layers. We include events with JMA magnitude equal to or larger than 4.5 observed from 1996 to 2011. We find that our frequency-dependent Q values are comparable to those of previous studies. From the corner frequencies of Fourier source spectra, we calculate Brune's stress parameters and found a clear magnitude dependence, in which smaller events tend to spread over a wider range while maintaining the same maximum value. We confirm that this is exactly the case for several mainshock-aftershock sequences. The average stress parameters for crustal earthquakes are much smaller than those of subduction zone, which can be explained by their depth dependence. We then compared the strong motion characteristics based on the acceleration response spectra and found that the separated characteristics of strong ground motions are different, especially in the lower frequency range less than 1Hz. These differences comes from the difference between Fourier spectra and response spectra found in the observed data; that is, predominant components in high frequency range of Fourier spectra contribute to increase the response in lower frequency range with small Fourier amplitude because strong high frequency component acts as an impulse to a Single-Degree-of-Freedom system. After the separation of the source terms for 5% damping response spectra we can obtain regression coefficients with respect to the magnitude, which lead to a new GMPE as shown in Fig.1 on the left. Although stress drops for inland earthquakes are 1/7 of the subduction-zone earthquakes, we can see linear regression works quite well. After this linear regression we correlate residuals as a function of Brune's stress parameters of corresponding events as shown in Fig.1 on the right for the case of 1Hz. We found quite good linear correlation, which makes aleatoric uncertainty 40 to 60 % smaller than the original.

  4. Investigating the effect of previous treatments on wheat biomass over multiple spatial frequencies

    NASA Astrophysics Data System (ADS)

    Milne, A. E.; Castellanos, M. T.; Cartagena, M. C.; Tarquis, A. M.; Lark, R. M.

    2010-09-01

    In this study we use the maximum overlap discrete packet transform (MODWPT) to investigate residual effects on wheat biomass of fertigation treatments applied to a previous crop. The wheat crop covered nine subplots from a previous experiment on melon response to fertigation. Each subplot had previously received a different level of applied nitrogen. Many factors affect wheat biomass, causing it to vary at different spatial frequencies. We hypothesize that these will include residual effects from fertilizer application (at relatively low spatial frequencies) and the local influence of individual plants from the previous melon crop (at high frequency). To test this hypothesis we use the MODWPT to identify the dominant spatial frequencies of wheat biomass variation, and analyse the relationship to both the previous fertilizer application and the location of individual melon plants in the previous crop. The MODWPT is particularly appropriate for this because it allows us first to identify the key spatial frequencies in the wheat biomass objectively and to analyse them, and their relationship to hypothesized driving factors without any assumptions of uniformity (stationarity) of wheat-biomass variation. The results showed that the applied nitrogen dominated the wheat biomass response, and that there was a noticeable component of wheat-biomass variation at the spatial frequency that corresponds to the melon cropping. We expected wheat biomass to be negatively correlated with the position of melons in the previous crop, due to uptake of the applied nitrogen. The MODWPT, which allows us to detect changes in correlation between variables at different frequencies, showed that such a relationship was found across part of the experiment but not uniformly.

  5. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts.

    PubMed

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-06-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly. Low frequency sampling may therefore largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is lacking. High frequency monitoring (2min) of seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The maximum pesticide concentrations were 387μgL -1 . Samples from all of the runoff events exceeded the legal limit of 0.1μgL -1 for at least one pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The point and average (time or discharge-weighted) concentrations indicated up to a 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively. This highlights the important role of sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve understanding of pesticide supply and transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Future projection of design storms using a GCM-informed weather generator

    NASA Astrophysics Data System (ADS)

    KIm, T. W.; Wi, S.; Valdés-Pineda, R.; Valdés, J. B.

    2017-12-01

    The rainfall Intensity-Duration-Frequency (IDF) curves are one of the most common tools used to provide planners with a description of the frequency of extreme rainfall events of various intensities and durations. Therefore deriving appropriate IDF estimates is important to avoid malfunctions of water structures that cause huge damage. Evaluating IDF estimates in the context of climate change has become more important because projections from climate models suggest that the frequency of intense rainfall events will increase in the future due to the increase in greenhouse gas emissions. In this study, the Bartlett-Lewis (BL) stochastic rainfall model is employed to generate annual maximum series of various sub-daily durations for test basins of the Model Parameter Estimation Experiment (MOPEX) project, and to derive the IDF curves in the context of climate changes projected by the North American Regional Climate Change (NARCCAP) models. From our results, it has been found that the observed annual rainfall maximum series is reasonably represented by the synthetic annual maximum series generated by the BL model. The observed data is perturbed by change factors to incorporate the NARCCAP climate change scenarios into the IDF estimates. The future IDF curves show a significant difference from the historical IDF curves calculated for the period 1968-2000. Overall, the projected IDF curves show an increasing trend over time. The impacts of changes in extreme rainfall on the hydrologic response of the MOPEX basins are also explored. Acknowledgement: This research was supported by a grant [MPSS-NH-2015-79] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  7. Maximum Dynamic Lower-Limb Strength Was Maintained During 24-Week Reduced Training Frequency in Previously Sedentary Older Women.

    PubMed

    Walker, Simon; Serrano, Javier; Van Roie, Evelien

    2018-04-01

    Walker, S, Serrano, J, and Van Roie, E. Maximum dynamic lower-limb strength was maintained during 24-week reduced training frequency in previously sedentary older women. J Strength Cond Res 32(4): 1063-1071, 2018-There is little study into the effects of reducing strength training below the recommended twice weekly frequency, particularly in older women, despite the possibility that individuals will encounter periods of reduced training frequency. The purpose of the present study was to determine the effects of a period of reduced training frequency on maximum strength and muscle mass of the lower limbs in comparison with the recommended training frequency of twice per week. After an initial 12-week period, where all subjects trained twice per week, a reduced strength training group (RST) trained once per week, whereas another strength training group (ST) continued to train twice per week for 24 weeks. A nontraining age-matched control group (CON) was used for comparison. All subjects were tested for leg press 1-repetition maximum (1RM), electromyogram (EMG) amplitude of vastus lateralis and medialis, and quadriceps cross-sectional area (CSA) measured by panoramic ultrasound at weeks 0, 12, and 36. Both ST and RST continued to increase 1RM during the reduced training frequency period compared with control (∼8% and ∼5% vs. ∼-3%, respectively; p ≤ 0.05). Accompanying these changes were significant increases in EMG amplitude in both ST and RST (p ≤ 0.05). However, the initial gains in quadriceps CSA made from week 0 to week 12 in RST were lost when training once per week (RST ∼-5%). Therefore, reduced training frequency in this population does not adversely affect maximum strength or muscle activity but can negatively affect muscle mass, even reversing training-induced gains. Older individuals not training at least twice per week may compromise potential increases in muscle mass, important in counteracting effects of aging.

  8. The Rocketdyne Multifunction Tester. Part 2: Operation of a Radial Magnetic Bearing as an Excitation Source

    NASA Technical Reports Server (NTRS)

    Hawkins, L. A.; Murphy, Brian T.; Lang, K. W.

    1991-01-01

    The operation of the magnetic bearing used as an excitation source in the Rocketdyne Multifunction Tester is described. The tester is scheduled for operation during the summer of 1990. The magnetic bearing can be used in two control modes: (1) open loop mode, in which the magnetic bearing operates as a force actuator; and (2) closed loop mode, in which the magnetic bearing provides shaft support. Either control mode can be used to excite the shaft; however, response of the shaft in the two control modes is different due to the alteration of the eigenvalues by closed loop mode operation. A rotordynamic model is developed to predict the frequency response of the tester due to excitation in either control mode. Closed loop mode excitation is shown to be similar to the excitation produced by a rotating eccentricity in a conventional bearing. Predicted frequency response of the tester in the two control modes is compared, and the maximum response is shown to be the same for the two control modes when synchronous unbalance loading is not considered. The analysis shows that the response of this tester is adequate for the extraction of rotordynamic stiffness, damping, and inertia coefficients over a wide range of test article stiffnesses.

  9. Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Yu, Menglin; Gao, Shiqiao; Kong, Xiangxin; Gu, Wang; Zhang, Ran; Liu, Bowen

    2018-05-01

    This work presents a piezoelectric energy harvester with clamped-clamped beams, and it is fabricated with MEMS process. When excited by sinusoidal vibration, the energy harvester has a sharp jumping down phenomenon and the measured frequency responses of the clamped-clamped beams structure show a larger bandwidth which is about 56Hz, more efficient than that with cantilever beams. When the exciting acceleration ac is 12m/s2, the energy harvester achieves to a maximum open-circuit voltage of 94mV on one beam. The load voltage is proportional to the load resistance, and it increased with the increase of load resistance. Connected four beams in series, the output power reaches the maximum value of 730 nW and the optimal load is 15KΩ to one beam.

  10. Optimizing signal output: effects of viscoelasticity and difference frequency on vibroacoustic radiation of tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Namiri, Nikan K.; Maccabi, Ashkan; Bajwa, Neha; Badran, Karam W.; Taylor, Zachary D.; St. John, Maie A.; Grundfest, Warren S.; Saddik, George N.

    2018-02-01

    Vibroacoustography (VA) is an imaging technology that utilizes the acoustic response of tissues to a localized, low frequency radiation force to generate a spatially resolved, high contrast image. Previous studies have demonstrated the utility of VA for tissue identification and margin delineation in cancer tissues. However, the relationship between specimen viscoelasticity and vibroacoustic emission remains to be fully quantified. This work utilizes the effects of variable acoustic wave profiles on unique tissue-mimicking phantoms (TMPs) to maximize VA signal power according to tissue mechanical properties, particularly elasticity. A micro-indentation method was utilized to provide measurements of the elastic modulus for each biological replica. An inverse relationship was found between elastic modulus (E) and VA signal amplitude among homogeneous TMPs. Additionally, the difference frequency (Δf ) required to reach maximum VA signal correlated with specimen elastic modulus. Peak signal diminished with increasing Δf among the polyvinyl alcohol specimen, suggesting an inefficient vibroacoustic response by the specimen beyond a threshold of resonant Δf. Comparison of these measurements may provide additional information to improve tissue modeling, system characterization, as well as insights into the unique tissue composition of tumors in head and neck cancer patients.

  11. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  12. Analysis of the aerodynamic interaction between two plunging plates in tandem at low Reynolds number for maximum propulsive efficiency

    NASA Astrophysics Data System (ADS)

    Ortega-Casanova, Joaquin; Fernandez-Feria, Ramon

    2015-11-01

    The thrust generated by two heaving plates in tandem is analysed for two particular sets of configurations of interest in forward flight: a plunging leading plate with the trailing plate at rest, and the two plates heaving with the same frequency and amplitude, but varying the phase difference. The thrust efficiency of the leading plate is augmented in relation to a single plate heaving with the same frequency and amplitude in most cases. In the first configuration, we characterize the range of nondimensional heaving frequencies and amplitudes of the leading plate for which the stationary trailing plate contributes positively to the global thrust. The maximum global thrust efficiency, reached for an advance ratio slightly less than unity and a reduced frequency close to 5, is about the same as the maximum efficiency for an isolated plate. But for low frequencies the tandem configuration with the trailing plate at rest is more thrust efficient than the isolated plate. In the second configuration, we find that the maximum thrust efficiency is reached for a phase lag of 180o (counterstroking), particularly for an advance ratio unity and a reduced frequency 4.4, and it is practically the same as in the other configuration and that for a single plate. Supported by the Ministerio de Economía y Competitividad of Spain Grant no. DPI2013-40479-P.

  13. The sense of hearing in the Pacific oyster, Magallana gigas

    PubMed Central

    Charifi, Mohcine; Sow, Mohamedou; Ciret, Pierre; Benomar, Soumaya

    2017-01-01

    There is an increasing concern that anthropogenic noise could have a significant impact on the marine environment, but there is still insufficient data for most invertebrates. What do they perceive? We investigated this question in oysters Magallana gigas (Crassostrea gigas) using pure tone exposures, accelerometer fixed on the oyster shell and hydrophone in the water column. Groups of 16 oysters were exposed to quantifiable waterborne sinusoidal sounds in the range of 10 Hz to 20 kHz at various acoustic energies. The experiment was conducted in running seawater using an experimental flume equipped with suspended loudspeakers. The sensitivity of the oysters was measured by recording their valve movements by high-frequency noninvasive valvometry. The tests were 3 min tone exposures including a 70 sec fade-in period. Three endpoints were analysed: the ratio of responding individuals in the group, the resulting changes of valve opening amplitude and the response latency. At high enough acoustic energy, oysters transiently closed their valves in response to frequencies in the range of 10 to <1000 Hz, with maximum sensitivity from 10 to 200 Hz. The minimum acoustic energy required to elicit a response was 0.02 m∙s-2 at 122 dBrms re 1 μPa for frequencies ranging from 10 to 80 Hz. As a partial valve closure cannot be differentiated from a nociceptive response, it is very likely that oysters detect sounds at lower acoustic energy. The mechanism involved in sound detection and the ecological consequences are discussed. PMID:29069092

  14. The sense of hearing in the Pacific oyster, Magallana gigas.

    PubMed

    Charifi, Mohcine; Sow, Mohamedou; Ciret, Pierre; Benomar, Soumaya; Massabuau, Jean-Charles

    2017-01-01

    There is an increasing concern that anthropogenic noise could have a significant impact on the marine environment, but there is still insufficient data for most invertebrates. What do they perceive? We investigated this question in oysters Magallana gigas (Crassostrea gigas) using pure tone exposures, accelerometer fixed on the oyster shell and hydrophone in the water column. Groups of 16 oysters were exposed to quantifiable waterborne sinusoidal sounds in the range of 10 Hz to 20 kHz at various acoustic energies. The experiment was conducted in running seawater using an experimental flume equipped with suspended loudspeakers. The sensitivity of the oysters was measured by recording their valve movements by high-frequency noninvasive valvometry. The tests were 3 min tone exposures including a 70 sec fade-in period. Three endpoints were analysed: the ratio of responding individuals in the group, the resulting changes of valve opening amplitude and the response latency. At high enough acoustic energy, oysters transiently closed their valves in response to frequencies in the range of 10 to <1000 Hz, with maximum sensitivity from 10 to 200 Hz. The minimum acoustic energy required to elicit a response was 0.02 m∙s-2 at 122 dBrms re 1 μPa for frequencies ranging from 10 to 80 Hz. As a partial valve closure cannot be differentiated from a nociceptive response, it is very likely that oysters detect sounds at lower acoustic energy. The mechanism involved in sound detection and the ecological consequences are discussed.

  15. Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: case study of water.

    PubMed

    de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie

    2011-12-14

    We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics

  16. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  17. Corrected implicit Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleveland, M. A.; Wollaber, A. B.

    2018-04-01

    In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  19. Narrow sound pressure level tuning in the auditory cortex of the bats Molossus molossus and Macrotus waterhousii.

    PubMed

    Macías, Silvio; Hechavarría, Julio C; Cobo, Ariadna; Mora, Emanuel C

    2014-03-01

    In the auditory system, tuning to sound level appears in the form of non-monotonic response-level functions that depict the response of a neuron to changing sound levels. Neurons with non-monotonic response-level functions respond best to a particular sound pressure level (defined as "best level" or level evoking the maximum response). We performed a comparative study on the location and basic functional organization of the auditory cortex in the gleaning bat, Macrotus waterhousii, and the aerial-hawking bat, Molossus molossus. Here, we describe the response-level function of cortical units in these two species. In the auditory cortices of M. waterhousii and M. molossus, the characteristic frequency of the units increased from caudal to rostral. In M. waterhousii, there was an even distribution of characteristic frequencies while in M. molossus there was an overrepresentation of frequencies present within echolocation pulses. In both species, most of the units showed best levels in a narrow range, without an evident topography in the amplitopic organization, as described in other species. During flight, bats decrease the intensity of their emitted pulses when they approach a prey item or an obstacle resulting in maintenance of perceived echo intensity. Narrow level tuning likely contributes to the extraction of echo amplitudes facilitating echo-intensity compensation. For aerial-hawking bats, like M. molossus, receiving echoes within the optimal sensitivity range can help the bats to sustain consistent analysis of successive echoes without distortions of perception caused by changes in amplitude. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The variation in frequency locations in Doppler ultrasound spectra for maximum blood flow velocities in narrowed vessels.

    PubMed

    Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan

    2017-11-01

    This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Complex, non-monotonic dose-response curves with multiple maxima: Do we (ever) sample densely enough?

    PubMed

    Cvrčková, Fatima; Luštinec, Jiří; Žárský, Viktor

    2015-01-01

    We usually expect the dose-response curves of biological responses to quantifiable stimuli to be simple, either monotonic or exhibiting a single maximum or minimum. Deviations are often viewed as experimental noise. However, detailed measurements in plant primary tissue cultures (stem pith explants of kale and tobacco) exposed to varying doses of sucrose, cytokinins (BA or kinetin) or auxins (IAA or NAA) revealed that growth and several biochemical parameters exhibit multiple reproducible, statistically significant maxima over a wide range of exogenous substance concentrations. This results in complex, non-monotonic dose-response curves, reminiscent of previous reports of analogous observations in both metazoan and plant systems responding to diverse pharmacological treatments. These findings suggest the existence of a hitherto neglected class of biological phenomena resulting in dose-response curves exhibiting periodic patterns of maxima and minima, whose causes remain so far uncharacterized, partly due to insufficient sampling frequency used in many studies.

  2. Evaluation of Electromechanical Systems Dynamically Emulating a Candidate Hydrokinetic Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavagnaro, Robert J.; Neely, Jason C.; Fay, Franois-Xavier

    The use of controllable motor-generator sets to emulate the dynamics of a hydrokinetic turbine is evaluated as an alternative to field testing a prototype. The emulator control dynamic equations are presented, methods for scaling turbine parameters are examined, and experimental results are presented from three electromechanical emulation machines (EEMs) programmed to emulate the same vertical-axis fixed-pitch turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command or speed command differed. In onemore » of the EEMs evaluated, the power take off controller tracks the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with numerical simulation but to deviate at high frequencies.« less

  3. Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.

    PubMed

    Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D

    2010-01-01

    Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.

  4. Analytical study of acoustic response of a semireverberant enclosure with application to active noise control

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Schein, D. B.; Gridley, D.

    1985-01-01

    The acoustic response of a semireverberant enclosure with two interacting, velocity-prescribed source distributions was analyzed using standard modal analysis techniques with a view toward a better understanding of active noise control. Different source and enclosure dimensions, source separations, and single-wall admittances were studied over representative frequency bandwidths of 10 Hz with source relative phase as a parameter. Results indicate that power radiated into the enclosure agree qualitatively with the spatial average of the mean square pressure, even though the reverberant field is nondiffuse. Decreases in acoustic power can therefore be used to estimate global noise reduction in a nondiffuse semireverberant environment. As might be expected, parametric studies indicate that maximum power reductions of up to 25 dB can be achieved when secondary and primary sources are compact and closely spaced. Although less success is achieved with increasing frequency and source separation or size, significant suppression of up to 8 dB still occurs over the 1 to 2 Hz bandwidth.

  5. Evaluation of Electromechanical Systems Dynamically Emulating a Candidate Hydrokinetic Turbine

    DOE PAGES

    Cavagnaro, Robert J.; Neely, Jason C.; Fay, Franois-Xavier; ...

    2016-11-06

    The use of controllable motor-generator sets to emulate the dynamics of a hydrokinetic turbine is evaluated as an alternative to field testing a prototype. The emulator control dynamic equations are presented, methods for scaling turbine parameters are examined, and experimental results are presented from three electromechanical emulation machines (EEMs) programmed to emulate the same vertical-axis fixed-pitch turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command or speed command differed. In onemore » of the EEMs evaluated, the power take off controller tracks the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with numerical simulation but to deviate at high frequencies.« less

  6. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    PubMed Central

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  7. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    NASA Technical Reports Server (NTRS)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  8. Relationship between Audiometric Slope and Tinnitus Pitch in Tinnitus Patients: Insights into the Mechanisms of Tinnitus Generation

    PubMed Central

    Schecklmann, Martin; Vielsmeier, Veronika; Steffens, Thomas; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias

    2012-01-01

    Background Different mechanisms have been proposed to be involved in tinnitus generation, among them reduced lateral inhibition and homeostatic plasticity. On a perceptual level these different mechanisms should be reflected by the relationship between the individual audiometric slope and the perceived tinnitus pitch. Whereas some studies found the tinnitus pitch corresponding to the maximum hearing loss, others stressed the relevance of the edge frequency. This study investigates the relationship between tinnitus pitch and audiometric slope in a large sample. Methodology This retrospective observational study analyzed 286 patients. The matched tinnitus pitch was compared to the frequency of maximum hearing loss and the edge of the audiogram (steepest hearing loss) by t-tests and correlation coefficients. These analyses were performed for the whole group and for sub-groups (uni- vs. bilateral (117 vs. 338 ears), pure-tone vs. narrow-band (340 vs. 115 ears), and low and high audiometric slope (114 vs. 113 ears)). Findings For the right ear, tinnitus pitch was in the same range and correlated significantly with the frequency of maximum hearing loss, but differed from and did not correlate with the edge frequency. For the left ear, similar results were found but the correlation between tinnitus pitch and maximum hearing loss did not reach significance. Sub-group analyses (bi- and unilateral, tinnitus character, slope steepness) revealed identical results except for the sub-group with high audiometric slope which revealed a higher frequency of maximum hearing loss as compared to the tinnitus pitch. Conclusion The study-results confirm a relationship between tinnitus pitch and maximum hearing loss but not to the edge frequency, suggesting that tinnitus is rather a fill-in-phenomenon resulting from homeostatic mechanisms, than the result of deficient lateral inhibition. Sub-group analyses suggest that audiometric steepness and the side of affected ear affect this relationship. Future studies should control for these potential confounding factors. PMID:22529949

  9. The health systems' priority setting criteria for selecting health technologies: A systematic review of the current evidence.

    PubMed

    Mobinizadeh, Mohammadreza; Raeissi, Pouran; Nasiripour, Amir Ashkan; Olyaeemanesh, Alireza; Tabibi, Seyed Jamaleddin

    2016-01-01

    In the recent years, using health technologies to diagnose and treat diseases has had a considerable and accelerated growth. The proper use of these technologies may considerably help in the diagnosis and treatment of different diseases. On the other hand, unlimited and unrestricted entry of these technologies may result in induced demand by service providers. The aim of this study was to determine the appropriate criteria used in health technologies priority-setting models in the world. Using MESH and free text, we sought and retrieved the relevant articles from the most appropriate medical databases (the Cochrane Library, PubMed and Scopus) through three separate search strategies up to March 2015. The inclusion criteria were as follows: 1) Studies with specific criteria; 2) Articles written in English; 3) Those articles conducted in compliance with priority setting of health technologies. Data were analyzed qualitatively using a thematic synthesis technique. After screening the retrieved papers via PRISMA framework, from the 7,012 papers, 40 studies were included in the final phase. Criteria for selecting health technologies (in pre assessment and in the assessment phase) were categorized into six main themes: 1) Health outcomes; 2) Disease and target population; 3) Technology alternatives; 4) Economic aspects; 5) Evidence; 6) and other factors. "Health effects/benefits" had the maximum frequency in health outcomes (8 studies); "disease severity" had the maximum frequency in disease and target population (12 studies); "the number of alternatives" had the maximum frequency in alternatives (2 studies); "cost-effectiveness" had the maximum frequency in economic aspects (15 studies); "quality of evidence" had the maximum frequency in evidence (4 studies); and "issues concerning the health system" had the maximum frequency in other factors (10 studies). The results revealed an increase in the number of studies on health technologies priority setting around the world, and emphasized the necessity of application of a multi- criteria approach for appropriate decision making about healthcare technologies in the health systems.

  10. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  11. Sherborne Missile Fire Frequency with Unconstraint Parameters

    NASA Astrophysics Data System (ADS)

    Dong, Shaquan

    2018-01-01

    For the modeling problem of shipborne missile fire frequency, the fire frequency models with unconstant parameters were proposed, including maximum fire frequency models with unconstant parameters, and actual fire frequency models with unconstant parameters, which can be used to calculate the missile fire frequency with unconstant parameters.

  12. Accurate determination of complex materials coefficients of piezoelectric resonators.

    PubMed

    Du, Xiao-Hong; Wang, Qing-Ming; Uchino, Kenji

    2003-03-01

    This paper presents a method of accurately determining the complex piezoelectric and elastic coefficients of piezoelectric ceramic resonators from the measurement of the normalized electric admittance, Y, which is electric admittance Y of piezoelectric resonator normalized by the angular frequency omega. The coefficients are derived from the measurements near three special frequency points that correspond to the maximum and the minimum normalized susceptance (B) and the maximum normalized conductance (G). The complex elastic coefficient is determined from the frequencies at these points, and the real and imaginary parts of the piezoelectric coefficient are related to the derivative of the susceptance with respect to the frequency and the asymmetry of the conductance, respectively, near the maximum conductance point. The measurements for some lead zirconate titanate (PZT) based ceramics are used as examples to demonstrate the calculation and experimental procedures and the comparisons with the standard methods.

  13. Vocal warm-up increases phonation threshold pressure in soprano singers at high pitch.

    PubMed

    Motel, Tamara; Fisher, Kimberly V; Leydon, Ciara

    2003-06-01

    Vocal warm-up is thought to optimize singing performance. We compared effects of short-term, submaximal, vocal warm-up exercise with those of vocal rest on the soprano voice (n = 10, ages 19-21 years). Dependent variables were the minimum subglottic air pressure required for vocal fold oscillation to occur (phonation threshold pressure, Pth), and the maximum and minimum phonation fundamental frequency. Warm-up increased Pth for high pitch phonation (p = 0.033), but not for comfortable (p = 0.297) or low (p = 0.087) pitch phonation. No significant difference in the maximum phonation frequency (p = 0.193) or minimum frequency (p = 0.222) was observed. An elevated Pth at controlled high pitch, but an unchanging maximum and minimum frequency production suggests that short-term vocal exercise may increase the viscosity of the vocal fold and thus serve to stabilize the high voice.

  14. Optimal lay-up design of variable stiffness laminated composite plates by a layer-wise optimization technique

    NASA Astrophysics Data System (ADS)

    Houmat, A.

    2018-02-01

    The optimal lay-up design for the maximum fundamental frequency of variable stiffness laminated composite plates is investigated using a layer-wise optimization technique. The design variables are two fibre orientation angles per ply. Thin plate theory is used in conjunction with a p-element to calculate the fundamental frequencies of symmetrically and antisymmetrically laminated composite plates. Comparisons with existing optimal solutions for constant stiffness symmetrically laminated composite plates show excellent agreement. It is observed that the maximum fundamental frequency can be increased considerably using variable stiffness design as compared to constant stiffness design. In addition, optimal lay-ups for the maximum fundamental frequency of variable stiffness symmetrically and antisymmetrically laminated composite plates with different aspect ratios and various combinations of free, simply supported and clamped edge conditions are presented. These should prove a useful benchmark for optimal lay-ups of variable stiffness laminated composite plates.

  15. Convergence of linear acceleration and yaw rotation signals on non-eye movement neurons in the vestibular nucleus of macaques.

    PubMed

    Newlands, Shawn D; Abbatematteo, Ben; Wei, Min; Carney, Laurel H; Luan, Hongge

    2018-01-01

    Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.

  16. Convergent properties of vestibular-related brain stem neurons in the gerbil

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    2000-01-01

    Three classes of vestibular-related neurons were found in and near the prepositus and medial vestibular nuclei of alert or decerebrate gerbils, those responding to: horizontal translational motion, horizontal head rotation, or both. Their distribution ratios were 1:2:2, respectively. Many cells responsive to translational motion exhibited spatiotemporal characteristics with both response gain and phase varying as a function of the stimulus vector angle. Rotationally sensitive neurons were distributed as Type I, II, or III responses (sensitive to ipsilateral, contralateral, or both directions, respectively) in the ratios of 4:6:1. Four tested factors shaped the response dynamics of the sampled neurons: canal-otolith convergence, oculomotor-related activity, rotational Type (I or II), and the phase of the maximum response. Type I nonconvergent cells displayed increasing gains with increasing rotational stimulus frequency (0.1-2.0 Hz, 60 degrees /s), whereas Type II neurons with convergent inputs had response gains that markedly decreased with increasing translational stimulus frequency (0.25-2.0 Hz, +/-0.1 g). Type I convergent and Type II nonconvergent neurons exhibited essentially flat gains across the stimulus frequency range. Oculomotor-related activity was noted in 30% of the cells across all functional types, appearing as burst/pause discharge patterns related to the fast phase of nystagmus during head rotation. Oculomotor-related activity was correlated with enhanced dynamic range compared with the same category that had no oculomotor-related response. Finally, responses that were in-phase with head velocity during rotation exhibited greater gains with stimulus frequency increments than neurons with out-of-phase responses. In contrast, for translational motion, neurons out of phase with head acceleration exhibited low-pass characteristics, whereas in-phase neurons did not. Data from decerebrate preparations revealed that although similar response types could be detected, the sampled cells generally had lower background discharge rates, on average one-third lower response gains, and convergent properties that differed from those found in the alert animals. On the basis of the dynamic response of identified cell types, we propose a pair of models in which inhibitory input from vestibular-related neurons converges on oculomotor neurons with excitatory inputs from the vestibular nuclei. Simple signal convergence and combinations of different types of vestibular labyrinth information can enrich the dynamic characteristics of the rotational and translational vestibuloocular responses.

  17. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    NASA Astrophysics Data System (ADS)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  18. Contrasting dissolved organic carbon dynamics at two forested catchments interpreted from high-frequency optical sensor measurements

    NASA Astrophysics Data System (ADS)

    Saraceno, J.; Shanley, J. B.

    2015-12-01

    Stream dissolved organic carbon (DOC) concentrations can change rapidly during high-flow events. The timing and magnitude of these changes relative to the event hydrograph can yield insights about possible DOC sources its flow paths to the stream. In situ fluorescent dissolved organic matter (FDOM) sensors that generate high-frequency observations enable detailed examination of high-flow DOC- discharge hysteresis. In this presentation, we interpret high-flow DOC dynamics at two of the five U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) sites - Panola Mountain, Georgia and Sleepers River, Vermont. Based on laboratory analyses of weekly and event grab samples, both USGS WEBB sites had a similar DOC ranges: from ~1 milligrams per liter (mg/L) at base flow to ~11-15 mg/L during the largest events. A curvilinear relationship between DOC and FDOM (corrected for temperature and turbidity interferences) was used to model a continuous time series of DOC. At the Sleepers River site, DOC showed a seasonal pattern of increasing DOC response; from fairly subdued during spring snowmelt, to a maximum during autumn leaf-fall. The DOC response to discharge showed a consistent clockwise hysteresis (DOC peak, lagged discharge peak). At the Panola Mountain site, maximum event DOC response was lower during wet conditions in the winter and spring. Hysteresis was less expressed at Panola Mountain relative to Sleepers River and displayed both clockwise and counterclockwise patterns, which were dependent on antecedent moisture conditions. The greater synchrony of DOC and discharge peaks at Panola Mountain suggests that DOC sources are closer to the stream and (or) move to the stream more quickly, than at Sleepers River.

  19. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging.

    PubMed

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo (N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females (N = 25) and young females from a rural area (N = 15) and an urban area (N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females (P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups (P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  20. Navigator alignment using radar scan

    DOEpatents

    Doerry, Armin W.; Marquette, Brandeis

    2016-04-05

    The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.

  1. Maximum reflectance and transmittance of films coated with gapped graphene in the context of the Dirac model

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2018-06-01

    The analytic expressions for the maximum and minimum reflectances of optical films coated with gapped graphene are derived in the application region of the Dirac model taking into account multiple reflections. The respective film thicknesses are also found. In so doing the film material is described by the frequency-dependent index of refraction and graphene by the polarization tensor defined along the real frequency axis. The developed formalism is illustrated by an example of the graphene-coated film made of amorphous silica. Numerical computations of the maximum and minimum reflectances and respective film thicknesses are performed at room temperature in two frequency regions belonging to the near-infrared and far-infrared domains. It is shown that in the far-infrared domain the graphene coating has a profound effect on the values of maximum reflectance and respective film thickness leading to a relative increase in their values by up to 65% and 50%, respectively. The maximum transmittance of a graphene-coated film of appropriately chosen thickness is shown to exceed 90%. Possible applications of the obtained results are discussed.

  2. Detection of the large meteoroid/NEO flux using infrasound: recent detection of the November 21, 1995, Colorado fireball

    NASA Astrophysics Data System (ADS)

    Revelle, Douglas O.; Whitaker, Rodney W.

    1996-10-01

    During the early morning of November 21, 1995, a fireball as bright as the full moon entered the atmosphere over southeastern Colorado and initially produced audible sonic boom reports from Texas to Wyoming. The event was detected locally by a security video camera which showed the reflection of the fireball event on the hood of a truck. The camera also recorded tree shadows cast by the light of the fireball. This recording includes the audio signal of a strong double boom as well. Subsequent investigation of the array near Los Alamos, New Mexico operated by the Los Alamos National Laboratory as part of its commitment to the Comprehensive Test Ban Treaty negotiations, showed the presence of an infrasonic signal from the proper direction at about the correct time for this fireball. The Los Alamos array is a four-element infrasonic system in near-continuous operation on the laboratory property. The nominal spacing between the array elements is 212 m. The basic sensor is a Globe Universal Sciences Model 100C microphone whose response is flat from about 0.1 to 300 Hz (which we filter at the high frequency end to be limited to 20 Hz). Each low frequency microphone is connected to a set of twelve porous hoses to reduce wind noise. The characteristics of the observed signal include the onset arrival time of 0939:20 UT (0239:20 MST), with a maximum timing uncertainty of plus or minus 2 minutes, the signal onset time delay from the appearance of the fireball of 21 minutes, 20 seconds, total signal duration of 2 minutes 10 seconds, the source location determined to be toward 31 degrees from true north, the horizontal trace velocity of 429 m/sec, the signal velocity of 0.29 plus or minus 0.03 km/sec, assuming a 375 km horizontal range to the fireball, the dominant signal frequency content of 0.25 to 0.84 Hz (analyzed in the frequency interval from 0.2 to 2.0 Hz), the maximum signal cross-correlation of 0.97 and the maximum signal amplitude of 2.0 plus or minus 0.1 microbars. Also, on the basis of the signal period at maximum amplitude, we estimate a probable source energy for this event of between 10 to 100 tons of TNT (53.0 tons nominal).

  3. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  4. Physiology responses of Rhesus monkeys to vibration

    NASA Astrophysics Data System (ADS)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  5. Vestibular Evoked Myogenic Potential (VEMP) Testing: Normative Threshold Response Curves and Effects of Age

    PubMed Central

    Janky, Kristen L.; Shepard, Neil

    2009-01-01

    Background Vestibular Evoked Myogenic Potential (VEMP) testing has gained increased interest in the diagnosis of a variety of vestibular etiologies. Comparisons of P13 / N23 latency, amplitude and threshold response curves have been used to compare pathologic groups to normal controls. Appropriate characterization of these etiologies requires normative data across the frequency spectrum and age range. Purpose The objective of the current study was to test the hypothesis that significant changes in VEMP responses occur as a function of increased age across all test stimuli as well as characterize the VEMP threshold response curve across age. Research Design This project incorporated a prospective study design using a sample of convenience. Openly recruited subjects were assigned to groups according to age. Study Sample Forty-six normal controls ranging between 20 and 76 years of age participated in the study. Participants were separated by decade into 5 age categories from 20 to 60 plus years. Normal participants were characterized by having normal hearing sensitivity, no history of neurologic or balance/dizziness involvement and negative results on a direct office vestibular examination. Intervention VEMP responses were measured at threshold to click and 250, 500, 750, and 1000 Hz tone burst stimuli and at a suprathreshold level to 500 Hz toneburst stimuli at123 dBSPL. Data Collection and Analysis A mixed group factorial ANOVA and linear regression were performed to examine the effects of VEMP characteristics upon age. Results There were no significant differences between ears for any of the test parameters. There were no significant differences between age groups for n23 latency or amplitude in response to any of the stimuli. Significant mean differences did exist between age groups for p13 latency (250, 750, and 1000 Hz) and threshold (500 and 750 Hz). Age was significantly correlated with VEMP parameters. VEMP threshold was positively correlated (250, 500, 750, 1000 Hz); and amplitude was negatively correlated (500 Hz Maximum). The threshold response curves revealed best frequency tuning at 500 Hz with the highest thresholds in response to click stimuli. However, this best frequency tuning dissipated with increased age. VEMP response rates also decreased with increased age. Conclusion We have demonstrated that minor differences in VEMP responses occur with age. Given the reduced response rates and flattened frequency tuning curve for individuals over the age of 60, frequency tuning curves may not be a good diagnostic indicator for this age group. PMID:19764171

  6. Monaural and binaural response properties of neurons in the inferior colliculus of the rabbit: effects of sodium pentobarbital.

    PubMed

    Kuwada, S; Batra, R; Stanford, T R

    1989-02-01

    1. We studied the effects of sodium pentobarbital on 22 neurons in the inferior colliculus (IC) of the rabbit. We recorded changes in the sensitivity of these neurons to monaural stimulation and to ongoing interaural time differences (ITDs). Monaural stimuli were tone bursts at or near the neuron's best frequency. The ITD was varied by delivering tones that differed by 1 Hz to the two ears, resulting in a 1-Hz binaural beat. 2. We assessed a neuron's ITD sensitivity by calculating three measures from the responses to binaural beats: composite delay, characteristic delay (CD), and characteristic phase (CP). To obtain the composite delay, we first derived period histograms by averaging, showing the response at each stimulating frequency over one period of the beat frequency. Second, the period histograms were replotted as a function of their equivalent interaural delay and then averaged together to yield the composite delay curve. Last, we calculated the composite peak or trough delay by fitting a parabola to the peak or trough of this composite curve. The composite delay curve represents the average response to all frequencies within the neuron's responsive range, and the peak reflects the interaural delay that produces the maximum response. The CD and CP were estimated from a weighted fit of a regression line to the plot of the mean interaural phase of the response versus the stimulating frequency. The slope and phase intercept of this regression line yielded estimates of CD and CP, respectively. These two quantities are thought to reflect the mechanism of ITD sensitivity, which involves the convergence of phase-locked inputs on a binaural cell. The CD estimates the difference in the time required for the two inputs to travel from either ear to this cell, whereas the CP reflects the interaural phase difference of the inputs at this cell. 3. Injections of sodium pentobarbital at subsurgical dosages (less than 25 mg/kg) almost invariably altered the neuron's response rate, response latency, response pattern, and spontaneous activity. Most of these changes were predictable and consistent with an enhancement of inhibitory influences. For example, if the earliest response was inhibitory, later excitation was usually reduced and latency increased. If the earliest response was excitatory, the level of this excitation was unaltered or slightly enhanced, and changes in latency were minimal. 4. The neuron's response pattern also changed in a predictable way. For example, a response with an inhibitory pause could either change to a response with a longer pause or to a response with an onset only.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Investigation of Structures of Microwave Microelectromechanical-System Switches by Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lai, Yeong-Lin; Lin, Chien-Hung

    2007-10-01

    The optimal design of microwave microelectromechanical-system (MEMS) switches by the Taguchi method is presented. The structures of the switches are analyzed and optimized in terms of the effective stiffness constant, the maximum von Mises stress, and the natural frequency in order to improve the reliability and the performance of the MEMS switches. There are four factors, each of which has three levels in the Taguchi method for the MEMS switches. An L9(34) orthogonal array is used for the matrix experiments. The characteristics of the experiments are studied by the finite-element method and the analytical method. The responses of the signal-to-noise (S/N) ratios of the characteristics of the switches are investigated. The statistical analysis of variance (ANOVA) is used to interpret the experimental results and decide the significant factors. The final optimum setting, A1B3C1D2, predicts that the effective stiffness constant is 1.06 N/m, the maximum von Mises stress is 76.9 MPa, and the natural frequency is 29.331 kHz. The corresponding switching time is 34 μs, and the pull-down voltage is 9.8 V.

  8. Oscillating two-stream instability of beat waves in a hot magnetized plasma

    NASA Astrophysics Data System (ADS)

    Ferdous, T.; Amin, M. R.; Salimullah, M.

    1997-02-01

    It is shown that an electrostatic electron plasma beat wave is efficiently unstable for a low-frequency and short-wave-length purely growing perturbation (ω, k), i.e. an oscillating two-stream instability in a transversely magnetized hot plasma. The nonlinear response of electrons and ions with strong finite Larmor radius effects has been obtained by solving the Vlasov equation expressed in the guiding-center coordinates. The effect of ion dynamics has been found to play a vital role around ω ∼ ωci, where ωci is the ion-cyclotron frequency. For typical plasma parameters, it is found that the maximum growth rate of the instability is about two orders higher when ion motion is taken into account in addition to the electron dynamics.

  9. Hook Region Represented in a Cochlear Model

    NASA Astrophysics Data System (ADS)

    Steele, Charles R.; Kim, Namkeun; Puria, Sunil

    2009-02-01

    The present interest is in discontinuities. Particularly the geometry of the hook region, with the flexible round window nearly parallel with the basilar membrane, is not represented by a standard box model, in which both stapes and round window are placed at the end. A better model represents the round window by a soft membrane in the wall of scala tympani, with the end closed. This complicates the analysis considerably. Features are that the significant compression wave, i.e., the fast wave, is of negligible magnitude in this region, and that significant evanescent waves occur because of the discontinuities at the beginning and end of the simulated round window. The effect of this on both high frequency, with maximum basilar membrane response in the hook region, and lower frequencies are determined.

  10. Optical coherence tomography (OCT) leading to more insight into cochlear mechanics

    NASA Astrophysics Data System (ADS)

    de Boer, Egbert; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2015-12-01

    Optical Coherence Tomography (OCT) was used to measure vibrations of the basilar membrane (BM) and the Reticular Lamina (RL) in the cochlea of the guinea pig, at frequencies up to 25 kHz. Because of the difficulty of the experiments the data have limited sets of parameters and are subject to high noise levels. In a viable guinea-pig cochlea, the RL moves in the region of maximum response with a larger amplitude than the BM. We cannot rule out that some of that difference is due to a geometrical factor. We also found a consistent increase of this amplitude difference with frequency, which points to a low-pass filtering process. That process might be linked to the mass of the fluid contained in the Organ of Corti channel (OoC channel).

  11. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE PAGES

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...

    2017-11-01

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  12. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  13. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.

  14. Dynamic modelling and experimental study of asymmetric optothermal microactuator

    NASA Astrophysics Data System (ADS)

    Wang, Shuying; Chun, Qin; You, Qingyang; Wang, Yingda; Zhang, Haijun

    2017-01-01

    This paper reports the dynamic modelling and experimental study of an asymmetric optothermal microactuator (OTMA). According to the principle of thermal flux, a theoretical model for instantaneous temperature distribution of an expansion arm is established and the expression of expansion increment is derived. Dynamic expansion properties of the arm under laser pulse irradiation are theoretically analyzed indicating that both of the maximum expansion and expansion amplitude decrease with the pulse frequency increasing. Experiments have been further carried out on an OTMA fabricated by using an excimer laser micromachining system. It is shown that the OTMA deflects periodically with the same frequency of laser pulse irradiation. Experimental results also prove that both OTMA's maximum deflection and deflection amplitude (related to maximum expansion and expansion amplitude of the arm) decrease as frequency increases, matching with the theoretical model quite well. Even though the OTMA's deflection decrease at higher frequency, it is still capable of generating 8.2 μm maximum deflection and 4.2 μm deflection amplitude under 17 Hz/2 mW laser pulse irradiation. This work improves the potential applications of optothermal microactuators in micro-opto-electro-mechanical system (MOEMS) and micro/nano-technology fields.

  15. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-01

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  16. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  17. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    NASA Astrophysics Data System (ADS)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  18. Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Xie, Weidong

    2014-12-01

    The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.

  19. Nonlinear dynamic characteristics of dielectric elastomer membranes

    NASA Astrophysics Data System (ADS)

    Fox, Jason W.; Goulbourne, Nakhiah C.

    2008-03-01

    The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.

  20. Development of a multistage compliant mechanism with new boundary constraint

    NASA Astrophysics Data System (ADS)

    Ling, Mingxiang; Cao, Junyi; Jiang, Zhou; Li, Qisheng

    2018-01-01

    This paper presents a piezo-actuated compliant mechanism with a new boundary constraint to provide concurrent large workspace and high dynamic frequency for precision positioning or other flexible manipulation applications. A two-stage rhombus-type displacement amplifier with the "sliding-sliding" boundary constraint is presented to maximize the dynamic frequency while retaining a large output displacement. The vibration mode is also improved by the designed boundary constraint. A theoretical kinematic model of the compliant mechanism is established to optimize the geometric parameters, and a prototype is fabricated with a compact dimension of 60 mm × 60 mm × 12 mm. The experimental testing shows that the maximum stroke is approximately 0.6 mm and the output stiffness is 1.1 N/μm with the fundamental frequency of larger than 2.2 kHz. Lastly, the excellent performance of the presented compliant mechanism is compared with several mechanisms in the previous literature. As a conclusion, the presented boundary constraint strategy provides a new way to balance the trade-off between the frequency response and the stroke range widely existed in compliant mechanisms.

  1. Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia.

    PubMed

    Sato, Keiichiro; Yamawaki, Yoshifumi

    2014-08-01

    In responses to looming objects, the praying mantis shows a defense behavior, which consists of retracting forelegs under the prothorax. The role of a looming-sensitive neuron in triggering this behavior was investigated by simultaneously recording the activity and behavioral responses of the neuron. The mantis initiated the defense behavior earlier in response to larger and slower looming stimuli. The time remaining to collision at defense initiation was linearly correlated with the ratio of the half-size of an approaching object to its speed (l/|v|), suggesting that the defense behavior occurred a fixed delay after the stimuli had reached a fixed angular threshold. Furthermore, the results suggested that high-frequency spikes of the looming-sensitive neuron were involved in triggering the defense behavior: the distribution of maximum firing rate for trials with defense was shifted to larger rates compared with trials without defense; the firing rate of the neuron exceeded 150 Hz ∼100 ms before the defense initiation regardless of stimulus parameters; when a looming stimulus ceased approach prematurely, high-frequency spikes were removed, and the occurrence of defense was reduced. Copyright © 2014 the American Physiological Society.

  2. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.J.

    1997-05-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism.more » An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.« less

  3. Physiological demands of women's rugby union: time-motion analysis and heart rate response.

    PubMed

    Virr, Jody Lynn; Game, Alex; Bell, Gordon John; Syrotuik, Daniel

    2014-01-01

    The aim of this study was to determine the physical demands of women's rugby union match play using time-motion analysis and heart rate (HR) response. Thirty-eight premier club level female rugby players, ages 18-34 years were videotaped and HRs monitored for a full match. Performances were coded into 12 different movement categories: 5 speeds of locomotion (standing, walking, jogging, striding, sprinting), 4 forms of intensive non-running exertion (ruck/maul/tackle, pack down, scrum, lift) and 3 discrete activities (kick, jump, open field tackle). The main results revealed that backs spend significantly more time sprinting and walking whereas forwards spend more time in intensive non-running exertion and jogging. Forwards also had a significantly higher total work frequency compared to the backs, but a higher total rest frequency compared to the backs. In terms of HR responses, forwards displayed higher mean HRs throughout the match and more time above 80% of their maximum HR than backs. In summary, women's rugby union is characterised by intermittent bursts of high-intensity activity, where forwards and backs have similar anaerobic energy demands, but different specific match demands.

  4. Human vertical eye movement responses to earth horizontal pitch

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  5. Formation of the stimulated electromagnetic emission spectra near gyroharmonics for quasi-stationary and decaying striations

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Norin, Lars; Sergeev, Evgeny; Thide, Bo; Leyser, Thomas

    We present new results of the analysis of the stimulated electromagnetic emission (SEE) measurements performed with special diagnostic HF-pumping scheme, for pump wave frequencies f0 close to a multiple of the electron gyroharmonic nfce , n = 4, 5. The pumping scheme used was an alternation of quasi-continuous pumping (˜ 100-200 ms on, ˜ 20-30 ms off) during a few tens of seconds, and low duty cycle radiation (pulse duration 20-500 ms with 1-3 s interpulse period). The main attention is paid to the following: (i) The development of some spectral features of the SEE, such as the downshifted maximum (DM), the second downshifted maximum (2DM), the upshifted maximum (UM) and the broad upshifted maximum (BUM) in a preconditioned ionosphere such that stationary small-scale magnetic field-aligned irregularities (striations) are already present. In particular, we characterize a fast (3-15 ms) overshoot in the DM, 2DM and UM, and we study the properties of a transient BUM with a maximum intensity for 18 kHz < f - f0 < 25 kHz and the same lower cutoff at f - f0 ≈ 14 kHz as the stationary BUM. The transient BUM vanishes after 5 to 10 ms of the pump turn-on and does not reappear. (ii) The formation of SEE features caused by the pump wave after the transition to low duty cycle pumping (i.e. on the background of decaying striations). In particular we note, that the BUM growths exponentially with a characteristic time ˜ 15 ms while the DM grows much faster and later exhibits slower dynamics. (iii) A slow (from pulse to pulse) temporal evolution of the SEE after the changing the pump scheme to a low duty cycle pulse mode. We note a disappearance of the transient BUM 1-2 s after the change of pump scheme and we observe an overshoot of the DM and (part of) the BUM. Higher frequency components of the BUM decays much faster than its lower frequencies. The results allow us to investigate ponderomotive processes responsible for the formation of upper hybrid turbulence in the HP-pumped ionosphere and the comparative contribution of the striations with different scales to the generation of different SEE spectral components. The work was supported by the RFBR (grants No. 06-02-17334, 07-02-00464).

  6. Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Li, Tim; Liu, Jia; Bi, Mingyu; Peng, Melinda

    2018-03-01

    Tropical cyclone (TC) genesis frequency in the western North Pacific (WNP) during 1960-2014 shows a step-by-step decrease on interdecadal timescale, in accordance to the phase of the Interdecadal Pacific Oscillation (IPO). The environmental parameters responsible for the interdecadal change of TC genesis frequency were investigated. It was found that vertical wind shear especially the zonal wind shear plays a critical role, while other parameters such as sea surface temperature (SST), vertical velocity, divergence, humidity and maximum potential intensity cannot explain the step-by-step decrease of TC genesis frequency. A further diagnosis shows that the interdecadal change of vertical wind shear is caused by SST and associated rainfall pattern changes across the Indo-Pacific Ocean. A stronger warming in the Indian Ocean/western Pacific from 1960-1976 to 1977-1998 led to enhanced convection over the Maritime Continent and thus strengthened vertical shear over the key TC genesis region in the WNP. A La Nina-like SST pattern change from 1977-1998 to 1999-2014 led to a strengthened Walker circulation in the tropical Pacific, which further enhanced the vertical shear and decreased TC genesis frequency in the WNP.

  7. Relation of pretreatment sequence diversity in NS5A region of HCV genotype 1 with immune response between pegylated-INF/ribavirin therapy outcomes.

    PubMed

    de Queiróz, A T L; Maracaja-Coutinho, V; Jardim, A C G; Rahal, P; de Carvalho-Mello, I M V G; Matioli, S R

    2011-02-01

    Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-α and ribavirin therapy. Major histocompatibility complex class I restricted CD8(+) T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated α-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy. © 2010 Blackwell Publishing Ltd.

  8. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    PubMed

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan

    2013-12-01

    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  9. Resonant tunnelling diode based high speed optoelectronic transmitters

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Rodrigues, G. C.; Al-Khalidi, Abdullah; Figueiredo, José M. L.; Wasige, Edward

    2017-08-01

    Resonant tunneling diode (RTD) integration with photo detector (PD) from epi-layer design shows great potential for combining terahertz (THz) RTD electronic source with high speed optical modulation. With an optimized layer structure, the RTD-PD presented in the paper shows high stationary responsivity of 5 A/W at 1310 nm wavelength. High power microwave/mm-wave RTD-PD optoelectronic oscillators are proposed. The circuitry employs two RTD-PD devices in parallel. The oscillation frequencies range from 20-44 GHz with maximum attainable power about 1 mW at 34/37/44GHz.

  10. Permafrost - Relation between ice content and dielectric losses at 100 K

    NASA Technical Reports Server (NTRS)

    Alvarez, R.

    1973-01-01

    The dielectric response of permafrost at 100 K and vacuums of around 10 ntorr is analyzed, varying its percent ice content from 1 to 18.6. The distributions obtained correspond to dielectric relaxations of the Cole-Cole type, with maximum losses occurring in the 30- to 600-Hz frequency range. The logarithms of such maxima depend linearly on the permafrost ice content, two regions of linear variation being defined above and below 3.6% ice content. Such relations point out the feasibility of determining ice content in permafrost by electromagnetic means.

  11. SOI MESFETs on high-resistivity, trap-rich substrates

    NASA Astrophysics Data System (ADS)

    Mehr, Payam; Zhang, Xiong; Lepkowski, William; Li, Chaojiang; Thornton, Trevor J.

    2018-04-01

    The DC and RF characteristics of metal-semiconductor field-effect-transistors (MESFETs) on conventional CMOS silicon-on-insulator (SOI) substrates are compared to nominally identical devices on high-resistivity, trap-rich SOI substrates. While the DC transfer characteristics are statistically identical on either substrate, the maximum available gain at GHz frequencies is enhanced by ∼2 dB when using the trap-rich substrates, with maximum operating frequencies, fmax, that are approximately 5-10% higher. The increased fmax is explained by the reduced substrate conduction at GHz frequencies using a lumped-element, small-signal model.

  12. Definition of SMOS Level 3 Land Products for the Villafranca del Castillo Data Processing Centre (CP34)

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.

    2009-04-01

    The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.

  13. Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal.

    PubMed

    Kang, Ying; Yang, Suhui; Brunel, Marc; Cheng, Lijun; Zhao, Changming; Zhang, Haiyang

    2017-04-10

    A dual-frequency CW laser at a wavelength of 1.064 μm is frequency doubled in a MgO:PPLN nonlinear crystal. The fundamental dual-frequency laser has a tunable beat note from 125 MHz to 175 MHz. A laser-diode pumped fiber amplifier is used to amplify the dual-frequency fundamental output to a maximum power of 50 W before frequency doubling. The maximum output power of the green light is 1.75 W when the input fundamental power is 12 W, corresponding to a frequency doubling efficiency of 14.6%. After frequency doubling, green light with modulation frequencies in two bands from 125 MHz to 175 MHz and from 250 MHz to 350 MHz is achieved simultaneously. The relative intensities of the beat notes at the two bands can be adjusted by changing the relative intensities at different frequencies of the fundamental light. The spectral width and frequency stabilities of the beat notes in fundamental wave and green light are also measured, respectively. The modulated green light has potential applications in underwater ranging, communication, and imaging.

  14. A Computational approach in optimizing process parameters of GTAW for SA 106 Grade B steel pipes using Response surface methodology

    NASA Astrophysics Data System (ADS)

    Sumesh, A.; Sai Ramnadh, L. V.; Manish, P.; Harnath, V.; Lakshman, V.

    2016-09-01

    Welding is one of the most common metal joining techniques used in industry for decades. As in the global manufacturing scenario the products should be more cost effective. Therefore the selection of right process with optimal parameters will help the industry in minimizing their cost of production. SA 106 Grade B steel has a wide application in Automobile chassis structure, Boiler tubes and pressure vessels industries. Employing central composite design the process parameters for Gas Tungsten Arc Welding was optimized. The input parameters chosen were weld current, peak current and frequency. The joint tensile strength was the response considered in this study. Analysis of variance was performed to determine the statistical significance of the parameters and a Regression analysis was performed to determine the effect of input parameters over the response. From the experiment the maximum tensile strength obtained was 95 KN reported for a weld current of 95 Amp, frequency of 50 Hz and peak current of 100 Amp. With an aim of maximizing the joint strength using Response optimizer a target value of 100 KN is selected and regression models were optimized. The output results are achievable with a Weld current of 62.6148 Amp, Frequency of 23.1821 Hz, and Peak current of 65.9104 Amp. Using Die penetration test the weld joints were also classified in to 2 categories as good weld and weld with defect. This will also help in getting a defect free joint when welding is performed using GTAW process.

  15. AC electroosmosis in microchannels packed with a porous medium

    NASA Astrophysics Data System (ADS)

    Kang, Yuejun; Yang, Chun; Huang, Xiaoyang

    2004-08-01

    This paper presents a theoretical study on ac-driven electroosmotic flow in both open-end and closed-end microchannels packed with uniform charged spherical microparticles. The time-periodic oscillating electroosmotic flow in an open-end capillary in response to the application of an alternating (ac) electric field is obtained using the Green function approach. The analysis is based on the Carman-Kozeny theory. The backpressure associated with the counter-flow in a closed-end capillary is obtained by analytically solving the modified Brinkman momentum equation. It is demonstrated that in a microchannel with its two ends connected to reservoirs and subject to ambient pressure, the oscillating Darcy velocity profile depends on both the pore size and the excitation frequency; such effects are coupled through an important aspect ratio of the tubule radius to the Stokes penetration depth. For a fixed pore size, the magnitude of the ac electroosmotic flow decreases with increasing frequency. With increasing pore size, however, the magnitude of the maximum velocity shows two different trends with respect to the excitation frequency: it gets higher in the low frequency domain, and gets lower in the high frequency domain. In a microchannel with closed ends, for a fixed excitation frequency, use of smaller packing particles can generate higher backpressure. For a fixed pore size, the backpressure magnitude shows two different trends changing with the excitation frequency. When the excitation frequency is lower than the system characteristic frequency, the backpressure decreases with increasing excitation frequency. When the excitation frequency is higher than the system characteristic frequency, the backpressure increases with increasing excitation frequency.

  16. An AC modulated near infrared gain calibration system for a “Violin-Mode” transimpedance amplifier, intended for advanced LIGO suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockerbie, N. A.; Tokmakov, K. V.

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a “tall-thin” rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse “Violin-Mode” vibrations of such a fibre, via the oscillatory movement of the shadowmore » cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor’s DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor’s more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz–300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m{sup −1} was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio of 922.5 for this sensor, at 500 Hz, translated into a maximum Violin-Mode (AC) responsivity of (1.16 ± 0.05) MV m{sup −1}, at that frequency.« less

  17. A maximum likelihood algorithm for genome mapping of cytogenetic loci from meiotic configuration data.

    PubMed Central

    Reyes-Valdés, M H; Stelly, D M

    1995-01-01

    Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes. Images Fig. 1 PMID:7568226

  18. The health systems' priority setting criteria for selecting health technologies: A systematic review of the current evidence

    PubMed Central

    Mobinizadeh, Mohammadreza; Raeissi, Pouran; Nasiripour, Amir Ashkan; Olyaeemanesh, Alireza; Tabibi, Seyed Jamaleddin

    2016-01-01

    Background: In the recent years, using health technologies to diagnose and treat diseases has had a considerable and accelerated growth. The proper use of these technologies may considerably help in the diagnosis and treatment of different diseases. On the other hand, unlimited and unrestricted entry of these technologies may result in induced demand by service providers. The aim of this study was to determine the appropriate criteria used in health technologies priority-setting models in the world. Methods: Using MESH and free text, we sought and retrieved the relevant articles from the most appropriate medical databases (the Cochrane Library, PubMed and Scopus) through three separate search strategies up to March 2015. The inclusion criteria were as follows: 1) Studies with specific criteria; 2) Articles written in English; 3) Those articles conducted in compliance with priority setting of health technologies. Data were analyzed qualitatively using a thematic synthesis technique. Results: After screening the retrieved papers via PRISMA framework, from the 7,012 papers, 40 studies were included in the final phase. Criteria for selecting health technologies (in pre assessment and in the assessment phase) were categorized into six main themes: 1) Health outcomes; 2) Disease and target population; 3) Technology alternatives; 4) Economic aspects; 5) Evidence; 6) and other factors. "Health effects/benefits" had the maximum frequency in health outcomes (8 studies); "disease severity" had the maximum frequency in disease and target population (12 studies); "the number of alternatives" had the maximum frequency in alternatives (2 studies); "cost-effectiveness" had the maximum frequency in economic aspects (15 studies); "quality of evidence" had the maximum frequency in evidence (4 studies); and "issues concerning the health system" had the maximum frequency in other factors (10 studies). Conclusion: The results revealed an increase in the number of studies on health technologies priority setting around the world, and emphasized the necessity of application of a multi- criteria approach for appropriate decision making about healthcare technologies in the health systems. PMID:27390699

  19. Hydrodynamic simulations of pulsar glitch recovery

    NASA Astrophysics Data System (ADS)

    Howitt, G.; Haskell, B.; Melatos, A.

    2016-08-01

    Glitches are sudden jumps in the spin frequency of pulsars believed to originate in the superfluid interior of neutron stars. Superfluid flow in a model neutron star is simulated by solving the equations of motion of a two-component superfluid consisting of a viscous proton-electron plasma and an inviscid neutron condensate in a spherical Couette geometry. We examine the response of the model to glitches induced in three different ways: by instantaneous changes of the spin frequency of the inner and outer boundaries, and by instantaneous recoupling of the fluid components in the bulk. All simulations are performed with strong and weak mutual friction. It is found that the maximum size of a glitch originating in the bulk decreases as the mutual friction strengthens. It is also found that mutual friction determines the fraction of the frequency jump which is later recovered, a quantity known as the `healing parameter'. These behaviours may explain some of the diversity in observed glitch recoveries.

  20. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    NASA Astrophysics Data System (ADS)

    William, R. V.; Marikani, A.; Madhavan, D.

    2016-05-01

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO3 nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO3 nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO3 nano-wire show a frequency dependent property and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm2 at the frequency 4 kHz. The coercivity of BiFeO3 nano wire changes with variation of frequency from 1 kHz to 4 kHz.

  1. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow.

    PubMed

    Wang, Jianyong; Chen, Tao

    2010-03-01

    In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.

  2. Theoretical evidence of maximum intracellular currents versus frequency in an Escherichia coli cell submitted to AC voltage.

    PubMed

    Xavier, Pascal; Rauly, Dominique; Chamberod, Eric; Martins, Jean M F

    2017-04-01

    In this work, the problem of intracellular currents in longilinear bacteria, such as Escherichia coli, suspended in a physiological medium and submitted to a harmonic voltage (AC), is analyzed using the Finite-Element-based software COMSOL Multiphysics. Bacterium was modeled as a cylindrical capsule, ended by semi-spheres and surrounded by a dielectric cell wall. An equivalent single-layer cell wall was defined, starting from the well-recognized three-shell modeling approach. The bacterium was considered immersed in a physiological medium, which was also taken into account in the modeling. A new complex transconductance was thus introduced, relating the complex ratio between current inside the bacterium and voltage applied between two parallel equipotential planes, separated by a realistic distance. When voltage was applied longitudinally relative to the bacterium main axis, numerical results in terms of frequency response in the 1-20 MHz range for E. coli cells revealed that transconductance magnitude exhibited a maximum at a frequency depending on the cell wall capacitance. This occurred in spite of the purely passive character of the model and could be explained by an equivalent electrical network giving very similar results and showing special conditions for lateral paths of the currents through the cell wall. It is shown that the main contribution to this behavior is due to the conductive part of the current. Bioelectromagnetics. 38:213-219, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new combined coding method.

  4. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor

    PubMed Central

    Pfeiffer, Keram; French, Andrew S.

    2015-01-01

    Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975

  5. Resistive spectroscopy coupled with non-contacting oscillator for detecting discontinuous-continuous transition of metallic films

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Ogi, H.

    2017-09-01

    In spectroscopic measurements, one measures responses of specimens to oscillating fields (including electric, magnetic, and stress fields) at different frequencies for characterizing the samples. In contrast, we develop spectroscopy where the response (loss) is measured by changing the electric resistance, named the resistive spectroscopy. In the resistive spectroscopy, an energy-loss peak appears when the resistance is changed. We here apply it for studying the morphological change of thin films. When a metallic material is deposited on a substrate, the morphological transition from discontinuous islands to the continuous film occurs. It accompanies a drastic change in the resistance of the deposited material because of the transition from an insulator to a conductor. We find that the energy-loss peak appears at the transition moment during deposition of Ag. The resistive spectroscopy we develop uses no electrodes; it adopts the electric field generated by a piezoelectric material vibrating at its resonant frequency beneath the substrate. It is observed that the full width at half maximum (FWHM) of the resonance shows the peak during the deposition for high resistance substrates. The FWHM peak fails to be found for low resistance substrates, but it appears when the resonance frequency is increased. We propose an electrical-circuit model for explaining these observations.

  6. 47 CFR 87.475 - Frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to change frequency, power, location or emission. Each application must include the FAA Regional... 5031.0 MHz for microwave landing systems. Additionally, the frequencies in paragraph (b) of this... following conditions apply: (i) The maximum power authorized on the frequencies 108.150 and 334.550 MHz is 1...

  7. 47 CFR 87.475 - Frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to change frequency, power, location or emission. Each application must include the FAA Regional... 5031.0 MHz for microwave landing systems. Additionally, the frequencies in paragraph (b) of this... following conditions apply: (i) The maximum power authorized on the frequencies 108.150 and 334.550 MHz is 1...

  8. Electroacupuncture most effectively elicits depressor and bradycardic responses at 1 Hz in humans.

    PubMed

    Nakahara, Hidehiro; Kawada, Toru; Ueda, Shin-ya; Kawai, Eriko; Yamamoto, Hiromi; Sugimachi, Masaru; Miyamoto, Tadayoshi

    2016-02-01

    Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.

  9. Quantum Cascade Lasers Modulation and Applications

    NASA Astrophysics Data System (ADS)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is introduced. The concept was realized and tested in the laboratory environment. The resilience to atmospheric impairments are analyzed with simulated turbulence. The performance compared to typical telecom based Short Wavelength Infra-Red transceiver.

  10. Slew-rate dependence of tracer magnetization response in magnetic particle imaging.

    PubMed

    Shah, Saqlain A; Ferguson, R M; Krishnan, K M

    2014-10-28

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ 0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude ( H o ) and frequency ( ω ). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ 0 . For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate ( ωH o ) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  11. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Saqlain A.; Krishnan, K. M., E-mail: kannanmk@uw.edu; Ferguson, R. M.

    2014-10-28

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ{sub 0} excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (H{sub o}) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particlemore » Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ{sub 0}. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωH{sub o}) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.« less

  12. The Dose Response Relationship between In Ear Occupational Noise Exposure and Hearing Loss

    PubMed Central

    Rabinowitz, Peter M.; Galusha, Deron; Dixon-Ernst, Christine; Clougherty, Jane E.; Neitzel, Richard L.

    2014-01-01

    Objectives Current understanding of the dose-response relationship between occupational noise and hearing loss is based on cross-sectional studies prior to the widespread use hearing protection and with limited data regarding noise exposures below 85dBA. We report on the hearing loss experience of a unique cohort of industrial workers with daily monitoring of noise inside of hearing protection devices. Methods At an industrial facility, workers exhibiting accelerated hearing loss were enrolled in a mandatory program to monitor daily noise exposures inside of hearing protection. We compared these noise measurements (as time-weighted LAVG) to interval rates of high frequency hearing loss over a six year period using a mixed effects model, adjusting for potential confounders. Results Workers’ high frequency hearing levels at study inception averaged more than 40 dB hearing threshold level (HTL). Most noise exposures were less than 85dBA (mean LAVG 76 dBA, interquartile range 74 to 80 dBA). We found no statistical relationship between LAvg and high frequency hearing loss (p = 0.53). Using a metric for monthly maximum noise exposure did not improve model fit. Conclusion At-ear noise exposures below 85dBA did not show an association with risk of high frequency hearing loss among workers with substantial past noise exposure and hearing loss at baseline. Therefore, effective noise control to below 85dBA may lead to significant reduction in occupational hearing loss risk in such individuals. Further research is needed on the dose response relationship of noise and hearing loss in individuals with normal hearing and little prior noise exposure. PMID:23825197

  13. The Influences of Lamination Angles on the Interior Noise Levels of an Aircraft

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    The feasibility of reducing the interior noise levels of an aircraft passenger cabin through optimization of the composite lay up of the fuselage is investigated. MSC/NASTRAN, a commercially available finite element code, is used to perform the dynamic analysis and subsequent optimization of the fuselage. The numerical calculation of sensitivity of acoustic pressure to lamination angle is verified using a simple thin, cylindrical shell with point force excitations as noise sources. The thin shell used represents a geometry similar to the fuselage and analytic solutions are available for the cylindrical thin shell equations of motion. Optimization of lamination angle for the reduction of interior noise is performed using a finite element model of an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship. Point forces simulate the structure borne noise produced by the engines and are applied to the fuselage at the wing mounting locations. These forces are the noise source for the optimization problem. The acoustic pressure response is reduced at a number of points in the fuselage and over a number of frequencies. The objective function is minimized with the constraint that it be larger than the maximum sound pressure level at the response points in the passenger cabin for all excitation frequencies in the range of interest. Results from the study of the fuselage model indicate that a reduction in interior noise levels is possible over a finite frequency range through optimal configuration of the lamination angles in the fuselage. Noise reductions of roughly 4 dB were attained. For frequencies outside the optimization range, the acoustic pressure response may increase after optimization. The effects of changing lamination angle on the overall structural integrity of the airframe are not considered in this study.

  14. Comparison of the Data Products from Different Instrument Types with Application to Induced Seismic Monitoring Framework

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Baturan, D.; Karimi, S.; Moores, A. O.; Spriggs, N.

    2016-12-01

    Earthquakes may be induced by man-made activity in the vicinity of critically-stressed fault segments. A number of earthquakes characterized as induced with magnitudes M>3 were recorded in British Columbia, Alberta, Oklahoma and Ohio, since 2013. In response to growing induced seismicity in North America, many jurisdictions have mandated near real-time seismic monitoring around operation sites. The data products from monitoring networks are used as drivers of operational traffic light systems designed to mitigate risks associated with induced seismicity. Most traffic light protocols developed to date use staged thresholds of earthquake magnitudes. Additionally, ground motions, which are used to estimate the impact of earthquakes and specify seismic hazard, have been proposed as an enhancement to the existing protocols. There are several challenges and options to consider at the time of planning and designing a monitoring network, the most important of which is the choice of ground motion sensing technology. In order to accurately estimate event source parameters and ground motions, monitoring instruments have to record and image the low-frequency plateau and the corner frequency of the anticipated event spectrum. A flat response over a wide frequency range with a wide dynamic range is desired for a maximum benefit from ground motion products. This study evaluates the performance of three types of instruments in terms of their suitability for induced seismic monitoring (ISM): broadband seismometers, accelerometers and geophones. Each instrument type is assessed in terms of self-noise, frequency response and clip level using instrument specifications and real-world ISM application data. The impact of each sensing technology on key ISM network performance criteria, event magnitude estimations and ground motion measurements are examined.

  15. A New Cloud and Aerosol Layer Detection Method Based on Micropulse Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhao, C.; Wang, Y.; Li, Z.; Wang, Z.; Liu, D.

    2014-12-01

    A new algorithm is developed to detect aerosols and clouds based on micropulse lidar (MPL) measurements. In this method, a semi-discretization processing (SDP) technique is first used to inhibit the impact of increasing noise with distance, then a value distribution equalization (VDE) method is introduced to reduce the magnitude of signal variations with distance. Combined with empirical threshold values, clouds and aerosols are detected and separated. This method can detect clouds and aerosols with high accuracy, although classification of aerosols and clouds is sensitive to the thresholds selected. Compared with the existing Atmospheric Radiation Measurement (ARM) program lidar-based cloud product, the new method detects more high clouds. The algorithm was applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu site. At SGP, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring, and shows bi-modal vertical distributions with maximum frequency at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. By contrast, the cloud frequency at Taihu shows no clear seasonal variation and the maximum frequency is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at SGP.

  16. AlGaN/GaN-HEMTs with a breakdown voltage higher than 100 V and maximum oscillation frequency f{sub max} as high as 100 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokerov, V. G., E-mail: vgmokerov@yandex.ru; Kuznetsov, A. L.; Fedorov, Yu. V.

    2009-04-15

    The N-Al{sub 0.27}Ga{sub 0.73}N/GaN High Electron Mobility Transistors (HEMTs) with different gate lengths L{sub g} (ranging from 170 nm to 0.5 {mu}m) and gate widths W{sub s} (ranging from 100 to 1200 {mu}m) have been studied. The S parameters have been measured; these parameters have been used to determine the current-gain cutoff frequency f{sub t}, the maximum oscillation frequency f{sub max}, and the power gain MSG/MAG and Mason's coefficients were investigated in the frequency range from 10 MHz to 67 GHz in relation to the gate length and gate width. It was found that the frequencies f{sub t} and f{submore » max} attain their maximum values of f{sub t} = 48 GHz and f{sub max} = 100 GHz at L{sub g} = 170 nm and W{sub g} = 100 {mu}m. The optimum values of W{sub g} and output power P out of the basic transistors have been determined for different frequencies of operation. It has also been demonstrated that the 170 nm Al{sub 0.27}Ga{sub 0.73}N/GaN HEMT technology provides both good frequency characteristics and high breakdown voltages and is very promising for high-frequency applications (up to 40 GHz)« less

  17. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...

  18. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...

  19. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  20. External morphology and calling song characteristics in Tibicen plebejus (Hemiptera: Cicadidae).

    PubMed

    Mehdipour, Maedeh; Sendi, Jalal Jalali; Zamanian, Hossein

    2015-02-01

    Tibicen plebejus is the largest cicada native to the ecosystem in northern Iran. The male cicada produces a loud calling song for attracting females from a long distance. It is presumed that the female selects a mate based on a combination of passive and active mechanisms, but it is not known if she selects for size, nor if the male's size correlates with any characteristic of the advertisement call. In this study, we report the relationship between calling song features and morphological characters in the male of T. plebejus. Research was conducted in northern Iran during the summer of 2010. Seventeen males were collected and their calling songs were recorded in a natural environment. Two morphological characters were measured: length and weight. Maximum, minimum and average of values of 10 key acoustic variables of the calling song were analyzed: phrase duration, phrase part 1, phrase part 2, number of phrases per minute, echeme duration, echeme period, interecheme interval, number of echeme per second, echeme/intereheme ratio, and dominant frequency. The data were tested for the level of association between morphology and acoustic variables using simple linear regression. In conclusion, in terms of song structure, three significant positive correlations existed between length and (1) mean echeme duration, (2) mean echeme/interecheme ratio, (3) maximum echeme/interecheme ratio. We found out also four significant negative correlations between both length and weight with (1) minimum interecheme intervals, (2) mean dominant frequency, (3) minimum dominant frequency, (4) maximum dominant frequency, and between weight and (1) minimum interecheme intervals, (2) mean dominant frequency, (3) minimum dominant frequency, (4) maximum dominant frequency. It can be found that larger males of T. plebejus produce songs of lower frequency and are less silent between echemes. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. The dynamic flexural response of propeller blades. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Djordjevic, S. Z.

    1982-01-01

    The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.

  2. Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Cowin, S. C.; Weinbaum, S.

    1997-01-01

    A cable model is formulated to estimate the spatial distribution of intracellular electric potential and current, from the cement line to the lumen of an osteon, as the frequency of the loading and the conductance of the gap junction are altered. The model predicts that the characteristic diffusion time for the spread of current along the membrane of the osteocytic processes, 0.03 sec, is nearly the same as the predicted pore pressure relaxation time in Zeng et al. (Annals of Biomedical Engineering. 1994) for the draining of the bone fluid into the osteonal canal. This approximate equality of characteristic times causes the cable to behave as a high-pass, low-pass filter cascade with a maximum in the spectral response for the intracellular potential at approximately 30 Hz. This behavior could be related to the experiments of Rubin and McLeod (Osteoporosis, Academic Press, 1996) which show that live bone appears to be selectively responsive to mechanical loading in a specific frequency range (15-30 Hz) for several species.

  3. Optimization of the imaging response of scanning microwave microscopy measurements

    NASA Astrophysics Data System (ADS)

    Sardi, G. M.; Lucibello, A.; Kasper, M.; Gramse, G.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2015-07-01

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S11. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  4. Underwater audiogram of a tucuxi (Sotalia fluviatilis guianensis).

    PubMed

    Sauerland, M; Dehnhardt, G

    1998-02-01

    Using a go/no go response paradigm, a tucuxi (Sotalia fluviatilis guianensis) was trained to respond to pure-tone signals for an underwater hearing test. Auditory thresholds were obtained from 4 to 135 kHz. The audiogram curve shows that this Sotalia had an upper limit of hearing at 135 kHz; from 125 to 135 kHz sensitivity decreased by 475 dB/oct. This coincides with results from electrophysiological threshold measurements. The range of best hearing (defined as 10 dB from maximum sensitivity) was between 64 and 105 kHz. This range appears to be narrower and more restricted to higher frequencies in Sotalia fluviatilis guianensis than in other odontocete species that had been tested before. Peak frequencies of echolocation pulses reported from free-ranging Sotalia correspond with the range of most sensitive hearing of this test subject.

  5. Optical coherence tomography (OCT) leading to more insight into cochlear mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, Egbert de; Oregon Health & Science University, Portland, Oregon; Chen, Fangyi

    Optical Coherence Tomography (OCT) was used to measure vibrations of the basilar membrane (BM) and the Reticular Lamina (RL) in the cochlea of the guinea pig, at frequencies up to 25 kHz. Because of the difficulty of the experiments the data have limited sets of parameters and are subject to high noise levels. In a viable guinea-pig cochlea, the RL moves in the region of maximum response with a larger amplitude than the BM. We cannot rule out that some of that difference is due to a geometrical factor. We also found a consistent increase of this amplitude difference with frequency,more » which points to a low-pass filtering process. That process might be linked to the mass of the fluid contained in the Organ of Corti channel (OoC channel)« less

  6. New technique for excitation of bulk and surface spin waves in ferromagnets

    NASA Astrophysics Data System (ADS)

    Bogacz, S. A.; Ketterson, J. B.

    1985-09-01

    A meander-line magnetic transducer is discussed in the context of bulk and surface spin-wave generation in ferromagnets. The magnetic field created by the transducer was calculated in closed analytic form for this model. The linear response of the ferromagnet to the inhomogenous surface disturbance of arbitrary ω and k was obtained as a self-consistent solution to the Bloch equation of motion and the Maxwell equations, subject to appropriate boundary condition. In particular, the energy flux through the boundary displays a sharp resonantlike absorption maximum concentrated at the frequency of the magnetostatic Damon-Eshbach (DE) surface mode; furthermore, the energy transfer spectrum is cut off abruptly below the threshold frequency of the bulk spin waves. The application of the meander line to the spin diffusion problem in NMR is also discussed.

  7. Cross-Correlation of Motor Activity Signals from dc-Magnetoencephalography, Near-Infrared Spectroscopy, and Electromyography

    PubMed Central

    Sander, Tilmann H.; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds. PMID:20145717

  8. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    PubMed

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  9. Optimal behavior of viscoelastic flow at resonant frequencies.

    PubMed

    Lambert, A A; Ibáñez, G; Cuevas, S; del Río, J A

    2004-11-01

    The global entropy generation rate in the zero-mean oscillatory flow of a Maxwell fluid in a pipe is analyzed with the aim of determining its behavior at resonant flow conditions. This quantity is calculated explicitly using the analytic expression for the velocity field and assuming isothermal conditions. The global entropy generation rate shows well-defined peaks at the resonant frequencies where the flow displays maximum velocities. It was found that resonant frequencies can be considered optimal in the sense that they maximize the power transmitted to the pulsating flow at the expense of maximum dissipation.

  10. Hypothalamic-pituitary-adrenal and cardiac autonomic responses to transrectal examination differ with behavioral reactivity in dairy cows.

    PubMed

    Kovács, L; Kézér, F L; Kulcsár-Huszenicza, M; Ruff, F; Szenci, O; Jurkovich, V

    2016-09-01

    Behavior, hypothalamic-pituitary-adrenal axis, and cardiac autonomic nervous system (ANS) activity were evaluated in response to transrectal examination in nonlactating Holstein-Friesian cows with different behavioral reactivity. According to behavioral reactions shown to the procedure of fixing the heart rate (HR) monitors, the 20 cows with the highest and the 20 cows with the lowest behavioral reactivity were involved in the study (high responder, n=20; and low responder, n=20, respectively). Activity of the ANS was assessed by HR and HR variability parameters. Blood and saliva were collected at 5 min before (baseline) and 0, 5 10, 15, 20, 30, 40, 60, and 120 min after the examination to determine cortisol concentrations. The examination lasted for 5 min. Cardiac parameters included HR, the root mean square of successive differences between the consecutive interbeat intervals, the high frequency (HF) component of heart rate variability, and the ratio between the low frequency (LF) and HF parameter (LF/HF). Following the examination, peak plasma and saliva cortisol levels and the amplitude of the plasma and saliva cortisol response were higher in high responder cows than in low responders. Areas under the plasma and saliva cortisol response curves were greater in high responder cows. Plasma and salivary cortisol levels correlated significantly at baseline (r=0.91), right after examination (r=0.98), and at peak levels (r=0.96). Area under the HR response curve was higher in low responder cows; however, maximum HR and the amplitude of the HR response showed no differences between groups. Minimum values of both parameters calculated for the examination were higher in high responders. Following the examination, response parameters of root mean square of successive differences and HF did not differ between groups. The maximum and the amplitude of LF/HF response and area under the LF/HF response curve were lower in low responder cows, suggesting a lower sympathetic activation of the ANS. Although changes in behaviors indicated that the procedure was painful for the animals, no differences were observed either in vocalization or in attendant behavior between groups during the examination. Our results demonstrate that behaviorally more reactive animals exhibit increased plasma and salivary cortisol concentrations and higher cardiac autonomic responsiveness to transrectal examination than less reactive cows. Salivary cortisol may substitute for plasma cortisol when assessing response of cattle to stress. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.

    PubMed

    Motallebzadeh, Hamid; Maftoon, Nima; Pitaro, Jacob; Funnell, W Robert J; Daniel, Sam J

    2017-02-01

    Admittance measurement is a promising tool for evaluating the status of the middle ear in newborns. However, the newborn ear is anatomically very different from the adult one, and the acoustic input admittance is different than in adults. To aid in understanding the differences, a finite-element model of the newborn ear canal and middle ear was developed and its behaviour was studied for frequencies up to 2000 Hz. Material properties were taken from previous measurements and estimates. The simulation results were within the range of clinical admittance measurements made in newborns. Sensitivity analyses of the material properties show that in the canal model, the maximum admittance and the frequency at which that maximum admittance occurs are affected mainly by the stiffness parameter; in the middle-ear model, the damping is as important as the stiffness in influencing the maximum admittance magnitude but its effect on the corresponding frequency is negligible. Scaling up the geometries increases the admittance magnitude and shifts the resonances to lower frequencies. The results suggest that admittance measurements can provide more information about the condition of the middle ear when made at multiple frequencies around its resonance.

  12. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  13. 47 CFR 74.637 - Emissions and emission limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vestigial sideband AM video: On any frequency removed from the center frequency of the authorized band by... communications. Frequency Band (MHz) Maximum authorized bandwidth (MHz) 1,990 to 2,110 18 6,425 to 6,525 25 6,875...

  14. 47 CFR 74.637 - Emissions and emission limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vestigial sideband AM video: On any frequency removed from the center frequency of the authorized band by... communications. Frequency Band (MHz) Maximum authorized bandwidth (MHz) 1,990 to 2,110 18 6,425 to 6,525 25 6,875...

  15. 47 CFR 74.637 - Emissions and emission limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vestigial sideband AM video: On any frequency removed from the center frequency of the authorized band by... communications. Frequency Band (MHz) Maximum authorized bandwidth (MHz) 1,990 to 2,110 18 6,425 to 6,525 25 6,875...

  16. 47 CFR 74.637 - Emissions and emission limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vestigial sideband AM video: On any frequency removed from the center frequency of the authorized band by... communications. Frequency Band (MHz) Maximum authorized bandwidth (MHz) 1,990 to 2,110 18 6,425 to 6,525 25 6,875...

  17. 47 CFR 74.637 - Emissions and emission limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vestigial sideband AM video: On any frequency removed from the center frequency of the authorized band by... communications. Frequency Band (MHz) Maximum authorized bandwidth (MHz) 1,990 to 2,110 18 6,425 to 6,525 25 6,875...

  18. Real-Time Digital Simulation of Inertial Response with Hardware-in-the-Loop Implementation on the CART3 Wind Turbine at the National Wind Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenzhong; Wang, Xiao; Muljadi, Eduard

    With increasing penetrations of wind power on electric grids, the stability and reliability of interconnected power systems may be impacted. In some countries that have developed renewable energy sources and systems, grid codes have been revised to require wind power plants (WPPs) to provide ancillary services to support the power system frequency in case of severe grid events. To do this, wind turbine generators (WTGs) should be deloaded to reserve a certain amount of active power for primary frequency response; however, deloading curtails annual energy production, and the market for this type of service needs to be further developed. Inmore » this report, we focus on the temporary frequency support provided by WTGs through inertial response. WTGs have potential to provide inertial response, but appropriate control methods should be implemented. With the implemented inertial control methods, wind turbines are capable of increasing their active power output by releasing some of their stored kinetic energy when a frequency excursion occurs. Active power can be temporarily boosted above the maximum power points, after which the rotor speed decelerates, and subsequently an active power output reduction restores the kinetic energy. In this report, we develop two types of models for wind power systems: the first is common, based on the wind power aerodynamic equation, and the power coefficient can be regressed using nonlinear functions; the second is much more complicated, wherein the wind turbine system is modeled using the Fatigue, Aerodynamics, Structures, and Turbulence Modeling (FAST) tool with several degrees of freedoms. A nine-bus test power system is built in Simulink and the Real-Time Digital Simulator, respectively, which are used to evaluate the frequency support performance of the WPPs. We implement two distinct types of inertial control methods in the modeled wind turbines: frequency-based inertial control (FBIC) and stepwise inertial control (SIC). We compare the performances of the two methods in terms of their frequency nadirs, rates of change of frequency, and recovery times. We conclude the results under various wind speeds and penetration cases, which provide insight into designing the inertial response of WTGs. Further, we discuss the impact of the parameters on the performance of the inertial control methods. We evaluate both the scaling factors for the FBIC method and the slope values for the TLIC methods. The simulation work shows the characteristics of different inertial responses compared to conventional synchronous generators. Based on the simulation results, we modify, improve, and test the inertial control methods under a more realistic wind turbine model based on FAST. We then validate the inertial responses under highly turbulent wind conditions generated by TurbSim, and we examine their influences on the turbine mechanical components. The extensive simulation proves the effectiveness of the proposed inertial control methods as well as the nine-bus test power system. We then reconsider the parameters. We rebuild the same test power system using Real time Simulator Computer Aided Design (RSCAD), and we implement the inertial control methods in the real Controls Advanced Research Turbine (CART3), which is prepared for the hardware-in-the-loop field-test simulation. After the setups for the hardware and software hybrid simulation platform are complete, the inertial response is further tested on a real wind turbine for the first time, in which CART3 release the controlled inertial response against the emulated frequency excursion, provided by the real-time simulated power system test bed in RTDS.« less

  19. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M.; Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin; Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin

    2015-11-16

    We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes,more » leading to the observed temperature behavior.« less

  20. 2-Step Maximum Likelihood Channel Estimation for Multicode DS-CDMA with Frequency-Domain Equalization

    NASA Astrophysics Data System (ADS)

    Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.

  1. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners.

    PubMed

    Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando

    2009-06-01

    In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P < 0.001). Variance, high-frequency oscillations of HR variability (HRV), and baroreflex sensitivity resembled a bell-shaped curve with a minimum at the highest TRIMP(i), whereas low-frequency oscillations of HR and systolic arterial pressure variability and the low frequency (LF)-to-high frequency ratio resembled an U-shaped curve with a maximum at the highest TRIMP(i). The LF component of HRV assessed at the last recording session was significantly and inversely correlated to the time needed to complete the nearing marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population.

  2. Efficient system for wavenumber-frequency analysis of underwater structures

    NASA Astrophysics Data System (ADS)

    Boober, Walter H.; Morton, David; Gedney, Charles; Abbot, Philip

    1998-06-01

    A watertight housing was developed to a low a scanning laser vibrometer (SLV) system to work underwater. Compared to other underwater optical measurement systems, this system offers distinct advantages, including ease of adaptation to a variety of teste, no requirement to be near tank windows, and a simplified rigging system. The system was recently sued to successfully conduct a wavenumber frequency evaluation of the vibratory response of a submerged cylindrical shell. The technical issues in developing the housing and assuring the integrity of the SLV accuracy during transition to underwater use will be discussed. Also, problems encountered in maximizing return signal strength, preparation of the shell, and the process of on-sight data transfer for quick-look wavenumber-frequency analysis while data are being acquired will be presented. The cylindrical shell was excited with 100 to 5000 Hz chirp signals by a 44 N shaker that was attached axially at the center of a bulkhead. A scan consisted of 3 columns with 64 measurement points per column. The shell was rotated 11.25 degrees and the scan repeated to collect an array of 32 by 64 equally spaced points totalling 6144 measurements. The time of data acquisition was about 11 hours. This underwater housing permitted the type of measurements that are not readily available with other systems. With most other techniques the collection time would have been significantly longer. The transfer functions between the velocities measured at each scan location and the shaker force signal were computed as functions of frequency. The transfer functions computed for the center scan columns were then transformed into the wavevector domain using a 2D FFT program. Preliminary results show that the shell response is concentrated near zero circumferential wavenumber, due to the axial symmetry of the driving force. Further, the maximum shell response is also concentrated near the ring frequency of the cylinder, at an axial wavenumber of about -20 rad/m.

  3. OUTER RADIATION BELT AND AURORAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorchakov, E.V.

    1961-01-01

    Data obtained from Sputnik IH were used to determine the high-latitude boundary of the outer radiation belt and to interpret the nature of auroras. At the heights at which the auroras were observed, the outer boundary of the belt (69 deg north geomagnetic latitude) practically coincides with the auroral zone maximum (70 deg north geomagnetic latitude), while the maximum intensity of the outer belt near the earth lies at about 55 deg north geomagnetic latitude, i.e., at latitudes 15 deg below the auroral maximum. Consequently, auroras near the zone of maximum cannot be caused by the penetration into the atmospheremore » of electrons from the outer belt with energies on the order of 0.1 Mev (the mean energy of electrons in the outer belt). Other investigators have reported the detection of lowenergy streams at 55,000 to 75,000 km from the center of the earth in the equatorial plane. Moving toward the surface of the earth along the force lines of the magnetic field, electron streams of this type will reach the earth precisely in the region of the auroral zone maximum. It is considered possible that the electron streams are trapped at these distances from the earth and are at least partially responsible for auroras in the region of maximum. The existence of two maxima in the latitudinal distribution of auroral frequency, which attests to differert mechanisms of aurora formation, favors this hypothesis. In the region of the basic auroral maximum (70 deg north geomagnetic latitude) the auroras are the result of the invasion of belt particles, while in the region of the additional maximum (about 80 deg north geomagnetic latitude) they are caused by the direct penetration of corpuscular streams into the atmosphere. (OTS)« less

  4. System frequency support of permanent magnet synchronous generator-based wind power plant

    NASA Astrophysics Data System (ADS)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.

  5. Enhanced two dimensional electron gas transport characteristics in Al2O3/AlInN/GaN metal-oxide-semiconductor high-electron-mobility transistors on Si substrate

    NASA Astrophysics Data System (ADS)

    Freedsman, J. J.; Watanabe, A.; Urayama, Y.; Egawa, T.

    2015-09-01

    The authors report on Al2O3/Al0.85In0.15N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al2O3 as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al2O3/Al0.85In0.15N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.

  6. Cloud and convection frequencies over the southeast United States as related to small-scale geographic features

    NASA Technical Reports Server (NTRS)

    Gibson, Harold M.; Vonder Haar, Thomas H.

    1990-01-01

    Based on relatively high spatial and temporal resolution satelite data collected at 0700 CST and at each hour from 1000 CST to 1700 CST during the summer of 1986, cloud and convection variations over the area from Mississippi east to Georgia and from the Gulf of Mexico north to Tennessee are discussed. The data analyses show an average maximum cloud frequency over the land areas at 1400 local time and a maximum of deep convection one hour later. Both cloudiness and deep convection are found to be at a maximum during the nocturnal hours over the Gulf of Mexico. Cloud frequency shows a strong relationship to small terrain features. Small fresh water bodies have cloud minima relative to the surroundings in the afternoon hours. Higher, steep terrain shows cloud maxima and the adjacent lower terrain exhibits afternoon cloud minima due to a divergence of mountain breeze caused by the valley.

  7. Developmental lead exposure causes startle response deficits in zebrafish.

    PubMed

    Rice, Clinton; Ghorai, Jugal K; Zalewski, Kathryn; Weber, Daniel N

    2011-10-01

    Lead (Pb(2+)) exposure continues to be an important concern for fish populations. Research is required to assess the long-term behavioral effects of low-level concentrations of Pb(2+) and the physiological mechanisms that control those behaviors. Newly fertilized zebrafish embryos (<2h post fertilization; hpf) were exposed to one of three concentrations of lead (as PbCl(2)): 0, 10, or 30 nM until 24 hpf. (1) Response to a mechanosensory stimulus: Individual larvae (168 hpf) were tested for response to a directional, mechanical stimulus. The tap frequency was adjusted to either 1 or 4 taps/s. Startle response was recorded at 1000 fps. Larvae responded in a concentration-dependent pattern for latency to reaction, maximum turn velocity, time to reach V(max) and escape time. With increasing exposure concentrations, a larger number of larvae failed to respond to even the initial tap and, for those that did respond, ceased responding earlier than control larvae. These differences were more pronounced at a frequency of 4 taps/s. (2) Response to a visual stimulus: Fish, exposed as embryos (2-24 hpf) to Pb(2+) (0-10 μM) were tested as adults under low light conditions (≈ 60 μW/m(2)) for visual responses to a rotating black bar. Visual responses were significantly degraded at Pb(2+) concentrations of 30 nM. These data suggest that zebrafish are viable models for short- and long-term sensorimotor deficits induced by acute, low-level developmental Pb(2+) exposures. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Magnetoelectric effect in nanogranular FeCo-MgF films at GHz frequencies

    NASA Astrophysics Data System (ADS)

    Ikeda, Kenji; Kobayashi, Nobukiyo; Arai, Ken-Ichi; Yabukami, Shin

    2018-01-01

    The magnetoelectric effect is a key issue for material science and is particularly significant in the high frequency band, where it is indispensable in industrial applications. Here, we present for the first time, a study of the high frequency tunneling magneto-dielectric (TMD) effect in nanogranular FeCo-MgF films, consisting of nanometer-sized magnetic FeCo granules dispersed in an MgF insulator matrix. Dielectric relaxation and the TMD effect are confirmed at frequencies over 10 MHz. The frequency dependence of dielectric relaxation is described by the Debye-Fröhlich model, taking relaxation time dispersion into account, which reflects variations in the nature of the microstructure, such as granule size, and the inter-spacing between the granules that affect the dielectric response. The TMD effect reaches a maximum at a frequency that is equivalent to the inverse of the relaxation time. The frequency where the peak TMD effect is observed varies between 12 MHz and 220 MHz, depending on the concentration of magnetic metal in the nanogranular films. The inter-spacing of the films decreases with increasing magnetic metal concentration, in accordance with the relaxation time. These results indicate that dielectric relaxation is controlled by changing the nanostructure, using the deposition conditions. A prospective application of these nanogranular films is in tunable impedance devices for next-generation mobile communication systems, at frequencies over 1 GHz, where capacitance is controlled using the applied magnetic field.

  9. Decreased echolocation performance following high-frequency hearing loss in the false killer whale (Pseudorca crassidens).

    PubMed

    Kloepper, L N; Nachtigall, P E; Gisiner, R; Breese, M

    2010-11-01

    Toothed whales and dolphins possess a hypertrophied auditory system that allows for the production and hearing of ultrasonic signals. Although the fossil record provides information on the evolution of the auditory structures found in extant odontocetes, it cannot provide information on the evolutionary pressures leading to the hypertrophied auditory system. Investigating the effect of hearing loss may provide evidence for the reason for the development of high-frequency hearing in echolocating animals by demonstrating how high-frequency hearing assists in the functioning echolocation system. The discrimination abilities of a false killer whale (Pseudorca crassidens) were measured prior to and after documented high-frequency hearing loss. In 1992, the subject had good hearing and could hear at frequencies up to 100 kHz. In 2008, the subject had lost hearing at frequencies above 40 kHz. First in 1992, and then again in 2008, the subject performed an identical echolocation task, discriminating between machined hollow aluminum cylinder targets of differing wall thickness. Performances were recorded for individual target differences and compared between both experimental years. Performances on individual targets dropped between 1992 and 2008, with a maximum performance reduction of 36.1%. These data indicate that, with a loss in high-frequency hearing, there was a concomitant reduction in echolocation discrimination ability, and suggest that the development of a hypertrophied auditory system capable of hearing at ultrasonic frequencies evolved in response to pressures for fine-scale echolocation discrimination.

  10. Magnitude and frequency of floods in Nebraska

    USGS Publications Warehouse

    Beckman, Emil W.

    1976-01-01

    Observed maximum flood peaks at 303 gaging stations with 13 or more years of record and significant peaks at 57 short-term stations and 31 miscellaneous sites are useful in designing flood-control works for maximum safety from flood damage. Comparison is made with maximum observed floods in the United States.

  11. Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn.

    PubMed

    Wilson, J P; Jurjevic, Z; Hanna, W W; Wilson, D M; Potter, T L; Coy, A E

    2006-02-01

    Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 microg kg(-1)) and fumonisins (maximum concentration = 34,039 microg kg(-1)). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 microg kg(-1)). Beauvericin (maximum concentration = 414.6 microg kg(-1)) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.

  12. Fast and Efficient Stochastic Optimization for Analytic Continuation

    DOE PAGES

    Bao, Feng; Zhang, Guannan; Webster, Clayton G; ...

    2016-09-28

    In this analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained by the standard maximum entropy method for three representative test cases, including data taken from studies of the two-dimensional Hubbard model. Genearally, we find that our FESOM approach yields spectra similar to the maximum entropy results.more » In particular, while the maximum entropy method yields superior results when the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so only for the spectral weight integrated over a finite frequency region. Therefore, we believe that this variant of the stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method, especially for data of poor quality.« less

  13. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew K; Muljadi, Eduard; Gevorgian, Vahan

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. We evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. Inmore » the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600kW wind turbine - Controls Advanced Research Turbine, 3-bladed (CART3), which further verifies the inertial control through a hardware-in-the-loop (HIL) simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time HIL simulation. The simulation results also provide insights in designing inertial control for WTGs.« less

  14. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less

  15. Lateralization of Travelling Wave Response in the Hearing Organ of Bushcrickets

    PubMed Central

    Palghat Udayashankar, Arun; Kössl, Manfred; Nowotny, Manuela

    2014-01-01

    Travelling waves are the physical basis of frequency discrimination in many vertebrate and invertebrate taxa, including mammals, birds, and some insects. In bushcrickets (Tettigoniidae), the crista acustica is the hearing organ that has been shown to use sound-induced travelling waves. Up to now, data on mechanical characteristics of sound-induced travelling waves were only available along the longitudinal (proximal-distal) direction. In this study, we use laser Doppler vibrometry to investigate in-vivo radial (anterior-posterior) features of travelling waves in the tropical bushcricket Mecopoda elongata. Our results demonstrate that the maximum of sound-induced travelling wave amplitude response is always shifted towards the anterior part of the crista acustica. This lateralization of the travelling wave response induces a tilt in the motion of the crista acustica, which presumably optimizes sensory transduction by exerting a shear motion on the sensory cilia in this hearing organ. PMID:24465889

  16. Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2).

    PubMed

    Wang, Shengxiang; Kang, Lei; Werner, Douglas H

    2018-01-09

    Compared with natural materials, chiral metamaterials have been demonstrated with orders of magnitude stronger chiroptical response, which provides the basis for applications such as ultracompact polarization components and plasmonic-enhanced biosensing. Terahertz chiral metamaterials that allow dynamic polarization control of terahertz waves are of great practical interest, but remain extremely rare. Here, we show that hybrid metamaterials integrated with vanadium dioxide (VO 2 ) exhibiting phase transition can enable dynamically tunable chiroptical responses at terahertz frequencies. In particular, a circular dichroism of ~40° and a maximum polarization rotation of ~200°/λ are observed around 0.7 THz. Furthermore, our study also reveals that the chiroptical response from the proposed metamaterials is strongly dependent on the phase transition of VO 2 , leading to actively controllable polarization states of the transmitted terahertz waves. This work paves the way for the development of terahertz metadevices capable of enabling active polarization manipulation.

  17. Dynamic temperature response of electrocaloric multilayer capacitors

    NASA Astrophysics Data System (ADS)

    Kwon, Beomjin; Roh, Im-Jun; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang; Kang, Chong-Yun

    2014-05-01

    We measure and model the dynamic temperature response of electrocaloric (EC) multilayer capacitors (MLCs) which have been recently highlighted as novel solid-state refrigerators. The MLC temperature responses depend on the operation voltage waveform, thus we consider three types of voltage waveforms, which include square, triangular, and trapezoidal. Further, to implement an effective refrigeration cycle, the waveform frequency and duty cycle should be carefully chosen. First, our model is fitted to the measurements to evaluate an effective EC power and thermal properties, and calculates an effective cooling power for an EC MLC. The prediction shows that for a MLC with a thermal relaxation time for cooling, trc, a square voltage waveform with a duty cycle of 0 < d ≤ 0.3 and a period of trc < P ≤ 1.4trc provides the maximum cooling power. This work will help to improve the implementing methods for EC refrigeration cycles.

  18. Evaluation of piezoceramic actuators for control of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.

    1992-01-01

    Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.

  19. Effects of group response-cost procedures on cash shortages in a small business

    PubMed Central

    Marholin, David; Gray, Deanne

    1976-01-01

    The effect of a group response-cost procedure (accompanied by verbal and written instruction) designed to decrease cash shortages in a small business was evaluated with a reversal design. When cash shortages were subtracted from the six employees' salaries on days in which the shortage exceeded 1% of total daily sales, the magnitude of daily shortages sharply decreased. This response-cost contingency was used only three times throughout the study, with a maximum cost of $8.70 per subject over the 41-day period. The efficacy of the procedures may be due to either increased precision in change calculations, a decreased frequency of stealing from the cash register, increased shortchanging of customers, and/or increased incidents of register under-ringing. Ethical questions relative to the utilization of group punishment procedures are raised, and it was concluded that the procedures used were more humane than commonly used alternatives. PMID:16795515

  20. Effect of misspecification of gene frequency on the two-point LOD score.

    PubMed

    Pal, D K; Durner, M; Greenberg, D A

    2001-11-01

    In this study, we used computer simulation of simple and complex models to ask: (1) What is the penalty in evidence for linkage when the assumed gene frequency is far from the true gene frequency? (2) If the assumed model for gene frequency and inheritance are misspecified in the analysis, can this lead to a higher maximum LOD score than that obtained under the true parameters? Linkage data simulated under simple dominant, recessive, dominant and recessive with reduced penetrance, and additive models, were analysed assuming a single locus with both the correct and incorrect dominance model and assuming a range of different gene frequencies. We found that misspecifying the analysis gene frequency led to little penalty in maximum LOD score in all models examined, especially if the assumed gene frequency was lower than the generating one. Analysing linkage data assuming a gene frequency of the order of 0.01 for a dominant gene, and 0.1 for a recessive gene, appears to be a reasonable tactic in the majority of realistic situations because underestimating the gene frequency, even when the true gene frequency is high, leads to little penalty in the LOD score.

  1. FREQUENCY CONTENT OF CARTILAGE IMPACT FORCE SIGNAL REFLECTS ACUTE HISTOLOGIC STRUCTURAL DAMAGE.

    PubMed

    Heiner, Anneliese D; Martin, James A; McKinley, Todd O; Goetz, Jessica E; Thedens, Daniel R; Brown, Thomas D

    2012-10-01

    The objective of this study was to determine if acute cartilage impact damage could be predicted by a quantification of the frequency content of the impact force signal. Osteochondral specimens excised from bovine lateral tibial plateaus were impacted with one of six impact energies. Each impact force signal underwent frequency analysis, with the amount of higher-frequency content (percent of frequency spectrum above 1 KHz) being registered. Specimens were histologically evaluated to assess acute structural damage (articular surface cracking and cartilage crushing) resulting from the impact. Acute histologic structural damage to the cartilage had higher concordance with the high-frequency content measure than with other mechanical impact measures (delivered impact energy, impact maximum stress, and impact maximum stress rate of change). This result suggests that the frequency content of an impact force signal, specifically the proportion of higher-frequency components, can be used as a quick surrogate measure for acute structural cartilage injury. Taking advantage of this relationship could reduce the time and expense of histological processing needed to morphologically assess cartilage damage, especially for purposes of initial screening when evaluating new impaction protocols.

  2. Accounting for Atmospheric Rivers in the Flood Frequency Estimation in the Western United States

    NASA Astrophysics Data System (ADS)

    Barth, N. A.; Villarini, G.; White, K. D.

    2016-12-01

    The Bulletin 17B framework assumes that the observed annual peak flow data included in a flood frequency analysis are a "representative time sample of random homogeneous events." However, flood frequency analysis over the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood generating mechanisms, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. It is relatively common for the annual peaks fitted to the log-Pearson Type III distribution in these regions to show sharp breaks in the slope or a curve that reverses direction, pointing to the presence of different flood generating mechanisms. Following the recommendation by B17B to develop separate frequency curves when different flood agents can be identified, we will perform flood frequency analyses accounting for the role played by ARs. We will compare and contrast the results obtained by treating all annual maximum discharge values as generated from a single population against those from a mixed population analyses.

  3. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neuromuscular fatigue and recovery dynamics following prolonged continuous run at anaerobic threshold.

    PubMed

    Skof, B; Strojnik, V

    2006-03-01

    The aim of this study was to determine the influence of intensive aerobic running on some muscle contractile characteristics and the dynamics of their recovery during a 2 hour period afterwards. Seven well trained runners performed a 6 km run at anaerobic threshold (V(OBLA)). Knee torque during single twitch, low and high frequency electrical stimulation (ES), maximum voluntary knee extension, and muscle activation level test of the quadriceps femoris muscles were measured before and immediately after the run, and at several time points during a 120 minute interval that followed the run. After exercise, the mean (SE) maximum twitch torque (T(TW)) and torque at ES with 20 Hz (low frequency ES; T(F20)) dropped by 14.1 (5.1)% (p<0.05) and 20.6 (7.9)% (p<0.05) respectively, while torque at stimulation with 100 Hz (high frequency ES; T(F100)), maximum isometric knee extension torque (maximum voluntary contraction torque; T(MVC)), and activation level did not change significantly. Twitch contraction time was shortened by 8 (2)% (p<0.05). Ten minutes after the run, T(TW) was 40% higher than immediately after the run and 10% (p<0.05) higher than before the run. T(F20), T(F100), and T(MVC) remained lower for 60 minutes (p<0.05) than before the run. A 6 km continuous run at V(OBLA) caused peripheral fatigue by impairing excitation-contraction coupling. Twitch torque recovered very quickly. However, the process of torque restoration at maximum isometric knee extension torque and at high and low frequency ES took much longer.

  5. The relationships between hand coupling force and vibration biodynamic responses of the hand-arm system.

    PubMed

    Pan, Daniel; Xu, Xueyan S; Welcome, Daniel E; McDowell, Thomas W; Warren, Christopher; Wu, John; Dong, Ren G

    2018-06-01

    This study conducted two series of experiments to investigate the relationships between hand coupling force and biodynamic responses of the hand-arm system. In the first experiment, the vibration transmissibility on the system was measured as a continuous function of grip force while the hand was subjected to discrete sinusoidal excitations. In the second experiment, the biodynamic responses of the system subjected to a broadband random vibration were measured under five levels of grip forces and a combination of grip and push forces. This study found that the transmissibility at each given frequency increased with the increase in the grip force before reaching a maximum level. The transmissibility then tended to plateau or decrease when the grip force was further increased. This threshold force increased with an increase in the vibration frequency. These relationships remained the same for both types of vibrations. The implications of the experimental results are discussed. Practitioner Summary: Shocks and vibrations transmitted to the hand-arm system may cause injuries and disorders of the system. How to take hand coupling force into account in the risk assessment of vibration exposure remains an important issue for further studies. This study is designed and conducted to help resolve this issue.

  6. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  7. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise.

    PubMed

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang; Liao, Xiao-Mei

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  8. Frequency Dependent Non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study

    PubMed Central

    Floros, Stelios; Liakopoulou-Kyriakides, Maria; Karatasos, Kostas

    2017-01-01

    The use of microwaves in every day’s applications raises issues regarding the non thermal biological effects of microwaves. In this work we employ molecular dynamics simulations to advance further the dielectric studies of protein solutions in the case of lysozyme, taking into consideration possible frequency dependent changes in the structural and dynamic properties of the system upon application of electric field in the microwave region. The obtained dielectric spectra are identical with those derived in our previous work using the Fröhlich-Kirkwood approach in the framework of the linear response theory. Noticeable structural changes in the protein have been observed only at frequencies near its absorption maximum. Concerning Cα position fluctuations, different frequencies affected different regions of the protein sequence. Furthermore, the influence of the field on the kinetics of protein-water as well as on the water-water hydrogen bonds in the first hydration shell has been studied; an extension of the Luzar-Chandler kinetic model was deemed necessary for a better fit of the applied field results and for the estimation of more accurate hydrogen bond lifetime values. PMID:28129348

  9. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    PubMed Central

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons. PMID:28589040

  10. Detection of main tidal frequencies using least squares harmonic estimation method

    NASA Astrophysics Data System (ADS)

    Mousavian, R.; Hossainali, M. Mashhadi

    2012-11-01

    In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.

  11. Effects of Wildfire on the Hydrology of Capulin and Rito de los Frijoles canyons, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Veenhuis, Jack E.

    2002-01-01

    In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak flows. The frequency of larger stormflows also increased in response to the effects of the wildfires in both canyons. In Frijoles Canyon, the number of peak stormflows greater than the pre-fire maximum flow of 19 cubic feet per second was 15 in 1977, 9 in 1978, and 5 in 1979, which is about the magnitude of the maximum pre-fire peak flow in both canyons. Again the hydrologic effects of a wildfire seem to be more pronounced for the 3 years following the date of the fire. Likewise, larger peakflows occurred more frequently in Capulin Canyon for the first 3 years after the 1996 wildfire. Median suspended-sediment concentrations in samples collected in Frijoles Canyon in 1977 were 1,330 milligrams per liter; median concentrations were 16 milligrams per liter after the watershed stabilized in 1993-95. The annual load calculated from regression equations for load compared to flow for the first year after the wildfire was 220 times the annual load for the post-recovery period. To convey the increased frequency and magnitude of average flows in Capulin Canyon after the 1996 Dome wildfire, the stream channel in Capulin Canyon increased in flow capacity by widening and downcutting. As Capulin Canyon peak flows have decreased in both magnitude and frequency with vegetative recovery, the stream channel also has slowly begun to readjust. The channel at the most downstream crest-stage gage, which has the shallowest initial valley slope, is showing the first signs of aggradation.

  12. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    PubMed Central

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  13. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    PubMed

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  14. A physiological frequency-position map of the chinchilla cochlea.

    PubMed

    Müller, Marcus; Hoidis, Silvi; Smolders, Jean W T

    2010-09-01

    Accumulating evidence indicates that mammalian cochlear frequency-position maps (location of maximum vibration of the basilar membrane as a function of frequency) depend on the physiological condition of the inner ear. Cochlear damage desensitizes the ear, after the damage the original location of maximum vibration is tuned to a lower sound frequency. This suggests that frequency-position maps, derived from such desensitized ears, are shifted to lower frequencies, corresponding to a shift of the basilar membrane vibration pattern towards the base for a given stimulus frequency. To test this hypothesis, we re-mapped the cochlear frequency-position map in the chinchilla. We collected frequency-position data from chinchillas in normal physiological condition ("physiological map") and compared these to data previously established from sound overexposed ears ("anatomical map"). The characteristic frequency (CF) of neurons in the cochlear nucleus was determined. Horse-radish peroxidase (HRP) or biocytin (BCT) were injected iontophoretically to trace auditory nerve fibers towards their innervation site in the organ of Corti. The relationship between distance from the base (d, percent) and frequency (f, kHz) was described best by a simple exponential function: d = 61.2 - 42.2 x log(f). The slope of the function was 2.55 mm/octave. Compared to the "anatomical map", the "physiological map" was shifted by about 0.3 octaves to higher frequencies corresponding to a shift of the basilar membrane vibration pattern of 0.8 mm towards the apex for a given stimulus frequency. Our findings affirm that frequency-position maps in the mammalian cochlea depend on the condition of the inner ear. Damage-induced desensitization in mammalian inner ears results in similar shifts of CF (about 0.5 octaves) but different shifts of the maximum of the vibration pattern towards the base at given frequencies, dependent on the mapping constant of the species, longer basilar membranes showing a larger basal shift. Furthermore, the results substantiate the notion that "crowding" at lower frequencies appears to be a specialization rather than a general feature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. High performance broadband photodetector based on MoS2/porous silicon heterojunction

    NASA Astrophysics Data System (ADS)

    Dhyani, Veerendra; Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh

    2017-11-01

    A high speed efficient broadband photodetector based on a vertical n-MoS2/p-porous silicon heterostructure has been demonstrated. Large area MoS2 on electrochemical etched porous silicon was grown by sulphurization of a sputtered MoO3 thin film. A maximum responsivity of 9 A/W (550-850 nm) with a very high detectivity of ˜1014 Jones is observed. Transient measurements show a fast response time of ˜9 μs and is competent to work at high frequencies (˜50 kHz). The enhanced photodetection performance of the heterojunction made on porous silicon over that made on planar silicon is explained in terms of higher interfacial barrier height, superior light trapping property, and larger junction area in the MoS2/porous silicon junction.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.

    The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The resultsmore » provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.« less

  17. Efficacy of Pregabalin in Childhood Refractory Partial Seizure

    PubMed Central

    Zamani, Gholamreza; Tavasoli, Alireza; Zare-Shahabadi, Ameneh; Rezaei, Nima; Ahmadvand, Alireza

    2014-01-01

    Objective: About one third of partial seizures are refractory to treatment. Several anticonvulsant drugs have entered the market in recent decades but concerns about intolerance, drug interactions, and the safety of the drug are notable. One of these new anticonvulsants is pregabalin, a safe drug with almost no interaction with other antiepileptic drugs. Methods: In this open label clinical trial study, pregabalin was used for evaluation of its efficacy on reducing seizure frequency in 29 children suffering from refractory partial seizures. Average daily and weekly seizure frequency of the patients was recorded during a 6-week period (baseline period). Then, during a period of 2 weeks (titration period), pregabalin was started with a dose of 25-75 mg/d, using method of flexible dose, and was brought to maximum dose of drug that was intended in this study (450 mg/d) based on clinical response of the patients and seizure frequency. Then the patients were given the drug for 12 weeks and the average frequency of daily and weekly seizures were recorded again (treatment period). Findings : Reduction in seizure frequency in this study was 36% and the responder rate or number of patients who gained more than 50% reduction in seizure frequency was 51.7%. Conclusion: This study showed that pregabalin can be used with safety and an acceptable efficacy in treatment of childhood refractory partial seizures. PMID:25793053

  18. Relationship Between Frequency and Deflection Angle in the DNA Prism

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    The DNA prism is a modification of the standard pulsed-field electrophoresis protocol to provide a continuous separation, where the DNA are deflected at an angle that depends on their molecular weight. The standard switchback model for the DNA prism predicts a monotonic increase in the deflection angle as a function of the frequency for switching the field until a plateau regime is reached. However, experiments indicate that the deflection angle achieves a maximum value before decaying to a size-independent value at high frequencies. Using Brownian dynamics simulations, we show that the maximum in the deflection angle is related to the reorientation time for the DNA and the decay in deflection angle at high frequencies is due to inadequate stretching. The generic features of the dependence of the deflection angle on molecular weight, switching frequency, and electric field strength explain a number of experimental phenomena. PMID:23410375

  19. Multi-factor evaluation indicator method for the risk assessment of atmospheric and oceanic hazard group due to the attack of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Qi, Peng; Du, Mei

    2018-06-01

    China's southeast coastal areas frequently suffer from storm surge due to the attack of tropical cyclones (TCs) every year. Hazards induced by TCs are complex, such as strong wind, huge waves, storm surge, heavy rain, floods, and so on. The atmospheric and oceanic hazards cause serious disasters and substantial economic losses. This paper, from the perspective of hazard group, sets up a multi-factor evaluation method for the risk assessment of TC hazards using historical extreme data of concerned atmospheric and oceanic elements. Based on the natural hazard dynamic process, the multi-factor indicator system is composed of nine natural hazard factors representing intensity and frequency, respectively. Contributing to the indicator system, in order of importance, are maximum wind speed by TCs, attack frequency of TCs, maximum surge height, maximum wave height, frequency of gusts ≥ Scale 8, rainstorm intensity, maximum tidal range, rainstorm frequency, then sea-level rising rate. The first four factors are the most important, whose weights exceed 10% in the indicator system. With normalization processing, all the single-hazard factors are superposed by multiplying their weights to generate a superposed TC hazard. The multi-factor evaluation indicator method was applied to the risk assessment of typhoon-induced atmospheric and oceanic hazard group in typhoon-prone southeast coastal cities of China.

  20. Dynamic impedance compensation for wireless power transfer using conjugate power

    NASA Astrophysics Data System (ADS)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2018-02-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  1. Continuity vs. the Crowd-Tradeoffs Between Continuous and Intermittent Citizen Hydrology Streamflow Observations.

    PubMed

    Davids, Jeffrey C; van de Giesen, Nick; Rutten, Martine

    2017-07-01

    Hydrologic data has traditionally been collected with permanent installations of sophisticated and accurate but expensive monitoring equipment at limited numbers of sites. Consequently, observation frequency and costs are high, but spatial coverage of the data is limited. Citizen Hydrology can possibly overcome these challenges by leveraging easily scaled mobile technology and local residents to collect hydrologic data at many sites. However, understanding of how decreased observational frequency impacts the accuracy of key streamflow statistics such as minimum flow, maximum flow, and runoff is limited. To evaluate this impact, we randomly selected 50 active United States Geological Survey streamflow gauges in California. We used 7 years of historical 15-min flow data from 2008 to 2014 to develop minimum flow, maximum flow, and runoff values for each gauge. To mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, and their respective distributions, from 50 subsample iterations with four different subsampling frequencies ranging from daily to monthly. Minimum flows were estimated within 10% for half of the subsample iterations at 39 (daily) and 23 (monthly) of the 50 sites. However, maximum flows were estimated within 10% at only 7 (daily) and 0 (monthly) sites. Runoff volumes were estimated within 10% for half of the iterations at 44 (daily) and 12 (monthly) sites. Watershed flashiness most strongly impacted accuracy of minimum flow, maximum flow, and runoff estimates from subsampled data. Depending on the questions being asked, lower frequency Citizen Hydrology observations can provide useful hydrologic information.

  2. Sound absorption study on acoustic panel from kapok fiber and egg tray

    NASA Astrophysics Data System (ADS)

    Kaamin, Masiri; Mahir, Nurul Syazwani Mohd; Kadir, Aslila Abd; Hamid, Nor Baizura; Mokhtar, Mardiha; Ngadiman, Norhayati

    2017-12-01

    Noise also known as a sound, especially one that is loud or unpleasant or that causes disruption. The level of noise can be reduced by using sound absorption panel. Currently, the market produces sound absorption panel, which use synthetic fibers that can cause harmful effects to the health of consumers. An awareness of using natural fibers from natural materials gets attention of some parties to use it as a sound absorbing material. Therefore, this study was conducted to investigate the potential of sound absorption panel using egg trays and kapok fibers. The test involved in this study was impedance tube test which aims to get sound absorption coefficient (SAC). The results showed that there was good sound absorption at low frequency from 0 Hz up to 900 Hz where the maximum absorption coefficient was 0.950 while the maximum absorption at high frequencies was 0.799. Through the noise reduction coefficient (NRC), the material produced NRC of 0.57 indicates that the materials are very absorbing. In addition, the reverberation room test was carried out to get the value of reverberation time (RT) in unit seconds. Overall this panel showed good results at low frequencies between 0 Hz up to 1500 Hz. In that range of frequency, the maximum reverberation time for the panel was 3.784 seconds compared to the maximum reverberation time for an empty room was 5.798 seconds. This study indicated that kapok fiber and egg tray as the material of absorption panel has a potential as environmental and cheap products in absorbing sound at low frequency.

  3. Polarized components of C=O vibrations Raman spectra for ethylacetate, acetone, and aggregation of molecules

    NASA Astrophysics Data System (ADS)

    Tukhvatullin, F. H.; Jumabaev, A.; Tashkenbaev, U. N.; Hushvaktov, H. A.; Absanov, A. A.

    2002-11-01

    For liquid ethylacetate the frequency maximums for parallel (I|| (v)) and perpendicular (I\\highmod(v)) polarized components of C=O vibrations band in Raman spectra are differed on 5.3 cm-1. At dilution ethylacetate in CCl4 and heptane or heating in this difference is decreased by displacement of I|| (v) maximum to the I\\highmod(v) maximum. In polar solvent, nitrometane, the picture is different - the frequency maxima difference is decreased though the displacement of I\\highmod(v) band maximum to the I|| (v)one. The results were explained by the complexity of C=O vibration bands, and existence within the band of two lines with the different depolarization ratio. The complexity of the band is the result existence in liquid ethylacetate the monomer molecules and molecular aggregations.

  4. How do the medial olivocochlear efferents influence the biomechanics of the outer hair cells and thereby the cochlear amplifier? Simulation results

    NASA Astrophysics Data System (ADS)

    Saremi, Amin; Stenfelt, Stefan; Verhulst, Sarah

    2015-12-01

    The bottom-up signal pathway, which starts from the outer ear and leads to the brain cortices, gives the classic image of the human sound perception. However, there have been growing evidences in the last six decades for existence of a functional descending network whereby the central auditory system can modulate the early auditory processing, in a top-down manner. The medial olivocochlear efferent fibers project from the superior olivary complex at the brainstem into the inner ear. They are linked to the basal poles of the hair cells by forming synaptic cisterns. This descending network can activate nicotinic cholinergic receptors (nAChR) that increase the membrane conductance of the outer hair cells and thereby modify the magnitude of the active force generated inside the cochlea. The aim of the presented work is to quantitatively investigate how the changes in the biomechanics of the outer hair cells, caused by the efferent activation, manipulate the cochlear responses. This is done by means of a frequency-domain biophysical model of the cochlea [12] where the parameters of the model convey physiological interpretations of the human cochlear structures. The simulations manifest that a doubling of the outer hair cell conductance, due to efferent activation, leads to a frequency-dependent gain reduction along the cochlear duct with its highest effect at frequencies between 1 kHz and 3.5 kHz and a maximum of approximately 10 dB gain reduction at 2 kHz. This amount of the gain inhibition and its frequency dependence reasonably agrees with the experimental data recorded from guinea pig, cat and human cochleae where the medial olivococlear efferents had been elicited by broad-band stimuli. The simulations also indicate that the efferent-induced increase of the outer hair cell conductance increases the best frequency of the cochlear responses, in the basal region. The presented simulations quantitatively confirm that activation of the medial olivocochlear efferents can biomechanically manipulate the cochlear responses, in a top-down manner, by inhibiting the gain of the cochlear amplifier as well as altering the frequency-position map (tuning pattern) of the cochlea.

  5. The impact of environmental factors on marine turtle stranding rates

    PubMed Central

    Flint, Mark; Limpus, Colin J.; Mills, Paul C.

    2017-01-01

    Globally, tropical and subtropical regions have experienced an increased frequency and intensity in extreme weather events, ranging from severe drought to protracted rain depressions and cyclones, these coincided with an increased number of marine turtles subsequently reported stranded. This study investigated the relationship between environmental variables and marine turtle stranding. The environmental variables examined in this study, in descending order of importance, were freshwater discharge, monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall for the latitudinal hotspots (-27°, -25°, -23°, -19°) along the Queensland coast as well as for major embayments within these blocks. This study found that marine turtle strandings can be linked to these environmental variables at different lag times (3–12 months), and that cumulative (months added together for maximum lag) and non-cumulative (single month only) effects cause different responses. Different latitudes also showed different responses of marine turtle strandings, both in response direction and timing.Cumulative effects of freshwater discharge in all latitudes resulted in increased strandings 10–12 months later. For latitudes -27°, -25° and -23° non-cumulative effects for discharge resulted in increased strandings 7–12 months later. Latitude -19° had different results for the non-cumulative bay with strandings reported earlier (3–6 months). Monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall had varying results for each examined latitude. This study will allow first responders and resource managers to be better equipped to deal with increased marine turtle stranding rates following extreme weather events. PMID:28771635

  6. High Mid-Flow to Vital Capacity Ratio and the Response to Exercise in Children With Congenital Heart Disease.

    PubMed

    Vilozni, Daphna; Alcaneses-Ofek, Maria Rosario; Reuveny, Ronen; Rosenblum, Omer; Inbar, Omri; Katz, Uriel; Ziv-Baran, Tomer; Dubnov-Raz, Gal

    2016-12-01

    Pulmonary mechanics may play a role in exercise intolerance in patients with congenital heart disease (CHD). A reduced FVC volume could increase the ratio between mid-flow (FEF 25-75% ) and FVC, which is termed high dysanapsis. The relationship between high dysanapsis and the response to maximum-intensity exercise in children with CHD had not yet been studied. The aim of this work was to examine whether high dysanapsis is related to the cardiopulmonary response to maximum-intensity exercise in pediatric subjects with CHD. We retrospectively collected data from 42 children and adolescents with CHD who had either high dysanapsis (ratio >1.2; n = 21) or normal dysanapsis (control) (n = 21) as measured by spirometry. Data extracted from cardiopulmonary exercise test reports included peak values of heart rate, work load, V̇ O 2 , V̇ CO 2 , and ventilation parameters and submaximum values, including ventilatory threshold and ventilatory equivalents. There were no significant differences in demographic and clinical parameters between the groups. Participants with high dysanapsis differed from controls in lower median peak oxygen consumption (65.8% vs 83.0% of predicted, P = .02), peak oxygen pulse (78.6% vs 87.8% of predicted, P = .02), ventilatory threshold (73.8% vs 85.3% of predicted, P = .03), and maximum breathing frequency (106% vs 121% of predicted, P = .035). In the high dysanapsis group only, median peak ventilation and tidal volume were significantly lower than 80% of predicted values. In children and adolescents with corrected CHD, high dysanapsis was associated with a lower ventilatory capacity and reduced aerobic fitness, which may indicate respiratory muscle impairments. Copyright © 2016 by Daedalus Enterprises.

  7. Dim-light photoreceptor of chub mackerel Scomber japonicus and the photoresponse upon illumination with LEDs of different wavelengths.

    PubMed

    Jang, Jun-Chul; Choi, Mi-Jin; Yang, Yong-Soo; Lee, Hyung-Been; Yu, Young-Moon; Kim, Jong-Myoung

    2016-06-01

    To study the absorption characteristics of rhodopsin, a dim-light photoreceptor, in chub mackerel (Scomber japonicus) and the relationship between light wavelengths on the photoresponse, the rod opsin gene was cloned into an expression vector, pMT4. Recombinant opsin was transiently expressed in COS-1 cells and reconstituted with 11-cis-retinal. Cells containing the regenerated rhodopsin were solubilized and subjected to UV/Vis spectroscopic analysis in the dark and upon illumination. Difference spectra from the lysates indicated an absorption maximum of mackerel rhodopsin around 500 nm. Four types of light-emitting diode (LED) modules with different wavelengths (red, peak 627 nm; cyan, 505 nm; blue, 442 nm; white, 447 + 560 nm) were constructed to examine their effects on the photoresponse in chub mackerel. Behavioral responses of the mackerels, including speed and frequencies acclimated in the dark and upon LED illumination, were analyzed using an underwater acoustic camera. Compared to an average speed of 22.25 ± 1.57 cm/s of mackerel movement in the dark, speed increased to 22.97 ± 0.29, 24.66 ± 1.06, 26.28 ± 2.28, and 25.19 ± 1.91 cm/s upon exposure to red, blue, cyan, and white LEDs, respectively. There were increases of 103.48 ± 1.58, 109.37 ± 5.29, 118.48 ± 10.82, and 109.43 ± 3.92 %, respectively, in the relative speed of the fishes upon illumination with red, blue, cyan, and white LEDs compared with that in the dark (set at 100 %). Similar rate of wavelength-dependent responses was observed in a frequency analysis. These results indicate that an LED emitting a peak wavelength close to an absorption maximum of rhodopsin is more effective at eliciting a response to light.

  8. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.

    PubMed

    Parry, J M; Sharp, D; Tippins, R S; Parry, E M

    1979-06-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.

  9. Strong Ground Motions Scenarios for Mexico City

    NASA Astrophysics Data System (ADS)

    Cabrera, E.; Chavez, M.; Madariaga, R.; Mai, P. M.; Frisenda, M.; Perea, N.

    2005-12-01

    The recordings available in Mexico City (MC) for extreme magnitude Subduction Superficial (SS), Subduction Deep (SD), and Crustal Superficial (CS) events are about 30 accelerograms (obtained at 10 sites) for the SS 19 09 1985 earthquake (Ms 8.1, Mw 8.01). In this work we generated broadband synthetic accelerograms expected in MC stiff (S) and compressive soils (C),for SS (Mw 8.5, 8.7), SD (Mw 7.6) and CS (Mw 7.5) earthquakes.The frequencies lower than 0.5 Hz were simulated by using a 4th order FD method, including a (fractal) finite-fault description of the sources. The frequencies larger than 0.5 Hz were modeled by the empirical Green function technique. We propose upper bounds of 0.4g and 2g (g=9.8m/s2)for the maximum response spectra acceleration(5 percent damping) expected in the S and C soils of MC, respectively.

  10. Vibration suppression using a proofmass actuator operating in stroke/force saturation

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Celano, T. P.; Ide, E. N.

    1991-01-01

    The design of the control-loop structure for a feedback control system which contains a proofmass actuator for suppressing vibration is discussed. The loop structure is composed of inner control loops, which determine the frequency of the actuator and which are directly related to the actuator and the outer loops which add damping to the structure. When the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops, and, since the stroke/force saturation curve is characterized by the stroke length, the mass of the proofmass, and the maximum current delivered by the motor electronics, the size of the actuator can be easily determined. The results of the loop-structure model calculations are verified by examining linear DC motors as proofmass actuators for the Mast in NASA's Control of Flexible Structures program.

  11. Acoustic emission characterization of steel fibre reinforced concrete during bending

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Sapouridis, N.; Barkoula, N. M.; Paipetis, A. S.; Matikas, T. E.

    2010-04-01

    The acoustic emission (AE) behaviour of steel fibre reinforced concrete is studied in this paper. The experiments were conducted in four-point bending with concurrent monitoring of AE signals. The sensors used, were of broadband response in order to capture a wide range of fracturing phenomena. The results indicate that AE parameters undergo significant changes much earlier than the final fracture of the specimens, even if the AE hit rate seems approximately constant. Specifically, the Ib-value which takes into account the amplitude distribution of the recent AE hits decreases when the load reaches about 60-70 % of its maximum value. Additionally, the average frequency of the signals decreases abruptly when a fracture incident occurs, indicating that matrix cracking events produce higher frequencies than fibre pull-out events. It is concluded that proper study of AE parameters enables the characterization of structural health of large structures in cases where remote monitoring is applied.

  12. Fast and accurate read-out of interferometric optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Bartholsen, Ingebrigt; Hjelme, Dag R.

    2016-03-01

    We present results from an evaluation of phase and frequency estimation algorithms for read-out instrumentation of interferometric sensors. Tests on interrogating a micro Fabry-Perot sensor made of semi-spherical stimuli-responsive hydrogel immobilized on a single mode fiber end face, shows that an iterative quadrature demodulation technique (IQDT) implemented on a 32-bit microcontroller unit can achieve an absolute length accuracy of ±50 nm and length change accuracy of ±3 nm using an 80 nm SLED source and a grating spectrometer for interrogation. The mean absolute error for the frequency estimator is a factor 3 larger than the theoretical lower bound for a maximum likelihood estimator. The corresponding factor for the phase estimator is 1.3. The computation time for the IQDT algorithm is reduced by a factor 1000 compared to the full QDT for the same accuracy requirement.

  13. Automatic Modulation Classification of Common Communication and Pulse Compression Radar Waveforms using Cyclic Features

    DTIC Science & Technology

    2013-03-01

    intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or

  14. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Zeitzer, J. M.; Czeisler, C. A.; Dijk, D. J.

    2000-01-01

    Light can elicit both circadian and acute physiological responses in humans. In a dose response protocol men and women were exposed to illuminances ranging from 3 to 9100 lux for 6.5 h during the early biological night after they had been exposed to <3 lux for several hours. Light exerted an acute alerting response as assessed by a reduction in the incidence of slow-eye movements, a reduction of EEG activity in the theta-alpha frequencies (power density in the 5-9 Hz range) as well as a reduction in self-reported sleepiness. This alerting response was positively correlated with the degree of melatonin suppression by light. In accordance with the dose response function for circadian resetting and melatonin suppression, the responses of all three indices of alertness to variations in illuminance were consistent with a logistic dose response curve. Half of the maximum alerting response to bright light of 9100 lux was obtained with room light of approximately 100 lux. This sensitivity to light indicates that variations in illuminance within the range of typical, ambient, room light (90-180 lux) can have a significant impact on subjective alertness and its electrophysiologic concomitants in humans during the early biological night.

  15. A fingerprint of the epileptogenic zone in human epilepsies.

    PubMed

    Grinenko, Olesya; Li, Jian; Mosher, John C; Wang, Irene Z; Bulacio, Juan C; Gonzalez-Martinez, Jorge; Nair, Dileep; Najm, Imad; Leahy, Richard M; Chauvel, Patrick

    2018-01-01

    Defining a bio-electrical marker for the brain area responsible for initiating a seizure remains an unsolved problem. Fast gamma activity has been identified as the most specific marker for seizure onset, but conflicting results have been reported. In this study, we describe an alternative marker, based on an objective description of interictal to ictal transition, with the aim of identifying a time-frequency pattern or 'fingerprint' that can differentiate the epileptogenic zone from areas of propagation. Seventeen patients who underwent stereoelectroencephalography were included in the study. Each had seizure onset characterized by sustained gamma activity and were seizure-free after tailored resection or laser ablation. We postulated that the epileptogenic zone was always located inside the resection region based on seizure freedom following surgery. To characterize the ictal frequency pattern, we applied the Morlet wavelet transform to data from each pair of adjacent intracerebral electrode contacts. Based on a visual assessment of the time-frequency plots, we hypothesized that a specific time-frequency pattern in the epileptogenic zone should include a combination of (i) sharp transients or spikes; preceding (ii) multiband fast activity concurrent; with (iii) suppression of lower frequencies. To test this hypothesis, we developed software that automatically extracted each of these features from the time-frequency data. We then used a support vector machine to classify each contact-pair as being within epileptogenic zone or not, based on these features. Our machine learning system identified this pattern in 15 of 17 patients. The total number of identified contacts across all patients was 64, with 58 localized inside the resected area. Subsequent quantitative analysis showed strong correlation between maximum frequency of fast activity and suppression inside the resection but not outside. We did not observe significant discrimination power using only the maximum frequency or the timing of fast activity to differentiate contacts either between resected and non-resected regions or between contacts identified as epileptogenic versus non-epileptogenic. Instead of identifying a single frequency or a single timing trait, we observed the more complex pattern described above that distinguishes the epileptogenic zone. This pattern encompasses interictal to ictal transition and may extend until seizure end. Its time-frequency characteristics can be explained in light of recent models emphasizing the role of fast inhibitory interneurons acting on pyramidal cells as a prominent mechanism in seizure triggering. The pattern clearly differentiates the epileptogenic zone from areas of propagation and, as such, represents an epileptogenic zone 'fingerprint'.awx306media15687076823001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  16. A fingerprint of the epileptogenic zone in human epilepsies

    PubMed Central

    Grinenko, Olesya; Li, Jian; Mosher, John C; Wang, Irene Z; Bulacio, Juan C; Gonzalez-Martinez, Jorge; Nair, Dileep; Najm, Imad; Leahy, Richard M; Chauvel, Patrick

    2018-01-01

    Abstract Defining a bio-electrical marker for the brain area responsible for initiating a seizure remains an unsolved problem. Fast gamma activity has been identified as the most specific marker for seizure onset, but conflicting results have been reported. In this study, we describe an alternative marker, based on an objective description of interictal to ictal transition, with the aim of identifying a time-frequency pattern or ‘fingerprint’ that can differentiate the epileptogenic zone from areas of propagation. Seventeen patients who underwent stereoelectroencephalography were included in the study. Each had seizure onset characterized by sustained gamma activity and were seizure-free after tailored resection or laser ablation. We postulated that the epileptogenic zone was always located inside the resection region based on seizure freedom following surgery. To characterize the ictal frequency pattern, we applied the Morlet wavelet transform to data from each pair of adjacent intracerebral electrode contacts. Based on a visual assessment of the time-frequency plots, we hypothesized that a specific time-frequency pattern in the epileptogenic zone should include a combination of (i) sharp transients or spikes; preceding (ii) multiband fast activity concurrent; with (iii) suppression of lower frequencies. To test this hypothesis, we developed software that automatically extracted each of these features from the time-frequency data. We then used a support vector machine to classify each contact-pair as being within epileptogenic zone or not, based on these features. Our machine learning system identified this pattern in 15 of 17 patients. The total number of identified contacts across all patients was 64, with 58 localized inside the resected area. Subsequent quantitative analysis showed strong correlation between maximum frequency of fast activity and suppression inside the resection but not outside. We did not observe significant discrimination power using only the maximum frequency or the timing of fast activity to differentiate contacts either between resected and non-resected regions or between contacts identified as epileptogenic versus non-epileptogenic. Instead of identifying a single frequency or a single timing trait, we observed the more complex pattern described above that distinguishes the epileptogenic zone. This pattern encompasses interictal to ictal transition and may extend until seizure end. Its time-frequency characteristics can be explained in light of recent models emphasizing the role of fast inhibitory interneurons acting on pyramidal cells as a prominent mechanism in seizure triggering. The pattern clearly differentiates the epileptogenic zone from areas of propagation and, as such, represents an epileptogenic zone ‘fingerprint’. PMID:29253102

  17. Application of stroboscopic and pulsed-laser electronic speckle pattern interferometry (ESPI) to modal analysis problems

    NASA Astrophysics Data System (ADS)

    Van der Auweraer, H.; Steinbichler, H.; Vanlanduit, S.; Haberstok, C.; Freymann, R.; Storer, D.; Linet, V.

    2002-04-01

    Accurate structural models are key to the optimization of the vibro-acoustic behaviour of panel-like structures. However, at the frequencies of relevance to the acoustic problem, the structural modes are very complex, requiring high-spatial-resolution measurements. The present paper discusses a vibration testing system based on pulsed-laser holographic electronic speckle pattern interferometry (ESPI) measurements. It is a characteristic of the method that time-triggered (and not time-averaged) vibration images are obtained. Its integration into a practicable modal testing and analysis procedure is reviewed. The accumulation of results at multiple excitation frequencies allows one to build up frequency response functions. A novel parameter extraction approach using spline-based data reduction and maximum-likelihood parameter estimation was developed. Specific extensions have been added in view of the industrial application of the approach. These include the integration of geometry and response information, the integration of multiple views into one single model, the integration with finite-element model data and the prior identification of the critical panels and critical modes. A global procedure was hence established. The approach has been applied to several industrial case studies, including car panels, the firewall of a monovolume car, a full vehicle, panels of a light truck and a household product. The research was conducted in the context of the EUREKA project HOLOMODAL and the Brite-Euram project SALOME.

  18. Properties of human motoneurones and their synaptic noise deduced from motor unit recordings with the aid of computer modelling.

    PubMed

    Matthews, P B

    1999-01-01

    This paper reviews two new facets of the behaviour of human motoneurones; these were demonstrated by modelling combined with analysis of long periods of low-frequency tonic motor unit firing (sub-primary range). 1) A novel transformation of the interval histogram has shown that the effective part of the membrane's post-spike voltage trajectory is a segment of an exponential (rather than linear), with most spikes being triggered by synaptic noise before the mean potential reaches threshold. The curvature of the motoneurone's trajectory affects virtually all measures of its behaviour and response to stimulation. The 'trajectory' is measured from threshold, and so includes any changes in threshold during the interspike interval. 2) A novel rhythmic stimulus (amplitude-modulated pulsed vibration) has been used to show that the motoneurone produces appreciable phase-advance during sinusoidal excitation. At low frequencies, the advance increases with rising stimulus frequency but then, slightly below the motoneurones mean firing rate, it suddenly becomes smaller. The gain has a maximum for stimuli at the mean firing rate (the 'carrier'). Such behaviour is functionally important since it affects the motoneurone's response to any rhythmic input, whether generated peripherally by the receptors (as in tremor) or by the CNS (as with cortical oscillations). Low mean firing rates favour tremor, since the high gain and reduced phase advance at the 'carrier' reduce the stability of the stretch reflex.

  19. Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane

    PubMed Central

    Jung, Youngdo; Kwak, Jun-Hyuk; Lee, Young Hwa; Kim, Wan Doo; Hur, Shin

    2014-01-01

    In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS) that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA) was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters. PMID:24361926

  20. Dynamic generation of concentration- and temporal-dependent chemical signals in an integrated microfluidic device for single-cell analysis.

    PubMed

    Gonzalez-Suarez, Alan Mauricio; Peña-Del Castillo, Johanna G; Hernandez-Cruz, Arturo; Garcia-Cordero, Jose Luis

    2018-06-19

    Intracellular signaling pathways are affected by the temporal nature of external chemical signaling molecules such as neuro-transmitters or hormones. Developing high-throughput technologies to mimic these time-varying chemical signals and to analyze the response of single cells would deepen our understanding of signaling networks. In this work, we introduce a microfluidic platform to stimulate hundreds of single cells with chemical waveforms of tunable frequency and amplitude. Our device produces a linear gradient of 9 concentrations that are delivered to an equal number of chambers, each containing 492 microwells, where individual cells are captured. The device can alternate between the different stimuli concentrations and a control buffer, with a maximum operating frequency of 33 mHz that can be adjusted from a computer. Fluorescent time-lapse microscopy enables to obtain hundreds of thousands of data points from one experiment. We characterized the gradient performance and stability by staining hundreds of cells with calcein AM. We also assessed the capacity of our device to introduce periodic chemical stimuli of different amplitudes and frequencies. To demonstrate our device performance, we studied the dynamics of intracellular Ca2+ release from intracellular stores of HEK cells when stimulated with carbachol at 4.5 and 20 mHz. Our work opens the possibility of characterizing the dynamic responses in real time of signaling molecules to time-varying chemical stimuli with single cell resolution.

  1. Comparison of temporal properties of auditory single units in response to cochlear infrared laser stimulation recorded with multi-channel and single tungsten electrodes

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodong; Xia, Nan; Young, Hunter; Richter, Claus-Peter

    2015-02-01

    Auditory prostheses may benefit from Infrared Neural Stimulation (INS) because optical stimulation allows for spatially selective activation of neuron populations. Selective activation of neurons in the cochlear spiral ganglion can be determined in the central nucleus of the inferior colliculus (ICC) because the tonotopic organization of frequencies in the cochlea is maintained throughout the auditory pathway. The activation profile of INS is well represented in the ICC by multichannel electrodes (MCEs). To characterize single unit properties in response to INS, however, single tungsten electrodes (STEs) should be used because of its better signal-to-noise ratio. In this study, we compared the temporal properties of ICC single units recorded with MCEs and STEs in order to characterize the response properties of single auditory neurons in response to INS in guinea pigs. The length along the cochlea stimulated with infrared radiation corresponded to a frequency range of about 0.6 octaves, similar to that recorded with STEs. The temporal properties of single units recorded with MCEs showed higher maximum rates, shorter latencies, and higher firing efficiencies compared to those recorded with STEs. When the preset amplitude threshold for triggering MCE recordings was raised to twice over the noise level, the temporal properties of the single units became similar to those obtained with STEs. Undistinguishable neural activities from multiple sources in MCE recordings could be responsible for the response property difference between MCEs and STEs. Thus, caution should be taken in single unit recordings with MCEs.

  2. Random Decrement Method and Modeling H/V Spectral Ratios: An Application for Soft Shallow Layers Characterization

    NASA Astrophysics Data System (ADS)

    Song, H.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.; Rodriguez-Lozoya, H. E.; Espinoza-Barreras, F.

    2009-05-01

    Results of an ongoing study to estimate the ground response upon weak and moderate earthquake excitations are presented. A reliable site characterization in terms of its soil properties and sub-soil layer configuration are parameters required in order to do a trustworthy estimation of the ground response upon dynamic loads. This study can be described by the following four steps: (1) Ambient noise measurements were collected at the study site where a bridge was under construction between the cities of Tijuana and Ensenada in Mexico. The time series were collected using a six channels recorder with an ADC converter of 16 bits within a maximum voltage range of ± 2.5 V, the recorder has an optional settings of: Butterworth/Bessel filters, gain and sampling rate. The sensors were a three orthogonal component (X, Y, Z) accelerometers with a sensitivity of 20 V/g, flat frequency response between DC to 200 Hz, and total full range of ±0.25 of g, (2) experimental H/V Spectral Ratios were computed to estimate the fundamental vibration frequency at the site, (3) using the time domain experimental H/V spectral ratios as well as the original recorded time series, the random decrement method was applied to estimate the fundamental frequency and damping of the site (system), and (4) finally the theoretical H/V spectral ratios were obtained by means of the stiffness matrix wave propagation method.. The interpretation of the obtained results was then finally compared with a geotechnical study available at the site.

  3. Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data

    NASA Astrophysics Data System (ADS)

    Brenders, A. J.; Pratt, R. G.

    2007-01-01

    We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.

  4. Optimization of magnetic field-assisted ultrasonication for the disintegration of waste activated sludge using Box-Behnken design with response surface methodology.

    PubMed

    Guan, Su; Deng, Feng; Huang, Si-Qi; Liu, Shu-Yang; Ai, Le-Xian; She, Pu-Ying

    2017-09-01

    This study investigated for the first time the feasibility of using a magnetic field for sludge disintegration. Approximately 41.01% disintegration degree (DD) was reached after 30min at 180mT magnetic field intensity upon separate magnetic field treatment. Protein and polysaccharide contents significantly increased. This test was optimized using a Box-Behnken design (BBD) with response surface methodology (RSM) to fit the multiple equation of the DD. The maximum DD was 43.75% and the protein and polysaccharide contents increased to 56.71 and 119.44mg/L, respectively, when the magnetic field strength was 119.69mT, reaction time was 30.49min, and pH was 9.82 in the optimization experiment. We then analyzed the effects of ultrasound alone. We are the first to combine magnetic field with ultrasound to disintegrate waste-activated sludge (WAS). The optimum effect was obtained with the application of ultrasound alone at 45kHz frequency, with a DD of about 58.09%. By contrast, 62.62% DD was reached in combined magnetic field and ultrasound treatment. This combined test was also optimized using BBD with RSM to fit the multiple equation of DD. The maximum DD of 64.59% was achieved when the magnetic field intensity was 197.87mT, ultrasonic frequency was 42.28kHz, reaction time was 33.96min, and pH was 8.90. These results were consistent with those of particle size and electron microscopy analyses. This research proved that a magnetic field can effectively disintegrate WAS and can be combined with other physical techniques such as ultrasound for optimal results. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change.

    PubMed Central

    Chambers, Jeffrey Q; Silver, Whendee L

    2004-01-01

    Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are the beginning of long-term permanent shifts or a transient response is uncertain and remains an important research priority. PMID:15212096

  6. Physiological and biomechanical responses to walking underwater on a non-motorised treadmill: effects of different exercise intensities and depths in middle-aged healthy women.

    PubMed

    Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco

    2014-01-01

    Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.

  7. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    NASA Astrophysics Data System (ADS)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  8. Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith

    NASA Astrophysics Data System (ADS)

    Leyser, Thomas B.; James, H. Gordon; Gustavsson, Björn; Rietveld, Michael T.

    2018-02-01

    The response of ionospheric plasma to pumping by powerful HF (high frequency) electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association) Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer) spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O) conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.

  9. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  10. Analysis of high-k spacer on symmetric underlap DG-MOSFET with Gate Stack architecture

    NASA Astrophysics Data System (ADS)

    Das, Rahul; Chakraborty, Shramana; Dasgupta, Arpan; Dutta, Arka; Kundu, Atanu; Sarkar, Chandan K.

    2016-09-01

    This paper shows the systematic study of underlap double gate (U-DG) NMOSFETs with Gate Stack (GS) under the influence of high-k spacers. In highly scaled devices, underlap is used at the Source and Drain side so as to reduce the short channel effects (SCE's), however, it significantly reduces the on current due to the increased channel resistance. To overcome these drawbacks, the use of high-k spacers is projected as one of the remedies. In this paper, the analog performance of the devices is studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/Id) and intrinsic gain (gmro). The RF performance is analyzed on the merits of intrinsic capacitance (Cgd, Cgs), resistance (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillation (fmax). The circuit performance of the devices are studied by implementing the device as the driver MOSFET in a Single Stage Common Source Amplifier. The Gain Bandwidth Product (GBW) has been analyzed from the frequency response of the circuit.

  11. Different behavioural responses to anthropogenic noise by two closely related passerine birds

    PubMed Central

    Francis, Clinton D.; Ortega, Catherine P.; Cruz, Alexander

    2011-01-01

    Anthropogenic noise, now common to many landscapes, can impair acoustic communication for many species, yet some birds compensate for masking by noise by altering their songs. The phylogenetic distribution of these noise-dependent signal adjustments is uncertain, and it is not known whether closely related species respond similarly to noise. Here, we investigated the influence of noise on habitat occupancy rates and vocal frequency in two congeneric vireos with similar song features. Noise exposure did not influence occupancy rates for either species, yet song features of both changed, albeit in different ways. With increases in noise levels, plumbeous vireos (Vireo plumbeus) sang shorter songs with higher minimum frequencies. By contrast, grey vireos (Vireo vicinior) sang longer songs with higher maximum frequencies. These findings support the notion that vocal plasticity may help some species occupy noisy areas, but because there were no commonalities among the signal changes exhibited by these closely related birds, it may be difficult to predict how diverse species may modify their signals in an increasingly noisy world. PMID:21613284

  12. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William, R. V.; Marikani, A., E-mail: amari@mepcoeng.ac.in; Madhavan, D.

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO{sub 3} nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO{sub 3} nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO{sub 3} nano-wire show a frequency dependent propertymore » and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm{sup 2} at the frequency 4 kHz. The coercivity of BiFeO{sub 3} nano wire changes with variation of frequency from 1 kHz to 4 kHz.« less

  13. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    PubMed

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (<2 Hz) square wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  14. The acoustical cues to sound location in the Guinea pig (cavia porcellus)

    PubMed Central

    Greene, Nathanial T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J.

    2014-01-01

    There are three main acoustical cues to sound location, each attributable to space-and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for eleven adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ~10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ~250 µs, whereas the maximum ITD measured with low frequency tone pips was over 320 µs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were < 10 dB for frequencies < 4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197

  15. Performance Investigation of Millimeter Wave Generation Reliant on Stimulated Brillouin Scattering

    NASA Astrophysics Data System (ADS)

    Tickoo, Sheetal; Gupta, Amit

    2018-04-01

    In this work, photonic method of generating the millimeter waves has been done based on Brillouin scattering effect in optical fiber. Here different approaches are proposed to get maximum frequency shift in mm-wave region using only pumps, radio signals with Mach-Zehnder modulator. Moreover for generated signal validation, signals modulated and send to both wired and wireless medium in optical domain. It is observed that maximum shift of 300 GHz is realized using 60 GHz input sine wave. Basically a frequency doubler is proposed which double shift of input frequency and provide better SNR. For the future generation network system, the generation of millimeter waves makes them well reliable for the transmission of the data.

  16. A frequency doubled pressure-tunable oscillator-amplifier dye laser system

    NASA Technical Reports Server (NTRS)

    Moriarty, A.; Heaps, W.; Davis, D. D.

    1976-01-01

    A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.

  17. Variability of the occurrence frequency of solar flares as a function of peak hard X-ray rate

    NASA Technical Reports Server (NTRS)

    Bai, T.

    1993-01-01

    We study the occurrence frequency of solar flares as a function of the hard X-ray peak count rate, using observations of the Solar Maximum Mission. The size distributions are well represented by power-law distributions with negative indices. As a better alternative to the conventional method, we devise a maximum likelihood method of determining the power-law index of the size distribution. We find that the power-law index of the size distribution changes with time and with the phase of the 154-day periodicity. The size distribution is steeper during the maximum years of solar cycle 21 (1980 and 1981) than during the declining phase (1982-1984). The size distribution, however, is flatter during the maximum phase of the 154-day periodicity than during the minimum phase. The implications of these findings are discussed.

  18. Prediction of scour depth in gravel bed rivers using radio frequency IDs : application to the Skagit River.

    DOT National Transportation Integrated Search

    2013-10-01

    The overarching goal of the proposed research was to develop, test and verify a robust system based on the Low Frequency (134.2 : kHz), passive Radio Frequency Identification (RFID) technology to be ultimately used for determining the maximum scour d...

  19. The CO2 laser frequency stability measurements

    NASA Technical Reports Server (NTRS)

    Johnson, E. H., Jr.

    1973-01-01

    Carbon dioxide laser frequency stability data are considered for a receiver design that relates to maximum Doppler frequency and its rate of change. Results show that an adequate margin exists in terms of data acquisition, Doppler tracking, and bit error rate as they relate to laser stability and transmitter power.

  20. A Reconstruction of Temperature and δ18O Data Since the Last Glacial Maximum Using Soil and Gastropods from the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B.; Mering, J. A.; Eagle, R.; Bricker, H. L.; Davila, N.; Trewman, S.; Burford, S.; Li, G.; Tripati, A. K.

    2016-12-01

    The climate of the Chinese Loess Plateau is affected by the East Asian Monsoon, an important water source for over a billion people. We are examining how temperature and hydrology on the Loess Plateau has changed since the Last Glacial Maximum (18,000 - 23,000 years before the present) in response to insolation, deglaciation, and rising levels of greenhouse gases. Specifically, we are reconstructing temperature and meteoric δ18O through paired clumped and oxygen isotope analyses performed on carbonate minerals. Clumped isotope thermometry—the use of 13C—18O bond frequency in carbonates—is a novel geochemical proxy that provides constraints on mineral formation temperatures and can be combined with carbonate δ18O to quantify meteoric δ18O. We have measured a suite of nodular loess concretions and gastropod shells from the modern as well as the Last Glacial Maximum from 15 sites across the Chinese Loess Plateau. These observations constrain spatial variations in temperature and precipitation, which in turn will provide key constraints on models that simulate changes in regional climates and monsoon intensity over the last 20,000 years.

  1. Varactor diode assembly with low parasitic reactances

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1975-01-01

    Development of varactor diode assembly overcomes parasitic reactances of conventional varactor packages. In specially constructed assembly very high idler-frequency to signal-frequency ratios are used to obtain low-noise operation over maximum bandwidth.

  2. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes.

    PubMed

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu; Dovan, Thanh; Kavet, Robert

    2011-07-07

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m(-1). However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m(-1), and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an estimate of the tissue's maximum dose.

  3. Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors with atomic layer deposited Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Yang, T.; Sharifi, H.; Kim, S. K.; Xuan, Y.; Shen, T.; Mohammadi, S.; Ye, P. D.

    2007-11-01

    Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) with ex situ atomic-layer-deposited Al2O3 as gate dielectrics are studied. Maximum drain currents of 211 and 263mA/mm are obtained for 1μm gate-length Al2O3 MOS-HEMTs with 3 and 6nm thick gate oxide, respectively. C-V characteristic shows negligible hysteresis and frequency dispersion. The gate leakage current density of the MOS-HEMTs is 3-5 orders of magnitude lower than the conventional HEMTs under similar bias conditions. The drain current on-off ratio of MOS-HEMTs is ˜3×103 with a subthreshold swing of 90mV/decade. A maximum cutoff frequency (fT) of 27.3GHz and maximum oscillation frequency (fmax) of 39.9GHz and an effective channel mobility of 4250cm2/Vs are measured for the 1μm gate-length Al2O3 MOS-HEMT with 6nm gate oxide. Hooge's constant measured by low frequency noise spectral density characterization is 3.7×10-5 for the same device.

  4. A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film

    NASA Astrophysics Data System (ADS)

    Tian, Yingwei; Li, Guimiao; Yi, Zhiran; Liu, Jingquan; Yang, Bin

    2018-06-01

    This paper presents a high performance piezoelectric energy harvester (PEH) with a rectangular hole to work at low-frequency. This PEH used thinned bulk PZT film on flexible phosphor bronze, and its structure included piezoelectric layer, supporting layer and proof mass to reduce the resonant frequency of the device. Here, thinned bulk PZT thick film was used as piezoelectric layer due to its high piezoelectric coefficient. A Phosphor bronze was deployed as supporting layer because it had better flexibility compared to silicon and could work under high acceleration ambient with good durability. The maximum open-circuit voltage of the PEH was 15.7 V at low resonant frequency of 34.3 Hz when the input vibration acceleration was 1.5 g (g = 9.81 m/s2). Moreover, the maximum output power, the output power density and the actually current at the same acceleration were 216.66 μW, 1713.58 μW/cm3 and 170 μA, respectively, when the optimal matched resistance of 60 kΩ was connected. The fabricated PEH scavenged the vibration energy of the vacuum compression pump and generated the maximum output voltage of 1.19 V.

  5. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  6. On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates

    NASA Astrophysics Data System (ADS)

    Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel

    2018-01-01

    The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor ( k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series. [Figure not available: see fulltext.

  7. Evidence for non-adrenergic non-cholinergic contractile responses in bovine and swine trachea.

    PubMed

    Matera, M G; Amorena, M; Marabese, I; Loffreda, A; D'Agostino, B; Lucisano, A; Rossi, F

    1997-01-01

    Non-adrenergic non-cholinergic (NANC) contraction of airway smooth muscle has been observed in some but not all animal species. The aim of this study was to investigate the NANC-contractile responses in bovine and swine trachea. Proximal and distal bovine and swine trachea were cut in strips and placed in 10 ml organ baths equilibrated in Krebs Henseleit (KH) solution and electrically stimulated (10 sec, 60 V, 2 ms, 4, 10 and 30 Hz). Contractile frequency response curves performed in the presence of the muscarinic antagonist, atropine (100 mM), the angiotensin converting enzyme inhibitor, captopril (1 microM) and the neutral endopeptidase inhibitor, thiorphan (1 microM), added 30 min prior to electrical field stimulation (EFS). In some tissues, incubated with atropine thiorphan and captopril, were also evaluated the effects of a pretreatment with capsaicin (10 microM) or a selective NK1 receptor antagonist, SR 14033 (100 nM) added to the baths 30 min prior to EFS. Bovine and swine proximal and distal tracheal preparations contracted in a frequency-dependent manner to EFS (4, 10 and 30 Hz). Some experiments were also performed with substance P (0.1 nM to 1 microM) in absence or in presence of SR 14033 (10 nM or 100 nM). At the maximum frequency tested (30 Hz), the contractile response elicited in bovine proximal and distal preparations was 194.5 +/- 17.1% and 229.7 +/- 24.1%, of ACh (100 microM), respectively. Similarly, the contractile response elicited by EFS (30 Hz) in swine proximal and distal preparations was 187.2 +/- 12.1% and 181.6 +/- 9.2% of ACh (100 microM), respectively. In tissues incubated with atropine, a significant decrease in smooth muscle sensitivity to EFS was observed (P < 0.05). When tissues were pretreated with captopril and thiorphan, a significant increase in the contractile response to EFS (30 Hz) was observed in all tested tissue preparations (bovine, proximal 210.1 +/- 14.4%, distal 264.3 +/- 16.2%; swine, proximal 199.3 +/- 14.9%, distal 206.3 +/- 16.2%, P < 0.05). In the presence of atropine, captopril and thiorphan a significant increase in the contractile response was observed in bovine and swine distal preparations compared with tissues incubated with atropine only (P < 0.05). These effects were antagonized by a pretreatment with a selective NK1 receptor antagonist, SR 14033. A pretreatment with capsaicin statistically (P < 0.05) enhanced EFS-induced contraction in all tested preparations respect to tissues incubated with atropine, thiorphan and captopril. Substance P induced a concentration dependent contraction of bovine and swine isolated tracheal preparations which was antagonized by a pretreatment with a selective NK1 receptor antagonist, SR 14033. No significant difference in the contractile potency (EC50) nor in maximum response (Emax) was observed to exogenously administered substance P between proximal and distal tracheal preparations. These data suggest that NANC contractile responses are present in bovine and swine trachea and are more evident in distal airways.

  8. Modeling of postural stability borders during heel-toe rocking.

    PubMed

    Murnaghan, Chantelle D; Elston, Beth; Mackey, Dawn C; Robinovitch, Stephen N

    2009-08-01

    To maintain balance during movements such as bending and reaching, the CNS must generate muscle forces to counteract destabilizing torques produced by gravitational (position-dependent) and inertial (acceleration-dependent) forces. This may create a trade-off between the attainable frequency and amplitude of movements. We used experiments and mathematical modeling to examine this relationship during the task of heel-toe rocking. During the experiments, participants (n=15) rocked about the ankles in the sagittal plane with maximum attainable amplitude at a frequency of 0.33 Hz or 0.66 Hz. As the frequency doubled, the maximum anterior position of the whole-body centre-of-gravity (COG) with respect to the ankle decreased by 11% of foot length (from 11.9 cm (S.D. 1.6) to 9.2 cm (S.D. 1.2); p<0.001), the minimum anterior position of the COG increased by 8% of foot length (from 1.6 cm to 3.5 cm in front on the ankle; p<0.0005), and the ankle stiffness increased from 787 Nm/rad (S.D. 156) to 1625 Nm/rad (S.D. 339). However, there was no difference between conditions in the maximum anterior position of the COP (p=0.51), the minimum anterior position of the COP (p=0.23), or the peak ankle torque (p=0.39). An inverted pendulum model driven by a rotational spring predicted the measured ankle stiffness to within 0.9% (S.D. 6.8), and the maximum anterior COG position to within 1.2% (S.D. 4.0). These results indicate that COG amplitude decreases with increasing rocking frequency, due to (a) invariability in peak ankle torque and (b) the need to allocate torque between gravitational and inertial components, the latter of which scales with the square of frequency.

  9. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  10. A novel CFS-PML boundary condition for transient electromagnetic simulation using a fictitious wave domain method

    NASA Astrophysics Data System (ADS)

    Hu, Yanpu; Egbert, Gary; Ji, Yanju; Fang, Guangyou

    2017-01-01

    In this study, we apply fictitious wave domain (FWD) methods, based on the correspondence principle for the wave and diffusion fields, to finite difference (FD) modeling of transient electromagnetic (TEM) diffusion problems for geophysical applications. A novel complex frequency shifted perfectly matched layer (PML) boundary condition is adapted to the FWD to truncate the computational domain, with the maximum electromagnetic wave propagation velocity in the FWD used to set the absorbing parameters for the boundary layers. Using domains of varying spatial extent we demonstrate that these boundary conditions offer significant improvements over simpler PML approaches, which can result in spurious reflections and large errors in the FWD solutions, especially for low frequencies and late times. In our development, resistive air layers are directly included in the FWD, allowing simulation of TEM responses in the presence of topography, as is commonly encountered in geophysical applications. We compare responses obtained by our new FD-FWD approach and with the spectral Lanczos decomposition method on 3-D resistivity models of varying complexity. The comparisons demonstrate that our absorbing boundary condition in FWD for the TEM diffusion problems works well even in complex high-contrast conductivity models.

  11. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    NASA Astrophysics Data System (ADS)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  12. Stress-strain analysis of jejunal contractility in response to flow and ramp distension in type 2 diabetic GK rats: effect of carbachol stimulation.

    PubMed

    Zhao, Jingbo; Chen, Pengmin; Gregersen, Hans

    2013-09-27

    Investigation of intestinal motility in a genetic model of GK rats abandons the possible neurotoxic effect of streptozotocin in streptozotocin-induced diabetic model. Seven GK male rats (GK group) and nine normal Wistar rats (Normal group) were used in the study. The motility experiments were carried out in an organ bath containing physiological Krebs solution. Before and after 10(-5)M carbachol application, the pressure and diameter changes of jejunum were obtained in relation to (1) basic contraction, (2) flow-induced contraction with different outlet resistance pressures and (3) contractions induced by ramp distension. The frequency and amplitude of contractions were analyzed from pressure-diameter curves. Distension-induced contraction thresholds and maximum contraction amplitude of basic and flow-induced contractions were calculated in terms of stress and strain. (1) The contraction amplitude increased to the peak value in less than 10s after adding carbachol. More than two peaks were observed in the GK group. (2) Carbachol decreased the pressure and stress threshold and Young's modulus in the GK group (P<0.01). (3) Carbachol increased the maximum pressure and stress of flow-induced contractions at most outlet pressure levels in both two groups (P<0.001). Furthermore, the flow-induced contractions were significantly bigger at low outlet pressure levels in GK group (P<0.05 and P<0.01). (4) The contraction frequency, the strain threshold and the maximum contraction strain did not differ between the two groups (P>0.05) and between before and after carbachol application (P>0.05). In GK diabetic rats, the jejunal contractility was hypersensitive to flow and distension stimulation after carbachol application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew K; Muljadi, Eduard; Gevorgian, Vahan

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods usingmore » advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.« less

  14. The Generation of Harmonic Distortion and Distortion Products in a Computational Model of the Cochlea

    NASA Astrophysics Data System (ADS)

    Meaud, Julien; Li, Yizeng; Grosh, Karl

    2011-11-01

    It is generally agreed that the nonlinear response of the cochlea is due to the forward transduction of the outer hair cell (OHC) hair bundle (HB) and subsequent alteration of the active force applied to the cochlear structures, including the basilar membrane (BM). A mechanical-acoustical-electrical model of the cochlea with three-dimensional fluid representation, and feedback from OHC somatic motility coupled to nonlinear HB mechanotransduction is used to predict nonlinear distortion of the BM response to acoustic stimulus. An efficient alternating frequency time scheme is implemented to solve for the nonlinear stationary dynamics of the cochlea. The model is used to predict the location of maximum generation of nonlinear distortion during pure tone and two-tone stimulation as well as the propagation of the distortion components on the BM.

  15. Determination of sound types and source levels of airborne vocalizations by California sea lions, Zalophus californianus, in rehabilitation at the Marine Mammal Center in Sausalito, California

    NASA Astrophysics Data System (ADS)

    Schwalm, Afton Leigh

    California sea lions (Zalophus californianus) are a highly popular and easily recognized marine mammal in zoos, aquariums, circuses, and often seen by ocean visitors. They are highly vocal and gregarious on land. Surprisingly, little research has been performed on the vocalization types, source levels, acoustic properties, and functions of airborne sounds used by California sea lions. This research on airborne vocalizations of California sea lions will advance the understanding of this aspect of California sea lions communication, as well as examine the relationship between health condition and acoustic behavior. Using a PhillipsRTM digital recorder with attached microphone and a calibrated RadioShackRTM sound pressure level meter, acoustical data were recorded opportunistically on California sea lions during rehabilitation at The Marine Mammal Center in Sausalito, CA. Vocalizations were analyzed using frequency, time, and amplitude variables with Raven Pro: Interactive Sound Analysis Software Version 1.4 (The Cornell Lab of Ornithology, Ithaca, NY). Five frequency, three time, and four amplitude variables were analyzed for each vocalization. Differences in frequency, time, and amplitude variables were not significant by sex. The older California sea lion group produced vocalizations that were significantly lower in four frequency variables, significantly longer in two time variables, significantly higher in calibrated maximum and minimum amplitude variables, and significantly lower in frequency at maximum and minimum amplitude compared with pups. Six call types were identified: bark, goat, growl/grumble, bark/grumble, bark/growl, and grumble/moan. The growl/grumble call was higher in dominant beginning, ending, and minimum frequency, as well as in the frequency at maximum amplitude compared with the bark, goat, bark/grumble calls in the first versus last vocalization sample. The goat call was significantly higher in first harmonic interval than any other call type in the all vocalizations sample. The "fate" of a sea lion was categorized as: released, placed at another facility, remained at TMMC, euthanized, or died. To determine if acoustic features could be used to assess the recovery of a pup, the acoustic features of a pup's first recorded vocalization were compared with the frequency, time, and amplitude of the last vocalization recorded (i.e., before it was released or placed at another facility). In addition, all first vocalizations were pooled and all last vocalizations were pooled for acoustic analysis, regardless of their fate. Released pups had shorter duration calls, a greater first harmonic interval, and a higher dominant maximum frequency than either pups that died or pups remaining at TMMC. Released pups had a higher frequency at maximum and minimum amplitude compared to dead and remaining pups. Pups that died had significantly lower dominant ending frequency and a lower dominant minimum frequency than released or remaining pups. These results were supported by other studies on different species of otariids, phocids, and cetaceans. The preliminary analyses presented in this thesis holds promise that with additional data acoustic features of California sea lion airborne vocalizations could indicate sex, age, and possibly health condition or the potential for release.

  16. The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.

    2011-10-01

    In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.

  17. 40 CFR Table 3 to Subpart Hhh of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Once per charge Once per charge ✔ ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous Once...

  18. The Tale of Flooding over the Central United States: Not Bigger but More Frequent

    NASA Astrophysics Data System (ADS)

    Mallakpour, I.; Villarini, G.

    2014-12-01

    Flooding over the central United States is responsible for large societal and economic impacts, quantifiable in tens of fatalities and billions of dollars in damage. Because of these large repercussions, it is of paramount importance to examine whether the magnitude and/or frequency of flood events have been changing over the most recent decades. Here we address this research question using annual and seasonal maximum daily streamflow records from 774 U.S. Geological Survey (USGS) stations over the central United States (the study area includes North Dakota, South Dakota, Nebraska, Kansas, Missouri, Iowa, Minnesota, Wisconsin, Illinois, West Virginia, Kentucky, Ohio, Indiana, and Michigan). The focus is on "long" records (i.e., at least 50 years of data) ending no earlier than 2011. Analyses are performed using block-maximum and peak-over-threshold approaches. We find limited evidence suggesting increasing or decreasing trends in the magnitude of flood peaks over this area. On the other hand, there is much stronger evidence of increasing frequency of flood events. Therefore, our results support the notion that it is not so much that the largest flood peaks are getting larger, but rather that we have been experiencing a larger number of flood events every year. By examining the rainfall records, we are able to link these increasing trends to similar patterns in heavy rainfall over the region.

  19. Pressure pulsations in piping system excited by a centrifugal turbomachinery taking the damping characteristics into consideration

    NASA Astrophysics Data System (ADS)

    Hayashi, I.; Kaneko, S.

    2014-02-01

    Pressure pulsations excited by a centrifugal turbomachinery such as compressor, fan or pump at the blade passing frequency may cause severe noise and vibrations in piping system. Therefore, the practical evaluation method of pressure pulsations is strongly recommended. In particular, the maximum pressure amplitude under the resonant conditions should be appropriately evaluated. In this study, a one-dimensional excitation source model for a compressor or pump is introduced based on the equation of motion, so as to incorporate the non-linear damping proportional to velocity squared in the total piping system including the compressor or pump. The damping characteristics of the compressor or pump are investigated by using the semi-empirical model. It is shown that the resistance coefficient of the compressor or pump depends on the Reynolds number that is defined using the equivalent velocity of the pulsating flow. The frequency response of the pressure amplitude and the pressure distribution in the piping system can be evaluated by introducing the equivalent resistance of the compressor or pump and that of piping system. In particular, the relation of the maximum pressure amplitude in piping system to the location of the excitation source under resonant conditions can be evaluated. Finally, the reduction of the pressure pulsations by use of an orifice plate is discussed in terms of the pulsation energy loss.

  20. Decrease in heart rate variability response to task is related to anxiety and depressiveness in normal subjects.

    PubMed

    Shinba, Toshikazu; Kariya, Nobutoshi; Matsui, Yasue; Ozawa, Nobuyuki; Matsuda, Yoshiki; Yamamoto, Ken-Ichi

    2008-10-01

    Previous studies have shown that heart rate variability (HRV) measurement is useful in investigating the pathophysiology of various psychiatric disorders. The present study further examined its usefulness in evaluating the mental health of normal subjects with respect to anxiety and depressiveness. Heart rate (HR) and HRV were measured tonometrically at the wrist in 43 normal subjects not only in the resting condition but also during a task (random number generation) to assess the responsiveness. For HRV measurement, high-frequency (HF; 0.15-0.4 Hz) and low-frequency (LF; 0.04-0.15 Hz) components of HRV were obtained using MemCalc, a time series analysis technique that combines a non-linear least square method with maximum entropy method. For psychological evaluation of anxiety and depressiveness, two self-report questionnaires were used: State-Trait Anxiety Inventory (STAI) and Self-Rating Depression Scale (SDS). No significant relation was observed between HR and HRV indices, and the psychological scores both in the resting and task conditions. By task application, HF decreased, and LF/HF and HR increased, and significant correlation with psychological scores was found in the responsiveness to task measured by the ratio of HRV and HR indices during the task to that at rest (task/rest ratio). A positive relationship was found between task/rest ratio for HF, and STAI and SDS scores. Task/rest ratio of HR was negatively correlated with STAI-state score. Decreased HRV response to task application is related to anxiety and depressiveness. Decreased autonomic responsiveness could serve as a sign of psychological dysfunction.

  1. Contrast Sensitivity With a Subretinal Prosthesis and Implications for Efficient Delivery of Visual Information

    PubMed Central

    Goetz, Georges; Smith, Richard; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Sher, Alexander; Palanker, Daniel

    2015-01-01

    Purpose To evaluate the contrast sensitivity of a degenerate retina stimulated by a photovoltaic subretinal prosthesis, and assess the impact of low contrast sensitivity on transmission of visual information. Methods We measure ex vivo the full-field contrast sensitivity of healthy rat retina stimulated with white light, and the contrast sensitivity of degenerate rat retina stimulated with a subretinal prosthesis at frequencies exceeding flicker fusion (>20 Hz). Effects of eye movements on retinal ganglion cell (RGC) activity are simulated using a linear–nonlinear model of the retina. Results Retinal ganglion cells adapt to high frequency stimulation of constant intensity, and respond transiently to changes in illumination of the implant, exhibiting responses to ON-sets, OFF-sets, and both ON- and OFF-sets of light. The percentage of cells with an OFF response decreases with progression of the degeneration, indicating that OFF responses are likely mediated by photoreceptors. Prosthetic vision exhibits reduced contrast sensitivity and dynamic range, with 65% contrast changes required to elicit responses, as compared to the 3% (OFF) to 7% (ON) changes with visible light. The maximum number of action potentials elicited with prosthetic stimulation is at most half of its natural counterpart for the ON pathway. Our model predicts that for most visual scenes, contrast sensitivity of prosthetic vision is insufficient for triggering RGC activity by fixational eye movements. Conclusions Contrast sensitivity of prosthetic vision is 10 times lower than normal, and dynamic range is two times below natural. Low contrast sensitivity and lack of OFF responses hamper delivery of visual information via a subretinal prosthesis. PMID:26540657

  2. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    PubMed Central

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-01-01

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508

  3. 47 CFR 90.267 - Assignment and use of frequencies in the 450-470 MHz band for low power use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operation determine whether a station is within an “80 km circle.” (i) The maximum ERP for low power... ERP for low power operation on these frequencies is as follows: Operation Low side of frequency pair.... (2) Operation on these frequencies is limited to 6 watts ERP for base, mobile or operational fixed...

  4. Analysis of water-level fluctuations of the US Highway 90 retention pond, Madison, Florida

    USGS Publications Warehouse

    Bridges, W.C.

    1985-01-01

    A closed basin stormwater retention pond, located 1 mile west of Madison, Florida, has a maximum storage capacity of 134.1 acre-feet at the overtopping altitude of 100.2 feet. The maximum observed altitude (July 1982 to March 1984) was 99.52 feet (126.7 acre-feet) on March 28, 1984. This report provides a technique for simulating net monthly change-in-altitude in response to rainfall and evaporation. A regression equation was developed which relates net monthly change in altitude (dependent variable) to rainfall and evaporation (independent variables). Rainfall frequency curves were developed using a log-Pearson Type III distribution of the annual, January through April, June through August, and July monthly rainfall totals for the years 1908-72, 1974, 1976-82. The altitude of the retention pond increased almost 7 feet during the 4-month period January through April 1983. The rainfall total was 35.1 inches, and the recurrence interval exceeded the 100-year January-April rainfall. (USGS)

  5. Optical properties of anisotropic 3D nanoparticles arrays

    NASA Astrophysics Data System (ADS)

    Santiago, E. Y.; Esquivel-Sirvent, R.

    2017-07-01

    The optical properties of 3D periodic arrays of spheroidal Au nanoparticles are calculated using a Bruggeman effective medium approximation. The optical response of the supra-crystal depends on the volume fraction of the nanoparticles and their aspect or size ratio (major/minor axis). All the nanoparticles have the same orientation, and this defines an anisotropic dielectric function of the crystal. As a function of the filling fraction, while keeping the size ratio fixed, the maximum in the extinction spectra along the major and minor axes does not show a significant change. However, for a fixed filling fraction, varying the aspect ratio of the particles induces a shift of several hundred of nanometers in the maximum of the extinction spectra along the major axis and almost no changes along the minor axis. Depending on the aspect ratio and the filling fraction, we show that the supra-crystal has three regimes with different values of an effective plasma frequency. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  6. Improved modeling on the RF behavior of InAs/AlSb HEMTs

    NASA Astrophysics Data System (ADS)

    Guan, He; Lv, Hongliang; Zhang, Yuming; Zhang, Yimen

    2015-12-01

    The leakage current and the impact ionization effect causes a drawback for the performance of InAs/AlSb HEMTs due to the InAs channel with a very narrow band gap of 0.35 eV. In this paper, the conventional HEMT small-signal model was enhanced to characterize the RF behavior for InAs/AlSb HEMTs. The additional gate leakage current induced by the impact ionization was modeled by adding two resistances RGh1 and RGh2 shunting the Cgs-Ri and Cgd-Rj branches, respectively, and the ionized-drain current was characterized by an additional resistance Rmi parallel with the output resistance Rds, meanwhile the influence of the impact ionization on the transconductance was modeled by an additional current source gmi controlled by Vgs. The additional inductance, evaluated as a function of f(ω, R), was introduced to characterize the frequency dependency of impact ionization by using the impact ionization effective rate 1/τi and a new frequency response rate factor n, which guaranteed the enhanced model reliable for a wide frequency range. As a result, the enhanced model achieved good agreement with the measurements of the S-parameters and Y-parameters for a wide frequency range, moreover, the simulated results of the stability factor K, the cutoff frequency fT, the maximum frequency of oscillation fmax, and the unilateral Mason's gain U were estimated to approach the experimental results with a high degree.

  7. Beale AFB, Marysville, California Revised Uniform Summary of Surface Weather Observations (RUSSWO) Parts A-F.

    DTIC Science & Technology

    1981-08-19

    versus Visibility; Sky Cover; ( E ) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric...frequency of occurance or cumulative percentage frequency of occuring tables. UNCLASSIFIED SCUPU)?y CLASaIFICATION OF THIS PAGE(Waht Dat E moli A - I...i,. -t’ r .corvi or QL.;V.A I-)tic ai t r’& iolL; recUl’d Et. Lxki-dGiuI ii.Trly ii~tervais. DAILY OBSERVATIONS S- t tr’ o. re .;,:cLt e , !’ru: at

  8. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  9. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  10. Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling

    NASA Technical Reports Server (NTRS)

    Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)

    2005-01-01

    The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.

  11. Dynamic Characterization of Galfenol (Fe81.6Ga18.4)

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    Galfenol has the potential to transform the smart materials industry by allowing for the development of multifunctional, load-bearing devices. One of the primary technical challenges faced by this development is the very limited experimental data on Galfenol's frequency-dependent response to dynamic stress, which is critically important for the design of such devices. This report details a novel and precise characterization of the constitutive behavior of polycrystalline Galfenol (Fe81.6Ga18.4) under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings. Mechanical loads are applied using a high-frequency load frame. Quasi-static minor and major hysteresis loop measurements of magnetic flux density and strain are presented for constant electromagnet currents (0 to 1.1 A) and constant magnetic fields 0 to 14 kA/m (0 to 180 Oe). The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa (418 and 4550 psi), respectively. Quasi-static material properties closely match published values for similar Galfenol materials. Quasi-static actuation responses are also measured and compared to quasi-static sensing responses; the high degree of reversibility seen in the comparison is consistent with published measurements and modeling results. Dynamic major and minor loops are measured for dynamic stresses up to 31 MPa (4496 psi) and 1 kHz, and the bias condition resulting in maximum, quasi-static sensitivity. Eddy current effects are quantified by considering solid and laminated Galfenol rods. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) phase misalignment between signals due to conditioning electronics. For dynamic characterization, strain error is kept below 1.2 percent of full scale by wiring two collocated gauges in series (noise cancellation) and through leadwire weaving. Inertial force error is kept below 0.41 percent by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency is increased, the sensing response becomes more linear because of an increase in eddy currents. As frequency increases above approximately 100 Hz, the elbow in the strain-versus-stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime. Under constant-field conditions, the loss factors of the solid rod peak between 200 and 600 Hz, rather than exhibiting a monotonic increase. Compared to the solid rod, the laminated rod exhibits much slower increases in hysteresis with frequency, and its quasi-static behavior extends to higher frequencies. The elastic modulus of the laminated rod decreases between 100 and 300 Hz; this trend is currently unexplained.

  12. On-line determination of transient stability status using multilayer perceptron neural network

    NASA Astrophysics Data System (ADS)

    Frimpong, Emmanuel Asuming; Okyere, Philip Yaw; Asumadu, Johnson

    2018-01-01

    A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.

  13. Optoelectronic frequency discriminated phase tuning technology and its applications

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2000-07-01

    By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.

  14. Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Little, Jesse

    2016-11-01

    A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).

  15. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.

    PubMed

    Chang, Hsiang-Chih; Lee, Po-Lei; Lo, Men-Tzung; Lee, I-Hui; Yeh, Ting-Kuang; Chang, Chun-Yen

    2012-05-01

    This study proposes a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) independent of amplitude-frequency and phase calibrations. Six stepping delay flickering sequences (SDFSs) at 32-Hz flickering frequency were used to implement a six-command BCI system. EEG signals recorded from Oz position were first filtered within 29-35 Hz, segmented based on trigger events of SDFSs to obtain SDFS epochs, and then stored separately in epoch registers. An epoch-average process suppressed the inter-SDFS interference. For each detection point, the latest six SDFS epochs in each epoch register were averaged and the normalized power of averaged responses was calculated. The visual target that induced the maximum normalized power was identified as the visual target. Eight subjects were recruited in this study. All subjects were requested to produce the "563241" command sequence four times. The averaged accuracy, command transfer interval, and information transfer rate (mean ± std.) values for all eight subjects were 97.38 ± 5.97%, 3.56 ± 0.68 s, and 42.46 ± 11.17 bits/min, respectively. The proposed system requires no calibration in either the amplitude-frequency characteristic or the reference phase of SSVEP which may provide an efficient and reliable channel for the neuromuscular disabled to communicate with external environments.

  16. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; hide

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  17. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Griffin, W. A.

    1980-01-01

    The paper describes a resonant tube for measuring sound absorption in gases, with specific emphasis on the vibrational relaxation peak of N2, over a range of frequency/pressure ratios from 0.1 to 2500 Hz/atm. The experimental background losses measured in argon agree with the theoretical wall losses except at few isolated frequencies. Rigid cavity terminations, external excitation, and a differential technique of background evaluation were used to minimize spurious contributions to the background losses. Room temperature measurements of sound absorption in binary mixtures of N2-CO2 in which both components are excitable resulted in the maximum frequency/pressure ratio in Hz/atm of 0.063 + 123m for the N2 vibrational relaxation peak, where m is mole percent of added CO2; the maximum ratio for the CO2 peak was 34,500 268m where m is mole percent of added N2.

  18. Variability of fractal dimension of solar radio flux

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  19. An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices

    NASA Astrophysics Data System (ADS)

    Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar

    2018-07-01

    Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional rectangular microcantilever beam.

  20. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.

    PubMed

    Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin

    2017-08-01

    Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High frequency monitoring of pesticides in runoff water from a vineyard: ecotoxicological and hysteresis pattern analysis

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-04-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly; therefore, low frequency sampling may largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is actually lacking. High frequency monitoring (2 min) of dissolved concentrations and loads for seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The pesticide concentrations reached 387 µg/L. All of the runoff events exceeded the mandated acceptable concentrations of 0.1 µg/L for each pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The instantaneous and average (time or discharge-weighted) concentrations indicated an up to 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively, highlighting the important role of the sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve the understanding of pesticide supply and transport.

  2. Superposed Epoch Studies of the Response of the High-Latitude Magnetosphere-Ionosphere-Thermosphere System to Solar Wind High-Speed Stream Driving

    NASA Astrophysics Data System (ADS)

    Grandin, M.; Aikio, A. T.; Kozlovsky, A.; Ulich, T.; Raita, T.

    2016-12-01

    During the declining phase of the solar cycle, the Earth's magnetosphere-ionosphere-thermosphere system is mainly disturbed by solar wind high-speed streams (HSSs). Their ionospheric response, especially at high latitudes, is not fully understood yet. The perturbations in the ionosphere last for several days. We have examined the effect of HSS in two studies, which apply the superposed epoch method to data to reveal the statistical response in the ionospheric F, E and D regions to such perturbations. We use ionosonde, geomagnetic and cosmic noise absorption data obtained from Finnish stations during 95 high-speed stream events detected between 2006 and 2008. Results show a long-lasting decrease in the F layer critical frequency foF2 between 12 and 23 MLT in summer and equinox. This depletion of the F layer is interpreted as a result of enhanced electric fields inducing ion-neutral frictional heating in the auroral and subauroral regions. The response near noon is different, since foF2 is increased shortly upon arrival of the co-rotating stream interaction region (CIR), possibly because of precipitation of particles from the dayside plasma sheet provoked by the associated solar wind pressure pulse. In the morning sector, both foF2 and foEs show increases for several days, indicating particle precipitation having a soft component. In the study of cosmic noise absorption (CNA), we observe a different response depending on the L-value of the station. Within the auroral oval (L=5-6), CNA gets maximum values in the morning sector 0-12 MLT during the first and second day following the zero epoch. Values are greater during events with longer-lasting high solar wind speed. The CNA maximum shifts to later MLT at lower L values, and in JYV (L=3.8), the maximum takes place at 14 MLT during day 4. Substorm energization events dominate during the first days at 00-01 MLT. We also address the role of Pc5 geomagnetic pulsations observed in association with CNA events. These results may contribute to improve nowcasting and forecasting of space weather activity during high-speed stream events.

  3. Finite Element Study on Acoustic Energy Harvesting Using Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Sharma, Anshul; Kumar, Rajeev; Vaish, Rahul

    2018-02-01

    In this article, a numerical investigation is performed for ambient acoustic energy harvesting at a low-frequency acoustic signal. A model of a quarter-wavelength resonator with a rectangular cross section is constructed, and piezoelectric-laminated bimorph plates are placed inside the system. Finite element modeling is implemented to numerically formulate the piezoelectric energy harvester. With the application of acoustic pressure at the open end of the resonator, amplified acoustic pressure inside the tube vibrates the piezolaminated bimorphs inside the tube, thus generating electric potential on the piezoelectric layers. To generate higher voltage and power in the acoustic harvester, multiple piezolaminated plates are positioned inside the resonator. The lead-free piezoelectric material K0.475Na0.475Li0.05 (Nb0.92Ta0.05Sb0.03)O3 (KNLNTS) is laminated on the host structure as a layer of piezoelectric material for the acoustic energy harvester. With the application of an acoustic sound pressure of 1 dB at the opening of the tube, a maximum output voltage of 16.3 V is measured at the first natural frequency, while the maximum power calculated is 0.033 mW. Maximum voltage is obtained when five piezoelectric bimorphs are place inside the resonator. At the second natural frequency, the maximum voltage measured is 8.40 V, obtained when eight piezoelectric bimorphs are placed inside the resonator, and the maximum power calculated is 0.020 mW.

  4. ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perucho, M.; Kovalev, Y. Y.; Lobanov, A. P.

    Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use very long baseline interferometry data of the radio jet in the quasar S5 0836+710 and hypothesize that the ridgeline of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed aremore » physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridgeline can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridgeline observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.« less

  5. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8+ T Cells that Protect Against Subcutaneous B16-OVA Melanoma

    PubMed Central

    Stark, Felicity C.; McCluskie, Michael J.; Krishnan, Lakshmi

    2016-01-01

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection. PMID:27869670

  6. IMPACT OF VENTILATION FREQUENCY AND PARENCHYMAL STIFFNESS ON FLOW AND PRESSURE DISTRIBUTION IN A CANINE LUNG MODEL

    PubMed Central

    Amini, Reza; Kaczka, David W.

    2013-01-01

    To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936

  7. High resolution projections for the western Iberian coastal low level jet in a changing climate

    NASA Astrophysics Data System (ADS)

    Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Alvaro

    2017-09-01

    The Iberian coastal low-level jet (CLLJ) is one of the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30 % was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400 m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9 km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: (1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35 % to approximately 50 %; (2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia; (3) the occurrence of the CLLJ covers larger areas both latitudinal and longitudinal; (4) the CLLJ season is lengthened extending to May and September; and, (5) there are shifts for higher occurrences of higher wind speeds and for the jet core to occur at higher heights.

  8. Physico-chemical factors influencing spore germination in cyanobacterium Fischerella muscicola.

    PubMed

    Mishra, Biranchi N; Kaushik, Manish S; Abraham, Gerard; Singh, Pawan K

    2018-06-19

    Spore (akinete) formation in the heterocystous and branched filamentous cyanobacterium Fischerella muscicola involves a significant increase in cell size and formation of several endospores in each of the cells. In present study, the physico-chemical factors (pH, light sources, nutrient deficiency, nitrogen sources, carbon sources, and growth hormones) affecting the germination of spores of F. muscicola were examined. Increase in spore germination frequency was detected above pH 8 with maximum germination (46.04%) recorded at pH 9, whereas a significant decrease in germination was observed at pH 6 when compared to control (pH 7.6). Spore germination was not observed at pH 5. Among light sources germination frequency followed the following order, that is, red light (39.9%) > white light (33.8%) > yellow light (3.4%) > green light (1.3%) whereas germination did not take place in dark and blue light. Ammonium chloride (NH 4 Cl) supported maximum (99.5%) germination frequency followed by calcium nitrate (Ca(NO 3 ) 2 ), potassium nitrate (KNO 3 ), and minimum germination was observed in urea. Nutrient (phosphorus, calcium, and magnesium) deficiency significantly enhanced the germination frequency with maximum increase in magnesium (Mg) deficient condition. Further, supplementation of carbon sources (glucose, fructose, and sodium acetate) and growth hormones (IAA and GA) also enhanced the germination frequency in this cyanobacterium. Therefore, it may be concluded that, those factors supporting higher germination frequency could be considered for successful production and use of this cyanobacterium in biofertilizer and other algal production technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microresonator Frequency Comb Optical Clock

    DTIC Science & Technology

    2014-07-22

    lithic construction with small size and power consumption. Microcomb development has included frequency control of their spectra [8–11...frequency f eo and amplified to a maximum of 140 mW. The first-order sideband powers are approximately 3 dB lower than the pump, and the piece of highly...resonator offers sufficient peak power for our experiments and is stable and repeatable even for different settings of pump frequency and power

  10. Optimization of structures undergoing harmonic or stochastic excitation. Ph.D. Thesis; [atmospheric turbulence and white noise

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1975-01-01

    The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.

  11. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  12. Radio Frequency Transistors and Circuits Based on CVD MoS2.

    PubMed

    Sanne, Atresh; Ghosh, Rudresh; Rai, Amritesh; Yogeesh, Maruthi Nagavalli; Shin, Seung Heon; Sharma, Ankit; Jarvis, Karalee; Mathew, Leo; Rao, Rajesh; Akinwande, Deji; Banerjee, Sanjay

    2015-08-12

    We report on the gigahertz radio frequency (RF) performance of chemical vapor deposited (CVD) monolayer MoS2 field-effect transistors (FETs). Initial DC characterizations of fabricated MoS2 FETs yielded current densities exceeding 200 μA/μm and maximum transconductance of 38 μS/μm. A contact resistance corrected low-field mobility of 55 cm(2)/(V s) was achieved. Radio frequency FETs were fabricated in the ground-signal-ground (GSG) layout, and standard de-embedding techniques were applied. Operating at the peak transconductance, we obtain short-circuit current-gain intrinsic cutoff frequency, fT, of 6.7 GHz and maximum intrinsic oscillation frequency, fmax, of 5.3 GHz for a device with a gate length of 250 nm. The MoS2 device afforded an extrinsic voltage gain Av of 6 dB at 100 MHz with voltage amplification until 3 GHz. With the as-measured frequency performance of CVD MoS2, we provide the first demonstration of a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications.

  13. Impaired Enterohormone Response Following a Liquid Test Meal in Gastrectomized Patients.

    PubMed

    Santarpia, Lidia; Pagano, Maria Carmen; Cioffi, Iolanda; Alfonsi, Lucia; Cuomo, Rosario; Labruna, Giuseppe; Sacchetti, Lucia; Contaldo, Franco; Pasanisi, Fabrizio

    2017-01-01

    Total gastrectomy (TG) is responsible for symptoms or disturbance of alimentary status (changes in body weight, food intake per meal and frequency of meal per day) which, in turn are responsible for weight loss and malnutrition. The study evaluates the gut hormone responses in totally gastrectomized (TG) patients after a liquid meal test. Twenty total gastrectomized cancer-free patients (12 M, 8 F, 56.4 ± 10.2 years, BMI 21.4 ± 2.2 kg/m2) and 10 healthy volunteers (4 M, 6 F, 48.0 ± 12.7 years, BMI 26.7 ± 3.0 kg/m2 ) drank a liquid meal (1.25 kcal/mL) at the rate of 50 mL/5' min for a maximum of 30 min. Satiety score was assessed and blood sample was taken at different time points. The time response course, particularly for insulin, glucose-like pepetide-1, and cholecystokinin, significantly differed between TG patients and controls. Our results may help to better understand hormone responses triggered by the faster arrival of nutrients in the small bowel and to explain some post-TG symptoms. © 2017 S. Karger AG, Basel.

  14. Utilization of Satellite Data to Identify and Monitor Changes in Frequency of Meteorological Events

    NASA Astrophysics Data System (ADS)

    Mast, J. C.; Dessler, A. E.

    2017-12-01

    Increases in temperature and climate variability due to human-induced climate change is increasing the frequency and magnitude of extreme heat events (i.e., heatwaves). This will have a detrimental impact on the health of human populations and habitability of certain land locations. Here we seek to utilize satellite data records to identify and monitor extreme heat events. We analyze satellite data sets (MODIS and AIRS land surface temperatures (LST) and water vapor profiles (WV)) due to their global coverage and stable calibration. Heat waves are identified based on the frequency of maximum daily temperatures above a threshold, determined as follows. Land surface temperatures are gridded into uniform latitude/longitude bins. Maximum daily temperatures per bin are determined and probability density functions (PDF) of these maxima are constructed monthly and seasonally. For each bin, a threshold is calculated at the 95th percentile of the PDF of maximum temperatures. Per each bin, an extreme heat event is defined based on the frequency of monthly and seasonal days exceeding the threshold. To account for the decreased ability of the human body to thermoregulate with increasing moisture, and to assess lethality of the heat events, we determine the wet-bulb temperature at the locations of extreme heat events. Preliminary results will be presented.

  15. Design and analysis of a double superimposed chamber valveless MEMS micropump.

    PubMed

    Zordan, E; Amirouche, F

    2007-02-01

    The newly designed micropump model proposed consists of a valveless double chamber pump completely simulated and optimized for drug delivery conditions. First, the inertia force and viscous loss in relation to actuation, pressure, and frequency is considered, and then a model of the nozzle/diffuser elements is introduced. The value of the flowrate obtained from the first model is then used to determine the loss coefficients starting from geometrical properties and flow velocity. From the developed model IT analysis is performed to predict the micropump performance based on the actuation parameters and no energy loss. A single-chamber pump with geometrical dimensions equal to each of the chambers of the double-chamber pump was also developed, and the results from both models are then compared for equally applied actuation pressure and frequency. Results show that the proposed design gives a maximum flow working frequency that is about 30 per cent lower than the single chamber design, with a maximum flowrate that is 140 per cent greater than that of the single chamber. Finally, the influences of geometrical properties on flowrate, maximum flow frequency, loss coefficients, and membrane strain are examined. The results show that the nozzle/ diffuser initial width and chamber side length are the most critical dimensions of the design.

  16. Neck Circumference and Vocal Parameters in Women Before and After Bariatric Surgery.

    PubMed

    de Souza, Lourdes Bernadete Rocha; Pernambuco, Leandro de Araújo; dos Santos, Marquiony Marques; Pereira, Rayane Medeiros

    2016-03-01

    Morbidly obese patients may suffer from vocal disorders, as vocal production is directly related to the volume of the vocal tract, and the large-scale accumulation of fat in this region may interfere with voice production. The aim of this study was to analyze the neck circumference, fundamental frequency, and maximum phonation time of a group of morbidly obese women before and after bariatric surgery. An observational, longitudinal, and descriptive study was performed with patients of the Obesity and Related Diseases Surgery Unit of a university hospital. A total of 21 morbidly obese women aged 28-68 years, with a mean age of 41.33 years, participated in the study. Neck circumference was measured using a tape measure. To obtain fundamental frequency values, the patient was asked to produce the vowel [a] at normal intensity and pitch for an average period of 3 s. After recording, the participants were asked to produce the sustained vowels [a], [i], and [u] at normal intensity and pitch, with a stopwatch used to measure maximum phonation time. Eight months after surgery, patients were reassessed using the same data collecting procedures as were carried out prior to surgery. After surgery, there was an increase in the average value of fundamental frequency and maximum phonation time for all the vowels and a reduction in neck circumference. The differences were statistically significant. Weight reduction and a consequent decrease in neck circumference affected the changes in maximum phonation time and fundamental frequency values in the voices of these patients, after weight loss.

  17. The Significance of the Record Length in Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Senarath, S. U.

    2013-12-01

    Of all of the potential natural hazards, flood is the most costly in many regions of the world. For example, floods cause over a third of Europe's average annual catastrophe losses and affect about two thirds of the people impacted by natural catastrophes. Increased attention is being paid to determining flow estimates associated with pre-specified return periods so that flood-prone areas can be adequately protected against floods of particular magnitudes or return periods. Flood frequency analysis, which is conducted by using an appropriate probability density function that fits the observed annual maximum flow data, is frequently used for obtaining these flow estimates. Consequently, flood frequency analysis plays an integral role in determining the flood risk in flood prone watersheds. A long annual maximum flow record is vital for obtaining accurate estimates of discharges associated with high return period flows. However, in many areas of the world, flood frequency analysis is conducted with limited flow data or short annual maximum flow records. These inevitably lead to flow estimates that are subject to error. This is especially the case with high return period flow estimates. In this study, several statistical techniques are used to identify errors caused by short annual maximum flow records. The flow estimates used in the error analysis are obtained by fitting a log-Pearson III distribution to the flood time-series. These errors can then be used to better evaluate the return period flows in data limited streams. The study findings, therefore, have important implications for hydrologists, water resources engineers and floodplain managers.

  18. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    NASA Astrophysics Data System (ADS)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  19. Determining the linkage of disease-resistance genes to molecular markers: the LOD-SCORE method revisited with regard to necessary sample sizes.

    PubMed

    Hühn, M

    1995-05-01

    Some approaches to molecular marker-assisted linkage detection for a dominant disease-resistance trait based on a segregating F2 population are discussed. Analysis of two-point linkage is carried out by the traditional measure of maximum lod score. It depends on (1) the maximum-likelihood estimate of the recombination fraction between the marker and the disease-resistance gene locus, (2) the observed absolute frequencies, and (3) the unknown number of tested individuals. If one replaces the absolute frequencies by expressions depending on the unknown sample size and the maximum-likelihood estimate of recombination value, the conventional rule for significant linkage (maximum lod score exceeds a given linkage threshold) can be resolved for the sample size. For each sub-population used for linkage analysis [susceptible (= recessive) individuals, resistant (= dominant) individuals, complete F2] this approach gives a lower bound for the necessary number of individuals required for the detection of significant two-point linkage by the lod-score method.

  20. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  1. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.

    PubMed

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-05-04

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.

  2. Working memory, age, and hearing loss: susceptibility to hearing aid distortion.

    PubMed

    Arehart, Kathryn H; Souza, Pamela; Baca, Rosalinda; Kates, James M

    2013-01-01

    Hearing aids use complex processing intended to improve speech recognition. Although many listeners benefit from such processing, it can also introduce distortion that offsets or cancels intended benefits for some individuals. The purpose of the present study was to determine the effects of cognitive ability (working memory) on individual listeners' responses to distortion caused by frequency compression applied to noisy speech. The present study analyzed a large data set of intelligibility scores for frequency-compressed speech presented in quiet and at a range of signal-to-babble ratios. The intelligibility data set was based on scores from 26 adults with hearing loss with ages ranging from 62 to 92 years. The listeners were grouped based on working memory ability. The amount of signal modification (distortion) caused by frequency compression and noise was measured using a sound quality metric. Analysis of variance and hierarchical linear modeling were used to identify meaningful differences between subject groups as a function of signal distortion caused by frequency compression and noise. Working memory was a significant factor in listeners' intelligibility of sentences presented in babble noise and processed with frequency compression based on sinusoidal modeling. At maximum signal modification (caused by both frequency compression and babble noise), the factor of working memory (when controlling for age and hearing loss) accounted for 29.3% of the variance in intelligibility scores. Combining working memory, age, and hearing loss accounted for a total of 47.5% of the variability in intelligibility scores. Furthermore, as the total amount of signal distortion increased, listeners with higher working memory performed better on the intelligibility task than listeners with lower working memory did. Working memory is a significant factor in listeners' responses to total signal distortion caused by cumulative effects of babble noise and frequency compression implemented with sinusoidal modeling. These results, together with other studies focused on wide-dynamic range compression, suggest that older listeners with hearing loss and poor working memory are more susceptible to distortions caused by at least some types of hearing aid signal-processing algorithms and by noise, and that this increased susceptibility should be considered in the hearing aid fitting process.

  3. Techniques for Computation of Frequency Limited H∞ Norm

    NASA Astrophysics Data System (ADS)

    Haider, Shafiq; Ghafoor, Abdul; Imran, Muhammad; Fahad Mumtaz, Malik

    2018-01-01

    Traditional H ∞ norm depicts peak system gain over infinite frequency range, but many applications like filter design, model order reduction and controller design etc. require computation of peak system gain over specific frequency interval rather than infinite range. In present work, new computationally efficient techniques for computation of H ∞ norm over frequency limited interval are proposed. Proposed techniques link norm computation with maximum singular value of the system in limited frequency interval. Numerical examples are incorporated to validate the proposed concept.

  4. Periodically sheared 2D Yukawa systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Center for Astrophysics, Space Physics and Engineering Research

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  5. [The influence of individually fitted controlled breathing frequency on the heart rate variability indexes].

    PubMed

    Chuian, O M; Biriukova, O O; Ravaieva, M Iu

    2010-01-01

    We studied the changes in indexes of variability of heart rate and fractal neurodynamics under conditions of controlled breathing on fluctuation frequency of a spectrum of heart rate. It is shown that the controlled breathing, which frequency corresponds to a frequency of localization of the maximum peak of capacity ofa heart rate in low-frequency is a powerful mechanism of management of heart rate and change of a functional condition of an organism as a whole.

  6. Detrending the realized volatility in the global FX market

    NASA Astrophysics Data System (ADS)

    Schmidt, Anatoly B.

    2009-05-01

    There has been growing interest in realized volatility (RV) of financial assets that is calculated using intra-day returns. The choice of optimal time grid for these calculations is not trivial and generally requires analysis of RV dependence on the grid spacing (so-called RV signature). Typical RV signatures have a maximum at the finest time grid spacing available, which is attributed to the microstructure effects. This maximum decays into a plateau at lower frequencies, which implies (almost) stationary return variance. We found that the RV signatures in the modern global FX market may have no plateau or even have a maximum at lower frequencies. Simple averaging methods used to address the microstructure effects in equities have no practical effect on the FX RV signatures. We show that local detrending of the high-frequency FX rate samples yields RV signatures with a pronounced plateau. This implies that FX rates can be described with a Brownian motion having non-stationary trend and stationary variance. We point at a role of algorithmic trading as a possible cause of micro-trends in FX rates.

  7. Model analysis and electrical characterization of atmospheric pressure cold plasma jet in pin electrode configuration

    NASA Astrophysics Data System (ADS)

    Deepak, G. Divya; Joshi, N. K.; Prakash, Ram

    2018-05-01

    In this study, both model analysis and electrical characterization of a dielectric barrier discharge based argon plasma jet have been carried at atmospheric pressure in a pin electrode configuration. The plasma and fluid dynamics modules of COMSOL multi-physics code have been used for the modeling of the plasma jet. The plasma parameters, such as, electron density, electron temperature and electrical potential have been analyzed with respect to the electrical parameters, i.e., supply voltage and supply frequency with and without the flow of gas. In all the experiments, gas flow rate has been kept constant at 1 liter per minute. This electrode configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6.5 kV). The power consumed by the device has been estimated at different applied combinations (supply voltage & frequency) for optimum power consumption at maximum jet length. The maximum power consumed by the device in this configuration for maximum jet length of ˜26 mm is just ˜1 W.

  8. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  9. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  10. Study on dynamic response measurement of the submarine pipeline by full-term FBG sensors.

    PubMed

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement.

  11. Study on Dynamic Response Measurement of the Submarine Pipeline by Full-Term FBG Sensors

    PubMed Central

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement. PMID:24971391

  12. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Wang, Yuzhao; Wang, Qianqian; Li, Zhanqing; Wang, Zhien; Liu, Dong

    2014-06-01

    This paper introduces a new algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization processing technique is first used to inhibit the impact of increasing noise with distance. The value distribution equalization method which reduces the magnitude of signal variations with distance is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds or aerosols. This method can separate clouds and aerosols with high accuracy, although differentiation between aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared with the existing Atmospheric Radiation Measurement program lidar-based cloud product, the new method appears more reliable and detects more clouds with high bases. The algorithm is applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu sites. At the SGP site, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring and shows bimodal vertical distributions with maximum occurrences at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. The dominant clouds are stratiform in winter and convective in summer. By contrast, the cloud frequency at the Taihu site shows no clear seasonal variation and the maximum occurrence is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at the SGP site. A seasonal analysis of cloud base occurrence frequency suggests that stratiform clouds dominate at the Taihu site.

  13. Estimating the maximum potential revenue for grid connected electricity storage :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participatingmore » in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.« less

  14. [Echolocation calls of free-flying Himalayan swiftlets (Aerodramus brevirostris)].

    PubMed

    Wang, Bin; Ma, Jian-Zhang; Chen, Yi; Tan, Liang-Jing; Liu, Qi; Shen, Qi-Qi; Liao, Qing-Yi; Zhang, Li-Biao

    2013-02-01

    Here, we present our findings of free-flying echolocation calls of Himalayan swiftlets (Aerodramus brevirostris), which were recorded in Shenjing Cave, Hupingshan National Reserve, Shimen County, Hunan Province in June 2012, using Avisoft-UltraSoundGate 116(e). We noted that after foraging at dusk, the Himalayan swiftlets flew fast into the cave without clicks, and then slowed down in dark area in the cave, but with sounds. The echolocation sounds of Himalayan swiftlets are broadband, double noise burst clicks, separated by a short pause. The inter-pulse intervals between double clicks (99.3±3.86 ms)were longer than those within double clicks (6.6±0.42 ms) (P<0.01). With the exception of peak frequency, between 6.2±0.08 kHz and 6.2±0.10 kHz, (P>0.05) and pulse duration 2.9±0.12 ms, 3.2±0.17 ms, (P>0.05) between the first and second, other factors-maximum frequency, minimum frequency, frequency bandwidth, and power-were significantly different between the clicks. The maximum frequency of the first pulse (20.1±1.10 kHz) was higher than that of second (15.4±0.98 kHz) (P<0.01), while the minimum frequency of the first pulse (3.7±0.12 kHz) was lower than that of second (4.0±0.09 kHz) (P<0.05); resulting in the frequency bandwidth of the first pulse (16.5±1.17 kHz) longer than that of second (11.4±1.01 kHz) (P<0.01). The power of the first pulse (-32.5±0.60 dB) was higher than that of second (-35.2±0.94 dB) (P<0.05). More importantly, we found that Himalayan swiftlets emitted echolocation pulses including ultrasonic sound, with a maximum frequency reaching 33.2 kHz.

  15. Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine.

    PubMed

    Schmucker, Christine; Schaeffel, Frank

    2006-03-01

    To find out how spatial vision in mice is affected by wearing of spectacle lenses or diffusers, and by atropine eye drops. This information is necessary to determine which treatments could effectively induce refractive errors in young mice. Whole-body optomotor responses were recorded by automated video analysis in freely ranging mice in a large rotating drum that was covered inside with vertical square-wave gratings with spatial frequencies of 0.03, 0.10 and 0.30 cyc/deg, both at "dim light" (0.10 cd/m(2)), and under photopic conditions (30 cd/m(2)). Contrast thresholds were determined by varying the contrasts of the gratings. Mice wore either no lenses, or binocular plano lenses, or lenses with powers ranging from +25 D to -25 D, or diffusers. In another experiment, contrast thresholds were determined 30 min after binocular installation of one drop of 1% atropine solution which is known to suppress myopia development in other animal models. The range of spatial frequencies, at which the mice still responded to stripes with less than the maximal grating contrast, was rather small. At 0.03 cyc/deg, the mice responded to stripes with low contrast down to 24%. At 0.10 cyc/deg, the minimal contrast was 45%, but at 0.30 cyc/deg, only the maximum contrast elicited a significant response. In dim light, spatial vision was severely impaired and only the lowest spatial frequencies, presented at the highest contrast (91%), were detected. The whole-body optomotor response was largest with spectacle lens powers of plano diopters and +7D lenses. The magnitude of the response decreased symmetrically with increasing lens powers for both signs, providing information on the behavioral depth of field (a second-order fit through the data placed the extreme limits of a response at around +25 D and -25 D lens powers). Finally, atropine improved contrast sensitivity, at least at the lowest spatial frequency tested, a result that was previously obtained also in the chicken and could help to explain the inhibitory effect of atropine on myopia. The study shows that mice have sufficient spatial vision to respond to treatment with powerful spectacle lenses or diffusers. Accordingly, these devices should be effective in inducing refractive errors in this animal model, although primarily under photopic conditions.

  16. Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage.

    PubMed

    Gardiner, Stuart K; Swanson, William H; Goren, Deborah; Mansberger, Steven L; Demirel, Shaban

    2014-07-01

    Visual field testing uses high-contrast stimuli in areas of severe visual field loss. However, retinal ganglion cells saturate with high-contrast stimuli, suggesting that the probability of detecting perimetric stimuli may not increase indefinitely as contrast increases. Driven by this concept, this study examines the lower limit of perimetric sensitivity for reliable testing by standard automated perimetry. Evaluation of a diagnostic test. A total of 34 participants with moderate to severe glaucoma; mean deviation at their last clinic visit averaged -10.90 dB (range, -20.94 to -3.38 dB). A total of 75 of the 136 locations tested had a perimetric sensitivity of ≤ 19 dB. Frequency-of-seeing curves were constructed at 4 nonadjacent visual field locations by the Method of Constant Stimuli (MOCS), using 35 stimulus presentations at each of 7 contrasts. Locations were chosen a priori and included at least 2 with glaucomatous damage but a sensitivity of ≥ 6 dB. Cumulative Gaussian curves were fit to the data, first assuming a 5% false-negative rate and subsequently allowing the asymptotic maximum response probability to be a free parameter. The strength of the relation (R(2)) between perimetric sensitivity (mean of last 2 clinic visits) and MOCS sensitivity (from the experiment) for all locations with perimetric sensitivity within ± 4 dB of each selected value, at 0.5 dB intervals. Bins centered at sensitivities ≥ 19 dB always had R(2) >0.1. All bins centered at sensitivities ≤ 15 dB had R(2) <0.1, an indication that sensitivities are unreliable. No consistent conclusions could be drawn between 15 and 19 dB. At 57 of the 81 locations with perimetric sensitivity <19 dB, including 49 of the 63 locations ≤ 15 dB, the fitted asymptotic maximum response probability was <80%, consistent with the hypothesis of response saturation. At 29 of these locations the asymptotic maximum was <50%, and so contrast sensitivity (50% response rate) is undefined. Clinical visual field testing may be unreliable when visual field locations have sensitivity below approximately 15 to 19 dB because of a reduction in the asymptotic maximum response probability. Researchers and clinicians may have difficulty detecting worsening sensitivity in these visual field locations, and this difficulty may occur commonly in patients with glaucoma with moderate to severe glaucomatous visual field loss. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. Frequency dispersion in dipolophoresis of metallodielectric Janus spheres

    NASA Astrophysics Data System (ADS)

    Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia

    2013-11-01

    Dipolophoresis (DIP) is an umbrella term for the two non-linear electrokinetic phenomenon of induced-charge electrophoresis (ICEP) and dielectrophoresis (DEP). It has previously been shown that this effect is responsible for the obtainment of a finite velocity by a metallodielectric (comprised of one conducting and one dielectric hemisphere) Janus spheres, even under the application of a uniform AC field. At low frequencies, this mobility is dominated by induced-charge effects, wherein the stronger induced-charge electroosmotic flow around the polarizable hemisphere propels the particle perpendicular to the electric field in the direction of its dielectric end. Surprisingly, it was observed that this motion is at a maximum for applied frequencies in the range of 1kHz beyond which the effect decays. Here we examine the effect of varying experimental conditions including electrolyte concentration and particle size on this limit. Additionally, we present for the first time an analytical solution which is capable of predicting this optimum based on our previous formulation which is uniquely valid for arbitrary electric double layer length. This work is of both fundamental and practical importance and may be used to optimize the behavior of Janus micromotors in lab-on-a-chip systems.

  18. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  19. Perception of speech in reverberant conditions using AM-FM cochlear implant simulation.

    PubMed

    Drgas, Szymon; Blaszak, Magdalena A

    2010-10-01

    This study assessed the effects of speech misidentification and cognitive processing errors in normal-hearing adults listening to degraded auditory input signals simulating cochlear implants in reverberation conditions. Three variables were controlled: number of vocoder channels (six and twelve), instantaneous frequency change rate (none, 50, 400 Hz), and enclosures (different reverberation conditions). The analyses were made on the basis of: (a) nonsense word recognition scores for eight young normal-hearing listeners, (b) 'ease of listening' based on the time of response, and (c) the subjective measure of difficulty. The maximum score of speech intelligibility in cochlear implant simulation was 70% for non-reverberant conditions with a 12-channel vocoder and changes of instantaneous frequency limited to 400 Hz. In the presence of reflections, word misidentification was about 10-20 percentage points higher. There was little difference between the 50 and 400 Hz frequency modulation cut-off for the 12-channel vocoder; however, in the case of six channels this difference was more significant. The results of the experiment suggest that the information other than F0, that is carried by FM, can be sufficient to improve speech intelligibility in the real-world conditions.

  20. Mechanical response of the flux lines in ceramic YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; André, M.-O.; Benoit, W.

    1992-06-01

    We have studied the mechanical response of the flux-line lattice (FLL) in ceramic samples of YBa2Cu3O7 by means of a low-frequency forced pendulum. The internal friction and elastic modulus variation of the FLL have been measured as a function of temperature for different values of the applied stress. A somewhat different behavior was observed whether a zero-field-cooling or field-cooling procedure was followed. Measurements of the internal friction and elastic modulus as a function of the applied stress at constant temperature show amplitude-dependent dissipation, with a maximum dissipation at intermediate values of the stress. This dependence is well fitted by a rheological model of extended dry friction, if we restrict ourselves to the dissipation and modulus at fixed temperature. The agreement is not so good when attempting to extend the model to fit the temperature dependence.

  1. Modeling panel detection frequencies by queuing system theory: an application in gas chromatography olfactometry.

    PubMed

    Bult, Johannes H F; van Putten, Bram; Schifferstein, Hendrik N J; Roozen, Jacques P; Voragen, Alphons G J; Kroeze, Jan H A

    2004-10-01

    In continuous vigilance tasks, the number of coincident panel responses to stimuli provides an index of stimulus detectability. To determine whether this number is due to chance, panel noise levels have been approximated by the maximum coincidence level obtained in stimulus-free conditions. This study proposes an alternative method by which to assess noise levels, derived from queuing system theory (QST). Instead of critical coincidence levels, QST modeling estimates the duration of coinciding responses in the absence of stimuli. The proposed method has the advantage over previous approaches that it yields more reliable noise estimates and allows for statistical testing. The method was applied in an olfactory detection experiment using 16 panelists in stimulus-present and stimulus-free conditions. We propose that QST may be used as an alternative to signal detection theory for analyzing data from continuous vigilance tasks.

  2. Dynamic response of sand particles impacted by a rigid spherical object

    NASA Astrophysics Data System (ADS)

    Youplao, P.; Takita, A.; Nasbey, H.; Yupapin, P. P.; Fujii, Y.

    2018-06-01

    A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force.

  3. Actively Q-switched, thulium-holmium-codoped fiber laser incorporating a silicon-based, variable-optical-attenuator-based Q switch.

    PubMed

    Jung, Minwan; Han Lee, Ju

    2013-04-20

    An actively Q-switched thulium-holmium-codoped fiber laser incorporating an Si-based variable optical attenuator (VOA) is experimentally demonstrated. It has been shown that an Si-based VOA with a response time of hundreds of nanoseconds can be used as a cost-effective 2 μm Q switch due to its extremely wide operating bandwidth from 1.5 to 2 μm, and low electrical power consumption. In our study, the laser's slope efficiency was measured to be ~17% at an operating wavelength of 1.89 μm. The repetition rate tuning range was from 20 to 80 kHz, which was limited by the optical damage threshold and the response time. The minimum temporal pulsewidth was measured to be ~184 ns at a modulation frequency of 20 kHz, and the corresponding maximum peak power was ~10 W.

  4. 47 CFR 22.759 - Power limit for BETRS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radio systems must not exceed the limits in this section. (a) Maximum ERP. The effective radiated power (ERP) of central office and rural subscriber station transmitters in BETRS must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (watts) 152...

  5. 47 CFR 22.759 - Power limit for BETRS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radio systems must not exceed the limits in this section. (a) Maximum ERP. The effective radiated power (ERP) of central office and rural subscriber station transmitters in BETRS must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (watts) 152...

  6. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  7. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2006-01-01

    A parametric investigation has been made of thrust augmentation of a 1 in. diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentation ratios for each ejector were fitted using a polynomial response surface, from which the optimum ratios of ejector diameter to detonation tube diameter, and ejector length and nose radius to ejector diameter, were found. Thrust augmentation ratios above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  8. Energy harvesting from coupled bending-twisting oscillations in carbon-fibre reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Xie, Mengying; Zhang, Yan; Kraśny, Marcin J.; Rhead, Andrew; Bowen, Chris; Arafa, Mustafa

    2018-07-01

    The energy harvesting capability of resonant harvesting structures, such as piezoelectric cantilever beams, can be improved by utilizing coupled oscillations that generate favourable strain mode distributions. In this work, we present the first demonstration of the use of a laminated carbon fibre reinforced polymer to create cantilever beams that undergo coupled bending-twisting oscillations for energy harvesting applications. Piezoelectric layers that operate in bending and shear mode are attached to the bend-twist coupled beam surface at locations of maximum bending and torsional strains in the first mode of vibration to fully exploit the strain distribution along the beam. Modelling of this new bend-twist harvesting system is presented, which compares favourably with experimental results. It is demonstrated that the variety of bend and torsional modes of the harvesters can be utilized to create a harvester that operates over a wider range of frequencies and such multi-modal device architectures provides a unique approach to tune the frequency response of resonant harvesting systems.

  9. Experimental and analytical studies on the vibration serviceability of long-span prestressed concrete floor

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Liu, Jiepeng; Li, Jiang; Zhang, Ruizhi

    2018-04-01

    An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport. Specifically, jumping impact tests were carried out to obtain the floor's modal parameters, followed by an analysis of the distribution of peak accelerations. Running tests were also performed to capture the acceleration responses. The prestressed concrete floor was found to have a low fundamental natural frequency (≈ 8.86 Hz) corresponding to the average modal damping ratio of ≈ 2.17%. A coefficients β rp is proposed for convenient calculation of the maximum root-mean-square acceleration for running. In the theoretical analysis, the prestressed concrete floor under running excitation is treated as a two-span continuous anisotropic rectangular plate with simply-supported edges. The calculated analytical results (natural frequencies and root-mean-square acceleration) agree well with the experimental ones. The analytical approach is thus validated.

  10. Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering.

    PubMed

    Pozdnyakova, I; Hennet, L; Brun, J-F; Zanghi, D; Brassamin, S; Cristiglio, V; Price, D L; Albergamo, F; Bytchkov, A; Jahn, S; Saboungi, M-L

    2007-03-21

    The dynamic structure factor S(Q,omega) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8 nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.

  11. Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Pozdnyakova, I.; Hennet, L.; Brun, J.-F.; Zanghi, D.; Brassamin, S.; Cristiglio, V.; Price, D. L.; Albergamo, F.; Bytchkov, A.; Jahn, S.; Saboungi, M.-L.

    2007-03-01

    The dynamic structure factor S(Q,ω) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.

  12. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2005-01-01

    A parametric investigation has been made of thrust augmentation of a 1 inch diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentations for each ejector were fitted using a polynomial response surface, from which the optimum ejector diameters, and nose radius, were found. Thrust augmentations above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  13. Low nutation-rate dampers

    NASA Technical Reports Server (NTRS)

    Tossman, B. E.

    1971-01-01

    Mission requirements plus spacecraft weight and power constraints often reduce the excitation frequency of a nutation damper below 1 cpm. Since attitude stability is determined by damper performance, maximum effectiveness at low rates is demanded. Presented are design considerations that low-frequency dampers require, along with descriptions of two low-frequency systems: the Direct Measurement Explorer 1 and the Small Astronomy Satellite A (SAS-A).

  14. Sum frequency mixing of copper vapor laser output in KDP and beta-BBO

    NASA Astrophysics Data System (ADS)

    Coutts, D. W.; Ainsworth, M. D.; Piper, J. A.

    1989-09-01

    Generation at 271 nm by frequency summing the two copper vapor laser (CVL) output wavelengths (at 511 and 578 nm) in beta-BBO and KDP is reported. A maximum sum frequency output of 100 mW was obtained for 6.8 W total pump power from a CVL operating with a fully unstable (M = 16) confocal cavity.

  15. Optimal Design of a Traveling-Wave Kinetic Inductance Amplifier Operated in Three-Wave Mixing Mode

    NASA Astrophysics Data System (ADS)

    Erickson, Robert; Bal, Mustafa; Ku, Ksiang-Sheng; Wu, Xian; Pappas, David

    In the presence of a DC bias, an injected pump, of frequency fP, and a signal, of frequency fS, undergo parametric three-way mixing (3WM) within a traveling-wave kinetic inductance (KIT) amplifier, producing an idler product of frequency fI =fP -fS . Periodic frequency stops are engineered into the coplanar waveguide of the device to enhance signal amplification. With fP placed just above the first frequency stop gap, 3WM broadband signal gain is achieved with maximum gain at fS =fP / 2 . Within a theory of the dispersion of traveling waves in the presence of these engineered loadings, which accounts for this broadband signal gain, we show how an optimal frequency-stop design may be constructed to achieve maximum signal amplification. The optimization approach we describe can be applied to the design of other nonlinear traveling-wave parametric amplifiers. This work was supported by the Army Research Office and the Laboratory for Physical Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowledges Grant 60NANB14D024 from the US Department of Commerce, NIST.

  16. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz.

    PubMed

    Cao, Yu; Brady, Gerald J; Gui, Hui; Rutherglen, Chris; Arnold, Michael S; Zhou, Chongwu

    2016-07-26

    In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.

  17. Quantitative analysis of frequency-domain induced polarization soundings over horizontal beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.; Schiavone, D.

    1976-06-01

    Following up a recent study of an indirect procedure for the practical determination of the maximum frequency-effect, defined as fe = I - rho/sub infinity//rho/sub dc/ with rho/sub infinity/ the resistivity at infinite frequency, it is shown at first how, through the Laplace transform theory, rho/sub infinity/ can be related to stationary field vectors in the simple form of Ohm's law. Then applying the equation of continuity for stationary currents with a suitable set of boundary conditions, the integral expression of the apparent resistivity at infinite frequency is derived rho/sub infinity,a/ in the case of a horizontally layered earth. Finally,more » from the definition of the maximum apparent frequency-effect, analytical expressions of fe/sub a/ are obtained for both Schlumberger and dipole arrays placed on the surface of the multi-layered earth section in the most general situation of vertical changes in induced polarization together with dc resistivity variations not at the same interfaces. Direct interpretation procedures are suggested for obtaining the layering parameters directly from the analysis of the sounding curves.« less

  18. Experimental and numerical modeling research of rubber material during microwave heating process

    NASA Astrophysics Data System (ADS)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  19. Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump

    NASA Astrophysics Data System (ADS)

    Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.

    2013-12-01

    In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.

  20. Estimation method of finger tapping dynamics using simple magnetic detection system

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

Top