Sample records for maximum fuel temperature

  1. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingham, J.G.

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less

  3. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    DOE PAGES

    Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.

    2014-09-17

    The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less

  4. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel G. Medvedev

    2009-11-01

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20oC temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermalmore » conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.« less

  5. The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1940-01-01

    Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.

  6. A surface fuel classification for estimating fire effects

    Treesearch

    Duncan C. Lutes; Robert E. Keane; John F. Caratti

    2009-01-01

    We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...

  7. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  8. Improving a free air breathing proton exchange membrane fuel cell through the Maximum Efficiency Point Tracking method

    NASA Astrophysics Data System (ADS)

    Higuita Cano, Mauricio; Mousli, Mohamed Islam Aniss; Kelouwani, Sousso; Agbossou, Kodjo; Hammoudi, Mhamed; Dubé, Yves

    2017-03-01

    This work investigates the design and validation of a fuel cell management system (FCMS) which can perform when the fuel cell is at water freezing temperature. This FCMS is based on a new tracking technique with intelligent prediction, which combined the Maximum Efficiency Point Tracking with variable perturbation-current step and the fuzzy logic technique (MEPT-FL). Unlike conventional fuel cell control systems, our proposed FCMS considers the cold-weather conditions, the reduction of fuel cell set-point oscillations. In addition, the FCMS is built to respond quickly and effectively to the variations of electric load. A temperature controller stage is designed in conjunction with the MEPT-FL in order to operate the FC at low-temperature values whilst tracking at the same time the maximum efficiency point. The simulation results have as well experimental validation suggest that propose approach is effective and can achieve an average efficiency improvement up to 8%. The MEPT-FL is validated using a Proton Exchange Membrane Fuel Cell (PEMFC) of 500 W.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Zhang, Hongbin

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  10. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    DOE PAGES

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  11. Fuel freeze-point investigations. Final report, September 1982-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desmarais, L.A.; Tolle, F.F.

    1984-07-01

    The objective of this program was to conduct a detailed assessment of the low-temperature environment to which USAF aircraft are exposed for the purpose of defining a maximum acceptable fuel freeze-point and also to define any operational changes required with the use of a high freeze-point fuel. A previous study of B-52, C-141, and KC-135 operational missions indicated that the -58 C freeze point specification was too conservative. Based on recommendations resulting from the previous program, several improvements in the method of analysis were made, such as: expansion of the atmospheric temperature data base, the addition of ground temperature analysis,more » the addition of fuel-freezing analysis to the one-dimensional fuel-temperature computer program, and the examination of heat transfer in external fuel tanks, such as pylon or tip tanks. The B-52, C-141, and KC-135 mission were analyzed again, along with the operational missions of two tactical airplanes, the A-10 and F-15; -50C was determined to be the maximum allowable freeze point for a general-purpose USAF aviation turbine fuel. Higher freeze points can be tolerated if the probability of operational interference is acceptably low or if operational changes can be made. Study of atmospheric temperatures encountered for the missions of the five-study aircraft indicates that a maximum freeze point of -48 C would not likely create any operational difficulties in Northern Europe.« less

  12. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  13. Mechanisms and kinetics of granulated sewage sludge combustion.

    PubMed

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  15. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  16. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  17. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  18. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  19. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  20. Effect of Fuel Temperature Profile on Eigenvalue Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C

    2008-01-01

    Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less

  1. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.

    PubMed

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy A W; Amin, Mohamed A M; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2018-04-01

    A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R in ), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m -3 , 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m -2  °C -1 , whereas maximum power density was in a polynomial function. The temperature coefficient (Q 10 ) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.

  2. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  3. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  4. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  5. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Fuel properties effect on the performance of a small high temperature rise combustor

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  7. The Characterisation of a PEM Fuel-Cell System with a Focus on UAS Applications

    DTIC Science & Technology

    2014-01-01

    consumption at rated output Approximately 580 ml/min (at normal conditions) Maximum permissible cell temperature Operation: 50 °C; starting: 45 °C...serves to control the temperature of the stack as well as to provide oxygen for the reaction. Fur- thermore, the theoretically computed airflow rate is...The stack temperature has a significant effect on the performance of a fuel cell. Therefore, an understanding of how a fuel cell functions across a

  8. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    NASA Astrophysics Data System (ADS)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  9. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    PubMed

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  10. Relation of Fuel-Air Ratio to Engine Performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    The tests upon which this report is based were made at the Bureau of Standards between October 1919 and May 1923. From these it is concluded that: (1) with gasoline as a fuel, maximum power is obtained with fuel-air mixtures of from 0.07 to 0.08 pound of fuel per pound of air; (2) maximum power is obtained with approximately the same ratio over the range of air pressures and temperatures encountered in flight; (3) nearly minimum specific fuel consumption is secured by decreasing the fuel content of the charge until the power is 95 per cent of its maximum value. Presumably this information is of most direct value to the carburetor engineer. A carburetor should supply the engine with a suitable mixture. This report discusses what mixtures have been found suitable for various engines. It also furnishes the engine designer with a basis for estimating how much greater piston displacement an engine operating with a maximum economy mixture should have than one operating with a maximum power mixture in order for both to be capable of the same power development.

  11. Development of Accelerated Fuel-Engines Qualification Procedures Methodology. Volume II. Appendices.

    DTIC Science & Technology

    1981-12-01

    temperature test and the spot calibration, remove the clay filter. Reset the maximum fuel temperature safety device for 1900F. Continue cycling per Figure...34 -t " ;" " pum p . 1...0.,. Fuel ’ ’ ’ :’: ? Secondary ; Filter (S) -, A TVented Cap Removable Screen\\ - Tank Fu e.l ExpansSon DtVrent Pipe A n...practice, improper installation or adjustment of components *Do not remove or inspect secondary fuel filter. One of the initial production engines is

  12. Performance of fuel system at different diesel temperature

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  13. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes

    NASA Astrophysics Data System (ADS)

    Meng, Xie; Liu, Xuejiao; Han, Da; Wu, Hao; Li, Junliang; Zhan, Zhongliang

    2014-04-01

    Here we report nominally symmetrical solid oxide fuel cells that feature thin La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolytes and impregnated SrFe0.75Mo0.25O3-δ (SFMO)-LSGM composite electrodes. Operation on hydrogen fuels and air oxidants can produce maximum power densities of 0.39 W cm-2 at 650 °C and 0.97 W cm-2 at 800 °C. Impedance measurements indicate that the anode and the cathode polarizations are 0.22 and 0.04 Ω cm2 at 800 °C, respectively. Hydrogen partial pressure and temperature dependence of impedance data in humidified hydrogen shows that hydrogen oxidation kinetics is largely determined by hydrogen adsorption on the SFMO catalysts at high temperatures and charge transfer reactions along the SFMO|LSGM interfaces at low temperatures. Carbon tolerance of the present fuel cells is also examined in iso-octane fuels balanced by nitrogen at 800 °C that yields stable maximum power densities of 0.39 W cm-2.

  15. EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, J.H.

    1962-11-15

    An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)

  16. Production test IP-376-D, Supplement B Irradiation of MGCR-HDR-3 Test Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, R.E.

    The objective of this supplement to PT-IP-376-D, Irradiation of MGCR-HDR-3 Test Element is to authorize 1000 hours of operation at a maximum test specimen surface temperature of 1700 F. The original production test authorized a test duration of four months at a maximum specimen surface temperature of 1500 F; supplement A authorized extension of the test duration to ten months. The desired increase in surface temperature is requested to demonstrate the general feasibility of operation of the fuel element at 1700 F, and to obtain specific information on the performance of Hastelloy-X cladding and fuel bodies. The increased temperature hasmore » been approved by the Atomic Energy Commission.« less

  17. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    NASA Astrophysics Data System (ADS)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  18. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  19. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  20. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  1. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  2. 40 CFR 86.1233-96 - Diurnal emission test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient... deionized water shall be placed in the methanol sampling system (methanol-fueled vehicles only). (3) Turn...

  3. 40 CFR 86.133-96 - Diurnal emission test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient... deionized water shall be placed in the methanol sampling system (methanol-fueled vehicles only). (3) Turn...

  4. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.

    PubMed

    Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B

    2012-06-01

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.

  5. Irradiation effects on thermal properties of LWR hydride fuel

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  6. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    NASA Astrophysics Data System (ADS)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  7. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  8. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.

    PubMed

    Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang

    2012-03-01

    The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  10. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  11. Evaluation of Liquid Fuel Field Space Heaters: Standard Military, Developmental and Foreign

    DTIC Science & Technology

    1978-10-01

    least 15 kg/kg, (2) to react as much fuel as possible by the flameless combustion reaction, and (3) to maintain gas temperatures not higher than 1000...as there is enough oxygen there to support combustion . As the fuel flow increases, the flames move up until at maximum flow only flameless ...HEATING FIELD HEATING COMBUSTION COMBUSTION (LIQUID FUELS) HEATERS TENT HEATERS LIQUID FUELS FUELS LIQUIDS OXYGEN tS»TRACT rCoaltnu* an rmrormm

  12. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.

  13. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  14. Steady-State Thermal-Hydraulics Analyses for the Conversion of BR2 to Low Enriched Uranium Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    The code PLTEMP/ANL version 4.2 was used to perform the steady-state thermal-hydraulic analyses of the BR2 research reactor for conversion from Highly-Enriched to Low Enriched Uranium fuel (HEU and LEU, respectively). Calculations were performed to evaluate different fuel assemblies with respect to the onset of nucleate boiling (ONB), flow instability (FI), critical heat flux (CHF) and fuel temperature at beginning of cycle conditions. The fuel assemblies were characteristic of fresh fuel (0% burnup), highest heat flux (16% burnup), highest power (32% burnup) and highest burnup (46% burnup). Results show that the high heat flux fuel element is limiting for ONB,more » FI, and CHF, for both HEU and LEU fuel, but that the high power fuel element produces similar margin in a few cases. The maximum fuel temperature similarly occurs in both the high heat flux and high power fuel assemblies for both HEU and LEU fuel. A sensitivity study was also performed to evaluate the variation in fuel temperature due to uncertainties in the thermal conductivity degradation associated with burnup.« less

  15. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition

    NASA Astrophysics Data System (ADS)

    Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas

    2018-06-01

    In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.

  17. Performance and emission characteristics of swirl-can combustors to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Trout, A. M.

    1976-01-01

    Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.

  18. Low exchange element for nuclear reactor

    DOEpatents

    Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.

    1985-01-01

    A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

  19. Altitude-Test-Chamber Investigation of a Solar Afterburner on the 24C Engine I - Operational Characteristics and Altitude Limits

    NASA Technical Reports Server (NTRS)

    1948-01-01

    An altitude-test-chamber investigation was conducted to determine the operational characteristics and altitude blow-out limits of a Solar afterburner in a 24C engine. At rated engine speed and maximum permissible turbine-discharge temperature, the altitude limit as determined by combustion blow-out occurred as a band of unstable operation of about 8000 feet altitude in width with maximum altitude limits from 32,000 feet at a Mach number of 0.3 to about 42,000 feet at a Mach number of 1.0. The maximum fuel-air ratio of the afterburner, as limited by maximum permissible turbine-discharge gas temperatures at rated engine speed, varied between 0.0295 and 0.0380 over a range of flight Mach numbers from 0.25 to 1.0 and at altitudes of 20,000 and 30,000 feet. Over this range of operating conditions, the fuel-air ratio at which lean blow-out occurred was from 10 to 19 percent below these maximum fuel-air ratios. Combustion was very smooth and uniform during operation; however, ignition of the burner was very difficult throughout the investigation. A failure of the flame holder after 12 hours and 15 minutes of afterburner operation resulted in termination of the investigation.

  20. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  1. Core thermal response and hydrogen generation of the N Reactor hydrogen mitigation design basis accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.D.; Lombardo, N.J.; Heard, F.J.

    1988-04-01

    Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and formore » uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.« less

  2. Performance of U3Si2 Fuel in a Reactivity Insertion Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Cuadra, Arantxa; Todosow, Michael

    In this study we examined the performance of the U3Si2 fuel cladded with Zircaloy (Zr) in a reactivity insertion accident (RIA) in a PWR core. The power excursion as a result of a $1 reactivity insertion was calculated by a TRACE PWR plant model using point-kinetics, for alternative cores with UO2 and U3Si2 fuel assemblies. The point-kinetics parameters (feedback coefficients, prompt-neutron lifetime and group constants for six delayed-neutron groups) were obtained from beginning-of-cycle equilibrium full core calculations with PARCS. In the PARCS core calculations, the few-group parameters were developed utilizing the TRITON/NEWT tools in the SCALE package. In order tomore » assess the fuel response in finer detail (e.g. the maximum fuel temperature) the power shape and thermal boundary conditions from the TRACE/PARCS calculations were used to drive a BISON model of a fuel pin with U3Si2 and UO2 respectively. For a $1 reactivity transient both TRACE and BISON predicted a higher maximum fuel temperature for the UO2 fuel than the U3Si2 fuel. Furthermore, BISON is noted to calculate a narrower gap and a higher gap heat transfer coefficient than TRACE. This resulted in BISON predicting consistently lower fuel temperatures than TRACE. This study also provides a systematic comparison between TRACE and BISON using consistent transient boundary conditions. The TRACE analysis of the RIA only reflects the core-wide response in power. A refinement to the analysis would be to predict the local peaking in a three-dimensional core as a result of control rod ejection.« less

  3. Beyond "fire temperatures": calibrating thermocouple probes and modeling their response to surface fires in hardwood fuels

    Treesearch

    Anthony S. Bova; Matthew B. Dickinson

    2008-01-01

    The maximum temperatures of thermocouples, temperature-sensitive paints, and calorimeters exposed to flames in wildland fires are often called "fire temperatures" but are determined as much by the properties and deployment of the measurement devices as by the fires themselves. Rather than report device temperatures that are not generally comparable among...

  4. Examination of UC-ZrC after long term irradiation at thermionic temperature

    NASA Technical Reports Server (NTRS)

    Yang, L.; Johnson, H. O.

    1972-01-01

    Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.

  5. Performance seeking control: Program overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1993-01-01

    A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.

  6. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  7. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  8. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (4535.9 kg) or more except for: (A) Hydrocarbon fuels used solely for workplace consumption as a fuel (e...) Thermal and chemical stability data; and (vii) Hazardous effects of inadvertent mixing of different...) Maximum intended inventory; (D) Safe upper and lower limits for such items as temperatures, pressures...

  9. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  10. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  11. Characterization of solid fuels at pressurized fluidized bed gasification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, R.; Hupa, M.

    1998-07-01

    The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less

  12. Characterisation of solid fuels at pressurised fluidised bed gasification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zebenhoven, R.; Hupa, M.

    1998-04-01

    The gasification or co-gasification of solid fuels (coal, peat, wood) in air-blown fluidised bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidised bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe, based on complete or partial gasification of a solid fuel in a pressurised fluidised bed. At the same time, fuel characterisation data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidised bed gasification are very scarce.more » Quantitative data on the characterisation of fuels for advanced combustion and gasification technologies based on fluidised beds are given, as a result from our participation to the JOULE 2 extension project on clean coal technology of the European Community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidised bed gasification conditions: 800-1000{degrees}C, 1-25 bar, fuel heating rate in the order of 100-1000{degrees}C/s. Carbon dioxide was used as gasifying agent. A pressurised thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilisation. increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurising from 1 to 25 bar, for the `younger` fuels such as peat and wood, this effect is negligible. Several empirical, `engineering` equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modelled using a Langmuir-Hinshelwood model.« less

  13. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Keiser; J. I. Cole

    2007-09-01

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. Thismore » temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.« less

  14. Species Composition and Fire: Non-Additive Mixture Effects on Ground Fuel Flammability

    PubMed Central

    van Altena, Cassandra; van Logtestijn, Richard S. P.; Cornwell, William K.; Cornelissen, Johannes H. C.

    2012-01-01

    Diversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of diversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e., differ from expected flammability based on the component species in monospecific fuel. In standardized fire experiments on ground fuels, including monospecific fuels and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration, and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects for temporal dynamics – fire speed and duration. Fuel types with the more flammable value for a characteristic determined the rate of fire speed and duration of the whole mixture; in contrast, maximum temperature of the fire was determined by the biomass-weighted mean of the mixture. These results suggest that ecological invasions by highly flammable species may have effects on ground-fire dynamics well out of proportion to their biomass. PMID:22639656

  15. Determination of the combustion behavior for pure components and mixtures using a 20-liter sphere

    NASA Astrophysics Data System (ADS)

    Mashuga, Chad Victor

    1999-11-01

    The safest method to prevent fires and explosions of flammable vapors is to prevent the existence of flammable mixtures in the first place. This methodology requires detailed knowledge of the flammability region as a function of the fuel, oxygen, and nitrogen concentrations. A triangular flammability diagram is the most useful tool to display the flammability region, and to determine if a flammable mixture is present during plant operations. An automated apparatus for assessing the flammability region and for determining the potential effect of confined fuel-air explosions is described. Data derived from the apparatus included the limits of combustion, maximum combustion pressure, and the deflagration index, or KG. Accurate measurement of these parameters can be influenced by numerous experimental conditions, including igniter energy, humidity and gas composition. Gas humidity had a substantial effect on the deflagration index, but had little effect on the maximum combustion pressure. Small changes in gas compositions had a greater effect on the deflagration index than the maximum combustion pressure. Both the deflagration indices and the maximum combustion pressure proved insensitive to the range of igniter energies examined. Estimation of flammability limits using a calculated adiabatic flame temperature (CAFT) method is demonstrated. The CAFT model is compared with the extensive experimental data from this work for methane, ethylene and a 50/50 mixture of methane and ethylene. The CAFT model compares well to methane and ethylene throughout the flammability zone when using a 1200K threshold temperature. Deviations between the method and the experimental data occurs in the fuel rich region. For the 50/50 fuel mixture the CAFT deviates only in the fuel rich region---the inclusion of carbonaceous soot as one of the equilibrium products improved the fit. Determination of burning velocities from a spherical flame model utilizing the extensive pressure---time data was also completed. The burning velocities determined compare well to other investigators using this method. The data collected for the methane/ethylene mixture was used to evaluate mixing rules for the flammability limits, maximum combustion pressure, deflagration index, and burning velocity. These rules attempt to predict the behavior of fuel mixtures from pure component data. Le Chatelier's law and averaging both work well for predicting the flammability boundary in the fuel lean region and for mixtures of inerted fuel and air. Both methods underestimate the flammability boundary in the fuel rich region. For a mixture of methane and ethylene, we were unable to identify mixing rules for estimating the maximum combustion pressure and the burning velocity from pure component data. Averaging the deflagration indices for fuel air mixtures did provide a adequate estimation of the mixture behavior. Le Chatelier's method overestimated the maximum deflagration index in air but provided a satisfactory estimation in the extreme fuel lean and rich regions.

  16. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C.

    PubMed

    Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime

    2015-01-01

    We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.

  17. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  18. STUDIES OF FAST REACTOR FUEL ELEMENT BEHAVIOR UNDER TRANSIENT HEATING TO FAILURE. I. INITIAL EXPERIMENTS ON METALLIC SAMPLES IN THE ABSENCE OF COOLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerman, C. E.; Sowa, E. S.; Okrent, D.

    1961-08-01

    Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)

  19. Afterburner performance of film-vaporizing V-gutters for inlet temperatures up to 1255 K

    NASA Technical Reports Server (NTRS)

    Branstetter, J. R.; Reck, G. M.

    1973-01-01

    Combustion tests of five variations of an integral, spray-bar - flameholder combination were conducted in a 0.49-m-diameter duct. Emphasis was on low levels of augmentation. Fuel impinged on guide plates, mixed with a controlled amount of inlet air, vaporized, and was guided into the V-gutter wake. Combustor length was 0.92 m. Good performance was demonstrated at fuel-air ratios less than 0.025 for inlet temperatures of 920 to 1255 K. Maximum combustion efficiency occured in the vicinity of fuel-air ratios of 0.02 and was 92 to 100 percent, depending on the inlet temperature. Lean blowout fuel-air ratios were in the vicinity of 0.005. Improvements in rich-limit blowout resulted from enlarging the guide-flow passageway areas. Other means of extending the operating range are suggested. A simplified afterburner concept for application to advanced engines is described.

  20. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2015-01-01

    This paper reviews test data for cermet fuel samples developed in the 1960's to better quantify Nuclear Thermal Propulsion (NTP) cermet engine performance, and to better understand contemporary fuel testing results. Over 200 cermet (W-UO2) samples were tested by thermally cycling to 2500 deg (2770 K) in hydrogen. The data indicates two issues at high temperatures: the vaporization rate of UO2 and the chemical stability of UO2. The data show that cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance, while other approaches yield smaller, incremental improvements. Data is very limited above 2770 K, and this complicates predictions of engine performance at high Isp. The paper considers how this material performance data translates into engine performance. In particular, the location of maximum temperature within the fuel element and the effect of heat deposition rate are examined.

  1. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  2. Porous silicon-based direct hydrogen sulphide fuel cells.

    PubMed

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  3. Preliminary flight evaluation of an engine performance optimization algorithm

    NASA Technical Reports Server (NTRS)

    Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.

    1991-01-01

    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.

  4. Ignition of lean fuel-air mixtures in a premixing-prevaporizing duct at temperatures up to 1000 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1980-01-01

    Conditions were determined in a premixing prevaporizing fuel preparation duct at which ignition occurred. An air blast type fuel injector with nineteen fuel injection points was used to provide a uniform spatial fuel air mixture. The range of inlet conditions where ignition occurred were: inlet air temperatures of 600 to 1000 K air pressures of 180 to 660 kPa, equivalence ratios (fuel air ratio divided by stoichiometric fuel air ratio) from 0.12 to 1.05, and velocities from 3.5 to 30 m/s. The duct was insulated and the diameter was 12 cm. Mixing lengths were varied from 16.5 to 47.6 and residence times ranged from 4.6 to 107 ms. The fuel was no. 2 diesel. Results show a strong effect of equivalence ratio, pressure and temperature on the conditions where ignition occurred. The data did not fit the most commonly used model of auto-ignition. A correlation of the conditions where ignition would occur which apply to this test apparatus over the conditions tested is (p/V) phi to the 1.3 power = 0.62 e to the 2804/T power where p is the pressure in kPa, V is the velocity in m/e, phi is the equivalence ratio, and T is the temperature in K. The data scatter was considerable, varying by a maximum value of 5 at a given temperature and equivalence ratio. There was wide spread in the autoignition data contained in the references.

  5. 77 FR 24539 - Virginia Electric and Power Company; Surry Power Station Units 1 and 2; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... bounding thermal analysis using ANSYS finite element software to evaluate the misloading events. The ANSYS analysis consists of a half-symmetric, three-dimensional model of a 32PTH DSC with a number of conservative... the maximum fuel cladding temperature presented in the UFSAR analysis dated October 2, 2009, with the...

  6. Electrochemical investigation of mixed metal oxide nanocomposite electrode for low temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Abbas, Ghazanfar; Raza, Rizwan; Ashfaq Ahmad, M.; Ajmal Khan, M.; Jafar Hussain, M.; Ahmad, Mukhtar; Aziz, Hammad; Ahmad, Imran; Batool, Rida; Altaf, Faizah; Zhu, Bin

    2017-10-01

    Zinc-based nanostructured nickel (Ni) free metal oxide electrode material Zn0.60/Cu0.20Mn0.20 oxide (CMZO) was synthesized by solid state reaction and investigated for low temperature solid oxide fuel cell (LTSOFC) applications. The crystal structure and surface morphology of the synthesized electrode material were examined by XRD and SEM techniques respectively. The particle size of ZnO phase estimated by Scherer’s equation was 31.50 nm. The maximum electrical conductivity was found to be 12.567 S/cm and 5.846 S/cm in hydrogen and air atmosphere, respectively at 600∘C. The activation energy of the CMZO material was also calculated from the DC conductivity data using Arrhenius plots and it was found to be 0.060 and 0.075 eV in hydrogen and air atmosphere, respectively. The CMZO electrode-based fuel cell was tested using carbonated samarium doped ceria composite (NSDC) electrolyte. The three layers 13 mm in diameter and 1 mm thickness of the symmetric fuel cell were fabricated by dry pressing. The maximum power density of 728.86 mW/cm2 was measured at 550∘C.

  7. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    PubMed

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours.

  8. Examination of T-111 clad uranium nitride fuel pins irradiated up to 13,000 hours at a clad temperature of 990 C

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.

    1973-01-01

    The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.

  9. Direct numerical simulation of auto-ignition of a hydrogen vortex ring reacting with hot air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom, Jeff; Mahesh, Krishnan

    2009-04-15

    Direct numerical simulation (DNS) is used to study chemically reacting, laminar vortex rings. A novel, all-Mach number algorithm developed by Doom et al. [J. Doom, Y. Hou, K. Mahesh, J. Comput. Phys. 226 (2007) 1136-1151] is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H{sub 2}/air combustion proposed by Mueller et al. [M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31 (1999) 113-125]. Diluted H{sub 2} at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratios, oxidizer temperature, Lewis number and stroke ratio (ratiomore » of piston stroke length to diameter). Results show that auto-ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, {zeta}{sub MR} (Mastorakos et al. [E. Mastorakos, T.A. Baritaud, T.J. Poinsot, Combust. Flame 109 (1997) 198-223]). Subsequent evolution of the flame is not predicted by {zeta}{sub MR}; a most reactive temperature T{sub MR} is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates toward the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non-reacting vortex ring. (author)« less

  10. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  11. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    DOEpatents

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  12. Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas

    NASA Astrophysics Data System (ADS)

    Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi

    2015-10-01

    Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.

  13. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell

    PubMed Central

    Xu, Wei; Zhang, Huimin; Li, Gang; Wu, Zucheng

    2014-01-01

    Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm−2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm−2 with an open circuit voltage of 0.38 V at 60°C. PMID:25168632

  14. Environmental Quality Research-Fate of Toxic Jet Fuel Components in Aquatic Systems

    DTIC Science & Technology

    1981-12-01

    literature suggests that the maximum growt rate of Chlorella vulgaris is almost certainly between 1.5 and 2.5 days at water temperatures near 25°C...the results of an investigation of the potential toxic effects of the jet fuel JP-4 (petroleum-based and shale-based) on the aqueous environ- ment... investigated included fuel/ H 2 0 ratios and mixing times. Hydrocarbon composition of the WSF of JP-4, both petroleum e.nd shale-derived, appears to be

  15. Idle efficiency and pollution results for two-row swirl-can combustors having 72 modules

    NASA Technical Reports Server (NTRS)

    Biaglow, J. A.; Trout, A. M.

    1975-01-01

    Two 72-swirl-can-module combustors were investigated in a full annular combustor test facility at engine idle conditions typical of a 30:1 pressure-ratio engine. The effects of radial and circumferential fuel scheduling on combustion efficiency and gaseous pollutants levels were determined. Test conditions were inlet-air temperature, 452 K; inlet total pressure, 34.45 newtons per square centimeter; and reference velocity, 19.5 meters per second. A maximum combustion efficiency of 98.1 percent was achieved by radial scheduling of fuel to the inner row of swirl-can modules. Emission index values were 6.9 for unburned hydrocarbons and 50.6 for carbon monoxide at a fuel-air ratio of 0.0119. Circumferential fuel scheduling of two 90 degree sectors of the swirl-can arrays produced a maximum combustion efficiency of 97.3 percent. The emission index values were 12.0 for unburned hydrocarbons and 69.2 for carbon monoxide at a fuel-air ratio of 0.0130.

  16. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  17. Performance Charts for a Turbojet System

    NASA Technical Reports Server (NTRS)

    Karp, Irving M.

    1947-01-01

    Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.

  18. Nuclear Rocket Ceramic Metal Fuel Fabrication Using Tungsten Powder Coating and Spark Plasma Sintering

    NASA Technical Reports Server (NTRS)

    Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.

    2017-01-01

    Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).

  19. Irradiation of TZM: Uranium dioxide fuel pin at 1700 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1973-01-01

    A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.

  20. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  1. Physicochemical properties of hydrothermally treated peat fuel obtained from Mempawah-West Kalimantan: influence of hydrophilicity index on carbon aromaticity and combustibility

    NASA Astrophysics Data System (ADS)

    Mursito, Anggoro Tri; Hirajima, T.; Listiyowati, L. N.

    2018-02-01

    Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses, 13C NMR and also other supporting analytical equipment.

  2. Influence of hydrocarbon fuel structural constitution and flame temperature on soot formation in laminar diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulder, O.L.

    1989-11-01

    A systematic study of soot formation along the centerlines of axisymmetric laminar diffusion flames of a large number of liquid hydrocarbons, hydrocarbon blends, and transportation fuels were made. Measurements of the attenuation of a laser beam across the flame diameter were used to obtain the soot volume fraction, assuming Rayleigh extinction. Two sets of hydrocarbon blends were designed such that the molecular fuel composition varied considerably but the temperature fields in the flames were kept practically constant. Thus it was possible to separate the effects of molecular structure and the flame temperature on soot formation. It was quantitatively shown thatmore » the smoke height is a lumped measure of fuel molecular constitution and hydrogen-to-carbon ratio. Hydrocarbon fuel molecular composition was characterized by six carbon atom types that can be obtained, for complex hydrocarbon mixtures like transportation fuels, from proton nuclear magnetic resonance (/sup 1/H NMR) measurements. Strong attenuation of the laser beam was observed at heights very close to the burner rim. Visible flame profiles along the flame length were shown to have good self-similarity. Kent's model for diffusion flames was modified to include the effects of differences in flame temperatures and molecular diffusivities between fuels. An analysis based on the present data provides an assessment of the degree of contribution of different carbon atom types to the maximum soot volume fractions.« less

  3. Performance evaluation of tubular fuel cells fuelled by pulverized graphite

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Pil; Lim, Ho; Jeon, Chung-Hwan; Chang, Young-June; Koh, Kwang-Nak; Choi, Soon-Mok; Song, Ju-Hun

    A fuel cell fuelled by carbonaceous graphite is proposed. The tubular fuel cell, with the carbon in a fixed-bed form on the anode side, is employed to convert directly the chemical energy of carbon into electricity. Surface platinum electrodes are coated on the cell electrolyte, which is a yttria-stabilized zirconia (YSZ) tube of 1.5 mm thickness. The effect of using different sizes of graphite powder (in the range 0-180 μm) as fuel is analyzed. Power density and actual open-circuit voltage (OCV) values are measured as the temperature is varied from 0 to 950 °C. The cell provides a maximum power density of 16.8 mW cm -2 and an OCV of 1.115 V at the highest temperature condition (950 °C) tested in this study.

  4. Gasification of refinery sludge in an updraft reactor for syngas production

    NASA Astrophysics Data System (ADS)

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama

    2014-10-01

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.

  5. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less

  6. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  7. Theoretical performance of some rocket propellants containing hydrogen, nitrogen, and oxygen

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ordin, Paul M

    1948-01-01

    Theoretical performance data including nozzle-exit temperature, specific impulse, volume specific impulse and composition, temperature, and mean molecular weight of reaction products based on frozen equilibrium and isentropic expansion are presented for 13 propellant combinations at reaction pressure of 300 pounds per square inch absolute and expansion ratio of 20.4. On basis of maximum specific impulse alone, five fuels had the following order for any given oxidant: liquid hydrogen, hydrazine, liquid ammonia, and either hydrazine hydrate or hydroxylamine. Three oxidants with a given fuel had the following order: liquid ozone, liquid oxygen, and 100-percent hydrogen peroxide.

  8. Core power and decay time limits for a disabled LOFT ECCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, S.A.

    1978-01-09

    An analysis was done to determine at what LOFT total core power (nuclear plus decay power) the ECCS could be inoperable. The criteria used for the analysis was that the maximum fuel clad temperature should not exceed 1650/sup 0/F given a loss of coolant. Calculations for natural convection cooling of the fuel by air with an inlet temperature of 580/sup 0/F determined that the limiting core power is 25 kW (discounted by 15 percent to 20 percent for potential uncertainties). Shutdown times are listed for when the LOFT ECCS can be safely bypassed or disabled.

  9. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  10. The effect of preignition on cylinder temperatures, pressures, power output, and piston failures

    NASA Technical Reports Server (NTRS)

    Corrington, Lester C; Fisher, William F

    1947-01-01

    An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.

  11. Explosion hazards of LPG-air mixtures in vented enclosure with obstacles.

    PubMed

    Zhang, Qi; Wang, Yaxing; Lian, Zhen

    2017-07-15

    Numerical simulations were performed to study explosion characteristics of liquefied petroleum gas (LPG) explosion in enclosure with a vent. Unlike explosion overpressure and dynamic pressure, explosion temperature of the LPG-air mixture at a given concentration in a vented enclosure has very little variation with obstacle numbers for a given blockage ratio. For an enclosure without obstacle, explosion overpressures for the stoichiometric mixtures and the fuel-lean mixtures reach their maximum within the vent and that for fuel-rich mixture reaches its maximum beyond and near the vent. Dynamic pressures produced by an indoor LPG explosion reach their maximum always beyond the vent no matter obstacles are present or not in the enclosure. A LPG explosion in a vented enclosure with built-in obstacles is strong enough to make the brick and mortar wall with a thickness of 370mm damaged. If there is no obstacle in the enclosure, the lower explosion pressure of several kPa can not break the brick and mortar wall with a thickness of 370mm. For a LPG explosion produced in an enclosure with a vent, main hazards, within the vent, are overpressure and high temperature. However main hazards are dynamic pressure, blast wind, and high temperature beyond the vent. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ceramics for the advanced automotive gas turbine engine: A look at a single shaft design

    NASA Technical Reports Server (NTRS)

    Nosek, S. M.

    1977-01-01

    The results of a preliminary analysis of a single shaft regenerative design with a single stage radial turbine are presented to show the fuel economy that can be achieved at high turbine inlet temperatures, with this particular advanced design, if the turbine tip speed and regenerator inlet temperature are not limited. The engine size was 100 hp for application to a 3500 lb auto. The fuel economy was analyzed by coupling the engine to the auto through a continuously variable speed-ratio transmission and operating the system at constant turbine inlet temperature over the Composite Driving Cycle. The fuel was gasoline and the analysis was for a 85 F day. With a turbine inlet temperature of 2500 F the fuel economy was 26.2 mpg, an improvement of 18 percent over that of 22.3 mpg with a turbine inlet temperature of 1900 F. The turbine tip speed needed for best economy with the 2500 F engine was 2530 ft/sec. The regenerator temperature was approximately 2200 F at idle. Disk stresses were estimated for one single stage radial turbine and two two-stage radial-axial turbines and compared with maximum allowable stress curves estimated for a current ceramic material. Results show a need for higher Weibull Modulus, higher strength ceramics.

  13. Real-Time Remote Monitoring of Temperature and Humidity Within a Proton Exchange Membrane Fuel Cell Using Flexible Sensors

    PubMed Central

    Kuo, Long-Sheng; Huang, Hao-Hsiu; Yang, Cheng-Hao; Chen, Ping-Hei

    2011-01-01

    This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH−1 and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10−3 °C−1. The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm−2 and 15.90 mW·cm−2, with only 7.17% power loss. PMID:22164099

  14. Internal combustion engine controls for reduced exhausts contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.R. Jr.

    1974-06-04

    An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less

  15. Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.

  16. The jet engine design that can drastically reduce oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Agnone, A.

    1977-01-01

    The NOx pollution problem of hydrogen fueled turbojets and supersonic combustion ramjets (scramjets) was investigated to determine means of substantially alleviating the problem. Since the NOx reaction rates are much slower than the energy producing reactions, the NOx production depends mainly on the maximum local temperatures in the combustor and the NOx concentration is far from equilibrium at the end of a typical combustor (L approximately 1 ft). In diffusion flames, as used in present turbojets and scramjets combustor designs, the maximum local temperature occurs at the flame and is equal to the stoichiometric value. Whereas, in the heat conduction flames, wherein the flame propagates due to a heat conduction process away from the flame to the cooler oncoming premixed unburnt gases, the maximum temperature is lower than in the diffusion flame. Hence the corresponding pollution index is also lower.

  17. Comparison of Theoretically and Experimentally Determined Effects of Oxide Coatings Supplied by Fuel Additives on Uncooled Turbine-blade Temperature During Transient Turbojet-engine Operation

    NASA Technical Reports Server (NTRS)

    Schafer, Louis J; Stepka, Francis S; Brown, W Byron

    1953-01-01

    An analysis was made to permit the calculation of the effectiveness of oxide coatings in retarding the transient heat flow into turbine blades when the combustion gas temperature of a turbojet engine is suddenly changed. The analysis is checked with experimental data obtained from a turbojet engine whose blades were coated with two different coating materials (silicon dioxide and boric oxide) by adding silicone oil and tributyl borate to the engine fuel. The very thin coatings (approximately 0.001 in.) that formed on the blades produced a negligible effect on the turbine-blade transient temperature response. With the analysis discussed here, it was possible to predict the turbine rotor-blade temperature response with a maximum error of 40 F.

  18. 40 CFR 1066.710 - Cold temperature testing procedures for measuring CO and NMHC emissions and determining fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... climate control system with the heat on and set to primarily defrost the front window. Turn air.... (i) Prior to the first acceleration, 20 seconds after the start of the UDDS, set the climate control... climate control system): (A) Temperature. Set controls to maximum heat. (B) Fan speed. Set the fan speed...

  19. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less

  20. A Study of influence on sulfonated TiO2-Poly (Vinylidene fluoride-co-hexafluoropropylene) nano composite membranes for PEM Fuel cell application

    NASA Astrophysics Data System (ADS)

    kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh

    2017-10-01

    The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.

  1. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the fuel types, temperature, and substrate materials.

  2. Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment.

    PubMed

    Santoni, Gregory W; Lee, Ben H; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Wofsy, Steven C; McManus, J Barry; Nelson, David D; Zahniser, Mark S

    2011-08-15

    Given the predicted growth of aviation and the recent developments of alternative aviation fuels, quantifying methane (CH(4)) and nitrous oxide (N(2)O) emission ratios for various aircraft engines and fuels can help constrain projected impacts of aviation on the Earth's radiative balance. Fuel-based emission indices for CH(4) and N(2)O were quantified from CFM56-2C1 engines aboard the NASA DC-8 aircraft during the first Alternative Aviation Fuel Experiment (AAFEX-I) in 2009. The measurements of JP-8 fuel combustion products indicate that at low thrust engine states (idle and taxi, or 4% and 7% maximum rated thrusts, respectively) the engines emit both CH(4) and N(2)O at a mean ± 1σ rate of 170 ± 160 mg CH(4) (kg Fuel)(-1) and 110 ± 50 mg N(2)O (kg Fuel)(-1), respectively. At higher thrust levels corresponding to greater fuel flow and higher engine temperatures, CH(4) concentrations in engine exhaust were lower than ambient concentrations. Average emission indices for JP-8 fuel combusted at engine thrusts between 30% and 100% of maximum rating were -54 ± 33 mg CH(4) (kg Fuel)(-1) and 32 ± 18 mg N(2)O (kg Fuel)(-1), where the negative sign indicates consumption of atmospheric CH(4) in the engine. Emission factors for the synthetic Fischer-Tropsch fuels were statistically indistinguishable from those for JP-8.

  3. Simulated Altitude Investigation of Stewart-Warner Model 906-B Combustion Heater

    NASA Technical Reports Server (NTRS)

    Ebersbach, Frederick R.; Cervenka, Adolph J.

    1947-01-01

    An investigation has been conducted to determine thermal and pressure-drop performance and the operational characteristics of a Stewart-Warner model 906-B combustion heater. The performance tests covered a range of ventilating-air flows from 500 to 3185 pounds per hour, combustion-air pressure drops from 5 to 35 inches of water, and pressure altitudes from sea level to 41,000 feet. The operational characteristics investigated were the combustion-air flows for sustained combustion and for consistent ignition covering fuel-air ratios ranging from 0.033 to 0.10 and pressure altitudes from sea level to 45,000 feet. Rated heat output of 50,000 Btu per hour was obtained at pressure altitudes up to 27,000 feet for ventilating-air flows greater than 800 pounds per hour; rated output was not obtained at ventilating-air flow below 800 pounds per hour at any altitude. The maximum heater efficiency was found to be 60.7 percent at a fuel-air ratio of 0.050, a sea-level pressure altitude, a ventilating-air temperature of 0 F, combustion-air temperature of 14 F, a ventilating-air flow of 690 pounds per hour, and a combustion-air flow of 72.7 pounds per hour. The minimum combustion-air flow for sustained combustion at a pressure altitude of 25,000 feet was about 9 pounds per hour for fuel-air ratios between 0.037 and 0.099 and at a pressure altitude of 45,000 feet increased to 18 pounds per hour at a fuel-air ratio of 0.099 and 55 pounds per hour at a fuel-air ratio of 0.036. Combustion could be sustained at combustion-air flows above values of practical interest. The maximum flow was limited, however, by excessively high exhaust-gas temperature or high pressure drop. Both maximum and minimum combustion-air flows for consistent ignition decrease with increasing pressure altitude and the two curves intersect at a pressure altitude of approximately 25,000 feet and a combustion-air flow of approximately 28 pounds per hour.

  4. Gasification of refinery sludge in an updraft reactor for syngas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Reem; Eldmerdash, Usama; Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my

    2014-10-24

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4}more » compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.« less

  5. Parametric scramjet analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jongseong

    The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.

  6. High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Zhen, Shuying; Sun, Wang; Li, Peiqian; Tang, Guangze; Rooney, David; Sun, Kening; Ma, Xinxin

    2016-05-01

    In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm-1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm-2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

  7. Use of Chemi-Ionization to Calculate Temperature of Hydrocarbon Flame

    NASA Astrophysics Data System (ADS)

    Shaikin, A. P.; Galiev, I. R.

    2018-04-01

    In the present paper, we have experimentally studied the dependences of the maximum temperature of the hydrocarbon flame on the electron current (due to the flame chemi-ionization), the width of the turbulent combustion zone, and the amount and composition of the air-fuel mixture in the combustion chamber of variable volume. Based on the proposed formula, we have been also able to estimate the temperature and compare with its experimental value showing that the convergence has been more than 85% at an excess air factor value ranging from 0.8 to 1.15. The obtained results can be used to predict and monitor the maximum flame temperature in the combustion chamber of an internal combustion engine and other power plants by using the ionization probe.

  8. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  9. HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillo, J.A.

    1983-08-01

    As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophymore » and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.« less

  10. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  11. Soil physical properties regulate lethal heating during burning of woody residues

    Treesearch

    Matt Busse; Carol Shestak; Ken Hubbert; Eric Knapp

    2010-01-01

    Temperatures well in excess of the lethal threshold for roots (60°C) have been measured in forest soils when woody fuels are burned. Whether this heat pulse is strongly moderated by soil moisture or soil texture is not fully understood, however. We measured soil heat profi les during 60 experimental burns, identifying changes in maximum soil temperature and heat...

  12. Manufacture of a UO2-Based Nuclear Fuel with Improved Thermal Conductivity with the Addition of BeO

    NASA Astrophysics Data System (ADS)

    Garcia, Chad B.; Brito, Ryan A.; Ortega, Luis H.; Malone, James P.; McDeavitt, Sean M.

    2017-12-01

    The low thermal conductivity of oxide nuclear fuels is a performance-limiting parameter. Enhancing this property may provide a contribution toward establishing accident-tolerant fuel forms. In this study, the thermal conductivity of UO2 was increased through the fabrication of ceramic-ceramic composite forms with UO2 containing a continuous BeO matrix. Fuel with a higher thermal conductivity will have reduced thermal gradients and lower centerline temperatures in the fuel pin. Lower operational temperatures will reduce fission gas release and reduce fuel restructuring. Additions of BeO were made to UO2 fuel pellets in 2.5, 5, 7.5, and 10 vol pct concentrations with the goals of establishing reliable lab-scale processing procedures, minimizing porosity, and maximizing thermal conductivity. The microstructure was characterized with electron probe microanalysis, and the thermal properties were assessed by light flash analysis and differential scanning calorimetry. Reliable, high-density samples were prepared using compaction pressure between 200 and 225 MPa and sintering times between 4 and 6 hours. It was found that the thermal conductivity of UO2 improved approximately 10 pct for each 1 vol pct BeO added over the measured temperature range 298.15 K to 523.15 K (25 °C to 250 °C) with the maximum observed improvement being ˜ 100 pct, or doubled, at 10 vol pct BeO.

  13. Material distribution in light water reactor-type bundles tested under severe accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noack, V.; Hagen, S.J.L.; Hofmann, P.

    1997-02-01

    Severe fuel damage experiments simulating small-break loss-of-coolant accidents have been carried out in the CORA out-of-pile test facility at Forschungszentrum Karlsruhe. Rod bundles with electrically heated fuel rod simulators containing annular UO{sub 2} pellets, UO{sub 2} full pellet rods, and absorber rods of two kinds (Ag/In/Cd to represent pressurized water reactor conditions and B{sub 4}C to represent boiling water reactor and VVER-1000 fuel elements) were subjected to temperature transients up to 2,300 K. A special method was applied to determine the axial mass distribution of bundle materials. The low-temperature melt formation by various interactions between zirconium and components of absorbermore » and spacer grids strongly influences the bundle degradation and material relocation. Absorber materials can separate from the fuel by a noncoherent relocation of the materials at different temperatures. The distributions of solidified materials in the different test bundles show a clear dependence on the axial temperature profile. Coolant channel blockages are observed mainly at the lower end of the bundle, i.e., near the lowest elevation at which an oxidation excursion resulting from the highly exothermic zirconium-steam reaction had been experienced. This elevation corresponds with a steep axial temperature gradient in the maximum temperature attained. Oxide layers on Zircaloy result in reduced melt formation.« less

  14. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter Leckel

    2006-10-15

    Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the rangemore » of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.« less

  15. Influence of Method of Adding Water to Combustible Mixture on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Devyanin, S. N.; Bigaev, A. V.; Markov, V. A.

    2018-03-01

    The supply of water to the cylinders of the diesel engine is one way to reduce the maximum temperature in the combustion zone of the fuel. A reduction of the maximum combustion temperature allows reducing the formation of nitrogen oxides and improving the environmental characteristics of the engine, which remains one of the urgent tasks at the present stage of their development. The methods of supplying water to the engine together with air at the inlet and with the fuel into the cylinder are well known. This article considers the influence of the way the water is supplied to the engine cylinders on its environmental characteristics. It presents the results of experimental studies on the internal combustion engine and analysis of the method of adding water on the engine performance from exhaust gas toxicity, operating efficiency and its thermal state. There are marked different effects on the motor performance of the method of adding water.

  16. Preliminary investigation of single chamber single electrode microbial fuel cell using sewage sludge as a substrate

    NASA Astrophysics Data System (ADS)

    Sai Chaithanya, M.; Thakur, Somil; Sonu, Kumar; Das, Bhaskar

    2017-11-01

    A microbial fuel cell (MFC) consists of a cathode and anode; micro-organisms transfer electrons acquired from the degradation of organic matter in the substrate to anode; and thereby to cathode; by using an external circuit to generate electricity. In the present study, a single chamber single electrode microbial fuel cell has been fabricated to generate electricity from the sludge of the sewage treatment plant at two different ambient temperature range of 25 ± 4°C and 32 ± 4°C under aerobic condition. No work has been done yet by using the single electrode in any MFC system; it is hypothesized that single electrode submerged partially in substrate and rest to atmosphere can function as both cathode and anode. The maximum voltage obtained was about 2890 mV after 80 (hrs) at temperature range of 25 ± 4°C, with surface power density of 1108.29 mW/m2. When the ambient temperature was 32 ± 4°C, maximum voltage obtained was 1652 mV after 40 (hrs.) surface power density reduced to 865.57 mW/m2. When amount of substrate was decreased for certain area of electrode at 25 ± 4°C range, electricity generation decreased and it also shortened the time to reach peak voltage. On the other hand, when the ambient temperature was increased to 32 ± 4°C, the maximum potential energy generated was less than that of previous experiment at 25 ± 4°C for the same substrate Also the time to reach peak voltage decreased to 40 hrs. When comparing with other single chamber single electrode MFC, the present model is generating more electricity that any MFC using sewage sludge as substrate except platinum electrode, which is much costlier that electrode used in the present study.

  17. Large-break LOCA, in-reactor fuel bundle Materials Test MT-6A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, C.L.; Hesson, G.M.; Pilger, J.P.

    1993-09-01

    This is a report on one of a series of experiments to simulates a loss-of-coolant accident (LOCA) using full-length fuel rods for pressurized water reactors (PWR). The experiments were conducted by Pacific Northwest Laboratory (PNL) under the LOCA simulation Program sponsored by the US Nuclear Regulatory Commission (NRC). The major objective of this program was causing the maximum possible expansion of the cladding on the fuel rods from a short-term adiabatic temperature transient to 1200 K (1700 F) leading to the rupture of the cladding; and second, by reflooding the fuel rods to determine the rate at which the fuelmore » bundle is cooled.« less

  18. A long-term stable power supply μDMFC stack for wireless sensor node applications

    NASA Astrophysics Data System (ADS)

    Wu, Z. L.; Wang, X. H.; Teng, F.; Li, X. Z.; Wu, X. M.; Liu, L. T.

    2013-12-01

    A passive, air-breathing 4-cell micro direct methanol fuel cell (μDMFC) stack is presented featured by a fuel delivery structure for a long-term & stable power supply. The fuel is reserved in a T shape tank and diffuses through the porous diffusion layer to the catalyst at anode. The stack has a maximum power output of 110mW with 3M methanol at room temperature and output a stable power even thought 5% fuel is the remained in reservoir. Its performance decreases less than 3% for 100 hours continuous work. As such, it is believed to be more applicable for powering the wireless sensor nodes.

  19. HRB-22 preirradiation thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, R.; Sawa, K.

    1995-05-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for irradiation in the removable beryllium (RB) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). CACA-2 a heavy isotope and fission product concentration calculational code for experimental irradiation capsules was used to determine time dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries (HEATING) computer code, version 7.2, was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body that contains the compacts and the primary pressure vessel were selected suchmore » that the requirements of running the compacts at an average temperature of < 1,250 C and not exceeding a maximum fuel temperature of 1,350 C was met throughout the four cycles of irradiation.« less

  20. Effect of ceramic coating of JT8D combustor liner on maximum liner temperatures and other combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Liebert, C. H.

    1976-01-01

    The effect of ceramic coating of a JT8D combustor liner was investigated at simulated cruise and takeoff conditions with two fuels of widely different aromatic contents. Substantial decreases in maximum liner temperatures and flame radiation values were obtained with the ceramic-coated liner. Small reductions in exhaust gas smoke concentrations were observed with the ceramic-coated liner. Other performance parameters such as combustion efficiency and emissions of unburned hydrocarbons, CO, and NOx were not affected significantly. No deterioration of the ceramic coating was observed after about 6 hours of cyclic operation including several startups and shutdowns.

  1. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    NASA Astrophysics Data System (ADS)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  2. Performance and stability of Pd nanostructures in an alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Carrera-Cerritos, R.; Fuentes-Ramírez, R.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; Arriaga, L. G.

    2014-12-01

    Pd nanopolyhedral, nanobar and nanorod particles were synthesised using the polyol process and evaluated as anodes in a direct ethanol fuel cell. The materials were physico-chemically characterised by high-resolution transmission electronic microscopy (HR-TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effect of the operation parameters (i.e., temperature and fuel ethanol concentration) on the maximum power density (MPD) and open circuit voltage (OCV) was investigated. In addition, a stability test was performed by applying three current density steps for fifty cycles. The OCV values increased as the temperature increased for all of the catalysts at low ethanol concentration. Although the MPD increased with temperature for all of the catalyst independent of the ethanol concentration, the effect of the temperature on the MPD for each Pd structure results in different slopes due to the different crystal faces. Finally, a loss of electro-catalytic activity after fifty cycles was observed in all of the catalysts evaluated, which may be in response to morphological changes in the nanostructures.

  3. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  4. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  5. The effect of chemical vapor deposition temperature on the performance of binder-free sewage sludge-derived anodes in microbial fuel cells.

    PubMed

    Feng, Huajun; Jia, Yufeng; Shen, Dongsheng; Zhou, Yuyang; Chen, Ting; Chen, Wei; Ge, Zhipeng; Zheng, Shuting; Wang, Meizhen

    2018-04-13

    Conversion of sewage sludge (SS) into value-added material has garnered increasing attention due to its potential applications. In this study, we propose a new application of the sewage sludge-derived carbon (SSC) as an electrode without binder in microbial fuel cells (MFCs). SS was firstly converted into SSC monoliths by methane chemical vapor method at different temperature (600, 800, 1000 or 1200°C). Scanning electron microscopy images showed that carbon micro-wires were present on the surfaces of the samples prepared at 1000 and 1200°C. The results showed that it was beneficial for converting sludge into a highly conductive electrode and increasing carbon content of the electrode at higher temperatures, thereby improving the current generation. The conductivity results show that a higher temperature favors the conversion of sludge into a highly conductive electrode. The MFC using an SSC anode processed at 1200°C generated the maximum power density of 2228mWm -2 and the maximum current density of 14.2Am -2 . This value was 5 times greater than that generated by an MFC equipped with a graphite anode. These results present a promising means of converting SS into electrode materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Melting Point and Viscosity Behavior of High Energy Density Missile Fuels

    DTIC Science & Technology

    1982-09-01

    CLASSIFICATION OF THIS PAGE (f,n Date Eneed . etrahydrodi(cyclopentadiene) ( XTHDCPD or JP-lO). HNN and HXX each have two crystalline forms. The solid-solid...suggesting solid solution formation on crystallization. The experimental m.p. curves for the binary/isomer I - XTHDCPD system could be used to predict m.p...liquidus temperature, of any/fuel blend of HNN, HXX, isomer I and XTHDCPD of kno composition. It )as found that the maximum m.p. specification of -54 C

  7. [Effect of temperature on performance of microbial fuel cell using beer wastewater].

    PubMed

    Wang, Xin; Feng, Yu-Jie; Qu, You-Peng; Li, Dong-Mei; Li, He; Ren, Nan-Qi

    2008-11-01

    The effects of temperature on performance and biological community structure were investigated in air-cathode microbial fuel cells (MFCs) using beer wastewater amended with 50 mmol/L phosphate buffer solution (PBS). The maximum power density decreased from 483 mW/m2 to 435 mW/m2 when the temperature varied from 30 degrees C to 20 degrees C, meanwhile just a little decreasing on coulombic efficiency and the COD removal rate were observed. Decreasing of temperature resulted in effects both on cathode potential and anode potential, but cathode potential behaved much more sensitive to temperature. The half-saturation constants (Ks) obtained from the fit of Monod-type equation were 228 mg/L (30 degrees C) and 293 mg/L (20 degrees C) respectively. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that operating temperature not only affected the predominant population of the anodic bacterial community, but also had a great impact on the diversity of the cathodic microbial population.

  8. A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems

    NASA Astrophysics Data System (ADS)

    Matelli, José Alexandre; Bazzo, Edson

    This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.

  9. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  10. An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Otto, Edward W.

    1947-01-01

    Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.

  11. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.

  12. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...

  13. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  14. The influence of fuel type to combustion characteristic in diffusion flame drying by computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2017-05-01

    Diffusion flame spray drying has become promising method in nanoparticles synthesis giving several advantages and low operation cost. In order to scale up the process which needs high experimentation time and cost, Computational Fluid Dynamics (CFD) by Ansys Fluent 15.0 software has been used. Combustion characteristic in diffusion flame reactor may affects particle size distribution. This study aims to observe influence of fuel type to combustion characteristic in the reactor. Large Eddy Simulation (LES) and non-premixed combustion model are selected for the turbulence and combustion model respectively. Methane, propane, and LPG in 0.5 L/min were used as type of fuel. While the oxidizer is air with 200% excess of O2. Simulation result shown that the maximum temperature was obtained from propane-air combustion in 2268 K. However, the stable temperature contour was achieved by methane-air combustion.

  15. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  16. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  17. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  18. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  19. Post-irradiation examination of uranium 7 wt% molybdenum atomized dispersion fuel

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Jarousse, C.; Huet, F.; Trotabas, M.; Boyard, M.; Guillot, S.; Sannen, L.; Verwerft, M.

    2004-10-01

    Two low-enriched uranium fuel plates consisting of U-7wt%Mo atomized powder dispersed in an aluminum matrix, have been irradiated in the FUTURE irradiation rig of the BR2 reactor at SCK•CEN. The plates were submitted to a heat flux of maximum 353 W/cm 2 while the surface cladding temperature is kept below 130 °C. After 40 full power days, visual examination and profilometry of the fuel plates revealed an increase of the plate thickness. In view of this observation, the irradiation campaign was prematurely stopped and the fuel plates were retrieved from the reactor, having at their end-of-life a maximum burn-up of 32.8% 235U (6.5% FIMA). The microstructure of one of the fuel plates has been characterized in an extensive post-irradiation campaign. The U(Mo) fuel particles have been found to interact with the Al matrix, resulting in an interaction layer which can be identified as (U,Mo)Al 3 and (U,Mo)Al 4. Based on the composition of the interaction layer it is shown that the observed physical parameters like thickness of the interaction layer between the Al matrix and the U(Mo) fuel particles compare well to the values calculated by the MAIA code, an U(Mo) behavior modeling code developed by the Commissariat à l'énergie atomique (CEA).

  20. Advanced propulsion engine assessment based on a cermet reactor

    NASA Technical Reports Server (NTRS)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  1. Utilization of corn cob biochar in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Jinshuai; Zhao, Yicheng; Li, Yongdan

    2014-12-01

    Biochar obtained from the pyrolysis of corn cob is used as the fuel of a direct carbon fuel cell (DCFC) employing a composite electrolyte composed of a samarium doped ceria (SDC) and a eutectic carbonate phase. An anode layer made of NiO and SDC is utilized to suppress the cathode corrosion by the molten carbonate and improves the whole cell stability. The anode off-gas of the fuel cell is analyzed with a gas chromatograph. The effect of working temperature on the cell resistance and power output is examined. The maximum power output achieves 185 mW cm-2 at a current density of 340 mA cm-2 and 750 °C. An anode reaction scheme including the Boudouard reaction is proposed.

  2. PEBBED Uncertainty and Sensitivity Analysis of the CRP-5 PBMR DLOFC Transient Benchmark with the SUSA Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2011-01-01

    The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA,more » utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the primary contributors to the output data uncertainties. It was found that the uncertainties in the decay heat, pebble bed and reflector thermal conductivities were responsible for the bulk of the propagated uncertainty in the DLOFC maximum fuel temperature. It was also determined that the two standard deviation (2s) uncertainty on the maximum fuel temperature was between ±58oC (3.6%) and ±76oC (4.7%) on a mean value of 1604 oC. These values mostly depended on the selection of the distributions types, and not on the number of model calculations above the required Wilks criteria (a (95%,95%) statement would usually require 93 model runs).« less

  3. Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock

    DOEpatents

    Duncan, Dennis A.

    1980-01-01

    A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.

  4. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum allowable fuel : air ratio. 36.44...

  5. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum allowable fuel : air ratio. 36.44...

  6. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum allowable fuel : air ratio. 36.44...

  7. 30 CFR 36.44 - Maximum allowable fuel:air ratio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel:air ratio determined from the... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum allowable fuel:air ratio. 36.44 Section...

  8. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum allowable fuel : air ratio. 36.44...

  9. U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor

    NASA Astrophysics Data System (ADS)

    Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.

    2018-02-01

    Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.

  10. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  11. Dual-pump CARS measurements in a hydrogen diffusion flame in cross-flow with AC dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Nishihara, Munetake; Freund, Jonathan B.; Glumac, Nick G.; Elliott, Gregory S.

    2018-03-01

    This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.

  12. Parameter Optimization and Operating Strategy of a TEG System for Railway Vehicles

    NASA Astrophysics Data System (ADS)

    Heghmanns, A.; Wilbrecht, S.; Beitelschmidt, M.; Geradts, K.

    2016-03-01

    A thermoelectric generator (TEG) system demonstrator for diesel electric locomotives with the objective of reducing the mechanical load on the thermoelectric modules (TEM) is developed and constructed to validate a one-dimensional thermo-fluid flow simulation model. The model is in good agreement with the measurements and basis for the optimization of the TEG's geometry by a genetic multi objective algorithm. The best solution has a maximum power output of approx. 2.7 kW and does not exceed the maximum back pressure of the diesel engine nor the maximum TEM hot side temperature. To maximize the reduction of the fuel consumption, an operating strategy regarding the system power output for the TEG system is developed. Finally, the potential consumption reduction in passenger and freight traffic operating modes is estimated under realistic driving conditions by means of a power train and lateral dynamics model. The fuel savings are between 0.5% and 0.7%, depending on the driving style.

  13. 14 CFR 23.1583 - Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...

  14. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    PubMed

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  15. Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell

    NASA Astrophysics Data System (ADS)

    Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan

    2017-09-01

    This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.

  16. The effect of leaf beetle herbivory on the fire behaviour of tamarisk (Tamarix ramosissima Lebed.)

    USGS Publications Warehouse

    Drus, Gail M.; Dudley, Tom L.; Brooks, Matthew L.; Matchett, John R.

    2012-01-01

    The non-native tree, Tamarix spp. has invaded desert riparian ecosystems in the south-western United States. Fire hazard has increased, as typically fire-resistant native vegetation is replaced by Tamarix. The tamarisk leaf beetle, Diorhabda carinulata Desbrochers, introduced for biological control, may affect fire behaviour by converting hydrated live Tamarix leaves and twigs into desiccated and dead fuels. This potentially increases fire hazard in the short term before native vegetation can be re-established. This study investigates how fire behaviour is altered in Tamarix fuels desiccated by Diorhabda herbivory at a Great Basin site, and by herbivory simulated by foliar herbicide at a Mojave Desert site. It also evaluates the influence of litter depth on fire intensity. Fire behaviour was measured with a fire intensity index that integrates temperature and duration (degree-minutes above 70°C), and with maximum temperature, duration, flame lengths, rates of spread and vegetation removal. Maximum temperature, flame length and rate of spread were enhanced by foliar desiccation of Tamarix at both sites. At only the Mojave site, there was a trend for desiccated trees to burn with greater fire intensity. At both sites, fire behaviour parameters were influenced to a greater degree by litter depth, vegetation density and drier and windier conditions than by foliar desiccation.

  17. Ni2P Makes Application of the PtRu Catalyst Much Stronger in Direct Methanol Fuel Cells.

    PubMed

    Chang, Jinfa; Feng, Ligang; Liu, Changpeng; Xing, Wei

    2015-10-12

    PtRu is regarded as the best catalyst for direct methanol fuel cells, but the performance decay resulting from the loss of Ru seriously hinders commercial applications. Herein, we demonstrated that the presence of Ni2 P largely reduces Ru loss, which thus makes the application of PtRu much stronger in direct methanol fuel cells. Outstanding catalytic activity and stability were observed by cyclic voltammetry. Upon integrating the catalyst material into a practical direct methanol fuel cell, the highest maximum power density was achieved on the PtRu-Ni2P/C catalyst among the reference catalysts at different temperatures. A maximum power density of 69.9 mW cm(-2) at 30 °C was obtained on PtRu-Ni2P/C, which is even higher than the power density of the state-of-the-art commercial PtRu catalyst at 70 °C (63.1 mW cm(-2)). Moreover, decay in the performance resulting from Ru loss was greatly reduced owing to the presence of Ni2 P, which is indicative of very promising applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of Flame Stabilizer Design on Performance and Exhaust Pollutants of a Two-Row Swirl-Can Combustor Operated to Near-Stoichiometric Conditions

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Trout, Arthur M.

    1977-01-01

    Emissions and performance characteristics were determined for two full annulus modular combustors operated to near stoichiometric fuel air ratios. The tests were conducted to obtain stoichiometric data at inlet air temperatures from 756 to 894 K and to determine the effects of a flat plate circular flame stabilizer with upstream fuel injection and a contraswirl flame stabilizer with downstream fuel injection. Levels of unburned hydrocarbons were below 0.50 gram per kilogram of fuel for both combustors and thus there was no detectable difference in the two methods of fuel injection. The contraswirl flame stabilizer did not produce the level of mixing obtained with a flat plate circular flame stabilizer. It did produce higher levels of oxides of nitrogen, which peaked at a fuel air ratio of 0.037. For the flat plate circular flame stabilizer, oxides of nitrogen emission levels were still increasing with fuel air ratio to the maximum tested value of 0.045.

  19. NEUTRON SOURCE USING MAGNETIC COMPRESSION OF PLASMA

    DOEpatents

    Quinn, W.E.; Elmore, W.C.; Little, E.M.; Boyer, K.; Tuck, J.L.

    1961-10-31

    A fusion reactor is described that utilizes compression and heating of an ionized thermonuclear fuel by an externally applied magnetic field, thus avoiding reliance on the pinch effect and its associated instability problems. The device consists of a gas-confining ceramic container surrounded by a single circumferential coil having a shape such as to produce a magnetic mirror geometry. A sinusoidally-oscillating, exponentially-damped current is passed circumferentially around the container, through the coil, inducing a circumferential current in the gas. Maximum compression and plasma temperature are obtained at the peak of the current oscillations, coinciding with maximum magnetic field intensity. Enhanced temperatures are obtained in the second and succeeding half cycles because the thermal energy accumulates from one half cycle to the next. (AEC)

  20. Numerical Simulation and Chaotic Analysis of an Aluminum Holding Furnace

    NASA Astrophysics Data System (ADS)

    Wang, Ji-min; Zhou, Yuan-yuan; Lan, Shen; Chen, Tao; Li, Jie; Yan, Hong-jie; Zhou, Jie-min; Tian, Rui-jiao; Tu, Yan-wu; Li, Wen-ke

    2014-12-01

    To achieve high heat efficiency, low pollutant emission and homogeneous melt temperature during thermal process of secondary aluminum, taking into account the features of aluminum alloying process, a CFD process model was developed and integrated with heat load and aluminum temperature control model. This paper presented numerical simulation of aluminum holding furnaces using the customized code based on FLUENT packages. Thermal behaviors of aluminum holding furnaces were investigated by probing into main physical fields such as flue gas temperature, velocity, and concentration, and combustion instability of aluminum holding process was represented by chaos theory. The results show that aluminum temperature uniform coefficient firstly decreases during heating phase, then increases and reduces alternately during holding phase, lastly rises during standing phase. Correlation dimension drops with fuel velocity. Maximal Lyapunov exponent reaches to a maximum when air-fuel ratio is close to 1. It would be a clear comprehension about each phase of aluminum holding furnaces to find new technology, retrofit furnace design, and optimize parameters combination.

  1. Impact of New Nuclear Data Libraries on Small Sized Long Life CANDLE HTGR Design Parameters

    NASA Astrophysics Data System (ADS)

    Liem, Peng Hong; Hartanto, Donny; Tran, Hoai Nam

    2017-01-01

    The impact of new evaluated nuclear data libraries (JENDL-4.0, ENDF/B-VII.0 and JEFF-3.1) on the core characteristics of small-sized long-life CANDLE High Temperature Gas-Cooled Reactors (HTGRs) with uranium and thorium fuel cycles was investigated. The most important parameters of the CANDLE core characteristics investigated here covered (1) infinite multiplication factor of the fresh fuel containing burnable poison, (2) the effective multiplication factor of the equilibrium core, (3) the moving velocity of the burning region, (4) the attained discharge burnup, and (5) the maximum power density. The reference case was taken from the current JENDL-3.3 results. For the uranium fuel cycle, the impact of the new libraries was small, while significant impact was found for thorium fuel cycle. The findings indicated the needs of more accurate nuclear data libraries for nuclides involved in thorium fuel cycle in the future.

  2. Molybdenum-UO2 cerment irradiation at 1145 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  3. Mechanism of deposit formation on fuel-wetted metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A.

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronouncedmore » differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.« less

  4. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek J.; Diamond D.; Cuadra, A.

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less

  5. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Yan, Yong; Wang, Hong

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydridesmore » in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of hydrided Zircaloy-4 cladding, which served as a guideline to prepare in-cell hydride reorientation samples with high burnup HBR fuel segments. This report also provides the Phase II CIRFT test data for the hydride reorientation irradiated samples. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The CIRFT results appear to indicate that hydride reoriented treatment (HRT) have a negative effect on fatigue life, in addition to hydride reorientation effect. For HR4 specimen that had no pressurization procedure applied, the thermal annealing treatment alone showed a negative impact on the fatigue life compared to the HBR rod.« less

  6. The effects of compressor seventh-stage bleed air extraction on performance of the F100-PW-220 afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Evans, Alison B.

    1991-01-01

    A study was conducted to determine the effects of seventh-stage compressor bleed on the performance of the F100 afterburning turbofan engine. The effects of bleed on thrust, specific fuel consumption, fan turbine inlet temperature, bleed total pressure, and bleed total temperature were obtained from the engine manufacturer's status deck computer simulation. These effects were determined for power settings of intermediate, partial afterburning, and maximum afterburning for Mach numbers between 0.6 and 2.2 and for altitudes of 30,000, 40,000, and 50,000 ft. It was found that thrust loss and specific fuel consumption increase were approximately linear functions of bleed flow and, based on a percent-thrust change basis, were approximately independent of power setting.

  7. Effects of biodiesel on continuous regeneration DPF characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Xie, Hui; Gao, Guoyou; Wang, Wei; Hui, Chun

    2017-06-01

    A critical requirement for the implementation of DPF on a modern engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. In order to study the influence of biodiesel on the Regenerating Characteristics of Continuously Regeneration DPF, Bench test were carried out to investigate the BET of a continuously regeneration DPF assembled with a diesel engine fueled with neat diesel and biodiesel. Test results show that at the same engine operation conditions the fuel consumption is higher for biodiesel case, and also the intake air quantity and boost pressure are lower; the BET for the Diesel fuel is about 310 ° while it is about 250 ° for the Biodiesel case. When the engine is at the low torque and low exhaust temperature operation condition, CO conversion rate is extremely low, NO2/NOX ratio is small; with the increase of torque and exhaust temperature, CO conversion and NO2/NOX ratio increased significantly, and the maximum NO2/NOX ratio (about 35%) has been measured at 350 °. In addition, the DPF has better filtration efficiency for biodiesel PM, and the use of biodiesel to engine assembled with DPF has significant benefits.

  8. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.

  9. Predicting the Spatial Variability of Fuel Moisture Content in Mountainous Eucalyptus Forests

    NASA Astrophysics Data System (ADS)

    Sheridan, G. J.; Nyman, P.; Lane, P. N. J.; Metzen, D.

    2014-12-01

    In steep mountainous landscapes, topographic aspect can play a significant role in small-scale (ie. scales in the order of 10's ha) variability in surface fuel moisture. Experimental sites for monitoring microclimate variables and moisture content in litter and in near-surface soils were established at a control site and on four contrasting aspects (north, south, east and west) in southeast Australia. At each of the four microclimate sites sensors are arranged to measure the soil moisture (2 replicates), surface fuel moisture at 2.5cm depth (12 replicates), precipitation throughfall (3 replicates), radiation (3 replicates), and screen level relative humidity, air temperature, leaf wetness, and wind speed (1 replicate of each). Temperature and relative humidity are also measured within the dead fine surface fuel using Ibutton's (4 replicates). All measurements are logged continuously at 15 min intervals. The moisture content of the surface fuel is estimated using a novel method involving high-replication of low-cost continuous soil moisture sensors placed at the centre of a 5cm deep sample of fine dead surface fuel, referred to here as "litter-packs". The litter-packs were constructed from fuels collected from the area surrounding the microclimate site. The initial results show the moisture regime on the forest floor was highly sensitive to the incoming shortwave radiation, which was up to 6 times higher in the north-facing (equatorial) slopes due to slope orientation and the sparse vegetation compared to vegetation on the south-facing (polar facing) slopes. Differences in shortwave radiation resulted in peak temperatures within the litter that were up to 2 times higher on the equatorial-facing site than those on the polar-facing site. For instance, on a day in November 2013 with maximum open air temperature of 35o C, the temperatures within the litter layer at the north-facing and south-facing sites were 54o C and 32o C, respectively, despite air temperature at the two sites differing by less than 2o C. The minimum gravimetric water content in the litter layer on the same day was 21% on the equatorial-facing slope and 85% on the polar-facing slope. The experimental data has been used to calibrate a topographic downscaling algorithm, yielding estimates of surface fuel moisture at 20m resolution.

  10. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    NASA Astrophysics Data System (ADS)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  11. A screen-printed Ce 0.8Sm 0.2O 1.9 film solid oxide fuel cell with a Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Yaohui; Huang, Xiqiang; Lu, Zhe; Liu, Zhiguo; Ge, Xiaodong; Xu, Jiahuan; Xin, Xianshuang; Sha, Xueqing; Su, Wenhui

    Screen-printing technology was developed to fabricate Ce 0.8Sm 0.2O 1.9 (SDC) electrolyte films onto porous NiO-SDC green anode substrates. After sintering at 1400 °C for 4 h, a gas-tight SDC film with a thickness of 12 μm was obtained. A novel cathode material of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ was subsequently applied onto the sintered SDC electrolyte film also by screen-printing and sintered at 970 °C for 3 h to get a single cell. A fuel cell of Ni-SDC/SDC (12 μm)/Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ provides the maximum power densities of 1280, 1080, 670, 370, 180 and 73 mW cm -2 at 650, 600, 555, 505, 455 and 405 °C, respectively, using hydrogen as fuel and stationary air as oxidant. When dry methane was used as fuel, the maximum power densities are 876, 568, 346 and 114 mW cm -2 at 650, 600, 555 and 505 °C, respectively. The present fuel cell shows excellent performance at lowered temperatures.

  12. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro-fluidic carrier

    NASA Astrophysics Data System (ADS)

    Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.

    2014-07-01

    Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.

  13. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells.

    PubMed

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-19

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti 3 C 2 T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti 3 C 2 T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ∼30% tested at 150 °C. The addition of Ti 3 C 2 T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti 3 C 2 T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young's modulus was increased by ∼150% and ∼160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  14. Effective conversion of biomass tar into fuel gases in a microwave reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anis, Samsudin, E-mail: samsudin-anis@yahoo.com; Zainal, Z. A., E-mail: mezainal@usm.my

    2016-06-03

    This work deals with conversion of naphthalene (C{sub 10}H{sub 8}) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved bymore » thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.« less

  15. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  16. NTREES Testing and Operations Status

    NASA Technical Reports Server (NTRS)

    Emrich, Bill

    2007-01-01

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. Currently, the construction of such a simulator has been completed at the Marshall Space Flight Center, and will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are fabricated. This present work addresses the operational status of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.

  17. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as replacement for batteries.

  18. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature.

    PubMed

    Mei, Xiaoxue; Xing, Defeng; Yang, Yang; Liu, Qian; Zhou, Huihui; Guo, Changhong; Ren, Nanqi

    2017-10-01

    Temperature as an important ecological factor affects biofilm development and microbial metabolic activity. Here, the performances and microbial communities of microbial fuel cells (MFCs) at different temperature were analyzed. As the temperature decreased, the power output of MFCs declined. A maximum power density of 894.3±48.6mW/m 2 was obtained in MFCs operating at 30°C, which was 18.5% and 64.5% higher than that in MFCs at 20°C and 10°C, respectively. Illumina sequencing of 16S rRNA gene amplicons showed that a distinct difference in microbial community structure of the anode biofilms occurred. This resulted in different power outputs of MFCs. Species diversity analyses indicated that species evenness of the anode biofilms shifted beyond species richness at different temperatures. The predominant populations of the anode biofilm shifted from Geobacter and Azonexus (30°C) to Pelobacter (20°C) or Acidovorax, Zoogloea and Simplicispira, (10°C). These results indicate that temperature plays an important role in shaping microbial communities of the anode biofilms in MFCs through changes in species evenness. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 77 FR 12823 - Solicitation of Comments on a Proposed Change to the Disclosure Limitation Policy for Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... policy for information reported on fuel ethanol production capacity, (both nameplate and maximum... fuel ethanol production capacity, (both nameplate and maximum sustainable capacity) on Form EIA-819 as... treat all information reported on fuel ethanol production capacity, (both nameplate and maximum...

  20. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    PubMed

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Fuel cladding behavior under rapid loading conditions

    NASA Astrophysics Data System (ADS)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  2. Millimeter-wave irradiation heating for operation of doped CeO2 electrolyte-supported single solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Che Abdullah, Salmie Suhana Binti; Teranishi, Takashi; Hayashi, Hidetaka; Kishimoto, Akira

    2018-01-01

    High operation temperature of solid oxide fuel cell (SOFC) results in high cell and operation cost, time consuming and fast cell degradation. Developing high performance SOFC that operates at lower temperature is required. Here we demonstrate 24 GHz microwave as a rapid heating source to replace conventional heating method for SOFC operation using 20 mol% Sm doped CeO2 electrolyte-supported single cell. The tested cell shows improvement of 62% in maximum power density at 630 °C under microwave heating. This improvement governs by bulk conductivity of the electrolyte. Investigation of ionic transference number reveals that the value is unchanged under microwave irradiation, confirming the charge carrier is dominated by oxygen ion species. This work shows a potential new concept of high performance as well as cost and energy effective SOFC.

  3. Conceptual design study of an improved automotive gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Automotive gas turbine concepts with significant technological advantages over the spark ignition (SI) engine were assessed. Possible design concepts were rated with respect to fuel economy and near-term application. A program plan which outlines the development of the improved gas turbine (IGT) concept that best met the goals and objectives of the study identifies the research and development work needed to meet the goal of entering a production engineering phase by 1983. The fuel economy goal is to show at least a 20% improvement over a conventional 1976 SI engine/vehicle system. On the basis of achieving the fuel economy goal, of overall suitability to mechanical design, and of automotive mass production cost, the powertrain selected was a single-shaft engine with a radial turbine and a continuously variable transmission (CVT). Design turbine inlet temperature was 1150 C. Reflecting near-term technology, the turbine rotor would be made of an advanced superalloy, and the transmission would be a hydromechanical CVT. With successful progress in long-lead R&D in ceramic technology and the belt-drive CVT, the turbine inlet temperature would be 1350 C to achieve near-maximum fuel economy.

  4. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  5. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  6. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  7. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  8. 30 CFR 7.84 - Technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Underground Coal Mines § 7.84 Technical requirements. (a) Fuel injection adjustment. The fuel injection system of the engine shall be constructed so that the quantity of fuel injected can be controlled at a... design. (b) Maximum fuel-air ratio. At the maximum fuel-air ratio determined by § 7.87 of this part, the...

  9. Development of a full-length external-fuel thermionic converter for in-pile testing.

    NASA Technical Reports Server (NTRS)

    Schock, A.; Raab, B.

    1971-01-01

    Description of an external-fuel thermionic converter which utilizes a thoriated-tungsten fuel-emitter body. Performance in out-of-pile tests was comparable to that of an arc-cast tungsten emitter body, with 400-eW output power (about 5 W/sq cm) at 10.8% efficiency. Maximum fuel clad temperature averaged from 1650 to 1700 C during the 300-hour test. This converter has been processed for in-pile testing. The various processing steps, including the installation of six emitter thermocouples, encapsulation in the secondary container, and joining to the fission-gas collection system, are described in detail. In addition to the converter assembly, a doubly contained fission gas collection assembly with radiation-hardened differential pressure transducers was fabricated. The experiment support plate required for the in-pile test, containing electrically insulated instrumentation feedthroughs and coolant line feedthroughs to the vacuum test chamber, was also fabricated.

  10. Effect of primary-zone water injection on pollutants from a combustor burning liquid ASTM A-1 and vaporized propane fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.

  11. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  12. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  13. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  14. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    NASA Astrophysics Data System (ADS)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  15. Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E.; Ritter, William K.; Miller, Mahlon A.

    1946-01-01

    For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.

  16. Explosion characteristics of LPG-air mixtures in closed vessels.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, D

    2009-06-15

    The experimental study of explosive combustion of LPG (liquefied petroleum gas)-air mixtures at ambient initial temperature was performed in two closed vessels with central ignition, at various total initial pressures within 0.3-1.3bar and various fuel/air ratios, within the flammability limits. The transient pressure-time records were used to determine several explosion characteristics of LPG-air: the peak explosion pressure, the explosion time (the time necessary to reach the peak pressure), the maximum rate of pressure rise and the severity factor. All explosion parameters are strongly dependent on initial pressure of fuel-air mixture and on fuel/air ratio. The explosion characteristics of LPG-air mixtures are discussed in comparison with data referring to the main components of LPG: propane and butane, obtained in identical conditions.

  17. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  18. Structural and Magnetic Characterization of BaFe12O19 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhage, Vinod N.; Mane, M. L.; Shirsath, Sagar E.; Jadhav, S. P.; Gunjal, R. P.; Jadhav, K. M.

    2011-07-01

    Barium hexaferrite nanoparticles have been synthesized successfully by using sol-gel auto-combustion technique. In this process dextrose and citric acid both used as a fuel separately. The ratio of cation to both the fuel was maintained at 1:3 whereas the pH of the sample was kept constant at 8. The particle size for dextrose and citric acid sample is 34 nm and 45 nm respectively. The room temperature hysteresis curve gives maximum magnetization (48.46 emu/g) and coercivity (1.350 kOe) values for dextrose used sample. The dextrose used sample gives better results than that of citric acid used sample.

  19. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  20. CRITICAL TESTS FOR PRT REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, J.R.; Anderson, J.K.; Dunn, R.E.

    1960-07-01

    Critical teste to be performed on the Plutonium Recycle Te st Heactor are described. Exponential, approach-tocritical, critical, and substitution experiments will be carried out. These experiments include: calibration of moderator level; determination of the wori of various fuel loadings; calibration of the shim system including determination of maximum control strength of the entire system; substitution experiments to determine reflector savings, void effects, effects of H/sub 2/O and degraded D/sub 2/O coolants, and effects of loop and other material intsllations; determination of fuel-plus-coolant and moderator temperature coefficients; and kinetic experiments to determine response of the reactor to reactivity changes. (M.C.G.)

  1. Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.

    2013-11-01

    Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.

  2. Optimal robust control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  3. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  4. Effects of non-unity Lewis numbers in diffusion flames

    NASA Technical Reports Server (NTRS)

    Linan, A.; Orlandi, P.; Verzicco, R.; Higuera, F. J.

    1994-01-01

    The purpose of this work is to carry out direct numerical simulations of diffusion controlled combustion with non-unity Lewis numbers for the reactants and products, thus accounting for the differential diffusion effects of the temperature and concentration fields. We use a formulation based on combining the conservation equations in a way to eliminate the reaction terms similar to the method used by Burke and Schumann (1928) for unity Lewis numbers. We present calculations for an axisymmetric fuel jet and for a planar, time evolving mixing layer, leaving out the effects of thermal expansion and variations of the transport coefficients due to the heat release. Our results show that the front of the flame shifts toward the fuel or oxygen sides owing to the effect of the differential diffusion and that the location of maximum temperature may not coincide with the flame. The dependence of the distribution of the reaction products on their Lewis number has been investigated.

  5. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...

  6. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...

  7. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...

  8. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...

  9. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...

  10. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE PAGES

    Dec, John E.; Yang, Yi; Ji, Chunsheng; ...

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  11. Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes

    NASA Astrophysics Data System (ADS)

    Reza, S. M. Mohsin

    Design options have been evaluated for the Modular Helium Reactor (MHR) for higher temperature operation. An alternative configuration for the MHR coolant inlet flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet path is shifted from the annular path between reactor core barrel and vessel wall through the permanent side reflector (PSR). The number and dimensions of coolant holes are varied to optimize the pressure drop, the inlet velocity, and the percentage of graphite removed from the PSR to create this inlet path. With the removal of ˜10% of the graphite from PSR the PVT is reduced from 541°C to 421°C. A new design for the graphite block core has been evaluated and optimized to reduce the inlet coolant temperature with the aim of further reduction of PVT. The dimensions and number of fuel rods and coolant holes, and the triangular pitch have been changed and optimized. Different packing fractions for the new core design have been used to conserve the number of fuel particles. Thermal properties for the fuel elements are calculated and incorporated into these analyses. The inlet temperature, mass flow and bypass flow are optimized to limit the peak fuel temperature (PFT) within an acceptable range. Using both of these modifications together, the PVT is reduced to ˜350°C while keeping the outlet temperature at 950°C and maintaining the PFT within acceptable limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown transients are found to be well below the design limits. The reliability and availability studies for coupled nuclear hydrogen production processes based on the sulfur iodine thermochemical process and high temperature electrolysis process have been accomplished. The fault tree models for both these processes are developed. Using information obtained on system configuration, component failure probability, component repair time and system operating modes and conditions, the system reliability and availability are assessed. Required redundancies are made to improve system reliability and to optimize the plant design for economic performance. The failure rates and outage factors of both processes are found to be well below the maximum acceptable range.

  12. Wildland Fire Induced Heating of Dome 375 Perma-Con®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, Eugene Michael

    AET-1 was tasked by ADEM with determining the temperature rise in the drum contents of drums stored in the Dome 375 Perma-Con® at TA-54 given a wildland fire. The wildland fire causes radiative and convective heating on the Perma-Con® exterior. The wildland fire time histories for the radiative and convective heating environment were provided to AET-1 by EES-16. If the calculated temperature rise results in a drum content temperature over 40 °C, then ADEM desires a design solution to ensure the peak temperature remains below 40 °C. An axi-symmetric FE simulation was completed to determine the peak temperature of themore » contents of a drum stored in the Dome 375 Perma-Con® during a wildland fire event. Three wildland fire time histories for the radiative and convective heat transfer were provided by EES-16 and were inputs for the FE simulation. The maximum drum content temperature reached was found to be 110 °C while using inputs from the SiteG_2ms_4ign_wind_from_west.xlsx time history input and not including the SWB in the model. Including the SWB in the results in a peak drum content temperature of 61 °C for the SiteG_2ms_4ign_wind_from_west.xlsx inputs. EES-16 decided that by using fuel mitigation efforts, such as mowing the grass and shrubs near the Perma-Con® they could reduce the shrub/grass fuel loading near the Perma-Con® from 1.46 kg/m 2 to 0.146 kg/m 2 and by using a less conservative fuel loading for the debris field inside the Dome 375 perimeter, reducing it from 0.58 kg/m2 to 0.058 kg/m 2 in their model. They also greatly increased the resolution of their radiation model and increased the accuracy of their model’s required convergence value. Using this refined input the maximum drum content temperature was found to be 28 °C with no SWB present in the model. Additionally, this refined input model was modified to include worst case emissivity values for the concrete, drum and Perma-Con® interior, along with adding a 91 second long residual radiative heat flux of 2,000 W/m2 to the end of the refined wildland fire input. For this case the maximum drum content temperature was found to be 32 °C. For Rev. 2 of this calculation and additional simulation was run that included a cable fire heat flux on the exterior of the Perma-Con® that was calculated by FP-DO. Including the cable fire heat flux in the model without the SWB resulted in a peak drum content temperature over time of 43 °C. Including the SWB in the simulation with the cable fire heat flux resulted in a peak drum content temperature over time of 35 °C.« less

  13. Torrefaction of Durian peel and bagasse for bio-briquette as an alternative solid fuel

    NASA Astrophysics Data System (ADS)

    Haryati, S.; Rahmatullah; Putri, R. W.

    2018-03-01

    Biomass waste of durian (Durio zibethinus) peel and bagasse could be used as solid fuel by a toreffaction process. Durian peel and bagasse were washed and crushed into small sizes then dryed in order to remove water content. The treated biomass was burned at varied temperature of 200 – 350 °C and a residence time of 30 min prior to producing torrified charcoal as intermediate product. Torrified charcoal was ground into a powder blended with tapioca glue followed by casting into a cylinder to form a bio-briqquette. The bio-briquette was characterized by determining its calorific value via bomb carolimeter analysis. The key parameter of bio-briquette are calorific value and combustion rate. The result that as the burning temperature was increased the calorific value of bio-briquettes also increased. The maximum calorific value was achieved at 350°C whereas the maximum calorific value of durian (6,157 cal/gr) is higher than bagasse (6,109 cal/gr). The minimum combustion rate was attained in durian peel torrefaction at 350 °C with the rate 0.0398 g/s. The result showed that bio-briquette of durian peel and bagasse have calorific values equivalent to that of subbituminus coal in the range of 4,900 - 6,800 cal/gr.

  14. HYNOL PROCESS EVALUATION

    EPA Science Inventory

    The report examines process alternatives for the optimal use of natural gas and biomass for production of fuel-cell vehicle fuel, emphasizing maximum displacement of petroleum and maximum reduction of overall fuel-cycle carbon dioxide (CO2) emissions at least cost. Three routes a...

  15. Small stack performance of intermediate temperature-operating solid oxide fuel cells using stainless steel interconnects and anode-supported single cell

    NASA Astrophysics Data System (ADS)

    Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee

    We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.

  16. Preliminary Investigation of Performance and Starting Characteristics of Liquid Fluorine : Liquid Oxygen Mixtures with Jet Fuel

    NASA Technical Reports Server (NTRS)

    Rothenberg, Edward A; Ordin, Paul M

    1954-01-01

    The performance of jet fuel with an oxidant mixture containing 70 percent liquid fluorine and 30 percent liquid oxygen by weight was investigated in a 500-pound-thrust engine operating at a chamber pressure of 300 pounds per square inch absolute. A one-oxidant-on-one-fuel skewed-hole impinging-jet injector was evaluated in a chamber of characteristic length equal to 50 inches. A maximum experimental specific impulse of 268 pound-seconds per pound was obtained at 25 percent fuel, which corresponds to 96 percent of the maximum theoretical specific impulse based on frozen composition expansion. The maximum characteristic velocity obtained was 6050 feet per second at 23 percent fuel, or 94 percent of the theoretical maximum. The average thrust coefficient was 1.38 for the 500-pound thrust combustion-chamber nozzle used, which was 99 percent of the theoretical (frozen) maximum. Mixtures of fluorine and oxygen were found to be self-igniting with jet fuel with fluorine concentrations as low as 4 percent, when low starting propellant flow rated were used.

  17. Standalone BISON Fuel Performance Results for Watts Bar Unit 1, Cycles 1-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T.; Pawlowski, Roger; Stimpson, Shane

    2016-03-07

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is moving forward with more complex multiphysics simulations and increased focus on incorporating fuel performance analysis methods. The coupled neutronics/thermal-hydraulics capabilities within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) have become relatively stable, and major advances have been made in analysis efforts, including the simulation of twelve cycles of Watts Bar Nuclear Unit 1 (WBN1) operation. While this is a major achievement, the VERA-CS approaches for treating fuel pin heat transfer have well-known limitations that could be eliminated through better integration with the BISON fuel performance code. Severalmore » approaches are being implemented to consider fuel performance, including a more direct multiway coupling with Tiamat, as well as a more loosely coupled one-way approach with standalone BISON cases. Fuel performance typically undergoes an independent analysis using a standalone fuel performance code with manually specified input defined from an independent core simulator solution or set of assumptions. This report summarizes the improvements made since the initial milestone to execute BISON from VERA-CS output. Many of these improvements were prompted through tighter collaboration with the BISON development team at Idaho National Laboratory (INL). A brief description of WBN1 and some of the VERA-CS data used to simulate it are presented. Data from a small mesh sensitivity study are shown, which helps justify the mesh parameters used in this work. The multi-cycle results are presented, followed by the results for the first three cycles of WBN1 operation, particularly the parameters of interest to pellet-clad interaction (PCI) screening (fuel-clad gap closure, maximum centerline fuel temperature, maximum/minimum clad hoop stress, and cumulative damage index). Once the mechanics of this capability are functioning, future work will target cycles with known or suspected PCI failures to determine how well they can be estimated.« less

  18. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    NASA Astrophysics Data System (ADS)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with current emission in residential sector can be estimated, based on the cleanest plausible fuels and stove availability.

  19. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  20. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell

    PubMed Central

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-01-01

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629

  1. Investigation of acceleration characteristics of a single-spool turbojet engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Pack, George J

    1953-01-01

    Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.

  2. Small hydrogen/oxygen rocket flowfield behavior from heat flux measurements

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    The mixing and heat transfer phenomena in small rocket flow fields with fuel film cooling is not well understood. An instrumented, water-cooled chamber with a gaseous hydrogen/gaseous oxygen injector was used to gather steady-state inner and outer wall temperature profiles. The chamber was tested at 414 kPa (60 psia) chamber pressure, from mixture ratios of 3.41 to 8.36. Sixty percent of the fuel was used for film cooling. These temperature profiles were used as boundary conditions in a finite element analysis program, MSC/NASTRAN, to calculate the local radial and axial heat fluxes in the chamber wall. The normal heat fluxes were then calculated and used as a diagnostic of the rocket's flow field behavior. The normal heat fluxes determined were on the order of 1.0 to 3.0 MW/meters squared (0.6 to 1.8 Btu/sec-inches squared). In the cases where mixture ratio was 5 or above, there was a sharp local heat flux maximum in the barrel section of the chamber. This local maximum seems to indicate a reduction or breakdown of the fuel film cooling layer, possibly due to increased mixing in the shear layer between the film and core flows. However, the flow was thought to be completely laminar, as the throat Reynolds numbers were below 50,000 for all the cases. The increased mixing in the shear layer in the higher mixture ratio cases appeared not to be due to the transition of the flow from laminar to turbulent, but rather due to increased reactions between the hydrogen film and oxidizer-rich core flows.

  3. Estimating the time for dissolution of spent fuel exposed to unlimited water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leider, H.R.; Nguyen, S.N.; Stout, R.B.

    1991-12-01

    The release of radionuclides from spent fuel cannot be precisely predicted at this point because a satisfactory dissolution model based on specific chemical processes is not yet available. However, preliminary results on the dissolution rate of UO{sub 2} and spent fuel as a function of temperature and water composition have recently been reported. This information, together with data on fragment size distribution of spent fuel, are used to estimate the dissolution response of spent fuel in excess flowing water within the framework of a simple model. In this model, the reaction/dissolution front advances linearly with time and geometry is preserved.more » This also estimates the dissolution rate of the bulk of the fission products and higher actinides, which are uniformly distributed in the UO{sub 2} matrix and are presumed to dissolve congruently. We have used a fuel fragment distribution actually observed to calculate the time for total dissolution of spent fuel. A worst-case estimate was also made using the initial (maximum) rate of dissolution to predict the total dissolution time. The time for total dissolution of centimeter size particles is estimated to be 5.5 {times} 10{sup 4} years at 25{degrees}C.« less

  4. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations with charge-balancing oxygen vacancies. At higher temperatures near 700 °C, maximum enthalpy of formation shifts toward higher dopant concentrations, as a result of defect disordering. This concentration coincides with that of maximum ionic conductivity, extending the correlation seen previously near room temperature. It is also possible to co-dope these systems with Sm and Nd to further enhance ionic conductivity. For doubly doped ceria electrolytes, the solid solution phase of Ce1-xSm0.5xNd0.5xO2-0.5x (0 ≤ x ≤ 0.30) was investigated. It has been shown that for doubly doped ceria, the maximum enthalpy of formation occurs towards higher dopant concentration than that of singly doped counterparts, with less exothermic association enthalpies. These studies provide insight into the structure-composition-property-stability relations and aid in the rational design of the future SOFCs electrolytes.

  5. ANALYSIS AND EXAMINATION OF MOX FUEL FROM NONPROLIFERATION PROGRAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Kevin; Machut, Dr McLean; Morris, Robert Noel

    The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg heavy metal. This was the first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio of less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. The performance of the rodsmore » was analyzed with AREVA s next-generation GALILEO code. The results of the analysis confirmed that the fuel rods had performed safely and predictably, and that GALILEO is applicable to MOX fuel with a low 240Pu/239Pu ratio as well as to standard MOX. The results are presented and compared to the GALILEO database. In addition, the fuel cladding was tested to confirm that traces of gallium in the fuel pellets had not affected the mechanical properties of the cladding. The irradiated cladding was found to remain ductile at both room temperature and 350 C for both the axial and circumferential directions.« less

  6. New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs

    DOE PAGES

    Takamatsu, Kuniyoshi; Hu, Rui

    2014-11-27

    A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed for high temperature gas cooled reactors (HTGRs) and very high temperature reactors (VHTRs). The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 (°C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient airmore » as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. Therefore, HTGRs and VHTRs adopting the new RCCS design can avoid core melting due to overheating the fuels. The simulation results from a commercial CFD code, STAR-CCM+, show that the temperature distribution of the RCCS is within the temperature limits of the structures, such as the maximum operating temperature of the RPV, 713.15 (K) = 440 (°C), and the heat released from the RPV could be removed safely, even during a loss of coolant accident (LOCA). Finally, when the RCCS can remove 600 (kW) of the rated nominal state even during LOCA, the safety review for building the HTTR could confirm that the temperature distribution of the HTTR is within the temperature limits of the structures to secure structures and fuels after the shutdown because the large heat capacity of the graphite core can absorb heat from the fuel in a short period. Therefore, the capacity of the new RCCS design would be sufficient for decay heat removal.« less

  7. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) andmore » roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no deposits or abnormal wear for any fuel. The results provide some confidence that the ASTM D7467 stability requirement of 6 hr. minimum IP for B6 to B20 blends provides adequate protection for modern engine fuel systems.« less

  8. BISON Fuel Performance Analysis of IFA-796 Rod 3 & 4 and Investigation of the Impact of Fuel Creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian; Terrani, Kurt A.; Sweet, Ryan T.

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace the currently used zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromiumaluminum (FeCrAl) alloys because they exhibit slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and slow cladding consumption in the presence of high temperature steam. These alloys should also exhibit increased “coping time” in the event of an accident scenario by improving the mechanical performance at high temperatures, allowing greater flexibility to achieve core cooling.more » As a continuation of the development of these alloys, in-reactor irradiation testing of FeCrAl cladded fuel rods has started. In order to provide insight on the possible behavior of these fuel rods as they undergo irradiation in the Halden Boiling Water Reactor, engineering analysis has been performed using FeCrAl material models implemented into the BISON fuel performance code. This milestone report provides an update on the ongoing development of modeling capability to predict FeCrAl cladding fuel performance and to provide an early look at the possible behavior of planned in-reactor FeCrAl cladding experiments. In particular, this report consists of two separate analyses. The first analysis consists of fuel performance simulations of IFA-796 rod 4 and two segments of rod 3. These simulations utilize previously implemented material models for the C35M FeCrAl alloy and UO2 to provide a bounding behavior analysis corresponding to variation of the initial fuel cladding gap thickness within the fuel rod. The second analysis is an assessment of the fuel and cladding stress states after modification of the fuel creep model that is currently implemented in the BISON fuel performance code. Effects from modifying the fuel creep model were identified for the BISON simulations of the IFA-796 rod 4 experiment, but show that varying the creep model (within the range investigated here) only provide a minimal increase in the fuel radius and maximum cladding hoop stress. Continued investigation of fuel behavioral models will include benchmarking the modified fuel creep model against available experimental data, as well as an investigation of the role that fuel cracking will play in the compliance of the fuel. Correctly calculating stress evolution in the fuel is key to assessing fuel behavior up to gap closure and the subsequent deformation of the cladding due to PCMI. The inclusion of frictional contact should also be investigated to determine the axial elongation of the fuel rods for comparison with data from this experiment.« less

  9. Electricity production from beer brewery wastewater using single chamber microbial fuel cell.

    PubMed

    Wang, X; Feng, Y J; Lee, H

    2008-01-01

    The performance of electricity production from beer brewery wastewater in a single chamber membrane-free microbial fuel cell (MFC) was investigated. Experimental results showed that the MFCs could generate electricity from full-strength wastewater (2,239 mg-COD/L, 50 mM PBS added) with the maximum power density of 483 mW/m2 (12 W/m3) at 30 degrees C and 435 mW/m2 (11 W/m3) at 20 degrees C, respectively. Temperature was found to have bigger impact on cathode potential than anode potential. Results suggested that it is feasible to generate electricity with the treatment of beer brewery wastewater. Copyright IWA Publishing 2008.

  10. Interim report on nuclear waste depository thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altenbach, T.J.

    1978-07-25

    A thermal analysis of a deep geologic depository for spent nuclear fuel is being conducted. The TRUMP finite difference heat transfer code is used to analyze a 3-dimensional model of the depository. The model uses a unit cell consisting of one spent fuel canister buried in salt beneath a ventilated room in the depository. A base case was studied along with several parametric variations. It is concluded that this method is appropriate for analyzing the thermal response of the system, and that the most important parameter in determining the maximum temperatures is the canister heat generation rate. The effects ofmore » room ventilation and different depository media are secondary.« less

  11. The influence of temperature on the formation of liquid fuel from Polypropylene plastic wastes

    NASA Astrophysics Data System (ADS)

    Martynis, M.; Mulyazmi; Praputri, E.; Witri, R.; Putri, N.

    2018-03-01

    The current trend of municipal waste management in urban areas is caused by rapid changes in social, economic, political and cultural life. As a non-biodegradable polymers that have become essential materials, plastic wastes have created a very serious environmental challenge because of the huge quantities and their disposal problems. Recycling of plastics is seen as one method for reducing environmental and resource depletion. The most attractive technique of plastics recycling is pyrolysis involving the degradation of the polymeric materials by heating in the absence of oxygen. This study investigated the characteristics of pyrolysis liquid fuel (PLF) produced from polypropylene plastic wastes with temperature variations. Pyrolisis was carried out on 200 grams of polypropylene waste plastics at the operating temperature of 200°C, 250°C, 300 °C and 350 °C for 45 minutes. The liquid products were found to have carbon chain length in the range of C8-C9, similar with gasoline. The maximum density, volume and calorific value of the oil obtained were 0.8 g/cm3, 61 ml and 1307 cal/gr, respectively.

  12. Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane

    NASA Astrophysics Data System (ADS)

    Wu, Yiyang; Shi, Yixiang; Cai, Ningsheng; Ni, Meng

    2018-06-01

    A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell (SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.

  13. Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Li, Baitao; Wang, Mian; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2015-10-01

    A novel platinum (Pt)-free cathodic materials binuclear-cobalt-phthalocyanine (Bi-CoPc) pyrolyzed at different temperatures (300-1000 °C) were examined as the oxygen reduction reaction (ORR) catalysts, and compared with unpyrolyzed Bi-CoPc/C and Pt cathode in single chamber microbial fuel cells (SCMFCs). The results showed that the pyrolysis process increased the nitrogen abundance on Bi-CoPc and changed the nitrogen types. The Bi-CoPc pyrolyzed at 800 °C contained a significant amount of pyrrolic-N, and exhibited a high electrochemical catalytic activity. The power density and current density increased with temperature: Bi-CoPc/C-800 > Bi-CoPc/C-1000 > Bi-CoPc/C-600 > Bi-CoPc/C-300 > Bi-CoPc/C. The SCMFC with Bi-CoPc/C-800 cathode had a maximum power density of 604 mW m(-2). The low cost Bi-CoPc compounds developed in this study showed a potential in air-breathing MFC systems, with the proper pyrolysis temperature being chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An experimental investigation of hybrid kerosene burner configurations for TPV applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, K.L.; Rose, M.F.; Burkhalter, J.E.

    1995-01-05

    A key element in thermophotovoltaic power generation is the development of a compact and efficient configuration for the thermal source and emitter. In the present work, a hybrid configuration was investigated which was composed of a liquid fueled diffusion type burner utilizing the emitting or mantle structure as the combustion chamber. The prototype burner operates on kerosene at fuel flow rates up to 1.0 kg/hr. Fuel is atomized using an 78 kHz ultrasonic nozzle with multifuel capabilities. Combustion is stabilized and heat transfer is enhanced via forced recirculation interior to the mantle structures. These structures range in size from 600more » to 1200 cm{sup 3} and are porous in nature. This paper presents an introduction to issues specific to the use of small scale liquid fueled burners for TPV applications, and burner performance data for a series of configurations, in terms of combustor surface temperature distribution, maximum mass loading and efficiency. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

  15. Analysis of the control structures for an integrated ethanol processor for proton exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Biset, S.; Nieto Deglioumini, L.; Basualdo, M.; Garcia, V. M.; Serra, M.

    The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process.

  16. Particulate fuel bed tests

    NASA Astrophysics Data System (ADS)

    Horn, F. L.; Powell, J. R.; Savino, J. M.

    Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.

  17. Removal of hydrogen sulfide from hot fuel gas using an electrochemical membrane system

    NASA Astrophysics Data System (ADS)

    Burke, Adrian Alan

    Sulfur is a natural contaminant in nearly all fossil fuel supplies. When a fuel stream is gasified or reformed, the sulfur manifests itself in the form of hydrogen sulfide, H2S. Extraordinary effort is put forth to remove H2S to at least ppm levels before the fuel can be used for power generation. To compete with current methods, an electrochemical membrane system (EMS) is now being studied to remove H2S in one step at high temperature. This process offers continuous H2S removal at an estimated operating cost of $0.32/kg H2S removed and a capital cost that is roughly half that of a Claus plant with tail-gas clean-up. Other advantages are the considerable savings in energy and space compared to current methods. A bench scale set-up was constructed to test the cell performance at 600-700°C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO2, 35% H2, 8% H2O, and 450-2000 ppm H2S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H 2S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H2S removal. Also, membrane thickness was found to be a critical parameter in cell design. A thinner membrane decreases the distance that sulfide ions must travel to be oxidized at the anode. These results identify sulfide diffusion across the membrane as the rate-limiting step in H2S removal. The maximum H2S removal flux of 1.1 x 10-6 gmol H2S min-1 cm-2 (or 3.5 mA cm-2) was obtained at 650°C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e cobalt sulfides and Y0.9Ca 0.1FeO3) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd2TiMoO7 and La0.7Sr0.3VO 3 were the compounds that retained their structure best even when exposed to high H2S, CO2, and H2O concentrations. They also showed no sign of melting at operating temperatures. But Gd 2TiMoO7 was seen to have better stability with electrolyte present, whereas La0.7Sr0.3VO3 was seen to have better stability in the pure sour gas stream without electrolyte present. A layered electrode that could help preserve a stable environment for each of these compounds should be explored in future research.

  18. AGR-5/6/7 Irradiation Test Predictions using PARFUME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skerjanc, William F.

    PARFUME, (PARticle FUel ModEl) a fuel performance modeling code used for high temperature gas-cooled reactors (HTGRs), was used to model the Advanced Gas Reactor (AGR)-5/6/7 irradiation test using predicted physics and thermal hydraulics data. The AGR-5/6/7 test consists of the combined fifth, sixth, and seventh planned irradiations of the AGR Fuel Development and Qualification Program. The AGR-5/6/7 test train is a multi-capsule, instrumented experiment that is designed for irradiation in the 133.4-mm diameter north east flux trap (NEFT) position of Advanced Test Reactor (ATR). Each capsule contains compacts filled with uranium oxycarbide (UCO) unaltered fuel particles. This report documents themore » calculations performed to predict the failure probability of tristructural isotropic (TRISO)-coated fuel particles during the AGR-5/6/7 experiment. In addition, this report documents the calculated source term from the driver fuel. The calculations include modeling of the AGR-5/6/7 irradiation that is scheduled to occur from October 2017 to April 2021 over a total of 13 ATR cycles, including nine normal cycles and four Power Axial Locator Mechanism (PALM) cycle for a total between 500 – 550 effective full power days (EFPD). The irradiation conditions and material properties of the AGR-5/6/7 test predicted zero fuel particle failures in Capsules 1, 2, and 4. Fuel particle failures were predicted in Capsule 3 due to internal particle pressure. These failures were predicted in the highest temperature compacts. Capsule 5 fuel particle failures were due to inner pyrolytic carbon (IPyC) cracking causing localized stresses concentrations in the SiC layer. This capsule predicted the highest particle failures due to the lower irradiation temperature. In addition, shrinkage of the buffer and IPyC layer during irradiation resulted in formation of a buffer-IPyC gap. The two capsules at the two ends of the test train, Capsules 1 and 5 experienced the smallest buffer-IPyC gap formation due to the lower irradiation fluences and temperatures. Capsule 3 experienced the largest buffer-IPyC gap formation of just under 24 µm. The release fraction of fission products Ag, Cs, and Sr silver (Ag), cesium (Cs), and strontium (Sr) vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 3, reaching up to 84.8% for the TRISO fuel particles. The release fraction of the other two fission products, Cs and Sr are much smaller and, in most cases, less than 1%. The notable exception is again in Capsule 3, where the release fraction for Cs and Sr reach up to 9.7% and 19.1%, respectively.« less

  19. Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Childs, J. Howard; McCafferty, Richard J.

    1948-01-01

    A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.

  20. Effect of silane concentration on the supersonic combustion of a silane/methane mixture

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Mclain, A. G.; Pellett, G. L.; Diskin, G. S.

    1986-01-01

    A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. This autoignition temperature can be contrasted with 2330 R for hydrogen and 1350 R for a 20 percent silane/hydrogen mixture in similar hardware. Methane without the silane additive did not autoignite in this configuration at total temperatures as high as 3900 R, the maximum temperature at which tests were conducted. Supersonic combustion tests with the silane concentration reduced to 10 percent indicated little improvement in combustion performance over pure methane. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.

  1. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  2. A diesel fuel processor for fuel-cell-based auxiliary power unit applications

    NASA Astrophysics Data System (ADS)

    Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef

    2017-07-01

    Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.

  3. Soil heating and impact of prescribed burning

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne

    2016-04-01

    Prescribed burning is highly uncommon in the Netherlands, where wildfire awareness is increasing but its risk management does not yet include fuel management strategies. A major exception is on two military bases, that need to burn their fields in winter and spring to prevent wildfires during summer shooting practice. Research on these very frequent burns has so far been limited to effects on biodiversity, yet site managers and policy makers have questions regarding the soil temperatures reached during these burns because of potential impact on soil properties and soil dwelling fauna. In March 2015, I therefore measured soil and litter temperatures under heath and grass vegetation during a prescribed burn on military terrain in the Netherlands. Soil and litter moisture were sampled pre- and post-fire, ash was collected, and fireline intensity was estimated from flame length. While standing vegetation was dry (0.13 g water/g biomass for grass and 0.6 g/g for heather), soil and litter were moist (0.21 cm3/cm3 and 1.6 g/g, respectively). Soil heating was therefore very limited, with maximum soil temperature at the soil-litter interface remaining being as low as 6.5 to 11.5°C, and litter temperatures reaching a maximum of 77.5°C at the top of the litter layer. As a result, any changes in physical properties like soil organic matter content and bulk density were not significant. These results are a first step towards a database of soil heating in relation to fuel load and fire intensity in this temperate country, which is not only valuable to increase understanding of the relationships between fire intensity and severity, but also instrumental in the policy debate regarding the sustainability of prescribed burns.

  4. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Iridium-Coated Rhenium Radiation-Cooled Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.

    1997-01-01

    Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.

  6. An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties

    NASA Technical Reports Server (NTRS)

    Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.

    2007-01-01

    The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.

  7. Effect of temperature on pyrolysis product of empty fruit bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The charmore » obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.« less

  8. Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Tsai, Hanchung

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G; Powers, Jeffrey J; Clarno, Kevin T

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity, multiphysics simulations of light water reactors (LWRs) by coupling a variety of codes within the Virtual Environment for Reactor Analysis (VERA). One of the primary goals of CASL is to predict local cladding failure through pellet-clad interaction (PCI). This capability is currently being pursued through several different approaches, such as with Tiamat, which is a simulation tool within VERA that more tightly couples the MPACT neutron transport solver, the CTF thermal hydraulics solver, and the MOOSE-based Bison-CASL fuel performance code. However, the process in this papermore » focuses on running fuel performance calculations with Bison-CASL to predict PCI using the multicycle output data from coupled neutron transport/thermal hydraulics simulations. In recent work within CASL, Watts Bar Unit 1 has been simulated over 12 cycles using the VERA core simulator capability based on MPACT and CTF. Using the output from these simulations, Bison-CASL results can be obtained without rerunning all 12 cycles, while providing some insight into PCI indicators. Multi-cycle Bison-CASL results are presented and compared against results from the FRAPCON fuel performance code. There are several quantities of interest in considering PCI and subsequent fuel rod failures, such as the clad hoop stress and maximum centerline fuel temperature, particularly as a function of time. Bison-CASL performs single-rod simulations using representative power and temperature distributions, providing high-resolution results for these and a number of other quantities. This will assist in identifying fuels rods as potential failure locations for use in further analyses.« less

  10. Direct numerical simulation of turbulent, chemically reacting flows

    NASA Astrophysics Data System (ADS)

    Doom, Jeffrey Joseph

    This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates towards the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non--reacting vortex ring. We then study auto-ignition of turbulent H2/air diffusion flames using the Mueller et al. [37] mechanism. Isotropic turbulence is superimposed on an unstrained diffusion flame where diluted H 2 at ambient temperature interacts with hot air. Both, unity and non-unity Lewis number are studied. The results are contrasted to the homogeneous mixture problem and laminar diffusion flames. Results show that auto-ignition occurs in fuel lean, low vorticity, high temperature regions with low scalar dissipation around a most reactive mixture fraction, zetaMR (Mastorakos et al. [32]). However, unlike the laminar flame where auto-ignition occurs at zetaMR, the turbulent flame auto-ignites over a very broad range of zeta around zetaMR, which cannot completely predict the onset of ignition. The simulations also study the effects of three-dimensionality. Past two--dimensional simulations (Mastorakos et al. [32]) show that when flame fronts collide, extinction occurs. However, our three dimensional results show that when flame fronts collide; they can either increase in intensity, combine without any appreciable change in intensity or extinguish. This behavior is due to the three--dimensionality of the flow.

  11. MST Pellet Injector Upgrades to Probe Beta and Density Limits and Impurity Particle Transport

    NASA Astrophysics Data System (ADS)

    Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Kumar, S. T. A.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.

    2012-10-01

    Upgrades to the pellet injector on MST will allow for significantly increased fueling capability enabling density limit studies for previously unavailable density regimes. Thus far, Greenwald fractions of 1.2 and 1.5 have been achieved in 500 kA and 200 kA improved confinement plasmas, respectively. The size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, was increased to accommodate pellets of up to 4.0 mm in diameter, capable of fueling to Greenwald fractions > 2.0 for MST's peak current of 600 kA. Exploring the effect of increased density on NBI deposition shows that for MST's NBI, core deposition of 25 keV neutrals is optimized for densities of 2 -- 3 x 10^19 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. In addition, a modification to the injector has allowed operation using alternative pellet fuels with triple points significantly higher than that of deuterium (18.7 K). A small flow of helium into the pellet formation vacuum chamber introduces a controllable heat source capable of elevating the operating temperature of the injector. Injection of methane pellets with a triple point of 90.7 K results in a 12-fold increase in the core carbon impurity density. The flow rate is easily adjusted to optimize injector operating temperature for other fuel gases as well. Work supported by US DoE.

  12. Performance and operational improvements made to the Waukesha AT27-GL engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbold, E.O.

    1996-12-31

    This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less

  13. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  14. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  15. Effects of electric field on micro-scale flame properties of biobutanol fuel

    PubMed Central

    Xu, Tao; Chen, Qinglin; Zhang, Bingjian; Lu, Shushen; Mo, Dongchuan; Zhang, Zhengguo; Gao, Xuenong

    2016-01-01

    With the increasing need of smaller power sources for satellites, energy systems and engine equipment, microcombustion pose a potential as alternative power source to conventional batteries. As the substitute fuel source for gasoline, biobutanol shows more promising characteristics than ethanol. In this study, the diffusion microflame of liquid biobutanol under electric field have been examined through in-lab experiment and numerical simulation. It is found that traditional gas jet diffusion flame theory shows significant inconsistency with the experimental results of micro scale flame in electric field. The results suggest that with the increase of electric field intensity, the quenching flow rate decrease first and increase after it reach its minimum, while the flame height and highest flame temperature increase first and drop after its peak value. In addition, it was also observed that the flame height and highest temperature for smaller tube can reach its maximum faster. Therefore, the interaction between microscale effect and electric field plays a significant role on understanding the microcombustion of liquid fuel. Therefore, FLUENT simulation was adopted to understand and measure the impacts of microflame characteristic parameters. The final numerical results are consistent with the experimental data and show a high reliability. PMID:27609428

  16. TRACE/PARCS Analysis of ATWS with Instability for a MELLLA+BWR/5

    DOE PAGES

    L. Y. Cheng; Baek, J. S.; Cuadra, A.; ...

    2016-06-06

    A TRACE/PARCS model has been developed to analyze anticipated transient without SCRAM (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands allowable operation in the power/flow map of a BWR to low flow rates at high power conditions. Such operation exacerbates the likelihood of large amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural circulation flow in the reactor pressure vessel (RPV) after the trip of the recirculationmore » pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heat-up that could result in localized fuel damage. TRACE predicts the heat-up to occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet; and the fuel becomes “locked” into a film boiling regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.« less

  17. Optimization of experimental conditions for composite biodiesel production from transesterification of mixed oils of Jatropha and Pongamia

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandrashekara, K.; Pramod Kumar, M. R.

    2012-11-01

    India is looking at the renewable alternative sources of energy to reduce its dependence on import of crude oil. As India imports 70 % of the crude oil, the country has been greatly affected by increasing cost and uncertainty. Biodiesel fuel derived by the two step acid transesterification of mixed non-edible oils from Jatropha curcas and Pongamia (karanja) can meet the requirements of diesel fuel in the coming years. In the present study, different proportions of Methanol, Sodium hydroxide, variation of Reaction time, Sulfuric acid and Reaction Temperature were adopted in order to optimize the experimental conditions for maximum biodiesel yield. The preliminary studies revealed that biodiesel yield varied widely in the range of 75-95 % using the laboratory scale reactor. The average yield of 95 % was obtained. The fuel and chemical properties of biodiesel, namely kinematic viscosity, specific gravity, density, flash point, fire point, calorific value, pH, acid value, iodine value, sulfur content, water content, glycerin content and sulfated ash values were found to be within the limits suggested by Bureau of Indian Standards (BIS 15607: 2005). The optimum combination of Methanol, Sodium hydroxide, Sulfuric acid, Reaction Time and Reaction Temperature are established.

  18. Computer program for thermodynamic analysis of open cycle multishaft power system with multiple reheat and intercool

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1974-01-01

    A computer program to analyze power systems having any number of shafts up to a maximum of five is presented. On each shaft there can be as many as five compressors and five turbines, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included. Turbine coolant flow can be accounted for. Any fuel consisting entirely of hydrogen and/or carbon can be used. The program is valid for maximum temperatures up to about 2000 K (3600 R). The system description, the analysis method, a detailed explanation of program input and output including an illustrative example, a dictionary of program variables, and the program listing are explained.

  19. Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.; Kim, Y. S.; Hofman, G. L.

    2011-05-23

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections presentmore » the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.« less

  20. La0.8Sr0.2Fe0.8Cu0.2O3-δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte

    NASA Astrophysics Data System (ADS)

    Zurlo, Francesca; Di Bartolomeo, Elisabetta; D'Epifanio, Alessandra; Felice, Valeria; Natali Sora, Isabella; Tortora, Luca; Licoccia, Silvia

    2014-12-01

    A "cobalt-free" cathode material with stoichiometric composition La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu) was specifically developed for use with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte in intermediate temperature solid oxide fuel cell (IT-SOFC) systems. The chemical stability of LSFCu in contact with LSGM electrolyte was investigated by structural and morphological analysis. The electrochemical properties of LSFCu dense pellets were investigated in the temperature range 600-750 °C by electrochemical impedance spectroscopy (EIS). LSFCu|LSGM|LSFCu symmetrical cells were prepared and area specific resistance (ASR) values, directly depending on the rate limiting step of the oxygen reduction reaction, were evaluated. Fuel cells were prepared using LSFCu as cathode material on a LSGM pellet and electrochemical tests were performed in the 700-800 °C temperature range and compared to similar fuel cells prepared by using commercial La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFCo) as a cathode. The maximum current density and power density recorded for LSFCu and LSFCo were similar. This fact demonstrates that Cu can be used as Co substitute in perovskite cathode materials.

  1. Analysis and experimental investigation of ceramic powder coating on aluminium piston

    NASA Astrophysics Data System (ADS)

    Pal, S.; Deore, A.; Choudhary, A.; Madhwani, V.; Vijapuri, D.

    2017-11-01

    Energy conservation and efficiency have always been the quest of engineers concerned with internal combustion engines. The diesel engine generally offers better fuel economy than its counterpart petrol engine. Even the diesel engine rejects about two thirds of the heat energy of the fuel, one-third to the coolant, and one third to the exhaust, leaving only about one-third as useful power output. Theoretically if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. Low Heat Rejection engines aim to do this by reducing the heat lost to the coolant. Thermal Barrier Coatings (TBCs) in diesel engines lead to advantages including higher power density, fuel efficiency, and multifuel capacity due to higher combustion chamber temperature. Using TBC can increase engine power by 8%, decrease the specific fuel consumption by 15-20% and increase the exhaust gas temperature by 200K. Although several systems have been used as TBC for different purposes, yttria stabilized zirconia with 7-8 wt.% yttria has received the most attention. Several factors playing important role in TBC life include thermal conductivity, thermo chemical stability at the service temperature, high thermo mechanical stability to the maximum service temperature and thermal expansion coefficient (TEC). This work mainly concentrates on the behaviour of three TBC powders under the same diesel engine conditions. This work finds out the best powder among yttria, alumina and zirconia to be used as a piston coating material i.e., the one resulting in lowest heat flux and low side skirt and bottom temperature has been chosen for the coating purpose. This work then analyses the coated sample for its surface properties such as hardness, roughness, corrosion resistance and microstructural study. This work aims at making it easier for the manufacturers choose the coating material for engine coating purposes and surface properties for operating them in their service period.

  2. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  3. Theoretical Rocket Performance of Liquid Methane with Several Fluorine-Oxygen Mixtures Assuming Frozen Composition

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Kastner, Michael E

    1958-01-01

    Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.

  4. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    NASA Astrophysics Data System (ADS)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  5. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less

  6. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  7. Phosphonitrilic Fluoroelastomer Coated Fabrics for Collapsible Fuel Storage Tanks

    DTIC Science & Technology

    1979-07-01

    Coated F,,brics .*.... *• .. ...... ..... •---*..,- *... 97 36. Stabilizer Masterbatch Formulations R21960 and -601. 58 37- Banbury "BR" Mixes of P®FO...minutes total mix time. The mix is then dumped. Curing agent is then added to the masterbatch banded on a mill. Ambient temperature mills were generally...maximum flow. 0 minutes-load polymer. speed: slow (77 rpm) 2 minutes-add fillers 7 minutes-add stabilizer masterbatch 15 minutevk-dunip mix To obtain as

  8. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability.

    PubMed

    Násner, Albany Milena Lozano; Lora, Electo Eduardo Silva; Palacio, José Carlos Escobar; Rocha, Mateus Henrique; Restrepo, Julian Camilo; Venturini, Osvaldo José; Ratner, Albert

    2017-11-01

    This work deals with the development of a Refuse Derived Fuel (RDF) gasification pilot plant using air as a gasification agent. A downdraft fixed bed reactor is integrated with an Otto cycle Internal Combustion Engine (ICE). Modelling was carried out using the Aspen Plus™ software to predict the ideal operational conditions for maximum efficiency. Thermodynamics package used in the simulation comprised the Non-Random Two-Liquid (NRTL) model and the Hayden-O'Connell (HOC) equation of state. As expected, the results indicated that the Equivalence Ratio (ER) has a direct influence over the gasification temperature and the composition of the Raw Produced Gas (RPG), and effects of ER over the Lower Heating Value (LHV) and Cold Gasification Efficiency (CGE) of the RPG are also discussed. A maximum CGE efficiency of 57-60% was reached for ER values between 0.25 and 0.3, also an average reactor temperature values in the range of 680-700°C, with a peak LHV of 5.8MJ/Nm 3 . RPG was burned in an ICE, reaching an electrical power of 50kW el . The economic assessment of the pilot plant implementation was also performed, showing the project is feasible, with power above 120kW el with an initial investment of approximately US$ 300,000. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improved austenitic stainless steel for high temperature applications. [Improved stress-rupture properties

    DOEpatents

    Not Available

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  10. Fabrication and performance analysis of a low cost parabolic type solar cooker

    NASA Astrophysics Data System (ADS)

    Akter, Farhana Nasrin; Islam, Muhammed Kamrul; Begum, Nurun Nahar

    2017-06-01

    Developing countries depend mostly on natural fuel sources such as wood fuel, fossil fuel (kerosene and liquid petroleum gas) etc. for cooking purpose. However, these are expensive and also lead to the threads like deforestation as well as environmental degradation. An alternative renewable energy source like solar energy can contribute a solution towards the adverse crisis of fuel consumption along with environmental pollution of developing countries. Therefore, this study aims to design and fabricate a cost effective solar cooker for domestic purposes as well as performance analysis in order to evaluate its effectiveness. The cooker has been made of cardboard, tin, aluminum foil (polished and non-polished) and glass. Simple construction with reflectors surrounded by tin was fabricated with 1000ml load of water in the cooker hanging by a stand and observed that the best comparative performance in areas with longest durations of clear sky greatest direct ray falling on the collector cookers under moderate cloudy conditions. By applying better techniques for construction of solar cooker with low maintenance through testing and graphing the result, increasing of temperature with minimum cost for cooking purpose was outcome with portable cooker. In this analysis, analytical and experimental values varied due to fickle weather, however, maximum temperature variation was found 36 degree Celsius with efficiency 8.8% in the cooker made of aluminum foil (non-polished).

  11. The effect of exhaust-to-coolant heat transfer on warm-up time and fuel consumption of two automobile engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goettler, H.J.; Vidger, L.J.; Majkrzak

    A 1977 Buick V-6 engine and a 1981 Ford Granada automobile were equipped with heat exchangers to transfer energy from the exhaust gases to the cooling water after cold starts in order to shorten engine warm-up periods and improve fuel economy. A parallel concern was the time required to reach satisfactory heat delivery to the passenger compartment. The Buick engine was investigated in the laboratory. The Ford automobile was tested during driving over a 12.4 km length of freeway and over an 8.6 km test route including both in-town and highway segments. Prior to each test run the engines weremore » exposed to ambient air for at least 8 hours at temperatures ranging from -26/sup 0/C to +2/sup 0/C. The use of the heat exchangers resulted in average reductions of fuel consumption of 2.8% during a 7 minute warm-up period for the engine, and of 2.2% for the automobile when tested on the above test routes. The corresponding times for the coolant in the automobile compartment heater to reach maximum temperature were reduced by 16% and 7%. While fuel savings were achieved, their economic value is questionable, particularly in light of a possible retrofit of an existing automobile with an exhaust-to-coolant heat exchanger and the necessary control equipment.« less

  12. Wireless sensors powered by microbial fuel cells.

    PubMed

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.

  13. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  14. A novel layered perovskite cathode for proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Xue, Xingjian; Liu, Xingqin; Meng, Guangyao

    BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY7) exhibits adequate proton conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered SmBa 0.5Sr 0.5Co 2O 5+ δ (SBSC) perovskite demonstrates advanced electrochemical properties based on doped ceria electrolyte. This research fully takes advantage of these advanced properties and develops novel protonic ceramic membrane fuel cells (PCMFCs) of Ni-BZCY7|BZCY7|SBSC. The results show that the open-circuit potential of 1.015 V and maximum power density of 533 mW cm -2 are achieved at 700 °C. With temperature increase, the total cell resistance decreases, among which electrolyte resistance becomes increasingly dominant over polarization resistance. The results also indicate that SBSC perovskite cathode is a good candidate for intermediate temperature PCMFC development, while the developed Ni-BZCY7|BZCY7|SBSC cell is a promising functional material system for next generation SOFCs.

  15. Comparison of Performance of AN-F-58 Fuel and Gasoline in J34-WE-22 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Dowman, Harry W; Younger, George G

    1949-01-01

    As part of an investigation of the performance of AN-F-58 fuel in various types of turbojet engine, the performance of this fuel in a 3000-pound-thrust turbojet engine has been investigated in an altitude test chamber together with the comparative performance of 62-octane gasoline. The investigation of normal engine performance, which covered a range of engine speeds at altitudes from 5000 to 50,000 feet and flight Mach numbers up to 1.00, showed that both the net thrust and average turbine-outlet temperatures were approximately the same for both fuels. The specific fuel consumption and the combustion efficiency at the maximum engine speeds investigated were approximately the same for both fuels at altitudes up to 35,000 feet, but at an altitude of 50,000 feet the specific fuel consumption was about 9 percent higher and the combustion efficiency was correspondingly lower with the AN-F-58 fuel than with gasoline. The low-engine-speed blow-out limits were about the same for both fuels. Ignition of AN-F-58 fuel with the standard spark plug was possible only with the spark plug in a clean condition; ignition was impossible at all flight conditions investigated when the plug was fouled by an accumulation of liquid fuel from a preceding false start. Use of an extended-electrode spark plug provided satisfactory ignition over a slightly smaller range of altitudes and flight Mach numbers than for gasoline with the standard spark plug.

  16. Synthesis and characterization of La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.

    2015-08-15

    Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275more » °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.« less

  17. Alternative Fuels Data Center

    Science.gov Websites

    Natural Gas Vehicle (NGV) Weight Exemption NGVs may exceed the federal maximum gross vehicle weight the weight of a comparable diesel tank and fueling system. The NGV must not exceed a maximum gross

  18. 33 CFR 183.558 - Hoses and connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (A) The hose is severed at the point where maximum drainage of fuel would occur, (B) The boat is in its static floating position, and (C) The fuel system is filled to the capacity market on the tank... minutes when: (A) The hose is severed at the point where maximum drainage of fuel would occur, (B) The...

  19. JP-8+100: The development of high-thermal-stability jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Zabarnick, S.; Ballal, D.R.

    1996-09-01

    Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel not only provides the propulsive energy for flight, but also is the primary coolant for aircraft and engine subsystems. To meet the evolving challenge of improving the cooling potential of jet fuel while maintaining the current availability at a minimal price increase, the US Air Force, industry, and academia have teamed to develop an additive package for JP-8 fuels. This paper describes themore » development of an additive package for JP-8, to produce JP-8+100. This new fuel offers a 55 C increase in the bulk maximum temperature (from 325 F to 425 F) and improves the heat sink capability by 50%. Major advances made during the development JP-8 + 100 fuel include the development of several new quantitative fuel analysis tests, a free radical theory of autooxidation, adaptation of new chemistry models to computational fluid dynamics programs, and a nonparametric statistical analysis to evaluate thermal stability. Hundreds of additives were tested for effectiveness, and a package of additives was then formulated for JP-8 fuel. This package has been tested for fuel system materials compatibility and general fuel applicability. To date, the flight testing ha shown an improvement in thermal stability of JP-8 fuel. This improvement has resulted in a significant reduction in fuel-related maintenance costs and a threefold increase in mean time between fuel-related failures. In this manner, a novel high-thermal-stability jet fuel for the 21st century has been successfully developed.« less

  20. A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions.

    PubMed

    Yamada, Yusuke; Yoneda, Masaki; Fukuzumi, Shunichi

    2013-08-26

    A robust one-compartment H2O2 fuel cell, which operates without membranes at room temperature, has been constructed by using a series of polynuclear cyanide complexes that contain Fe, Co, Mn, and Cr as cathodes, in sharp contrast to conventional H2 and MeOH fuel cells, which require membranes and high temperatures. A high open-circuit potential of 0.68 V was achieved by using Fe3[{Co(III)(CN)6}2] on a carbon cloth as the cathode and a Ni mesh as the anode of a H2O2 fuel cell by using an aqueous solution of H2O2 (0.30  M, pH 3) with a maximum power density of 0.45 mW cm(-2). The open-circuit potential and maximum power density of the H2O2 fuel cell were further increased to 0.78 V and 1.2 mW cm(-2), respectively, by operation under these conditions at pH 1. No catalytic activity of Co3[{Co(III)(CN)6}2] and Co3[{Fe(III)(CN)6}2] towards H2O2 reduction suggests that the N-bound Fe ions are active species for H2O2 reduction. H2O2 fuel cells that used Fe3[{Mn(III)(CN)6}2] and Fe3[{Cr(III)(CN)6}2] as the cathode exhibited lower performance compared with that using Fe3[{Co(III)(CN)6}2] as a cathode, because ligand isomerization of Fe3[{M(III)(CN)6}2] into (FeM2)[{Fe(II)(CN)6}2] (M = Cr or Mn) occurred to form inactive Fe-C bonds under ambient conditions, whereas no ligand isomerization of Fe3[{Co(III)(CN)6}2] occurred under the same reaction conditions. The importance of stable Fe(2+)-N bonds was further indicated by the high performance of the H2O2 fuel cells with Fe3[{Ir(III)(CN)6}2] and Fe3[{Rh(III)(CN)6}2], which also contained stable Fe(2+)-N bonds. The stable Fe(2+)-N bonds in Fe3[{Co(III)(CN)6}2], which lead to high activity for the electrocatalytic reduction of H2O2, allow Fe3[{Co(III)(CN)6}2] to act as a superior cathode in one-compartment H2O2 fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative study of Ce0.80Sm0.20 Ba0.80Y0.20O3-δ (YB-SDC) electrolyte by various chemical synthesis routes

    NASA Astrophysics Data System (ADS)

    Tariq, Sana; Marium, Aniqa; Raza, Rizwan; Ashfaq Ahmad, M.; Ajmal Khan, M.; Abbas, Ghazanfar; Waseem Boota, M.; Khalid Imran, S.; Arshad, Sarfraz; Ikram, Muhammad

    2018-03-01

    Solid Oxide Fuel Cells is received a significant attention in recent years due to higher efficiency and fuel flexibility. The one of the main challenge for SOFC is to lower the operating temperature of SOFCs. Therefore, different strategies are used in order to enhance the ionic conduction of electrolyte, which can lower the overall SOFC operating temperature. The present work is focused on this strategy to enhance the electrolytic conductivity. Therefore, the ceria based composite electrolytes Ce0.80Sm0.20B0.80Y0.20O3-δ (YBSDC) are synthesized using three different approaches i.e. co-precipitation (YBSDC-1), sol-gel (YBSDC-2) and ball milling (YBSDC-3). Their crystal structures and surface morphologies are characterized through X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. The four-probe technique is employed to measure their dc conductivities in the temperature range (300-700) °C under air atmosphere. The open circuit voltage (OCV) and current are recorded with natural gas as fuel {flow rate kept at 100 ml min-1 at 1 atm pressure} over the temperature range (300-600) °C. The electrolyte (YBSDC-1) prepared by co-precipitation technique is shown better results as compare to other two electrolytes (YBSDC-2 and YBSDC-3). The electrolyte (YBSDC-1) having maximum dc conductivity (0.096 S/cm), peak power density 224 mW cm-2 and OCV 0.94 V at 600 °C. These results show that YBSDC-1electrolyte is potential candidate for low temperature SOFCs.

  2. Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds

    NASA Astrophysics Data System (ADS)

    Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.

    2012-06-01

    Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF feedstock on the temperature distribution profile along the gasifier bed showed that initial moisture content of feedstock in the range of 15% gives satisfactory result, while experiment with feedstock having higher moisture content resulted in lower zone temperature values.

  3. High-Performance Bipropellant Engine

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Schneider, Steven J.

    1999-01-01

    TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance (15 to 20 sec). To determine the merits of a powder rhenium thrust chamber, Lewis On-Board Propulsion Branch directed TRW (under the Space Storable Rocket Technology Program and the High Pressure Earth Storable Rocket Technology Program) to design, fabricate, and test an engineering model to serve as a technology demonstrator.

  4. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    NASA Astrophysics Data System (ADS)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  5. The Impacts of Rising Temperatures on Aircraft Takeoff Performance

    NASA Technical Reports Server (NTRS)

    Coffel, Ethan; Thompson, Terence R.; Horton, Radley M.

    2017-01-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10 - 30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high temperatures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  6. Performance and Thrust-to-Weight Optimization of the Dual-Expander Aerospike Nozzle Upper Stage Rocket Engine

    DTIC Science & Technology

    2012-06-01

    calculates a constant convection heat transfer coefficient on the hot and cold side of the cooling jacket wall. The calculated maximum wall temperature for...regeneratively cools the combustion chamber and nozzle. The heat transferred to the fuel from cooling provides enough power to the turbine to power both... heat transfer at the throat compared to a bell nozzle. This increase in heat transfer surface area means more power to the turbine, increased chamber

  7. Selection of Batteries and Fuel Cells for Yucca Mountain Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, R S

    2003-12-08

    The Performance Confirmation program of the Yucca Mountain Repository Development Project needs to employ remotely operated robots to work inside the emplacement drifts which will have an environment unsuitable for humans (radiation environment of up to 200 rad/hour (mostly gamma rays, some neutrons)) and maximum temperatures of 180 C. The robots will be required to operate inside the drifts for up to 8 hours per mission. Based on available functional requirements, we have developed the following specifications for the power needed by the robots:

  8. An analysis of the sliding pressure start-up of SCWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.; Yang, J.; Li, H.

    In this paper, the preliminary sliding pressure start-up system and scheme of supercritical water-cooled reactor in CGNPC (CGN-SCWR) were proposed. Thermal-hydraulic behavior in start-up procedures was analyzed in detail by employing advanced reactor subchannel analysis software ATHAS. The maximum cladding temperature (MCT for short) and core power of fuel assembly during the whole start-up process were investigated comparatively. The results show that the recommended start-up scheme meets the design requirements from the perspective of thermal-hydraulic. (authors)

  9. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  10. AGR-3/4 Irradiation Test Predictions using PARFUME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skerjanc, William Frances; Collin, Blaise Paul

    2016-03-01

    PARFUME, a fuel performance modeling code used for high temperature gas reactors, was used to model the AGR-3/4 irradiation test using as-run physics and thermal hydraulics data. The AGR-3/4 test is the combined third and fourth planned irradiations of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The AGR-3/4 test train consists of twelve separate and independently controlled and monitored capsules. Each capsule contains four compacts filled with both uranium oxycarbide (UCO) unaltered “driver” fuel particles and UCO designed-to-fail (DTF) fuel particles. The DTF fraction was specified to be 1×10-2. This report documents the calculations performed to predictmore » failure probability of TRISO-coated fuel particles during the AGR-3/4 experiment. In addition, this report documents the calculated source term from both the driver fuel and DTF particles. The calculations include the modeling of the AGR-3/4 irradiation that occurred from December 2011 to April 2014 in the Advanced Test Reactor (ATR) over a total of ten ATR cycles including seven normal cycles, one low power cycle, one unplanned outage cycle, and one Power Axial Locator Mechanism cycle. Results show that failure probabilities are predicted to be low, resulting in zero fuel particle failures per capsule. The primary fuel particle failure mechanism occurred as a result of localized stresses induced by the calculated IPyC cracking. Assuming 1,872 driver fuel particles per compact, failure probability calculated by PARFUME leads to no predicted particle failure in the AGR-3/4 driver fuel. In addition, the release fraction of fission products Ag, Cs, and Sr were calculated to vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 7 reaching up to 56% for the driver fuel and 100% for the DTF fuel. The release fraction of the other two fission products, Cs and Sr, are much smaller and in most cases less than 1% for the driver fuel. The notable exception occurs in Capsule 7 where the release fraction for Cs and Sr reach up to 0.73% and 2.4%, respectively, for the driver fuel. For the DTF fuel in Capsule 7, the release fraction for Cs and Sr are estimated to be 100% and 5%, respectively.« less

  11. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae

    2013-02-01

    In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.

  12. Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.

  13. Fuel clad chemical interactions in fast reactor MOX fuels

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.

    2014-01-01

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel-Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ṡ [B/(at.% fission)] ṡ (T/K-705) ṡ [(O/M)i-1.935]} + 20.5) for (O/M)i ⩽ 1.98. A new model is proposed for (O/M)i ⩾ 1.98: d/μm = [B/(at.% fission)] ṡ (T/K-800)0.5 ṡ [(O/M)i-1.94] ṡ [P/(W cm-1)]0.5. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M)i is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  14. Low temperature chemical processing of graphite-clad nuclear fuels

    DOEpatents

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  15. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    NASA Astrophysics Data System (ADS)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  16. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  17. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    PubMed

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study.

    PubMed

    Hanif, Muhammad Usman; Capareda, Sergio C; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products.

  19. Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor

    NASA Astrophysics Data System (ADS)

    Regitz, S.; Collings, N.

    2008-07-01

    A crucial parameter influencing the formation of pollutant gases in internal combustion engines is the air-to-fuel ratio (AFR). During transients on gasoline and diesel engines, significant AFR excursions from target values can occur, but cycle-by-cycle AFR resolution, which is helpful in understanding the origin of deviations, is difficult to achieve with existing hardware. This is because current electrochemical devices such as universal exhaust gas oxygen (UEGO) sensors have a time constant of 50-100 ms, depending on the engine running conditions. This paper describes the development of a fast reacting device based on a wide band lambda sensor which has a maximum time constant of ~20 ms and enables cyclic AFR measurements for engine speeds of up to ~4000 rpm. The design incorporates a controlled sensor environment which results in insensitivity to sample temperature and pressure. In order to guide the development process, a computational model was developed to predict the effect of pressure and temperature on the diffusion mechanism. Investigations regarding the sensor output and response were carried out, and sensitivities to temperature and pressure are examined. Finally, engine measurements are presented.

  20. Effects of carbonization and solvent-extraction on change in fuel characteristics of sewage sludge.

    PubMed

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-09-01

    Urban sewage sludge was carbonized at 300-500°C for 1h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360°C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300°C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm(-1) was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (T(i)) or maximum weight loss rate (DTG(max)) of coal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Advanced materials for radiation-cooled rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  2. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  3. Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  4. High-freezing-point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. The higher-freezing-point fuels can be substituted in the majority of present commercial flights, since temperature data indicate that in-flight fuel temperatures are relatively mild. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple system design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating. Both systems offer advantages that outweigh the obvious penalties.

  5. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    PubMed Central

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  6. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    PubMed

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  7. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  8. A long-term stable power supply µDMFC stack for wireless sensor node applications

    NASA Astrophysics Data System (ADS)

    Wu, Zonglin; Wang, Xiaohong; Li, Xiaozhao; Xu, Manqi; Liu, Litian

    2014-10-01

    In this paper, a passive, air-breathing four-cell micro direct methanol fuel cell (µDMFC) stack featuring a fuel delivery structure for long-term and stable power supply is designed, fabricated and tested. The fuel is reserved in a T-shaped tank and diffuses through the porous diffusion layer to the catalyst at the anode. A peak power density of 25.7 mW cm-2 and a maximum power output of 113 mW are achieved with 3 M methanol at room temperature, and the stack can produce 60 mW of power, even though only 5% fuel remains in the reservoir. Combined with a low-input dc-dc convertor, the stack can realize a stable and optional constant voltage output from 1 V-6 V. The stack successfully powered a heavy metal sensor node for water environment monitoring 12 d continuously, with consumption of 10 mL 5 M methanol solution. As such, it is believed to be applicable for powering wireless sensor nodes.

  9. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    PubMed Central

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556

  10. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  11. Influence of fuel temperature on atomization performance of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Lefebvre, A. H.

    The influence of fuel temperature on mean drop size and drop-size distribution is examined for aviation gasoline and diesel oil, using three pressure-swirl simplex nozzles. Spray characteristics are measured over wide ranges of fuel injection pressure and ambient air pressure using a Malvern spray analyzer. Fuel temperatures are varied from -20 C to +50 C. Over this range of temperature, the overall effect of an increase in fuel temperature is to reduce the mean drop size and broaden the distribution of drop sizes in the spray. Generally, it is found that the influence of fuel temperature on mean drop size is far more pronounced for diesel oil than for gasoline. For both fuels the beneficial effect of higher fuel temperatures on atomization quality is sensibly independent of ambient air pressure.

  12. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: A computational and experimental study

    NASA Astrophysics Data System (ADS)

    Cao, Su; Ma, Bin; Giassi, Davide; Bennett, Beth Anne V.; Long, Marshall B.; Smooke, Mitchell D.

    2018-03-01

    In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane-air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P-1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.

  13. Oxides of Nitrogen Emissions from the Combustion of Monodisperse Liquid Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sarv, H.

    1985-01-01

    A study of NO sub x formation in a one dimensional monodisperse spray combustion system, which allowed independent droplet size variation, was conducted. Temperature, NO and NO sub x concentrations were measured in the transition region, encompassing a 26 to 74 micron droplet size range. Emission measurements of hydrocarbons, carbon monoxide, carbon dioxide and oxygen were also made. The equivalence ratio was varied between 0.8 and 1.2 for the fuels used, including methanol, isopropanaol, n-heptane and n-octane. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives in order to simulate synthetic fuels. Results obtained from the postflame regions using the pure fuels indicate an optimum droplet size in the range of 43 to 58 microns for minimizing NO sub x production. For the fuels examined, the maximum NO sub x reductions relative to the small droplet size limit were about 10 to 20% for lean and 20 to 30% for stoichiometric and rich mixtures. This behavior is attributed to droplet interactions and the transition from diffusive to premixed type of burning. Preflame vaporization controls the gas phase stoichiometry which has a significant effect on the volume of the hot gases surrounding a fuel droplet, where NO sub x is formed.

  14. Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torelli, R.; Som, S.; Pei, Y.

    Spray formation in internal combustion engines with direct injection is strictly correlated with internal nozzle flow characteristics, which are in turn influenced by fuel physical properties and injector needle motion. This paper pre-sents a series of 3D simulations that model the in-nozzle flow in a 5-hole mini-sac diesel injector. Two gasoline-like naphtha fuels, namely full-range and light naphtha, were tested under operating conditions typical of diesel applica-tions and were compared with n-dodecane, selected from a palette used as diesel surrogates. Validated methodolo-gies from our previous work were employed to account for realistic needle motion. The multi-phase nature of the problemmore » was described by the mixture model assumption with the Volume of Fluid method. Cavitation effects were included by means of the Homogeneous Relaxation Model and turbulence closure was achieved with the Standard k-ε model in an Unsteady Reynolds-Averaged Navier-Stokes formulation. The results revealed that injector perfor-mance and propensity to cavitation are influenced by the fuel properties. Analyses of several physical quantities were carried out to highlight the fuel-to-fuel differences in terms of mass flow rate, discharge coefficients, and fuel vapor volume fraction inside the orifices. A series of parametric investigations was also performed to assess the fuel response to varied fuel injection temperature, injection pressure, and cross-sectional orifice area. For all cases, the strict correlation between cavitation magnitude and saturation pressure was confirmed. Owing to their higher volatil-ity, the two gasoline-like fuels were characterized by higher cavitation across all the simulated conditions. Occur-rence of cavitation was mostly found at the needle seat and at the orifice inlets during the injection event’s transient, when very small gaps exist between the needle and its seat. This behavior tended to disappear at maximum needle lift, where cavitation was absent for all fuels. Differences in mass flow rate between the naphtha fuels and n-dodecane were measured and ascribed to the different densities of the three fuels. Nevertheless, they were found to be smaller than expected, owing to the lower viscosity of the gasoline-like fuels. This beneficial influence of the lower viscosity was shown to be less effective at higher temperature, where the relative viscosity differences de-creased.« less

  15. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  16. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  17. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  18. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  19. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  20. Study on component interface evolution of a solid oxide fuel cell stack after long term operation

    NASA Astrophysics Data System (ADS)

    Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian

    2018-05-01

    A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.

  1. Diesel engine fuel consumption and emission analysis using steam generated non-surfactant water-in-diesel emulsion fuel

    NASA Astrophysics Data System (ADS)

    Avianto Sugeng, Dhani; Zahari, Mohamad Fathur Hafeezat Mohd; Muhsin Ithnin, Ahmad; Jazair Yahya, Wira

    2017-10-01

    Efforts in making water in diesel emulsion (W/D) with the absence of surfactant have been developed to address the issues of long-term stability and the dependence on surfactants. This paper discusses an alternative formation method of a non-surfactant W/D, e.g. by steam condensation. By injecting steam into a batch of colder diesel fuel, fine water droplets are formed and suspended in the fuel forming an emulsion. The droplets are confirmed to be in the size range of hundreds of nanometers. The emissions of NOx is reduced by a maximum of 71%, whereas the CO and UHC emissions are increased by maximum respectively 180% and a surprising 517%. Not less interesting is the lower BSFC which was measured at a maximum reduction of 18.4%. These results on emission analysis together with the brake specific fuel consumption confirm this method to resemble the combustion behaviour of a conventional emulsion fuel of lower NOx and BSFC, yet higher CO and UHC

  2. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell

    PubMed Central

    Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang

    2013-01-01

    A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032

  3. Temperature feedback of TRIGA MARK-II fuel

    NASA Astrophysics Data System (ADS)

    Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.

    2016-01-01

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  4. Inflight fuel tank temperature survey data

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  5. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.

    PubMed

    Wang, Zhi-Hua; Zhou, Jun-Hu; Zhang, Yan-Wei; Lu, Zhi-Min; Fan, Jian-Ren; Cen, Ke-Fa

    2005-03-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15% approximately 25% reburn heat input, temperature range from 1100 degrees C to 1400 degrees C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 degrees C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 degrees C approximately 1100 degrees C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NO(x) Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.

  6. Experiment and mechanism investigation on advanced reburning for NOx reduction: influence of CO and temperature

    PubMed Central

    Wang, Zhi-hua; Zhou, Jun-hu; Zhang, Yan-wei; Lu, Zhi-min; Fan, Jian-ren; Cen, Ke-fa

    2005-01-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C~1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures. PMID:15682503

  7. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  9. Performance evaluation of an automotive thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  10. Ram-Jet off Design Performances

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto

    2002-01-01

    In this work it is intended to study the off-design performances of a ram jet engine. To this purpouse it has been analyzed in a first time the behaviour of an ideal engine, that means to not consider the losses in the various components, or, under a thermodynamic point of view, to consider the fluid transformation through the air intake and exhaust nozzle, remembering that in a ram jet there are not rotating components as compressor and turbine, isentropic. Referring to the ram-jet scheme of fig.1. we can say, neglecting the fuel introduced, that the air mass flow rate throughout the engine is constant. If we consider the two control sections 4 and 8, respectively the throat section of the converging-diverging supersonic inlet and the throat section of the discharge nozzle, the condition of constant mass flow leads to the relation: m4 =f (M 4 ) m8 = m 4 = m8 We can imaging that the throat section # 4 is always choked for any value of the flight Mach number M0. This means that the throat section 4 is adjusted at any value of M0 so that the flow Mach number in 4 is equal to unity. In this it follows: R. Andriani, U. Ghezzi1 Since in an ideal case T t8 The relation [1] allows to determine the T8 temperature, that represent the maximum cycle temperature, for different operating conditions, as flight Mach number and altitude. We then have two cases: the first is A8 (nozzle throat section) fixed, and the second is A8 variable. In the first case the maximum temperature T8 is univocally determined by the operating condition. In the second case A8 can be varied so to maintain T8 at a chosen value. The graphic of fig.2 shows the first case. In particular it has been considered as design point an altitude of 15000 meters and a flight Mach number equal to 2. In this condition it has been evaluated the section A8 for unity mass flow rate. At the same altitude, varying the flight Mach number, with the section A4 always choked, the graphic shows the variation of the maximum cycle temperature according to the equation *. We notice as the temperature raises to unacceptable levels as we accelerate from the design point. For instance we can see as if we move to flight Mach number 2.2 the maximum temperature raises from 1800 Kelvin degrees (design point) to more than 2900 [K], a value practically unreachable. This shows as the ramjet with fixed discharge nozzle allows very little variation of the operating conditions around the design point. If we consider instead the possibility to vary the nozzle section A8 we can imagine to adjust it so to maintain constant the temperature T8, according to the relation *. The graphics of fig.3 show the area variation required to the section A8 to maintain constant the temperature T8 at the same altitude for different values of the flight Mach number. Considering a circular section, on the same R. Andriani, U. Ghezzi2 picture is reported the corresponding variation of the diameter. On the Y-axis it is reported the ratio between the entity (section and diameter) at the considered condition and at the design point. For the case of A8 section variable it has also been evaluated the behavior of the specific fuel consumption, the mass flow rate and the thrust. In fig.4 they are reported the behavior TSFC and Fuel/air ratio at different flight Mach numbers, and the ratio between them and the design value. In fig .5 it is reported the ratio between the thrust and mass flow rate at different flight conditions and their value at design point. R. Andriani, U. Ghezzi3

  11. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    NASA Astrophysics Data System (ADS)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Akatsuka, Wataru; Tsujimura, Seiya; Nishioka, Yasushiro

    2013-12-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm2 was realized by introducing a 200 mM concentrated glucose solution at room temperature.

  12. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    NASA Astrophysics Data System (ADS)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  13. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  14. Potential utilization of sorghum field waste for fuel ethanol production employing Pachysolen tannophilus and Saccharomyces cerevisiae.

    PubMed

    Sathesh-Prabu, C; Murugesan, A G

    2011-02-01

    In this study, we demonstrate that the sorghum field waste, sorghum stover could be used to produce fuel grade ethanol. The alkaline treatment of 2% NaOH for 8h removed 64% of lignin from sorghum stover. Maximum of 68 and 56 g/L of ethanol yield were obtained by Saccharomyces cerevisiae (MTCC 173) and Pachysolen tannophilus (MTCC 1077) from sorghum stover under optimized condition, respectively. pH and temperature were optimized for the better growth of S. cerevisiae and P. tannophilus. A total of 51% and 48% more ethanol yield was obtained at initial sugar concentration of 200 g/L than 150 g/L by P. tannophilus and S. cerevisiae, respectively. Respiratory deficiency and ethanol tolerance of the organisms were studied. This investigation showed that sorghum field waste could be effectively used for the production of fuel ethanol to avoid conflicts between human food use and industrial use of crops. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. 40 CFR 1066.950 - Fuel temperature profile.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel temperature profile. 1066.950 Section 1066.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... Test Procedures for Motor Vehicles § 1066.950 Fuel temperature profile. Develop fuel temperature...

  16. AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Lambert; B. Grover; P. Guillermier

    AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the referencemore » in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies performed by INL team, and preliminary thermal mechanical ATLAS calculations were carried out by CEA from this pre-design. Despite the mean burn-up achieved in approximately 600 EFPD being a little high (16.3% FIMA max. associated with a low fluence up to 2.85 × 1025 n/m2), this irradiation will nevertheless encompass the range of irradiation effects covered in our experimental objectives (maximum stress peak at start of irradiation then sign inversion of the stress in the SiC layer). In addition, the fluence and burn-up acceleration factors are very similar to those of the German reference experiments. This experimental irradiation began in July 2010 in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and first results have been acquired.« less

  17. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 2. Properties of energy carriers and energy yield.

    PubMed

    Richter, F; Fricke, T; Wachendorf, M

    2011-04-01

    In order to determine influencing parameters on energy production of the IFBB process, herbage from a lowland hay meadow (Arrhenaterion) was sampled and ensiled at eight dates between 27 April and 21 June 2007. The silage from each date was processed in six IFBB treatments with and without hydrothermal conditioning at different temperatures. Methane yields and higher heating values were determined and an energy balance was calculated with whole-crop digestion (WCD) of the silage as reference system. Maximum net energy yields were 10.2 MWh ha(-1) for the IFBB treatment without hydrothermal conditioning and 9.0 MWh ha(-1) for the treatment with hydrothermal conditioning at 50 °C. WCD achieved a maximum net energy yield of 3.7 MWh ha(-1). Energy conversion efficiency ranged from 0.24 to 0.54 and was predicted with high accuracy by temperature of hydrothermal conditioning as well as concentration of neutral detergent fibre and dry matter in the silage (R(2)=0.90). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  19. New Rhenium-Doped SrCo1−xRexO3−δ Perovskites Performing as Cathodes in Solid Oxide Fuel Cells

    PubMed Central

    Troncoso, Loreto; Gardey, María Celeste; Fernández-Díaz, María Teresa; Alonso, José Antonio

    2016-01-01

    In the aim to stabilize novel three-dimensional perovskite oxides based upon SrCoO3−δ, we have designed and prepared SrCo1−xRexO3−δ phases (x = 0.05 and 0.10), successfully avoiding the competitive hexagonal 2H polytypes. Their performance as cathode materials in intermediate-temperature solid oxide fuel cells (IT-SOFC) has been investigated. The characterization of these oxides included X-ray (XRD) and in situ temperature-dependent neutron powder diffraction (NPD) experiments for x = 0.10. At room temperature, SrCo1−xRexO3−δ perovskites are defined in the P4/mmm space group, which corresponds to a subtle tetragonal perovskite superstructure with unit-cell parameters a = b ≈ ao, c = 2ao (ao = 3.861 and 3.868 Å, for x = 0.05 and 0.10, respectively). The crystal structure evolves above 380 °C to a simple cubic perovskite unit cell, as observed from in-situ NPD data. The electrical conductivity gave maximum values of 43.5 S·cm−1 and 51.6 S·cm−1 for x = 0.05 and x = 0.10, respectively, at 850 °C. The area specific resistance (ASR) polarization resistance determined in symmetrical cells is as low as 0.087 Ω·cm2 and 0.065 Ω·cm2 for x = 0.05 and x = 0.10, respectively, at 850 °C. In single test cells these materials generated a maximum power of around 0.6 W/cm2 at 850 °C with pure H2 as a fuel, in an electrolyte-supported configuration with La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) as the electrolyte. Therefore, we propose the SrCo1−xRexO3−δ (x = 0.10 and 0.05) perovskite oxides as promising candidates for cathodes in IT-SOFC. PMID:28773844

  20. Evaluation of friction heating in cavitating high pressure Diesel injector nozzles

    NASA Astrophysics Data System (ADS)

    Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, Lifeng; Li, Jason; Marengo, M.; Gavaises, M.

    2015-12-01

    Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools.

  1. Temperature feedback of TRIGA MARK-II fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Minhat, M. S.; Rabir, M. H.

    2016-01-22

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperaturemore » is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.« less

  2. Sensitivity Analysis of Fuel Centerline Temperatures in SuperCritical Water-cooled Reactors (SCWRs)

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman

    SuperCritical Water-cooled Reactors (SCWRs) are one of the six nuclear-reactor concepts currently being developed under the Generation-IV International Forum (GIF). A main advantage of SCW Nuclear Power Plants (NPPs) is that they offer higher thermal efficiencies compared to those of current conventional NPPs. Unlike today's conventional NPPs, which have thermal efficiencies between 30 - 35%, SCW NPPs will have thermal efficiencies within a range of 45 - 50%, owing to high operating temperatures and pressures (i.e., coolant temperatures as high as 625°C at 25 MPa pressure). The use of current fuel bundles with UO2 fuel at the high operating parameters of SCWRs may cause high fuel centerline temperatures, which could lead to fuel failure and fission gas release. Studies have shown that when the Variant-20 (43-element) fuel bundle was examined at SCW conditions, the fuel centerline temperature industry limit of 1850°C for UO2 and the sheath temperature design limit of 850°C might be exceeded. Therefore, new fuel-bundle designs, which comply with the design requirements, are required for future use in SCWRs. The main objective of this study to conduct a sensitivity analysis in order to identify the main factors that leads to fuel centerline temperature reduction. Therefore, a 54-element fuel bundle with smaller diameter of fuel elements compared to that of the 43-element bundle was designed and various nuclear fuels are examined for future use in a generic Pressure Tube (PT) SCWR. The 54-element bundle consists of 53 heated fuel elements with an outer diameter of 9.5 mm and one central unheated element of 20-mm outer diameter which contains burnable poison. The 54-element fuel bundle has an outer diameter of 103.45 mm, which is the same as the outer diameter of the 43-element fuel bundle. After developing the 54-element fuel bundle, one-dimensional heat-transfer analysis was conducted using MATLAB and NIST REFPROP programs. As a result, the Heat Transfer Coefficient (HTC), bulk-fluid, sheath and fuel centerline temperature profiles were generated along the heated length of 5.772 m for a generic fuel channel. The fuel centerline and sheath temperature profiles have been determined at four Axial Heat Flux Profiles (AHFPs) using an average thermal power per channel of 8.5 MWth. The four examined AHFPs are the uniform, cosine, upstream-skewed and downstream-skewed profiles. Additionally, this study focuses on investigating a possibility of using low, enhanced and high thermal-conductivity fuels. The low thermal-conductivity fuels, which have been examined in this study, are uranium dioxide (UO 2), Mixed Oxide (MOX) and Thoria (ThO2) fuels. The examined enhanced thermal-conductivity fuels are uranium dioxide - silicon carbide (UO2 - SiC) and uranium dioxide - beryllium oxide (UO2 - BeO). Lastly, uranium carbide (UC), uranium dicarbide (UC2) and uranium nitride (UN) are the selected high thermal-conductivity fuels, which have been proposed for use in SCWRs. A comparison has been made between the low, enhanced and high thermal-conductivity fuels in order to identify the fuel centerline temperature behaviour when different nuclear fuels are used. Also, in the process of conducting the sensitivity analysis, the HTC was calculated using the Mokry et al. correlation, which is the most accurate supercritical water heat-transfer correlation so far. The sheath and the fuel centerline temperature profiles were determined for two cases. In Case 1, the HTC was calculated based on the Mokry et al. correlation, while in Case 2, the HTC values calculated for Case 1 were multiplied by a factor of 2. This factor was used in order to identify the amount of decrease in temperatures if the heat transfer is enhanced with appendages. Results of this analysis indicate that the use of the newly developed 54-element fuel bundle along with the proposed fuels is promising when compared with the Variant-20 (43-element) fuel bundle. Overall, the fuel centerline and sheath temperatures were below the industry and design limits when most of the proposed fuels were examined in the 54-element fuel bundle, however, the fuel centerline temperature limit was exceeded while MOX fuel was examined. Keywords: SCWRs, Fuel Centerline Temperature, Sheath Temperature, High Thermal Conductivity Fuels, Low Thermal Conductivity Fuels, HTC.

  3. Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems

    NASA Astrophysics Data System (ADS)

    Francesconi, Javier A.; Mussati, Miguel C.; Mato, Roberto O.; Aguirre, Pio A.

    The aim of this work is to investigate the energy integration and to determine the maximum efficiency of an ethanol processor for hydrogen production and fuel cell operation. Ethanol, which can be produced from renewable feedstocks or agriculture residues, is an attractive option as feed to a fuel processor. The fuel processor investigated is based on steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying simulation techniques and using thermodynamic models the performance of the complete system has been evaluated for a variety of operating conditions and possible reforming reactions pathways. These models involve mass and energy balances, chemical equilibrium and feasible heat transfer conditions (Δ T min). The main operating variables were determined for those conditions. The endothermic nature of the reformer has a significant effect on the overall system efficiency. The highest energy consumption is demanded by the reforming reactor, the evaporator and re-heater operations. To obtain an efficient integration, the heat exchanged between the reformer outgoing streams of higher thermal level (reforming and combustion gases) and the feed stream should be maximized. Another process variable that affects the process efficiency is the water-to-fuel ratio fed to the reformer. Large amounts of water involve large heat exchangers and the associated heat losses. A net electric efficiency around 35% was calculated based on the ethanol HHV. The responsibilities for the remaining 65% are: dissipation as heat in the PEMFC cooling system (38%), energy in the flue gases (10%) and irreversibilities in compression and expansion of gases. In addition, it has been possible to determine the self-sufficient limit conditions, and to analyze the effect on the net efficiency of the input temperatures of the clean-up system reactors, combustion preheating, expander unit and crude ethanol as fuel.

  4. Recent GE BWR fuel experience and design evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, J.E.; Potts, G.A.; Proebstle, R.A.

    1992-01-01

    Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less

  5. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  6. Nuclear fuels for very high temperature applications

    NASA Astrophysics Data System (ADS)

    Lundberg, L. B.; Hobbins, R. R.

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  7. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle configurations to be tested in a cost-effective manner. RCL 23 is poised to be a leading facility for developing modern low-emission fuel nozzles for use with jet fuel and alternative fuels.

  8. Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2001-01-01

    This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.

  9. Isothermal pumping analysis for high-altitude tethered balloons

    PubMed Central

    Kuo, Kirsty A.; Hunt, Hugh E. M.

    2015-01-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573

  10. Isothermal pumping analysis for high-altitude tethered balloons.

    PubMed

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  11. Crystallization Kinetics of a Solid Oxide Fuel Cell Seal Glass by Differential Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Gamble, Eleanor A.

    2005-01-01

    Crystallization kinetics of a barium calcium aluminosilicate glass (BCAS), a sealant material for planar solid oxide fuel cells, have been investigated by differential thermal analysis (DTA). From variation of DTA peak maximum temperature with heating rate, the activation energy for glass crystallization was calculated to be 259 kJ/mol. Development of crystalline phases on thermal treatments of the glass at various temperatures has been followed by powder x-ray diffraction. Microstructure and chemical composition of the crystalline phases were investigated by scanning electron microscopy and energy dispersive spectroscopic (EDS) analysis. BaSiO3 and hexacelsian (BaAl2Si2O8) were the primary crystalline phases whereas monoclinic celsian (BaAl2Si2O8) and (Ba(x), Ca(y))SiO4 were also detected as minor phases. Needle-shaped BaSiO3 crystals are formed first, followed by the formation of other phases at longer times of heat treatments. The glass does not fully crystallize even after long term heat treatments at 750 to 900 C.

  12. High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.

  13. The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock

    NASA Technical Reports Server (NTRS)

    Munger, Maurice; Wilsted, H D; Mulcahy, B A

    1942-01-01

    A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.

  14. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cai, Yixiao; Wang, Baoyuan; Wang, Yi; Xia, Chen; Qiao, Jinli; van Aken, Peter A.; Zhu, Bin; Lund, Peter

    2018-04-01

    YSZ as the electrolyte of choice has dominated the progressive development of solid oxide fuel cell (SOFC) technologies for many years. To enable SOFCs operating at intermediate temperatures of 600 °C or below, major technical advances were built on a foundation of a thin-film YSZ electrolyte, NiO anode, and perovskite cathode, e.g. La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF). Inspired by functionalities in engineered heterostructure interfaces, the present work uses the components from state-of-the-art SOFCs, i.e, the anode NiO-YSZ and the cathode LSCF-YSZ, or the convergence of all three components, i.e., NiO-YSZ-LSCF, to fabricate semiconductor-ionic membranes (SIMs) and devices. A series of proof-of-concept fuel cell devices are designed by using each of the above SIMs sandwiched between two semiconducting Ni0.8Co0.15Al0.05LiO2-δ (NCAL) layers. We systematically compare these novel designs at 600 °C with two reference fuel cells: a commercial product of anode-supported YSZ electrolyte thin-film cell, and a lab-assembled fuel cell with a conventional configuration of NiO-YSZ (anode)/YSZ (electrolyte)/LSCF-YSZ (cathode). In comparison to the reference cells, the SIM device in a configuration of NCAL/NiO-YSZ-LSCF/NCAL reaches more than 3-fold enhancement of the maximum power output. By using spherical aberration-corrected transmission electron microscopy and spectroscopy approaches, this work offers insight into the mechanisms underlying SIM-associated SOFC performance enhancement.

  15. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].

    PubMed

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai

    2010-10-01

    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  16. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.

    PubMed

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.

  17. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger

    2017-02-01

    Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fission Product Release and Survivability of UN-Kernel LWR TRISO Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, Theodore M; Ferber, Mattison K; Lin, Hua-Tay

    2014-01-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from range calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 m diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated with a TRISO particle as a function of fluence. Creep and swelling of the innermore » and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by measuring the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers as a function of fluence. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.« less

  19. Fission product release and survivability of UN-kernel LWR TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. M. Besmann; M. K. Ferber; H.-T. Lin

    2014-05-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from fission product recoil calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 um diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated within a TRISO particle undergoing burnup. Creep and swelling of the inner andmore » outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by computing the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers from internal pressure and thermomechanics of the layers. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.« less

  20. Performance of high-altitude, long-endurance, turboprop airplanes using conventional or cryogenic fuels

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Morris, C. E. K., Jr.; Koenig, R. W.

    1983-01-01

    An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report.

  1. Obtaining of caffeine from Turkish tea fiber and stalk wastes.

    PubMed

    Gürü, M; Içen, H

    2004-08-01

    The aim of this study was to find a cheap method to obtain caffeine. Experiments were performed on fiber and stalk wastes of Turkish tea plants that had no economical value other than being used merely as low grade fuel and fodder. Tea stalks and fiber were obtained from tea factories. Parameters affecting caffeine extraction from tea wastes were determined to be, mixing rate, water/tea ratio, temperature, time and particle size. The maximum yields by dried mass from the tea fibers and stalks were 1.16% and 0.92%, respectively.

  2. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less

  3. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  4. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  5. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  6. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  7. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel... flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel...

  8. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  9. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel.

    PubMed

    Chen, Wei-Hsin; Huang, Ming-Yueh; Chang, Jo-Shu; Chen, Chun-Yen; Lee, Wen-Jhy

    2015-06-01

    The torrefaction characteristics and energy utilization of microalga Chlamydomonas sp. JSC4 (C. sp. JSC4) residue under the combination of temperature and duration are studied by examining contour maps. The torrefaction temperature on the contour line of solid yield has a trend to linearly decrease with increasing duration. An index of relative energy efficiency (REE) is introduced to identify the performance of energy utilization for upgrading biomass. For a fixed energy yield, the optimal operation can be found to maximize the heating value of the biomass and minimize the solid yield. The energy utilization under the combination of a high temperature and a short duration is more efficient than that of a low temperature and a long duration. The maximum REE along the contour line of energy yield is always exhibited at the highest temperature (300°C) where the energy efficiency can be enlarged by a factor of at least 2.36. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less

  11. High freezing point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  12. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning natural gas

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    An annular gas turbine combustor was tested with heated natural gas fuel to determine the effect of increasing fuel temperature on the formation of oxides of nitrogen. Fuel temperatures ranged from ambient to 800 K (980 F). Combustor pressure was 6 atmospheres and the inlet air temperature ranged from 589 to 894 K (600 to 1150 F). The NOx emission index increased with fuel temperature at a rate of 4 to 9 percent per 100 K (180 F), depending on the inlet air temperature. The rate of increase in NOx was lowest at the highest inlet air temperature tested.

  13. Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang

    A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.

  14. Studies on an ultrasonic atomization feed direct methanol fuel cell.

    PubMed

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao

    2017-01-01

    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dec, John E.; Yang, Yi; Ji, Chunsheng

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  16. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  17. Effects of Beryllium and Compaction Pressure on the Thermal Diffusivity of Uranium Dioxide Fuel Pellets

    NASA Astrophysics Data System (ADS)

    Camarano, D. M.; Mansur, F. A.; Santos, A. M. M.; Ferraz, W. B.; Ferreira, R. A. N.

    2017-09-01

    In nuclear reactors, the performance of uranium dioxide (UO2) fuel is strongly dependent on the thermal conductivity, which directly affects the fuel pellet temperature, the fission gas release and the fuel rod mechanical behavior during reactor operation. The use of additives to improve UO2 fuel performance has been investigated, and beryllium oxide (BeO) appears as a suitable additive because of its high thermal conductivity and excellent chemical compatibility with UO2. In this paper, UO2-BeO pellets were manufactured by mechanical mixing, pressing and sintering processes varying the BeO contents and compaction pressures. Pellets with BeO contents of 2 wt%, 3 wt%, 5 wt% and 7 wt% BeO were pressed at 400 MPa, 500 MPa and 600 MPa. The laser flash method was applied to determine the thermal diffusivity, and the results showed that the thermal diffusivity tends to increase with BeO content. Comparing thermal diffusivity results of UO2 with UO2-BeO pellets, it was observed that there was an increase in thermal diffusivity of at least 18 % for the UO2-2 wt% BeO pellet pressed at 400 MPa. The maximum relative expanded uncertainty (coverage factor k = 2) of the thermal diffusivity measurements was estimated to be 9 %.

  18. 630A MARITIME NUCLEAR STEAM GENERATOR. Progress Report No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-07-31

    Work on the 630A Maritime Nuclear Steam Generator Scoping Study is summarized. The objective of the program is to establish a specific 630A configuration and to develop specifications for components and test equipment. During the period, work was initiated in critical experiment design and fabrication, additional fuel and materials investigations, boiler-test design and fabrication; blower studies; design of component tests; nuclear, thermodynamic, mechanical and safety analysis, and test facility and equipment studies. Design of the critical experiment mockup and test equipment was completed and fabrication of the parts is approximately 50% complete. A rough draft of the critical experiment hazardsmore » report was completed. A fuel test in the ORR completed 876.5 hr of testing out of a planned 2200-hr test without indication of failure. The burnup was equivalent to about 6000 hr of 630A operation. Damage to the capsule during refueling of the ORR caused termination of the test. The design of an MTR fuel-burnup test was completed and fabrication of the sample initiated. Ni-Cr fuel sheet and cladding stock are being tested for creep and oxidation properties at temperatures up to 1750 deg F and have accumulated times up to 5000 hr; no failures have occurred. These tests are continuing. Specimens of Ni-Cr were fabricated and will be tested to determine the effect of neutron irradiation. Cycle operating conditions with 120O deg F reactor-discharge-air temperature were studied and found to be acceptable for the proposed maritime application. Increases in cycle efficiency above 30.2% appear to be possible and practical. Studies during the period indicate that an acceptable power distribution can be maintained through the life of the reactor and the maximum hot spot temperature and maximum burnup location would not coincide. Specifications for the fuel loading of the critical experiment are being prepared. Study of the pressure vessel resulted in selection of 304 SS. Containment studies indfcated the practicality of designing the shield tank outer shell as part of the containment vessel. A blower scoping study subcontract was completed. The study verified the feasibility of the main and afterblower concept. Alternate shaft-seal designs were proposed. The design of a performance test for the two seal types has been initiated. The design of the boiler test from which control characteristics will be determined was completed and fabrication started. The decision was made that the Low Power Test Facility (LPTF) will be the site used for the critical experiment. A preliminary study of the power test facility requirements were completed. The study indicated that locating the facility adjacent to the LPTF would be operationally and economically feasible. (auth)« less

  19. Experimental Study of Fuel Heating at Low Temperatures in a Wing Tank Model, Volume 1

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.

    1981-01-01

    Scale model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures were investigated. The effectiveness of the heating systems in providing flowability and pumpability at extreme low temperature when some freezing of the fuel would otherwise occur is evaluated. The test tank simulated a section of an outer wing tank, and was chilled on the upper and lower surfaces. Turbine engine lubricating oil was heated, and recirculating fuel transferred the heat. Fuels included: a commercial Jet A; an intermediate freeze point distillate; a higher freeze point distillate blended according to Experimental Referee Broadened Specification guidelines; and a higher freeze point paraffinic distillate used in a preceding investigation. Each fuel was chilled to selected temperature to evaluate unpumpable solid formation (holdup). Tests simulating extreme cold weather flight, without heating, provided baseline fuel holdup data. Heating and recirculating fuel increased bulk temperature significantly; it had a relatively small effect on temperature near the bottom of the tank. Methods which increased penetration of heated fuel into the lower boundary layer improved the capability for reducing holdup.

  20. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  1. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    PubMed

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Advanced cooling techniques for high-pressure hydrocarbon-fueled engines

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1979-01-01

    The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.

  3. Ambient Temperature, Fuel Economy, Emissions, and Trip Length

    DOT National Transportation Integrated Search

    1979-08-01

    This report examines the relationship among automotive fuel economy, ambient temperature, cold-start trip length, and drive-train component temperatures of four 1977 vehicles. Fuel economy, exhaust emission, and drive-train temperatures were measured...

  4. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  5. Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C.

    PubMed

    Sekar, Narendran; Wu, Chang-Hao; Adams, Michael W W; Ramasamy, Ramaraja P

    2017-07-01

    Hyperthermophiles are microorganisms that thrive in extremely hot environments with temperatures near and even above 100°C. They are the most deeply rooted microorganisms on phylogenetic trees suggesting they may have evolved to survive in the early hostile earth. The simple respiratory systems of some of these hyperthermophiles make them potential candidates to develop microbial fuel cells (MFC) that can generate power at temperatures approaching the boiling point. We explored extracellular electron transfer in the hyperthermophilic archaeon Pyrococcus furiosus (Pf) by studying its ability to generate electricity in a two-chamber MFC. Pf growing in defined medium functioned as an anolyte in a MFC operated at 90°C, generating a maximum current density of 2 A m -2 and a peak power density of 225 mW m -2 without the addition of any external redox mediator. Electron microscopy and electrochemical impedance spectroscopy of the anode with the attached Pf biofilm demonstrated bio-electrochemical behavior that led to electricity generation in the MFC via direct electron transfer. This proof of concept study reveals for the first time that a hyperthermophile such as Pf can generate electricity in MFC at extreme temperatures. Biotechnol. Bioeng. 2017;114: 1419-1427. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Effects of cooling system parameters on heat transfer in PAFC stack. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali A.

    1985-01-01

    Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.

  7. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. II. La(Sr)CoO 3 cathode

    NASA Astrophysics Data System (ADS)

    Inagaki, Toru; Miura, Kazuhiro; Yoshida, Hiroyuki; Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- α (LSGM) electrolyte, La 0.6Sr 0.4CoO 3- δ (LSCo) cathode, and Ni-(CeO 2) 0.8(SmO 1.5) 0.2 (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm 2, at 800°C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO 3-YSZ cathode and Ni-YSZ cermet anode at 1000°C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm 2 was measured for a cathode prepared by sintering at 1000°C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface.

  8. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study

    PubMed Central

    Hanif, Muhammad Usman; Capareda, Sergio C.; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products. PMID:27043929

  9. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  10. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  11. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications

    NASA Astrophysics Data System (ADS)

    Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Kendall, K.; Tarancón, A.

    2015-07-01

    Micro-tubular SOFCs have shown an astonishing thermal shock resistance, many orders of magnitude larger than planar SOFCs, opening the possibility of being used in portable applications. However, only few studies have been devoted to study the degradation of large-area micro-tubular SOFCs. This work presents microstructural, electrochemical and long term degradation studies of single micro-tubular cells fabricated by high shear extrusion, operating in the intermediate range of temperatures (T∼700 °C). A maximum power of 7 W per cell has been measured in a wide range of fuel utilizations between 10% and 60% at 700 °C. A degradation rate of 360 mW/1000 h (8%) has been observed for cells operated over more than 1500 h under fuel utilizations of 40%. Higher fuel utilizations lead to strong degradations associated to nickel oxidation/reduction processes. Quick thermal cycling with heating ramp rates of 30 °C /min yielded degradation rates of 440 mW/100 cycles (9%). These reasonable values of degradation under continuous and thermal cycling operation approach the requirements for many portable applications including auxiliary power units or consumer electronics opening this typically forbidden market to the SOFC technology.

  12. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hongjun; Lee, Sunghwan; Kim, Suran

    2016-11-01

    Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reductionmore » in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.« less

  13. Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling

    USGS Publications Warehouse

    Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.

    2013-01-01

    Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.

  14. System for controlling the operating temperature of a fuel cell

    DOEpatents

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  15. An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System

    NASA Technical Reports Server (NTRS)

    Chapman, Gilbert E.

    1946-01-01

    A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 percent less than the initial value for cold-air conditions.

  16. Potential ability of zeolite to generate high-temperature vapor using waste heat

    NASA Astrophysics Data System (ADS)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  17. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  18. A flexible all-inorganic fuel cell membrane with conductivity above Nafion, and durable operation at 150 °C

    NASA Astrophysics Data System (ADS)

    Ansari, Y.; Tucker, T. G.; Huang, W.; Klein, I. S.; Lee, S.-Y.; Yarger, J. L.; Angell, C. A.

    2016-01-01

    The search for fuel cell membranes has focused on carbon backbone polymers, among which Nafion seems to best survive the most severe of the degradation mechanisms - attack by peroxide radicals. Less attention has been given to inorganic membranes because of their generally inflexible nature and lower conductivity, though some SiO2-Nafion composites have shown improved properties. Nafion dominates, despite needing hydration, which then restricts operation to below 100 °C (so CO poisoning problems persist). Described herein is a low cost, flexible, and all-inorganic fiberglass reinforced gel membrane with conductivity exceeding that of Nafion at any temperature above 60 °C. Using Teflon fuel cells, maximum currents > 1 Acm-2 and OCV of 1.03 V at 150 °C are demonstrated. No detectable loss of cell potential was observed over 24 h during 50 mAcm-2 constant current operation at 120 °C while, at 150 °C and maximum power, the degradation rate is intermediate among other high conductivity H3PO4-PBI type membranes. The structure of the membrane is deduced, mainly from 29Si solid state-NMR. The -115 ppm resonance, which is extreme for Q4 Si(O) structures, identifies a zeolite-like SiO2 network, which is ;floppy;. 31P and 1H NMR establish nano-permeating H3PO4 as the source of the exceptional conductivity.

  19. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00-2.80), steam-to-carbon ratio (0.00-4.00), temperature (100 °C-600 °C), pressure (1-5 atm) and product species. Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H 2, CO, CO 2, DME, NH 3 and H 2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed. Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40-2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam-to-carbon ratio of 0.00 in the temperature range of 400 °C-500 °C. Increasing the system pressure shifts the equilibrium toward ammonia and hydrogen cyanide.

  20. 40 CFR 89.415 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The controlling...

  1. 40 CFR 86.000-9 - Emission standards for 2000 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... leanest air to fuel mixture required to obtain maximum torque (lean best torque), plus a tolerance of six... fuel ratio shall not be richer at any time than the leanest air to fuel mixture required to obtain...

  2. 40 CFR 86.000-9 - Emission standards for 2000 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... leanest air to fuel mixture required to obtain maximum torque (lean best torque), plus a tolerance of six... fuel ratio shall not be richer at any time than the leanest air to fuel mixture required to obtain...

  3. 40 CFR 86.000-8 - Emission standards for 2000 and later model year light-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... mixture required to obtain maximum torque (lean best torque), plus a tolerance of six (6) percent. The...

  4. 40 CFR 86.000-8 - Emission standards for 2000 and later model year light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... mixture required to obtain maximum torque (lean best torque), plus a tolerance of six (6) percent. The...

  5. Carbon nanofiber growth optimization for their use as electrocatalyst support in proton exchange membrane (PEM) fuel cells.

    PubMed

    Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R

    2009-07-01

    Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang

    Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuelsmore » such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most significant impact on each target. The results were further assessed by investigating the impact of individual parameter variations on the targets. Overall, it was demonstrated that GSA can be an effective tool in understanding parameters sensitive to a low temperature combustion concept with novel fuels.« less

  7. A direct ascorbate fuel cell with an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  8. A model to predict thermal conductivity of irradiated U-Mo dispersion fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    2016-05-01

    Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.

  9. A model to predict thermal conductivity of irradiated U–Mo dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less

  10. Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Dionne, B.; Sikik, E.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less

  11. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...

  12. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...

  13. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...

  14. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  15. An evaporative and engine-cycle model for fuel octane sensitivity prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, D.P.; Taylor, A.B.

    The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with realmore » Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.« less

  16. Fire Resistant Fuel for Military Compression Ignition Engines

    DTIC Science & Technology

    2013-12-04

    Turbo Diesel Maximum Power Output Figure 5. 6.5L Turbo Diesel Maximum Torque Output 40 60 80 100 120 140 160 180 1000 1200 1400 1600 1800 2000 2200...H2O & 250ppm) JP8-FRF AMA (5% H2O & 250ppm) UNCLASSIFIED 9 UNCLASSIFIED Figure 6. 6.5L Turbo Diesel Brake Specific Fuel Consumption From...mid-1980s, fire-resistant diesel fuel that self extinguished when ignited by an explosive projectile was developed. Chemically, this fire resistant

  17. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... fuel produced by transmix processors. These amendments will allow locomotive and marine diesel fuel produced by transmix processors to meet a maximum 500 parts per million (ppm) sulfur standard provided that... processors while having a neutral or net positive environmental impact. EPA is also amending the fuel marker...

  18. Design of experiments with four-factors for a PEM fuel cell optimization

    NASA Astrophysics Data System (ADS)

    Olteanu, V.; Pǎtularu, L.; Popescu, C. L.; Popescu, M. O.; Crǎciunescu, A.

    2017-07-01

    Nowadays, many research efforts are allocated for the development of fuel cells, since they constitute a carbon-free electrical energy generator which can be used for stationary, mobile and portable applications. The maximum value of the delivered power of a fuel cell depends on many factors as: the height of plates' channels, the stoichiometry level of the air flow, the air pressure for the cathode, and of the actual operating electric current density. In this paper, two levels, full four-factors factorial experiment has been designed in order to obtain the appropriate response surface which approximates the maximum delivered power dependence of the above-mentioned factors. The optimum set of the fuel-cell factors which determine the maximum value of the delivered power was determined and a comparison between simulated and measured optimal Power versus Current Density characteristics is given.

  19. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3

    DOE PAGES

    Stimpson, Shane; Powers, Jeffrey; Clarno, Kevin; ...

    2017-12-22

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity multiphysics simulations of light water nuclear reactors. To accomplish this, CASL is developing the Virtual Environment for Reactor Applications (VERA), which is a suite of code packages for thermal hydraulics, neutron transport, fuel performance, and coolant chemistry. As VERA continues to grow and expand, there has been an increased focus on incorporating fuel performance analysis methods. One of the primary goals of CASL is to estimate local cladding failure probability through pellet-clad interaction, which consists of both pellet-clad mechanical interaction (PCMI) and stress corrosion cracking. Estimatingmore » clad failure is important to preventing release of fission products to the primary system and accurate estimates could prove useful in establishing less conservative power ramp rates or when considering load-follow operations.While this capability is being pursued through several different approaches, the procedure presented in this article focuses on running independent fuel performance calculations with BISON using a file-based one-way coupling based on multicycle output data from high fidelity, pin-resolved coupled neutron transport–thermal hydraulics simulations. This type of approach is consistent with traditional fuel performance analysis methods, which are typically separate from core simulation analyses. A more tightly coupled approach is currently being developed, which is the ultimate target application in CASL.Recent work simulating 12 cycles of Watts Bar Unit 1 with VERA core simulator are capitalized upon, and quarter-core BISON results for parameters of interest to PCMI (maximum centerline fuel temperature, maximum clad hoop stress, and minimum gap size) are presented for Cycles 1–3. In conclusion, based on these results, this capability demonstrates its value and how it could be used as a screening tool for gathering insight into PCMI, singling out limiting rods for further, more detailed analysis.« less

  20. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Powers, Jeffrey; Clarno, Kevin

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity multiphysics simulations of light water nuclear reactors. To accomplish this, CASL is developing the Virtual Environment for Reactor Applications (VERA), which is a suite of code packages for thermal hydraulics, neutron transport, fuel performance, and coolant chemistry. As VERA continues to grow and expand, there has been an increased focus on incorporating fuel performance analysis methods. One of the primary goals of CASL is to estimate local cladding failure probability through pellet-clad interaction, which consists of both pellet-clad mechanical interaction (PCMI) and stress corrosion cracking. Estimatingmore » clad failure is important to preventing release of fission products to the primary system and accurate estimates could prove useful in establishing less conservative power ramp rates or when considering load-follow operations.While this capability is being pursued through several different approaches, the procedure presented in this article focuses on running independent fuel performance calculations with BISON using a file-based one-way coupling based on multicycle output data from high fidelity, pin-resolved coupled neutron transport–thermal hydraulics simulations. This type of approach is consistent with traditional fuel performance analysis methods, which are typically separate from core simulation analyses. A more tightly coupled approach is currently being developed, which is the ultimate target application in CASL.Recent work simulating 12 cycles of Watts Bar Unit 1 with VERA core simulator are capitalized upon, and quarter-core BISON results for parameters of interest to PCMI (maximum centerline fuel temperature, maximum clad hoop stress, and minimum gap size) are presented for Cycles 1–3. In conclusion, based on these results, this capability demonstrates its value and how it could be used as a screening tool for gathering insight into PCMI, singling out limiting rods for further, more detailed analysis.« less

  1. Fischer-Tropsch fuel for use by the U.S. military as battlefield-use fuel of the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delanie Lamprecht

    2007-06-15

    The United States Department of Defense (DoD) has been interested in low-sulfur, environmentally cleaner Fischer-Tropsch (FT) fuels since 2001 because they want to be less dependent upon foreign crude oil and ensure the security of the supply. A three-phase Joint Battlefield-Use Fuel of the Future (BUFF) program was initiated to evaluate, demonstrate, certify, and implement turbine fuels produced from alternative energy resources for use in all of its gas turbine and diesel engine applications. Sasol Synfuels International (Pty) Ltd. and Sasol Chevron Holdings Ltd., among others, were invited to participate in the program with the objective to supply the DoDmore » with a FT BUFF that conforms to Jet Propulsion 8 (JP-8) and JP-5 fuel volatility and low-temperature fluidity requirements. Although the DoD is more interested in coal-to-liquid (CTL) technology, the product from a gas-to-liquid (GTL) Products Work-Up Demonstration Unit in Sasolburg, South Africa, was used to evaluate (on a bench scale) the possibility of producing a BUFF fraction from the Sasol Slurry Phase Distillate (Sasol SPD) low-temperature FT (LTFT) process and Chevron Isocracking technology. It was concluded from the study that the production of a synthetic FT BUFF is feasible using the Sasol SPD LTFT technology together with the current Chevron isocracking technology. The product yield for a BUFF conforming to JP-8 requirements is 30 vol % of the fractionator feed, whereas the product yield for a BUFF conforming to the JP-5 volatility requirement is slightly less than 22 vol % of the fractionator feed. Also concluded from the study was that the end point of the Sasol SPD LTFT BUFF will be restricted by the freezing point requirement of the DoD and not the maximum viscosity requirement. One would therefore need to optimize the hydrocracking process conditions to increase the Sasol SPD LTFT BUFF product yield. 16 refs., 8 figs., 6 tabs.« less

  2. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Pedentchouk, N.; Schouten, S.; Pagani, M.; Freeman, K. H.

    2016-12-01

    Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. In turn, climate influences fuel composition (e.g., amount and type of vegetation), fuel availability (e.g., vegetation that can burn based on precipitation and temperature), and ignition sources (e.g., lightning). Climate studies predict increased wildfire activity in future decades, but mechanisms that control the relationship between climate and fire are complex. Reconstructing environmental conditions during past warming events (e.g., the Paleocene-Eocene Thermal Maximum (PETM)) will help elucidate climate-vegetation-fire relationships that are expressed over long durations (1,000 - 10,000 yrs). The abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, possibly, fire occurrence. To investigate coincident changes in climate, vegetation, and fire occurrence, we studied biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes from the PETM interval at IODP site 302 (the Lomonosov Ridge) in the Arctic Ocean. Both pollen and biomarker records indicate angiosperms abundance increased during the PETM relative to gymnosperms, reflecting a significant ecological shift to angiosperm-dominated vegetation. PAH abundances increased relative to plant biomarkers throughout the PETM, which suggests PAH production increased relative to plant productivity. Increased PAH production associated with the angiosperm vegetation shift indicates a greater prevalence of more fire-prone species. A time lag between increased moisture transport (based on published δD of n-alkanes data) to the Arctic and increased angiosperms and PAH production suggests wetter conditions, followed by increased air temperatures, favored angiosperms and combined to enhance fire occurrence.

  3. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    2015-01-01

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less

  4. Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong

    2014-07-01

    In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.

  5. Flight evaluation of an extended engine life mode on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Conners, Timothy R.

    1992-01-01

    An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.

  6. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  7. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    PubMed

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Alternative Fuels Data Center

    Science.gov Websites

    alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new purchase of fueling stations or equipment. The maximum loan amount is $500,000 per borrower, and the

  9. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  10. Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    NASA Technical Reports Server (NTRS)

    Neveu, M. C.; Stocker, D. P.

    1985-01-01

    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.

  11. Fuel system technology overview

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1980-01-01

    Fuel system research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures; (2) fuel systems for high freezing point fuels; (3) experimental study of low temperature pumpability; (4) full scale fuel tank simulation; and (5) rapid freezing point measurement.

  12. Nuclear fuel alloys or mixtures and method of making thereof

    DOEpatents

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  13. Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunting, Bruce G; Farrell, John T

    2006-01-01

    The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less

  14. 40 CFR 86.1231-90 - Vehicle preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  15. 40 CFR 86.1231-90 - Vehicle preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  16. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  17. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  18. 40 CFR 86.1231-90 - Vehicle preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  19. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  20. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  1. 40 CFR 86.1231-90 - Vehicle preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recording the temperature of the prescribed test fuel at the approximate mid-volume of the fuel when the... specified test fuel (§ 86.1213) at room temperature. Then drive the vehicle through at least one cycle of... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  2. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  3. Comparative study on direct burning of oil shale and coal

    NASA Astrophysics Data System (ADS)

    Hammad, Ahmad; Al Asfar, Jamil

    2017-07-01

    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  4. Performance of Solid Oxide Fuel Cell With La and Cr Co-doped SrTiO3 as Anode.

    PubMed

    Yi, Fenyun; Chen, Hongyu; Li, He

    2014-06-01

    The La 0.3 Sr 0.55 Ti 0.9 Cr 0.1 O 3-δ (LSTC10) anode material was synthesized by citric acid-nitrate process. The yttria-stabilized zirconia (YSZ) electrolyte-supported cell was fabricated by screen printing method using LSTC10 as anode and (La 0.75 Sr 0.25 ) 0.95 MnO 3-δ (LSM) as cathode. The electrochemical performance of cell was tested by using dry hydrogen as fuel and air as oxidant in the temperature range of 800-900 °C. At 900 °C, the open circuit voltage (OCV) and the maximum power density of cell are 1.08 V and 13.0 mW·cm -2 , respectively. The microstructures of cell after performance testing were investigated by scanning electron microscope (SEM). The results show that the anode and cathode films are porous and closely attached to the YSZ electrolyte. LSTC10 is believed to be a kind of potential solid oxide fuel cell (SOFC) anode material.

  5. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    DOE PAGES

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; ...

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with T e ≈ T i, and produces up tomore » 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 10 10, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm 2.« less

  6. LH2 Tank Composite Coverplate Development and Flight Qualification for the X-33

    NASA Technical Reports Server (NTRS)

    Wright, Richard J.; Roule, Gerard M.

    2000-01-01

    In this paper, the development history for the first cryogenic pressurized fuel tank coverplates is presented along with a synopsis of the development strategy and technologies which led to success on this program. Coverplates are the large access panels used to access launch vehicle fuel tanks. These structures incorporate all of the requirements for a pressure vessel as well as the added requirement to mount all of the miscellaneous access points required for a fuel management system. The first composite coverplates to meet the requirements for flight qualification were developed on the X-33 program. The X-33 composite coverplates went from an open requirement to successful finished flight hardware with multiple unique configurations, complete with verification testing, in less than eighteen months. Besides the rapid development schedule, these components introduced several new technologies previously unseen in cryogenic composites including solutions to cryogenic shrinkage, self-supporting sealing surfaces, and highly loaded composite bosses with precision sealing interfaces. These components were proven to seal liquid hydrogen at cryogenic temperatures under maximum loading and pressure conditions.

  7. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  8. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  9. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    NASA Astrophysics Data System (ADS)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  10. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  11. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  12. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV ofmore » IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.« less

  13. Calculation of Distribution Dynamics of Inhomogeneous Temperature Field in Range of Fuel Elements by Using FreeFem++

    NASA Astrophysics Data System (ADS)

    Amosova, E. V.; Shishkin, A. V.

    2017-11-01

    This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.

  14. Influence of the forming conditions on Black Carbon properties

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, L. N.; MacKenzie, M. D.; Wasylishen, R. E.; Quideau, S. A.

    2012-04-01

    Black carbon (BC) is an important residue of wildfires in Quebec black spruce forests. Because of its recalcitrance, it is considered a valuable passive pool in the global carbon cycle. However, BC characteristics depend on its conditions of formation. The objective of this study was to characterize BC chemical and physical properties under varying fire severity. BC samples were produced, under controlled conditions, from fuels originating from mosses (Sphagnum spp. and Pleurozium shreberi), ericaceous shrubs (Ledum groenlandicum) and trees (Picea mariana), as they constitute the major types available in black spruce forests. In order to mimic a gradient of fire severity as it could occur in the field, we varied the maximum temperature (MT) from 75 to 800°C, and the duration of charring from 0.5 to 24 hours. Charcoalification was conducted either under partial (covered tins with holes) or complete pyrolysis (samples buried in sand bath). Samples were analyzed for aromaticity and porosity using elemental and proximate analyses, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM) and surface area (SA) analysis. MT was the most significant factor affecting both chemical and physical changes. BC produced above 250°C started to show signs of condensation (H/C = 0.89; O/C = 0.36 average of all fuel types), which increased with MT (at 800°C, H/C = 0.20; O/C = 0.12 average for all fuels). Results from the 13C NMR spectroscopy highlighted that 350°C was the threshold temperature, at which point spectra were dominated by aromatic structures for all fuels. Specific SA first experienced a decrease (2.3 to 0.8 m2/g) with increasing temperature, then increased drastically for MT above 350°C (10.6 to 435 m2/g at 800°C). Porosity was also largely affected by the type of fuel. SEM micrographs showed a visible increase in porosity for all the BC produced above 250°C/350°C. All results demonstrate that increasing thermal treatment has major effects on BC properties, which in turn may determine its potential as a carbon sink and a catalyst of post-fire regeneration.

  15. PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.L.

    1961-02-01

    BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less

  16. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density,more » annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.« less

  17. E. S. R. determination of atomic hydrogen distribution in oxy-fuel flames burning at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bregeon, B.G.; Kadirgan, M.A.N.; Lamy, C.

    1981-01-01

    The authors have derived an experimental technique, using ESR spectroscopy, that allows this determination. A quartz burner equipped with an appropriate cooling system is placed directly in the ESR cavity. We obtained the hydrogen resonance signal and studied its variation for different positions of the flame inside the cavity. Hydrogen concentrations cannot be calculated directly from experimental data; hence we proceed indirectly to deconvoluate the resonance signal. This allows us to overcome the present severe handicap in obtaining atomic hydrogen concentrations in oxy-fuel flames from ESR measurements. Data obtained in this work, after temperature correction, give us the axial distributionmore » of hydrogen radicals for different oxy-propane and hydrogen-oxygen flames. These results show clearly that for all flames, the hydrogen radical concentration is maximum in a zone immediately above the inner cone. 13 refs.« less

  18. Processing and Mechanical Properties of Various Zirconia/Alumina Composites for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2002-01-01

    Various electrolyte materials for solid oxide fuel cells were fabricated by hot pressing 10 mol% yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina, particulates and platelets, each containing 0 to 30 mol% alumina. Flexure strength and fracture toughness of both particulate and platelet composites at ambient temperature increased with increasing alumina content, reaching a maximum at 30 mot% alumina. For a given alumina content, strength of particulate composites was greater than that of platelet composites, whereas, the difference in fracture toughness between the two composite systems was negligible. No virtual difference in elastic modulus and density was observed for a given alumina content between particulate and platelet composites. Thermal cycling up to 10 cycles between 200 to 1000 C did not show any effect on strength degradation of the 30 mol% platelet composites, indicative of negligible influence of CTE mismatches between YSZ matrix and alumina grains.

  19. Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC)

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Wu, Xiangying; Cai, Yixiao; Ji, Yuan; Yaqub, Azra; Zhu, Bin

    2016-11-01

    A double layer solid oxide fuel cell (DLSOFC) without using the electrolyte (layer) has been designed by integrating advantages of positive electrode material of lithium ion battery(LiNi0.8Co0.15Al0.05O2) and oxygen-permeable membranes material (trace amount cobalt incorporated terbium doped ceria, TDC + Co) based on the semiconductor physics principle. Instead of using an electrolyte layer, the depletion layer between the anode and cathode served as an electronic insulator to block the electrons but to maintain the electrolyte function for ionic transport. Thus the device with two layers can realize the function of SOFC and at the same time avoids the electronic short circuiting problem. Such novel DLFC showed good performance at low temperatures, for instance, a maximum power density of 230 mWcm-2 was achieved at 500 °C. The working principle of the new device is presented.

  20. Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation.

    PubMed

    Wzorek, Małgorzata; Tańczuk, Mariusz

    2015-08-01

    The article presents the technical and economic analysis of the production of fuels from municipal sewage sludge. The analysis involved the production of two types of fuel compositions: sewage sludge with sawdust (PBT fuel) and sewage sludge with meat and bone meal (PBM fuel). The technology of the production line of these sewage fuels was proposed and analysed. The main objective of the study is to find the optimal production capacity. The optimisation analysis was performed for the adopted technical and economic parameters under Polish conditions. The objective function was set as a maximum of the net present value index and the optimisation procedure was carried out for the fuel production line input capacity from 0.5 to 3 t h(-1), using the search step 0.5 t h(-1). On the basis of technical and economic assumptions, economic efficiency indexes of the investment were determined for the case of optimal line productivity. The results of the optimisation analysis show that under appropriate conditions, such as prices of components and prices of produced fuels, the production of fuels from sewage sludge can be profitable. In the case of PBT fuel, calculated economic indexes show the best profitability for the capacity of a plant over 1.5 t h(-1) output, while production of PBM fuel is beneficial for a plant with the maximum of searched capacities: 3.0 t h(-1). Sensitivity analyses carried out during the investigation show that influence of both technical and economic assessments on the location of maximum of objective function (net present value) is significant. © The Author(s) 2015.

  1. KSC-04PD-2515

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In this view from the floor of the Orbiter Processing Facility, the first of three Space Shuttle Main Engines (SSME) is seen after installation. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  2. KSC-04PD-2510

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, technicians wait below while a Hyster lift moves the first of three Space Shuttle Main Engines (SSME) into position above for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  3. KSC-04PD-2516

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In this closeup view, the first of three Space Shuttle Main Engines (SSME) is seen after installation on Discovery in the Orbiter Processing Facility. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  4. KSC-04PD-2514

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, the Hyster lift backs away from the orbiter Discovery after placing a Space Shuttle Main Engine (SSME) into position for installation. Discovery is the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  5. KSC-04PD-2512

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, a technician (lower right) watches from inside as a Space Shuttle Main Engine (SSME) on the Hyster lift is maneuvered into position on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  6. KSC-04PD-2509

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, Discovery waits as the first of three Space Shuttle Main Engines (SSME) moves into position for installation on Discovery, the vehicle designated for the Return to Flight mission STS-114. Overall, an SSME weighs approximately 7,000 pounds. An SSME operates at greater temperature extremes than any mechanical system in common use today. The liquid hydrogen fuel is -423 degrees Fahrenheit, the second coldest liquid on Earth. When the hydrogen is burned with liquid oxygen, the temperature in the engine's combustion chamber reaches +6000 degrees Fahrenheit -- that's higher than the boiling point of Iron. The maximum equivalent horsepower developed by the three SSMEs is just over 37 million horsepower. The energy released by the three SSMEs is equivalent to the output of 23 Hoover Dams.

  7. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2011-11-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  8. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  9. Performance of a multiple venturi fuel-air preparation system. [fuel injection for gas turbines

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1979-01-01

    Spatial fuel-air distributions, degree of vaporization, and pressure drop were measured 16.5 cm downstream of the fuel injection plane of a multiple Venturi tube fuel injector. Tests were performed in a 12 cm tubular duct. Test conditions were: a pressure of 0.3 MPa, inlet air temperature from 400 to 800K, air velocities of 10 and 20 m/s, and fuel-air ratios of 0.010 and 0.020. The fuel was Diesel #2. Spatial fuel-air distributions were within + or - 20 percent of the mean at inlet air temperatures above 450K. At an inlet air temperature of 400K, the fuel-air distribution was measured when a 50 percent blockage plate was placed 9.2 cm upstream of the fuel injection plane to distort the inlet air velocity fuel injection plane to distort the inlet air velocity profile. Vaporization of the fuel was 50 percent complete at an inlet air temperature of 400K and the percentage increased linearly with temperature to complete vaporization at 600K. The pressure drop was 3 percent at the design point which was three times greater than the designed value and the single tube experiment value. No autoignition or flashback was observed at the conditions tested.

  10. Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  11. Dynamic evaluation of low-temperature metal-supported solid oxide fuel cell oriented to auxiliary power units

    NASA Astrophysics Data System (ADS)

    Wang, Zhenwei; Berghaus, Jörg Oberste; Yick, Sing; Decès-Petit, Cyrille; Qu, Wei; Hui, Rob; Maric, Radenka; Ghosh, Dave

    A metal-supported solid oxide fuel cell (SOFC) composed of a Ni-Ce 0.8Sm 0.2O 2- δ (Ni-SDC) cermet anode and an SDC electrolyte was fabricated by suspension plasma spraying on a Hastelloy X substrate. The cathode, an Sm 0.5Sr 0.5CoO 3 (SSCo)-SDC composite, was screen-printed and fired in situ. The dynamic behaviour of the cell was measured while subjected to complete fuel shutoff and rapid start-up cycles, as typically encountered in auxiliary power units (APU) applications. A promising performance - with a maximum power density (MPD) of 0.176 W cm -2 at 600 °C - was achieved using humidified hydrogen as fuel and air as the oxidant. The cell also showed excellent resistance to oxidation at 600 °C during fuel shutoff, with only a slight drop in performance after reintroduction of the fuel. The Cr and Mn species in the Hastelloy X alloy appeared to be preferentially oxidized while the oxidation of nickel in the metallic substrate was temporarily alleviated. In rapid start-up cycles with a heating rate of 60 °C min -1, noticeable performance deterioration took place in the first two thermal cycles, and then continued at a much slower rate in subsequent cycles. A postmortem analysis of the cell suggested that the degradation was mainly due to the mismatch of the thermal expansion coefficient across the cathode/electrolyte interface.

  12. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  13. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  14. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  15. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  16. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  17. Fuel properties of biodiesel/ultra-low sulfur diesel (ULSD) blends

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative fuel and fuel extender easily derived from vegetable oil or animal fat. In 2006, the U.S. Environmental Protection Agency mandated that maximum sulfur content of diesel fuels be reduced to 15 ppm to protect catalysts employed in exhaust after-treatment devices. Processi...

  18. 40 CFR 86.343-79 - Chart reading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.343-79 Chart... responses corresponding to the end of each mode. (c) For gasoline-fueled engines, determine whether the test... gasoline-fueled engine mode); or (3) 5 percent of maximum torque during the remainder of the mode...

  19. 40 CFR 86.343-79 - Chart reading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.343-79 Chart... responses corresponding to the end of each mode. (c) For gasoline-fueled engines, determine whether the test... gasoline-fueled engine mode); or (3) 5 percent of maximum torque during the remainder of the mode...

  20. 30 CFR 36.22 - Fuel-injection system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuel-injection system. 36.22 Section 36.22... EQUIPMENT Construction and Design Requirements § 36.22 Fuel-injection system. This system shall be so.... Provision shall be made for convenient adjustment of the maximum fuel-injection rate to that required for...

Top