Recalculated Areas for Maximum Ice Extents of the Baltic Sea During Winters 1971-2008
NASA Astrophysics Data System (ADS)
Niskanen, T.; Vainio, J.; Eriksson, P.; Heiler, I.
2009-04-01
Publication of operational ice charts in Finland was started from the Baltic Sea in a year 1915. Until year 1993 all ice charts were hand drawn paper copies but in the year 1993 ice charting software IceMap was introduced. Since then all ice charts were produced digitally. Since the year 1996 IceMap has had an option that user can calculate areas of single ice area polygons in the chart. Using this option the area of the maximum ice extent can be easily solved fully automatically. Before this option was introduced (and in full operation) all maximum extent areas were calculated manually by a planimeter. During recent years it has become clear that some areas calculated before 1996 don't give the same result as IceMap. Differences can come from for example inaccuracy of old coastlines, map projections, the calibration of the planimeter or interpretation of old ice area symbols. Old ice charts since winter 1970-71 have now been scanned, rectified and re-drawn. New maximum ice extent areas for Baltic Sea have now been re-calculated. By these new technological tools it can be concluded that in some cases clear differences can be found.
Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles
2017-01-01
repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain...contributing to the rapid decline in summer ice extent that has occurred in recent years. The SIZ is the region between maximum winter sea ice extent and...minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water
Interhemispheric ice-sheet synchronicity during the last glacial maximum
Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard
2011-01-01
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.
Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.
Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard
2011-12-02
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.
Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.
2012-04-01
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.
Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data
NASA Technical Reports Server (NTRS)
Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.
2014-01-01
The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are signicant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10 km +/- 0.3x10 km. This is more the 250,000 km greater than the 19.44x10 km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10 km +/- 0.3x10 km. This is more than 1.5x10 km below the passive microwave record of 17.5x10 km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10 km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.
Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode
NASA Astrophysics Data System (ADS)
Doddridge, Edward W.; Marshall, John
2017-10-01
Through analysis of remotely sensed sea surface temperature (SST) and sea ice concentration data, we investigate the impact of winds related to the Southern Annular Mode (SAM) on sea ice extent around Antarctica. We show that positive SAM anomalies in the austral summer are associated with anomalously cold SSTs that persist and lead to anomalous ice growth in the following autumn, while negative SAM anomalies precede warm SSTs and a reduction in sea ice extent during autumn. The largest effect occurs in April, when a unit change in the detrended summertime SAM is followed by a 1.8±0.6 ×105 km2 change in detrended sea ice extent. We find no evidence that sea ice extent anomalies related to the summertime SAM affect the wintertime sea ice extent maximum. Our analysis shows that the wind anomalies related to the negative SAM during the 2016/2017 austral summer contributed to the record minimum Antarctic sea ice extent observed in March 2017.
2015 Arctic Sea Ice Maximum Annual Extent Is Lowest On Record
2015-03-19
The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on Feb. 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Read more: 1.usa.gov/1Eyvelz Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data
NASA Technical Reports Server (NTRS)
Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.
2013-01-01
The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are significant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more the 250,000 sq. km greater than the 19.44x10(exp 6) sq. km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more than 1.5x10(exp 6) sq. km below the passive microwave record of 17.5x10(exp 6) sq. km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10(exp 6) sq. km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.
Variability of Arctic Sea Ice as Determined from Satellite Observations
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1999-01-01
The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.
Attig, J.W.; Hanson, P.R.; Rawling, J.E.; Young, A.R.; Carson, E.C.
2011-01-01
Samples for optical dating were collected to estimate the time of sediment deposition in small ice-marginal lakes in the Baraboo Hills of Wisconsin. These lakes formed high in the Baraboo Hills when drainage was blocked by the Green Bay Lobe when it was at or very near its maximum extent. Therefore, these optical ages provide control for the timing of the thinning and recession of the Green Bay Lobe from its maximum position. Sediment that accumulated in four small ice-marginal lakes was sampled and dated. Difficulties with field sampling and estimating dose rates made the interpretation of optical ages derived from samples from two of the lake basins problematic. Samples from the other two lake basins-South Bluff and Feltz basins-responded well during laboratory analysis and showed reasonably good agreement between the multiple ages produced at each site. These ages averaged 18.2. ka (n= 6) and 18.6. ka (n= 6), respectively. The optical ages from these two lake basins where we could carefully select sediment samples provide firm evidence that the Green Bay Lobe stood at or very near its maximum extent until about 18.5. ka.The persistence of ice-marginal lakes in these basins high in the Baraboo Hills indicates that the ice of the Green Bay Lobe had not experienced significant thinning near its margin prior to about 18.5. ka. These ages are the first to directly constrain the timing of the maximum extent of the Green Bay Lobe and the onset of deglaciation in the area for which the Wisconsin Glaciation was named. ?? 2011 Elsevier B.V.
Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.
Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data
Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data
Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.
2016-12-01
The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.
Variability of Arctic Sea Ice as Viewed from Space
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1998-01-01
Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to year and region to region are large, overall the Arctic ice extents did show a statistically significant, 2.8%/ decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, and mapping their trends allows detailed geographic information on exactly where the ice season lengthened and where it shortened. Over the 18 years, ice season lengthening occurred predominantly in the western hemisphere and was strongest in the western Labrador Sea, while ice season shortening occurred predominantly in the eastern hemisphere and was strongest in the eastern Barents Sea. Much information about other important Arctic sea ice variables has also been obtained from satellite data, including information about melt ponding, temperature, snow cover, and ice velocities. For instance, maps of ice velocities have now been made from satellite scatterometry data, including information about melt ponding, temperature, snow cover, and ice velocities.
Reconstruction of past equilibrium line altitude using ice extent data
NASA Astrophysics Data System (ADS)
Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri
2017-04-01
With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.
Deciphering the evolution of the last Eurasian ice sheets
NASA Astrophysics Data System (ADS)
Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge
2016-04-01
Glacial geologists need ice sheet-scale chronological reconstructions of former ice extent to set individual records in a wider context and compare interpretations of ice sheet response to records of past environmental changes. Ice sheet modellers require empirical reconstructions on size and volume of past ice sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian ice sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published ice-sheet margin positions to reconstruct time-slice maps of the ice sheets' extent, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum extent, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial margin of the SIS reached its maximum extent up to 7000 years later than the westernmost marine margin; iii) the combined maximum ice volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the climatic changes of the last glacial, discuss the implications of emerging post-census data, and describe plans for the next version of the database, DATED-2. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142
NASA Astrophysics Data System (ADS)
Baranes, H. E.; Kelly, M. A.; Stroup, J. S.; Howley, J. A.; Lowell, T. V.
2012-12-01
The climatic conditions that influenced the tropics during the height of the last glacial period are not well defined and controversial. There are disparities in estimates of temperature anomalies (e.g., MARGO, 2009; Rind and Peteet, 1985; CLIMAP, 1976), and critical terrestrial paleotemperature proxy records in tropical regions are poorly dated (e.g., Porter, 2001). Defining these conditions is important for understanding the mechanisms that cause major shifts in climate, as the tropics are a primary driver of atmospheric and oceanic circulation. This study aims to constrain the timing of maximum glacier extents in the Cordillera Oriental in southern Peru during the last glacial period by applying surface exposure (beryllium-10) dating to the Huancané III (Hu-III) moraines. The Hu-III moraines mark the maximum extent of Quelccaya Ice Cap (QIC) (13.93°S, 70.83°W), the largest tropical ice cap, during the last ice age. The eight beryllium-10 ages presented here yield 17,056 ± 520 yrs ago as a minimum age for the onset of recession from the ice cap advance marked by the Hu-III moraines. Comparing this age to other paleoclimate records indicates that the ice cap advance marked by the Hu-III moraines is more likely associated with a North Atlantic climate event known as Heinrich I (H1; 16,800 yrs ago, Bond et al., 1992, 1993) than with global cooling at the Last Glacial Maximum (LGM; ~21,000 yrs ago, Denton and Hughes, 1981). This result suggests that climate processes in the North Atlantic region are linked to climatic conditions in the tropical Andes. A mesoscale climate model and an ice-flow model are currently being developed for QIC. The moraine data presented in this study will be used with these two models to test response of QIC to North Atlantic and global climate events.
NASA Astrophysics Data System (ADS)
Hillenbrand, C. D.; Klages, J. P.; Kuhn, G.; Smith, J.; Graham, A. G. C.; Gohl, K.; Wacker, L.
2016-02-01
We present the first age control and sedimentological data for the upper part of a stratified seismic unit that is unusually thick ( 6-9 m) for the outer shelf of the ASE and overlies an acoustically transparent unit. The transparent unit probably consists of soft till deposited during the last advance of grounded ice onto the outer shelf. We mapped subtle mega-scale glacial lineations (MSGL) on the seafloor and suggest that these are probably the expressions of bedforms originally moulded into the surface of the underlying till layer. We note that the lineations are less distinct when compared to MSGLs recorded in bathymetric data collected further upstream and suggest that this is because of the blanketing influence of the thick overlying drape. The uppermost part (≤ 3 m) of the stratified drape was sampled by two of our sediment cores and contains sufficient amounts of calcareous foraminifera throughout to establish reliable age models by radiocarbon dating. In combination with facies analysis of the recovered sediments the obtained radiocarbon dates suggest deposition of the draping unit in a sub-ice shelf/sub-sea ice to seasonal-open marine environment that existed on the outer shelf from well before (>45 ka BP) the Last Glacial Maximum until today. This indicates the maximum extent of grounded ice at the LGM must have been situated south of the two core locations, where a well-defined grounding-zone wedge (`GZWa') was deposited. The third sediment core was recovered from the toe of this wedge and retrieved grounding-line proximal glaciogenic debris flow sediments that were deposited by 14 cal. ka BP. Our new data therefore provide direct evidence for 1) the maximum extent of grounded ice in the easternmost ASE at the LGM (=GZWa), 2) the existence of a large shelf area seawards the wedge that was not covered by grounded ice during that time, and 3) landward grounding line retreat from GZWa prior to 14 cal. ka BP. This knowledge will help to improve LGM ice sheet reconstructions and to quantify precisely the volume of LGM ice-sheet build-up in Antarctica. Our study also alludes to the possibility that refugia for Antarctic shelf benthos may have existed in the ASE during the last glacial period.
Arctic Sea Ice Sets New Record Winter Low
2015-03-19
The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on February 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Credit: NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Year Trends
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68,200 +/- 10,500 sq km/yr (-2.62% 6 +/- 0.40%/decade), and the yearly average trend being -35,000 +/- 5900 sq km/yr (-1.47% +/- 0.25%/decade).
Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Yr Trends
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68200 +/- 10500 km sq yr(exp -1) (-2.62% +/- 0.40%decade(exp -1)), and the yearly average trend being -35000 +/-5900 km sq yr(exp -1) (-1.47% +/- 0.25%decade(exp -1)).
NASA Astrophysics Data System (ADS)
Arp, C. D.; Alexeev, V. A.; Bondurant, A. C.; Creighton, A.; Engram, M. J.; Jones, B. M.; Parsekian, A.
2017-12-01
The winter of 2016/2017 was exceptionally warm and snowy along the coast of Arctic Alaska partly due to low fall sea ice extent. Based on several decades of field measurements, we documented a new record low maximum ice thickness (MIT) for lakes on the Barrow Peninsula, averaging 1.2 m. This is in comparison to a long-term average MIT of 1.7 m stretching back to 1962 with a maximum of 2.1 m in 1970 and previous minimum of 1.3 m in 2014. The relevance of thinner lake ice in arctic coastal lowlands, where thermokarst lakes cover greater than 20% of the land area, is that permafrost below lakes with bedfast ice is typically preserved. Lakes deeper than the MIT warm and thaw sub-lake permafrost forming taliks. Remote sensing analysis using synthetic aperture radar (SAR) is a valuable tool for scaling the field observations of MIT to the entire freshwater landscape to map bedfast ice. A new, long-term time-series of late winter multi-platform SAR from 1992 to 2016 shows a large dynamic range of bedfast ice extent, 29% of lake area or 6% of the total land area over this period, and adding 2017 to this record is expected to extend this range further. Empirical models of lake mean annual bed temperature suggest that permafrost begins to thaw at depths less than 60% of MIT. Based on this information and knowledge of average lake ice growth trajectories, we suggest that future SAR analysis of lake ice should focus on mid-winter (January) to evaluate the extent of bedfast ice and corresponding zones of sub-lake permafrost thaw. Tracking changes in these areas from year to year in mid-winter may provide the best landscape-scale evaluation of changing permafrost conditions in lake-rich arctic lowlands. Because observed changes in MIT coupled with mid-winter bedfast ice extent provide much information on permafrost stability, we suggest that these measurements can serve as Essential Climate Variables (EVCs) to indicate past and future changes in lake-rich arctic regions. The strong linkage between declining sea ice and terrestrial freshwater ice thickness, lake ice regimes, and sub-lake permafrost stability suggest more rapid degradation of landscape-wide permafrost than some observations and models might suggest, warranting a targeted program to indicate such arctic land-sea linkages.
NASA Astrophysics Data System (ADS)
Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David
2015-11-01
During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM, challenges the conventional geomorphic model of glaciation in New Zealand where the vertical arrangement of glacial landform-associations is used to assign successively older glaciation ages.
Ice-Sheet Glaciation of the Puget lowland, Washington, during the Vashon Stade (late pleistocene)
Thorson, R.M.
1980-01-01
During the Vashon Stade of the Fraser Glaciation, about 15,000-13,000 yr B.P., a lobe of the Cordilleran Ice Sheet occupied the Puget lowland of western Washington. At its maximum extent about 14,000 yr ago, the ice sheet extended across the Puget lowland between the Cascade Range and Olympic Mountains and terminated about 80 km south of Seattle. Meltwater streams drained southwest to the Pacific Ocean and built broad outwash trains south of the ice margin. Reconstructed longitudinal profiles for the Puget lobe at its maximum extent are similar to the modern profile of Malaspina Glacier, Alaska, suggesting that the ice sheet may have been in a near-equilibrium state at the glacial maximum. Progressive northward retreat from the terminal zone was accompanied by the development of ice-marginal streams and proglacial lakes that drained southward during initial retreat, but northward during late Vashon time. Relatively rapid retreat of the Juan de Fuca lobe may have contributed to partial stagnation of the northwestern part of the Puget lobe. Final destruction of the Puget lobe occurred when the ice retreated north of Admiralty Inlet. The sea entered the Puget lowland at this time, allowing the deposition of glacial-marine sediments which now occur as high as 50 m altitude. These deposits, together with ice-marginal meltwater channels presumed to have formed above sea level during deglaciation, suggest that a significant amount of postglacial isostatic and(or) tectonic deformation has occurred in the Puget lowland since deglaciation. ?? 1980.
NASA Astrophysics Data System (ADS)
Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar
2016-04-01
With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.
Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate
NASA Technical Reports Server (NTRS)
Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.
2014-01-01
Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates, with implications for estimating climate sensitivity to greenhouse gas forcing utilizing past climate states.
NASA Astrophysics Data System (ADS)
García, Juan-Luis; Hein, Andrew S.; Binnie, Steven A.; Gómez, Gabriel A.; González, Mauricio A.; Dunai, Tibor J.
2018-04-01
The timing, structure and termination of the last southern mountain glaciation and its forcing remains unclear. Most studies have focused on the global Last Glacial Maximum (LGM; 26.5-19 ka) time period, which is just part of the extensive time-frame within the last glacial period, including Marine Isotope Stages 3 and 4. Understanding the glacial fluctuations throughout the glacial period is a prerequisite for uncovering the cause and climate mechanism driving southern glaciation and the interhemispheric linkages of climate change. Here, we present an extensive (n = 65) cosmogenic 10Be glacier chronology derived from moraine belts marking the pre-global LGM extent of the former Patagonian Ice Sheet in southernmost South America. Our results show the mountain ice sheet reached its maximum extent at 48.0 ± 1.8 ka during the local LGM, but attained just half this extent at 21.5 ± 1.8 ka during the global LGM. This finding, supported by nearby glacier chronologies, indicates that at orbital time scales, the southern mid-latitude glaciers fluctuated out-of-phase with northern hemisphere ice sheets. At millennial time-scales, our data suggest that Patagonian and New Zealand glaciers advanced in unison with cold Antarctic stadials and reductions in Southern Ocean sea surface temperatures. This implies a southern middle latitudes-wide millennial rhythm of climate change throughout the last glacial period linked to the north Atlantic by the bipolar seesaw. We suggest that winter insolation, acting alongside other drivers such as the strength and/or position of the southern westerlies, controlled the extents of major southern mountain glaciers such as those in southernmost South America.
Climate sensitivity of Tibetan Plateau glaciers - past and future implications
NASA Astrophysics Data System (ADS)
Heyman, Jakob; Hubbard, Alun; Stroeven, Arjen P.; Harbor, Jonathan M.
2013-04-01
The Tibetan Plateau is one of the most extensively glaciated, non-Polar regions of the world, and its mountain glaciers are the primary source of melt water for several of the largest Asian rivers. During glacial cycles, Tibetan Plateau glaciers advanced and retreated multiple times, but remained restricted to the highest mountain areas as valley glaciers and ice caps. Because glacier extent is dominantly controlled by climate, the past extent of Tibetan glaciers provide information on regional climate. Here we present a study analyzing the past maximum extents of glaciers on the Tibetan Plateau with the output of a 3D glacier model, in an effort to quantify Tibetan Plateau climate. We have mapped present-day glaciers and glacial landforms deposited by formerly more extensive glaciers in eight mountain regions across the Tibetan Plateau, allowing us to define present-day and past maximum glacier outlines. Using a high-resolution (250 m) higher-order glacier model calibrated against present-day glacier extents, we have quantified the climate perturbations required to expand present-day glaciers to their past maximum extents. We find that a modest cooling of at most 6°C for a few thousand years is enough to attain past maximum extents, even with 25-75% precipitation reduction. This evidence for limited cooling indicates that the temperature of the Tibetan Plateau remained relatively stable over Quaternary glacial cycles. Given the significant sensitivity to temperature change, the expectation is perhaps that a future warmer climate might result in intense glacier reduction. We have tested this hypothesis and modeled the future glacier development for the three mountain regions with the largest present-day glacier cover using a projected warming of 2.8 to 6.2°C within 100 years (envelope limits from IPCC). These scenarios result in dramatic glacier reductions, including 24-100% ice volume loss after 100 years and 77-100% ice volume loss after 300 years.
Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations
NASA Astrophysics Data System (ADS)
Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko
2016-04-01
Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last interglacial ESL.
Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations
NASA Astrophysics Data System (ADS)
Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.
2015-12-01
Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.
NASA Astrophysics Data System (ADS)
Zanoner, Thomas; Carton, Alberto; Seppi, Roberto; Carturan, Luca; Baroni, Carlo; Salvatore, Maria Cristina; Zumiani, Matteo
2017-10-01
The Little Ice Age (LIA) is a well-recognized climatic event during which the glaciers in the Alps advanced and reached their maximum Holocene extent. During their retreat following the LIA, the glaciers left large areas of loose or poorly consolidated glacial deposits in their forelands, which are subject to paraglacial reworking and may represent potential hazards for human infrastructures. In this study, we present a regional scale mapping of the LIA and post-LIA glacial deposits and a reconstruction of the maximum LIA extents of glaciers in the same area. This work is motivated by a local law requiring the classification of areas subject to natural hazards in Trentino (Italian Alps). Results highlight that glaciers shrunk by 63% from the LIA maximum, leaving 30 km2 of unconsolidated deposits, which are subject to geomorphic paraglacial processes. Potentially hazardous consequences can occur, in particular, during high-magnitude instantaneous events, causing debris and mud flows, mass wasting from debris-covered ice, and floods from small moraine-dammed lakes.
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten
2010-01-01
Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.
Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone
NASA Astrophysics Data System (ADS)
Morison, J.
2016-02-01
The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.
Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages
Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.
2008-01-01
The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.
Greenland ice sheet retreat since the Little Ice Age
NASA Astrophysics Data System (ADS)
Beitch, Marci J.
Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.
NASA Astrophysics Data System (ADS)
Bohleber, Pascal; Hoffmann, Helene; Kerch, Johanna; Sold, Leo; Fischer, Andrea
2018-01-01
Cold glaciers at the highest locations of the European Alps have been investigated by drilling ice cores to retrieve their stratigraphic climate records. Findings like the Oetztal ice man have demonstrated that small ice bodies at summit locations of comparatively lower altitudes may also contain old ice if locally frozen to the underlying bedrock. In this case, constraining the maximum age of their lowermost ice part may help to identify past periods with minimum ice extent in the Alps. However, with recent warming and consequent glacier mass loss, these sites may not preserve their unique climate information for much longer. Here we utilized an existing ice cave at Chli Titlis (3030 m), central Switzerland, to perform a case study for investigating the maximum age of cold-based summit glaciers in the Alps. The cave offers direct access to the glacier stratigraphy without the logistical effort required in ice core drilling. In addition, a pioneering exploration had already demonstrated stagnant cold ice conditions at Chli Titlis, albeit more than 25 years ago. Our englacial temperature measurements and the analysis of the isotopic and physical properties of ice blocks sampled at three locations within the ice cave show that cold ice still exists fairly unchanged today. State-of-the-art micro-radiocarbon analysis constrains the maximum age of the ice at Chli Titlis to about 5000 years before present. By this means, the approach presented here will contribute to a future systematic investigation of cold-based summit glaciers, also in the Eastern Alps.
Late Pleistocene glaciation of the Mt Giluwe volcano, Papua New Guinea
Barrows, T.T.; Hope, G.S.; Prentice, M.L.; Fifield, L.K.; Tims, S.G.
2011-01-01
The Mt Giluwe shield volcano was the largest area glaciated in Papua New Guinea during the Pleistocene. Despite minimal cooling of the sea surface during the last glacial maximum, glaciers reached elevations as low as 3200 m. To investigate changes in the extent of ice through time we have re-mapped evidence for glaciation on the southwest flank of Mt Giluwe. We find that an ice cap has formed on the flanks of the mountain on at least three, and probably four, separate occasions. To constrain the ages of these glaciations we present 39 new cosmogenic 36Cl exposure ages complemented by new radiocarbon dates. Direct dating of the moraines identifies that the maximum extent of glaciation on the mountain was not during the last glacial maximum as previously thought. In conjunction with existing potassium/argon and radiocarbon dating, we recognise four distinct glacial periods between 293-306 ka (Gogon Glaciation), 136-158 ka (Mengane Glaciation), centred at 62 ka (Komia Glaciation) and from >20.3-11.5 ka (Tongo Glaciation). The temperature difference relative to the present during the Tongo Glaciation is likely to be of the order of at least 5 ??C which is a minimum difference for the previous glaciations. During the Tongo Glaciation, ice was briefly at its maximum for less than 1000 years, but stayed near maximum levels for nearly 4000 years, until about 15.4 ka. Over the next 4000 years there was more rapid retreat with ice free conditions by the early Holocene. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Johnson, Joanne S.; Smith, James A.; Schaefer, Joerg M.; Young, Nicolás E.; Goehring, Brent M.; Hillenbrand, Claus-Dieter; Lamp, Jennifer L.; Finkel, Robert C.; Gohl, Karsten
2017-12-01
Ice streams in the Pine Island-Thwaites region of West Antarctica currently dominate contributions to sea level rise from the Antarctic ice sheet. Predictions of future ice-mass loss from this area rely on physical models that are validated with geological constraints on past extent, thickness and timing of ice cover. However, terrestrial records of ice sheet history from the region remain sparse, resulting in significant model uncertainties. We report glacial-geological evidence for the duration and timing of the last glaciation of Hunt Bluff, in the central Amundsen Sea Embayment. A multi-nuclide approach was used, measuring cosmogenic 10Be and in situ14C in bedrock surfaces and a perched erratic cobble. Bedrock 10Be ages (118-144 ka) reflect multiple periods of exposure and ice-cover, not continuous exposure since the last interglacial as had previously been hypothesized. In situ14C dating suggests that the last glaciation of Hunt Bluff did not start until 21.1 ± 5.8 ka - probably during the Last Glacial Maximum - and finished by 9.6 ± 0.9 ka, at the same time as ice sheet retreat from the continental shelf was complete. Thickening of ice at Hunt Bluff most likely post-dated the maximum extent of grounded ice on the outer continental shelf. Flow re-organisation provides a possible explanation for this, with the date for onset of ice-cover at Hunt Bluff providing a minimum age for the timing of convergence of the Dotson and Getz tributaries to form a single palaeo-ice stream. This is the first time that timing of onset of ice cover has been constrained in the Amundsen Sea Embayment.
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten
2010-01-01
Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.
NASA Astrophysics Data System (ADS)
Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean
2016-09-01
The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.
Ship accessibility predictions for the Arctic Ocean based on IPCC CO2 emission scenarios
NASA Astrophysics Data System (ADS)
Oh, Jai-Ho; Woo, Sumin; Yang, Sin-Il
2017-02-01
Changes in the extent of Arctic sea ice, which have resulted from climate change, offer new opportunities to use the Northern Sea Route (NSR) and Northwest Passage (NWP) for shipping. However, choosing to navigate the Arctic Ocean remains challenging due to the limited accessibility of ships and the balance between economic gain and potential risk. As a result, more precise and detailed information on both weather and sea ice change in the Arctic are required. In this study, a high-resolution global AGCM was used to provide detailed information on the extent and thickness of Arctic sea ice. For this simulation, we have simulated the AMIP-type simulation for the present-day climate during 31 years from 1979 to 2009 with observed SST and Sea Ice concentration. For the future climate projection, we have performed the historical climate during 1979-2005 and subsequently the future climate projection during 2010-2099 with mean of four CMIP5 models due to the two Representative Concentration Pathway scenarios (RCP 8.5 and RCP 4.5). First, the AMIP-type simulation was evaluated by comparison with observations from the Hadley Centre sea-ice and Sea Surface Temperature (HadlSST) dataset. The model reflects the maximum (in March) and minimum (in September) sea ice extent and annual cycle. Based on this validation, the future sea ice extents show the decreasing trend for both the maximum and minimum seasons and RCP 8.5 shows more sharply decreasing patterns of sea ice than RCP 4.5. Under both scenarios, ships classified as Polar Class (PC) 3 and Open-Water (OW) were predicted to have the largest and smallest number of ship-accessible days (in any given year) for the NSR and NWP, respectively. Based on the RCP 8.5 scenario, the projections suggest that after 2070, PC3 and PC6 vessels will have year-round access across to the Arctic Ocean. In contrast, OW vessels will continue to have a seasonal handicap, inhibiting their ability to pass through the NSR and NWP.
The Formation each Winter of the Circumpolar Wave in the Sea Ice around Antarctica
NASA Technical Reports Server (NTRS)
Gloersen, Per; White, Warren B.
1999-01-01
Seeking to improve upon the visualization of the Antarctic Circumpolar Wave (ACW) , we compare a 16-year sequence of 6-month winter averages of Antarctic sea ice extents and concentrations with those of adjacent sea surface temperatures (SSTs). Here we follow SSTs around the globe along the maximum sea ice edge rather than in a zonal band equatorward of it. The results are similar to the earlier ones, but the ACWs do not propagate with equal amplitude or speed. Additionally in a sequence of 4 polar stereographic plots of these SSTs and sea ice concentrations, we find a remarkable correlation between SST minima and sea ice concentration maxima, even to the extent of matching contours across the ice-sea boundary, in the sector between 900E and the Palmer Peninsula. Based on these observations, we suggest that the memory of the ACW in the sea ice is carried from one Austral winter to the next by the neighboring SSTS, since the sea ice is nearly absent in the Austral summer.
Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.
Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe
2016-09-21
Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.
NASA Astrophysics Data System (ADS)
Lakeman, Thomas R.; England, John H.
2013-07-01
The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.
Boehme, Lars; Thompson, Dave; Fedak, Mike; Bowen, Don; Hammill, Mike O.; Stenson, Garry B.
2012-01-01
Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42·106 km2 and 2.07·106 km2) and at the last glacial maximum (between 4.74·104 km2 and 2.11·105 km2); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today's extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so. PMID:23300843
NASA Technical Reports Server (NTRS)
Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III
1997-01-01
Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum-ice-edge extent and in reducing pack-ice thickness, especially in the eastern-Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western-Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.
NASA Astrophysics Data System (ADS)
Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari
2017-08-01
The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.
Last Glacial-Interglacial Transition ice dynamics in the Wicklow Mountains, Ireland
NASA Astrophysics Data System (ADS)
Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick
2017-04-01
Understanding of the extent and dynamics of former ice masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local ice cap within the larger British-Irish Ice Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of ice cap disintegration to a topographically constrained ice mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and extent of mountain glaciation and ice recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow Ice Cap. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of ice mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on ice mass extent, dynamics and retreat patterns, offering an insight into small ice mass behaviour in a warming climate.
NASA Astrophysics Data System (ADS)
Jackson, Margaret S.; Hall, Brenda L.; Denton, George H.
2018-01-01
The stability of the Antarctic Ice Sheet under future warming remains an open question with broad implications for sea-level prediction and adaptation. In particular, knowledge of whether the ice sheet has the capacity for rapid drawdown or collapse, or whether it can remain stable during periods of warming, is essential for predicting its future behavior. Here we use 55 radiocarbon dates, coupled with geomorphologic mapping, to reconstruct the timing of changes in ice extent and elevation during the last ice-age termination in Salmon Valley, adjacent to McMurdo Sound in the western Ross Sea Embayment. Results indicate that a grounded ice sheet in the Ross Sea Embayment achieved its maximum elevation and extent along the headlands of Salmon Valley at ∼18,000 yr BP, during a period of increasing temperatures and accumulation over the Antarctic continent. This ice remained at or near its maximum on the headlands near the valley mouth until after ∼14,000 yr BP. Removal of grounded Ross Sea ice from Salmon Valley was complete shortly after ∼7900 yr BP, indicating that the grounding line had retreated through southern McMurdo Sound by that time. We suggest the primary driver of Ross Sea ice removal from McMurdo Sound was marine-based, either through basal melting or calving due to sea-level rise. When combined with regional data, the Salmon Valley record suggests that this sector of the Antarctic Ice Sheet did not contribute in a significant way to deglacial meltwater pulses, such as meltwater pulse 1a. In contrast to the Ross Sea ice, our work also shows that local, independent alpine glaciers in Salmon Valley have advanced through the Holocene. Land-terminating glaciers such as these elsewhere in the region show a similar pattern, and may reflect the continued influence of increased accumulation following the termination of the last ice age.
Pico, T; Creveling, J. R.; Mitrovica, J. X.
2017-01-01
The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet's peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately −40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables. PMID:28555637
NASA Astrophysics Data System (ADS)
Weilbach, K.; O'Cofaigh, C.; Lloyd, J. M.; Benetti, S.; Dunlop, P.
2016-12-01
Recent studies of the British and Irish Ice Sheet (BIIS) have identified evidence of ice extending to the continental shelf edge along the western margin of the ice sheet off NW Ireland. While this advance is assumed to have occurred during the LGM, exact timing of maximum advance, and the timing and nature of the subsequent retreat is not well constrained. The location of the north-western sector of the BIIS adjacent to the North Atlantic makes this area ideal to study the ice sheet dynamics of a major marine terminating ice sheet, and the rate and nature of its retreat following the LGM. High resolution swath bathymetry and sub-bottom profiler (SBP) data along with sedimentological, micropalaeontological and geochronological investigations of sediment cores, collected across the NW Irish shelf, have been used to establish the extent, timing and nature of retreat of this sector of the BIIS. Swath bathymetry show glacial landforms on the shelf, and SBP-data along with twenty seven vibro-cores were collected in east-west oriented transects across a series of arcuate recessional moraines stretching from the shelf edge to Donegal Bay. These moraines record progressive still stands of a lobate ice margin during its retreat from the shelf edge, and are therefore ideal for the investigation of ice-sheet dynamics and chronology during retreat. Twenty two radiocarbon dates from foraminifera and macrofossils, sampled from the sediment cores, indicate that maximum ice sheet extent occurred around 26200 y cal BP, with an initial rapid retreat across the shelf. Visual logging, X-ray imagery, MSCL data and palaeoenvironmental analyses of the sediment cores, indicate that retreat happened in a glacimarine environment, and was punctuated by multiple stillstands and possible readvances across the mid and inner shelf, forming the arcuate moraines. The radiocarbon dates suggest that final retreat occurred after 17857 y. cal BP, which is consistent with onshore cosmogenic exposure ages from NW Ireland, showing de-glaciation around 17400 y cal BP.
Paleoglacier reconstruction of the central massif of Gredos range during Last Glacial Maximum.
NASA Astrophysics Data System (ADS)
Campos, Néstor; Tanarro, Luis Miguel
2017-04-01
The accurate reconstruction of paleoglaciers require a well determined extent and morphology of them, one of the main problems is the absence of glacial geomorphic evidences which made possible the delimitation of the ice limits, for this reason physical-based models are useful for ice surface reconstruction in areas where geomorphological information is incomplete. A paleoglacier reconstruction during its maximum extension is presented for a high mountain area of the western part of the central massif of Gredos range, in the center of Iberian Peninsula, this area is located 30 km west of Almanzor (40˚ 14' 48? N; 5˚ 17' 52? W; 2596 m a.s.l.), the highest peak of Iberian Central System (ICS) and covers five gorges: La Nava, Taheña- Honda, La Vega, San Martín and Los Infiernos, the first three facing North, San Martin facing Northwest and Los Infiernos facing West. Despite the existence of some works analyzing the extension of paleoglaciers in the ICS during its maximum extension, there is still a need to improve the understanding of this zone, to provide a more detailed knowlegde of the evolution of the range and to know more in detail the full extent of paleoglaciers in this area. For delimitate the glaciated area the most distant frontal moraines with a larger geomorphological entity that indicates a great advance or a prolonged stay and stabilization which would presumably correspond with the maximum advance of the glaciers have been mapped, for that, photo interpretation of digital aerial photographs (25 cm resolution) has been done, in some areas where the location or limits of the moraines were not clear 3D images were used, all the work was complemented with detailed field surveys. Once the ice limits have been determined is necessary to estimate the topography of the paleoglaciers, for that purpose a simple steady-state models that assume a perfectly plastic ice rheology have been used, reconstructing the theoretical ice profiles and obtaining the extent of the paleoglaciers (based on the largest moraines of the front and sides of the valley as the main indicator of the LGM), in order to reconstruct the ice surface we calculated longitudinal profiles, with these reconstructed profiles a digital elevation model (DEM) of 5 m pixel size was created and combined with actual topography in order to obtain the ice thickness at the LGM. The combination of these physical-based models and geomorphological evidences has demonstrated to be a successful method to reconstruct the topography of paleoglaciers, the most distant frontal moraines of the studied area are located at different altitudes depending on the paleoglacier, the lower altitude of a frontal moraine is 1320 meters and the higher is located at 1570 meters, the preliminary results show that during the LGM, the studied paleoglaciers had a maximum ice thickness of 366 meters in La Vega gorge, with a total volume of 28.56 x 108 m3 and a mean paleoELA of 1940 meters. References: Benn, D.I., Hulton, N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36, 605e610. Schilling, D.H., Hollin, J., 1981. Numerical reconstructions of valley glaciers and small ice caps. In: Denton, G.H., Hughes, T.J. (Eds.), The Last Great Ice Sheets. Willey, New York, USA, pp. 207e220. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain
Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum
Fraser, Ceridwen I.; Nikula, Raisa; Spencer, Hamish G.; Waters, Jonathan M.
2009-01-01
The end of the Last Glacial Maximum (LGM) dramatically reshaped temperate ecosystems, with many species moving poleward as temperatures rose and ice receded. Whereas reinvading terrestrial taxa tracked melting glaciers, marine biota recolonized ocean habitats freed by retreating sea ice. The extent of sea ice in the Southern Hemisphere during the LGM has, however, yet to be fully resolved, with most palaeogeographic studies suggesting only minimal or patchy ice cover in subantarctic waters. Here, through population genetic analyses of the widespread Southern Bull Kelp (Durvillaea antarctica), we present evidence for persistent ice scour affecting subantarctic islands during the LGM. Using mitochondrial and chloroplast genetic markers (COI; rbcL) to genetically characterize some 300 kelp samples from 45 Southern Ocean localities, we reveal a remarkable pattern of recent recolonization in the subantarctic. Specifically, in contrast to the marked phylogeographic structure observed across coastal New Zealand and Chile (10- to 100-km scales), subantarctic samples show striking genetic homogeneity over vast distances (10,000-km scales), with a single widespread haplotype observed for each marker. From these results, we suggest that sea ice expanded further and ice scour during the LGM impacted shallow-water subantarctic marine ecosystems more extensively than previously suggested. PMID:19204277
Integrating Observations and Models to Better Understand a Changing Arctic Sea Ice Cover
NASA Astrophysics Data System (ADS)
Stroeve, J. C.
2017-12-01
TThe loss of the Arctic sea ice cover has captured the world's attention. While much attention has been paid to the summer ice loss, changes are not limited to summer. The last few winters have seen record low sea ice extents, with 2017 marking the 3rdyear in a row with a new record low for the winter maximum extent. More surprising is the number of consecutive months between January 2016 through April 2017 with ice extent anomalies more than 2 standard deviations below the 1981-2010 mean. Additionally, October 2016 through April 2017 saw 7 consecutive months with record low extents, something that had not happened before in the last 4 decades of satellite observations. As larger parts of the Arctic Ocean become ice-free in summer, regional seas gradually transition from a perennial to a seasonal ice cover. The Barents Sea is already only seasonally ice covered, whereas the Kara Sea has recently lost most of its summer ice and is thereby starting to become a seasonally ice covered region. These changes serve as harbinger for what's to come for other Arctic seas. Given the rapid pace of change, there is an urgent need to improve our understanding of the drivers behind Arctic sea ice loss, the implications of this ice loss and to predict future changes to better inform policy makers. Climate models play a fundamental role in helping us synthesize the complex elements of the Arctic sea ice system yet generally fail to simulate key features of the sea ice system and the pace of sea ice loss. Nevertheless, modeling advances continue to provide better means of diagnosing sea ice change, and new insights are likely to be gained with model output from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP) aim is to better understand biases and errors in sea ice simulations so that we can improve our understanding of the likely future evolution of the sea ice cover and its impacts on global climate. To reach this goal, a community-defined set of model output has been recommended that will allow scientists to better characterize the heat, momentum and mass budget of Arctic sea ice. This will allow for better quantification of the role of internal variability, external forcing and model deficiencies.
Sea Ice off the Princess Astrid Coast
2015-04-08
On April 5, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of sea ice off the coast of East Antarctica’s Princess Astrid Coast. White areas close to the continent are sea ice, while white areas in the northeast corner of the image are clouds. One way to better distinguish ice from clouds is with false-color imagery. In the false-color view of the scene here, ice is blue and clouds are white. The image was acquired after Antarctic sea ice had passed its annual minimum extent (reached on February 20, 2015), and had resumed expansion toward its maximum extent (usually reached in September). Credit: NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen via NASA's Earth Observatory Read more: www.nasa.gov/content/sea-ice-off-east-antarcticas-princes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The Satellite Passive-Microwave Record of Sea Ice in the Ross Sea Since Late 1978
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2009-01-01
Satellites have provided us with a remarkable ability to monitor many aspects of the globe day-in and day-out and sea ice is one of numerous variables that by now have quite substantial satellite records. Passive-microwave data have been particularly valuable in sea ice monitoring, with a record that extends back to August 1987 on daily basis (for most of the period), to November 1970 on a less complete basis (again for most of the period), and to December 1972 on a less complete basis. For the period since November 1970, Ross Sea sea ice imagery is available at spatial resolution of approximately 25 km. This allows good depictions of the seasonal advance and retreat of the ice cover each year, along with its marked interannual variability. The Ross Sea ice extent typically reaches a minimum of approximately 0.7 x 10(exp 6) square kilometers in February, rising to a maximum of approximately 4.0 x 10(exp 6) square kilometers in September, with much variability among years for both those numbers. The Ross Sea images show clearly the day-by-day activity greatly from year to year. Animations of the data help to highlight the dynamic nature of the Ross Sea ice cover. The satellite data also allow calculation of trends in the ice cover over the period of the satellite record. Using linear least-squares fits, the Ross Sea ice extent increased at an average rate of 12,600 plus or minus 1,800 square kilometers per year between November 1978 and December 2007, with every month exhibiting increased ice extent and the rates of increase ranging from a low of 7,500 plus or minus 5,000 square kilometers per year for the February ice extents to a high of 20,300 plus or minus 6,100 kilometers per year for the October ice extents. On a yearly average basis, for 1979-2007 the Ross Sea ice extent increased at a rate of 4.8 plus or minus 1.6 % per decade. Placing the Ross Sea in the context of the Southern Ocean as a whole, over the November 1978-December 2007 period the Ross Sea had the highest rate of increase in sea ice coverage of any of five standard divisions of the Southern Ocean, although the Weddell Sea, Indian Ocean, and Western Pacific Ocean all also had sea ice increases, while only the Bellingshausen/Smundsen Seas experienced overall sea ice decreases. Overall, the Southern Ocean sea ice cover increased at an average rate of 10,800 plus or minus 2,500 square kilometers per year between November 1978 and December 2007, with every month showing positive values although with some of these values not being statistically significant. The sea ice increase since November 1978 was preceded by a sharp decrease in Southern Ocean ice coverage in the 1970's and is in marked contrast to the decrease in Arctic sea ice coverage that has occurred both in the period since November 1978 and since earlier in the 1970's. On a yearly average bases, for 1979-2007 the Southern Ocean sea ice extent increased at a rate of 1.0 plus or minus 0.4% per decade, whereas the Arctic ice extent decreased at the much greater rate of 4.0 plus or minus 0.4 percent per decade (closer to the % per decade rate of increase in the Ross Sea). Considerable research is ongoing to explain the differences.
Inferring Past Climate in Equatorial East Africa using Glacier Models
NASA Astrophysics Data System (ADS)
Doughty, A. M.; Kelly, M. A.; Anderson, B.; Russell, J. M.; Jackson, M. S.
2016-12-01
Mountain glaciers in the northern and southern middle latitudes advanced nearly synchronously during the Last Glacial Maximum (LGM), but the timing and magnitude of cooling is less certain for the tropics. Knowing the degree of cooling in high altitude, low latitude regions advances our understanding of the cryosphere in understudied areas and contributes to our understanding of what causes ice ages. Here we use a 2-D ice flow and mass balance model to simulate glacier extents in the Rwenzori Mountains of Uganda and the Democratic Republic of the Congo during the Last Glacial Maximum. In particular, we model steady-state ice extent that matches the dated moraines in the Rwenzori Mountains to infer past climate. Steady-state simulations of LGM glacier extents, which match moraines dated to 20,000 years ago, can be obtained with a 20% reduction in precipitation and a 7°C cooling to match the associated moraines. A 0-50% reduction in precipitation combined with a 5-8°C cooling, respectively, agrees well with paleoclimate estimates from independent proxy records. As expected in a high precipitation environment, these glaciers are very sensitive to decreases in temperature, converting large volumes of precipitation from rain to snow as well as decreasing melting. Glaciers in equatorial Africa appear to have been waxing and waning synchronously and by the same magnitude as glaciers in the middle latitudes, suggesting a common, global forcing mechanism.
Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the Alps
NASA Astrophysics Data System (ADS)
Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian
2016-04-01
During the Last Glacial Maximum (LGM) in the European Alps (late Würm) local ice caps and extensive ice fields in the high Alps fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the Alps was underway by about 24 ka. In the high Alps, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central Alps (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high Alps was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the Alps. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.
Meteorological Analysis of Icing Conditions Encountered in Low-Altitude Stratiform Clouds
NASA Technical Reports Server (NTRS)
Kline, D. B.; Walker, J. A.
1951-01-01
Liquid-water content, droplet size, and temperature data measured during 22 flights in predominatly stratiform clouds through the 1948-49 and the 1949-50 winters are presented. Several icing encounters were of greater severity than those previously measured over the same geographical area, but were within the limits of similar measurements obtained over different terrain within the United States. An analysis of meteorological conditions existing during the 74 flights conducted for four winters indicated an inverse relation of liquid-water concentration to maximum horizontal extent of icing clouds. Data on the vertical extent of supercooled clouds are also presented. Icing conditions were most likely to occur in the southwest and northwest quadrants of a cyclone area, and least likely to occur in the southeast and northeast quadrants where convergent air flow and lifting over the associated warm frontal surface usually cause precipitation. Additional data indicated that, icing conditions were usually encountered in nonprecipitating clouds existing at subfreezing temperatures and were unlikely over areas where most weather observing stations reported the existence of precipitation. Measurements of liquid-water content obtained during 12 flights near the time and location of radiosonde observations were compared with theoretical values. The average liquid-water content of a cloud layer, as measured by the multicylinder technique, seldom exceeded two-thirds of that which could be released by adiabatic lifting. Local areas near the cloud tops equaled or occasionally exceeded the calculated maximum quantity of liquid water.
Approaching the 2015 Arctic Sea Ice Minimum
2017-12-08
As the sun sets over the Arctic, the end of this year’s melt season is quickly approaching and the sea ice cover has already shrunk to the fourth lowest in the satellite record. With possibly some days of melting left, the sea ice extent could still drop to the second or third lowest on record. Arctic sea ice, which regulates the planet’s temperature by bouncing solar energy back to space, has been on a steep decline for the last two decades. This animation shows the evolution of Arctic sea ice in 2015, from its annual maximum wintertime extent, reached on February 25, to September 6. Credit: NASA Scientific Visualization Studio DOWNLOAD THIS VIDEO HERE: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11999 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Spatial and Temporal Means and Variability of Arctic Sea Ice Climate Indicators from Satellite Data
NASA Astrophysics Data System (ADS)
Peng, G.; Meier, W.; Bliss, A. C.; Steele, M.; Dickinson, S.
2017-12-01
Arctic sea ice has been undergoing rapid and accelerated loss since satellite-based measurements became available in late 1970s, especially the summer ice coverage. For the Arctic as a whole, the long-term trend for the annual sea ice extent (SIE) minimum is about -13.5±2.93 % per decade change relative to the 1979-2015 climate average, while the trends of the annual SIE minimum for the local regions can range from 0 to up to -42 % per decade. This presentation aims to examine and baseline spatial and temporal means and variability of Arctic sea ice climate indicators, such as the annual SIE minimum and maximum, snow/ice melt onset, etc., from a consistent, inter-calibrated, long-term time series of remote sensing sea ice data for understanding regional vulnerability and monitoring ice state for climate adaptation and risk mitigation.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.
2007-12-01
The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.
Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Kleman, Johan; Hättestrand, Clas
1999-11-01
The areal extents of the Laurentide and Fennoscandian ice sheets during the Last Glacial Maximum (about 20,000 years ago) are well known, but thickness estimates range widely, from high-domed to thin, with large implications for our reconstruction of the climate system regarding, for example, Northern Hemisphere atmospheric circulation and global sea levels. This uncertainty stems from difficulties in determining the basal temperatures of the ice sheets and the shear strength of subglacial materials, a knowledge of which would better constrain reconstructions of ice-sheet thickness. Here we show that, in the absence of direct data, the occurrence of ribbed moraines in modern landscapes can be used to determine the former spatial distribution of frozen- and thawed-bed conditions. We argue that ribbed moraines were formed by brittle fracture of subglacial sediments, induced by the excessive stress at the boundary between frozen- and thawed-bed conditions resulting from the across-boundary difference in basal ice velocity. Maps of glacial landforms from aerial photographs of Canada and Scandinavia reveal a concentration of ribbed moraines around the ice-sheet retreat centres of Quebec, Keewatin, Newfoundland and west-central Fennoscandia. Together with the evidence from relict landscapes that mark glacial areas with frozen-bed conditions, the distribution of ribbed moraines on both continents suggest that a large area of the Laurentide and Fennoscandian ice sheets was frozen-based-and therefore high-domed and stable-during the Last Glacial Maximum.
NASA Astrophysics Data System (ADS)
Nichols, K. A.; Johnson, J.; Goehring, B. M.; Balco, G.
2017-12-01
We present a suite of in situ 14C cosmogenic nuclide exposure ages from nunataks at the Lassiter Coast in West Antarctica on the west side of the Weddell Sea Embayment (WSE) to constrain the thinning history of the Ronne-Filchner Ice Shelf. Constraints on past ice extents in the WSE remain relatively understudied, despite the WSE draining 22% of the Antarctic Ice Sheet (AIS). Information lacking includes unambiguous geological evidence for the maximum Last Glacial Maximum (LGM) ice thickness and the timing of subsequent ice retreat in key peripheral locations. Past studies using long-lived cosmogenic nuclides have shown that, due to the cold-based nature of the AIS, inheritance of nuclide concentrations from previous periods of exposure is a common problem. We utilised the cosmogenic nuclide 14C to circumvent the issue of inheritance. The short half-life of 14C means measured concentrations are largely insensitive to inheritance, as relatively short periods of ice cover (20-30 kyr) result in significant 14C decay. Furthermore, samples saturated in 14C will demonstrate that their location was above the maximum LGM thickness of the ice sheet and exposed for at least the past ca. 35 kyr. Preliminary results from four samples indicate elevations between 63 and 360 m above the present-day ice surface elevations were deglaciated between 7 and 6 ka. With little exposed rock above these elevations (ca. 70 m), this may indicate that the locality was entirely covered by ice during the LGM. Additional 14C measurements will form a full elevation transect of samples to decipher the post-LGM thinning history of ice at this location.
NASA Astrophysics Data System (ADS)
Sancho, Carlos; Arenas, Concha; Pardo, Gonzalo; Peña-Monné, José Luis; Rhodes, Edward J.; Bartolomé, Miguel; García-Ruiz, José M.; Martí-Bono, Carlos
2018-04-01
Combined geomorphic features, stratigraphic characteristics and sedimentologic interpretation, coupled with optically stimulated luminescence (OSL) dates, of a glacio-fluvio-lacustrine sequence (Linás de Broto, northern Spain) provide new information to understand the palaeoenvironmental significance of dynamics of glacier systems in the south-central Pyrenees during the Last Glacial Cycle (≈130 ka to 14 ka). The Linás de Broto depositional system consisted of a proglacial lake fed primarily by meltwater streams emanating from the small Sorrosal glacier and dammed by a lateral moraine of the Ara trunk glacier. The resulting glacio-fluvio-lacustrine sequence, around 55 m thick, is divided into five lithological units consisting of braided fluvial (gravel deposits), lake margin (gravel and sand deltaic deposits) and distal lake (silt and clay laminites) facies associations. Evolution of the depositional environment reflects three phases of progradation of a high-energy braided fluvial system separated by two phases of rapid expansion of the lake. Fluvial progradation occurred during short periods of ice melting. Lake expansion concurred with ice-dam growth of the trunk glacier. The first lake expansion occurred over a time range between 55 ± 9 ka and 49 ± 11 ka, and is consistent with the age of the Viu lateral moraine (49 ± 8 ka), which marks the maximum areal extent of the Ara glacier during the Last Glacial Cycle. These dates confirm that the maximum areal extent of the glacier occurred during Marine Isotope Stages 4 and 3 in the south-central Pyrenees, thus before the Last Glacial Maximum. The evolution of the Linás de Broto depositional system during this maximum glacier extent was modulated by climate oscillations in the northern Iberian Peninsula, probably related to latitudinal shifts of the atmospheric circulation in the southern North-Atlantic Ocean, and variations in summer insolation intensity.
Physical properties of the WAIS Divide ice core
Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.
2014-01-01
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.
2011-01-01
The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.
Wilson, P W; Haymet, A D J
2008-09-18
Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.
NASA Astrophysics Data System (ADS)
Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.
2018-05-01
Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub-ice-shelf melting which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcings, with a uniform response in all simulations controlled by the surface air temperature, derived from ice cores.
NASA Astrophysics Data System (ADS)
Ohashi, Yoshihiko; Iida, Takahiro; Sugiyama, Shin; Aoki, Shigeru
2016-09-01
Glacial meltwater discharge from the Greenland ice sheet and ice caps forms high turbidity water in the proglacial ocean off the Greenland coast. Although the timing and magnitude of high turbidity water export affect the coastal marine environment, for example, through impacts on biological productivity, little is known about the characteristics of this high turbidity water. In this paper, we therefore report on the spatial and temporal variations in high turbidity water off the Thule region in northwestern Greenland, based on remote sensing reflectance data at a wavelength of 555 nm (Rrs555). The high turbidity area, identified on the basis of high reflectivity (Rrs555 ≥ 0.0070 sr-1), was generally distributed near the coast, where many outlet glaciers terminate in the ocean and on land. The extent of the high turbidity area exhibited substantial seasonal and interannual variability, and its annual maximum extent was significantly correlated with summer air temperature. Assuming a linear relationship between the high turbidity area and summer temperature, annual maximum extent increases under the influence of increasing glacial meltwater discharge, as can be inferred from present and predicted future warming trends.
A model of the Greenland ice sheet deglaciation
NASA Astrophysics Data System (ADS)
Lecavalier, Benoit
The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.
An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions
NASA Astrophysics Data System (ADS)
Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan
2016-09-01
A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.
NASA Astrophysics Data System (ADS)
Rjazin, Jevgeni; Pärn, Ove
2016-04-01
Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice extent values. A shortage of this characteristic is its failure to account with the ice cover durability. The ice extents sum enables to describe the ice cover behaviour more adequately. However using this characteristic we lack the option to compare its values with those in the past as the ice cover extent was not daily measured then. We can use ice extents sum only for those ice seasons on which we have enough data. Using the ice extents sum of the season adds the temporal dimension to the ice season severity study.
NASA Astrophysics Data System (ADS)
Haine, T. W. N.; Martin, T.
2017-12-01
The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.
NASA Astrophysics Data System (ADS)
Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.
2015-12-01
The amount of light that penetrates the Arctic sea ice cover impacts sea-ice mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea ice in varying time and space may impact new trends in Arctic sea ice extent and the progression of melt.
NASA Astrophysics Data System (ADS)
Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.
2017-12-01
The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.
Loitering of the retreating sea ice edge in the Arctic Seas.
Steele, Michael; Ermold, Wendy
2015-12-01
Each year, the arctic sea ice edge retreats from its winter maximum extent through the Seasonal Ice Zone (SIZ) to its summer minimum extent. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan-arctic ice edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior "ice edge loitering," and identify areas that are more prone to loitering than others. Generally, about 20-25% of the SIZ area experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in areas from which the ice has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force ice floes into this water cause melting. Thus, while individual ice floes are moving, the ice edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the area of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ area has grown. This is because rapid ice retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the ice edge during the retreat season.
NASA Technical Reports Server (NTRS)
Wright, William B.; Chung, James
1999-01-01
Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.
Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing
Golledge, Nicholas R.; Fogwill, Christopher J.; Mackintosh, Andrew N.; Buckley, Kevin M.
2012-01-01
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments—a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078
Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.
Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M
2012-10-02
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.
NASA Astrophysics Data System (ADS)
Fahnestock, M. A.; Shuman, C. A.; Alley, K. E.
2017-12-01
Snow pit observations on a glaciologically-focussed surface traverse in Greenland allowed Benson [1962, SIPRE (now CRREL) Research Report 70] to define a series of snow zones based on the extent of post-depositional diagenesis of the snowpack. At high elevations, Benson found fine-grained "dry snow" where melt (at that time) was absent year-round, followed down-elevation by a "percolation zone" where surface melt penetrated the snowpack, then a "wet snow zone" where firn became saturated during the peak of the melt season, and finally "superimposed ice" and "bare ice" zones where refrozen surface melt and glacier ice were exposed in the melt season. These snow zones can be discriminated in winter synthetic aperture radar (SAR) imagery of the ice sheet (e.g. Fahnestock et al. 2001), but summer melt reduces radar backscatter and makes it difficult to follow the progression of diagenesis beyond the initial indications of surface melting. While some of the impacts of surface melt (especially bands of blue water-saturated firn) are observed from time to time in optical satellite imagery, it has only become possible to map effects of melt over the course of a summer season with the advent of large-data analysis tools such as Google Earth Engine and the inclusion of Landsat and Sentinel-2 data streams in these tools. A map of the maximum extent of this blue saturated zone through the 2016 melt season is shown in the figure. This image is a true color (RGB) composite, but each pixel in the image shows the color of the surface when the "blueness" of the pixel was at a maximum. This means each pixel can be from a different satellite image acquisition than adjacent pixels - but it also means that the maximum extent of the saturated firn (Benson's wet snow zone) is visible. Also visible are percolation, superimposed and bare ice zones. This analysis, using Landsat 8 Operational Land Imager data, was performed using Google Earth Engine to access and analyze the entire melt season's data. Similar spatial analyses for other years in the record, combined with pixel-by-pixel analysis of each time series through the year, can be used to track the progression and overall effect of the melt season in each year. This view of the progression of a melt season provides a new set of tools to help understand changing surface conditions for ice sheets and glaciers globally.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, Craig; Rainville, Luc; Perry, Mary Jane
2016-04-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, C.; Rainville, L.; Perry, M. J.
2016-02-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
NASA Astrophysics Data System (ADS)
Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc
2016-06-01
Reconstructions of the extent and height of the Irish Ice Sheet (IIS) during the Last Glacial Maximum (LGM, ∼19-26 ka) are widely debated, in large part due to limited age constraints on former ice margins and due to uncertainties in the origin of the trimlines. A key area is southwestern Ireland, where various LGM reconstructions range from complete coverage by a contiguous IIS that extends to the continental shelf edge to a separate, more restricted southern-sourced Kerry-Cork Ice Cap (KCIC). We present new 10Be surface exposure ages from two moraines in a cirque basin in the Macgillycuddy's Reeks that provide a unique and unequivocal constraint on ice thickness for this region. Nine 10Be ages from an outer moraine yield a mean age of 24.5 ± 1.4 ka while six ages from an inner moraine yield a mean age of 20.4 ± 1.2 ka. These ages show that the northern flanks of the Macgillycuddy's Reeks were not covered by the IIS or a KCIC since at least 24.5 ± 1.4 ka. If there was more extensive ice coverage over the Macgillycuddy's Reeks during the LGM, it occurred prior to our oldest ages.
NASA Astrophysics Data System (ADS)
Hezel, Paul J.
Observational studies have examined the relationship between methanesulfonic acid (MSA) measured in Antarctic ice cores and sea ice extent measured by satellites with the aim of producing a proxy for past sea ice extent. MSA is an oxidation product of dimethylsulfide (DMS) and is potentially linked to sea ice based on observations of very high surface seawater DMS in the sea ice zone. Using a global chemical transport model, we present the first modeling study that specifically examines this relationship on interannual and on glacial-interglacial time scales. On interannual time scales, the model shows no robust relationship between MSA deposited in Antarctica and sea ice extent. We show that lifetimes of MSA and DMS are longer in the high latitudes than in the global mean, interannual variability of sea ice is small (<25%) as a fraction of sea ice area, and sea ice determines only a fraction of the variability (<30%) of DMS emissions from the ocean surface. A potentially larger fraction of the variability in DMS emissions is determined by surface wind speed (up to 46%) via the parameterization for ocean-to-atmosphere gas exchange. Furthermore, we find that a significant fraction (up to 74%) of MSA deposited in Antarctica originates from north of 60°S, north of the seasonal sea ice zone. We then examine the deposition of MSA and non-sea-salt sulfate (nss SO2-4 ) on glacial-interglacial time scales. Ice core observations on the East Antarctic Plateau suggest that MSA increases much more than nss SO2-4 during the last glacial maximum (LGM) compared to the modern period. It has been suggested that high MSA during the LGM is indicative of higher primary productivity and DMS emissions in the LGM compared to the modern day. Studies have also shown that MSA is subject to post-depositional volatilization, especially during the modern period. Using the same chemical transport model driven by meteorology from a global climate model, we examine the sensitivity of MSA and nss SO2-4 deposition to differences between the modern and LGM climates, including sea ice extent, sea surface temperatures, oxidant concentrations, and meteorological conditions. We are unable to find a mechanism whereby MSA deposition fluxes are higher than nss SO2-4 deposition fluxes on the East Antarctic Plateau in the LGM compared the modern period. We conclude that the observed differences between MSA and nss SO2-4 on glacial-interglacial time scales are due to post-depositional processes that affect the ice core MSA concentrations. We can not rule out the possibility of increased DMS emissions in the LGM compared to the modern day. If oceanic DMS production and ocean-to-air fluxes in the sea ice zone are significantly enhanced by the presence of sea ice as indicated by observations, we suggest that the potentially larger amplitude of the seasonal cycle in sea ice extent in the LGM implies a more important role for sea ice in modulating the sulfur cycle during the LGM compared to the modern period. We then shift our focus to study the evolution of snow depth on sea ice in global climate model simulations of the 20th and 21st centuries from the Coupled Model Intercomparison Project 5 (CMIP5). Two competing processes, decreasing sea ice extent and increasing precipitation, will affect snow accumulation on sea ice in the future, and it is not known a priori which will dominate. The decline in Arctic sea ice extent is a well-studied problem in future scenarios of climate change. Moisture convergence into the Arctic is also expected to increase in a warmer world, which may result in increasing snowfall rates. We show that the accumulated snow depth on sea ice in the spring declines as a result of decreased ice extent in the early autumn, in spite of increased winter snowfall rates. The ringed seal (Phoca hispida ) depends on accumulated snow in the spring to build subnivean birth lairs, and provides one of the motivations for this study. Using an empirical threshold of 20 cm of snow depth on level sea ice for ringed seal lair success, we estimate a decline of potential ringed seal habitat of nearly 70%.
Sediment Flux, East Greenland Margin
1991-09-17
D.. T 0ATE [3. AEORT TYPE AND ý -2-’S .’:2,E.i 09/17/91 Final Oct. . 1988 - Seot.l. 1991 4. TITLE AND SU.3TITLE S. F*.i1CjG . AU • 12..5 Sediment Flux...and s le ,; its ditribution is unlimited. 13. ABSTRACT (Maximum 2CO words) We investigated sediment flux across an ice-dominated, high latitude...investigated an area off the East Greenland margin where the world’s second largest ice sheet still exists and where information on the extent of glaciation on
NASA Astrophysics Data System (ADS)
Wearing, M.; Kingslake, J.
2017-12-01
It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.
Graphs) IMS Ice Extent Data. IMS Ice Extent for sea ice only. Total Ice Sea Ice Only View chart (2200 x Hemisphere Automated Snow and Ice Mapping NOHRSC Satellite Products NCEP MMAB Sea Ice CPC Northern Hemisphere National Snow and Ice Data Center (NSIDC) ** Multisensor Analyzed Sea Ice Extent (NSIDC) ** The NRCS NWCC
Holocene evolution of Hans Tausen Iskappe (Greenland): merging constraints and models
NASA Astrophysics Data System (ADS)
Zekollari, Harry; Lecavalier, Benoit S.; Huybrechts, Philippe
2017-04-01
In this study the Holocene evolution of Hans Tausen Iskappe (western Peary Land, Greenland) is investigated. Constraints on the ice cap evolution are combined with climatic records in a numerical ice flow - surface mass balance (SMB) model to better understand the palaeoenvironmental and climatic evolution of this region. Our simulations suggest that after disconnecting from the Greenland Ice Sheet (GrIS) the ice cap had roughly its present-day size and geometry around 8.5-9 ka ago. An ice core drilled to the bed indicates that the southern part of the ice cap subsequently disappeared during the Holocene Thermal Maximum (HTM) and this collapse can be reproduced, but the model suggests that the northern part of the ice cap most likely survived this warmer period. The late Holocene growth of the ice cap to its Little Ice Age (LIA) maximum neoglacial extent can be reproduced from the temperature reconstruction. The simulations suggest that over the last millennia the local precipitation may have been up to 70-80% higher than at present. By coupling the pre-industrial temperature forcing to a post-LIA warming trend, it is concluded that the warming between the end of the LIA and the period 1961-1990 was between 1 and 2°C. In all experiments the ice flow model complexity and horizontal resolution have only a minor effect on the long-term evolution of the ice cap, which is largely driven by SMB changes. On the other hand the glacial isostatic adjustments (GIA) need to be accounted for in a detailed manner, as this has a large impact on the modelled Holocene ice cap evolution.
NASA Astrophysics Data System (ADS)
Ivy-Ochs, Susan; Braakhekke, Jochem; Monegato, Giovanni; Gianotti, Franco; Forno, Gabriella; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian
2017-04-01
The Last Glacial Maximum (LGM) in the Alps saw much of the mountains inundated by ice. Several main accumulation areas comprising local ice caps and plateau icefields fit into a picture of transection glaciers flowing into huge valley glaciers. In the north the valley glaciers covered long distances (hundreds of kilometers) to reach the forelands where they spread out in fan-shaped piedmont lobes tens of kilometers across, e.g. the Rhine glacier. In the south travel distances to the mountain front were often shorter, the pathway steeper. Nevertheless, not all glaciers even reached beyond the front, as the temperatures were notably warmer in the south. For example at Orta the glacier snout remained within the mountains. Where glaciers reached the forelands they stopped abruptly and the moraine amphitheaters were constructed, e.g. at Ivrea and Rivoli-Avigliana. Sets of stacked moraines built-up as glacier advance was directly confined by the older moraines. We may temporally and spatially identify the culmination of the last glacial cycle by pinpointing the outermost moraines that date to the LGM (generally about 26-24 ka). On the other hand, the timing of abandonment of foreland positions is given by ages of the innermost, often lake-bounding, moraines (about 19-18 ka). Between the two, glacier fluctuations left the stadial moraines. In the Linth-Rhine system three stadials have been recognized: Killwangen, Schlieren and Zurich. Nevertheless, already in the Swiss sector correlation of the LGM stadials among the several foreland lobes is not unambiguous. Across the Alps, not only north to south but also west to east, how do the timing and extent of glaciers during the LGM vary? Recent glacier modelling by Seguinot et al. (2017) informs and suggests the possibility of differences in timing for reaching of the maximum extent and for the number of oscillations of individual lobes during the LGM. At present few sites in the Alps have detailed enough geomorphological constraints with well-dated ice-marginal positions for in depth discussion of outermost, innermost and in between moraines. Where locations of the LGM farthest extent are conflicting depending on author, we are trying to establish the precise location of the most extensive LGM position by directly dating moraine boulders with cosmogenic 10Be. Here we present 10Be data from the Orta and Rivoli-Avigliana amphitheatres. A key comparison is with the Tagliamento amphitheatre to the east, where dating testifies to a two-phase maximum (Monegato et al. 2007). Furthermore, comparison is made to sites north of the Alps including previously unpublished data. Monegato G. et al. 2007. Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68: 284-302. Seguinot J. et al. 2017. Modelling last glacial cycle ice dynamics in the Alps. EGU2017-8982
NASA Technical Reports Server (NTRS)
Anderson, John B.
1991-01-01
Some of the questions to be addressed by SeaRISE include: (1) what was the configuration of the West Antarctic ice sheet during the last glacial maximum; (2) What is its configuration during a glacial minimum; and (3) has it, or any marine ice sheet, undergone episodic rapid mass wasting. These questions are addressed in terms of what is known about the history of the marine ice sheet, specifically in Ross Sea, and what further studies are required to resolve these problems. A second question concerns the extent to which disintegration of marine ice sheets may result in rises in sea level that are episodic in nature and extremely rapid, as suggested by several glaciologists. Evidence that rapid, episodic sea level changes have occurred during the Holocene is also reviewed.
SIPEX 2012: Extreme sea-ice and atmospheric conditions off East Antarctica
NASA Astrophysics Data System (ADS)
Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.
2016-09-01
In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice-atmosphere system off East Antarctica, prior to and during the Sea Ice Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-ice and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-ice-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-ice extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-ice extent and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea ice appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea ice from the east. This increased westward ice flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea ice to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-ice extent from the western Ross Sea during austral winter 2012 has been identified to have fed into the westward current of the SIPEX 2012 region. A pair of large grounded icebergs appears to have modified the local stress state as well as the structure of the ice pack upstream and also towards the Dalton Glacier Tongue. Together with the increased influx of sea ice into the regions, this contributed to the difficulties in navigating the SIPEX 2012 region.
NASA Astrophysics Data System (ADS)
Knight, Jasper
2016-10-01
Southwest Ireland is a critical location to examine the sensitivity of late Pleistocene glaciers to climate variability in the northeast Atlantic, because of its proximal location to Atlantic moisture sources and the presence of high mountains in the Macgillycuddy's Reeks range which acted as a focus for glacierization (Harrison et al., 2010). The extent of Last Glacial Maximum (LGM) glaciers in southwest Ireland and their link to the wider British-Irish Ice Sheet (BIIS), however, is under debate. Some models suggest that during the LGM the region was wholly inundated by ice from the larger BIIS (Warren, 1992; Sejrup et al., 2005), whereas others suggest north-flowing ice from the semi-independent Cork-Kerry Ice Cap (CKIC) was diverted around mountain peaks, resulting in exposed nunataks in the Macgillycuddy's Reeks (Anderson et al., 2001; Ballantyne et al., 2011). Cirque glaciers may also have been present on mountain slopes above this regional ice surface (Warren, 1979; Rea et al., 2004). More recently, investigations have focused on the extent and age of cirque glaciers in the Reeks, based on the mapped distribution of end moraines (Warren, 1979; Harrison et al., 2010), and on cosmogenic dates on boulders on these moraines (Harrison et al., 2010) and on associated scoured bedrock surfaces across the region (Ballantyne et al., 2011). The recent paper by Barth et al. (2016) contributes to this debate by providing nine cosmogenic 10Be ages on boulders from two moraines from one small (∼1.7 km2) and low (373 m elevation of the cirque floor) cirque basin at Alohart (52°00‧50″N, 9°40‧30″W) within the Reeks range. These dates are welcomed because they add to the lengthening list of age constraints on geomorphic activity in the region that spans the time period from the LGM to early Holocene.
The Effect of Ice Formations on Propeller Performance
NASA Technical Reports Server (NTRS)
Neel, C. B., Jr.; Bright, L. G.
1950-01-01
Measurements of propeller efficiency loss due to ice formation are supplemented by an analysis to establish the magnitude of efficiency losses to be anticipated during flight in icing conditions. The measurements were made during flight in natural icing conditions; whereas the analysis consisted of an investIgation of changes in blade-section aerodynamic characteristics caused by ice formation and the resulting propeller efficiency changes. Agreement in the order of magnitude of eff 1- ciency losses to be expected is obtained between measured and analytical results. The results indicate that, in general, efficiency losses can be expected to be less than 10 percent; whereas maximum losses, which will be encountered only rarely, may be as high as 15 or 20 percent. Reported. losses larger than 15 or 20 percent, based on reductions in airplane performance, probably are due to ice accretions on other parts of the airplane. Blade-element theory is used in the analytical treatment, and calculations are made to show the degree to which the aerodynamic characteristics of a blade section. must be altered to produce various propeller efficiency losses. The effects of ice accretions on airfoil-section characteristics at subcritical speeds and their influence on drag-divergence Mach number are examined, and. the attendant maximum efficiency losses are computed. The effect of kinetic heating on the radial extent of ice formation is considered, and its influence on required length of blade heating shoes is discussed. It is demonstrated how the efficiency loss resulting from an icing encounter is influenced by the decisions of the pilot in adjusting the engine and propeller controls.
NASA Astrophysics Data System (ADS)
Fischer, Andrea; Seiser, Bernd
2014-05-01
First documentations of Austrian glaciers date from as early as 1601. Early documentations were triggered by glacier advances that created glacier-dammed lakes that caused floods whenever the dam collapsed . Since then, Austrian glaciers have been documented in drawings, descriptions and later on in maps and photography. These data are stored in historical archives but today only partly exploited for historical glaciology. They are of special interest for historical hydrology in glacier-covered basins, as the extent of the snow, firn and ice cover and its elevation affect the hydrological response of the basin to precipitation events in several ways: - Firn cover: the more area is covered by firn, the higher is the capacity for retention or even refreezing of liquid precipitation and melt water. - Ice cover: the area covered by glaciers can be affected by melt and contributes to a peak discharge on summer afternoons. - Surface elevation and temperatures: in case of precipitation events, the lower surface temperatures and higher surface elevation of the glaciers compared to ice-free ground have some impact on the capacity to store precipitation. - Glacier floods: for the LIA maximum around 1850, a number of advancing glaciers dammed lakes which emptied during floods. These parameters show different variability with time: glacier area varies only by about 60% to 70% between the LIA maximum and today. The variability of the maximum meltwater peak changes much more than the area. Even during the LIA maximum, several years were extremely warm, so that more than twice the size of today's glacier area was subject to glacier melt. The minimum elevations of large glaciers were several hundred meters lower than today, so that in terms of today's summer mean temperatures, the melt water production from ice ablation would have been much higher than today. A comparison of historical glacier images and description with today's makes it clear that the extent of the snow cover and thus the albedo of the glacier surface has been highly variable. This has significant impact on the meltwater production. These historical glacier data complement the first available runoff data from the early 20th century taken close to the glacier tongues.
Abrupt Decline in the Arctic Winter Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2007-01-01
Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.
Corbett, Lee B.; Bierman, Paul R.; Stone, Byron D.; Caffee, Marc W.; Larsen, Patrick L.
2017-01-01
The time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, Tony; van Nieuwstadt, Lin; De Roo, Roger
This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that hasmore » been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.« less
Ice stream reorganization and glacial retreat on the northwest Greenland shelf
NASA Astrophysics Data System (ADS)
Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.
2017-08-01
Understanding conditions at the grounding-line of marine-based ice sheets is essential for understanding ice sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) ice sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear margin moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM ice sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the margin stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The ice sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.
Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat
O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.
2005-01-01
Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ~12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Huss, E.; Laabs, B. J.; Leonard, E. M.; Licciardi, J. M.; Plummer, M. A.; Caffee, M. W.
2012-12-01
The timing of glaciation and the changes in climate that occurred both during and after the Last Glacial Maximum (LGM) in the Rocky Mountains are not well defined. Given the sensitivity of mountain glaciers to factors such as temperature, precipitation, and solar radiation, reconstructions of the history and extent of paleo-glaciers can be used to infer paleoclimate. Pine Creek Valley, located in the Absaroka Mountains in southwestern Montana, is an ideal setting for this type of research because it was occupied by a discrete valley glacier, the extent of which is precisely known during the LGM. To determine the pace and timing of ice retreat in this valley, glacially polished bedrock surfaces along the path of deglaciation were sampled at several points for cosmogenic 10Be surface exposure dating. The ages obtained range from 17.9 ± 0.8 to 13.2 ± 0.5 ka. When combined with the reconstructed ice extent during the LGM and subsequent deglaciation, these ages yield maximum and minimum retreat rates of 3.1 m/yr and 1.1 m/yr, respectively. These values constrain how long it took the glacier to retreat into a well-defined cirque from the terminal moraines. Paleoclimate conditions for the LGM were estimated using a two-dimensional, numerical, combined energy and mass balance and ice flow model. Previous qualitative inferences of paleoclimate in southern Montana indicate climate during the local LGM was colder and drier than modern values. If precipitation values were held constant or reduced for the Pine Creek glacier, the model suggests a temperature depression of at least 8°C.
NASA Astrophysics Data System (ADS)
Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur
2018-06-01
Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.
Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights
NASA Astrophysics Data System (ADS)
Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang
2017-04-01
The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.
Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle
NASA Astrophysics Data System (ADS)
Willeit, M.; Ganopolski, A.
2015-09-01
Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.
NASA Astrophysics Data System (ADS)
Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono
2016-04-01
Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (<18 ka) across the deepest parts of the inner Minch embayment, was probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.
A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents
NASA Technical Reports Server (NTRS)
Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.
2005-01-01
For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.
NASA Astrophysics Data System (ADS)
Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.
2017-12-01
In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.
NASA Astrophysics Data System (ADS)
Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif
2016-11-01
Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea ice-bearing Arctic currents. Drangajökull is Iceland's fifth largest ice cap. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the ice cap, and moraine segments identified in a new DEM constrain the episodic expansion of the ice cap over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little Ice Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the ice cap, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift ice on the North Icelandic Shelf suggest export and local production of sea ice influenced the evolution of NW Iceland's Late Holocene climate.
NASA Astrophysics Data System (ADS)
Becker, L. W. M.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.
2016-12-01
The extent of the NW European ice sheet during the Last Glacial Maximum is fairly well constrained to, at least in periods, the shelf edge. However, the exact timing and varying activity of the largest ice stream, the Norwegian Channel Ice Stream (NCIS), remains uncertain. We here present three sediment records, recovered proximal and distal to the upper NW European continental slope. All age models for the cores are constructed in the same way and based solely on 14C dating of planktonic foraminifera. The sand-sized sediments in the discussed cores is believed to be primarily transported by ice rafting. All records suggest ice streaming activity between 25.8 and 18.5 ka BP. However, the core proximal to the mouth of the Norwegian Channel (NC) shows distinct periods of activity and periods of very little coarse sediment input. Out of this there appear to be at least three well-defined periods of ice streaming activity which lasted each for 1.5 to 2 ka, with "pauses" of several hundred years in between. The same core shows a conspicuous variation in several proxies and sediment colour within the first peak of ice stream activity, compared to the second and third peak. The light grey colour of the sediment was earlier attributed to Triassic chalk grains, yet all "chalk" grains are in fact mollusc fragments. The low magnetic susceptibility values, the high Ca, high Sr and low Fe content compared to the other peaks suggests a different provenance for the material of the first peak. We suggest therefore, that the origin of this material is rather the British Irish Ice Sheet (BIIS) and not the Fennoscandian Ice Sheet (FIS). Earlier studies have shown an extent of the BIIS at least to the NC, whereas ice from the FIS likely stayed within the boundaries of the NC. A possible scenario for the different provenance could therefore be the build-up of the BIIS into the NC until it merged with the FIS. At this point the BIIS calved off the shelf edge southwest of the mouth of the NC, delivering material with BIIS origin to the proximal cores. The NCIS became as such possibly only active from the second `push' of material ( 23.0 to 18.5 ka BP). This is in agreement with the relatively low accumulation rates during the first peak and the input of coarse sediments in a southern, slightly more distal core, only during the first peak.
The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows
NASA Astrophysics Data System (ADS)
Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.
2018-02-01
The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, "New Arctic", sea ice regime.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone
NASA Astrophysics Data System (ADS)
Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.
2016-12-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.
Current Status and Future Plan of Arctic Sea Ice monitoring in South Korea
NASA Astrophysics Data System (ADS)
Shin, J.; Park, J.
2016-12-01
Arctic sea ice is one of the most important parameters in climate. For monitoring of sea ice changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic sea ice monitoring system" to retrieve the sea ice extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic sea ice extent. This system has been implemented to the web site for real-time public service. The sea ice information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The sea ice information like sea ice extent, sea ice surface roughness, and predictive sea ice extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic sea ice" twice a year. We are trying to add more sea ice information into this system. Details of current status and future plan of Arctic sea ice monitoring and the methodology of the sea ice information retrievals will be presented in the meeting.
NASA Astrophysics Data System (ADS)
Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.
2018-02-01
The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP25 and the related phytoplankton - sea ice index PIP25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.
NASA Astrophysics Data System (ADS)
Bash, E. A.; Laabs, B. J.
2006-12-01
The Wasatch Mountains of northern Utah contained numerous valley glaciers east and immediately downwind of Lake Bonneville during the Last Glacial Maximum (LGM). While the extent and chronology of glaciation in the Wasatch Mountains and the rise and fall of Lake Bonneville are becoming increasingly well understood, inferences of climatic conditions during the LGM for this area and elsewhere in the Rocky Mountains and northern Great Basin have yielded a wide range of temperature depression estimates. For example, previous estimates of temperature depression based on glacier and lake reconstructions in this region generally range from 7° to 9° C colder than modern. Glacier modeling studies for Little Cottonwood Canyon (northern Wasatch Mountains) suggest that such temperature depressions would have been accompanied by precipitation increases of about 3 to 1x modern, respectively (McCoy and Williams, 1985; Laabs et al., 2006). However, interpretations of other proxies suggest that temperature depression in this area may have been significantly greater, up to 13° C (e.g., Kaufman 2003), which would likely have been accompanied by less precipitation than modern. To address this issue, we reconstructed ice extent in the American Fork Canyon of the Wasatch Mountains and applied glacier modeling methods of Plummer and Phillips (2003) to infer climatic conditions during the LGM. Field mapping indicates that glaciers occupied an area of more than 20 km2 in the canyon and reached maximum lengths of about 9 km. To link ice extent to climatic changes, a physically based, two- dimensional numerical model of glacier mass balance and ice flow was applied to these valleys. The modeling approach allows the combined effects of temperature, precipitation and solar radiation on net mass balance of a drainage basin to be explored. Results of model experiments indicate that a temperature depression of less than 9° C in the American Fork Canyon would have been accompanied by greater precipitation than modern, whereas greater temperature depressions would have required less-than-modern precipitation to sustain glaciers in the Wasatch Mountains. Without independent estimates of either temperature or precipitation for the LGM, model results do not provide a unique combination of these two variables based on simulated ice extent. However, the reconstructed pattern of glaciation in the Wasatch and Uinta Mountains indicates a sharp westward decline in glacier equilibrium- line altitudes in valleys immediately downwind of Lake Bonneville (Munroe et al, 2006), which suggests that precipitation in the Wasatch Mountains was enhanced during the LGM. Therefore, model results can be used to set limits on the temperature and precipitation. We estimate that, if temperatures during the LGM were 6° to 8° C less than modern, precipitation was 3 to 1.5x modern. Such precipitation increases would reflect the importance of Lake Bonneville as a moisture source for valleys in the Wasatch Mountains, as suggested by previous studies.
NASA Astrophysics Data System (ADS)
Rodrigues, J.
2009-04-01
We use the length of the ice-free season (LIFS) and a quantity designated by inverse sea ice index (ISII) to quantify the rapid decline of the Arctic sea ice that has been observed in the past decades. The LIFS and ISII in each point for each year between 1979 and 2008 are derived from the daily sea ice concentrations C(y,d;i) for cell i on day (y,d) = (year,day) which, in turn, are obtained from satellite passive microwave imagery. We define the LIFS L(y;i) at a certain point i in year y as the number of days between the clearance of the ice and the formation (more exactly, the appearance) of the ice in that point in that year. If the number of clearances and formations is larger than one the LIFS is defined as the sum of the lengths of all periods between an ice clearance and the following ice formation. The criteria to identify dates of ice clearance and ice formation are as follows. We assume that there is clearance on day d if the ice concentration is 0.15 or higher on days d - 4,d - 3,d - 2 and d - 1 and below 0.15 on days d,d + 1,d + 2,d + 3 and d + 4. We consider that there is formation on day d if the ice concentration is below 0.15 on days d - 4,d - 3,d - 2 and d - 1 and 0.15 or higher on days d,d + 1,d + 2,d + 3 and d + 4. The ISII S(y;i) for point i in year y is given by S(y;i) = 1 - d=1NC(y,d;i) N , where N is the number of days in the year. This quantity, which varies between zero (when there is a perennial ice cover) and one (when there is open water all year round), measures the absence of sea ice throughout the year, hence the name inverse sea ice index. We argue that these variables are at least as suitable for the purpose of describing the depletion of sea ice in the Arctic as those that are more often found in the literature, namely the sea ice area and extent at the times of annual minimum. Firstly, the sea ice extent and area are global variables while the length of the ice-free season is a local one, and thus more appropriated to study locally the variation of the ice cover in small regions such as narrow straits (which occupy one or only a few pixels in the usual 12.5 or 25km grids). Secondly, while the ice extent or area must be calculated, say, for each month of the year (for instance by averaging the daily ice extents or areas over one month), the LIFS and ISII have one single value for each year for each point, thus being more representative of the ice situation in a certain year than the usually quoted summer minimum or winter maximum. Finally, minimum and maximum values can be strongly affected by specific circumstances occurring in a comparatively short time interval. It was noticed, for instance, that in the summer of 2007 there were unusually clear skies over the Arctic Ocean which would have favoured a rapid melting, and a particular wind pattern which would have led to a strong advection of the ice out of the Arctic Ocean through Fram Strait (special conditions that may partly explain the extraordinary depletion of sea ice in the Arctic Ocean in the summer of 2007). We construct a time-series of the LIFS for the 1979-2008 period for each point of the Arctic where sea ice was found at least one day in this period. We describe in detail the melting seasons of 2007 (the longest on record) and 2008, and analyse the changes that took place in the last 30 years in 85 disjoint regions of the Arctic Ocean and peripheral seas. We found that between 1979 and 2006 the spatially averaged ice-free season in the Arctic increased at an approximately steady rate of 1.1 days/year and that the growth was considerably faster (5.5 days/year), and monotonic, in the 2001-2007 period. In 2007 the average LIFS in the Arctic was 168 days, dropping to 158 days in 2008, which makes it the fourth longer since systematic satellite monitoring of the Arctic began.
Reconstruction of the glacial maximum recorded in the central Cantabrian Mountains (N Iberia)
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María
2014-05-01
The Cantabrian Mountains is a coastal range up to 2648 m altitude trending parallel to northern Iberian Peninsula edge at a maximum distance of 100 km inland (~43oN 5oW). Glacial sediments and landforms are generally well-preserved at altitudes higher than 1600 m, evidencing the occurrence of former glaciations. Previous research supports a regional glacial maximum prior to ca 38 cal ka BP and an advanced state of deglaciation by the time of the global Last Glacial Maximum (Jiménez-Sánchez et al., 2013). A geomorphological database has been produced in ArcGIS (1:25,000 scale) for an area about 800 km2 that partially covers the Redes Natural Reservation and Picos de Europa Regional Park. A reconstruction of the ice extent and flow pattern of the former glaciers is presented for this area, showing that an ice field was developed on the study area during the local glacial maximum. The maximum length of the ice tongues that drained this icefield was remarkably asymmetric between both slopes, recording 1 to 6 km-long in the northern slope and up to 19 km-long in southern one. The altitude difference between the glacier fronts of both mountain slopes was ca 100 m. This asymmetric character of the ice tongues is related to geologic and topo-climatic factors. Jiménez-Sánchez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, P., Valero-Garcés, B., Moreno, A., Rico, M., Valcárcel, M., 2013. A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last glacial cycle. Geomorphology 196, 50-64. Research funded by the CANDELA project (MINECO-CGL2012-31938). L. Rodríguez-Rodríguez is a PhD student with a grant from the Spanish national FPU Program (MECD).
Lange, Benjamin A; Michel, Christine; Beckers, Justin F; Casey, J Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian
2015-01-01
With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.
Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.
2012-01-01
Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.
Palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment, West Antarctica
NASA Astrophysics Data System (ADS)
Klages, Johann P.; Kuhn, Gerhard; Graham, Alastair G. C.; Smith, James A.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Larter, Rob D.; Gohl, Karsten
2015-04-01
Multibeam swath bathymetry datasets collected over the past two decades have been compiled to identify palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment. We mapped 3010 glacial landforms to reconstruct palaeo-ice flow in the ~250 km-long Abbot Glacial Trough that was occupied by a large palaeo-ice stream, fed by two tributaries (Cosgrove and Abbot) that reached the continental shelf edge during the last maximum ice-sheet advance. The mapping has enabled a clear differentiation between glacial landforms interpreted as indicative of wet- (e.g. mega-scale glacial lineations) and cold-based ice (e.g. hill-hole pairs) during the last glaciation of the continental shelf. Both the regions of fast palaeo-ice flow within the palaeo-ice stream troughs, and the regions of slow palaeo-ice flow on adjacent seafloor highs (referred to as inter-ice stream ridges) additionally record glacial landforms such as grounding-zone wedges and recessional moraines that indicate grounding line stillstands of the ice sheet during the last deglaciation from the shelf. As the palaeo-ice stream flowed along a trough with variable geometry and variable subglacial substrate, it appears that trough sections characterized by constrictions and outcropping hard substrate that changes the bed gradient, led the pace of grounding-line retreat to slow and subsequently pause, resulting in the deposition of grounding-zone wedges. The stepped retreat recorded within the Abbot Glacial Trough corresponds well to post-glacial stepped retreat interpreted for the neighbouring Pine Island-Thwaites Palaeo-Ice Stream trough, thus suggesting a uniform pattern of episodic retreat across the eastern Amundsen Sea Embayment. The correlation of episodic retreat features with geological boundaries further emphasises the significance of subglacial geology in steering ice stream flow. Our new geomorphological map of the easternmost Amundsen Sea Embayment resolves the pathways of palaeo-ice streams that were probably all active during the last maximum extent of the ice sheet on this part of the shelf, and reveals the style of postglacial grounding-line retreat. Both are important input variables in ice sheet models and therefore can be used for validating the reliability of these models.
Holocene history of North Ice Cap, northwestern Greenland
NASA Astrophysics Data System (ADS)
Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.
2013-12-01
Although much research has focused on the past extents of the Greenland Ice Sheet, less is known about the smaller ice caps on Greenland and how they have evolved over time. These small ice caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland Ice Sheet margins. Here, we investigate the Holocene history of North Ice Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North Ice Cap ~25 m outboard of the present ice margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland Ice Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North Ice Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent ice cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North Ice Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above the sands are 14,940 and 14,560 cal yr BP (medians of two-sigma ranges). Our results thus far suggest that the Nunatarssuaq region preserves a long and complex glacial history, including glaciation by the Greenland Ice Sheet and potentially North Ice Cap, as well as glaciation by both erosive and non-erosive ice. Based on the basal ages from Delta Sø and the youngest boulder 10Be age, recession at the end of the most recent glacial period likely occurred by ~15 ka. This is considerably earlier than most other terrestrial margins of Greenland that did not become ice free until ~10 ka. Our ongoing research is developing proxy and further chronological data from sediment cores from Delta Sø and nearby ice-marginal lakes to constrain the Holocene fluctuations of North Ice Cap.
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.
2013-11-01
We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.
Lange, Benjamin A.; Michel, Christine; Beckers, Justin F.; Casey, J. Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian
2015-01-01
With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice–associated production than generally assumed. PMID:25901605
Sea Ice and Hydrographic Variability in the Northwest North Atlantic
NASA Astrophysics Data System (ADS)
Fenty, I. G.; Heimbach, P.; Wunsch, C. I.
2010-12-01
Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.
Trend analysis of Arctic sea ice extent
NASA Astrophysics Data System (ADS)
Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição
2009-04-01
The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.
NASA Astrophysics Data System (ADS)
Lane, Timothy; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.; Vieli, Andreas
2013-04-01
At the Last Glacial Maximum (LGM), the Uummannaq Ice Stream System comprised a series coalescent outlet glaciers which extended along the trough to the shelf edge, draining a large proportion of the West Greenland Ice Sheet. Geomorphological mapping, terrestrial cosmogenic nuclide (TCN) exposure dating, and radiocarbon dating constrain warm-based ice stream activity in the north of the system to 1400 m a.s.l. during the LGM. Intervening plateaux areas (~ 2000 m a.s.l.) either remained ice free, or were covered by cold-based icefields, preventing diffluent or confluent flow throughout the inner to outer fjord region. Beyond the fjords, a topographic sill north of Ubekendt Ejland prevented the majority of westward ice flow, forcing it south through Igdlorssuit Sund, and into the Uummannaq Trough. Here it coalesced with ice from the south, forming the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP, rapidly retreating through the overdeepened Uummannaq Trough. Once beyond Ubekendt Ejland, the northern UISS retreated northwards, separating from the south. Retreat continued, and ice reached the present fjord confines in northern Uummannaq by 11.6 kyr. Both geomorphological (termino-lateral moraines) and geochronological (14C and TCN) data provide evidence for an ice marginal stabilisation at within Karrat-Rink Fjord, at Karrat Island, from 11.6-6.9 kyr. The Karrat moraines appear similar in both fjord position and form to 'Fjord Stade' moraines identified throughout West Greenland. Though chronologies constraining moraine formation are overlapping (Fjord Stade moraines - 9.3-8.2 kyr, Karrat moraines - 11.6-6.9 kyr), these moraines have not been correlated. This ice margin stabilisation was able to persist during the Holocene Thermal Maximum (~7.2 - 5 kyr). It overrode climatic and oceanic forcings, remaining on Karrat Island throughout peaks of air temperature and relative sea-level, and during the influx of the warm West Greenland Current into the Uummannaq region. Based upon analysis of fjord bathymetry and width, this ice marginal stabilisation has been shown to have been caused by increases in topographic constriction at Karrat Island. The location of the marginal stillstand is coincident with a dramatic narrowing of fjord width and bed shallowing. These increases in local lateral resistance reduces the ice flux necessary to maintain a stable grounding line, leading to ice margin stabilisation. This acted to negate the effects of the Holocene Thermal Maximum. Following this stabilisation, retreat within Rink-Karrat Fjord continued, driven by calving into the overdeepened Rink Fjord. Rink Isbræ reached its present ice margin or beyond after 5 kyr, during the Neoglacial. In contrast, the southern UISS reached its present margin at 8.7 kyr and Jakobshavn Isbræ reached its margin by 7 kyr. This work therefore provides compelling evidence for topographically forced asynchronous, non-linear ice stream retreat between outlet glaciers in West Greenland. In addition, it has major implications for our understanding and reconstruction of mid-Holocene ice sheet extent, and ice sheet dynamics during the Holocene Thermal Maximum to Neoglacial switch.
Optical spectrophotometry of Comet P/Giacobini-Zinner and emission profiles of H2O+
NASA Technical Reports Server (NTRS)
Strauss, M. A.; Mccarthy, P. J.; Spinrad, H.
1986-01-01
Two-dimensional CCD spectrograms were obtained of Comet P/Giacobini-Zinner (1984e) on five occasions between July and October 1985. Spatial emission profiles of H2O+ were extracted at 6198 angstroms (the strongest ionic line in the visible spectrum). This emission line traces the extent of the ion, or plasma, tail. The spectrographic slit was placed approximately along the trajectory of the ICE spacecraft on September 11, 1985; the resulting H2O+ profile has a full-width-half-maximum of about 5700 km, about three times that of the plasma density profile measured by ICE, and has a full-width-zero-intensity of about 30,000 km, very similar to the ICE values. H2O production rates for the comet are derived and compared with those of Comet P/Halley (1982i).
Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record
NASA Astrophysics Data System (ADS)
Pope, Ed L.; Talling, Peter J.; Hunt, James E.; Dowdeswell, Julian A.; Allin, Joshua R.; Cartigny, Matthieu J. B.; Long, David; Mozzato, Alessandro; Stanford, Jennifer D.; Tappin, David R.; Watts, Millie
2016-10-01
The full-glacial extent and deglacial behaviour of marine-based ice sheets, such as the Barents Sea Ice Sheet, is well documented since the Last Glacial Maximum about 20,000 years ago. However, reworking of older sea-floor sediments and landforms during repeated Quaternary advances across the shelf typically obscures their longer-term behaviour, which hampers our understanding. Here, we provide the first detailed long-term record of Barents Sea Ice Sheet advances, using the timing of debris-flows on the Bear Island Trough-Mouth Fan. Ice advanced to the shelf edge during four distinct periods over the last 140,000 years. By far the largest sediment volumes were delivered during the oldest advance more than 128,000 years ago. Later advances occurred from 68,000 to 60,000, 39,400 to 36,000 and 26,000 to 20,900 years before present. The debris-flows indicate that the dynamics of the Saalian and the Weichselian Barents Sea Ice Sheet were very different. The repeated ice advance and retreat cycles during the Weichselian were shorter lived than those seen in the Saalian. Sediment composition shows the configuration of the ice sheet was also different between the two glacial periods, implying that the ice feeding the Bear Island Ice stream came predominantly from Scandinavia during the Saalian, whilst it drained more ice from east of Svalbard during the Weichselian.
NASA Astrophysics Data System (ADS)
Stroeve, Julienne; Jenouvrier, Stephanie
2016-04-01
Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different ice types to the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different ice types. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depends strongly on what sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Parkinson, Claire L.
2007-01-01
We use two algorithms to process AMSR-E data in order to determine algorithm dependence, if any, on the estimates of sea ice concentration, ice extent and area, and trends and to evaluate how AMSR-E data compare with historical SSM/I data. The monthly ice concentrations derived from the two algorithms from AMSR-E data (the AMSR-E Bootstrap Algorithm, or ABA, and the enhanced NASA Team algorithm, or NT2) differ on average by about 1 to 3%, with data from the consolidated ice region being generally comparable for ABA and NT2 retrievals while data in the marginal ice zones and thin ice regions show higher values when the NT2 algorithm is used. The ice extents and areas derived separately from AMSR-E using these two algorithms are, however, in good agreement, with the differences (ABA-NT2) being about 6.6 x 10(exp 4) square kilometers on average for ice extents and -6.6 x 10(exp 4) square kilometers for ice area which are small compared to mean seasonal values of 10.5 x 10(exp 6) and 9.8 x 10(exp 6) for ice extent and area: respectively. Likewise, extents and areas derived from the same algorithm but from AMSR-E and SSM/I data are consistent but differ by about -24.4 x 10(exp 4) square kilometers and -13.9 x 10(exp 4) square kilometers, respectively. The discrepancies are larger with the estimates of extents than area mainly because of differences in channel selection and sensor resolutions. Trends in extent during the AMSR-E era were also estimated and results from all three data sets are shown to be in good agreement (within errors).
Bedrock Denudation on Titan: Estimates of Vertical Extent and Lateral Debris Dispersion
NASA Technical Reports Server (NTRS)
Moore, Jeffrey; Howard, A. D.; Schenk, Paul Michael
2013-01-01
Methane rainfall and runoff, along with aeolian activity, have dominated the sculpting of Titan s landscape. A knowledge of the vertical extent of bedrock erosion and the lateral extent of the resulting sediment is useful for several purposes [1]. For instance, what is the magnitude and expression of modification of constructional landforms (e.g., mountains)? Does highland denudation and the filling of basins with sediment cause adjustments (uplift and subsidence) in the crustal ice shell? Here we report preliminary findings of putative eroded craters and the results of landform evolution modeling (Fig. 1) that suggest that approx. 250 m of net bedrock erosion has at least locally taken place and approx.1 km of maximum local erosion.
Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T. V.
2010-12-01
Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.
Reconstructing spatial and temporal patterns of paleoglaciation across Central Asia
NASA Astrophysics Data System (ADS)
Stroeven, Arjen P.
2014-05-01
Understanding the behaviour of mountain glaciers and ice caps, the evolution of mountain landscapes, and testing global climate models all require well-constrained information on past spatial and temporal patterns of glacier change. Particularly important are transitional regions that have high spatial and temporal variation in glacier activity and that can provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers that have responded sensitively to variations in major regional climate systems. As an international team, we are reconstructing glacial histories of several areas of the Tibetan Plateau as well as along the Tian Shan, Altai and Kunlun Mountains. Building on previous work, we are using remote sensing-based geomorphological mapping augmented with field observations to map out glacial landforms and the maximum distributions of erratics. We then use cosmogenic nuclide Be-10 and Al-26, optically stimulated luminescence, and electron spin resonance dating of moraines and other landforms to compare dating techniques and to constrain the ages of defined extents of paleo-glaciers and ice caps. Comparing consistently dated glacial histories across central Asia provides an opportunity to examine shifts in the dominance patterns of climate systems over time in the region. Results to date show significant variations in the timing and extent of glaciation, including areas in the southeast Tibetan Plateau and Tian Shan with extensive valley and small polythermal ice cap glaciation during the global last glacial maximum in contrast to areas in central and northeast Tibetan Plateau that had very limited valley glacier expansion then. Initial numerical modelling attempting to simulate mapped and dated paleoglacial extents indicates that relatively limited cooling is sufficient to produce observed past expansions of glaciers across the Tibetan Plateau, and predicts complex basal thermal regimes in some locations that match patterns of past glacial erosion inferred from landform patterns and ages. Future modelling will examine glacier behaviour along major mountain ranges across central Asia.
A New Normal for the Sea Ice Index
NASA Technical Reports Server (NTRS)
Fetterer, Florence; Windnagel, Ann; Meier, Walter N.
2014-01-01
The NSIDC Sea Ice Index is a popular data product that shows users how ice extent and concentration have changed since the beginning of the passive microwave satellite record in 1978. It shows time series of monthly ice extent anomalies rather than actual extent values, in order to emphasize the information the data are carrying. Along with the time series, an image of average extent for the previous month is shown as a white field, with a pink line showing the median extent for that month. These are updated monthly; corresponding daily products are updated daily.
NASA Astrophysics Data System (ADS)
Hardge, Kristin; Peeken, Ilka; Neuhaus, Stefan; Lange, Benjamin A.; Stock, Alexandra; Stoeck, Thorsten; Weinisch, Lea; Metfies, Katja
2017-01-01
Sea ice is one of the main features influencing the Arctic marine protist community composition and diversity in sea ice and sea water. We analyzed protist communities within sea ice, melt pond water, under-ice water and deep-chlorophyll maximum water at eight sea ice stations sampled during summer of the 2012 record sea ice minimum year. Using Illumina sequencing, we identified characteristic communities associated with specific habitats and investigated protist exchange between these habitats. The highest abundance and diversity of unique taxa were found in sea ice, particularly in multi-year ice (MYI), highlighting the importance of sea ice as a unique habitat for sea ice protists. Melting of sea ice was associated with increased exchange of communities between sea ice and the underlying water column. In contrast, sea ice formation was associated with increased exchange between all four habitats, suggesting that brine rejection from the ice is an important factor for species redistribution in the Central Arctic. Ubiquitous taxa (e.g. Gymnodinium) that occurred in all habitats still had habitat-preferences. This demonstrates a limited ability to survive in adjacent but different environments. Our results suggest that the continued reduction of sea ice extent, and particularly of MYI, will likely lead to diminished protist exchange and subsequently, could reduce species diversity in all habitats of the Central Arctic Ocean. An important component of the unique sea ice protist community could be endangered because specialized taxa restricted to this habitat may not be able to adapt to rapid environmental changes.
Predictability of the Arctic sea ice edge
NASA Astrophysics Data System (ADS)
Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.
2016-02-01
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
NASA Astrophysics Data System (ADS)
Bliss, A. C.; Anderson, M. R.
2011-12-01
Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, however, the analysis of these data averaged spatially over three study regions located in North America and Eastern and Western Russia, reveals a distinct difference in the response of anomalous snow and sea ice conditions to the atmospheric forcing. This study compares the monthly continental snow cover and sea ice extent loss in the Arctic, during the melt season months (May-August) for the period 1979-2007, with regional atmospheric conditions known to influence summer melt including: mean sea level pressures, 925 hPa air temperatures, and mean 2 m U and V wind vectors from NCEP/DOE Reanalysis 2. The monthly hemispheric snow cover extent data used are from the Rutgers University Global Snow Lab and sea ice extents for this study are derived from the monthly passive microwave satellite Bootstrap algorithm sea ice concentrations available from the National Snow and Ice Data Center. Three case study years (1985, 1996, and 2007) are used to compare the direct response of monthly anomalous sea ice and snow cover areal extents to monthly mean atmospheric forcing averaged spatially over the extent of each study region. This comparison is then expanded for all summer months over the 29 year study period where the monthly persistence of sea ice and snow cover extent anomalies and changes in the sea ice and snow conditions under differing atmospheric conditions are explored further. The monthly anomalous atmospheric conditions are classified into four categories including: warmer temperatures with higher pressures, warmer temperatures with lower pressures, cooler temperatures with higher pressures, and cooler temperatures with lower pressures. Analysis of the atmospheric conditions surrounding anomalous loss of snow and ice cover over the independent study regions indicates that conditions of warmer temperatures advected via southerly winds are effective at forcing melt, while conditions of anomalously cool temperatures with persistent, strong northeasterly winds in the later melt season months are also effective at removing anomalous extents of sea ice cover, likely through ice divergence. Normalized sea ice extent anomalies, regardless of the snow cover, tend to persist in the same positive or negative directions (or remain near normal) from month to month over the summer season in 73.6% of cases from June to July, in 69% of cases from July to August, and in 54% of cases for the entire season (June-August) for the 29 year study period. However, when shifts in the sea ice extent anomaly directions from the conditions present in the early melt season occur, it is generally associated with a shift in the atmospheric conditions forcing the change in sea ice extent loss for the region.
NASA Technical Reports Server (NTRS)
Yi, Donghui; Robbins, John W.
2010-01-01
Sea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October-November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-ice extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.
NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers
NASA Astrophysics Data System (ADS)
Richter-Menge, J.; Farrell, S. L.
2015-12-01
The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.
The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent
NASA Astrophysics Data System (ADS)
Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.
2016-04-01
The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.
NASA Astrophysics Data System (ADS)
Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.
2014-05-01
In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice sheet reconstructions.
NASA Astrophysics Data System (ADS)
Toyota, Takenobu; Kimura, Noriaki
2018-02-01
The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.
NASA Astrophysics Data System (ADS)
Serrano, Enrique; González-Trueba, Juan José; González-García, María
2012-09-01
Geomorphic mapping and stratigraphic analysis of a lake core document the late Quaternary glacial history of the Central and Eastern Massifs of the Picos de Europa, northwestern Spain. The distribution of glacial deposits indicates that at their most advanced positions glaciers occupied 9.1 km2, extended as far as 7 km down-valley and had an estimated equilibrium-line altitude (ELA) ranging between 1666 and 1722 m. Radiocarbon dating of sediment deposited in a lake dammed by moraines of this advance show that the maximum glacial extent was prior to 35,280 ± 440 cal yr BP. This advance was followed by two subsequent but less extensive late Pleistocene advances, recorded by multiple moraines flanking both massifs and sedimentary characteristics in the lake deposits. The last recognized glacial episode is the 19th-century maximum extent of small Little Ice Age glaciers in the highest cirques above 2200 m.
Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.
2008-12-01
Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.
Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change
Ullman, David J.; Carlson, Anders E.; Hostetler, Steven W.; Clark, Peter U.; Cuzzone, Joshua; Milne, Glenn A.; Winsor, Kelsey; Caffee, Marc A.
2016-01-01
Despite elevated summer insolation forcing during the early Holocene, global ice sheets retained nearly half of their volume from the Last Glacial Maximum, as indicated by deglacial records of global mean sea level (GMSL). Partitioning the GMSL rise among potential sources requires accurate dating of ice-sheet extent to estimate ice-sheet volume. Here, we date the final retreat of the Laurentide Ice Sheet with 10Be surface exposure ages for the Labrador Dome, the largest of the remnant Laurentide ice domes during the Holocene. We show that the Labrador Dome deposited moraines during North Atlantic cold events at ∼10.3 ka, 9.3 ka and 8.2 ka, suggesting that these regional climate events helped stabilize the retreating Labrador Dome in the early Holocene. After Hudson Bay became seasonally ice free at ∼8.2 ka, the majority of Laurentide ice-sheet melted abruptly within a few centuries. We demonstrate through high-resolution regional climate model simulations that the thermal properties of a seasonally ice-free Hudson Bay would have increased Laurentide ice-sheet ablation and thus contributed to the subsequent rapid Labrador Dome retreat. Finally, our new 10Be chronology indicates full Laurentide ice-sheet had completely deglaciated by 6.7 ± 0.4 ka, which re quires that Antarctic ice sheets contributed 3.6–6.5 m to GMSL rise since 6.3–7.1 ka.
Variability of Antarctic Sea Ice 1979-1998
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the counterintuitive prediction of a global atmospheric-ocean model of increasing sea ice around Antarctica with climate warming due to the stabilizing effects of increased snowfall on the Southern Ocean.
NASA Astrophysics Data System (ADS)
McDougall, Derek
2013-08-01
The Younger Dryas (c. 12,900-11,700 years ago) in Britain witnessed renewed glaciation, with the readvance of ice masses that had survived the preceding Lateglacial Interstadial as well as the formation of new glaciers. The extents of these former glaciers have been mapped by many workers over the past fifty years, usually as a basis for palaeoclimatic investigations. It has frequently been asserted that the landform record is sufficiently clear to allow accurate ice mass reconstructions at or near maximum extents. Detailed geomorphological mapping in the eastern Lake District in NW England, however, demonstrates that this confidence may not always be warranted. Whereas previous workers have interpreted the well-developed moraines that exist in some locations as evidence for an alpine-style of glaciation, with ice restricted to a small number of valleys, this study shows that the most recent glaciation to affect the area was characterised by: (i) extensive summit icefields, which supplied ice to the surrounding valleys; and (ii) a much greater volume of ice in the valleys than previously thought. The discovery that summit icefields were relatively common at this time is consistent with recent studies elsewhere in the Lake District and beyond. More significant, however, is the recognition that changing glacier-topographic interactions over both space and time appears to have had a profound impact on valley-floor glacial landform development, with the absence of clear moraines not necessarily indicating ice-free conditions at this time. This complicates glacier reconstructions based solely on the geomorphological record. Similar geomorphological complexity may be present in other areas that previously supported summit icefields, and this needs to be taken into account in glacier reconstructions.
NASA Astrophysics Data System (ADS)
Andres, Heather; Tarasov, Lev
2017-04-01
The atmosphere is often assumed to play a passive role in centennial- to millennial-timescale climate variations of the last deglaciation due to its short response times ( years) and the absence of abrupt changes in external climate forcings. Nevertheless, atmospheric dynamical responses to changes in ice sheet topography and albedo can affect the entire Northern Hemisphere through the altering of Rossby stationary wave patterns and changes to the North Atlantic eddy-driven jet. These responses appear sensitive to the particular configuration of Northern Hemisphere land ice, so small changes have the potential to reorganize atmospheric circulation with impacts on precipitation distributions, ocean surface currents and sea ice extent. Indirect proxy evidence, idealized theoretical studies, and "snapshot" simulations performed at different periods during the last glacial cycle indicate that between the Last Glacial Maximum and the preindustrial period the North Atlantic eddy-driven jet weakened, became less zonally-oriented, and exhibited greater variability. How the transition (or transitions) between the glacial atmospheric state and the interglacial state occurred is less clear. To address this question, we performed an ensemble of transient simulations of the last deglaciation using the Planet Simulator coupled atmosphere-ocean-vegetation-sea ice model (PlaSim, at an atmospheric resolution of T42) forced by variants of the GLAC1-D deglacial ice sheet chronology. We characterize simulated changes in stationary wave patterns over this period as well as changes in the strength and position of the North Atlantic eddy-driven jet. In particular, we document the range of timescales for these changes and compare the simulated climate signatures of these transitions to data archives of precipitation and sea ice extent.
NASA Astrophysics Data System (ADS)
Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.
2015-12-01
Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.
NASA Astrophysics Data System (ADS)
Fink, David; Joy, Kurt; Storey, Bryan
2014-05-01
It has been hypothesised that during interglacials, thinning of the Ross Ice Shelf allowed a more open water environment with increased local precipitation. This resulted in outlet glaciers, which drain the Transantarctic Mountains and fed by the East Antarctic Ice Sheet, advancing during moist warmer periods, apparently out of phase with colder arid dry periods. Significantly the ice core record during these warm periods also shows increased accumulation continent wide The geomorphology of the Denton Hills in the Royal Society Range, West Antarctica, is a result of Miocene fluvial incision reworked by subsequent glacial advances throughout the Quaternary. The Garwood and Miers glacial valleys drain ice across the Denton Hills into the Shelf, and should thus show maximum extent during interstadials. To understand the chronology of late Quaternary glaciations, 15 granitic boulders from terminal moraines were sampled for 10Be and 26Al cosmogenic dating. Obtaining reliable exposure ages of erratics within moraines that represent timing of deposition (i.e. glacial advances) is problematic in polar regions, where glacial activity is principally controlled by ice sheet dynamics. Recycling of previously exposed debris, uncertainty in provenance of glacially transported boulders and a lack of a post-depositional hydrologic process to remove previously exposed material from a valley system, leads to ambiguities in multiple exposure ages from a single coeval glacial landform. More importantly, cold-based ice advance can leave a landform unmodified resulting in young erratics deposited on bedrock that shows weathering and/or inconsistent age-altitude relationships. Primarily, inheritance becomes a difficulty in qualifying exposure ages from polar regions. Preliminary results from the Garwood and Miers Valleys indicate that glaciers in the Denton Hills had begun to retreat from their last maximum positions no later than 23-37 ka, and thus the local last glacial maximum occurred prior to the Antarctic LGM (18-22 ka). No evidence based on cosmogenic ages for post-LGM or Holocene advances were found. These results support an extensive exposure age data set from the nearby Darwin-Hatherton Glacier system that indicates an absence of EAIS expansion across the Transantarctic Mnts during the global LGM period.
Glaciological studies in the central Andes using AIRSAR/TOPSAR
NASA Technical Reports Server (NTRS)
Forster, Richard R.; Klein, Andrew G.; Blodgett, Troy A.; Isacks, Bryan L.
1993-01-01
The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages based on moraine slope degradation.
NASA Astrophysics Data System (ADS)
Hall, D. K.; Comiso, J. C.; Shuman, C. A.; Koenig, L.; DiGirolamo, N. E.
2011-12-01
Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate-quality data record, 11- and 12-year trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the Moderate-Resolution Imaging Spectroradiometer (MODIS) IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now available at 6.25-km spatial resolution on a polar stereographic grid as described in Hall et al. (submitted). This record will be elevated in status to a climate-data record (CDR) when more years of data become available either from the MODIS on the Terra or Aqua satellites, or from the Visible Infrared Imager Radiometer Suite (VIIRS) to be launched in October 2011. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends in the extent of melt and duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. Twelve-year trends in IST are compared with in-situ data, and climate data from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) Reanalysis. Hall, D.K., J.C. Comiso, N.E. DiGirolamo, C.A. Shuman, J. Key and L.S. Koenig, submitted for journal publication: A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Hillenbrand, C. D.; Smith, J.; Klages, J. P.; Kuhn, G.; Maher, B.; Moreton, S.; Wacker, L.; Frederichs, T.; Wiers, S.; Jernas, P.; Anderson, J. B.; Ehrmann, W. U.; Graham, A. G. C.; Gohl, K.; Larter, R. D.
2016-02-01
Satellite data and in-situ measurements show that today considerable mass loss is occurring from the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS). The observational record only spans the past four decades, and until recently the long-term context of the current deglaciation was poorly constrained. This information is, however, crucial for understanding WAIS dynamics, evaluating the role of forcing mechanisms for ice-sheet melting, and testing and calibrating ice-sheet models that attempt to predict future WAIS behavior and its impact on global sea level. Over the past decade several multinational marine expeditions and terrestrial fieldwork campaigns have targeted the Amundsen Sea shelf and its hinterland to reconstruct the WAIS configuration during the Last Glacial Maximum (LGM) and its subsequent deglacial history. The resulting studies succeeded in shedding light on the maximum WAIS extent at the LGM and the style, pattern and speed of its retreat and thinning thereafter. Despite this progress, however, significant uncertainties and discrepancies between marine and terrestrial reconstructions remain, which may arise from difficulties in dating sediment cores from the Antarctic shelf, especially their deglacial sections. Resolving these issues is crucial for understanding the WAIS' contribution to post-LGM sea-level rise, its sensitivity to different forcing mechanisms and its future evolution. Here we present chronological constraints on WAIS advance in the Amundsen Sea and its retreat from 20 ka BP into the Holocene that were obtained by various techniques, such as 14C dating of large ( 10 mg) and small (<<1 mg) sample aliquots of calcareous microfossils, 14C dating of acid-insoluble organic matter combusted at low (300 °C) and high (800 °C) temperatures and dating of sediment cores by using geomagnetic paleointensity. We will compare the different age constraints and discuss their reliability, applicability and implications for WAIS history.
Antarctic Sea Ice Variability and Trends, 1979-2010
NASA Technical Reports Server (NTRS)
Parkinson, C. L.; Cavalieri, D. J.
2012-01-01
In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.
Trends in annual minimum exposed snow and ice cover in High Mountain Asia from MODIS
NASA Astrophysics Data System (ADS)
Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Racoviteanu, Adina; Armstrong, Richard; Dozier, Jeff
2016-04-01
Though a relatively short record on climatological scales, data from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000-2014 can be used to evaluate changes in the cryosphere and provide a robust baseline for future observations from space. We use the MODIS Snow Covered Area and Grain size (MODSCAG) algorithm, based on spectral mixture analysis, to estimate daily fractional snow and ice cover and the MODICE Persistent Ice (MODICE) algorithm to estimate the annual minimum snow and ice fraction (fSCA) for each year from 2000 to 2014 in High Mountain Asia. We have found that MODSCAG performs better than other algorithms, such as the Normalized Difference Index (NDSI), at detecting snow. We use MODICE because it minimizes false positives (compared to maximum extents), for example, when bright soils or clouds are incorrectly classified as snow, a common problem with optical satellite snow mapping. We analyze changes in area using the annual MODICE maps of minimum snow and ice cover for over 15,000 individual glaciers as defined by the Randolph Glacier Inventory (RGI) Version 5, focusing on the Amu Darya, Syr Darya, Upper Indus, Ganges, and Brahmaputra River basins. For each glacier with an area of at least 1 km2 as defined by RGI, we sum the total minimum snow and ice covered area for each year from 2000 to 2014 and estimate the trends in area loss or gain. We find the largest loss in annual minimum snow and ice extent for 2000-2014 in the Brahmaputra and Ganges with 57% and 40%, respectively, of analyzed glaciers with significant losses (p-value<0.05). In the Upper Indus River basin, we see both gains and losses in minimum snow and ice extent, but more glaciers with losses than gains. Our analysis shows that a smaller proportion of glaciers in the Amu Darya and Syr Darya are experiencing significant changes in minimum snow and ice extent (3.5% and 12.2%), possibly because more of the glaciers in this region are smaller than 1 km2 than in the Indus, Ganges, and Brahmaputra making analysis from MODIS (pixel area ~0.25 km2) difficult. Overall, we see 23% of the glaciers in the 5 river basins with significant trends (in either direction). We relate these changes in area to topography and climate to understand the driving processes related to these changes. In addition to annual minimum snow and ice cover, the MODICE algorithm also provides the date of minimum fSCA for each pixel. To determine whether the surface was snow or ice we use the date of minimum fSCA from MODICE to index daily maps of snow on ice (SOI), or exposed glacier ice (EGI) and systematically derive an equilibrium line altitude (ELA) for each year from 2000-2014. We test this new algorithm in the Upper Indus basin and produce annual estimates of ELA. For the Upper Indus basin we are deriving annual ELAs that range from 5350 m to 5450 m which is slightly higher than published values of 5200 m for this region.
NASA Astrophysics Data System (ADS)
Douglass, D. C.; Singer, B. S.; Kaplan, M. R.; Mickelson, D. M.; Caffee, M.
2005-12-01
The most substantial and least quantifiable source of uncertainty in cosmogenic surface-exposure datasets is the variable exposure histories of boulders from the same landform. The development of precise and accurate chronologies requires distinguishing boulders that best reflect the age of the landform from those which are outliers. We use the Mean Square of Weighted Deviates statistic and cumulative frequency plots to identify groups of samples that have statistically similar ages based on the number of samples and the uncertainty associated with the analyses. This group of samples most likely represents the best estimate of the landform age. We use these tools to interpret 49 surface-exposure ages from six last-glacial and late-glacial moraines at Lago Buenos Aires, Argentina (LBA; 71.0W, 46.5S). Seven of the orty-nine samples are identified as anomalously young, and are interpreted to have been exhumed after moraine deposition. The remaining samples indicate that glacial advances or still-stands of the ice margin occurred at 22.7±0.9, 21.4±1.9, 19.8±1.1, 17.0±0.8, 15.7±0.6, and 14.4±0.9 ka (±2 σ). This maximum ice extent is roughly synchronous with maximum global ice volume and several of the re-advances are contemporaneous with Heinrich events and other Northern Hemisphere cold periods. The late-glacial readvance at ca. 14.4 ka is contemporaneous with the Antarctic Cold Reversal (ACR), and precedes the Younger Dryas Chronozone (YD). No evidence for a Younger Dryas glacial advance has been found in the Lago Buenos Aires basin. This precise glacial chronology indicates there were significant and important differences in climate across southern South America. The timing of maximum ice extent and onset of deglaciation at LBA occur ~4000 years later than in the Chilean Lake District (41S). Fossil pollen from the CLD area indicates cooler conditions between ca. 14.2 and 11.2, and increased silt in a nearby lake core provides indirect evidence for glacial advances at this time. The onset of this late-glacial cool period precedes the YD, but post-dates the ACR. The LBA glacial record is in better accord with the Strait of Magellan (SM; 52S) than with the CLD. There ice reached its maximum around 25 ka, and a significant late-glacial re-advance occurred between ca. 15 and 11.5 ka. Both LBA and the SM have climate records similar to Antarctica, whereas the climate records from the CLD are combinations of Antarctic and Northern Hemisphere signals.
Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.
2005-01-01
Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).
Arctic Sea Ice Simulation in the PlioMIP Ensemble
NASA Technical Reports Server (NTRS)
Howell, Fergus W.; Haywood, Alan M.; Otto-Bliesner, Bette L.; Bragg, Fran; Chan, Wing-Le; Chandler, Mark A.; Contoux, Camille; Kamae, Youichi; Abe-Ouchi, Ayako; Rosenbloom, Nan A.;
2016-01-01
Eight general circulation models have simulated the mid-Pliocene warm period (mid-Pliocene, 3.264 to 3.025 Ma) as part of the Pliocene Modelling Intercomparison Project (PlioMIP). Here, we analyse and compare their simulation of Arctic sea ice for both the pre-industrial period and the mid-Pliocene. Mid-Pliocene sea ice thickness and extent is reduced, and the model spread of extent is more than twice the pre-industrial spread in some summer months. Half of the PlioMIP models simulate ice-free conditions in the mid-Pliocene. This spread amongst the ensemble is in line with the uncertainties amongst proxy reconstructions for mid-Pliocene sea ice extent. Correlations between mid-Pliocene Arctic temperatures and sea ice extents are almost twice as strong as the equivalent correlations for the pre-industrial simulations. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.
Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.
NASA Astrophysics Data System (ADS)
Park, H. S.; Stewart, A.
2017-12-01
Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.
Precipitation Impacts of a Shrinking Arctic Sea Ice Cover
NASA Astrophysics Data System (ADS)
Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.
2009-12-01
Since the beginning of the modern satellite record in October 1978, the extent of Arctic sea ice has declined in all months, with the strongest downward trend at the end of the melt season in September. Recently the September trends have accelerated. Through 2001, the extent of September sea ice was decreasing at a rate of -7 per cent per decade. By 2006, the rate of decrease had risen to -8.9 per cent per decade. In September 2007, Arctic sea ice extent fell to its lowest level recorded, 23 per cent below the previous record set in 2005, boosting the downward trend to -10.7 per cent per decade. Ice extent in September 2008 was the second lowest in the satellite record. Including 2008, the trend in September sea ice extent stands at -11.8 percent per decade. Compared to the 1970s, September ice extent has retreated by 40 per cent. Summer 2009 looks to repeat the anomalously low ice conditions that characterized the last couple of years. Scientists have long expected that a shrinking Arctic sea ice cover will lead to strong warming of the overlying atmosphere, and as a result, affect atmospheric circulation and precipitation patterns. Recent results show clear evidence of Arctic warming linked to declining ice extent, yet observational evidence for responses of atmospheric circulation and precipitation patterns is just beginning to emerge. Rising air temperatures should lead to an increase in the moisture holding capacity of the atmosphere, with the potential to impact autumn precipitation. Although climate models predict a hemispheric wide decrease in snow cover as atmospheric concentrations of GHGs increase, increased precipitation, particular in autumn and winter may result as the Arctic transitions towards a seasonally ice free state. In this study we use atmospheric reanalysis data and a cyclone tracking algorithm to investigate the influence of recent extreme ice loss years on precipitation patterns in the Arctic and the Northern Hemisphere. Results show enhanced cyclone associated precipitation in autumn over Siberia for anomalously low ice years compared with anomalously high ice years along with a strengthening of the North Atlantic Storm track.
Severi, M; Becagli, S; Caiazzo, L; Ciardini, V; Colizza, E; Giardi, F; Mezgec, K; Scarchilli, C; Stenni, B; Thomas, E R; Traversi, R; Udisti, R
2017-06-01
Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa + flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s. Copyright © 2017 Elsevier Ltd. All rights reserved.
Probabilistic Forecasting of Arctic Sea Ice Extent
NASA Astrophysics Data System (ADS)
Slater, A. G.
2013-12-01
Sea ice in the Arctic is changing rapidly. Most noticeable has been the series of record, or near-record, annual minimums in sea ice extent in the past six years. The changing regime of sea ice has prompted much interest in seasonal prediction of sea ice extent, particularly as opportunities for Arctic shipping and resource exploration or extraction increase. This study presents a daily sea ice extent probabilistic forecast method with a 50-day lead time. A base projection is made from historical data and near-real-time sea ice concentration is assimilated on the issue date of the forecast. When considering the September mean ice extent for the period 1995-2012, the performance of the 50-day lead time forecast is very good: correlation=0.94, Bias = 0.14 ×106 km^2 and RMSE = 0.36 ×106 km^2. Forecasts for the daily minimum contains equal skill levels. The system is highly competitive with any of the SEARCH Sea Ice Outlook estimates. The primary finding of this study is that large amounts of forecast skill can be gained from knowledge of the initial conditions of concentration (perhaps more than previously thought). Given the simplicity of the forecast model, improved skill should be available from system refinement and with suitable proxies for large scale atmosphere and ocean circulation.
Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica
NASA Astrophysics Data System (ADS)
Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.
2017-12-01
The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.
Late Quaternary Glaciation of the Naches River Drainage Basin, Washington Cascades
NASA Astrophysics Data System (ADS)
Sheffer, H. B.; Goss, L.; Shimer, G.; Carson, R. J.
2014-12-01
The Naches River drainage basin east of Mount Rainer includes tributary valleys of the Little Naches, American, Bumping, and Tieton rivers. An investigation of surface boulder frequency, weathering rind thicknesses, and soil development on moraines in these valleys identified two stages of Pleistocene glaciations in the American, Bumping, and Tieton drainages, followed by Neoglaciation. These stages include a more extensive early glaciation (Hayden Creek?), and the later Evans Creek Glaciation (25-15 ka). Thick forest cover, limited road cuts, and widespread post-glacial mass wasting hamper efforts to determine the maximum extent of glaciation. However, glacial striations at Chinook Pass, moraine complexes in the vicinity of Goose Egg Mountain, ice-transported boulders and striations on Pinegrass Ridge, and a boulder field possibly derived from an Evans Creek jökulhaup in the Tieton River valley, all point to extensive Pleistocene ice in the central tributaries of the Naches River. Lowest observed ice elevations in the Tieton (780 m), Bumping (850 m), and American (920 m) drainages increase towards the north, while glacial lengths decrease from 40 to 28 km. The Little Naches is the northernmost drainage in the study, but despite a maximum elevation (1810 m) that exceeds the floor of ice caps to the south, glacially-derived sediments are not evident and the surrounding peaks lack cirques. The absence of ice in the Little Naches drainage, along with the systematic northward change in glacial length and lowest observed ice elevations in the other drainages, are likely due to a precipitation shadow northeast of Mount Rainier. In contrast, the source of glacial ice in the Tieton drainage to the southeast was the Goat Rocks peaks. Ground-based study of neoglacial moraines and analysis of 112 years of topographic maps and satellite imagery point to rapid retreat of the remaining Goat Rocks glaciers following the Little Ice Age.
NASA Astrophysics Data System (ADS)
Stroeve, J. C.
2014-12-01
The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the September sea ice extent is near the long-term trend, contributions tend to be accurate. Years when the observed extent departs from the trend have proven harder to predict. Predictability skill does not appear to be more accurate for dynamical models over statistical ones, nor is there a measurable improvement in skill as the summer progresses.
Seasonal regional forecast of the minimum sea ice extent in the LapteV Sea
NASA Astrophysics Data System (ADS)
Tremblay, B.; Brunette, C.; Newton, R.
2017-12-01
Late winter anomaly of sea ice export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea ice extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian Ice Tracking System (LITS) forced with satellite derived sea-ice drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal ice divergence leads to formation of thinner ice that melts earlier in early summer, hence creating areas of open water that have a lower albedo and trigger an ice-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea ice export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al) in that the coastal divergence is quantified directly by following the edge of the mobile pack ice in a Lagrangian manner.
Former extent of glacier-like forms on Mars
NASA Astrophysics Data System (ADS)
Brough, Stephen; Hubbard, Bryn; Hubbard, Alun
2016-08-01
Mars' mid-latitude glacier-like forms (GLFs) have undergone substantial mass loss and recession since a hypothesised last martian glacial maximum (LMGM) stand. To date, there is a lack of knowledge of the nature and timing of the LMGM, the subsequent mass loss and whether this mass loss has been spatially variable. Here, we present the results of a population-scale inventory of recessional GLFs, derived from analysis of 1293 GLFs3 identified within Context Camera (CTX) imagery, to assess the distribution and controls on GLF recession. A total of 436 GLFs were identified showing strong evidence of recession: 197 in the northern hemisphere and 239 in the southern hemisphere. Relative to their parent populations, recessional GLFs are over-represented in the low latitude belts between 25 and 40° and in areas of high relief, suggesting that these zones exert some control over GLF sensitivity and response to forcing. This analysis is complemented by the reconstruction of the maximum extent and morphology of a specific GLF for which High Resolution Imaging Science Experiment (HiRISE) derived digital elevation data are available. Using Nye's (Nye, J.F. [1951] Proc. Roy. Soc. Lond, Ser. a - Mat. Phys. Sci., 207, 554-572) perfect plastic approximation of ice flow applied to multiple flow-lines under an optimum yield strength of 22 kPa, we calculate that the reconstructed GLF has lost an area of 6.86 km2 with a corresponding volume loss of 0.31 km3 since the LMGM. Assuming the loss reconstructed at this GLF occurred at all mid-latitude GLFs yields a total planetary ice loss from Mars' GLFs of 135 km3, similar to the current ice volume in the European Alps on Earth.
NASA Astrophysics Data System (ADS)
Russell, C.; Leonard, E. M.
2016-12-01
The current study employs a combination of cosmogenic radionuclide (CRN) surface-exposure dating and numerical glacier modeling to investigate the climate during and following the last glacial maximum (LGM) in the Sawatch Range of Colorado. A coupled 2-D energy/mass balance and flow model is used to asses the combinations of temperature and precipitation change that could have sustained glaciers in the range at their LGM extents in five valleys along the eastern flank of the range, by matching modeled ice extent to the well-preserved LGM moraines in each valley. In addition, the study couples modeling with CRN geochronology of post-LGM ice recession to try to understand the dynamics of deglaciation and the magnitudes and rates of the climate changes that drove it. Results to date include an equilibrium glacier model that fits LGM moraines in all five valleys with a 5.4°C temperature depression and no change from modern precipitation amounts or seasonality. Modeling of deglaciation indicates, however, that the response of individual glacier systems is strongly influenced by valley hypsometry as was suggested by previous workers. Low-gradient glacier systems in the range, including the Lake Creek and Clear Creek glaciers, respond dramatically to even small temperature increases, while much steeper systems, such as the Pine Creek glacier, experience much more limited retreat in response to the same climate forcing A CRN-based deglaciation chronology is available for the Lake Creek glacier, the largest of five paleoglaciers studied. The ages show that portions of the valley floor were ice-covered for several hundred years longer than the cirques above. The numerical model is currently being used to investigate two possible explanations for this. One possibility is that climate ameliorated and deglaciation proceeded so fast that thin ice in the cirques melted out before much thicker stagnant ice melted in the valley. A second possibility is that cross-divide flow from the wetter west side of the range maintained small east-side valley glaciers even as the east-side cirques deglaciated. Ongoing work will model a larger area of range to gain a better understanding of range-wide patterns of ice flow that could have affected deglaciation of the Lake Creek valley.
30-Year Satellite Record Reveals Contrasting Arctic and Antarctic Decadal Sea Ice Variability
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Parkinson, C. L.; Vinnikov, K. Y.
2003-01-01
A 30-year satellite record of sea ice extents derived mostly from satellite microwave radiometer observations reveals that the Arctic sea ice extent decreased by 0.30+0.03 x 10(exp 6) square kilometers per 10 yr from 1972 through 2002, but by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per 10yr from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased. Over the full 30-year period, the Antarctic ice extent decreased by 0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10 yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent in the early 1970's, an anomaly that apparently began in the late 1960's, as observed in early visible and infrared satellite images.
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; DiGirolamo, Nicolo E.
2016-01-01
Month-by-month ranking of 37 years (1979-2015) of satellite-derived sea-ice extents in the Arctic and Antarctic reveals interesting new details in the overall trends toward decreasing sea-ice coverage in the Arctic and increasing sea-ice coverage in the Antarctic. The Arctic decreases are so definitive that there has not been a monthly record high in Arctic sea-ice extents in any month since 1986, a time period during which there have been 75 monthly record lows. The Antarctic, with the opposite but weaker trend toward increased ice extents, experienced monthly record lows in 5 months of 1986, then 6 later monthly record lows scattered through the dataset, with the last two occurring in 2006, versus 45 record highs since 1986. However, in the last three years of the 1979-2015 dataset, the downward trends in Arctic sea-ice extents eased up, with no new record lows in any month of 2013 or 2014 and only one record low in 2015,while the upward trends in Antarctic ice extents notably strengthened, with new record high ice extents in 4 months (August-November) of 2013, in 6 months (April- September) of 2014, and in 3 months (January, April, and May) of 2015. Globally, there have been only 3 monthly record highs since 1986 (only one since 1988), whereas there have been 43 record lows, although the last record lows (in the 1979-2015 dataset) occurred in 2012.
NASA Astrophysics Data System (ADS)
Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.
2016-12-01
Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.
Air-Sea Interactions in the Marginal Ice Zone
2016-03-31
Arctic Ocean has increased with the significant retreat of the seasonal sea-ice extent. Here, we use wind, wave, turbulence, and ice measurements to...which has experienced a significant retreat of the seasonal ice extent (Comiso and Nishio, 2008; Comiso et al., 2008). Thomson and Rogers (2014) showed
Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska
Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei
2016-01-01
Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.
Numerical simulations of the Cordilleran ice sheet through the last glacial cycle
NASA Astrophysics Data System (ADS)
Seguinot, Julien; Rogozhina, Irina; Stroeven, Arjen P.; Margold, Martin; Kleman, Johan
2016-03-01
After more than a century of geological research, the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the ice sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that ice-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2-56.9 ka) and 2 (23.2-16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.7 ka).
Posteruption glacier development within the crater of Mount St. Helens, Washington, USA
Schilling, S.P.; Carrara, P.E.; Thompson, R.A.; Iwatsubo, E.Y.
2004-01-01
The cataclysmic eruption of Mount St. Helens on May 18, 1980, resulted in a large, north-facing amphitheater, with a steep headwall rising 700 m above the crater floor. In this deeply shaded niche a glacier, here named the Amphitheater glacier, has formed. Tongues of ice-containing crevasses extend from the main ice mass around both the east and the west sides of the lava dome that occupies the center of the crater floor. Aerial photographs taken in September 1996 reveal a small glacier in the southwest portion of the amphitheater containing several crevasses and a bergschrund-like feature at its head. The extent of the glacier at this time is probably about 0.1 km2. By September 2001, the debris-laden glacier had grown to about 1 km2 in area, with a maximum thickness of about 200 m, and contained an estimated 120,000,000 m3 of ice and rock debris. Approximately one-third of the volume of the glacier is thought to be rock debris derived mainly from rock avalanches from the surrounding amphitheater walls. The newly formed Amphitheater glacier is not only the largest glacier on Mount St. Helens but its aerial extent exceeds that of all other remaining glaciers combined. Published by University of Washington.
NASA Technical Reports Server (NTRS)
Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.
2013-01-01
During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.
Global Warming and Northern Hemisphere Sea Ice Extent.
Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov
1999-12-03
Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.
NASA Astrophysics Data System (ADS)
Gertler, C. G.; Monier, E.; Prinn, R. G.
2016-12-01
Variability in sea ice extent is a prominent feature of forced simulations of the last millennium and reconstructions of paleoclimate using proxy records. The rapid 20th century decline in sea ice extent is most likely due to greenhouse gas forcing, but the accuracy of future projections depend on the characterization of natural variability. Declining sea ice extent affects regional climate and society, but also plays a large role in Arctic amplification, with implications for mid-latitude circulation and even large-scale climate oscillations. To characterize the effects of natural and anthropogenic climate forcing on sea ice and the related changes in large-scale atmospheric circulation, a combination of instrumental record, paleoclimate reconstructions, and general circulation models can be employed to recreate sea ice extents and the corresponding atmosphere-ocean states. Model output from the last millennium ensemble (LME) is compared to a proxy-based sea ice reconstruction and a global proxy network using a variety of statistical and data assimilation techniques. Further model runs using the Community Earth Systems Model (CESM) are performed with the same inputs as LME but forced with experimental sea ice extents, and results are contextualized within the larger ensemble by a variety of metrics.
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.
Evaluation of changes in atmospheric and oceanic fluxes during continental ice sheet retreat
NASA Astrophysics Data System (ADS)
Martin, J.; Martin, E. E.; Deuerling, K. M.
2017-12-01
Extensive land areas were exposed across North America, Eurasia, and to a lesser extent Greenland as continental ice sheets retreated following the last glacial maximum. A transect of watersheds from the coast to the western Greenland Ice Sheet (GrIS) provides an opportunity to evaluate possible changes in oceanic solute fluxes and atmospheric CO2 exchange as ice sheets retreat. We evaluate these fluxes in one proglacial watershed (draining ice sheet runoff) and four deglaciated watersheds (draining local precipitation and permafrost melt). Sr isotope ratios indicate bedrock near the coast has experienced greater weathering than near the ice sheet. A mass balance model of the major element composition of stream water indicates weathering in deglaciated watersheds is dominated by carbonic acid dissolution of carbonate minerals near the ice sheet that switches to carbonic acid alteration of silicate minerals near the coast. In addition, weathering by sulfuric acid, derived from oxidative dissolution of sulfide minerals, increases from the ice sheet to the coast. These changes in the weathered minerals and weathering acids impact CO2 sequestration associated with weathering. Weathering consumes 350 to 550 µmol CO2/L in watersheds near the ice sheet, but close to the coast, consumes only 15 µmol CO2/L in one watershed and sources 140 µmol CO2/L to the atmosphere at another coastal watershed. The decreasing CO2 weathering sink from the GrIS to coast reflects decreased carbonic acid weathering and increased sulfuric acid weathering of carbonate minerals. The proglacial stream shows downstream variations in composition from mixing of two water sources, with only minor in-stream weathering, which consumes < 0.1 µmol CO2/L. Discharge from the deglaciated watersheds is currently unknown but their higher solute concentrations and CO2 exchange than proglacial systems suggest deglaciated watersheds dominate atmospheric fluxes of CO2 and oceanic solute fluxes. These results imply that the initial CO2 drawdown associated with weathering of freshly exposed, fine-grained glacial sediment in deglaciated watersheds will decrease as the extent of weathering increases. As a result, weathering in this environment may become a source of atmospheric CO2 that could enhance CO2 induced global warming.
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam
2018-03-01
The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
NASA Astrophysics Data System (ADS)
Goodman, Adam Y.; Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.
2001-07-01
The Cordillera Vilcanota and Quelccaya Ice Cap region of southern Peru (13°30‧-14°00‧S; 70°40‧-71°25‧W) contains a detailed record of late Quaternary glaciation in the tropical Andes. Quantification of soil development on 19 moraine crests and radiocarbon ages are used to reconstruct the glacial history. Secondary iron and clay increase linearly in Quelccaya soils and clay accumulates at a linear rate in Vilcanota soils, which may reflect the semicontinuous addition of eolian dust enriched in secondary iron to all soils. In contrast, logarithmic rates of iron buildup in soils in the Cordillera Vilcanota reflect chemical weathering; high concentrations of secondary iron in Vilcanota tills may mask the role of eolian input to these soils. Soil-age estimates from extrapolation of field and laboratory data suggest that the most extensive late Quaternary glaciation occurred >70,000 yr B.P. This provides one of the first semiquantitative age estimates for maximum ice extent in southern Peru and is supported by a minimum-limiting age of ∼41,520 14C yr B.P. A late glacial readvance culminated ∼16,650 cal yr B.P. in the Cordillera Vilcanota. Following rapid deglaciation of unknown extent, an advance of the Quelccaya Ice Cap occurred between ∼13,090 and 12,800 cal yr B.P., which coincides approximately with the onset of the Younger Dryas cooling in the North Atlantic region. Moraines deposited <394 cal yr B.P. in the Cordillera Vilcanota and <300 cal yr B.P. on the west side of the Quelccaya Ice Cap correlate with Little Ice Age moraines of other regions.
Collaborative, International Efforts at Estimating Arctic Sea Ice Processes During IPY (Invited)
NASA Astrophysics Data System (ADS)
Overland, J. E.; Eicken, H.; Wiggins, H. V.
2009-12-01
Planning for the fourth IPY was conducted during a time of moderate decadal change in the Arctic. However, after this initial planning was completed, further rapid changes were seen, including a 39 % reduction in summer sea ice extent in 2007 and 2008 relative to the 1980s-1990s, loss of multi-year sea ice, and increased sea ice mobility. The SEARCH and DAMOCLES Programs endeavored to increase communication within the research community to promote observations and understanding of rapidly changing Arctic sea ice conditions during IPY. In May 2008 a web-based Sea Ice Outlook was initiated, an international collaborative effort that synthesizes, on a monthly basis throughout the summer, the community’s projections for September arctic sea ice extent. Each month, participating investigators provided a projection for the mean September sea ice extent based on spring and early summer data, along with a rationale for their estimates. The Outlook continued in summer of 2009. The Outlook is a method of rapidly synthesizing a broad range of remote sensing and field observations collected at the peak of the IPY, with analysis methods ranging from heuristic to statistical to ice-ocean model ensemble runs. The 2008 Outlook was a success with 20 groups participating and providing a median sea ice extent projection from June 2008 data of 4.4 million square kilometers (MSQK)—near the observed extent in September 2008 of 4.7 MSQK, and well below the 1979-2007 climatological extent of 6.7 MSQK. More importantly, the contrast of sea ice conditions and atmospheric forcing in 2008 compared to 2007 provided clues to the future fate of arctic sea ice. The question was whether the previous loss of multi-year ice and delay in autumn freeze-up in 2007 would allow sufficient winter thickening of sea ice to last through the summer 2008, promoting recovery from the 2007 minimum, or whether most first-year sea ice would melt out as in 2005 and 2007, resulting in a new record minimum extent. Ultimately, neither extreme was observed. For September 2009 the median projection based on June 2009 data was 4.6 MSQK. June and July conditions were favorable for another record ice loss, but atmospheric circulation and cloudiness in August slowed ice retreat, suggesting that the 2009 Outlook estimates will be too low. A conclusion of this IPY effort is that although it will be difficult for summer sea ice to return to 1990 conditions, it will also require near-perfect synchrony in physical forcing as in 2007 to produce the next major loss event. The Outlook plans to continue.
The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.
Notz, Dirk
2009-12-08
We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.
Change in the Extent of Baffin Island's Penny Ice Cap in Response to Regional Warming, 1969 - 2014
NASA Astrophysics Data System (ADS)
Cox, M. C.; Cormier, H. M.; Gardner, A. S.
2014-12-01
Glaciers are retreating globally in response to warmer atmospheric temperatures, adding large volumes of melt water to the world's oceans. The largest glacierized region and present-day contributor to sea level rise outside of the massive ice sheets is the Canadian Arctic. Recent work has shown that the glaciers of the southern Canadian Arctic (Baffin and Bylot Island) have experienced accelerated rates of ice loss in recent decades, but little is known regarding the spatial and temporal variations in rates of loss. For this study we examine in detail changes in the extent of the Penny Ice Cap (a proxy for ice loss) between 1969 and 2014 to better understand the climatic drivers of the recently observed accelerated rates of ice loss on Baffin Island. To do this, we reconstruct the extent of the ice cap for the year 1969 from historical maps and for the years 1985, 1995, 2010, and 2014 from Landsat 5 TM and Landsat 8 OLI imagery. We use 2009 SPOT HRS imagery and a novel extent comparison algorithm to assess the accuracy of glacier extents derived from Landsat imagery. Regional temperature and precipitation records were used to explain the spatial pattern of change. Due to large variation in elevations, hypsometry was also investigated as a contributor to differences in rates of change across the ice cap. Preliminary results show overall retreat throughout the ice cap but with regional differences in area and length change on either side of the Ice Cap divide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiquan; Zib, Benjamin J.; Xi, Baike
A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extentmore » from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the summer 2007.« less
Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J.; Parkinson, Claire L.; DiGirolamo, Nicolo; Ivanoff, Alvaro
2011-01-01
An intercalibration between F13 Special Sensor Microwave Imager (SSMI) and F17 Special Sensor Microwave Imager Sounder (SSMIS) sea ice extents and areas for a full year of overlap was undertaken preparatory to extending the 1979-2007 NASA Goddard Space Flight Center (GSFC) NASA Team algorithm time series of global sea ice extents and areas. The 1979- 2007 time series was created from Scanning Multichannel Microwave Radiometer (SMMR) and SSMI data. After intercalibration, the yearly mean F17 and F13 difference in Northern Hemisphere sea ice extents is -0.0156%, with a standard deviation of the differences of 0.6204%, and the yearly mean difference in Northern Hemisphere sea ice areas is 0.5433%, with a standard deviation of 0.3519%. For the Southern Hemisphere, the yearly mean difference in sea ice extents is 0.0304% +/- 0.4880%, and the mean difference in sea ice areas is 0.1550% +/- 0.3753%. This F13/F17 intercalibration enables the extension of the 28-year 1979-2007 SMMR/SSMI sea ice time series for as long as there are stable F17 SSMIS brightness temperatures available.
Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J.; Parkinson, Claire L.; DiGirolamo, Nicolo; Ivanoff, Alvaro
2012-01-01
An intercalibration between F13 Special Sensor Microwave Imager (SSMI) and F17 Special Sensor Microwave Imager Sounder (SSMIS) sea ice extents and areas for a full year of overlap was undertaken preparatory to extending the 1979-2007 NASA Goddard Space Flight Center (GSFC) NASA Team algorithm time series of global sea ice extents and areas. The 1979- 2007 time series was created from Scanning Multichannel Microwave Radiometer (SMMR) and SSMI data. After intercalibration, the yearly mean F17 and F13 difference in Northern Hemisphere sea ice extents is -0.0156%, with a standard deviation of the differences of 0.6204%, and the yearly mean difference in Northern Hemisphere sea ice areas is 0.5433%, with a standard deviation of 0.3519%. For the Southern Hemisphere, the yearly mean difference in sea ice extents is 0.0304% 0.4880%, and the mean difference in sea ice areas is 0.1550% 0.3753%. This F13/F17 intercalibration enables the extension of the 28-year 1979-2007 SMMR/SSMI sea ice time series for as long as there are stable F17 SSMIS brightness temperatures available.
The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss
Notz, Dirk
2009-01-01
We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496
Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion
NASA Astrophysics Data System (ADS)
Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.
2008-08-01
We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions. The interval between 20 and 18 ka was marked by near-Holocene levels of clastic sediment flux, and appears to have been an interval of much reduced ice extent. An abrupt increase in clastic sediment flux 18 ka heralded the onset of an interval of expanded ice cover that lasted until ˜14 ka. Clastic sediment flux declined thereafter to reach the lowest levels of the entire length of record during the early-middle Holocene. A middle Holocene climatic transition is apparent in nearly all records and likely reflects the onset of Neoglaciation and/or enhanced soil erosion in the tropical Andes.
Large-scale variations in observed Antarctic Sea ice extent and associated atmospheric circulation
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Parkinson, C. L.
1981-01-01
The 1974 Antarctic large scale sea ice extent is studied from data from Nimbus 2 and 5 and temperature and sea level pressure fields from the Australian Meteorological Data Set. Electrically Scanning Microwave Radiometer data were three-day averaged and compared with 1000 mbar atmospheric pressure and sea level pressure data, also in three-day averages. Each three-day period was subjected to a Fourier analysis and included the mean latitude of the ice extent and the phases and percent variances in terms of the first six Fourier harmonics. Centers of low pressure were found to be generally east of regions which displayed rapid ice growth, and winds acted to extend the ice equatorward. An atmospheric response was also noted as caused by the changing ice cover.
Holocene thinning of the Greenland ice sheet.
Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M
2009-09-17
On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.
Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013
NASA Astrophysics Data System (ADS)
Stroeve, Julienne; Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward
2014-04-01
Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction.
Brigham-Grette, J.; Gualtieri, L.M.; Glushkova, O.Y.; Hamilton, T.D.; Mostoller, D.; Kotov, A.
2003-01-01
The Pekulney Mountains and adjacent Tanyurer River valley are key regions for examining the nature of glaciation across much of northeast Russia. Twelve new cosmogenic isotope ages and 14 new radiocarbon ages in concert with morphometric analyses and terrace stratigraphy constrain the timing of glaciation in this region of central Chukotka. The Sartan Glaciation (Last Glacial Maximum) was limited in extent in the Pekulney Mountains and dates to ???20,000 yr ago. Cosmogenic isotope ages > 30,000 yr as well as non-finite radiocarbon ages imply an estimated age no younger than the Zyryan Glaciation (early Wisconsinan) for large sets of moraines found in the central Tanyurer Valley. Slope angles on these loess-mantled ridges are less than a few degrees and crest widths are an order of magnitude greater than those found on the younger Sartan moraines. The most extensive moraines in the lower Tanyurer Valley are most subdued implying an even older, probable middle Pleistocene age. This research provides direct field evidence against Grosswald's Beringian ice-sheet hypothesis. ?? 2003 Elsevier Science (USA). All rights reserved.
NASA Astrophysics Data System (ADS)
Bauch, D.; Rutgers van der Loeff, M.; Andersen, N.; Torres-Valdes, S.; Bakker, K.; Abrahamsen, E.
2011-12-01
With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater (or brine influence from sea-ice formation) in the upper 150 m were quantified by a combination of salinity and δ18O and nutrients in the Eurasian basins and the Makarov Basin. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which are primarily influenced by sea-ice formation over the open ocean. With the ongoing changes in sea-ice coverage in the Arctic Ocean it can be expected that these processes will change in the immediate future and that the relative contributions to the halocline will change accordingly. Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30 to 50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift. We use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea likely released in summer 2005. For a distinction of Atlantic and Pacific-derived contributions the initial phosphate corrected for mineralization with oxygen (PO*) and alternatively the nitrate to phosphate ratio (N/P) in each sample were used. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments of the Laptev Sea. The extent of Pacific-derived water in the Arctic Ocean was approximately limited by the position of the Lomonosov Ridge in 2007. The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope sea-ice formation results in a linear correlation between brine influence and river water at salinities of ~ 32 to 34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf's bottom layer due to the close proximity to the river mouths. This process results in a second linear correlation between brine influence and river water at salinities of ~ 30 to 32.
NASA Astrophysics Data System (ADS)
Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.
2017-09-01
The 2016 austral spring was characterized by the lowest Southern Hemisphere (SH) sea ice extent seen in the satellite record (1979 to present) and coincided with anomalously warm surface waters surrounding most of Antarctica. We show that two distinct processes contributed to this event: First, the extreme El Niño event peaking in December-February 2015/2016 contributed to pronounced extratropical SH sea surface temperature and sea ice extent anomalies in the eastern Ross, Amundsen, and Bellingshausen Seas that persisted in part until the following 2016 austral spring. Second, internal unforced atmospheric variability of the Southern Annular Mode promoted the exceptional low sea ice extent in November-December 2016. These results suggest that a combination of tropically forced and internal SH atmospheric variability contributed to the unprecedented sea ice decline during the 2016 austral spring, on top of a background of slow changes expected from greenhouse gas and ozone forcing.
The Navy's First Seasonal Ice Forecasts using the Navy's Arctic Cap Nowcast/Forecast System
NASA Astrophysics Data System (ADS)
Preller, Ruth
2013-04-01
As conditions in the Arctic continue to change, the Naval Research Laboratory (NRL) has developed an interest in longer-term seasonal ice extent forecasts. The Arctic Cap Nowcast/Forecast System (ACNFS), developed by the Oceanography Division of NRL, was run in forward model mode, without assimilation, to estimate the minimum sea ice extent for September 2012. The model was initialized with varying assimilative ACNFS analysis fields (June 1, July 1, August 1 and September 1, 2012) and run forward for nine simulations using the archived Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric forcing fields from 2003-2011. The mean ice extent in September, averaged across all ensemble members was the projected summer ice extent. These results were submitted to the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook project (http://www.arcus.org/search/seaiceoutlook). The ACNFS is a ~3.5 km coupled ice-ocean model that produces 5 day forecasts of the Arctic sea ice state in all ice covered areas in the northern hemisphere (poleward of 40° N). The ocean component is the HYbrid Coordinate Ocean Model (HYCOM) and is coupled to the Los Alamos National Laboratory Community Ice CodE (CICE) via the Earth System Modeling Framework (ESMF). The ocean and ice models are run in an assimilative cycle with the Navy's Coupled Ocean Data Assimilation (NCODA) system. Currently the ACNFS is being transitioned to operations at the Naval Oceanographic Office.
NASA Astrophysics Data System (ADS)
Schmidt, P.; Lund, B.; Näslund, J.-O.
2013-12-01
In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.
Ice Floe Breaking in Contemporary Third Generation Operational Wave Models
NASA Astrophysics Data System (ADS)
Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.
2016-02-01
The dynamical zone observed at the edge of the consolidated ice area where are found the wave-fractured floes (i.e. marginal ice zone or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-ice-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this zone. Few attempts have been made to embed wave-ice interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface waves by sea ice and the concomitant breaking of the sea ice-cover into smaller floes. One of the first challenges consists in improving the parameterization of wave-ice dynamics in contemporary third generation operational wave models. A simple waves-in-ice model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers ice floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, wave scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected wave amplitude exceeds the allowed strain amplitude, which considers ice floes properties and wavelength in ice field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial wave and ice conditions. The effects of the wave-ice coupling over the incident wave spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the marginal ice zone with maximum ice floe diameter that progressively increases with distance from the ice edge.
Deglaciation of the Eurasian ice sheet complex
NASA Astrophysics Data System (ADS)
Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.
2017-08-01
The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of ∼2.5 × 106 km2 and drained the present day Vistula, Elbe, Rhine and Thames rivers through the Seine Estuary. During the Bølling/Allerød oscillation after c. 14.6 ka BP, two major proglacial lakes formed in the Baltic and White seas, buffering meltwater pulses from eastern Fennoscandia through to the Younger Dryas when these massive proglacial freshwater lakes flooded into the North Atlantic Ocean. Deglaciation temporarily abated during the Younger Dryas stadial at 12.9 ka BP, when remnant ice across Svalbard, Franz Josef Land, Novaya Zemlya, Fennoscandia and Scotland experienced a short-lived but dynamic re-advance. The final stage of deglaciation converged on present day ice cover around the Scandes mountains and the Barents Sea by 8.7 ka BP, although the phase-lagged isostatic recovery still continues today.
A Flight Evaluation and Analysis of the Effect of Icing Conditions on the ZPG-2 Airship
NASA Technical Reports Server (NTRS)
Lewis, Willilam; Perkins, Porter J., Jr.
1958-01-01
A series of test flights was conducted by the U. S. Navy over a 3- year period to evaluate the effects of icing on the operation of the ZPG-2 airship. In supercooled. clouds, ice formed only on the forward edges of small protuberances and wires and presented no serious hazard to operation. Ice accretions of the glaze type which occurred in conditions described as freezing drizzle adversely affected various components to a somewhat greater extent. The results indicated, a need for protection of certain components such as antennas, propellers, and certain parts of the control system. The tests showed that icing of the large surface of the envelope occurred only in freezing rain or drizzle. Because of the infrequent occurrence of these conditions, the potential maximum severity could not be estimated from the test results. The increases in heaviness caused by icing in freezing rain and drizzle were substantial, but well within the operational capabilities of the airship. In order to estimate the potential operational significance of icing in freezing rain, theoretical calculations were used to estimate: (1) the rate of icing as a function of temperature and rainfall intensity, (2) the climatological probability of occurrence of various combinations of these variables, and (3) the significance of the warming influence of the ocean in alleviating freezing-rain conditions. The results of these calculations suggest that, although very heavy icing rates are possible in combinations of low temperature and high rainfall rate, the occurrence of such conditions is very infrequent in coastal areas and virtually impossible 200 or 300 miles offshore.
Veiki-moraine-like landforms in Nereidum Montes on Mars: Insights from analogues in northern Sweden.
NASA Astrophysics Data System (ADS)
Johnsson, Andreas; Reiss, Dennis; Hauber, Ernst; Johnson, Mark D.; Olvmo, Mats; Hiesinger, Harald
2016-04-01
Mars is a cold hyper-arid planet where liquid water is extremely rare [1]. The observable water budget is instead found in a number of frozen reservoirs such as the polar caps, near surface ground ice and as glacier ice. Previously, numerous studies reported on glacier landforms such as viscous flow features and lobate debris aprons where water-ice is believed to be present under insulating debris cover [2]. This notion was confirmed by SHARAD measurements [3]. However, very little is known about glacial landforms in which water is an important factor. Most studies have focused on moraine-like ridges that are associated to gully systems [4], glacial landforms at the equatorial volcanic province [5] and possible drop-moraines from CO2 glaciers [6]. Here we report on an unusual lobate assemblage of irregular ring-shaped landforms within a mountain complex in Nereidum Montes, Mars. These landforms are well-preserved and may suggest recent ablation of a debris-covered glacier. These martian ring-shaped landforms show a striking morphological resemblance to the Veiki moraine in northern Sweden. Veiki moraines are believed to have formed at the lobate margins of a stagnant ice-sheet during the first Weichselian glaciation [7]. As it sharply ends to the east it may represent the maximum extent of this former ice sheet. The Veiki moraine is characterized by ridged plateaus that are more or less circular and surrounded by a rim ridge. The newly acquired national LiDAR data over Sweden enable us studying these landforms in unprecedented detail. They also enable us exploring geomorphological similarities between Earth and Mars in large spatial contexts. This study aims to increase our understanding of glacial landforms on Mars by comparison to terrestrial analogues. Questions addressed are: (1) How morphological similar are the Martian landforms to the Veiki moraine of Sweden? (2) How does the ring-shaped landforms relate to other possible glacial landforms within the mountain complex? (3) Do the ring-shaped landforms indicate the maximum extent of former ice sheets on Mars? (4) Was any meltwater involved? References: [1] McEwen et al. 2011, (5) 333. [2] Milliken et al., 2003. JGR-Planets (E6) 108. [3] Holt et al.,2008. Science (21) 322. [4] Arfstrom et al., 2005. Icarus (2) 174. [5] Scanlon et al., 2015. PSS. [6] Head et al. 2006. Met & Plan Science (10) 41. [7] Lagerbäck, 1988. Boreas 17.
Development of global sea ice 6.0 CICE configuration for the Met Office global coupled model
Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; ...
2015-03-05
The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is requiredmore » to rectify this in future configurations.« less
Variability and trends in the Arctic Sea ice cover: Results from different techniques
NASA Astrophysics Data System (ADS)
Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert
2017-08-01
Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.
NASA Astrophysics Data System (ADS)
Gaglioti, Benjamin V.; Mann, Daniel H.; Wooller, Matthew J.; Jones, Benjamin M.; Wiles, Gregory C.; Groves, Pamela; Kunz, Michael L.; Baughman, Carson A.; Reanier, Richard E.
2017-08-01
Declining sea-ice extent is currently amplifying climate warming in the Arctic. Instrumental records at high latitudes are too short-term to provide sufficient historical context for these trends, so paleoclimate archives are needed to better understand the functioning of the sea ice-albedo feedback. Here we use the oxygen isotope values of wood cellulose in living and sub-fossil willow shrubs (δ18Owc) (Salix spp.) that have been radiocarbon-dated (14C) to produce a multi-millennial record of climatic change on Alaska's North Slope during the Pleistocene-Holocene transition (13,500-7500 calibrated 14C years before present; 13.5-7.5 ka). We first analyzed the spatial and temporal patterns of δ18Owc in living willows growing at upland sites and found that over the last 30 years δ18Owc values in individual growth rings correlate with local summer temperature and inter-annual variations in summer sea-ice extent. Deglacial δ18Owc values from 145 samples of subfossil willows clearly record the Allerød warm period (∼13.2 ka), the Younger Dryas cold period (12.9-11.7 ka), and the Holocene Thermal Maximum (11.7-9.0 ka). The magnitudes of isotopic changes over these rapid climate oscillations were ∼4.5‰, which is about 60% of the differences in δ18Owc between those willows growing during the last glacial period and today. Modeling of isotope-precipitation relationships based on Rayleigh distillation processes suggests that during the Younger Dryas these large shifts in δ18Owc values were caused by interactions between local temperature and changes in evaporative moisture sources, the latter controlled by sea ice extent in the Arctic Ocean and Bering Sea. Based on these results and on the effects that sea-ice have on climate today, we infer that ocean-derived feedbacks amplified temperature changes and enhanced precipitation in coastal regions of Arctic Alaska during warm times in the past. Today, isotope values in willows on the North Slope of Alaska are similar to those growing during the warmest times of the Pleistocene-Holocene transition, which were times of widespread permafrost thaw and striking ecological changes.
Booth, D.B.
1986-01-01
An estimate of the sliding velocity and basal meltwater discharge of the Puget lobe of the Cordilleran ice sheet can be calculated from its reconstructed extent, altitude, and mass balance. Lobe dimensions and surface altitudes are inferred from ice limits and flow-direction indicators. Net annual mass balance and total ablation are calculated from relations empirically derived from modern maritime glaciers. An equilibrium-line altitude between 1200 and 1250 m is calculated for the maximum glacial advance (ca. 15,000 yr B.P.) during the Vashon Stade of the Fraser Glaciation. This estimate is in accord with geologic data and is insensitive to plausible variability in the parameters used in the reconstruction. Resultant sliding velocities are as much as 650 m/a at the equilibrium line, decreasing both up- and downglacier. Such velocities for an ice sheet of this size are consistent with nonsurging behavior. Average meltwater discharge increases monotonically downglacier to 3000 m3/sec at the terminus and is of a comparable magnitude to ice discharge over much of the glacier's ablation area. Palcoclimatic inferences derived from this reconstruction are consistent with previous, independently derived studies of late Pleistocene temperature and precipitation in the Pacific Northwest. ?? 1986.
NASA Astrophysics Data System (ADS)
Tarlati, S.; Benetti, S.; Callard, L.; O'Cofaigh, C.; Dunlop, P.; Chiverrell, R. C.; Fabel, D.; Moreton, S.; Clark, C.
2016-12-01
During the last glacial maximum the British-Irish Ice Sheet (BIIS) covered the majority of Ireland and Britain. Recent studies have described the BIIS as largely marine-based and highly dynamic with several advances and retreats recorded on the continental shelf. The focus of this study is the more recent sediment record from the Donegal Barra Fan (DBF), the largest sediment depocentre formed by the ice streaming of the western BIIS onto the North Atlantic continental margin. In this project, well-preserved, glacially-derived, deep-water sediments from 3 cores, up to 6.7 m long and retrieved from the DBF, are used to investigate and chronologically constrain the pattern of deglaciation of the BIIS. Deep-water sediments can record continuous sedimentation through time, avoiding hiatuses and erosional surfaces characteristic of a glacial environment and allow a detailed reconstruction of deglacial processes. Five lithofacies have been identified using sedimentology, x-rays, physical properties and grain size analysis. They include bioturbated foraminifera-bearing muds, interpreted as hemipelagic and contouritic deposits from interglacial periods. Chaotic and laminated muds, ice-rafted debris (IRD)-rich layers and laminated mud to sand couplets are characteristic of the glacial period including ice-sheet maximum extent and the beginning of retreat. These represent downslope mass movements, plumites from meltwater alongside melting icebergs and turbidites. Radiocarbon dates from foraminifera suggest that the deglacial sedimentary sequence is up to 5m thick. The IRD concentration and abundance of the foraminifera Neogloboquadrina pachyderma sinistral indicate a minimum of 3 different calving events during deglaciation and a marked Younger Dryas cooling and ice calving period. Additionally the δ 18O record will be used to investigate the record of climatic changes in the region and x-ray fluorescence will be used to assess sediment provenance during deglaciation.
Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland
Larsen, Nicolaj K.; Find, Jesper; Kristensen, Anders; Bjørk, Anders A.; Kjeldsen, Kristian K.; Odgaard, Bent V.; Olsen, Jesper; Kjær, Kurt H.
2016-01-01
Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations. PMID:26940998
Measuring the Surface Temperature of the Cryosphere using Remote Sensing
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.
2012-01-01
A general description of the remote sensing of cryosphere surface temperatures from satellites will be provided. This will give historical information on surface-temperature measurements from space. There will also be a detailed description of measuring the surface temperature of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data which will be the focus of the presentation. Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate data record, trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the MODIS IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now freely available to download at 6.25-km spatial resolution on a polar stereographic grid. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The consistency of this IST record, with temperature and melt records from other sources will be discussed.
NASA Astrophysics Data System (ADS)
Mark, Bryan G.; Seltzer, Geoffrey O.; Rodbell, Donald T.; Goodman, Adam Y.
2002-05-01
Moraine chronology is combined with digital topography to model deglacial rates of paleoglacier volumes in both the Huancané Valley on the west side of the Quelccaya Ice Cap and the Upismayo Valley on the northwest side of the Cordillera Vilcanota. The fastest rates of deglaciation (39×10 -5 to 114×10 -5 km 3 yr -1 and 112×10 -5 to 247×10 -5 km 3 yr -1 for each valley, respectively) were calculated for the most recent paleoglaciers, corresponding to the last few centuries. These results are consistent with observations in the Venezuelan Andes showing high rates of deglaciation since the Little Ice Age. These rates also fall within the range of 20th century rates of deglaciation measured on the Quelccaya Ice Cap (29×10 -5 to 220×10 -5 km 3 yr -1, Brecher and Thompson, 1993; Thompson, 2000). These results imply that rates of deglaciation may fluctuate significantly over time and that high rates of deglaciation may not be exclusive to the late 20th century. Equilibrium line altitude (ELA) depressions for the ice volumes of the last glaciation modeled here were computed as 230 m for the Quelccaya Ice Cap and 170 m for the Cordillera Vilcanota. Maximum ELA depressions are lower than previously published: <500 m for the Cordillera Vilcanota and <400 m for the Quelccaya Ice Cap. These lower values could imply a topographic control over paleoglacier extent.
Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.
Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S
2018-03-05
Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.
The impact of lower sea-ice extent on Arctic greenhouse-gas exchange
Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.
2013-01-01
In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.
NASA Astrophysics Data System (ADS)
Hayden, T. G.; Kominz, M. A.; Magens, D.; Niessen, F.
2009-12-01
We have estimated ice thicknesses at the AND-1B core during the Last Glacial Maximum by adapting an existing technique to calculate overburden. As ice thickness at Last Glacial Maximum is unknown in existing ice sheet reconstructions, this analysis provides constraint on model predictions. We analyze the porosity as a function of depth and lithology from measurements taken on the AND-1B core, and compare these results to a global dataset of marine, normally compacted sediments compiled from various legs of ODP and IODP. Using this dataset we are able to estimate the amount of overburden required to compact the sediments to the porosity observed in AND-1B. This analysis is a function of lithology, depth and porosity, and generates estimates ranging from zero to 1,000 meters. These overburden estimates are based on individual lithologies, and are translated into ice thickness estimates by accounting for both sediment and ice densities. To do this we use a simple relationship of Xover * (ρsed/ρice) = Xice; where Xover is the overburden thickness, ρsed is sediment density (calculated from lithology and porosity), ρice is the density of glacial ice (taken as 0.85g/cm3), and Xice is the equalivant ice thickness. The final estimates vary considerably, however the “Best Estimate” behavior of the 2 lithologies most likely to compact consistently is remarkably similar. These lithologies are the clay and silt units (Facies 2a/2b) and the diatomite units (Facies 1a) of AND-1B. These lithologies both produce best estimates of approximately 1,000 meters of ice during Last Glacial Maximum. Additionally, while there is a large range of possible values, no combination of reasonable lithology, compaction, sediment density, or ice density values result in an estimate exceeding 1,900 meters of ice. This analysis only applies to ice thicknesses during Last Glacial Maximum, due to the overprinting effect of Last Glacial Maximum on previous ice advances. Analysis of the AND-2A core is underway, and results will be compared to those of AND-1B.
Sea Ice Sensitivities in the 0.72 deg and 0.08 deg Arctic Cap Coupled HYCOM/CICE Models
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sea Ice Sensitivities in the 0.72°and 0.08° Arctic Cap...Arctic ice extent, which corresponds to the sea ice that remains during the summer minimum, has decreased over the years 1979–2007 by more than 10% per...Goosse et al. 2009) with the lowest observed sea ice extent in the satellite record (1979-present) occurring in September 2012 (Perovich et al. 2012
30-Year Satellite Record Reveals Accelerated Arctic Sea Ice Loss, Antarctic Sea Ice Trend Reversal
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.
2003-01-01
Arctic sea ice extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent observed in the early 1970's.
Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.
2010-01-01
We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a shift in the ITCZ would have allowed midlatitude cyclones to reach Mauna Kea more frequently which would have increased precipitation at high elevations and caused additional cooling. ?? 2010 Elsevier B.V.
The Role of Snow and Ice in the Climate System
Barry, Roger G.
2017-12-09
Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.
Satellite remote sensing over ice
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1984-01-01
Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.
Satellite remote sensing over ice
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1986-01-01
Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.
NASA Astrophysics Data System (ADS)
Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine
2016-08-01
Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.
Atmospheric influences on the anomalous 2016 Antarctic sea ice decay
NASA Astrophysics Data System (ADS)
Schlosser, Elisabeth; Haumann, F. Alexander; Raphael, Marilyn N.
2018-03-01
In contrast to the Arctic, where total sea ice extent (SIE) has been decreasing for the last three decades, Antarctic SIE has shown a small, but significant, increase during the same time period. However, in 2016, an unusually early onset of the melt season was observed; the maximum Antarctic SIE was already reached as early as August rather than the end of September, and was followed by a rapid decrease. The decay was particularly strong in November, when Antarctic SIE exhibited a negative anomaly (compared to the 1979-2015 average) of approximately 2 million km2. ECMWF Interim reanalysis data showed that the early onset of the melt and the rapid decrease in sea ice area (SIA) and SIE were associated with atmospheric flow patterns related to a positive zonal wave number three (ZW3) index, i.e., synoptic situations leading to strong meridional flow and anomalously strong southward heat advection in the regions of strongest sea ice decline. A persistently positive ZW3 index from May to August suggests that SIE decrease was preconditioned by SIA decrease. In particular, in the first third of November northerly flow conditions in the Weddell Sea and the Western Pacific triggered accelerated sea ice decay, which was continued in the following weeks due to positive feedback effects, leading to the unusually low November SIE. In 2016, the monthly mean Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. A better spatial and temporal coverage of reliable ice thickness data is needed to assess the change in ice mass rather than ice area.
Analysis of the origin of Aufeis feed-water on the arctic slope of Alaska
NASA Technical Reports Server (NTRS)
Hall, D. K.; Roswell, C. (Principal Investigator)
1980-01-01
The origin of water feeding large aufeis fields (overflow river ice) on the Arctic Slope of Alaska is analyzed. Field measurements of two large aufeis fields on the eastern Arctic Slope were taken during July of 1978 and 1979. Measurements of aufeis extent and distribution were made using LANDSAT Multispectral Scanner Subsystem (MSS) satellite data from 1973 through 1979. In addition, ice cores were analyzed in the laboratory. Results of the field and laboratory studies indicate that the water derived from aufeis melt water has a chemical composition different from the adjacent upstream river water. Large aufeis fields are found in association with springs and faults thus indicating a subterranean origin of the feed water. In addition, the maximum extent of large aufeis fields was not found to follow meteorological patterns which would only be expected if the origin of the feed water were local. It is concluded that extent of large aufeis in a given river channel on the Arctic Slope is controlled by discharge from reservoirs of groundwater. It seems probable that precipitation passes into limestone aquifers in the Brooks Range, through an interconnecting system of subterranean fractures in calcareous rocks and ultimately discharges into alluvial sediments on the coastal plain to form aufeis. It is speculated that only small aufeis patches are affected by local meteorological parameters in the months just prior to aufeis formation.
Estimation of basal shear stresses from now ice-free LIA glacier forefields in the Swiss Alps
NASA Astrophysics Data System (ADS)
Fischer, Mauro; Haeberli, Wilfried; Huss, Matthias; Paul, Frank; Linsbauer, Andreas; Hoelzle, Martin
2013-04-01
In most cases, assessing the impacts of climatic changes on glaciers requires knowledge about the ice thickness distribution. Miscellaneous methodological approaches with different degrees of sophistication have been applied to model glacier thickness so far. However, all of them include significant uncertainty. By applying a parameterization scheme for ice thickness determination relying on assumptions about basal shear stress by Haeberli and Hoelzle (1995) to now ice-free glacier forefields in the Swiss Alps, basal shear stress values can be calculated based on a fast and robust experimental approach. In a GIS, the combination of recent (1973) and Little Ice Age (LIA) maximum (around 1850) glacier outlines, central flowlines, a recent Digital Elevation Model (DEM) and a DEM of glacier surface topography for the LIA maximum allows extracting local ice thickness over the forefield of individual glaciers. Subsequently, basal shear stress is calculated via the rheological assumption of perfect-plasticity relating ice thickness and surface slope to shear stress. The need of only very few input data commonly stored in glacier inventories permits an application to a large number of glaciers. Basal shear stresses are first calculated for subsamples of glaciers belonging to two test sites where the LIA maximum glacier surface is modeled with DEMs derived from accurate topographic maps for the mid 19th century. Neglecting outliers, the average resulting mean basal shear stress is around 80 kPa for the Bernina region (range 25-100 kPa) and 120 kPa (range 50-150 kPa) for the Aletsch region. For the entire Swiss Alps it is 100 kPa (range 40-175 kPa). Because complete LIA glacier surface elevation information is lacking there, a DEM is first created from reconstructed height of LIA lateral moraines and trimlines by using a simple GIS-based tool. A sensitivity analysis of the input parameters reveals that the performance of the developed approach primarily depends on the accuracy of the ice thickness determination and thus on the accuracy of the LIA DEMs used. Good results are expected for LIA valley or mountain glaciers with ice thicknesses larger than 100 m at the position of their terminus in 1973. Calculated shear stresses are representative in terms of average values over 20 to 40% of the total glacier length in 1850. Shear stresses strongly vary with glacier size, topographic conditions and climate. This study confirmed that reasonable values for mean basal shear stress of mountain glaciers can be estimated from an empirical and non-linear relation using the vertical extent as a proxy for mass turnover. The now available database could be used to independently test the plausibility of approaches applying simple flow models.
Moving beyond the total sea ice extent in gauging model biases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.
Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less
Moving beyond the total sea ice extent in gauging model biases
Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; ...
2016-11-29
Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less
NASA Astrophysics Data System (ADS)
Miller, Gifford H.; Landvik, Jon Y.; Lehman, Scott J.; Southon, John R.
2017-01-01
The response of the Northern Hemisphere cryosphere to the monotonic decline in summer insolation and variable radiative forcing during the Holocene has been one of irregular expansion culminating in the Little Ice Age, when most glaciers attained their maximum late Holocene dimensions. Although periods of intervening still-stand or ice-retreat can be reconstructed by direct dating of ice-recessional features, defining times of Neoglacial ice growth has been limited to indirect proxies preserved in distal archives. Here we report 45 precise radiocarbon dates on in situ plants emerging from beneath receding glaciers on Svalbard that directly date the onset of snowline descent and glacier expansion, entombing the plants. Persistent snowline lowering occurred between 4.0 and 3.4 ka, but with little additional persistent lowering until early in the first millennium AD. Populations of individual 14C calendar age results and their aggregate calendar age probabilities define discrete episodes of vegetation kill and snowline lowering 240-340 AD, 410-540 AD and 670-750 AD, each with a lower snowline than the preceding episode, followed by additional snowline lowering between 1000 and 1220 AD, and between 1300 and 1450 AD. Snowline changes after 1450 AD, including the maximum ice extent of the Little Ice Age are not resolved by our collections, although snowlines remained lower than their 1450 AD level until the onset of modern warming. A time-distance diagram derived from a 250-m-long transect of dated ice-killed plants documents ice-margin advances ∼750, ∼1100 and after ∼1500 AD, concordant with distributed vegetation kill ages seen in the aggregate data set, supporting our central thesis that vegetation kill ages provide direct evidence of snowline lowering and cryospheric expansion. The mid- to late-Holocene history of snowline lowering on Svalbard is similar to ELA reconstructions of Norwegian and Svalbard cirque glaciers, and consistent with a cryospheric response to the secular decline of regional summertime insolation and stepped changes in nearby surface ocean environments. The widespread exposure of entombed plants dating from the first millennium AD suggests that Svalbard's average summer temperatures of the past century now exceed those of any century since at least 700 AD, including medieval times.
Global warming releases microplastic legacy frozen in Arctic Sea ice
NASA Astrophysics Data System (ADS)
Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.
2014-06-01
When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.
NASA Astrophysics Data System (ADS)
Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.
2014-05-01
Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.
Emperor penguins and climate change.
Barbraud, C; Weimerskirch, H
2001-05-10
Variations in ocean-atmosphere coupling over time in the Southern Ocean have dominant effects on sea-ice extent and ecosystem structure, but the ultimate consequences of such environmental changes for large marine predators cannot be accurately predicted because of the absence of long-term data series on key demographic parameters. Here, we use the longest time series available on demographic parameters of an Antarctic large predator breeding on fast ice and relying on food resources from the Southern Ocean. We show that over the past 50 years, the population of emperor penguins (Aptenodytes forsteri) in Terre Adélie has declined by 50% because of a decrease in adult survival during the late 1970s. At this time there was a prolonged abnormally warm period with reduced sea-ice extent. Mortality rates increased when warm sea-surface temperatures occurred in the foraging area and when annual sea-ice extent was reduced, and were higher for males than for females. In contrast with survival, emperor penguins hatched fewer eggs when winter sea-ice was extended. These results indicate strong and contrasting effects of large-scale oceanographic processes and sea-ice extent on the demography of emperor penguins, and their potential high susceptibility to climate change.
NASA Astrophysics Data System (ADS)
Christ, A. J.; Marchant, D. R.
2017-12-01
During the LGM, grounded glacier ice filled the Ross Embayment and deposited glacial drift on volcanic islands and peninsulas in McMurdo Sound, as well as along coastal regions of the Transantarctic Mountains (TAM), including the McMurdo Dry Valleys and Royal Society Range. The flow geometry and retreat history of this ice remains debated, with contrasting views yielding divergent implications for both the fundamental cause of Antarctic ice expansion as well as the interaction and behavior of ice derived from East and West Antarctica during late Quaternary time. We present terrestrial geomorphologic evidence that enables the reconstruction of former ice elevations, ice-flow paths, and ice-marginal environments in McMurdo Sound. Radiocarbon dates of fossil algae interbedded with ice-marginal sediments provide a coherent timeline for local ice retreat. These data are integrated with marine-sediment records and multi-beam data to reconstruct late glacial dynamics of grounded ice in McMurdo Sound and the western Ross Sea. The combined dataset suggest a dominance of ice flow toward the TAM in McMurdo Sound during all phases of glaciation, with thick, grounded ice at or near its maximum extent between 19.6 and 12.3 calibrated thousands of years before present (cal. ka). Our data show no significant advance of locally derived ice from the TAM into McMurdo Sound, consistent with the assertion that Late Pleistocene expansion of grounded ice in McMurdo Sound, and throughout the wider Ross Embayment, occurs in response to lower eustatic sea level and the resulting advance of marine-based outlet glaciers and ice streams (and perhaps also reduced oceanic heat flux), rather than local increases in precipitation and ice accumulation. Finally, when combined with allied data across the wider Ross Embayment, which show that widespread deglaciation outside McMurdo Sound did not commence until 13.1 ka, the implication is that retreat of grounded glacier ice in the Ross Embayment did not add significantly to SLR during Meltwater Pulse 1a (14.0-14.5 ka).
NASA Astrophysics Data System (ADS)
Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.
2017-12-01
Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.
Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska
NASA Astrophysics Data System (ADS)
Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.
2018-02-01
Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.
NASA Astrophysics Data System (ADS)
Bentley, M. J.; Hein, A. S.; Sugden, D. E.; Whitehouse, P. L.; Shanks, R.; Xu, S.; Freeman, S. P. H. T.
2017-02-01
The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model.
New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis
NASA Astrophysics Data System (ADS)
Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.
2017-12-01
Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.
NASA Astrophysics Data System (ADS)
Stein, R. H.; Niessen, F.; Fahl, K.; Forwick, M.; Kudriavtseva, A.; Ponomarenko, E.; Prim, A. K.; Quatmann-Hense, A.; Spielhagen, R. F.; Zou, H.
2016-12-01
The Arctic Ocean and surrounding continents are key areas within the Earth system and very sensitive to present and past climate change. In this context, the timing and extent of circum-Arctic ice sheets and its interaction with oceanic and sea-ice dynamics are major interest and focus of international research. New sediment cores recovered during the Polarstern Expeditions PS87 (Lomonosov Ridge/2014) and PS93.1 (Fram Strait/2015) together with several sediment cores available from previous Polarstern expeditions allow to carry out a detailed sedimentological and geochemical study that may help to unravel the changes in Arctic sea ice and circum-Arctic ice sheets during late Quaternary times. Our new data include biomarkers indicative for past sea-ice extent, phytoplankton productivity and terrigenous input as well as grain size, physical property, XRD and XRF data indicative for sources and pathways of terrigenous sediments (ice-rafted debris/IRD) related to glaciations in Eurasia, East Siberia, Canada and Greenland. Here, we present examples from selected sediment cores that give new insights into the timing and extent of sea ice and glaciations during MIS 6 to MIS 2. To highlight one example: SE-NW oriented, streamlined landforms have been mapped on top of the southern Lomonosov Ridge (LR) at water depths between 800 and 1000 m over long distances during Polarstern Expedition PS87, interpreted to be glacial lineations that formed beneath grounded ice sheets and ice streams. The orientations of the lineations identified are similar to those on the East Siberian continental margin, suggesting an East Siberian Chukchi Ice Sheet extended far to the north on LR during times of extreme Quaternary glaciations. Based on our new biomarker records from Core PS2757 (located on LR near 81°N) indicating a MIS 6 ice-edge situation with some open-water phytoplankton productivity, the glacial erosional event should have been older than MIS 6 (e.g., MIS 12?).
NASA Science Flights Target Melting Arctic Sea Ice
2017-12-08
This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge
NASA Astrophysics Data System (ADS)
Méheust, Marie; Stein, Ruediger; Fahl, Kirsten; Max, Lars; Riethdorf, Jan-Rainer
2016-04-01
Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.
Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from 36Cl dating
NASA Astrophysics Data System (ADS)
Jomelli, Vincent; Schimmelpfennig, Irene; Favier, Vincent; Mokadem, Fatima; Landais, Amaelle; Rinterknecht, Vincent; Brunstein, Daniel; Verfaillie, Deborah; Legentil, Claude; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim
2018-03-01
Documenting sub-Antarctic glacier variations during the local last glacial maximum is of major interest to better understand their sensitivity to atmospheric and oceanic temperature changes in conjunction with Antarctic ice sheet changes. However, data are sparse because evidence of earlier glacier extents is for most sub-Antarctic islands located offshore making their observation complex. Here, we present 22 cosmogenic 36Cl surface exposure ages obtained from five sites at Kerguelen to document the glacial history. The 36Cl ages from roche moutonnee surfaces, erratics and boulders collected on moraines span from 41.9 ± 4.4 ka to 14.3 ± 1.1 ka. Ice began to retreat on the eastern part of the main island before 41.4 ± 4.4 ka. Slow deglaciation occurred from ∼41 to ∼29 ka. There is no evidence of advances between 29 ka and the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka) period. During the ACR, however, the Bontemps and possibly Belvedere moraines were formed by the advance of a Cook Ice Cap outlet glacier and a local glacier on the Presque Ile Jeanne d'Arc, respectively. This glacier evolution differs partly from that of glaciers in New Zealand and in Patagonia. These asynchronous glacier changes in the sub-Antarctic region are however in agreement with sea surface temperature changes recorded around Antarctica, which suggest differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica.
Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2000-01-01
Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major consequences to the polar climate and to the lifestyles (and perhaps even the survivability) of polar bears and other polar species.
Springtime atmospheric transport controls Arctic summer sea-ice extent
NASA Astrophysics Data System (ADS)
Kapsch, Marie; Graversen, Rune; Tjernström, Michael
2013-04-01
The sea-ice extent in the Arctic has been steadily decreasing during the satellite remote sensing era, 1979 to present, with the highest rate of retreat found in September. Contributing factors causing the ice retreat are among others: changes in surface air temperature (SAT; Lindsay and Zhang, 2005), ice circulation in response to winds/pressure patterns (Overland et al., 2008) and ocean currents (Comiso et al., 2008), as well as changes in radiative fluxes (e.g. due to changes in cloud cover; Francis and Hunter, 2006; Maksimovich and Vihma, 2012) and ocean conditions. However, large interannual variability is superimposed onto the declining trend - the ice extent by the end of the summer varies by several million square kilometer between successive years (Serreze et al., 2007). But what are the processes causing the year-to-year ice variability? A comparison of years with an anomalously large September sea-ice extent (HIYs - high ice years) with years showing an anomalously small ice extent (LIYs - low ice years) reveals that the ice variability is most pronounced in the Arctic Ocean north of Siberia (which became almost entirely ice free in September of 2007 and 2012). Significant ice-concentration anomalies of up to 30% are observed for LIYs and HIYs in this area. Focusing on this area we find that the greenhouse effect associated with clouds and water-vapor in spring is crucial for the development of the sea ice during the subsequent months. In years where the end-of-summer sea-ice extent is well below normal, a significantly enhanced transport of humid air is evident during spring into the region where the ice retreat is encountered. The anomalous convergence of humidity increases the cloudiness, resulting in an enhancement of the greenhouse effect. As a result, downward longwave radiation at the surface is larger than usual. In mid May, when the ice anomaly begins to appear and the surface albedo therefore becomes anomalously low, the net shortwave radiation anomaly becomes positive. The net shortwave radiation contributes during the rest of the melting season to an enhanced energy flux towards the surface. These findings lead to the conclusion that enhanced longwave radiation associated with positive humidity and cloud anomalies during spring plays a significant role in initiating the summer ice melt, whereas shortwave-radiation anomalies act as an amplifying feedback once the melt has started. References: Lindsay, R. and J. Zhang. The thinning of Arctic Sea Ice, 19882003: Have We Passed a Tipping Point?. J. Clim. 18, 48794894 (2005). Overland, J. E., M. Wang and S. Salo. The recent Arctic warm period. Tellus 60A, 589-597 (2008). Comiso, J. C., C. L. Parkinson, R. Gersten and L. Stock. Accelerated Decline in the Arctic sea ice cover. Geophys. Res. Lett. 35, L01703 (2008). Francis, J. A. and E. Hunter. New Insight Into the Disappearing Arctic Sea Ice. EOS T. Am. Geophys. Un. 87, 509511 (2006). Maksimovich, E. and T. Vihma. The effect of heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J. Geophys. Res. 117, C07012 (2012). Serreze, M. C., M. M. Holland and J. Stroeve. Perspectives on the Arctic's Shrinking Sea-Ice Cover. Science 315, 1533-1536 (2007).
NASA Astrophysics Data System (ADS)
Pekar, Stephen; Koss, Howard; Passchier, Sandra
2010-05-01
Litho- and sequence stratigraphic results from the ANtarctic Geological DRILLing Program (ANDRILL) Southern McMurdo Sound (SMS) AND-2A drill hole indicate that glacial conditions varied widely in the western Ross Sea between the two isotopic Mi events (i.e., inferred glacioeustasy) Mi1b (17.7 Ma) and Mi2 (16.2 Ma). Most of this interval had not been previously recovered from the Antarctic continental margin providing the first opportunity to use direct evidence in understanding the evolution of the ice sheet during this time. During the 2007 austral spring/summer, the SMS drill hole cored 1138 meters of sediments, with ~98% recovery. The section between 700 and 400 mbsf has high sedimentation rates (180 m/ my) and excellent age control, based on radiometric ages and magnetostratigraphy, providing an exceptional record of glacial advances and retreats deposited in a shallow water environment in Antarctica between 18 and 16 Ma. Approximately twenty sequences within this interval were identified. Each sequence is bounded by distinct surfaces characterized by a pronounced shift in lithofacies, with typically more ice distal facies below (e.g., characteristic of open marine to iceberg influenced depositional environments), and more proximal facies above (e.g., sandy massive diamictites and conglomerates). Lithofacies and grain size analysis suggest that these cycles are controlled by a combination of water depth and ice proximity. A surface at 648.74 mbsf contains a hiatus that spans 18.0-17.6 Ma and correlates to the isotopic event Mi1b. This surface separates a prolonged interval of glacial advance over this site below, based on extensive sediment deformation and more ice distal environments above. A sharp surface at 436.13 mbsf (~16.3 Ma), interpreted to represent glacial maximum extent, contains a possible short hiatus and is correlated to the Mi2 event. In contrast, although the lithofacies indicates a glacial advance, evidence of ice grounding at 436 mbsf is equivocal, suggesting a smaller advance than for the one at the Mi1b event. Between these two ice advances, the lithofacies indicates generally more distal ice environments and therefore less ice volume and correlates to the early Miocene Climatic Optimum (17.2-16.4 Ma).
Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America
NASA Astrophysics Data System (ADS)
Eyles, Nick; Arbelaez Moreno, Lina; Sookhan, Shane
2018-01-01
The Late Wisconsin Cordilleran Ice Sheet (CIS) of western North America is thought to have reached its maximum extent (∼2.5 × 106 km2) as late at c. 14.5 ka. Most (80%) of the ice sheet's bed consists of high mountains but its 'core zone' sited on plateaux of the Intermontane Belt of British Columbia and coterminous parts of the USA, shows broad swaths of subglacially-streamlined rock and sediment. Broad scale mapping from new digital imagery data identifies three subglacial bed types: 1) 'hard beds' of variably streamlined bedrock; 2) drumlinized 'soft beds' of deformation till reworked from antecedent sediment, and 3) 'mixed beds' of variably-streamlined bedrock protruding through drumlinized sediment. Drumlins on soft beds appear to be erosional features cut into till and antecedent sediments, and identify the catchment areas of paleo ice streams expressed downglacier as flow sets of megascale glacial lineations (MSGLs). 'Grooved' and 'cloned' drumlins appear to record the transition from drumlins to MSGLs. The location of paleo ice streams reflects topographic funneling of ice from plateau surfaces through outlet valleys and a soft bed that sustained fast flow; rock-cut MSGLs are also present locally on the floors of outlet valleys. CIS disintegrated in <1000 years shortly after c. 13.0 ka releasing very large volumes of meltwater and sediment to the Pacific coast. Abrupt deglaciation may reflect unsustainable calving of marine-based ice streams along the glacio-isostatically depressed coast; large deep 'fiord lakes' in the ice sheet's interior may have played an analogous role. Mapping of the broad scale distribution of bed types across the Cordilleran Ice Sheet provides key information for paleoglaciological modelling and also for understanding the beds of modern ice masses such as the Greenland Ice Sheet which is of a comparable topographic setting.
The evolution and geological footprint of the last Eurasian ice-sheet complex
NASA Astrophysics Data System (ADS)
Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob
2017-04-01
During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along with its isostatic footprint had a major impact on fluvial hydrology of western Eurasia, damming the Baltic and White Sea proglacial lakes from c. 17.8 ka BP through to the Holocene and diverting many river systems. Acknowledegments This project is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259. Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, a M., 2009. The Last Glacial Maximum. Science 325, 710-714. doi:10.1126/science.1172873 Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1-45. doi:10.1111/bor.12142 Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., Stroeven, A.P., 2016. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quat. Sci. Rev. 153, 97-121. doi:10.1016/j.quascirev.2016.10.009
Will sea ice thickness initialisation improve Arctic seasonal-to-interannual forecast skill?
NASA Astrophysics Data System (ADS)
Day, J. J.; Hawkins, E.; Tietsche, S.
2014-12-01
A number of recent studies have suggested that Arctic sea ice thickness is an important predictor of Arctic sea ice extent. However, coupled forecast systems do not currently use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. A set of ensemble potential predictability experiments, with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run to investigate this. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to eight months ahead. Perturbing sea ice thickness also has a significant impact on the forecast error in the 2m temperature and surface pressure fields a few months ahead. These results show that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.
Will Arctic sea ice thickness initialization improve seasonal forecast skill?
NASA Astrophysics Data System (ADS)
Day, J. J.; Hawkins, E.; Tietsche, S.
2014-11-01
Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.
Dark ice dynamics of the south-west Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn
2017-11-01
Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from ablating ice, these particulates alone do not drive dark ice dynamics. Instead, they may enable the growth of pigmented ice algal assemblages which cause visible surface darkening, but only when the climatological prerequisites of liquid meltwater presence and sufficient photosynthetically active radiation fluxes are met. Further field studies are required to fully constrain the processes by which ice algae growth proceeds and the apparent dependency of algae growth on melt-out particulates.
Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins
NASA Astrophysics Data System (ADS)
Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.
2016-12-01
Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which integrates our findings with those from Alaska, Canada, and east Greenland.
NASA Astrophysics Data System (ADS)
Jansen, D.; Llorens, M.-G.; Westhoff, J.; Steinbach, F.; Kipfstuhl, S.; Bons, P. D.; Griera, A.; Weikusat, I.
2016-02-01
Disturbances on the centimetre scale in the stratigraphy of the North Greenland Eemian Ice Drilling (NEEM) ice core (North Greenland) can be mapped by an optical line scanner as long as the ice has visual layering, such as, for example, cloudy bands. Different focal depths allow, to a certain extent, a three-dimensional view of the structures. In this study we present a detailed analysis of the visible folds, discuss their characteristics and frequency, and present examples of typical fold structures. We also analyse the structures with regard to the deformation boundary conditions under which they formed. The structures evolve from gentle waves at about 1500 m to overturned z folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their similar fold shape indicates that they are passive features and are probably not initiated by rheology differences between alternating layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. C axes orientation distributions for the corresponding core sections were analysed, where available, in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c axis orientations that deviate from that of the matrix, which shows a single maximum fabric at the depth where the folding occurs. Numerical modelling of crystal viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures during deformation. The modelling reproduces the development of bands of grains with a tilted-lattice orientation relative to the single maximum fabric of the matrix, and also the associated local deformation. We conclude from these results that the observed folding can be explained by formation of these tilted-lattice bands.
Synoptic aspects of Antarctic mesocyclones
NASA Astrophysics Data System (ADS)
Carleton, Andrew M.; Fitch, Mark
1993-07-01
The characteristic regimes (formation and dissipation areas, tracks) and synoptic environments of cold air mesocyclones over Antarctic and Subantarctic latitudes are determined for the contrasting winters (June, July, and August) of 1988 and 1989. Defense Meteorological Satellite Program (DMSP) thermal infrared (IR) imagery is used in conjunction with southern hemisphere pressure/height analyses. Outbreaks of mesocyclones ("active periods") are frequent in the Ross Sea sector in 1988. They are associated most often with areas of maximum horizontal gradient of the 1000- to 500-mbar thickness. Over higher latitudes of the Southeast Pacific in 1989, mesocyclones develop in association with a "cold pool" that migrates equatorward. The between-winter differences in mesocyclone frequencies are examined for associations with sea ice conditions and the continental katabatic winds using correlation and "superposed epoch" analysis of temperature data from selected automatic weather stations (AWSs). The results support a katabatic wind-sea ice extent-mesocyclone link for key sectors of the Antarctic.
Sea Ice Prediction Has Easy and Difficult Years
NASA Technical Reports Server (NTRS)
Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward; Cutler, Matthew; Kay, Jennifer; Meier, Walter N.; Stroeve, Julienne; Wiggins, Helen
2014-01-01
Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013).
NASA Technical Reports Server (NTRS)
Argus, Susan Digby; Carsey, Frank; Holt, Benjamin
1988-01-01
This paper presents data collected by airborne and satellite instruments during the Labrador Ice Margin Experiment, that demonstrate the effects of oceanic and atmospheric processes on the ice conditions in the Grand Banks-Labrador sea area. Special consideration is given to the development of algorithms for extracting information from SAR data. It is shown that SAR data can be used to monitor ice extent, determine ice motion, locate shear zones, monitor the penetration of swell into the ice, estimate floe sizes, and establish the dimensions of the ice velocity zones. It is also shown that the complex interaction of the ice cover with winds, currents, swell, and coastlines is similar to the dynamics established for a number of sites in both polar regions.
Towards development of an operational snow on sea ice product
NASA Astrophysics Data System (ADS)
Stroeve, J.; Liston, G. E.; Barrett, A. P.; Tschudi, M. A.; Stewart, S.
2017-12-01
Sea ice has been visibly changing over the past couple of decades; most notably the annual minimum extent which has shown a distinct downward, and recently accelerating, trend. September mean sea ice extent was over 7×106 km2 in the 1980's, but has averaged less than 5×106 km2 in the last decade. Should this loss continue, there will be wide-ranging impacts on marine ecosystems, coastal communities, prospects for resource extraction and marine activity, and weather conditions in the Arctic and beyond. While changes in the spatial extent of sea ice have been routinely monitored since the 1970s, less is known about how the thickness of the ice cover has changed. While estimates of ice thickness across the Arctic Ocean have become available over the past 20 years based on data from ERS-1/2, Envisat, ICESat, CryoSat-2 satellites and Operation IceBridge aircraft campaigns, the variety of these different measurement approaches, sensor technologies and spatial coverage present formidable challenges. Key among these is that measurement techniques do not measure ice thickness directly - retrievals also require snow depth and density. Towards that end, a sophisticated snow accumulation model is tested in a Lagrangian framework to map daily snow depths across the Arctic sea ice cover using atmospheric reanalysis data as input. Accuracy of the snow accumulation is assessed through comparison with Operation IceBridge data and ice mass balance buoys (IMBs). Impacts on ice thickness retrievals are further discussed.
Grounding Lines Detecting Using LANDSAT8 Oli and CRYOSAT-2 Data Fusion
NASA Astrophysics Data System (ADS)
Li, F.; Guo, Y.; Zhang, Y.; Zhang, S.
2018-04-01
The grounding zone is the region where ice transitions from grounded ice sheet to freely floating ice shelf, grounding lines are actually more of a zone, typically over several kilometers. The mass loss from Antarctica is strongly linked to changes in the ice shelves and their grounding lines, since the variation in the grounding line can result in very rapid changes in glacier and ice-shelf behavior. Based on remote sensing observations, five global Antarctic grounding line products have been released internationally, including MOA, ASAID, ICESat, MEaSUREs, and Synthesized grounding lines. However, the five products could not provide the annual grounding line products of the whole Antarctic, even some products have stopped updating, which limits the time series analysis of Antarctic material balance to a certain extent. Besides, the accurate of single remote-sensing data based grounding line products is far from satisficed. Therefore, we use algorithms to extract grounding lines with SAR and Cryosat-2 data respectively, and combine the results of two kinds of grounding lines to obtain new products, we obtain a mature grounding line extraction algorithm process, so that we can realize the extraction of grounding line of the Antarctic each year in the future. The comparison between fusion results and the MOA product results indicate that there is a maximum deviation of 188.67 meters between the MOA product and the fusion result.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Comiso, Josefino C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.
2011-01-01
Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate-quality data record, 11- and 12-year trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the Moderate-Resolution Imaging Spectroradiometer (MODIS) IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now available at 6.25-km spatial resolution on a polar stereographic grid as described in Hall et al. (submitted). This record will be elevated in status to a climate-data record (CDR) when more years of data become available either from the MODIS on the Terra or Aqua satellites, or from the Visible Infrared Imager Radiometer Suite (VIIRS) to be launched in October 2011. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. IST 12-year trends are compared with in-situ data, and climate data from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) Reanalysis.
Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin
2015-01-01
The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.
NASA Astrophysics Data System (ADS)
Renfrow, S.; Meier, W. N.; Wolfe, J.; Scott, D.; Leon, A.; Weaver, R.
2005-12-01
Decreasing Arctic sea ice has been one of the most noticeable changes on Earth over the past quarter-century. The years 2002 through 2005 have had much lower summer sea ice extents than the long-term (1979-2000). Reduced sea ice extent has a direct impact on Arctic wildlife and people, as well as ramifications for regional and global climate. Students, educators, and the general public want and need to have a better understanding of sea ice. Most of us are unfamiliar with sea ice: what it is, where it occurs, and how it affects global climate. The upcoming International Polar Year will provide an opportunity for the public to learn about sea ice. Here, we provide an overview of sea ice, the changes that the sea ice is undergoing, and information about the relation between sea ice and climate. The information presented here is condensed from the National Snow and Ice Data Center's new 'All About Sea Ice' Web site (http://www.nsidc.org/seaice/), a comprehensive resource of information for sea ice.
Gaglioti, Benjamin V.; Mann, Daniel H.; Wooller, Matthew J.; Jones, Benjamin M.; Wiles, Gregory C.; Groves, Pamela; Kunz, Michael L.; Baughman, Carson; Reanier, Richard E.
2017-01-01
Declining sea-ice extent is currently amplifying climate warming in the Arctic. Instrumental records at high latitudes are too short-term to provide sufficient historical context for these trends, so paleoclimate archives are needed to better understand the functioning of the sea ice-albedo feedback. Here we use the oxygen isotope values of wood cellulose in living and sub-fossil willow shrubs (δ18Owc) (Salix spp.) that have been radiocarbon-dated (14C) to produce a multi-millennial record of climatic change on Alaska's North Slope during the Pleistocene-Holocene transition (13,500–7500 calibrated 14C years before present; 13.5–7.5 ka). We first analyzed the spatial and temporal patterns of δ18Owc in living willows growing at upland sites and found that over the last 30 years δ18Owc values in individual growth rings correlate with local summer temperature and inter-annual variations in summer sea-ice extent. Deglacial δ18Owcvalues from 145 samples of subfossil willows clearly record the Allerød warm period (∼13.2 ka), the Younger Dryas cold period (12.9–11.7 ka), and the Holocene Thermal Maximum (11.7–9.0 ka). The magnitudes of isotopic changes over these rapid climate oscillations were ∼4.5‰, which is about 60% of the differences in δ18Owc between those willows growing during the last glacial period and today. Modeling of isotope-precipitation relationships based on Rayleigh distillation processes suggests that during the Younger Dryas these large shifts in δ18Owc values were caused by interactions between local temperature and changes in evaporative moisture sources, the latter controlled by seaice extent in the Arctic Ocean and Bering Sea. Based on these results and on the effects that sea-ice have on climate today, we infer that ocean-derived feedbacks amplified temperature changes and enhanced precipitation in coastal regions of Arctic Alaska during warm times in the past. Today, isotope values in willows on the North Slope of Alaska are similar to those growing during the warmest times of the Pleistocene-Holocene transition, which were times of widespread permafrost thaw and striking ecological changes.
Interactions of ice sheet evolution, sea level and GIA in a region of complex Earth structure
NASA Astrophysics Data System (ADS)
Gomez, N. A.; Chan, N. H.; Latychev, K.; Pollard, D.; Powell, E. M.
2017-12-01
Constraining glacial isostatic adjustment (GIA) is challenging in Antarctica, where the solid Earth deformation, sea level changes and ice dynamics are strongly linked on all timescales. Furthermore, Earth structure beneath the Antarctic Ice Sheet is characterized by significant lateral variability. A stable, thick craton exists in the east, while the west is underlain by a large continental rift system, with a relatively thin lithosphere and hot, low viscosity asthenosphere, as indicated by high resolution seismic tomography. This implies that in parts of the West Antarctic, the Earth's mantle may respond to surface loading on shorter than average (centennial, or even decadal) timescales. Accounting for lateral variations in viscoelastic Earth structure alters the timing and geometry of load-induced Earth deformation, which in turn impacts the timing and extent of the ice-sheet retreat via a sea-level feedback, as well as predictions of relative sea-level change and GIA. We explore the impact of laterally varying Earth structure on ice-sheet evolution, sea level change and Earth deformation in the Antarctic region since the Last Glacial Maximum using a newly developed coupled ice sheet - sea level model that incorporates 3-D variations in lithospheric thickness and mantle viscosity derived from recent seismic tomographic datasets. Our results focus on identifying the regions and time periods in which the incorporation of 3-D Earth structure is critical for accurate predictions of ice sheet evolution and interpretation of geological and geodetic observations. We also investigate the sensitivity to the regional Earth structure of the relative contributions to modern GIA predictions of Last Deglacial and more recent Holocene ice cover changes.
NASA Astrophysics Data System (ADS)
Romundset, Anders; Akçar, Naki; Fredin, Ola; Tikhomirov, Dmitry; Reber, Regina; Vockenhuber, Christof; Christl, Marcus; Schlüchter, Christian
2017-12-01
We report results from a comprehensive surface exposure dating campaign in eastern Finnmark, located in the northernmost part of Norway and close to the Norwegian-Russian border. This is a palaeo-glaciologically important region as it sits near the proposed border-zone between the former Scandinavian and Barents Sea Ice Sheets. However, until now the deglaciation history has few direct dates onshore and the chronology of ice front retreat is instead found by correlating ice-marginal deposits with isostatically raised shorelines and marine sediment cores. We measured the content of 10Be (N = 22) and 36Cl (N = 17) from boulders located at the crest of major moraine ridges at four localities; Kjæs, Kongsfjorden, Vardø and Kirkenes. These are key localities of existing regional reconstructions of ice recession in this area. Despite some spread in age results from each locality due to methodological challenges associated with surface exposure dating, the large numbers of samples from each site except Kjæs still allow for obtaining clusters of similar ages which are used for arriving at a likely chronology of ice front retreat. Our results show that the Kongsfjorden and Vardø moraines were deposited 14.3 ± 1.7 ka and 13.6 ± 1.4 ka, respectively, and thus point to a Older Dryas age of the proposed 'Outer Porsanger' deglaciation sub-stage. Moraine ridges belonging to the 'Main' sub-stage near Kirkenes were dated to 11.9 ± 1.2 ka, corresponding well with the ice retreat chronology farther west in northern Norway and suggesting that the maximum Younger Dryas ice sheet extent was attained in the late Younger Dryas along a more than 500 km long stretch in northernmost Scandinavia.
NASA Astrophysics Data System (ADS)
Kolling, Henriette Marie; Stein, Rüdiger; Fahl, Kirsten; Perner, Kerstin; Moros, Matthias
2016-04-01
Over the last decades the extent and thickness of Arctic sea ice has changed dramatically and much more rapidly than predicted by climate models. Thus, high-resolution sea-ice reconstructions from pre-anthropogenic times are useful and needed in order to better understand the processes controlling the natural sea-ice variability. Here, we present the first high-resolution biomarker (IP25, sterols) approach over the last 5.2 ka from the East Greenland Shelf (for background about the biomarker approach see Belt et al., 2007; Müller et al., 2009, 2011). This area is highly sensitive to sea-ice changes, as it underlies the pathway of the East Greenland Current, the main exporter of Arctic freshwater and sea ice that affects the environmental conditions on the East Greenland Shelf and deep-water formation/ convection in the Northern North Atlantic. After rather stable sea-ice conditions in the mid-Holocene we found a strong increase in sea ice, cumulating around 1.5 ka and associated with the Neoglacial cooling. The general trend especially during the last 1ka is interrupted by several short-lived events such as the prominent Medieval Warm Period and Little Ice Age, characterized by minimum and maximum sea-ice extent, respectively. Using a spectral analysis, we could identify several cyclicites, e.g. a 45-year cyclicity for cold events. A comparison to similar records from the eastern Fram Strait revealed a slight time lag in the onset of the Neoglacial, but also suggesting the direct link of the East Greenland Shelf area to the Arctic sea-ice/freahwater outflow. A comparison of the biomarker data with a new foraminiferal record obtained from the same site (Perner et al., 2015) suggests that IP25 and foraminifera assemblages are probably controlled by rather different processes within the oceanographic systems, such as the sea-ice conditions and, for the foraminifera, water-mass changes and nutrient supply. References: Belt. S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38 (2007) 16-27 Müller, J., Massé, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditons in the Fram Strait over the past 30,000 years. Nature Geoscience Vol 2 (2009), 772-776 Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combines biomarker and numerical modelling approach. East and Planetrary Science Letters 306 (2011) 137-148 Perner, K., Moros, M., Lloyd, J.M., Jansen, E., Stein, R., 2015. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water. Quaternary Science Reviews 129 (2015) 296-307
Satellite Snow-Cover Mapping: A Brief Review
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.
1995-01-01
Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow and ice cover using Earth Algorithms to map global snow cover using passive-microwave data have also cover and of snow grain size, globally, limits the utility of a single algorithm to map global snow cover.
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
Modelling West Antarctic ice sheet growth and collapse through the past five million years.
Pollard, David; DeConto, Robert M
2009-03-19
The West Antarctic ice sheet (WAIS), with ice volume equivalent to approximately 5 m of sea level, has long been considered capable of past and future catastrophic collapse. Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred metres below sea level and the bed deepens upstream, raising the prospect of runaway retreat. Projections of future WAIS behaviour have been hampered by limited understanding of past variations and their underlying forcing mechanisms. Its variation since the Last Glacial Maximum is best known, with grounding lines advancing to the continental-shelf edges around approximately 15 kyr ago before retreating to near-modern locations by approximately 3 kyr ago. Prior collapses during the warmth of the early Pliocene epoch and some Pleistocene interglacials have been suggested indirectly from records of sea level and deep-sea-core isotopes, and by the discovery of open-ocean diatoms in subglacial sediments. Until now, however, little direct evidence of such behaviour has been available. Here we use a combined ice sheet/ice shelf model capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing to simulate Antarctic ice sheet variations over the past five million years. Modelled WAIS variations range from full glacial extents with grounding lines near the continental shelf break, intermediate states similar to modern, and brief but dramatic retreats, leaving only small, isolated ice caps on West Antarctic islands. Transitions between glacial, intermediate and collapsed states are relatively rapid, taking one to several thousand years. Our simulation is in good agreement with a new sediment record (ANDRILL AND-1B) recovered from the western Ross Sea, indicating a long-term trend from more frequently collapsed to more glaciated states, dominant 40-kyr cyclicity in the Pliocene, and major retreats at marine isotope stage 31 ( approximately 1.07 Myr ago) and other super-interglacials.
NASA Astrophysics Data System (ADS)
Schwikowski, M.; Schläppi, M.; Santibañez, P.; Rivera, A.; Casassa, G.
2012-12-01
Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000 to 2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16´40´´ S, 73°21´14´´ W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16% ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4 to 7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.
NASA Astrophysics Data System (ADS)
Bjork, A. A.; Kjeldsen, K. K.; Korsgaard, N. J.; Aagaard, S.; Andresen, C. S.; Bamber, J. L.; van den Broeke, M.; Colgan, W. T.; Funder, S.; Khan, S. A.; Larsen, N. K.; Machguth, H.; Nuth, C.; Schomacker, A.; Kjaer, K. H.
2015-12-01
As the Greenland Ice Sheet and Greenland's glaciers are continuing to loss mass at high rates, knowledge of their past response to climatic changes is ever important. By harvesting the archives for images, both terrestrial and airborne, we are able to expand the record of glacier observation by several decades, thus supplying crucial knowledge on glacier behavior to important climatic transitions such as the end of the Little Ice Age and the early 20th Century warming. Here we show how a large collection of historical aerial images portray the glacial response to the Little Ice Age deglaciation in Greenland and document frontal change throughout the 20th Century. A detailed story of the LIA-deglaciation is told by supplementing with terrestrial photos that capture the onset of retreat and high resolution aerial images that portray geomorphological evidence of the Little Ice Age maximum extent. This work is the result of several generations of Greenland researches and their efforts to portray and document the state of the glaciers, and highlights that while interpretations and conclusions may be challenged and changed through time, the raw observations remain extremely valuable. Finally, we also show how archival data besides photos may play an important role in future glacier research in Greenland.
Numerical simulation of the paleohydrology of glacial Lake Oshkosh, eastern Wisconsin, USA
Clark, J.A.; Befus, K.M.; Hooyer, T.S.; Stewart, P.W.; Shipman, T.D.; Gregory, C.T.; Zylstra, D.J.
2008-01-01
Proglacial lakes, formed during retreat of the Laurentide ice sheet, evolved quickly as outlets became ice-free and the earth deformed through glacial isostatic adjustment. With high-resolution digital elevation models (DEMs) and GIS methods, it is possible to reconstruct the evolution of surface hydrology. When a DEM deforms through time as predicted by our model of viscoelastic earth relaxation, the entire surface hydrologic system with its lakes, outlets, shorelines and rivers also evolves without requiring assumptions of outlet position. The method is applied to proglacial Lake Oshkosh in Wisconsin (13,600 to 12,900??cal yr BP). Comparison of predicted to observed shoreline tilt indicates the ice sheet was about 400??m thick over the Great Lakes region. During ice sheet recession, each of the five outlets are predicted to uplift more than 100??m and then subside approximately 30??m. At its maximum extent, Lake Oshkosh covered 6600??km2 with a volume of 111??km3. Using the Hydrologic Engineering Center-River Analysis System model, flow velocities during glacial outburst floods up to 9??m/s and peak discharge of 140,000??m3/s are predicted, which could drain 33.5??km3 of lake water in 10??days and transport boulders up to 3??m in diameter. ?? 2007 University of Washington.
Assessment of Arctic and Antarctic Sea Ice Predictability in CMIP5 Decadal Hindcasts
NASA Technical Reports Server (NTRS)
Yang, Chao-Yuan; Liu, Jiping (Inventor); Hu, Yongyun; Horton, Radley M.; Chen, Liqi; Cheng, Xiao
2016-01-01
This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Decadal hindcasts exhibit a large multimodel spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3-7 years), but there is a reemerging predictive skill in the North Atlantic at a lead time of 6-8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.
Ice streaming in western Scotland and the deglaciation of the Hebrides Shelf and Firth of Lorn
NASA Astrophysics Data System (ADS)
Arosio, Riccardo; Howe, John; O'Cofaigh, Colm; Crocket, Kirsty
2014-05-01
Previously, numerous studies have been undertaken both onshore and offshore to decipher the morphological and sedimentological record in order to better constrain the limits and duration of the British-Irish Ice Sheet (BIIS) (Ballantyne et al. 2009, Bradwell et al. 2008b, Clark et al. 2011, Dunlop et al. 2010, Howe et al. 2012, O'Cofaigh et al., 2012). Late glacial ice sheet dynamics have been revealed to be far more rapid and responsive to climatic amelioration than had previously been considered. Notable in this debate has been the evidence that has been obtained in the inshore and, to a lesser extent, offshore on the UK continental shelf. Here new geomorphological data, principally multibeam echo sounder (MBES) data has provided imagery of previously unseen features interpreted as being glacial in origin. In the wake of these new discoveries this projects aims to investigate the extent, timing, growth and final disintegration of the BIIS across Western Scotland. This area of particular interest for the development of the glaciated North Atlantic margin has been generally neglected in past studies, especially across the mid-outer shelf, which constitutes a missing part in the jigsaw of the reconstructed BIIS during the last ~20.000yrs. We aim to mainly focus on geomorphological analyses of MBES data collected in the Firth of Lorn and Sea of Hebrides; a study of features as moraines, glacial lineations and drumlins will provide important clues on the dynamics and maximum extension of the sheet. Subsequently we will examine the geometry and composition of the shelf sediment infill, aiming to constrain the influence of ice retreat on depositional environments using multi-element geochemical (Pb-isotopes ratios, 14C and OSL dating) and sedimentological techniques. Such an investigation will also give retrospective information on the sources for these sediments, hence more indications on ice configuration. Ultimately we aim to provide a model of deglaciation for the western sector of the BIIS. Keywords: British-Irish Ice Sheet, NW Scotland, glacial bedforms, geochronology References Ballantyne, C.K., Schnabel, C. & Xu, S. 2009. Readvance of the last British Ice Sheet during Greenland Interstade (GI-1): the Wester Ross Readvance, NW Scotland. Quaternary Science Reviews, 28, 783-789 Bradwell, T., Fabel, D., Stoker, M., Mathers, H., McHargue, L., Howe, J., 2008b. Ice caps existed throughout the Late glacial interstadial in northern Scotland. Journal of Quaternary Science 23, 401-407. Clark, C.D., Hughes, A.L.C., Greenwood, S.L., Jordan, C., Sejrup, H.P. 2012. Pattern and timing of retreat of the last British-Irish Ice Sheet. Quaternary Science Reviews. Dunlop, P., Shannon, R., McCabe, M., Quinn, R., Doyle, E. 2010. Marine geophysical evidence for ice sheet extension and recession on the Malin Shelf: New evidence for the western limits of the British-Irish Ice Sheet. Marine Geology, 276: 86-99. Howe, J. A., Dove, D., Bradwell, T. & Gaferia, J. 2012. Submarine geomorphology and glacial history of the Sea of the Hebrides, UK. Marine Geology 315-318, 64-78 O' Cofaigh, C., Dunlop, P. Benetti, S., 2012. Marine geophysical evidence for Late Pleistocene ice sheet extent and recession off northwest Ireland, Quaternary Science Reviews. In press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiroyuki Enomoto; Atsumu Ohmura
The relationship between sea ice and weather, one of the least known components of the climatic system, could be an important factor for the climate of high latitudes. The annual cycle of the sea ice extent is characterized by a asymmetric development, with the sea ice area slowly advancing toward the equator in the winter and rapidly retreating in summer. In this study, the seasonal asymmetric behavior of ice extent and the changes in sea ice concentration are shown to be linked to the atmospheric convergence line (ACL) around Antarctica. It is found that the relative positions of the ACLmore » characterized by the half-year cycle exert a strong influence upon the mean movement of the sea ice. It is also observed from the investigations of the areal concentration prior to the sea ice retreat is needed for a rapid retreat.« less
Arctic ice cover, ice thickness and tipping points.
Wadhams, Peter
2012-02-01
We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.
40 CFR 60.4230 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (5) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...
40 CFR 60.4230 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...
40 CFR 60.4230 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...
40 CFR 60.4230 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (5) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...
40 CFR 60.4230 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...
NASA Astrophysics Data System (ADS)
Dove, Dayton; Evans, David J. A.; Lee, Jonathan R.; Roberts, David H.; Tappin, David R.; Mellett, Claire L.; Long, David; Callard, S. Louise
2017-05-01
Along the terrestrial margin of the southern North Sea, previous studies of the MIS 2 glaciation impacting eastern Britain have played a significant role in the development of principles relating to ice sheet dynamics (e.g. deformable beds), and the practice of reconstructing the style, timing, and spatial configuration of palaeo-ice sheets. These detailed terrestrially-based findings have however relied on observations made from only the outer edges of the former ice mass, as the North Sea Lobe (NSL) of the British-Irish Ice Sheet (BIIS) occupied an area that is now almost entirely submarine (c.21-15 ka). Compounded by the fact that marine-acquired data have been primarily of insufficient quality and density, the configuration and behaviour of the last BIIS in the southern North Sea remains surprisingly poorly constrained. This paper presents analysis of a new, integrated set of extensive seabed geomorphological and seismo-stratigraphic observations that both advances the principles developed previously onshore (e.g. multiple advance and retreat cycles), and provides a more detailed and accurate reconstruction of the BIIS at its southern-most extent in the North Sea. A new bathymetry compilation of the region reveals a series of broad sedimentary wedges and associated moraines that represent several terminal positions of the NSL. These former still-stand ice margins (1-4) are also found to relate to newly-identified architectural patterns (shallow stacked sedimentary wedges) in the region's seismic stratigraphy (previously mapped singularly as the Bolders Bank Formation). With ground-truthing constraint provided by sediment cores, these wedges are interpreted as sub-marginal till wedges, formed by complex subglacial accretionary processes that resulted in till thickening towards the former ice-sheet margins. The newly sub-divided shallow seismic stratigraphy (at least five units) also provides an indication of the relative event chronology of the NSL. While there is a general record of south-to-north retreat, seismic data also indicate episodes of ice-sheet re-advance suggestive of an oscillating margin (e.g. MIS 2 maximum not related to first incursion of ice into region). Demonstrating further landform interdependence, geographically-grouped sets of tunnel valleys are shown to be genetically related to these individual ice margins, providing clear insight into how meltwater drainage was organised at the evolving termini of this dynamic ice lobe. The newly reconstructed offshore ice margins are found to be well correlated with previously observed terrestrial limits in Lincolnshire and E. Yorkshire (Holderness) (e.g. MIS 2 maximum and Withernsea Till). This reconstruction will hopefully provide a useful framework for studies targeting the climatic, mass-balance, and external glaciological factors (i.e. Fennoscandian Ice Sheet) that influenced late-stage advance and deglaciation, important for accurately characterising both modern and palaeo-ice sheets.
Ice thickness estimations based on multi-temporal glacier inventories - potential and challenges
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Huss, Matthias; Otto, Jan-Christoph
2016-04-01
The ongoing glacier retreat exposes a large number of surface depressions in the former glacier bed that can be filled with water or act as sediment traps. This has already been observed at various sites in Austria and in other mountain areas worldwide. The formation of glacial lakes can constitute an important environmental and socio-economic impact on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. In general, information on ice thickness distribution is the basis for simulating future glacier change. We used the approach proposed by Huss and Farinotti (2012) to model the ice thickness distribution and potential locations of subglacial depressions. The study is part of the FUTURELAKE project that seeks to model the formation of new glacier lakes and their possible future evolution in the Austria Alps. The required data on glacier extent, surface elevation and slope were taken from the Austrian Glacier Inventories GI1 from 1969, GI2 from 1998 and GI3 from2006 (Fischer et al., 2015). The different glacier outlines and surface elevations from the inventories enable us to evaluate (i) the robustness of the modelled bedrock depressions with respect to different glacier settings, (ii) the power of the model to simulate recently formed glacial lakes, (iii) the similarities in calculated ice thickness distributions across the inventories and (iv) the feasibility of simulating observed changes in ice thickness and glacier volume. In general, the modelled localization of large potential depressions was relatively stable using the observed glacier settings. A number of examples show that recently formed glacial lakes could be detected by the model based on previous glacier extents. The locations of maximum ice depths within different elevation zones appeared to be sensitive to changes in glacier width. However, observed ice thickness changes and, thus, volume changes between the inventories could only partly be reproduced by the model. This may be explained by differences in the dynamical state of the glacier among the considered periods with almost balanced mass balance conditions (GI1 - GI2) and strong disequilibrium (GI2 - GI3). Huss, M., and D. Farinotti (2012), Distributed ice thickness and volume of all glaciers around the globe, J. Geophys. Res., 117, F04010, doi:10.1029/2012JF002523. Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J. (2015), Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753-766, doi:10.5194/tc-9-753-2015.
NASA Astrophysics Data System (ADS)
Lønne, Ida
2016-01-01
Svalbard is a key area for the investigation of glacial surges, and almost two centuries worth of field observations exists from this region. Studies have shown that the course of a surge and the associated formation of landforms are strongly influenced by basinal factors, and that the broad range of variables involved can hamper interpretations and comparisons. Based on a review of surges in Svalbard, a new concept for glacial geological investigations has been developed that combines ice-flows, ice-front movements, and morphostratigraphy. The concept is comprised of the following four elements: 1) classification based on the configuration and characteristics of the receiving basin, 2) division of the surge cycle into six stages, 3) guidelines for morphological mapping, and 4) use of an allostratigraphic approach for interpreting ice-front movements. In this context, delineation of the active phase is critical, which include the history of terminus movements, and four main categories of receiving basins are recognized. These are (A) terrestrial basins with deformable substrates, (B) terrestrial basins with poorly deformable substrates, (C) shallow water basins, and (D) deep water basins. The ice-front movement history is reconstructed by coupling information from the proglacial moraines (syn-surge), the supraglacial moraines (post-surge), and the associated traces of meltwater to the surge stages (I-VI). This approach has revealed a critical relationship between the termination of the active phase and three morphological elements, namely, the maximum ice-front position, the maximum moraine extent and the youngest proglacial moraine, which are unique for each of the basins A-D. The concept is thus a novel and more precise approach for mapping the active phase and the active phase duration, as shown by the ∼12-year long surge of Fridtjovbreen, where stage I was 30 months (inception), stage II was 54 months (ice-front advance), stage III was 12 months (stillstand), and stage IV was 48 months (retreat during active flow). The glacier has been in quiescent phase (stages V/VI) since 2002.
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Parkinson, C. L.
1987-01-01
The influence of the hemispheric atmospheric circulation on the sea ice covers of the Bering Sea and the Sea of Okhotsk is examined using data obtained with the Nimbus 5 electrically scanning microwave radiometer for the four winters of the 1973-1976 period. The 3-day averaged sea ice extent data were used to establish periods for which there is an out-of-phase relationship between fluctuations of the two ice covers. A comparison of the sea-level atmospheric pressure field with the seasonal, interannual, and short-term sea ice fluctuations reveal an association between changes in the phase and the amplitude of the long waves in the atmosphere and advance and retreat of Arctic ice covers.
Reduced El Niño-Southern Oscillation during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Ford, Heather L.; Ravelo, A. Christina; Polissar, Pratigya J.
2015-01-01
El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.
Wang, Shiway W; Budge, Suzanne M; Gradinger, Rolf R; Iken, Katrin; Wooller, Matthew J
2014-03-01
We determined fatty acid (FA) profiles and carbon stable isotopic composition of individual FAs (δ(13)CFA values) from sea ice particulate organic matter (i-POM) and pelagic POM (p-POM) in the Bering Sea during maximum ice extent, ice melt, and ice-free conditions in 2010. Based on FA biomarkers, differences in relative composition of diatoms, dinoflagellates, and bacteria were inferred for i-POM versus p-POM and for seasonal succession stages in p-POM. Proportions of diatom markers were higher in i-POM (16:4n-1, 6.6-8.7%; 20:5n-3, 19.6-25.9%) than in p-POM (16:4n-1, 1.2-4.0%; 20:5n-3, 5.5-14.0%). The dinoflagellate marker 22:6n-3/20:5n-3 was highest in p-POM. Bacterial FA concentration was higher in the bottom 1 cm of sea ice (14-245 μg L(-1)) than in the water column (0.6-1.7 μg L(-1)). Many i-POM δ(13)C(FA) values were higher (up to ~10‰) than those of p-POM, and i-POM δ(13)C(FA) values increased with day length. The higher i-POM δ(13)C(FA) values are most likely related to the reduced dissolved inorganic carbon (DIC) availability within the semi-closed sea ice brine channel system. Based on a modified Rayleigh equation, the fraction of sea ice DIC fixed in i-POM ranged from 12 to 73%, implying that carbon was not limiting for primary productivity in the sympagic habitat. These differences in FA composition and δ(13)C(FA) values between i-POM and p-POM will aid efforts to track the proportional contribution of sea ice algal carbon to higher trophic levels in the Bering Sea and likely other Arctic seas.
NASA Astrophysics Data System (ADS)
Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.
2015-12-01
Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage between 2011 and 2015. Further work is ongoing to develop a model to guide archaeological and paleoecological snow and ice field surveys. This will entail a fine scale, empirically based model of accumulation and ablation to estimate changes in three dimensional geometries of historically perennial arctic alpine snow and ice fields in the study area.
NASA Astrophysics Data System (ADS)
Malone, A.; Pierrehumbert, R.; Insel, N.; Lowell, T. V.; Kelly, M. A.
2012-12-01
The response of the tropics to climate forcing mechanisms is poorly understood, and there is limited data regarding past tropical climate fluctuations. Past climate fluctuations often leave a detectable record of glacial response in the location of moraines. Computer reconstructions of glacial length variations can thus help constrain past climate fluctuations. Chronology and position data for Holocene moraines are available for the Quelccaya Ice Cap in the Peruvian Andes. The Quelccaya Ice Cap is the equatorial region's largest glaciated area, and given its size and the available data, it is an ideal location at which to use a computer glacier model to reconstruct past glacial extents and constrain past tropical climate fluctuations. We can reproduce the current length and shape of the glacier in the Huancane Valley of the Quelccaya Ice Cap using a 1-D mountain glacier flowline model with an orographic precipitation scheme, an energy balance model for the ablation scheme, and reasonable modern climate conditions. We conduct two experiments. First, we determine the amount of cooling necessary to reproduce the observed Holocene moraine locations by holding the precipitation profile constant and varying the mean sea surface temperature (SST) values. Second, we determine the amount of precipitation increase necessary to reproduce the observed moraine locations by holding the mean SST value constant and varying the maximum precipitation values. We find that the glacier's length is highly sensitive to changes in temperature while only weakly sensitive to changes in precipitation. In the constant precipitation experiment, a decrease in the mean SST of only 0.35 °C can reproduce the nearest Holocene moraine downslope from the current glacier terminus and a decrease in the mean SST of only 1.43 °C can reproduce the furthest Holocene moraine downslope from the current terminus. In the experiment with constant SST, the necessary increase in maximum precipitation is much greater. An increase in the maximum precipitation of 30% is necessary to reproduce the nearest Holocene moraine and an increase in the maximum precipitation of 130% is necessary to reproduce the furthest Holocene moraine. Our results provide a range of values for the mean SST and maximum precipitation that can reproduce the location of Holocene glacial moraines, constraining some of the climate fluctuations in the tropics during the Holocene. These constraints can be used to test hypotheses for climate forcing mechanisms during Holocene events such as the Little Ice Age and possibly provide insight into future tropical climate fluctuations given current and future forcing mechanisms.
A chironomid-based reconstruction of summer temperatures in NW Iceland since AD 1650
NASA Astrophysics Data System (ADS)
Langdon, P. G.; Caseldine, C. J.; Croudace, I. W.; Jarvis, S.; Wastegård, S.; Crowford, T. C.
2011-05-01
Few studies currently exist that aim to validate a proxy chironomid-temperature reconstruction with instrumental temperature measurements. We used a reconstruction from a chironomid percentage abundance data set to produce quantitative summer temperature estimates since AD 1650 for NW Iceland through a transfer function approach, and validated the record against instrumental temperature measurements from Stykkishólmur in western Iceland. The core was dated through Pb-210, Cs-137 and tephra analyses (Hekla 1693) which produced a well-constrained dating model across the whole study period. Little catchment disturbance, as shown through geochemical (Itrax) and loss-on-ignition data, throughout the period further reinforce the premise that the chironomids were responding to temperature and not other catchment or within-lake variables. Particularly cold phases were identified between AD 1683-1710, AD 1765-1780 and AD 1890-1917, with relative drops in summer temperatures in the order of 1.5-2°C. The timing of these cold phases agree well with other evidence of cooler temperatures, notably increased extent of Little Ice Age (LIA) glaciers. Our evidence suggests that the magnitude of summer temperature cooling (1.5-2°C) was enough to force LIA Icelandic glaciers into their maximum Holocene extent, which is in accordance with previous modelling experiments for an Icelandic ice cap (Langjökull).
NASA Technical Reports Server (NTRS)
Parksinson, Claire; Vinnikov, Konstantin Y.; Cavalieri, Donald J.
2005-01-01
Comparison of polar sea ice results from 11 major global climate models and satellite-derived observations for 1979-2004 reveals that each of the models is simulating seasonal cycles that are phased at least approximately correctly in both hemispheres. Each is also simulating various key aspects of the observed ice cover distributions, such as winter ice not only throughout the central Arctic basin but also throughout Hudson Bay, despite its relatively low latitudes. However, some of the models simulate too much ice, others too little ice (in some cases varying depending on hemisphere and/or season), and some match the observations better in one season versus another. Several models do noticeably better in the Northern Hemisphere than in the Southern Hemisphere, and one does noticeably better in the Southern Hemisphere. In the Northern Hemisphere all simulate monthly average ice extents to within +/-5.1 x 10(exp 6)sq km of the observed ice extent throughout the year; and in the Southern Hemisphere all except one simulate the monthly averages to within +/-6.3 x 10(exp 6) sq km of the observed values. All the models properly simulate a lack of winter ice to the west of Norway; however, most do not obtain as much absence of ice immediately north of Norway as the observations show, suggesting an under simulation of the North Atlantic Current. The spread in monthly averaged ice extents amongst the 11 model simulations is greater in the Southern Hemisphere than in the Northern Hemisphere and greatest in the Southern Hemisphere winter and spring.
NASA Astrophysics Data System (ADS)
Marchi, Sylvain; Fichefet, Thierry; Goosse, Hugues; Zunz, Violette; Tietsche, Steffen; Day, Jonny; Hawkins, Ed
2016-04-01
Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice extent over recent decades. Although many processes have already been suggested to explain this positive trend, it remains the subject of current investigations. Understanding the evolution of the Antarctic sea ice turns out to be more complicated than for the Arctic for two reasons: the lack of observations and the well-known biases of climate models in the Southern Ocean. Irrespective of those issues, another one is to determine whether the positive trend in sea ice extent would have been predictable if adequate observations and models were available some decades ago. This study of Antarctic sea ice predictability is carried out using 6 global climate models (HadGEM1.2, MPI-ESM-LR, GFDL CM3, EC-Earth V2, MIROC 5.2 and ECHAM 6-FESOM) which are all part of the APPOSITE project. These models are used to perform hindcast simulations in a perfect model approach. The predictive skill is estimated thanks to the PPP (Potential Prognostic Predictability) and the ACC (Anomaly Correlation Coefficient). The former is a measure of the uncertainty of the ensemble while the latter assesses the accuracy of the prediction. These two indicators are applied to different variables related to sea ice, in particular the total sea ice extent and the ice edge location. This first model intercomparison study about sea ice predictability in the Southern Ocean aims at giving a general overview of Antarctic sea ice predictability in current global climate models.
Tropical African Glacier Fluctuations During Termination 1
NASA Astrophysics Data System (ADS)
Jackson, M. S.; Kelly, M. A.; Russell, J. M.; Doughty, A. M.; Howley, J. A.; Zimmerman, S. R. H.
2017-12-01
As the primary source of latent heat and water vapor to the atmosphere, the tropics are a key element of Earth's climate system. However, the potential role of the tropics in past climate change, and particularly abrupt climate changes, is uncertain. A first step to assessing the role of the low latitudes in both past and future climate is to determine the timing and spatial variability of past climate change in the tropics. Termination 1, the time of most rapid global warming of the last glacial cycle, is an ideal period on which to focus. We present a 10Be chronology of glaciation from the Rwenzori Mountains, Uganda, which elucidates the timing and magnitude of deglacial warming in the African tropics through the Termination, from the Last Glacial Maximum (LGM) to the Holocene. Ice retreated from its maximum LGM extent by 20.7 ka. In the Bujuku valley, a series of nested moraines deposited between 15-14 ka attest to late-glacial ice extent. In both the Bujuku and Nyamugasani valleys, moraine sequences and erratic boulders indicate glacier retreat following the Younger Dryas (YD) and during the early Holocene. The preliminary chronology from these moraines suggests that glaciers were more extensive during the Antarctic Cold Reversal (ACR) than during the YD. This chronology is similar to that observed in the South American tropics, where expanded glaciers during the ACR are recognized across the high Andes. This suggests that glaciers across the tropics responded to a common forcing during Termination 1, likely temperature. Possible mechanisms to induce such temperature change include global climate boundary conditions, and greenhouse gas forcing in particular, as well as tropical ocean variability.
Sea-Ice Conditions in the Norwegian, Barents, and White Seas
1976-08-01
pack, aided by relatively warm water from the Murman coast current, would reduce the maximum ice thickness predicted by the equation used for...THICKNESS With the aid of the ice growth model in the appendix, it is pos- sible to relate the maximum ice thickness attained during a winter season to a...inserted merely to aid the reader in discerning differences between individual winter seasons. As was the case for the 12-month mean temperatures
NASA Astrophysics Data System (ADS)
Herman, Agnieszka
2017-11-01
In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains
floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.
Satellite-derived attributes of cloud vortex systems and their application to climate studies
NASA Technical Reports Server (NTRS)
Carleton, Andrew M.
1987-01-01
Defense Meteorological Satellite Program (DMSP) visible and infrared mosaics are analyzed in conjunction with synoptic meteorological observations of sea level pressure (SLP) and upper-air height to derive composite patterns of cyclonic cloud vortices for the Northern Hemisphere. The patterns reveal variations in the structure and implied dynamics of cyclonic systems at different stages of development that include: (1) increasing vertical symmetry of the lower-level and upper-air circulations and (2) decreasing lower-tropospheric thicknesses and temperature advection, associated with increasing age of the vortex. Cloud vortices are more intense in winter than in summer and typically reach maximum intensity in the short-lived prespiral signature stage. There are major structural differences among frontal wave, polar air, and 'instant occlusion' cyclogenesis types. Cyclones in the dissipation stage may reintensify (deepen), as denoted by the appearance in the imagery of an asymmetric cloud band or a tightened spiral vortex. The satellite-derived statistics on cloud vortex intensity, which are seasonal- and latitude- as well as type-dependent, are applied to a preliminary examination of the synoptic manifestations of seasonal climate variability. An apparently close relationship is found, for two winter and spring seasons, between Northern Hemisphere cyclonic activity and variations in cryosphere variables, particularly the extent of Arctic sea ice. The results may indicate that increased snow and ice extent accompany a southward displacement of cyclonic activity and/or a predominance of deeper systems. However, there is also a strong regional dependence to the ice-synoptics feedback. This study demonstrates the utility of high resolution meteorological satellite imagery for studies of climate variations (climate dynamics).
Atmospheric Influences on the Anomalous 2016 Antarctic Sea Ice Decay
NASA Astrophysics Data System (ADS)
Raphael, M. N.; Schlosser, E.; Haumann, A.
2017-12-01
Over the past three decades, a small but significant increase in sea ice extent (SIE) has been observed in the Antarctic. However, in 2016 there was a surprisingly early onset of the melt season. The maximum Antarctic SIE was reached in August rather than end of September, and was followed by a rapid decrease. The decline of the sea ice area (SIA) started even earlier, in July. The retreat of the ice was particularly large in November where Antarctic SIE exhibited a negative anomaly (compared to the 1981-2010 average) of almost 2 Mio. km2, which, combined with reduced Arctic SIE, led to a distinct minimum in global SIE. And, satellite observations show that from November 2016 to February 2017, the daily Antarctic SIE has been at record low levels. We use sea level pressure and geopotential height data from the ECMWF- Interim reanalysis, in conjunction with sea ice data obtained from the National Snow and Ice Data Centre (NSIDC), to investigate possible atmospheric influences on the observed phenomena. Indications are that both the onset of the melt in July and the rapid decrease in SIA and SIE in November were triggered by atmospheric flow patterns related to a positive Zonal Wave 3 index, i.e. synoptic situations leading to strong meridional flow. Additionally the Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. It is likely that the SIE decrease was preconditioned by SIA decrease. Positive feedback effects led to accelerated melt and consequently to the extraordinary low November SIE.
Ice thickness and topographic relief in glaciated landscapes of the western USA
NASA Astrophysics Data System (ADS)
Brocklehurst, Simon H.; Whipple, Kelin X.; Foster, David
2008-05-01
The development of relief in glaciated landscapes plays a crucial role in hypotheses relating climate change and tectonic processes. In particular, glaciers can only be responsible for peak uplift if they are capable of generating significant relief in formerly nonglaciated landscapes. Previous work has suggested that relief in glaciated landscapes should scale with the thickness of the ice. Here we summarise a field-based test of this hypothesis in two mountain ranges in the western United States, the Sierra Nevada, California, and the Sangre de Cristo Range, Colorado. These areas exhibit a range of degrees of glacial occupation during the Quaternary, including some drainage basins essentially unoccupied by ice, allowing a detailed exploration of how relief in different parts of a drainage basin evolves in response to glacial modification. We mapped last glacial maximum (LGM) trimlines to estimate the ice thickness at the equilibrium line altitude during the LGM, and determined several metrics of relief for drainage basins across the full spectrum of LGM ice extents. Comparison between measures of relief and ice thickness estimates indicates that relief production in glaciated mountain belts scales with ice thickness and consequently also drainage area. We extended our study to the Bitterroot Range in Idaho/Montana, and the Teton Range in Wyoming, for a more comprehensive understanding of sub-ridgeline relief, or 'missing mass'. This measure of mean relief is surprisingly little affected by either the degree of glacial modification or the total material removed by glaciers, but appears to be influenced by the more active tectonics of the Teton Range. While the effects of glacial modification on the landscape are clear (valley widening, hanging valley formation), the overall change in the relief structure of the mountain ranges studied here is surprisingly modest.
Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.
2011-01-01
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.
Does the Arctic Amplification peak this decade?
NASA Astrophysics Data System (ADS)
Martin, Torge; Haine, Thomas W. N.
2017-04-01
Temperatures rise faster in the Arctic than on global average, a phenomenon known as Arctic Amplification. While this is well established from observations and model simulations, projections of future climate (here: RCP8.5) with models of the Coupled Model Intercomparison Project phase 5 (CMIP5) also indicate that the Arctic Amplification has a maximum. We show this by means of an Arctic Amplification factor (AAF), which we define as the ratio of Arctic mean to global mean surface air temperature (SAT) anomalies. The SAT anomalies are referenced to the period 1960-1980 and smoothed by a 30-year running mean. For October, the multi-model ensemble-mean AAF reaches a maximum in 2017. The maximum moves however to later years as Arctic winter progresses: for the autumn mean SAT (September to November) the maximum AAF is found in 2028 and for winter (December to February) in 2060. Arctic Amplification is driven, amongst others, by the ice-albedo feedback (IAF) as part of the more general surface albedo feedback (involving clouds, snow cover, vegetation changes) and temperature effects (Planck and lapse-rate feedbacks). We note that sea ice retreat and the associated warming of the summer Arctic Ocean are not only an integral part of the IAF but are also involved in the other drivers. In the CMIP5 simulations, the timing of the AAF maximum coincides with the period of fastest ice retreat for the respective month. Presence of at least some sea ice is crucial for the IAF to be effective because of the contrast in surface albedo between ice and open water and the need to turn ocean warming into ice melt. Once large areas of the Arctic Ocean are ice-free, the IAF should be less effective. We thus hypothesize that the ice retreat significantly affects AAF variability and forces a decline of its magnitude after at least half of the Arctic Ocean is ice-free and the ice cover becomes basically seasonal.
Deformation, warming and softening of Greenland’s ice by refreezing meltwater
NASA Astrophysics Data System (ADS)
Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.
2014-07-01
Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.
Detection of Supra-Glacial Lakes on the Greenland Ice Sheet Using MODIS Images
NASA Astrophysics Data System (ADS)
Verin, Gauthier; Picard, Ghislain; Libois, Quentin; Gillet-Chaulet, Fabien; Roux, Antoine
2015-04-01
During melt season, supra-glacial lakes form on the margins of the Greenland ice sheet. Because of their size exceeding several kilometers, and their concentration, they affect surface albedo leading to an amplification of the regional melt. Furthermore, they foster hydro-fracturing that propagate liquid water to the bedrock and therefore enhance the basal lubrication which may affect the ice motion. It is known that Greenland ice sheet has strongly responded to recent global warming. As air temperature increases, melt duration and melt intensity increase and surface melt area extends further inland. These recent changes may play an important role in the mass balance of the Greenland ice sheet. In this context, it is essential to better monitor and understand supra-glacial spatio-temporal dynamics in order to better assess future sea level rise. In this study MODIS (Moderate Resolution Imaging Spectroradiometer) images have been used to detect supra-glacial lakes. The observation site is located on the West margin of the ice sheet, between 65°N and 70°N where the concentration of lake is maximum. The detection is performed by a fully automatic algorithm using images processing techniques introduced by Liang et al. (2012) which can be summarized in three steps: the selection of usable MODIS images, mainly we exclude images with too many clouds. The detection of lake and the automatic correction of false detections. This algorithm is capable to tag each individual lake allowing a survey of all lake geometrical properties over the entire melt season. We observed a large population of supra-glacial lakes over 14 melt seasons, from 2000 to 2013 on an extended area of 70.000 km2. In average, lakes are observed from June 9 ± 8.7 days to September 13 ± 13.9 days, and reach a maximum total area of 699 km2 ± 146 km2. As the melt season progresses, lakes form higher in altitude up to 1800 m above sea level. Results show a very strong inter-annual variability in term of date of melt and freeze up onset, melt season duration, maximum total surface area and number of lakes. As it has already been noticed, we observed a strong spatial persistence. Lakes tend to form at the same place for several years, probably because of the ice sheet surface topography. In order to investigate possible links with climatic parameters we calculated positive degree day (PDD). The main result of this comparison is a strong correlation between melt intensity and the altitude of lakes. During warmer summer, lakes form higher in altitude and consequently the extent of melting increase. Recent studies showed this trend is likely to continue and to increase in the years to come.
Mapping the future expansion of Arctic open water
NASA Astrophysics Data System (ADS)
Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.
2016-03-01
Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.
Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction
NASA Technical Reports Server (NTRS)
Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.
1987-01-01
Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.
The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.
Serreze, Mark C; Meier, Walter N
2018-05-28
As assessed over the period of satellite observations, October 1978 to present, there are downward linear trends in Arctic sea ice extent for all months, largest at the end of the melt season in September. The ice cover is also thinning. Downward trends in extent and thickness have been accompanied by pronounced interannual and multiyear variability, forced by both the atmosphere and ocean. As the ice thins, its response to atmospheric and oceanic forcing may be changing. In support of a busier Arctic, there is a growing need to predict ice conditions on a variety of time and space scales. A major challenge to providing seasonal scale predictions is the 7-10 days limit of numerical weather prediction. While a seasonally ice-free Arctic Ocean is likely well within this century, there is much uncertainty in the timing. This reflects differences in climate model structure, the unknown evolution of anthropogenic forcing, and natural climate variability. In sharp contrast to the Arctic, Antarctic sea ice extent, while highly variable, has increased slightly over the period of satellite observations. The reasons for this different behavior remain to be resolved, but responses to changing atmospheric circulation patterns appear to play a strong role. © 2018 New York Academy of Sciences.
A New Attempt of 2-D Numerical Ice Flow Model to Reconstruct Paleoclimate from Mountain Glaciers
NASA Astrophysics Data System (ADS)
Candaş, Adem; Akif Sarıkaya, Mehmet
2017-04-01
A new two dimensional (2D) numerical ice flow model is generated to simulate the steady-state glacier extent for a wide range of climate conditions. The simulation includes the flow of ice enforced by the annual mass balance gradient of a valley glacier. The annual mass balance is calculated by the difference of the net accumulation and ablation of snow and (or) ice. The generated model lets users to compare the simulated and field observed ice extent of paleoglaciers. As a result, model results provide the conditions about the past climates since simulated ice extent is a function of predefined climatic conditions. To predict the glacier shape and distribution in two dimension, time dependent partial differential equation (PDE) is solved. Thus, a 2D glacier flow model code is constructed in MATLAB and a finite difference method is used to solve this equation. On the other hand, Parallel Ice Sheet Model (PISM) is used to regenerate paleoglaciers in the same area where the MATLAB code is applied. We chose the Mount Dedegöl, an extensively glaciated mountain in SW Turkey, to apply both models. Model results will be presented and discussed in this presentation. This study was supported by TÜBİTAK 114Y548 project.
Visualizing Glaciers and Sea Ice via Google Earth
NASA Astrophysics Data System (ADS)
Ballagh, L. M.; Fetterer, F.; Haran, T. M.; Pharris, K.
2006-12-01
The NOAA team at NSIDC manages over 60 distinct cryospheric and related data products. With an emphasis on data rescue and in situ data, these products hold value for both the scientific and non-scientific user communities. The overarching goal of this presentation is to promote products from two components of the cryosphere (glaciers and sea ice). Our Online Glacier Photograph Database contains approximately 3,000 photographs taken over many decades, exemplifying change in the glacier terminus over time. The sea ice product shows sea ice extent and concentration along with anomalies and trends. This Sea Ice Index product, which starts in 1979 and is updated monthly, provides visuals of the current state of sea ice in both hemispheres with trends and anomalies. The long time period covered by the data set means that many of the trends in ice extent and concentration shown in this product are statistically significant despite the large natural variability in sea ice. The minimum arctic sea ice extent has been a record low in September 2002 and 2005, contributing to an accelerated trend in sea ice reduction. With increasing world-wide interest in indicators of global climate change, and the upcoming International Polar Year, these data products are of interest to a broad audience. To further extend the impact of these data, we have made them viewable through Google Earth via the Keyhole Markup Language (KML). This presents an opportunity to branch out to a more diverse audience by using a new and innovative tool that allows spatial representation of data of significant scientific and educational interest.
NASA Astrophysics Data System (ADS)
Martín-Doménech, R.; Manzano-Santamaría, J.; Muñoz Caro, G. M.; Cruz-Díaz, G. A.; Chen, Y.-J.; Herrero, V. J.; Tanarro, I.
2015-12-01
Context. Ice mantles that formed on top of dust grains are photoprocessed by the secondary ultraviolet (UV) field in cold and dense molecular clouds. UV photons induce photochemistry and desorption of ice molecules. Experimental simulations dedicated to ice analogs under astrophysically relevant conditions are needed to understand these processes. Aims: We present UV-irradiation experiments of a pure CO2 ice analog. Calibration of the quadrupole mass spectrometer allowed us to quantify the photodesorption of molecules to the gas phase. This information was added to the data provided by the Fourier transform infrared spectrometer on the solid phase to obtain a complete quantitative study of the UV photoprocessing of an ice analog. Methods: Experimental simulations were performed in an ultra-high vacuum chamber. Ice samples were deposited onto an infrared transparent window at 8K and were subsequently irradiated with a microwave-discharged hydrogen flow lamp. After irradiation, ice samples were warmed up until complete sublimation was attained. Results: Photolysis of CO2 molecules initiates a network of photon-induced chemical reactions leading to the formation of CO, CO3, O2, and O3. During irradiation, photon-induced desorption of CO and, to a lesser extent, O2 and CO2 took place through a process called indirect desorption induced by electronic transitions, with maximum photodesorption yields (Ypd) of ~1.2 × 10-2 molecules incident photon-1, ~9.3 × 10-4 molecules incident photon-1, and ~1.1 × 10-4 molecules incident photon-1, respectively. Conclusions: Calibration of mass spectrometers allows a direct quantification of photodesorption yields instead of the indirect values that were obtained from infrared spectra in most previous works. Supplementary information provided by infrared spectroscopy leads to a complete quantification, and therefore a better understanding, of the processes taking place in UV-irradiated ice mantles. Appendix A is available in electronic form at http://www.aanda.org
Changes in glacier dynamics in the northern Antarctic Peninsula since 1985
NASA Astrophysics Data System (ADS)
Seehaus, Thorsten; Cook, Alison J.; Silva, Aline B.; Braun, Matthias
2018-02-01
The climatic conditions along the northern Antarctic Peninsula have shown significant changes within the last 50 years. Here we present a comprehensive analysis of temporally and spatially detailed observations of the changes in ice dynamics along both the east and west coastlines of the northern Antarctic Peninsula. Temporal evolutions of glacier area (1985-2015) and ice surface velocity (1992-2014) are derived from a broad multi-mission remote sensing database for 74 glacier basins on the northern Antarctic Peninsula ( < 65° S along the west coast and north of the Seal Nunataks on the east coast). A recession of the glaciers by 238.81 km2 is found for the period 1985-2015, of which the glaciers affected by ice shelf disintegration showed the largest retreat by 208.59 km2. Glaciers on the east coast north of the former Prince Gustav Ice Shelf extent in 1986 receded by only 21.07 km2 (1985-2015) and decelerated by about 58 % on average (1992-2014). A dramatic acceleration after ice shelf disintegration with a subsequent deceleration is observed at most former ice shelf tributaries on the east coast, combined with a significant frontal retreat. In 2014, the flow speed of the former ice shelf tributaries was 26 % higher than before 1996. Along the west coast the average flow speeds of the glaciers increased by 41 %. However, the glaciers on the western Antarctic Peninsula revealed a strong spatial variability of the changes in ice dynamics. By applying a hierarchical cluster analysis, we show that this is associated with the geometric parameters of the individual glacier basins (hypsometric indexes, maximum surface elevation of the basin, flux gate to catchment size ratio). The heterogeneous spatial pattern of ice dynamic evolutions at the northern Antarctic Peninsula shows that temporally and spatially detailed observations as well as further monitoring are necessary to fully understand glacier change in regions with such strong topographic and climatic variances.
NASA Astrophysics Data System (ADS)
Åkesson, Henning; Nisancioglu, Kerim H.; Giesen, Rianne H.; Morlighem, Mathieu
2016-04-01
Glacier and ice cap volume changes currently amount to half of the total cryospheric contribution to sea-level rise and are projected to remain substantial throughout the 21st century. To simulate glacier behavior on centennial and longer time scales, models rely on simplified dynamics and tunable parameters for processes not well understood. Model calibration is often done using present-day observations, even though the relationship between parameters and parametrized processes may be altered for significantly different glacier states. In this study, we simulate the Hardangerjøkulen ice cap in southern Norway since the mid-Holocene, through the Little Ice Age (LIA) and into the future. We run an ensemble for both calibration and transient experiments, using a two-dimensional ice flow model with mesh refinement. For the Holocene, we apply a simple mass balance forcing based on climate reconstructions. For the LIA until 1962, we use geomorphological evidence and measured outlet glacier positions to find a mass balance history, while we use direct mass balance measurements from 1963 until today. Given a linear climate forcing, we show that Hardangerøkulen grew from ice-free conditions in the mid-Holocene, to its maximum LIA extent in a highly non-linear fashion. We relate this to local bed topography and demonstrate that volume and area of some but not all outlet glaciers, as well as the entire ice cap, become decoupled for several centuries during our simulation of the late Holocene, before co-varying approaching the LIA. Our model is able to simulate most recorded ice cap and outlet glacier changes from the LIA until today. We show that present-day Hardangerøkulen is highly sensitive to mass balance changes, and estimate that the ice cap will melt completely by the year 2100.
Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine
NASA Astrophysics Data System (ADS)
Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael
2017-01-01
Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.
Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2
NASA Astrophysics Data System (ADS)
Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.
2014-12-01
Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation. Sea ice extent has constantly declined since 1980s. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) in April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness between 2011 and 2014 were estimated using CryoSat-2 SAR and SARIn mode data that have sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard, i.e., elevation difference between the top of sea ice surface should be calculated. Freeboard can be estimated through detecting leads. We proposed a novel lead detection approach. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, stack standard deviation, skewness and kurtosis were examined to distinguish leads from sea ice. Near-real time cloud-free MODIS images corresponding to CryoSat-2 data measured were used to visually identify leads. Rule-based machine learning approaches such as See5.0 and random forest were used to identify leads. The proposed lead detection approach better distinguished leads from sea ice than the existing approaches. With the freeboard height calculated using the lead detection approach, sea ice thickness was finally estimated using the Archimedes' buoyancy principle. The estimated sea ice freeboard and thickness were validated using ESA airborne Ku-band interferometric radar and Airborne Electromagnetic (AEM) data.
NASA Astrophysics Data System (ADS)
Lo, Li; Belt, Simon T.; Lattaud, Julie; Friedrich, Tobias; Zeeden, Christian; Schouten, Stefan; Smik, Lukas; Timmermann, Axel; Cabedo-Sanz, Patricia; Huang, Jyh-Jaan; Zhou, Liping; Ou, Tsong-Hua; Chang, Yuan-Pin; Wang, Liang-Chi; Chou, Yu-Min; Shen, Chuan-Chou; Chen, Min-Te; Wei, Kuo-Yen; Song, Sheng-Rong; Fang, Tien-Hsi; Gorbarenko, Sergey A.; Wang, Wei-Lung; Lee, Teh-Quei; Elderfield, Henry; Hodell, David A.
2018-04-01
Recent reduction in high-latitude sea ice extent demonstrates that sea ice is highly sensitive to external and internal radiative forcings. In order to better understand sea ice system responses to external orbital forcing and internal oscillations on orbital timescales, here we reconstruct changes in sea ice extent and summer sea surface temperature (SSST) over the past 130,000 yrs in the central Okhotsk Sea. We applied novel organic geochemical proxies of sea ice (IP25), SSST (TEX86L) and open water marine productivity (a tri-unsaturated highly branched isoprenoid and biogenic opal) to marine sediment core MD01-2414 (53°11.77‧N, 149°34.80‧E, water depth 1123 m). To complement the proxy data, we also carried out transient Earth system model simulations and sensitivity tests to identify contributions of different climatic forcing factors. Our results show that the central Okhotsk Sea was ice-free during Marine Isotope Stage (MIS) 5e and the early-mid Holocene, but experienced variable sea ice cover during MIS 2-4, consistent with intervals of relatively high and low SSST, respectively. Our data also show that the sea ice extent was governed by precession-dominated insolation changes during intervals of atmospheric CO2 concentrations ranging from 190 to 260 ppm. However, the proxy record and the model simulation data show that the central Okhotsk Sea was near ice-free regardless of insolation forcing throughout the penultimate interglacial, and during the Holocene, when atmospheric CO2 was above ∼260 ppm. Past sea ice conditions in the central Okhotsk Sea were therefore strongly modulated by both orbital-driven insolation and CO2-induced radiative forcing during the past glacial/interglacial cycle.
NASA Astrophysics Data System (ADS)
Schneider, David P.; Deser, Clara
2018-06-01
Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.
NASA Astrophysics Data System (ADS)
Schneider, David P.; Deser, Clara
2017-09-01
Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.
The Last Arctic Sea Ice Refuge
NASA Astrophysics Data System (ADS)
Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.
2010-12-01
Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.
NASA Astrophysics Data System (ADS)
Berger, M.; Brandefelt, J.; Nilsson, J.
2013-04-01
In the present work the Arctic sea ice in the mid-Holocene and the pre-industrial climates are analysed and compared on the basis of climate-model results from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) and phase 3 (PMIP3). The PMIP3 models generally simulate smaller and thinner sea-ice extents than the PMIP2 models both for the pre-industrial and the mid-Holocene climate. Further, the PMIP2 and PMIP3 models all simulate a smaller and thinner Arctic summer sea-ice cover in the mid-Holocene than in the pre-industrial control climate. The PMIP3 models also simulate thinner winter sea ice than the PMIP2 models. The winter sea-ice extent response, i.e. the difference between the mid-Holocene and the pre-industrial climate, varies among both PMIP2 and PMIP3 models. Approximately one half of the models simulate a decrease in winter sea-ice extent and one half simulates an increase. The model-mean summer sea-ice extent is 11 % (21 %) smaller in the mid-Holocene than in the pre-industrial climate simulations in the PMIP2 (PMIP3). In accordance with the simple model of Thorndike (1992), the sea-ice thickness response to the insolation change from the pre-industrial to the mid-Holocene is stronger in models with thicker ice in the pre-industrial climate simulation. Further, the analyses show that climate models for which the Arctic sea-ice responses to increasing atmospheric CO2 concentrations are similar may simulate rather different sea-ice responses to the change in solar forcing between the mid-Holocene and the pre-industrial. For two specific models, which are analysed in detail, this difference is found to be associated with differences in the simulated cloud fractions in the summer Arctic; in the model with a larger cloud fraction the effect of insolation change is muted. A sub-set of the mid-Holocene simulations in the PMIP ensemble exhibit open water off the north-eastern coast of Greenland in summer, which can provide a fetch for surface waves. This is in broad agreement with recent analyses of sea-ice proxies, indicating that beach-ridges formed on the north-eastern coast of Greenland during the early- to mid-Holocene.
Variability and Anomalous Trends in the Global Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2012-01-01
The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of MODIS, AMSR-E and SSM/I data reveal that the sea ice production rate at the coastal polynyas along the Ross Ice Shelf has been increasing since 1992. This also means that the salinization rate and the formation of bottom water in the region are going up as well. Simulation studies indicate that the stronger production rate is likely associated with the ozone hole that has caused a deepening of the lows in the West Antarctic region and therefore stronger winds off the Ross Ice Shelf. Stronger winds causes larger coastal polynyas near the shelf and hence an enhanced ice production in the region during the autumn and winter period. Results of analysis of temperature data from MODIS and AMSR-E shows that the area and concentration of the sea ice cover are highly correlated with surface temperature for both the Arctic and Antarctic, especially in the seasonal regions where the correlation coefficients are about 0.9. Abnormally high sea surface temperatures (SSTs) and surface ice temperatures (SITs) were also observed in 2007 and 2011when drastic reductions in the summer ice cover occurred, This phenomenon is consistent with the expected warming of the upper layer of the Arctic Ocean on account of ice-albedo feedback. Changes in atmospheric circulation are also expected to have a strong influence on the sea ice cover but the results of direct correlation analyses of the sea ice cover with the Northern and the Southern Annular Mode indices show relatively weak correlations, This might be due in part to the complexity of the dynamics of the system that can be further altered by some phenomena like the Antarctic Circumpolar Wave and extra polar processes like the El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (POD),
NASA Astrophysics Data System (ADS)
Zhang, Wei; Harbor, Jon; Cui, Zhijiu; Liu, Liang; Liu, Beibei; Fu, Yanjing; Shi, Yuanhuang; Gribenski, Natacha; Blomdin, Robin; Stroeven, Arjen; Caffee, Marc; Jansson, Krister
2014-05-01
Reconstructions of the timing and extent of past glaciation provide key constraints for paleoclimate and numerical modeling of past glacier behavior. As part of the multinational Central Asian Paleoglaciology Project we are reconstructing the timing and extent of past glaciation along and across a series of mountain ranges in central Asia using consistent methods for mapping, field investigations and numerical dating. Here we report on new findings for the Kanas Valley in northwest China, a large glaciated valley system on the south side of the Altai Mountains. Previous studies have concluded that the Kanas Valley has been shaped by a series of major glacial advances that produced overdeepened basins, a U-shaped valley cross profile, and extensive glacial and glaciofluvial deposits. Existing Optically Stimulated Luminescence (OSL) and Electron Spin Resonance (ESR) dating results suggest major glaciation in the Kanas Valley during Marine Oxygen Isotope Stages (MIS) 3, 5, and 6, but very limited MIS 2 glaciation. Limited MIS 2 glaciation has also been suggested for other parts of central Asia, and this contrasts with extensive MIS 2 glaciation in Europe and North America. Field studies in 2013 provided new evidence for the highest elevation extent of glaciation in the Kanas Valley in the vicinity of the 20-km long Lake Kanas, with the upper limit of distinct erratics on the valley sidewalls indicating past ice thicknesses here up to 1000 m. Upper limits of erratics extending from Lake Kanas to the mapped maximum down-valley extent of glaciation suggest an ice surface slope of 1.8 degrees for the lower half of the paleoglacier in the Kanas Valley, assuming that all the erratics were deposited at the same time. Systematic sampling of glacial erratics, basal till, terminal moraines, glacially eroded bedrock, and glaciofluvial deposits provided material that is being used for cosmogenic radionuclide, OSL and ESR dating of the glacial chronology, and for dating intercomparisons.
Towards an Ice-Free Arctic Ocean in Summertime
NASA Astrophysics Data System (ADS)
Gascard, Jean Claude
2014-05-01
Dividing the Arctic Ocean in two parts, the so-called Atlantic versus the Pacific sector, two distinct modes of variability appear for characterizing the Arctic sea-ice extent from 70°N up to 80°N in both sectors. The Atlantic sector seasonal sea-ice extent is characterized by a longer time scale than the Pacific sector with a break up melting season starting in May and reaching a peak in June-July, one month earlier than the Pacific sector of the Arctic Ocean revealing a faster time evolution and a larger spatial amplitude than the Atlantic sector. During recent years like 2007, sea-ice extent with sea-ice concentration above 15% retreated from 4 millions km2 to about 1 million km2 in the Arctic Pacific sector between 70° and 80°N except for 2012 when most of sea-ice melted away in this region. That explained most of the differences between the two extreme years 2007 and 2012. In the Atlantic sector, Arctic sea-ice retreated from 2 millions km2 to nearly 0 during recent years including 2007 and 2012. The Atlantic inflow North of Svalbard and Franz Josef Land is more likely responsible for a northward retreat of the ice edge in that region. The important factor is not only that the Arctic summer sea-ice minimum extent decreased by 3 or 4 millions km2 over the past 10 years but also that the melting period was steadily increasing by one to two days every year during that period. An important factor concerns the strength of the freezing that can be quantified in terms of Freezing Degree Days FDD accumulated during the winter-spring season and the strength of the melting (MDD) that can be accumulated during the summer season. FDD and MDD have been calculated for the past 30 years all over the Arctic Ocean using ERA Interim Reanalysis surface temperature at 2m height in the atmosphere. It is clear that FDD decreased significantly by more than 2000 FDD between 1980 and 2012 which is equivalent to the sensible heat flux corresponding to more than a meter of sea-ice thickness. During the same period MDD increased steadily mainly due to an increase of the melting period rather than an increase in summer temperatures. Due to uncertainties in sea-ice thickness distribution, an estimated 66% up to 75% of sea-ice mass or volume melted away during recent summers compare to previous 20 or 30 years. How long would it take to melt away the 1/4 or 1/3 of Arctic sea-ice left in summer? A root mean square extrapolation based on the last 10 years summer sea-ice minimum extent would lead to an ice-free Arctic Ocean by 2035.
Spatio-temporal variability in the freshwater input to the surface water of Southern Ocean
NASA Astrophysics Data System (ADS)
Naidu, P. K.; Ghosh, P.; N, A.
2015-12-01
Ocean heat content is rising rapidly in high-latitude regions of both hemispheres as a consequence of global warming (e.g., Gille 2002; Karcher et al. 2003; Bindoff et al. 2007; Purkey and Johnson 2010). Recent warming and freshening of Southern Ocean has affected hydrological cycle in terms of increasing tendency of precipitation as liquid water instead of snow. Limited data is available on the extent of fresh water flux by precipitation and sea ice melting to the surface ocean. The spatial extent of sea ice formation is documented based on remote sensing observation. We investigate here spatial variability in freshwater inputs to the Indian sector of Southern Ocean region using combined observation of oxygen isotopes ratios and salinity of surface water during the summer of 2011, 2012 and 2013. Together with this, the measured isotopic ratios of meteoric water and sea ice melt were used in the mass balance equation for deriving the contribution of both of these components in the surface water of southern ocean. The three component mixing equations (Meredith et al., 2013) allowed estimation of fractional contribution of rain over the years. The δ18O of meteoric water followed the pattern nearly similar to the observation documented in the continental stations (Global Network of Isotopes in Precipitation, GNIP) located in the southern hemisphere. However, a slight but consistent heavier composition was documented in rainwater as compared to the GNIP stations. Our observation suggests that the meteoric water is the dominant freshwater source over the ocean, accounting for up to 10-15% of the water present in the surface ocean during the austral summer whereas Sea-ice melt accounts for a much smaller percentage (maximum around 1%). Our observation is consistent with previous studies where similar magnitude of fresh water input was proposed based on observation from coastal region (Meredith et al., 2013).
Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent
NASA Astrophysics Data System (ADS)
Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.
2018-05-01
East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.
NASA Astrophysics Data System (ADS)
Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.
2017-12-01
The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough suggest a spatial relationship between the extent of U-shaped profiles and low-velocity shallow sediments. Towards the SE end of the model we observe a large overlap of U-shaped indices, and a shallow low-velocity zone in the mapped extent of the last glacial maximum suggestive of overpressure due to loading by ice sheet activity.
Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model
Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; ...
2015-07-24
The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less
Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.
The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less
NASA Astrophysics Data System (ADS)
Bonsell, Christina; Dunton, Kenneth H.
2018-03-01
This study synthesizes a multidecadal dataset of annual growth of the Arctic endemic kelp Laminaria solidungula and corresponding measurements of in situ benthic irradiance from Stefansson Sound in the central Beaufort Sea. We incorporate long-term data on sea ice concentration (National Sea Ice Data Center) and wind (National Weather Service) to assess how ice extent and summer wind dynamics affect the benthic light environment and annual kelp production. We find evidence of significant changes in sea ice extent in Stefansson Sound, with an extension of the ice-free season by approximately 17 days since 1979. Although kelp elongation at 5-7 m depths varies significantly among sites and years (3.8-49.8 cm yr-1), there is no evidence for increased production with either earlier ice break-up or a longer summer ice-free period. This is explained by very low light transmittance to the benthos during the summer season (mean daily percent surface irradiance ± SD: 1.7 ± 3.6 to 4.5 ± 6.6, depending on depth, with light attenuation values ranging from 0.5 to 0.8 m-1), resulting in minimal potential for kelp production on most days. Additionally, on month-long timescales (35 days) in the ice-free summer, benthic light levels are negatively related to wind speed. The frequent, wind-driven resuspension of sediments following ice break-up significantly reduce light to the seabed, effectively nullifying the benefits of an increased ice-free season on annual kelp growth. Instead, benthic light and primary production may depend substantially on the 1-3 week period surrounding ice break-up when intermediate sea ice concentrations reduce wind-driven sediment resuspension. These results suggest that both benthic and water column primary production along the inner shelf of Arctic marginal seas may decrease, not increase, with reductions in sea ice extent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marko, J.R.; Fissel, D.B.; Wadhams, P.
1994-09-01
Iceberg trajectory, deterioration (mass loss), and sea ice data are reviewed to identify the sources of observed interannual and seasonal variations in the numbers of icebergs passing south of 48[degrees]N off eastern North America. The results show the dominant role of sea ice in the observed variations. Important mechanisms involved include both seasonal modulation of the southerly iceberg flow by ice cover control of probabilities for entrapment and decay in shallow water, and the suppression of iceberg melt/deterioration rates by high concentrations of sea ice. The Labrador spring ice extent, shown to be the critical parameter in interannual iceberg numbermore » variability, was found to be either determined by or closely correlated with midwinter Davis Strait ice extents. Agreement obtained between observed year-to-year and seasonal number variations with computations based upon a simple iceberg dissipation model suggests that downstream iceberg numbers are relatively insensitive to iceberg production rates and to fluctuations in southerly iceberg fluxes in areas north of Baffin Island. Past variations in the Davis Strait ice index and annual ice extents are studied to identify trends and relationships between regional and larger-scale global climate parameters. It was found that, on decadal timescales in the post-1960 period of reasonable data quality, regional climate parameters have varied, roughly, out of phase with corresponding global and hemispheric changes. These observations are compared with expectations in terms of model results to evaluate current GCM-based capabilities for simulating recent regional behavior. 64 refs., 11 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.
2017-12-01
Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation. Here, increased Pacific Water inflow (and heat flux) may have triggered the contemporaneous decrease in sea ice and maximum surface-water productivity during mid-Holocene times.
Observed and Modeled Trends in Southern Ocean Sea Ice
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2003-01-01
Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong record of temperature increases. Still, although the patterns of the temperature and ice changes match fairly well, there is a substantial ways to go before these patterns are understood (and can be modeled) in the full context of global change.
September Arctic Sea Ice minimum prediction - a new skillful statistical approach
NASA Astrophysics Data System (ADS)
Ionita-Scholz, Monica; Grosfeld, Klaus; Scholz, Patrick; Treffeisen, Renate; Lohmann, Gerrit
2017-04-01
Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability is complex and it depends on various climate and oceanic parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on ocean heat content, sea surface temperature and different atmospheric variables to calculate an estimate of the September Sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts at monthly/seasonal forecasts of SSIE show a relatively reduced skill, we show here that more than 92% (r = 0.96) of the September sea ice extent can be predicted at the end of May by using previous months' climate and oceanic conditions. The skill of the model increases with a decrease in the time lag used for the forecast. At the end of August, our predictions are even able to explain 99% of the SSIE. Our statistical model captures both the general trend as well as the interannual variability of the SSIE. Moreover, it is able to properly forecast the years with extreme high/low SSIE (e.g. 1996/ 2007, 2012, 2013). Besides its forecast skill for SSIE, the model could provide a valuable tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.
Physical basis for a thick ice shelf in the Arctic Basin during the penultimate glacial maximum
NASA Astrophysics Data System (ADS)
Gasson, E.; DeConto, R.; Pollard, D.; Clark, C.
2017-12-01
A thick ice shelf covering the Arctic Ocean during glacial stages was discussed in a number of publications in the 1970s. Although this hypothesis has received intermittent attention, the emergence of new geophysical evidence for ice grounding in water depths of up to 1 km in the central Arctic Basin has renewed interest into the physical plausibility and significance of an Arctic ice shelf. Various ice shelf configurations have been proposed, from an ice shelf restricted to the Amerasian Basin (the `minimum model') to a complete ice shelf cover in the Arctic. Attempts to simulate an Arctic ice shelf have been limited. Here we use a hybrid ice sheet / shelf model that has been widely applied to the Antarctic ice sheet to explore the potential for thick ice shelves forming in the Arctic Basin. We use a climate forcing appropriate for MIS6, the penultimate glacial maximum. We perform a number of experiments testing different ice sheet / shelf configurations and compare the model results with ice grounding locations and inferred flow directions. Finally, we comment on the potential significance of an Arctic ice shelf to the global glacial climate system.
Surface Exposure Dating of Glaciated Landscapes in Washington Land, Northwest Greenland
NASA Astrophysics Data System (ADS)
Reusche, M.; Ceperley, E. G.; Marcott, S. A.; Brook, E.; Mix, A. C.
2016-12-01
The timing and rate of sea-level contribution from the Greenland ice sheet (GIS) and its outlet glaciers through the 21st century is uncertain. Given the long response time of ice sheets, characterizing the sensitivity of the GIS to both atmospheric and oceanic forcings in the past plays a vital role in forecasting future GIS changes. Our terrestrial-based study is primarily focused along the margins of the marine-terminating Petermann Glacier of northwestern Greenland, and is part of a larger multidisciplinary research effort with oceanographers, geophysicists, and atmospheric scientists that aims to better understand Petermann's response to past perturbations in climate and the primary mechanisms that drive those changes. In order to more accurately determine the ice sheet history of the northwestern sector of the GIS, rock samples from erratic boulders on moraines and from across an expansive ice free region (Washington Land) adjacent to Nares Strait were collected for surface exposure dating with 10Be. The project goal is to apply exposure histories from these glacial erratics to determine the timing and rate of GIS retreat since the last glacial maximum from Nares Strait up to the relatively `fresh' moraines that front the present GIS and Petermann Glacier margins nearly 70 km away. Moraine chronologies will also be constructed from these presumably late Holocene moraines, which serve as unique evidence of pre-Little Ice Age (LIA) Neoglaciation that are often obliterated from the landscape due to the large extent of the LIA advance across much of Greenland. Preliminary exposure ages and results will be presented and discussed within the context of the ice-ocean-atmosphere system of northwestern Greenland and compared to ongoing and prior work.
Estimation of the uncertainty of a climate model using an ensemble simulation
NASA Astrophysics Data System (ADS)
Barth, A.; Mathiot, P.; Goosse, H.
2012-04-01
The atmospheric forcings play an important role in the study of the ocean and sea-ice dynamics of the Southern Ocean. Error in the atmospheric forcings will inevitably result in uncertain model results. The sensitivity of the model results to errors in the atmospheric forcings are studied with ensemble simulations using multivariate perturbations of the atmospheric forcing fields. The numerical ocean model used is the NEMO-LIM in a global configuration with an horizontal resolution of 2°. NCEP reanalyses are used to provide air temperature and wind data to force the ocean model over the last 50 years. A climatological mean is used to prescribe relative humidity, cloud cover and precipitation. In a first step, the model results is compared with OSTIA SST and OSI SAF sea ice concentration of the southern hemisphere. The seasonal behavior of the RMS difference and bias in SST and ice concentration is highlighted as well as the regions with relatively high RMS errors and biases such as the Antarctic Circumpolar Current and near the ice-edge. Ensemble simulations are performed to statistically characterize the model error due to uncertainties in the atmospheric forcings. Such information is a crucial element for future data assimilation experiments. Ensemble simulations are performed with perturbed air temperature and wind forcings. A Fourier decomposition of the NCEP wind vectors and air temperature for 2007 is used to generate ensemble perturbations. The perturbations are scaled such that the resulting ensemble spread matches approximately the RMS differences between the satellite SST and sea ice concentration. The ensemble spread and covariance are analyzed for the minimum and maximum sea ice extent. It is shown that errors in the atmospheric forcings can extend to several hundred meters in depth near the Antarctic Circumpolar Current.
Twilight Limb Observations of the Martian North Polar Hood by MAVEN IUVS
NASA Astrophysics Data System (ADS)
Lo, Daniel; Yelle, Roger; Schneider, Nicholas M.; Jain, Sonal Kumar; Stewart, Ian; Deighan, Justin; Stiepen, Arnaud; Evans, Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Clarke, John T.; Holsclaw, Gregory; Lefevre, Franck; Jacosky, Bruce
2016-10-01
In northern winter, a broad distribution of ice aerosols appears in the north polar atmosphere of Mars, commonly referred to as the North Polar Hood (NPH). The NPH is thought to be formed as a result of condensation from lowered temperatures associated with both seasonal and diurnal variations in solar heating. The spatial extent and density of the NPH is highly variable, with a maximum latitudinal extent spanning 30-80°N, and a maximum density at 10-30 km altitude.The NPH has been extensively observed by both ground-based telescopes and instruments in orbit around Mars. However, the majority of these observations are nadir-pointing. This observation geometry has two significant limitations. Firstly, they poorly probe the vertical structure of the NPH. Secondly, column densities are determined by monitoring the intensity of various spectral features associated with the ice composing the NPH, against a strong background with similar features from the frost that has condensed on the surface in the winter season, resulting in low sensitivities. Limb observations removes both limitations, allowing us to study the vertical distribution of the aerosols that make up the NPH at high sensitivities.We present new limb observations of the NPH by IUVS (Imaging Ultraviolet Spectrograph) on the MAVEN (Mars Atmospheric and Volatile Evolution) spacecraft. These observations represent the first ultraviolet limb observations of the NPH, opening a new window for understanding the structure and composition of the NPH. The observations are also of the twilight limb, with sunlight being scattered from the dayside into the nightside over large solar zenith angles. This illumination geometry allows us to avoid the high dayside intensities that would drown out the signal from the thinner sections of the NPH. We determine the latitudinal extent of the NPH to be 30-60°N. We also find that an exponential altitude distribution of aerosols is able to reproduce the observed intensities, with a scale height similar to the atmospheric scale height. Finally, we observe an almost mutual exclusion of the NPH and nitric oxide nightglow emissions, an effect of the global circulation that drive both phenomena.
High latitude changes in ice dynamics and their impact on polar marine ecosystems.
Moline, Mark A; Karnovsky, Nina J; Brown, Zachary; Divoky, George J; Frazer, Thomas K; Jacoby, Charles A; Torres, Joseph J; Fraser, William R
2008-01-01
Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate-mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate-induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice-dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.
Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery
NASA Astrophysics Data System (ADS)
Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn
1986-09-01
During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.
14 CFR 33.77 - Foreign object ingestion-ice.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Foreign object ingestion-ice. 33.77 Section... object ingestion—ice. (a)-(b) [Reserved] (c) Ingestion of ice under the conditions of paragraph (e) of... by engine test under the following ingestion conditions: (1) Ice quantity will be the maximum...
14 CFR 33.77 - Foreign object ingestion-ice.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Foreign object ingestion-ice. 33.77 Section... object ingestion—ice. (a)-(b) [Reserved] (c) Ingestion of ice under the conditions of paragraph (e) of... by engine test under the following ingestion conditions: (1) Ice quantity will be the maximum...
14 CFR 33.77 - Foreign object ingestion-ice.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Foreign object ingestion-ice. 33.77 Section... object ingestion—ice. (a)-(b) [Reserved] (c) Ingestion of ice under the conditions of paragraph (e) of... by engine test under the following ingestion conditions: (1) Ice quantity will be the maximum...
Characterising Late-Holocene glacier variability in the southern tropical Andes
NASA Astrophysics Data System (ADS)
Bromley, G.; Winckler, G.; Hall, B. L.; Schaefer, J. M.
2011-12-01
Accurate resolution of both the timing and magnitude of Late-Holocene climate events, such as the Little Ice Age, is vital in order to test different hypotheses for the causes and propagation of such climate variability. However, in contrast to higher latitudes, well-dated records from the tropics are relatively rare and the overall climatic structure of the last millennium remains unresolved. Much of this uncertainty stems from difficulties associated with radiocarbon dating in these dry, often high-altitude environments, a situation that now is being addressed through the application and refinement of cosmogenic surface-exposure methods. We present detailed Late-Holocene moraine records, resolved with radiocarbon and surface-exposure dating, from sites across the Andes of southern Peru. Specifically, we describe glacial records from both the arid Western Cordillera, where glaciation is limited by moisture availability, and the humid Eastern Cordillera, where ablation is controlled primarily by air temperature. In both locations, the most recent advance is marked by two to three unweathered terminal moraines located several hundred metres beyond the modern ice margins. Our chronology indicates that, while the advance occurred broadly in step with the classic 'Little Ice Age', the maximum glacial extent in southern Peru was achieved relatively early on and that the 18th and 19th centuries were dominated by glacier retreat. In a broader temporal context, our data also confirm that, in contrast to northern temperate latitudes, the event in southern Peru was the most recent significant interruption in a progressive Holocene retreat. The consistency in glacier response between the different climate zones suggests (i) that this pattern of Late-Holocene climate variability was of at least regional extent and (ii) that temperature fluctuations were the primary driving mechanism.
Kozomara, Marko; Mehnert, Ulrich; Seifert, Burkhardt; Kessler, Thomas M
2018-01-01
We investigated whether detrusor contraction during rapid bladder filling is provoked by cold or warm water. Patients with neurogenic lower urinary tract dysfunction were included in this randomized, controlled, double-blind trial. At the end of a standard urodynamic investigation patients underwent 2 bladder fillings using a 4C ice water test or a 36C warm water test saline solution at a filling speed of 100 ml per minute. The order was randomly selected, and patients and investigators were blinded to the order. The primary outcome measure was detrusor overactivity, maximum detrusor pressure and maximum bladder filling volume during the ice and warm water tests. Nine women and 31 men were the subject of data analysis. Neurogenic lower urinary tract dysfunction was caused by spinal cord injury in 33 patients and by another neurological disorder in 7. Irrespective of test order detrusor overactivity occurred significantly more often during the ice water test than during the warm water test (30 of 40 patients or 75% vs 25 of 40 or 63%, p = 0.02). When comparing the ice water test to the warm water test, maximum detrusor pressure was significantly higher and maximum bladder filling volume was significantly lower during the ice water test (each p <0.001). The order of performing the tests (ice water first vs warm water first) had no effect on the parameters. Our findings imply that the more frequent detrusor overactivity, higher maximum detrusor pressure and lower bladder filling volume during the ice water test compared to the warm water test were caused by cold water. This underlies the theory of a C-fiber mediated bladder cooling reflex in humans. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Summer 2007 and 2008 Arctic Sea Ice Loss in Context: OUTLOOK 2008
NASA Astrophysics Data System (ADS)
Overland, J. E.; Eicken, H.; Wiggins, H. V.
2008-12-01
The Arctic is changing faster than the publication cycle for new information. In response, the SEARCH and DAMOCLES Programs initiated an OUTLOOK 2008 to provide broad-based communication and assessment within the arctic science community on the causes of rapid summer sea ice loss, synthesizing information from Arctic observing networks and model simulations. The question for summer 2008 was whether the previous loss of multi-year sea ice and delay in sea ice formation in autumn 2007 would still allow sufficient winter growth of sea ice thickness to last through the summer 2008, potentially allowing for recovery from the 2007 minimum. The answer is no; summer 2008 was a second sequential year of extremely low minimum sea ice extent. To organize OUTLOOK 2008, respondents were asked in May, June and July to provide a rationale and semi-quantitative assessment of arctic sea ice extent anticipated for September 2008. OUTLOOK 2008 supplemented information maintained by ice centers, universities and other data providers. Using a range of methods, all of the approximately 20 groups responded that summer sea ice would not return to climatological mean conditions, with a median response near the 2007 extent. The range of responses depended on the relative weight given to "initial conditions," e.g., age and thickness of sea ice at the end of spring, versus whether summer winds in 2008 would be as supportive for ice loss as in 2007. Initial conditions turned out to be a primary factor for summer 2008, with implications for continued sea ice loss in future years. OUTLOOK 2008 highlighted aspects of the observation and modeling efforts that require further attention such as interpretation of summer microwave signatures, in situ buoy measurements, and data assimilation in models. We appreciate the contributions from respondents and reviewers who made OUTLOOK 2008 a success.
Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.
2012-01-01
The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation, thereby modifying the thermal structure of the atmosphere and its circulation. Results presented in other papers at this workshop show that including the radiative effects of water ice clouds greatly influence the water cycle and the vigor of weather systems in both the northern and southern hemispheres. Our goal is to investigate the effects of fully coupling the dust and water cycles on the dust cycle. We show that including water ice clouds and their radiative effects greatly affect the magnitude, spatial extent and seasonality of dust lifting and the season of maximum atmospheric dust loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of... CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than... stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30...
Ice Action on Pairs of Cylindrical and Conical Structures,
1983-09-01
correlation because the forces generated ficult to pick a distinct peak in the autospectra for between the structure and the ice sheet are af- the...against two conical structures ...... 20 24. Normalized maximum ice force versus ice velocity ................. 20 25. Normalized initial peak force...versus ice velocity .................. 21 26. Ratio of initial peak ice force to theoretical ice force versus ratio of center-to-center distance
Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples
NASA Astrophysics Data System (ADS)
Lange, M. A.; Rückamp, M.; Kleiner, T.
2013-12-01
The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields, focusing on the floating ice parts of the Brunt and Riiser-Larsen ice shelves. The major response of the ice is observed instantaneously and is caused by the time independent nature of the Stokes equations and the used Glen-type rheology. The influence of ice temperatures and therefore the time-dependent effect on the flow-rate are small, given a 100 year time frame and applying a fixed-geometry setting.. A particularly important result of the current project lies in the fact that we have numerically simulated the three-dimensional stress fields in an ice shelf. Common numerical models that utilize a vertically integrated Shallow Shelf Approximation (SSA-models), do not provide that information. Due to the detailed horizontal resolution of 1km in our models, we were able to also model the observed heavily fractured areas in the vicinity of McDonald Ice Rise, a region that is characterized by simulated tensile stresses reaching maximum vertical extension in the ice column.
Postglacial Rebound From Space Geodesy
NASA Astrophysics Data System (ADS)
Argus, D. F.; Peltier, W. R.
2005-12-01
To study the viscous response of the earth to the unloading of the late Pleistocene ice sheets and, to a lesser extent, the elastic response of the earth to current changes in ice sheet mass, we integrate geodetic observations from VLBI over 24 years, from SLR over 23 years, from DORIS over 12 years, and from GPS over 11 years. The excellent geodetic velocity solutions upon which this study are based are from Chopo Ma and Dan MacMillan (Goddard Space Flight Center), Michael Heflin (Jet Propulsion Laboratory), John Ries and Richard Eanes (Center for Space Research, University of Texas at Austin), and Pascal Willis (Institut Geogpraphique National and Jet Propulsion Laboratory). The rates of uplift and subsidence we determine, which in places differ significantly from published studies, are constraining postglacial rebound models like that of Peltier [1994], Peltier [1996], Milne [2001], and Peltier [2004]. We find the following: Yellowknife is rising at 5.7 ±1.8 mm/yr (95% confidence limits), showing [Peltier 2002, 2004], with complimentary ground observations of gravity [Lambert et al. 2001], that the western part of the Laurentide ice sheet was thicker during the Last Glacial Maximum than previously [Peltier 1994, 1996] believed. Onsala (Sweden) is rising at 2.4 ±1.3 mm/yr and Algonquin Park (Ontario) is rising at 2.3 ±1.4 mm/yr, constraining the positions of the margins of the Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. The eastern United States is falling at ~1 mm/yr, suggesting that the area around the ancient Laurentide ice sheet is subsiding more slowly than predicted by the model of Peltier [2004]. Western and central Europe are falling at ~0.5 mm/yr, suggesting that the area around the ancient Fennoscandian ice sheet is hardly subsiding at all, consistent with the model of Peltier [2004]. Kellyville (Greenland) is falling insignificantly at 1.1 ±4.3 mm/yr, not requiring current loading of the ice sheet [Wahr et al. 2002, Tarasov and Peltier 2002]. Ny Alesund (Spitsbergen) is rising at 6.3 ±1.7 mm/yr, in elastic response to current unloading of a glacier [Hagedoorn and Wolf 2003]. Sites along the margins of the ancient ice sheets are moving horizontally away from the former ice centers at ~1 mm/yr, more slowly than predicted by the model of Peltier [2004]. Sites far from the ancient ice sheets are moving horizontally hardly at all, at insignificant speeds again slower than predicted by the model of Peltier [2004]. Much of the Antarctic, Eurasian, and North American plates are deforming horizontally hardly at all, allowing the angular velocities of the plates to be estimated meaningfully. Satisfying the geodetic observations is going to require revising the ice sheet thickness and the viscosity of the upper mantle (or the elastic lithosphere thickness) in the model of Peltier [2004].
Investigation of Antarctic Sea Ice Concentration by Means of Selected Algorithms
1992-05-08
Changes in areal extent and concentration of sea ice around Antarctica may serve as sensitive indicators of global warming . A comparison study was...occurred from July, 1987 through June, 1990. Antarctic Ocean, Antarctic regions, Global warming , Sea ice-Antarctic regions.
A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core
NASA Astrophysics Data System (ADS)
D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.
2017-05-01
Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.
Phytoplankton in the Beaufort and Chukchi Seas: Distributions, Dynamics and Environmental Forcing
NASA Technical Reports Server (NTRS)
Wang, Jian; Cota, Glenn F.; Comiso, Josefino C.
2005-01-01
Time-series of remotely sensed distributions of phytoplankton, sea ice, surface temperature, albedo, and clouds were examined to evaluate the impact of the variability of environmental conditions and physical forcing on the phytoplankton distribution in the Beaufort and Chukchi Seas. Large-scale distributions of these parameters were studied for the first time using weekly and monthly composites from April 1998 through September 2002. The basic data set used in this study are phytoplankton pigment concentration derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), ice concentration obtained from the Special Sensor Microwave Imager (SSM/I) and surface temperature, cloud cover, and albedo derived from the Advanced Very High Resolution Radiometer (AVHRR). Seasonal variations of the sea ice cover was observed to be the dominant environmental factor as the ice edge blooms followed the retreating marginal ice zones northward. Blooms were most prominent in the southwestern Chukchi Sea, and were especially persistent immediately north of the Bering Strait in nutrient- rich Anadyr water and in some fronts. Chlorophyll concentrations are shown to increase from a nominal value during onset of melt in April to a maximum value in mid-spring or summer depending on location. Large interannual variability of ice cover and phytoplankton distributions was observed with the year 1998 being uniquely associated with an early season occurrence of a massive bloom. This is postulated to be caused in part by a rapid response of phytoplankton to an early retreat of the sea ice cover in the Beaufort Sea region. Correlation analyses showed relatively high negative correlation between chlorophyll and ice concentration with the correlation being highest in May, the correlation coefficient being -0.45. 1998 was also the warmest among the five years globally and the sea ice cover was least extensive in the Beaufort-Khukchi Sea region, partly because of the 1997-98 El Nino. Strong correlations were noted between ice extent and surface temperature, the correlation coefficient being highest at - 0.79 in April, during the onset of the bloom period
Glacio-isostasy and Glacial Ice Load at Law Dome, Wilkes Land, East Antarctica
NASA Astrophysics Data System (ADS)
Goodwin, Ian D.; Zweck, Christopher
2000-05-01
The Holocene sea-level high stand or "marine limit" in Wilkes Land, East Antarctica, reached ˜30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°-160° E) suggests that a similar ice load of up to 1000 m existed along the EAIS margin between Wilkes Land and Oates Land.
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Cavalieri, Donald J.
2005-01-01
Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.
Paleo ice-cap surfaces and extents
NASA Astrophysics Data System (ADS)
Gillespie, A.; Pieri, D.
2008-12-01
The distribution, equilibrium-line altitude (ELA) and timing of Pleistocene alpine glaciers are used to constrain paleoclimatic reconstructions. Attention has largely focused on the geomorphic evidence for the former presence of simple valley glaciers; paleo alpine ice caps and their outlet glaciers have proven to be more problematical. This is especially so in the remote continental interior of Asia, where the research invested in the Alps or Rocky Mountains has yet to be duplicated. Even the putative existence and size of paleo ice caps in Tibet and the Kyrgyz Tien Shan is controversial. Remote sensing offers the opportunity to assess vast tracts of land quickly, with images and co-registered digital elevation models (DEMs) offering the most information for studies of paleoglaciers. We pose several questions: (1) With what confidence can nunataks be identified remotely? (2) What insights do their physiographic characteristics offer? (3) What characteristics of the bed of a paleo ice cap can be used to identify its former presence remotely? and (4) Can the geomorphic signatures of the edges of paleo ice caps be recognized and mapped? Reconstruction of the top surface of a paleo ice cap depends on the recognition of nunataks, typically rougher at 1 m to 100 m scales than their surroundings. Nunataks in southern Siberia are commonly notched by multiple sub- horizontal bedrock terraces. These step terraces appear to originate from freeze-thaw action on the rock-ice interface during periods of stability, and presence of multiple terraces suggests stepwise lowering of ice surfaces during deglaciation. An older generation of step-terraced nunataks, distinguished by degraded and eroded terraces, delineates a larger paleo ice cap in the Sayan Range (Siberian - Mongolian border) that significantly pre-dates the last glacial maximum (LGM). Large ice caps can experience pressure melting at their base and can manifest ice streams within the ice cap. Valleys left behind differ from fluvial valleys in their width/depth profiles: the channels maintain width but get shallower near their sources. Link junction angle distributions within superimposed drainage networks are broader and distinct from those of evolved fluvial networks, and their character and statistics can be used to identify the perimeters of large paleo ice caps. (This work was carried out in part at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.)
Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration
NASA Astrophysics Data System (ADS)
Edinburgh, Tom; Day, Jonathan J.
2016-11-01
In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897-1917), and in this study we compare these to satellite observations from the period 1989-2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.
NASA Astrophysics Data System (ADS)
Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Epstein, H. E.
2017-12-01
Amplified Arctic warming linked to declining sea-ice extent led to generally enhanced productivity of the tundra biome during the period 1982-2008. After about 2002, coinciding with a recent precipitous decline in sea ice, large areas of the Arctic began showing reversals of previous positive productivity trends. To better understand these recent vegetation productivity declines and whether they are associated with differences in a general humidification of portions of the Arctic, we focus analysis on two transects with ground information: the more continental North America Arctic Transect (NAAT) and the more maritime Eurasia Arctic Transect (EAT). We compare ground information with satellite-derived trends in open water, summer terrestrial temperatures, and vegetation greenness and changes in continentality of the two transects, as indicated by the differences in the annual maximum and minimum mean monthly temperatures. Areas adjacent to perennial sea ice along in the northern parts of the NAAT exhibit climates with positive trends in summer warmth, but negative greening trends, possibly due to soil drying. Southern parts of the NAAT in the vicinity of more open water show positive greenness trends. Along the EAT, cooling midsummer conditions and reduced greenness appear to be caused by cloudier conditions, and possibly later snow melt during the period of maximum potential photosynthesis. Ground-based environmental and vegetation data indicate that biomass, particularly moss biomass is much greater along the more maritime EAT, indicating a buffering effect of the vegetation that will act to damp productivity as humidification of the Arctic proceeds. This multi-scale analysis is one step in the direction of understanding the drivers of tundra vegetation productivity in the Arctic.
NASA Astrophysics Data System (ADS)
Ruiz Fernández, Jesús; Oliva, Marc; Fernández Menéndez, Susana del Carmen; García Hernández, Cristina; Menéndez Duarte, Rosa Ana; Pellitero Ondicol, Ramón; Pérez Alberti, Augusto; Schimmelpfennig, Irene
2017-04-01
CRONOANTAR brings together researchers from Spain, Portugal, France and United Kingdom with the objective of spatially and temporally reconstruct the deglaciation process at the two largest islands in the South Shetlands Archipelago (Maritime Antarctica), since the Global Last Glacial Maximum. Glacier retreat in polar areas has major implications at a local, regional and even planetary scale. Global average sea level rise is the most obvious and socio-economically relevant, but there are others such as the arrival of new fauna to deglaciated areas, plant colonisation or permafrost formation and degradation. This project will study the ice-free areas in Byers and Hurd peninsulas (Livingston Island) and Fildes and Potter peninsulas (King George Island). Ice-cap glacier retreat chronology will be revealed by the use of cosmogenic isotopes (mainly 36Cl) on glacially originated sedimentary and erosive records. Cosmogenic dating will be complemented by other dating methods (C14 and OSL), which will permit the validation of these methods in regions with cold-based glaciers. Given the geomorphological evidences and the obtained ages, a deglaciation calendar will be proposed and we will use a GIS methodology to reconstruct the glacier extent and the ice thickness. The results emerging from this project will allow to assess whether the high glacier retreat rates observed during the last decades were registered in the past, or if they are conversely the consequence (and evidence) of the Global Change in Antarctica. Acknowledgements This work has been funded by the Spanish Ministry of Economy, Industry and Competitiveness (Reference: CTM2016-77878-P).
Physical Limits on Hmax, the Maximum Height of Glaciers and Ice Sheets
NASA Astrophysics Data System (ADS)
Lipovsky, B. P.
2017-12-01
The longest glaciers and ice sheets on Earth never achieve a topographic relief, or height, greater than about Hmax = 4 km. What laws govern this apparent maximum height to which a glacier or ice sheet may rise? Two types of answer appear possible: one relating to geological process and the other to ice dynamics. In the first type of answer, one might suppose that if Earth had 100 km tall mountains then there would be many 20 km tall glaciers. The counterpoint to this argument is that recent evidence suggests that glaciers themselves limit the maximum height of mountain ranges. We turn, then, to ice dynamical explanations for Hmax. The classical ice dynamical theory of Nye (1951), however, does not predict any break in scaling to give rise to a maximum height, Hmax. I present a simple model for the height of glaciers and ice sheets. The expression is derived from a simplified representation of a thermomechanically coupled ice sheet that experiences a basal shear stress governed by Coulomb friction (i.e., a stress proportional to the overburden pressure minus the water pressure). I compare this model to satellite-derived digital elevation map measurements of glacier surface height profiles for the 200,000 glaciers in the Randolph Glacier Inventory (Pfeffer et al., 2014) as well as flowlines from the Greenland and Antarctic Ice Sheets. The simplified model provides a surprisingly good fit to these global observations. Small glaciers less than 1 km in length are characterized by having negligible influence of basal melt water, cold ( -15C) beds, and high surface slopes ( 30 deg). Glaciers longer than a critical distance 30km are characterized by having an ice-bed interface that is weakened by the presence of meltwater and is therefore not capable of supporting steep surface slopes. The simplified model makes predictions of ice volume change as a function of surface temperature, accumulation rate, and geothermal heat flux. For this reason, it provides insights into both past and future global ice volume changes.
NASA Astrophysics Data System (ADS)
Toyota, T.; Kimura, N.
2017-12-01
Sea ice rheology which relates sea ice stress to the large-scale deformation of the ice cover has been a big issue to numerical sea ice modelling. At present the treatment of internal stress within sea ice area is based mostly on the rheology formulated by Hibler (1979), where the whole sea ice area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea ice area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial ice in the Arctic Ocean. As for its applicability to the seasonal ice zones (SIZ), where various types of sea ice are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk ice, typical of the SIZ, based on the AMSR-derived ice drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. Ice drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the ice areas. Since this result corresponds with the yield criterion by Tresca and Von Mises for a 2D plastic matter, it suggests the validity and applicability of this rheology to the SIZ to some extent. However, it was also noted that the variation of the deformation field in the Sea of Okhotsk is much larger than in the Beaufort Sea, which indicates the need for the careful treatment of grid size in the model.
NASA Astrophysics Data System (ADS)
Hiatt, A. R.; Pollock, M.; Edwards, B. R.; Hauksdottir, S.; Williams, M.; Reinthal, M.
2013-12-01
Undirhlithar quarry exposes the interior of the northern end of a pillow-dominated tindar on the Reykjanes Peninsula in southwest Iceland. The Reykjanes Peninsula has several tindars and tuyas, which are glaciovolcanic features emplaced within or beneath ice. Such features are rapidly becoming one of the fundamental tools for estimating paleo-ice thickness in order to better constrain models for reconstructing ice sheet extents. In Iceland, most estimates of past ice thickness come from geological evidence, such as the elevation of tuya passage zones (e.g., Pedersen et al., IAVCEI 2013), although various theoretical attempts have been made as well. For example, estimations have been calculated from postglacial isostatic uplift (e.g., Le Breton et al., J Geol Soc Lond 2010). An alternative approach for estimating paleo-ice thickness is to use the volatile contents of glaciovolcanic glasses. The extent of degassing of a volatile-saturated magma is, in part, a function of the pressure at which the magma is quenched to form glass. Therefore, pressures calculated from measured H2O contents in quenched basaltic pillow lava rims should record emplacement conditions. On the Reykjanes Peninsula, two studies have used this method to calculate past ice thickness: Mercurio et al. (AGU 2009) estimated a maximum thickness of 400 m for Sveifuháls, several km south of Undirhlithar. Schopka et al. (JGR 2006) analyzed glasses from the predominantly fragmental Helgafell ridge, ~ 2.5 km to the NE of Undirhlithar, and estimated a quenching pressure equivalent of up to ~ 200 m of ice; however, they noted that this disagrees with their estimate of overall ice thickness of ~ 500 m, based on the elevation of Helgafell. Although a growing number of studies are using volatile contents in a range of glass compositions to reconstruct ice thicknesses, many questions remain about the validity of the approach. This study focuses on the reproducibility of the technique using samples from Undirhlithar. Sixteen glass samples were collected from the quenched rinds of twelve different pillows. Four of these samples were collected from a single pillow rim and the others were collected from pillows very close in elevation around the quarry. Two samples were collected several tens of meters above the rest. Each sample was examined under a stereoscope and the freshest chips were selected for analysis. Major and trace element compositions will be analyzed via DCP-AES and ICP-MS, respectively, and volatile contents will be analyzed by FTIR. A preliminary calculation using the average Undirhlithar pillow lava composition, the H2O content of a sample collected in the quarry by Nichols et al. (Earth Planet Sci Lett 2002; 0.4 wt%), and CO2 concentrations from 0 - 20 ppm yields quench pressures of ~ 42 - 56 bar, equivalent to water depths of ~ 450 - 575 m and consistent with previous estimates for ice thickness on the Reykjanes Peninsula.
Impact of aerosol emission controls on future Arctic sea ice cover
NASA Astrophysics Data System (ADS)
Gagné, M.-Ã..; Gillett, N. P.; Fyfe, J. C.
2015-10-01
We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emission changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become ice-free during summertime in 2045, but it does not become ice-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.
Data-adaptive Harmonic Decomposition and Real-time Prediction of Arctic Sea Ice Extent
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael
2017-04-01
Decline in the Arctic sea ice extent (SIE) has profound socio-economic implications and is a focus of active scientific research. Of particular interest is prediction of SIE on subseasonal time scales, i.e. from early summer into fall, when sea ice coverage in Arctic reaches its minimum. However, subseasonal forecasting of SIE is very challenging due to the high variability of ocean and atmosphere over Arctic in summer, as well as shortness of observational data and inadequacies of the physics-based models to simulate sea-ice dynamics. The Sea Ice Outlook (SIO) by Sea Ice Prediction Network (SIPN, http://www.arcus.org/sipn) is a collaborative effort to facilitate and improve subseasonal prediction of September SIE by physics-based and data-driven statistical models. Data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) techniques [Chekroun and Kondrashov, 2017], have been successfully applied to the nonlinear stochastic modeling, as well as retrospective and real-time forecasting of Multisensor Analyzed Sea Ice Extent (MASIE) dataset in key four Arctic regions. In particular, DAH-MSLM predictions outperformed most statistical models and physics-based models in real-time 2016 SIO submissions. The key success factors are associated with DAH ability to disentangle complex regional dynamics of MASIE by data-adaptive harmonic spatio-temporal patterns that reduce the data-driven modeling effort to elemental MSLMs stacked per frequency with fixed and small number of model coefficients to estimate.
NASA Astrophysics Data System (ADS)
Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco
2015-04-01
The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates melting of sea ice. Hence, the change in seasonality and the associated change in feedback strength is an integral part of the positive surface albedo feedback leading to Arctic amplification and diminishing sea ice cover in the next century when global climate warms.
Antarctic grounding-line migration
NASA Astrophysics Data System (ADS)
Slater, T.; Konrad, H.; Shepherd, A.; Gilbert, L.; Hogg, A.; McMillan, M.; Muir, A. S.
2017-12-01
Knowledge of grounding-line position is critical for quantifying ice discharge into the ocean, as a boundary condition for numerical models of ice flow, and as an indicator of ice sheet stability. Although geological investigations have documented extensive grounding-line retreat since the period of the Last Glacial Maximum, observations of grounding line migration during the satellite era are restricted to a handful of locations. We combine satellite altimeter observations of ice-elevation change and airborne measurements of ice geometry to track movement of the Antarctic Ice Sheet grounding line. Based on these data, we estimate that 22%, 3%, and 10% of the West Antarctic, East Antarctic, and Antarctic Peninsula ice sheet grounding lines are retreating at rates faster than the typical pace since the Last Glacial Maximum, and that the continent loses over 200 km2 of grounded-ice area per year. Although by far the fastest rates of retreat occurred in the Amundsen Sea Sector, the Pine Island Glacier grounding line has stabilized - likely as a consequence of abated ocean forcing during the survey period.
Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas
Harada, Naomi; Katsuki, Kota; Nakagawa, Mitsuhiro; Matsumoto, Akiko; Seki, Osamu; Addison, Jason A.; Finney, Bruce P.; Sato, Miyako
2014-01-01
Accurate prediction of future climate requires an understanding of the mechanisms of the Holocene climate; however, the driving forces, mechanisms, and processes of climate change in the Holocene associated with different time scales remain unclear. We investigated the drivers of Holocene sea surface temperature (SST) and sea ice extent in the North Pacific Ocean, and the Okhotsk and Bering Seas, as inferred from sediment core records, by using the alkenone unsaturation index as a biomarker of SST and abundances of sea ice-related diatoms (F. cylindrus and F. oceanica) as an indicator of sea ice extent to explore controlling mechanisms in the high-latitude Pacific. Temporal changes in alkenone content suggest that alkenone production was relatively high during the middle Holocene in the Okhotsk Sea and the western North Pacific, but highest in the late Holocene in the eastern Bering Sea and the eastern North Pacific. The Holocene variations of alkenone-SSTs at sites near Kamchatka in the Northwest Pacific, as well as in the western and eastern regions of the Bering Sea, and in the eastern North Pacific track the changes of Holocene summer insolation at 50°N, but at other sites in the western North Pacific, in the southern Okhotsk Sea, and the eastern Bering Sea they do not. In addition to insolation, other atmosphere and ocean climate drivers, such as sea ice distribution and changes in the position and activity of the Aleutian Low, may have systematically influenced the timing and magnitude of warming and cooling during the Holocene within the subarctic North Pacific. Periods of high sea ice extent in both the Okhotsk and Bering Seas may correspond to some periods of frequent or strong winter–spring dust storms in the Mongolian Gobi Desert, particularly one centered at ∼4–3 thousand years before present (kyr BP). Variation in storm activity in the Mongolian Gobi Desert region may reflect changes in the strength and positions of the Aleutian Low and Siberian High. We suggest that periods of eastward displacement or increased intensity of the Aleutian Low correspond with times of increased extent of sea ice in the western Okhotsk Sea and eastern Bering Sea.
A 320 Year Ice-Core Record of Atmospheric Hg Pollution in the Altai, Central Asia.
Eyrikh, Stella; Eichler, Anja; Tobler, Leonhard; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit
2017-10-17
Anthropogenic emissions of the toxic heavy metal mercury (Hg) have substantially increased atmospheric Hg levels during the 20th century compared to preindustrial times. However, on a regional scale, atmospheric Hg concentration or deposition trends vary to such an extent during the industrial period that the consequences of recent Asian emissions on atmospheric Hg levels are still unclear. Here we present a 320 year Hg deposition history for Central Asia, based on a continuous high-resolution ice-core Hg record from the Belukha glacier in the Siberian Altai, covering the time period 1680-2001. Hg concentrations and deposition fluxes start rising above background levels at the beginning of the 19th century due to emissions from gold/silver mining and Hg production. A steep increase occurs after the 1940s culminating during the 1970s, at the same time as the maximum Hg use in consumer products in Europe and North America. After a distinct decrease in the 1980s, Hg levels in the 1990s and beginning of the 2000s return to their maximum values, which we attribute to increased Hg emissions from Asia. Thus, rising Hg emissions from coal combustion and artisanal and small-scale gold mining (ASGM) in Asian countries determine recent atmospheric Hg levels in Central Asia, counteracting emission reductions due to control measures in Europe and North America.
Douglas, David C.
2010-01-01
The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement among models. High agreement also accompanies projections that the Chukchi Sea will be completely ice covered during February, March, and April at the end of the century. Large uncertainties, however, are associated with the timing and amount of partial ice cover during the intervening periods of melt and freeze. For the Bering Sea, median March ice extent is projected to be about 25 percent less than the 1979-1988 average by mid-century and 60 percent less by the end of the century. The ice-free season in the Bering Sea is projected to increase from its contemporary average of 5.5 months to a median of about 8.5 months by the end of the century. A 3-month longer ice- free season in the Bering Sea is attained by a 1-month advance in melt and a 2-month delay in freeze, meaning the ice edge typically will pass through the Bering Strait in May and January at the end of the century rather than June and November as presently observed.
Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing
NASA Astrophysics Data System (ADS)
McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.
2017-08-01
Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.
Evaluation of Intercomparisons of Four Different Types of Model Simulating TWP-ICE
NASA Technical Reports Server (NTRS)
Petch, Jon; Hill, Adrian; Davies, Laura; Fridlind, Ann; Jakob, Christian; Lin, Yanluan; Xie, Shaoecheng; Zhu, Ping
2013-01-01
Four model intercomparisons were run and evaluated using the TWP-ICE field campaign, each involving different types of atmospheric model. Here we highlight what can be learnt from having single-column model (SCM), cloud-resolving model (CRM), global atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based around the same field campaign. We also make recommendations for anyone planning further large multi-model intercomparisons to ensure they are of maximum value to the model development community. CRMs tended to match observations better than other model types, although there were exceptions such as outgoing long-wave radiation. All SCMs grew large temperature and moisture biases and performed worse than other model types for many diagnostics. The GAMs produced a delayed and significantly reduced peak in domain-average rain rate when compared to the observations. While it was shown that this was in part due to the analysis used to drive these models, the LAMs were also driven by this analysis and did not have the problem to the same extent. Based on differences between the models with parametrized convection (SCMs and GAMs) and those without (CRMs and LAMs), we speculate that that having explicit convection helps to constrain liquid water whereas the ice contents are controlled more by the representation of the microphysics.
The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange
NASA Astrophysics Data System (ADS)
Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.
2013-04-01
Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent years has the potential to influence greenhouse gas exchange across terrestrial ecosystems and the Arctic Ocean, but the overall impact remains unclear. In this study, we therefore try to reduce this uncertainty by addressing the influence of the decline in sea ice extent on all affected greenhouse gas fluxes in the high latitudes. Also, we will address the need for more research, on the ocean and on the land, to understand the impact of a lower sea ice extent on Arctic greenhouse gas exchange. References: Bates, N. R., Moran, S. B., Hansell, D. A. and Mathis, J. T.: An increasing CO2 sink in the Arctic Ocean due to sea-ice loss, Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028, 2006. Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., et al.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329(5991), 556-559, doi:10.1126/science.1189338, 2010. Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S., Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., et al.: Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nature Geosci., 5(5), 318-321, doi:10.1038/NGEO1452, 2012. Nomura, D., Yoshikawa-Inoue, H. and Toyota, T.: The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, vol. 58, pp. 418-426. 2006. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., et al.: Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946), 1355-1358, doi:10.1126/science.1173113, 2009. Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007. Schuur, E. A. G., Abbott, B. and Network, P. C.: High risk of permafrost thaw, Nature, 480(7375), 32-33, 2011. Screen, J. A., Deser, C. and Simmonds, I.: Local and remote controls on observed Arctic warming, Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598, 2012. Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D. and Gustafsson, O.: Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221, 2010.
Large Decadal Decline of the Arctic Multiyear Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2011-01-01
The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.
Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea
NASA Technical Reports Server (NTRS)
Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.
2011-01-01
Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.
Antarctic ice-sheet loss driven by basal melting of ice shelves.
Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L
2012-04-25
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.
Experimental Investigation of Ice Accretion Effects on a Swept Wing
NASA Technical Reports Server (NTRS)
Wong, S. C.; Vargas, M.; Papadakis, M.; Yeong, H. W.; Potapczuk, M.
2005-01-01
An experimental investigation was conducted to study the effects of 2-, 5-, 10-, and 22.5-min ice accretions on the aerodynamic performance of a swept finite wing. The ice shapes tested included castings of ice accretions obtained from icing tests at the NASA Glenn Icing Research Tunnel (IRT) and simulated ice shapes obtained with the LEWICE 2.0 ice accretion code. The conditions used for the icing tests were selected to provide five glaze ice shapes with complete and incomplete scallop features and a small rime ice shape. The LEWICE ice shapes were defined for the same conditions as those used in the icing tests. All aerodynamic performance tests were conducted in the 7- x 10-ft Low-Speed Wind Tunnel Facility at Wichita State University. Six component force and moment measurements, aileron hinge moments, and surface pressures were obtained for a Reynolds number of 1.8 million based on mean aerodynamic chord and aileron deflections in the range of -15o to 20o. Tests were performed with the clean wing, six IRT ice shape castings, seven smooth LEWICE ice shapes, and seven rough LEWICE ice shapes. Roughness for the LEWICE ice shapes was simulated with 36-size grit. The experiments conducted showed that the glaze ice castings reduced the maximum lift coefficient of the clean wing by 11.5% to 93.6%, while the 5-min rime ice casting increased maximum lift by 3.4%. Minimum iced wing drag was 133% to 3533% greater with respect to the clean case. The drag of the iced wing near the clean wing stall angle of attack was 17% to 104% higher than that of the clean case. In general, the aileron remained effective in changing the lift of the clean and iced wings for all angles of attack and aileron deflections tested. Aileron hinge moments for the iced wing cases remained within the maximum and minimum limits defined by the clean wing hinge moments. Tests conducted with the LEWICE ice shapes showed that in general the trends in aerodynamic performance degradation of the wing with the simulated ice shapes were similar to those obtained with the IRT ice shape castings. However, in most cases, the ice castings resulted in greater aerodynamic performance losses than those obtained with the LEWICE ice shapes. For the majority of the LEWICE ice shapes, the addition of 36-size grit roughness to the smooth ice shapes increased aerodynamic performance losses.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-05-01
Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-01-01
Abstract Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear–surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738
Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L
2016-06-01
Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
A Quantitative Proxy for Sea-Ice Based on Diatoms: A Cautionary Tale.
NASA Astrophysics Data System (ADS)
Nesterovich, A.; Caissie, B.
2016-12-01
Sea ice in the Polar Regions supports unique and productive ecosystems, but the current decline in the Arctic sea ice extent prompts questions about previous sea ice declines and the response of ice related ecosystems. Since satellite data only extend back to 1978, the study of sea ice before this time requires a proxy. Being one of the most productive, diatom-dominated regions in the world and having a wide range of sea ice concentrations, the Bering and Chukchi seas are a perfect place to find a relationship between the presence of sea ice and diatom community composition. The aim of this work is to develop a diatom-based proxy for the sea ice extent. A total of 473 species have been identified in 104 sediment samples, most of which were collected on board the US Coast Guard Cutter Healy ice breaker (2006, 2007) and the Norseman II (2008). The study also included some of the archived diatom smear slides made from sediments collected in 1969. The assemblages were compared to satellite-derived sea ice extent data averaged over the 10 years preceding the sampling. Previous studies in the Arctic and Antarctic regions demonstrated that the Generalized Additive Model (GAM) is one of the best choices for proxy construction. It has the advantage of using only several species instead of the whole assemblage, thus including only sea ice-associated species and minimizing the noise created by species responding to other environmental factors. Our GAM on three species (Connia compita, Fragilariopsis reginae-jahniae, and Neodenticula seminae) has low standard deviation, high level of explained variation, and holds under the ten-fold cross-validation; the standard residual analysis is acceptable. However, a spatial residual analysis revealed that the model consistently over predicts in the Chukchi Sea and under predicts in the Bering Sea. Including a spatial model into the GAM didn't improve the situation. This has led us to test other methods, including a non-parametric model Random Forests. All models showed the same consistent pattern in the residuals. We conclude that ecosystems of the Bering and Chukchi seas respond differently to sea ice concentration and an integrated proxy must take it into account.
Moreau, Ludovic; Lachaud, Cédric; Théry, Romain; Predoi, Mihai V; Marsan, David; Larose, Eric; Weiss, Jérôme; Montagnat, Maurine
2017-11-01
The decline of Arctic sea ice extent is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that is not reproduced by climate models. To improve these models, relying on comprehensive and accurate field data is essential. While sea ice extent and concentration are accurately monitored from microwave imagery, an accurate measure of its thickness is still lacking. Moreover, measuring observables related to the mechanical behavior of the ice (such as Young's modulus, Poisson's ratio, etc.) could provide better insights in the understanding of sea ice decline, by completing current knowledge so far acquired mostly from radar and sonar data. This paper aims at demonstrating on the laboratory scale that these can all be estimated simultaneously by measuring seismic waves guided in the ice layer. The experiment consisted of leaving a water tank in a cold room in order to grow an ice layer at its surface. While its thickness was increasing, ultrasonic guided waves were generated with a piezoelectric source, and measurements were subsequently inverted to infer the thickness and mechanical properties of the ice with very good accuracy.
NASA Astrophysics Data System (ADS)
Mysak, L. A.; Manak, D. K.; Marsden, R. F.
1990-12-01
Two independent ice data sets from the Greenland and Labrador Seas have been analyzed for the purpose of characterizing interannual and decadal time scale sea-ice extent anomalies during this century. Sea-ice concentration data for the 1953 1984 period revealed the presence of a large positive anomaly in the Greenland Sea during the 1960s which coincided with the “great salinity anomaly”, an upper-ocean low-salinity water mass that was observed to travel cyclonically around the northern North Atlantic during 1968 1982. This ice anomaly as well as several smaller ones propagated into the Labrador Sea and then across to the Labrador and east Newfoundland coast, over a period of 3 to 5 years. A complex empirical orthogonal function analysis of the same data also confirmed this propagation phenomenon. An inverse relation between sea-ice and salinity anomalies in the Greenland-Labrador Sea region was also generally found. An analysis of spring and summer ice-limit data obtained from Danish Meteorological Institute charts for the period 1901 1956 indicated the presence of heavy ice conditions (i.e., positive ice anomalies) in the Greenland Sea during 1902 1920 and in the late 1940s, and generally negative ice anomalies during the 1920s and 1930s. Only limited evidence of the propagation of Greenland Sea ice anomalies into the Labrador Sea was observed, however, probably because the data were from the ice-melt seasons. On the other hand, several large ice anomalies in the Greenland Sea occurred 2 3 years after large runoffs (in the early 1930s and the late 1940s) from northern Canada into the western Arctic Ocean. Similarly, a large runoff into the Arctic during 1964 1966 preceded the large Greenland Sea ice anomaly of the 1960s. These facts, together with recent evidence of ‘climatic jumps’ in the Northern Hemisphere tropospheric circulation, suggest the existence of an interdecadal self-sustained climate cycle in the Arctic. In the Greenland Sea, this cycle is characterized by a state of large sea-ice extent overlying an upper layer of cool, relatively fresh water that does not convectively overturn, which alternates every 10 15 years with a state of small sea-ice extent and relatively warm saline surface water that frequently overturns.
NASA Technical Reports Server (NTRS)
Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.
1995-01-01
As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. Thinner ice amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner ice to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater sea ice extent in the control run, which provides more opportunity for sea ice reduction. An experiment with sea ice not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of sea ice on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to sea ice variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the sea ice impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying sea level increases of varying magnitude or no change. These results highlight the importance of properly constraining the sea ice response to climate perturbations, necessitating the use of more realistic sea ice and ocean models.
Andrews, John T.; Darby, D.; Eberle, D.; Jennings, A.E.; Moros, M.; Ogilvie, A.
2009-01-01
An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative x-ray diffraction analysis of the < 2 mm sediment fraction was undertaken on 16 cores from around Iceland. The quartz weight (wt.)% estimates from each core were integrated into 250-yr intervals between ????'0.05 and 11.7 cal. ka BP. Median quartz wt.% varied between 0.2 and 3.4 and maximum values ranged between 2.8 and 11.8 wt.%. High values were attained in the early Holocene and minimum values were reached 6 - 7 cal. ka BP. Quartz wt.% then rose steadily during the late Holocene. Our data exhibit no correlation with counts on haematite-stained quartz (HSQ) grains from VM129-191 west of Ireland casting doubt on the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ???1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode. ?? 2009 SAGE Publications.
The Bossons glacier protects Europe's summit from erosion
NASA Astrophysics Data System (ADS)
Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.
2013-08-01
The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.
Circumpolar patterns of ground-fast lake ice and landscape development
NASA Astrophysics Data System (ADS)
Bartsch, Annett; Pointner, Georg; Leibmann, Marina; Dvornikov, Yuri; Khomutov, Artem
2017-04-01
Shallow lakes in the Arctic are often associated with thermokarst processes which are characteristic for permafrost environments. They partially or completely freeze-up during winter time what can be observed from space using Synthetic Aperture Radar (SAR) data. Spatial patterns of ground-fast and floating ice relate to geomorphological and hydrological processes, but no circumpolar account of this phenomenon is currently available due to challenges when dealing with the varying observation geometry typical for SAR. An approach using ENVISAT ASAR Wide Swath data (approximately 120 m resolution) has been developed supported by bathymetric measurements in Siberia and eventually applied across the entire Arctic for late winter 2008. In total about 2 Million lake objects have been analyzed considering the boundaries of the Last Glacial Maximum, permafrost zones and soil organic carbon content. Distinct patterns of ground-fast lake ice fraction can be found across the Arctic. Clusters of variable fractions of ground-fast ice occur especially in Yedoma regions of Eastern Siberia and Alaska. This reflects the nature of thaw lake dynamics. Analyses of lake depth measurements from several sites (Alaskan North Slope, Richards Island in Canada, Yamal Peninsula and Lena Delta) suggest that the used method yields the potential to utilize ground-fast lake ice information over larger areas with respect to landscape development, but results need to be treated with care, specifically for larger lakes and along river courses. A combination of general lake features and ground-fast ice fraction may lead to an advanced understanding of landscape patterns and development. Ground-fast ice fraction information may support to some extent the identification of landscape units, for example areas of adjacent lakes with similar patterns (terraces) or areas with mixed ground-fast fractions which indicate different lake development stages. This work was supported by the Austrian Science Fund under Grant [I 1401] and the Russian Foundation for Basic Research Grant 13-05-91001-ANF-a (Joint Russian-Austrian project COLD-Yamal).
Reducing Spread in Climate Model Projections of a September Ice-Free Arctic
NASA Technical Reports Server (NTRS)
Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun
2013-01-01
This paper addresses the specter of a September ice-free Arctic in the 21st century using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that large spread in the projected timing of the September ice-free Arctic in 30 CMIP5 models is associated at least as much with different atmospheric model components as with initial conditions. Here we reduce the spread in the timing of an ice-free state using two different approaches for the 30 CMIP5 models: (i) model selection based on the ability to reproduce the observed sea ice climatology and variability since 1979 and (ii) constrained estimation based on the strong and persistent relationship between present and future sea ice conditions. Results from the two approaches show good agreement. Under a high-emission scenario both approaches project that September ice extent will drop to approx. 1.7 million sq km in the mid 2040s and reach the ice-free state (defined as 1 million sq km) in 2054-2058. Under a medium-mitigation scenario, both approaches project a decrease to approx.1.7 million sq km in the early 2060s, followed by a leveling off in the ice extent.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of... CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than... CFR 94.8, as applicable, for all pollutants, for the same displacement and maximum engine power: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of... CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than... CFR 94.8, as applicable, for all pollutants, for the same displacement and maximum engine power: (1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of... CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than... CFR 94.8, as applicable, for all pollutants, for the same displacement and maximum engine power: (1...
A review of sea ice proxy information from polar ice cores
NASA Astrophysics Data System (ADS)
Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.
2013-11-01
Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea ice and its role in both long and short-term climate changes.
Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology
ERIC Educational Resources Information Center
Bock, Judith K.
2011-01-01
The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…
Tipping elements in the Arctic marine ecosystem.
Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors
2012-02-01
The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.
DOT National Transportation Integrated Search
2013-09-01
Icy roads lead to treacherous driving conditions in regions of the U.S. resulting in over 450 fatalities per year. Deicing chemicals, such as rock salt help to reduce ice formation on roadways to an extent, however also result in detrimental effects ...
NASA Astrophysics Data System (ADS)
Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.
2017-12-01
1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the water isotope. Na+ is maximal immediately after the local maximum of the water isotope. The deepest age was estimated to be around 1940 AD. 4. Example of results In the inland area, the annual average surface mass balance decreased from 1450 to 1850 AD, but it has increased since 1850 AD. The annual mass balance of coastal H15 is consistent with the result of snow stake measurement.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.
2013-12-01
The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica rooted in ground material and exposed along a shear plane in the GrIS are ~170-390 cal yr BP. Four ages of plant fragments within ice in a shear plane in the NIC margin are ~600-950 cal yr BP. Since these organic remains have been transported from beneath the GrIS and NIC, respectively, they indicate times of smaller than present ice extents. Together these plants provide evidence that the northwestern GrIS was smaller than at present at ~4600-4800 and ~170-390 cal yr BP. Advance to the modern GrIS extent was likely underway at of after ~170 cal yr BP. NIC was smaller than at present at ~600-950 cal yr. Our ongoing research is investigating the climatic conditions during these times and the relationship of these restricted ice extents to those documented elsewhere on Greenland as well as on Baffin Island.
Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2
NASA Astrophysics Data System (ADS)
Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae
2014-05-01
Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2 data were used to identify leads. Rule-based machine learning approaches such as random forest and See5.0 and human-derived decision trees were used to produce rules to identify leads. With the freeboard height calculated from the lead analysis, sea ice thickness was finally estimated using the Archimedes' buoyancy principle with density of sea ice and sea water and the height of freeboard. The results were compared with Arctic sea ice thickness distribution retrieved from CryoSat-2 data by Alfred-Wegener-Institute.
Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica
NASA Technical Reports Server (NTRS)
Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.
2016-01-01
A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.
Just Answer the Question: The Cryosphere in the Public Consciousness
NASA Astrophysics Data System (ADS)
Beitler, J.; Serreze, M. C.; Meier, W.; Scambos, T.; Schaefer, K. M.
2012-12-01
The National Snow and Ice Data Center has helped tell the story of climate change as evidenced by dramatic changes in the cryosphere, notably the strong downward trend in summer Arctic sea ice cover. Today the state of the cryosphere is closely followed: in the media, by more than a million visitors annually to our Arctic Sea Ice News and Analysis, and through blogs and other sites that pick up and discuss our reports. The idea of sea ice decline as an indicator of climate change has entered the consciousness of the public. We engage a wide audience: journalists, meteorologists, skeptics, teachers, ordinary citizens, and scientists in other fields. Skeptic, neutral, or believer, they turn to us for information. While they do not always agree with our findings, we think they perceive us as honest brokers of scientific information—real progress from the days when scientists were perceived as a conspiracy of grant-chasers. NSIDC scientists have even been invited to do guest posts on skeptic blogs. What makes our communications work? What are the roles of old-fashioned communication strategies, recent climate communications research, social media, and solid scientific information? We track the shift in public perceptions of our data and research to present lessons learned over the last seven years, strategies that scientists can adopt now, and fodder for communications research.Arctic sea ice extent as of August 7, 2012, compared to the 1979-2000 median (orange line). Arctic sea ice extent as of August 7, 2012, along with daily ice extent data for the 2011 and for 2007, the record low year.
Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.
2016-01-01
Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.
The Southern Glacial Maximum 65,000 years ago and its Unfinished Termination
NASA Astrophysics Data System (ADS)
Schaefer, Joerg M.; Putnam, Aaron E.; Denton, George H.; Kaplan, Michael R.; Birkel, Sean; Doughty, Alice M.; Kelley, Sam; Barrell, David J. A.; Finkel, Robert C.; Winckler, Gisela; Anderson, Robert F.; Ninneman, Ulysses S.; Barker, Stephen; Schwartz, Roseanne; Andersen, Bjorn G.; Schluechter, Christian
2015-04-01
Glacial maxima and their terminations provide key insights into inter-hemispheric climate dynamics and the coupling of atmosphere, surface and deep ocean, hydrology, and cryosphere, which is fundamental for evaluating the robustness of earth's climate in view of ongoing climate change. The Last Glacial Maximum (LGM, ∼26-19 ka ago) is widely seen as the global cold peak during the last glacial cycle, and its transition to the Holocene interglacial, dubbed 'Termination 1 (T1)', as the most dramatic climate reorganization during this interval. Climate records show that over the last 800 ka, ice ages peaked and terminated on average every 100 ka ('100 ka world'). However, the mechanisms pacing glacial-interglacial transitions remain controversial and in particular the hemispheric manifestations and underlying orbital to regional driving forces of glacial maxima and subsequent terminations remain poorly understood. Here we show evidence for a full glacial maximum in the Southern Hemisphere 65.1 ± 2.7 ka ago and its 'Unfinished Termination'. Our 10Be chronology combined with a model simulation demonstrates that New Zealand's glaciers reached their maximum position of the last glacial cycle during Marine Isotope Stage-4 (MIS-4). Southern ocean and greenhouse gas records indicate coeval peak glacial conditions, making the case for the Southern Glacial Maximum about halfway through the last glacial cycle and only 15 ka after the last warm period (MIS-5a). We present the hypothesis that subsequently, driven by boreal summer insolation forcing, a termination began but remained unfinished, possibly because the northern ice sheets were only moderately large and could not supply enough meltwater to the North Atlantic through Heinrich Stadial 6 to drive a full termination. Yet the Unfinished Termination left behind substantial ice on the northern continents (about 50% of the full LGM ice volume) and after another 45 ka of cooling and ice sheet growth the earth was at inter-hemispheric Last Glacial Maximum configuration, when similar orbital forcing hit maximum-size northern ice sheets and ushered in T1 and thus the ongoing interglacial. This argument highlights the critical role of full glacial conditions in both hemispheres for terminations and implies that the Southern Hemisphere climate could transition from interglacial to full glacial conditions in about 15,000 years, while the Northern Hemisphere and its continental ice-sheets required half a glacial cycle.
The South Circumpolar Dorsa Argentea Formation and the Noachian-Hesperian Climate of Mars
NASA Astrophysics Data System (ADS)
Head, J. W., III; Scanlon, K. E.; Fastook, J.; Wordsworth, R. D.
2017-12-01
The Dorsa Argentea Formation (DAF), a set of geomorphologic units covering 1.5 · 106 km2 in the south circumpolar region of Mars with lobes extending along the 0° and 90°W meridians, has been interpreted as the remnants of a large Noachian-Hesperian ice sheet. Determining the extent and thermal regime of the DAF ice sheet, and the controls on its development, can therefore provide insight into the ancient martian climate. We used the Laboratoire de Météorologie Dynamique early Mars global climate model (GCM) and the University of Maine Ice Sheet Model (UMISM) glacial flow model to constrain climates that would permit both development of a south polar ice sheet of DAF-like size and shape and melting consistent with observed eskers and channels. An asymmetric south polar cold trap is a robust feature of GCM simulations with spin-axis obliquity of 15° or 25° and a 600 - 1000 mb CO2 atmosphere. The shape results from the strong dependence of surface temperature on altitude in a thicker atmosphere. Of the scenarios considered here, the shape and extent of the modeled DAF ice sheet in UMISM simulations most closely match those of the DAF when the surface water ice inventory of Mars is 20 · 106 km3 and obliquity is 15°. In climates warmed only by CO2, basal melting does not occur except when the ice inventory is larger than most estimates for early Mars. In this case, the extent of the ice sheet is also much larger than that of the DAF, and melting is more widespread than observed landforms indicate. When an idealized greenhouse gas warms the surface by at least 20° near the poles relative to CO2 alone, the extent of the ice sheet is less than that of the DAF, but strong basal melting occurs, with maxima in the locations where eskers and channels are observed. We conclude that the glaciofluvial landforms in the DAF implicate warming by a gas other than CO2 alone. Previously published exposure ages of eskers in the DAF indicate that eskers were being exposed as activity was ceasing in the equatorial valley networks, suggesting that the warming that allowed basal melting of the DAF ice sheet was broadly contemporaneous with development of the valley networks. Elevated Tharsis topography is required to produce an ice sheet with the shape of the DAF. Thus, our results are not consistent with the DAF (and the valley networks) forming before Tharsis, as recently suggested.
Large Decadal Decline of the Arctic Multiyear Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2012-01-01
The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.
NASA Astrophysics Data System (ADS)
Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.
2014-01-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties to assess if soil profile characteristics and pattern of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significant lower mass activities of FRNs are found in soils on the moraines than on colluviums. Variations of ERNs activities in the valleys are related to characteristics soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.
NASA Astrophysics Data System (ADS)
Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.
2014-06-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. Duringmore » the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').« less
Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier
2010-01-01
The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.
NASA Astrophysics Data System (ADS)
Moritz, R. E.
2005-12-01
The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.
NASA Technical Reports Server (NTRS)
Wiesnet, D. R.; Mcginnis, D. F.; Forsyth, D. G.
1974-01-01
Three snow-extent maps of the Lake Ontario drainage basin were prepared from NOAA-2 satellite visible band images during the International Field Year for the Great Lakes. These maps are discussed and the satellite data are evaluated for snow-extent mapping. The value of ERTS-1 imagery and digital data is also discussed in relation to the Lake Ontario basin studies. ERTS-1 MSS data are excellent for ice identification and analysis but are not useful for forecasting where timely receipt of data is imperative. NOAA-2 VHRR data are timely but the lower resolution of the VHRR makes identification of certain ice features difficult. NOAA-2 VHRR is well suited for snow-extent maps and thermal maps of large areas such as the 19,000 sq-km Lake Ontario basin.
NASA Astrophysics Data System (ADS)
Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge
2017-04-01
Glacial geologists generate empirical reconstructions of former ice-sheet dynamics by combining evidence from the preserved record of glacial landforms (e.g. end moraines, lineations) and sediments with chronological evidence (mainly numerical dates derived predominantly from radiocarbon, exposure and luminescence techniques). However the geomorphological and sedimentological footprints and chronological data are both incomplete records in both space and time, and all have multiple types of uncertainty associated with them. To understand ice sheets' response to climate we need numerical models of ice-sheet dynamics based on physical principles. To test and/or constrain such models, empirical reconstructions of past ice sheets that capture and acknowledge all uncertainties are required. In 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to produce an empirical reconstruction of the evolution of the last Eurasian ice sheets, (including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets) that is fully documented, specified in time, and includes uncertainty estimates. Over 5000 dates relevant to constraining ice build-up and retreat were assessed for reliability and used together with published ice-sheet margin positions based on glacial geomorphology to reconstruct time-slice maps of the ice sheets' extent. The DATED maps show synchronous ice margins with maximum-minimum uncertainty bounds for every 1000 years between 25-10 kyr ago. In the first version of results (DATED-1; Hughes et al. 2016) all uncertainties (both quantitative and qualitative, e.g. precision and accuracy of numerical dates, correlation of moraines, stratigraphic interpretations) were combined based on our best glaciological-geological assessment and expressed in terms of distance as a 'fuzzy' margin. Large uncertainties (>100 km) exist; predominantly across marine sectors and other locations where there are spatial gaps in the dating record (e.g. the timing of coalescence and separation of the Scandinavian and Svalbard-Barents-Kara ice sheets) but also in well-studied areas due to conflicting yet apparently equally robust data. In the four years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly ( 1000 new dates). Here, we present work towards the updated version of results, DATED-2, that attempts to further reduce and explicitly report all uncertainties inherent in ice sheet reconstructions. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142
NASA Technical Reports Server (NTRS)
Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun
2015-01-01
The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.
Observations reveal external driver for Arctic sea-ice retreat
NASA Astrophysics Data System (ADS)
Notz, Dirk; Marotzke, Jochem
2012-04-01
The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.
NASA Technical Reports Server (NTRS)
Fitch, B. W.; Coulson, K. L.
1983-01-01
Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.
Fitch, B W; Coulson, K L
1983-01-01
Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.
Ecology of southern ocean pack ice.
Brierley, Andrew S; Thomas, David N
2002-01-01
Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.
Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover
2015-11-30
information from the PIOMAS model [J. Zhang], melt pond coverage from MODIS [Rösel et al., 2012], and ice-age estimates [Maslanik et al., 2011] to...determined from MODIS satellite data using an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc- 6-431-2012. PUBLICATIONS Carmack...from MODIS , and ice-age estimates to this dataset. We have used this extented dataset to build a climatology of the partitioning of solar heat between
2009-02-01
Arctic Sea Ice Extent6 Reduced ice pack area translates to less reflected solar energy, which further accelerates the ongoing melting process . Light... process , creating a vicious cycle where melting ice causes the remaining ice to melt faster.7 Modelers previously agreed that the Arctic Ocean could be...freight ports stand to benefit by shipping through the Arctic region.10 For example, an ocean voyage from Yokohama, Japan, to Hamburg, Germany via the
NASA Astrophysics Data System (ADS)
Divoky, G.; Druckenmiller, M. L.
2016-02-01
With major decreases in pan-Arctic summer sea ice extent steadily underway, the Beaufort Sea has been nearly ice-free in five of the last eight summers. This loss of a critical arctic marine habitat and the concurrent warming of the recently ice-free waters could potentially cause major changes in the biological oceanography of the Beaufort Sea and alter the distribution, abundance and condition of the region's upper trophic level predators that formerly relied on prey associated with sea ice or cold (<2°C) surface waters. Arctic cod (Boreogadus saida), the primary forage fish for seabirds in the Beaufort Sea, is part of the cryopelagic fauna associated with sea ice and is also found in adjacent ice-free waters. In the extreme western Beaufort Sea near Cooper Island, Arctic cod availability to breeding Black Guillemots (Cepphus grylle), a diving seabird, has declined since 2002. Guillemots are a good indicator of Arctic cod availability in surface waters and the upper water column as they feed at depths of 1-20m. Currently, when sea ice is absent from the nearshore and SST exceeds 4°C, guillemots are observed to seasonally shift from Arctic cod to nearshore demersal prey, with a resulting decrease in nestling survival and quality. Arctic cod is the primary prey for many of the seabirds utilizing the Beaufort Sea as a post-breeding staging area and migratory corridor in late summer and early fall. The loss of approximately 200-300 thousand sq km of summer sea ice habitat in recent years could be expected to affect the distribution, abundance, and movements of these species as there are few alternative fish resources in the region. We examine temporal and spatial variation in August sea ice extent and SST in the Beaufort Sea to determine the regions, periods and bird species that are potentially most affected as the Beaufort Sea transitions to becoming regularly ice-free in late summer.
Variability and Trends in the Arctic Sea Ice Cover: Results from Different Techniques
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert
2017-01-01
Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.
NASA Astrophysics Data System (ADS)
Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron
2017-04-01
Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.
Assessment of Greenland Outlet Glacier Albedo Variability
NASA Astrophysics Data System (ADS)
Stroeve, J.
2003-04-01
Recent studies have shown that the coastal regions of the Greenland ice sheet are thinning rapidly. Analysis of passive microwave satellite data since 1979 have revealed a corresponding positive trend in the areal extent of melt. This trend was emphasized in 2002, when the total area of surface melt on the Greenland ice sheet surpased the maximum melt extent from the past 24 years by more than 9%. Increases in coastal temperatures have certainly contributed to melting near the margins. However, the high rate of thinning in the coastal regions, up to several m/yr, cannot be explained by increases in temperatures alone. Some of the thinning is likely creep thinning resulting from discharge velocities that exceed balance velocities. In order to better understand the role of ablation in the recent thinning rates, the variability in the surface albedo at four outlet glaciers is analyzed from 1981 to 2000 using the AVHRR Polar Pathfinder data set. The four glaciers analyzed are the following: Storstrommen (77N, 23W), Kangerdlugssuaq (68N, 33W), Petermann (81N, 62W) and Jakobshavn (69N, 50W). Clear sky albedo changes over time from May through September for the period 1981-2000 are presented. These months are chosen in order to capture the full cycle of melt onset and refreeze. The albedo record at the glaciers shows large seasonal and interannual variability. Resuls indicate a steady decrease in surface albedo during the summer months from 1981 to 2000, particularly in the Jakobshavn drainage basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu
Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition ismore » amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.« less
A New Discrete Element Sea-Ice Model for Earth System Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Adrian Keith
Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooledmore » water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).« less
Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria
2014-11-14
Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.
Arctic sea ice variability in the context of recent atmospheric circulation trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deser, C.; Walsh, J.E.; Timlin, M.S.
Sea ice is a sensitive component of the climate system, influenced by conditions in both the atmosphere and ocean. Variations in sea ice may in turn modulate climate by altering the surface albedo; the exchange of heat, moisture, and momentum between the atmosphere and ocean; and the upper ocean stratification in areas of deep water formation. The surface albedo effect is considered to be one of the dominant factors in the poleward amplification of global warming due to increased greenhouse gas concentrations simulated in many climate models. Forty years (1958--97) of reanalysis products and corresponding sea ice concentration data aremore » used to document Arctic sea ice variability and its association with surface air temperature (SAT) and sea level pressure (SLP) throughout the Northern Hemisphere extratropics. The dominant mode of winter (January-March) sea ice variability exhibits out-of-phase fluctuations between the western and eastern North Atlantic, together with a weaker dipole in the North Pacific. The time series of this mode has a high winter-to-winter autocorrelation (0.69) and is dominated by decadal-scale variations and a longer-term trend of diminishing ice cover east of Greenland and increasing ice cover west of Greenland. Associated with the dominant pattern of winter sea ice variability are large-scale changes in SAT and SLP that closely resemble the North Atlantic oscillation. The associated SAT and surface sensible and latent heat flux anomalies are largest over the portions of the marginal sea ice zone in which the trends of ice coverage have been greatest, although the well-documented warming of the northern continental regions is also apparent. the temporal and spatial relationships between the SLP and ice anomaly fields are consistent with the notion that atmospheric circulation anomalies force the sea ice variations. However, there appears to be a local response of the atmospheric circulation to the changing sea ice variations. However, there appears to be a local response of the atmospheric circulation to the changing sea ice cover east of Greenland. Specifically, cyclone frequencies have increased and mean SLPs have decreased over the retracted ice margin in the Greenland Sea, and these changes differ from those associated directly with the North Atlantic oscillation. The dominant mode of sea ice variability in summer (July-September) is more spatially uniform than that in winter. Summer ice extent for the Arctic as a whole has exhibited a nearly monotonic decline (-4% decade{sup {minus}1}) during the past 40 yr. Summer sea ice variations appear to be initiated by atmospheric circulation anomalies over the high Arctic in late spring. Positive ice-albedo feedback may account for the relatively long delay (2--3 months) between the time of atmospheric forcing and the maximum ice response, and it may have served to amplify the summer ice retreat.« less
Modelling sea ice formation in the Terra Nova Bay polynya
NASA Astrophysics Data System (ADS)
Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.
2017-02-01
Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to realistic polynya extent estimates. The model-derived polynya extent has been validated by comparing the modelled sea ice concentration against MODIS high resolution satellite images, confirming that the model is able to reproduce reasonably well the TNB polynya evolution in terms of both shape and extent.
Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong
2018-04-05
The threshold of sea ice concentration (SIC) is the basis for accurately calculating sea ice extent based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea ice edge used in previous studies and released sea ice products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea ice edge during summer in recent years, we extracted sea ice edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea ice product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea ice ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea ice edge based on ice-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea ice edge based on ice-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted ice edge pixels for the same days. The average SIC of 31% at the sea ice edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea ice extent calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea ice under the rapidly changing Arctic.
Merz, Clayton; Catchen, Julian M; Hanson-Smith, Victor; Emerson, Kevin J; Bradshaw, William E; Holzapfel, Christina M
2013-01-01
Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.
The early rise and late demise of New Zealand’s last glacial maximum
Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy
2014-01-01
Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30–20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28–16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26–19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19–16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28–20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171
The early rise and late demise of New Zealand's last glacial maximum.
Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy
2014-08-12
Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30-20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28-16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26-19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19-16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28-20 ka, and gradual deglaciation until at least 15 ka.
Evaluation of factors affecting ice forces at selected bridges in South Dakota
Niehus, Colin A.
2002-01-01
During 1998-2002, the U.S. Geological Survey, in cooperation with the South Dakota Department of Transportation (SDDOT), conducted a study to evaluate factors affecting ice forces at selected bridges in South Dakota. The focus of this ice-force evaluation was on maximum ice thickness and ice-crushing strength, which are the most important variables in the SDDOT bridge-design equations for ice forces in South Dakota. Six sites, the James River at Huron, the James River near Scotland, the White River near Oacoma/Presho, the Grand River at Little Eagle, the Oahe Reservoir near Mobridge, and the Lake Francis Case at the Platte-Winner Bridge, were selected for collection of ice-thickness and ice-crushing-strength data. Ice thickness was measured at the six sites from February 1999 until April 2001. This period is representative of the climate extremes of record in South Dakota because it included both one of the warmest and one of the coldest winters on record. The 2000 and 2001 winters were the 8th warmest and 11th coldest winters, respectively, on record at Sioux Falls, South Dakota, which was used to represent the climate at all bridges in South Dakota. Ice thickness measured at the James River sites at Huron and Scotland during 1999-2001 ranged from 0.7 to 2.3 feet and 0 to 1.7 feet, respectively, and ice thickness measured at the White River near Oacoma/Presho site during 2000-01 ranged from 0.1 to 1.5 feet. At the Grand River at Little Eagle site, ice thickness was measured at 1.2 feet in 1999, ranged from 0.5 to 1.2 feet in 2000, and ranged from 0.2 to 1.4 feet in 2001. Ice thickness measured at the Oahe Reservoir near Mobridge site ranged from 1.7 to 1.8 feet in 1999, 0.9 to 1.2 feet in 2000, and 0 to 2.2 feet in 2001. At the Lake Francis Case at the Platte-Winner Bridge site, ice thickness ranged from 1.2 to 1.8 feet in 2001. Historical ice-thickness data measured by the U.S. Geological Survey (USGS) at eight selected streamflow-gaging stations in South Dakota were compiled for 1970-97. The gaging stations included the Grand River at Little Eagle, the White River near Oacoma, the James River near Scotland, the James River near Yankton, the Vermillion River near Wakonda, the Vermillion River near Vermillion, the Big Sioux River near Brookings, and the Big Sioux River near Dell Rapids. Three ice-thickness-estimation equations that potentially could be used for bridge design in South Dakota were selected and included the Accumulative Freezing Degree Day (AFDD), Incremental Accumulative Freezing Degree Day (IAFDD), and Simplified Energy Budget (SEB) equations. These three equations were evaluated by comparing study-collected and historical ice-thickness measurements to equation-estimated ice thicknesses. Input data required by the equations either were collected or compiled for the study or were obtained from the National Weather Service (NWS). An analysis of the data indicated that the AFDD equation best estimated ice thickness in South Dakota using available data sources with an average variation about the measured value of about 0.4 foot. Maximum potential ice thickness was estimated using the AFDD equation at 19 NWS stations located throughout South Dakota. The 1979 winter (the coldest winter on record at Sioux Falls) was the winter used to estimate the maximum potential ice thickness. The estimated maximum potential ice thicknesses generally are largest in northeastern South Dakota at about 3 feet and are smallest in southwestern and south-central South Dakota at about 2 feet. From 1999 to 2001, ice-crushing strength was measured at the same six sites where ice thickness was measured. Ice-crushing-strength measurements were done both in the middle of the winter and near spring breakup. The maximum ice-crushing strengths were measured in the mid- to late winter before the spring thaw. Measured ice-crushing strengths were much smaller near spring breakup. Ice-crushing strength measured at the six sites
NASA Astrophysics Data System (ADS)
Matthews, J. B.; Matthews, J. B. R.
2014-01-01
This is the second of two papers on observational timeseries of top of ocean heat capture. The first reports hourly and daily meridional central tropical Pacific top 3 m timeseries showing high Southern Hemisphere evaporation (2.67 m yr-1) and Northern Hemisphere trapped heat (12 MJ m-2 day-1). We suggested that wind drift/geostrophic stratified gyre circulation transported warm water to the Arctic and led to three phases of Arctic basal ice melt and fluxes of brackish nutrient-rich waters to north Atlantic on centennial timescales. Here we examine daily top metre 1904-2012 timeseries at Isle of Man west coast ~54° N for evidence of tropical and polar surface waters. We compare these to Central England (CET) daily land-air temperatures and to Arctic floating ice heat content and extent. We find three phases of ocean surface heating consistent with basal icemelt buffering greenhouse gas warming until a regime shift post-1986 led to the modern surface temperature rise of ~1 °C in 20 yr. Three phases were: warming +0.018 °C yr-1 from 1904-1939, slight cooling -0.002 °C yr-11940-86 and strong warming +0.037 °C yr-1 1986-2012. For the same periods CET land-air showed: warming +0.015 °C yr-1, slight cooling -0.004 °C yr-1, about half SST warming at +0.018 °C yr-1. The mid-century cooling and a 1959/1963 hot/cold event is consistent with sunspot/solar radiation maximum 1923-2008 leading to record volumes of Arctic ice meltwater and runoff that peaked in 1962/3 British Isles extreme cold winter. The warming Arctic resulted in wind regime and surface water regime shifts post 1986. This coincides with the onset of rapid Arctic annual ice melt. Continued heat imbalance is likely to lead to tidewater glacier basal icemelt and future sealevel rise after remaining relatively stable over 4000 yr. Our work needs confirmation by further fieldwork concentrating on the dynamics and thermodynamics of ocean top 3 m that controls the 93 % anthropogenic global warming in the oceans. This may be done most cost-effectively through focussed multidisciplinary scientific research adaptively managed and funded.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2013-09-30
of SIZRS are covered in separate reports. Our long-term goal is to track and understand the interplay among the ice, atmosphere, and ocean...OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Seasonal Ice Zone...sensing resources include MODIS visible and IR imagery, NSIDC ice extent charts based on a composite of passive microwave products (http://nsidc.org
High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core
NASA Astrophysics Data System (ADS)
Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.
2013-12-01
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
NASA Astrophysics Data System (ADS)
Broccoli, A. J.; Manabe, S.
1987-02-01
The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined. Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum. Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconom ic impacts. The full report is contained in 27 volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less
Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice
NASA Technical Reports Server (NTRS)
Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan
2013-01-01
Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.
14 CFR Appendix C to Part 25 - Appendix C to Part 25
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Appendix C to Part 25 C Appendix C to Part... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. C Appendix C to Part 25 Part I—Atmospheric....062 EC28SE91.063 (c) Takeoff maximum icing. The maximum intensity of atmospheric icing conditions for...
14 CFR Appendix C to Part 25 - Appendix C to Part 25
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Appendix C to Part 25 C Appendix C to Part... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. C Appendix C to Part 25 Part I—Atmospheric....062 EC28SE91.063 (c) Takeoff maximum icing. The maximum intensity of atmospheric icing conditions for...
14 CFR Appendix C to Part 25 - Appendix C to Part 25
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Appendix C to Part 25 C Appendix C to Part... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. C Appendix C to Part 25 Part I—Atmospheric....062 EC28SE91.063 (c) Takeoff maximum icing. The maximum intensity of atmospheric icing conditions for...
Air-ice CO2 fluxes and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada)
NASA Astrophysics Data System (ADS)
Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno
2010-05-01
Sea ice covers about 7% of the Earth surface at its maximum seasonal extent. For decades sea ice was assumed to be an impermeable and inert barrier for air - sea exchange of CO2 so that global climate models do not include CO2 exchange between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by sea ice cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related air-ice CO2 fluxes. In addition, budget of CO2 fluxes are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of air-ice CO2 fluxes above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk ice, and related air-ice CO2 fluxes (chamber method) in Antarctic first year pack ice ("Sea Ice Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast ice ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on sea ice in early spring while CFL was carried out in from the middle of the winter to the late spring while sea ice was melting. Both in Arctic and Antarctic, no air-ice CO2 fluxes were detected when sea ice interface was below -10°C. Slightly above -10°C, fluxes toward the atmosphere were observed. In contrast, at -7°C fluxes from the atmosphere to the ice were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of sea ice temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These air-ice CO2 fluxes are partly controlled by the permeability of the air-ice interface, which depends of the temperature of this one. Moreover, air-ice CO2 fluxes are driven by the air-ice pCO2 gradient. Hence, while the temperature is a leading factor in controlling magnitude of air-ice CO2 fluxes, pCO2 of the ice controls both magnitude and direction of fluxes. However, pCO2 in Arctic is significantly higher than in Antarctica. This difference could be due to a higher level of organic matter in Arctic. The degradation of this organic matter fuel CO2 efflux from the ice to the atmosphere in early spring. We observed evidence of CaCO3 precipitation, but only at the top of the ice. Implications in term of air-ice CO2 transfer of such CaCO3 precipitation will be discussed. In addition, salt-rich snow appears to strongly affect air-ice CO2 fluxes in the arctic. Borges, A. V., et al. (2006), Carbon dioxide in European coastal waters, Estuar. Coast. Shelf Sci., 70(3), 375-387.
NASA Astrophysics Data System (ADS)
Butler, Paul; Estrella-Martínez, Juan; Scourse, James
2017-04-01
The so-called 8.2K cold event is a rapid cooling of about 6° +/- 2° recorded in the Greenland ice core record and thought to be a consequence of a freshwater pulse from the Laurentide ice sheet which reduced deepwater formation in the North Atlantic. In the Greenland ice cores the event is characterized by a maximum extent of 159 years and a central event lasting for 70 years. As discussed by Thomas et al (QSR, 2007), the low resolution and dating uncertainty of much palaeoclimate data makes it difficult to determine the rates of change and causal sequence that characterise the event at different locations. We present here a bivalve shell chronology based on four shells of Arctica islandica from the northern North Sea which (within radiocarbon uncertainty) is coeval with the 8.2K event recorded in the Greenland ice cores. The years of death of each shell based on radiocarbon analysis and crossmatching are 8094, 8134, 8147, and 8208 yrs BP (where "present" = AD 1950), with an associated radiocarbon uncertainty of +/-80 yrs, and their longevities are 106, 122, 112 and 79 years respectively. The total length of the chronology is 192 years (8286 - 8094 BP +/- 80 yrs). The most noticeable feature of the chronology is an 60-year period of increasing growth which may correspond to a similar period of decreasing ice accumulation in the GRIP (central Greenland) ice core record. We tentatively suggest that this reflects increasing food supply to the benthos as summer stratification is weakened by colder seawater temperatures. Stable isotope analyses (results expected to be available when this abstract is presented), will show changes at annual and seasonal resolution, potentially giving a very detailed insight into the causal factors associated with the 8.2K event and its impact in the northern North Sea.
Satellite Remote Sensing: Passive-Microwave Measurements of Sea Ice
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Satellite passive-microwave measurements of sea ice have provided global or near-global sea ice data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea ice concentrations (percent areal coverages), sea ice extents, the length of the sea ice season, sea ice temperatures, and sea ice velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the ice-type composition of the sea ice cover. In each case, the calculations are based on the microwave emission characteristics of sea ice and the important contrasts between the microwave emissions of sea ice and those of the surrounding liquid-water medium.
NASA Astrophysics Data System (ADS)
Meier, W. N.; Youngman, E.; Dahlman, L.
2007-12-01
Arctic sea ice is declining rapidly. Since 2002, summer Arctic sea ice extents have been at record or near-record lows; winter extents have also showed a marked decline. Even in comparison to the previous five extreme low years, the 2007 summer melt season has been stunning, with dramatically less ice than the previous record in 2005. This is further evidence that the Arctic sea ice may have already passed a tipping point toward a state without ice during the summer by 2050 or before. Such a change will have profound impacts on climate as well as human and wildlife activities in the region. The "Whither Arctic Sea Ice?" Earth Exploration Toolbook chapter (http://serc.carleton.edu/eet/seaice/index.html) exposes students to satellite-derived sea ice data and allows them to process and interpret the data to "discover" these sea ice changes for themselves. A sample case study in Hudson Bay has been developed that relates the physical changes occurring on the sea ice to peoples and wildlife that depend on the ice for their livelihood. This approach provides a personal connection for students and allows them to relate to the impacts of the changes. Suggestions are made for further case studies that can be developed using the same data relating to topical events in the Arctic. The EET chapter exposes students to climate change, scientific data, statistical concepts, and image processing software providing an avenue for the communication of IPY data and science to teachers and students.
Passive ice freezing-releasing heat pipe
Gorski, Anthony J.; Schertz, William W.
1982-01-01
A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.
Uenzelmann-Neben, G.; Gohl, K.; Larter, R.D.; Schlüter, P.
2007-01-01
An understanding of the glacial history of Pine Island Bay (PIB) is essential for refining models of the future stability of the West Antarctic Ice Sheet (WAIS). New multichannel seismic reflection data from inner PIB are interpreted in context of previously published reconstructions for the retreat history in this area since the Last Glacial Maximum. Differences in the behavior of the ice sheet during deglaciation are shown to exist for the western and eastern parts of PIB. While we can identify only a thin veneer of sedimentary deposits in western PIB, eastern PIB shows sedimentary layers ≤ 400 msTWT. This is interpreted as a result of differences in ice retreat: a fast ice retreat in western PIB accompanied by rapid basal melting led to production of large meltwater streams, a slower ice retreat in eastern PIB is most probably the result of smaller drainage basins resulting in less meltwater production.
Snowmelt on the Greenland Ice Sheet as Derived From Passive Microwave Satellite Data
NASA Technical Reports Server (NTRS)
Abdalati, Waleed; Steffen, Konrad
1997-01-01
The melt extent of the snow on the Greenland ice sheet is of considerable importance to the ice sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt extent have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt extent of the ice sheet are studied. The melt is found to be most extensive on the western side of the ice sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.
Implications of rapid environmental change for polar bear behavior and sociality
Atwood, Todd C.
2017-01-01
Historically, the Arctic sea ice has functioned as a structural barrier that has limited the nature and extent of interactions between humans and polar bears (Ursus maritimus). However, declining sea ice extent, brought about by global climate change, is increasing the potential for human-polar bear interactions. Loss of sea ice habitat is driving changes to both human and polar bear behavior—it is facilitating increases in human activities (e.g., offshore oil and gas exploration and extraction, trans-Arctic shipping, recreation), while also causing the displacement of bears from preferred foraging habitat (i.e., sea ice over biologically productive shallow) to land in some portions of their range. The end result of these changes is that polar bears are spending greater amounts of time in close proximity to people. Coexistence between humans and polar bears will require imposing mechanisms to manage further development, as well as mitigation strategies that reduce the burden to local communities.
Environmental Variation and Cohort Effects in an Antarctic Predator
NASA Technical Reports Server (NTRS)
Garrott, Robert A.; Rotella, Jay J.; Siniff, Donald B.; Parkinson, Claire L.; Stauffer, Glenn E.
2011-01-01
Understanding the potential influence of environmental variation experienced by animals during early stages of development on their subsequent demographic performance can contribute to our understanding of population processes and aid in predicting impacts of global climate change on ecosystem functioning. Using data from 4,178 tagged female Weddell seal pups born into 20 different cohorts, and 30 years of observations of the tagged seals, we evaluated the hypothesis that environmental conditions experienced by young seals, either indirectly through maternal effects and/or directly during the initial period of juvenile nutritional independence, have long-term effects on individual demographic performance. We documented an approximately 3-fold difference in the proportion of each cohort that returned to the pupping colonies and produced a pup within the first 10 years after birth. We found only weak evidence for a correlation between annual environmental conditions during the juvenile-independence period and cohort recruitment probability. Instead, the data strongly supported an association between cohort recruitment probability and the regional extent of sea ice experienced by the mother during the winter the pup was in utero. We suggest that inter-annual variation in winter sea-ice extent influences the foraging success of pregnant seals by moderating the regional abundance of competing predators that cannot occupy areas of consolidated sea ice, and by directly influencing the abundance of mid-trophic prey species that are sea-ice obligates. We hypothesize that this environmentally-induced variation in maternal nutrition dictates the extent of maternal energetic investment in offspring, resulting in cohort variation in mean size of pups at weaning which, in turn, contributes to an individual?s phenotype and its ultimate fitness. These linkages between sea ice and trophic dynamics, combined with demonstrated and predicted changes in the duration and extent of sea ice associated with climate change, suggest significant alterations in Antarctic marine ecosystems in the future.
NASA Astrophysics Data System (ADS)
Fernández-Fernández, José M.; Andrés, Nuria; Brynjólfsson, Skafti; Sæmundsson, Þorsteinn; Palacios, David
2017-04-01
The Tröllaskagi peninsula is located in northern Iceland, between meridians 19°30'W and 18°10'W, jutting out into the North Atlantic to latitude 66°12'N and joining the central highlands to the south. About 150 glaciers located on the Tröllaskagi peninsula reached their Holocene maximum extent during the Little Ice Age (LIA) maximum at the end of the 19th century. The sudden warming at the turn of the 20th century triggered a continuous retreat from the LIA maximum positions, interrupted by a reversal trend during the mid-seventies and eighties in response to a brief period of climate cooling. The aim of this paper is to analyze the relationships between glacial and climatic evolution since the LIA maximum. For this reason, we selected three small debris-free glaciers: Gljúfurárjökull, and western and eastern Tungnahryggsjökull, at the headwalls of Skíðadalur and Kolbeinsdalur, as their absence of debris cover makes them sensitive to climatic fluctuations. To achieve this purpose, we used ArcGIS to map the glacier extent during the LIA maximum and several dates over four georeferenced aerial photos (1946, 1985, 1994 and 2000), as well as a 2005 SPOT satellite image. Then, the Equilibrium-Line Altitude (ELA) was calculated by applying the Accumulation Area Ratio (AAR) and Area Altitude Balance Ratio (AABR) approaches. Climatological data series from the nearby weather stations were used in order to analyze climate development and to estimate precipitation at the ELA with different numerical models. Our results show considerable changes of the three debris-free glaciers and demonstrates their sensitivity to climatic fluctuations. As a result of the abrupt climatic transition of the 20th century, the following warm 25-year period and the warming started in the late eighties, the three glaciers retreated by ca. 990-1330 m from the LIA maximum to 2005, supported by a 40-metre ELA rise and a reduction of their area and volume of 25% and 33% on average, respectively. The 1.5 °C warming recorded at the city of Akureyri from late 19th century to 2005 does not agree with the 0.3 °C value obtained from the ELA rise and lapse rate. On the contrary it demonstrates that other factors - for example, precipitation and wind - have been decisive in the evolution of the glaciers. All the models applied suggest a precipitation increase of 700 mm water equivalent at the mean ELA since the LIA maximum, and higher and lower values depending on warm and cold periods respectively. The overall increase in precipitation is compatible with the increase in the surface temperature of the North Atlantic and a possible negative-to-positive shift in North Atlantic Oscillation (NAO) mode. However, the link between winter accumulation and prevailing wind directions recorded at nearby weather stations remains unclear. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain.
ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.
Ling, Chi-Hai; Parkinson, Claire L.
1986-01-01
A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.
Mapping Of Lake Ice In Northern Europe Using Dual-Polarization RadarSAT-2 Data
NASA Astrophysics Data System (ADS)
Hindberg, Heidi; Malnes, Erik
2013-12-01
In this paper, we investigate the potential of including cross-polarization data in an unsupervised classification method based on SAR data to determine ice extent over lakes in Northern Europe. By introducing cross-pol data we can increase the separability between open water and ice, and we can decrease misclassifications where open water with waves is classified as ice. Cross-pol data also helps with labelling of the classes. However, cross-pol data can decrease the separability between the classes if the ice on the lake is very thin.
Water ice clouds observations with PFS on Mars Express
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team
The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.
Carbon budget of sea-ice algae in spring: Evidence of a significant transfer to zooplankton grazers
NASA Astrophysics Data System (ADS)
Michel, C.; Legendre, L.; Ingram, R. G.; Gosselin, M.; Levasseur, M.
1996-08-01
The fate of ice-bottom algae, before and after release from the first-year sea ice into the water column, was assessed during the period of ice-algal growth and decline in Resolute Passage (Canadian Arctic). During spring 1992 (from April to June), algae in the bottom ice layer and those suspended and sinking in the upper water column (top 15 m) were sampled approximately every 4 days. Ice-bottom chlorophyll a reached a maximum concentration of 160 mg m-2 in mid-May, after which it decreased to lower values. In the water column, chlorophyll a concentrations were low until the period of ice-algal decline (˜0.1 mg m-3), with most biomass in the <5-μm fraction. In both the suspended and sinking material, large increases of algal biomass occurred at the beginning of June, following the release of ice-algae into the water column. The input of ice-algal derived carbon to the upper water column and the proportions exported through sinking or remaining in suspension were assessed using a carbon budget for the two periods of ice-algal growth and decline. For each period the output terms closely balanced the input. The carbon budget showed that most of the biomass introduced into the upper water column remained suspended (>65% of total export) and that ice-algae were ingested by under-ice grazers after release from the ice. These results stress the importance of ice algae for pelagic consumers during the early stages of ice melt and show that the transfer of ice algae to higher trophic levels extends beyond the period of maximum algal production in the ice bottom.
NASA Technical Reports Server (NTRS)
Khodadoust, Abdollah
1994-01-01
Wind tunnel experiments were conducted in order to study the effect of a simulated glaze ice accretion on the flowfield of a semispan, reflection-plane, rectangular wing at Re = 1.5 million and M = 0.12. A laser Doppler velocimeter was used to map the flowfield on the upper surface of the model in both the clean and iced configurations at alpha = 0, 4, and 8 degrees angle of attack. At low angles of attack, the massive separation bubble aft of the leading edge ice horn was found to behave in a manner similar to laminar separation bubbles. At alpha = 0 and 4 degrees, the locations of transition and reattachment, as deduced from momentum thickness distributions, were found to be in good agreement with transition and reattachment locations in laminar separation bubbles. These values at y/b = 0.470, the centerline measurement location, matched well with data obtained on a similar but two dimensional model. The measured velocity profiles on the iced wing compared reasonably with the predicted profiles from Navier-Stokes computations. The iced-induced separation bubble was also found to have features similar to the recirculating region aft of rearward-facing steps. At alpha = 0 degrees and 4 degrees, reverse flow magnitudes and turbulence intensity levels were typical of those found in the recirculating region aft of rearward-facing steps. The calculated separation streamline aft of the ice horn at alpha = 4 degrees, y/b = 0.470 coincided with the locus of the maximum Reynolds normal stress. The maximum Reynolds normal stress peaked at two locations along the separation streamline. The location of the first peak-value coincided with the transition location, as deduced from the momentum thickness distributions. The location of the second peak was just upstream of reattachment, in good agreement with measurements of flows over similar obstacles. The intermittency factor in the vicinity of reattachment at alpha = 4 degrees, y/b = 0.470, revealed the time-dependent nature of the reattachment process. The size and extent of the separation bubble were found to be a function of angle of attack and the spanwise location. Three dimensional effects were found to be strongest at alpha = 8 degrees. The calculated separation and stagnation streamlines were found to vary little with spanwise location at alpha = 0 degrees. The calculated separation streamlines at alpha = 4 degrees revealed that the bubble was largest near the centerline measurement plane, whereas the tip-induced vortex flow and the model root-tunnel wall boundary-layer interaction reduced the size of the bubble. These effects were found to be most dramatic at alpha = 8 degrees.
Would limiting global warming to 1.5 or 2°C prevent an ice-free Arctic?
NASA Astrophysics Data System (ADS)
Screen, James; Williamson, Daniel
2017-04-01
The Paris Agreement to combat climate change includes an aspirational goal to limit global warming to 1.5°C above pre-industrial levels, substantially more ambitious than the previous target of 2°C. One of the most visible and iconic aspects of recent climate change is the dramatic loss of Arctic sea-ice, which is having profound implications on the environment, ecosystems and human inhabitants of this region and beyond. The concept of an 'ice-free Arctic' has captured scientific attention and public imagination. Scientists commonly define this as when the Arctic first becomes ice-free at the end of summer. Without efforts to slow manmade global warming, an ice-free Arctic would likely occur in summer by the middle of this century. But would limiting warming to 1.5°C, or even 2°C, prevent the Arctic ever going ice-free? Different climate models give vastly different projections of the lowest sea-ice extent given global warming of up to 1.5°C or up to 2°C. Models that over-estimate (or under-estimate) sea-ice extent in the last ten years are also those that project more ice (or less ice) remaining into the future. Here we use this relationship to observationally constrain climate model projections of future Arctic sea-ice cover. We obtain an observationally-constrained central prediction of 2.9 million square kilometres for the minimum sea-ice extent if global warming is limited to 1.5°C, or 1.2 million square kilometres if global warming remains below 2°C. Using Bayesian statistics allows us to compare estimates of the probability of an ice-free Arctic for the 1.5°C or 2°C target. We estimate there is less than a 1-in-100000 (exceptionally unlikely in IPCC parlance) chance of an ice-free Arctic if global warming is stays below 1.5°C, and around a 1-in-3 chance (39%; about as likely as not) if global warming is limited to 2.0°C. We suppose then that a summer ice-free Arctic is virtually certain to be avoided if the 1.5°C target of the Paris Agreement is met. However, the 2°C target may be insufficient to prevent an ice-free Arctic. Furthermore, our analysis suggests that the Intended Nationally Determined Contributions submitted by countries to support the Paris Agreement (which imply warming of 2.6 to 3.1°C) would likely (66 to 74%) lead to the Arctic going ice-free.
Navy Sea Ice Prediction Systems
2002-01-01
for the IABP drifting buoys (red), the model (green), and the model with assimilation (black). 55 Oceanography • Vol. 15 • No. 1/2002 trate the need...SPECIAL ISSUE – NAVY OPERATIONAL MODELS : TEN YEARS LATER Oceanography • Vol. 15 • No. 1/2002 44 ice extent and/or ice thickness. A general trend...most often based on a combination of models and data. Modeling sea ice can be a difficult problem, as it exists in many different forms (Figure 1). It
Passive ice freezing-releasing heat pipe. [Patent application
Gorski, A.J.; Schertz, W.W.
1980-09-29
A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.
Simulating hydrodynamics and ice cover in Lake Erie using an unstructured grid model
NASA Astrophysics Data System (ADS)
Fujisaki-Manome, A.; Wang, J.
2016-02-01
An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal ice cover. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea Ice Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the ice model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed ice extent, water surface temperature, ice thickness, currents, and water temperature profiles. Seasonal and interannual variation of ice extent and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled ice thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.
Quantifying model uncertainty in seasonal Arctic sea-ice forecasts
NASA Astrophysics Data System (ADS)
Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin
2017-04-01
Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.
2009-01-01
The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.
Alder, Jay R.; Hostetler, Steven W.
2015-01-01
We apply GENMOM, a coupled atmosphere–ocean climate model, to simulate eight equilibrium time slices at 3000-year intervals for the past 21 000 years forced by changes in Earth–Sun geometry, atmospheric greenhouse gases (GHGs), continental ice sheets, and sea level. Simulated global cooling during the Last Glacial Maximum (LGM) is 3.8 ◦C and the rate of post-glacial warming is in overall agreement with recently published temperature reconstructions. The greatest rate of warming occurs between 15 and 12 ka (2.4 ◦C over land, 0.7 ◦C over oceans, and 1.4 ◦C globally) in response to changes in radiative forcing from the diminished extent of the Northern Hemisphere (NH) ice sheets and increases in GHGs and NH summer insolation. The modeled LGM and 6 ka temperature and precipitation climatologies are generally consistent with proxy reconstructions, the PMIP2 and PMIP3 simulations, and other paleoclimate data–model analyses. The model does not capture the mid-Holocene “thermal maximum” and gradual cooling to preindustrial (PI) global temperature found in the data. Simulated monsoonal precipitation in North Africa peaks between 12 and 9 ka at values ∼ 50 % greater than those of the PI, and Indian monsoonal precipitation peaks at 12 and 9 ka at values ∼ 45 % greater than the PI. GENMOM captures the reconstructed LGM extent of NH and Southern Hemisphere (SH) sea ice. The simulated present-day Antarctica Circumpolar Current (ACC) is ∼ 48 % weaker than the observed (62 versus 119 Sv). The simulated present-day Atlantic Meridional Overturning Circulation (AMOC) of 19.3 ± 1.4 Sv on the Bermuda Rise (33◦ N) is comparable with observed value of 18.7 ± 4.8 Sv. AMOC at 33◦ N is reduced by ∼ 15 % during the LGM, and the largest post-glacial increase (∼ 11 %) occurs during the 15 ka time slice.
Nudging the Arctic Ocean to quantify Arctic sea ice feedbacks
NASA Astrophysics Data System (ADS)
Dekker, Evelien; Severijns, Camiel; Bintanja, Richard
2017-04-01
It is well-established that the Arctic is warming 2 to 3 time faster than rest of the planet. One of the great uncertainties in climate research is related to what extent sea ice feedbacks amplify this (seasonally varying) Arctic warming. Earlier studies have analyzed existing climate model output using correlations and energy budget considerations in order to quantify sea ice feedbacks through indirect methods. From these analyses it is regularly inferred that sea ice likely plays an important role, but details remain obscure. Here we will take a different and a more direct approach: we will keep the sea ice constant in a sensitivity simulation, using a state-of -the-art climate model (EC-Earth), applying a technique that has never been attempted before. This experimental technique involves nudging the temperature and salinity of the ocean surface (and possibly some layers below to maintain the vertical structure and mixing) to a predefined prescribed state. When strongly nudged to existing (seasonally-varying) sea surface temperatures, ocean salinity and temperature, we force the sea ice to remain in regions/seasons where it is located in the prescribed state, despite the changing climate. Once we obtain fixed' sea ice, we will run a future scenario, for instance 2 x CO2 with and without prescribed sea ice, with the difference between these runs providing a measure as to what extent sea ice contributes to Arctic warming, including the seasonal and geographical imprint of the effects.
Automated detection of Martian water ice clouds: the Valles Marineris
NASA Astrophysics Data System (ADS)
Ogohara, Kazunori; Munetomo, Takafumi; Hatanaka, Yuji; Okumura, Susumu
2016-10-01
We need to extract water ice clouds from the large number of Mars images in order to reveal spatial and temporal variations of water ice cloud occurrence and to meteorologically understand climatology of water ice clouds. However, visible images observed by Mars orbiters for several years are too many to visually inspect each of them even though the inspection was limited to one region. Therefore, an automated detection algorithm of Martian water ice clouds is necessary for collecting ice cloud images efficiently. In addition, it may visualize new aspects of spatial and temporal variations of water ice clouds that we have never been aware. We present a method for automatically evaluating the presence of Martian water ice clouds using difference images and cross-correlation distributions calculated from blue band images of the Valles Marineris obtained by the Mars Orbiter Camera onboard the Mars Global Surveyor (MGS/MOC). We derived one subtracted image and one cross-correlation distribution from two reflectance images. The difference between the maximum and the average, variance, kurtosis, and skewness of the subtracted image were calculated. Those of the cross-correlation distribution were also calculated. These eight statistics were used as feature vectors for training Support Vector Machine, and its generalization ability was tested using 10-fold cross-validation. F-measure and accuracy tended to be approximately 0.8 if the maximum in the normalized reflectance and the difference of the maximum and the average in the cross-correlation were chosen as features. In the process of the development of the detection algorithm, we found many cases where the Valles Marineris became clearly brighter than adjacent areas in the blue band. It is at present unclear whether the bright Valles Marineris means the occurrence of water ice clouds inside the Valles Marineris or not. Therefore, subtracted images showing the bright Valles Marineris were excluded from the detection of water ice clouds
14 CFR Appendix C to Part 29 - Icing Certification
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Icing Certification C Appendix C to Part 29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maximum icing) is defined by the variables of the cloud liquid water content, the mean effective diameter...
14 CFR Appendix C to Part 29 - Icing Certification
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Icing Certification C Appendix C to Part 29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maximum icing) is defined by the variables of the cloud liquid water content, the mean effective diameter...
14 CFR Appendix C to Part 29 - Icing Certification
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Icing Certification C Appendix C to Part 29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maximum icing) is defined by the variables of the cloud liquid water content, the mean effective diameter...
14 CFR Appendix C to Part 29 - Icing Certification
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Icing Certification C Appendix C to Part 29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maximum icing) is defined by the variables of the cloud liquid water content, the mean effective diameter...
NASA Astrophysics Data System (ADS)
Elders, Akiko; Pegion, Kathy
2017-12-01
Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... installing stationary SI ICE produced in previous model years? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in previous model years? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... installing stationary SI ICE produced in the previous model year? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in the previous model year? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet...
Code of Federal Regulations, 2012 CFR
2012-07-01
... installing stationary SI ICE produced in previous model years? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in previous model years? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... installing stationary SI ICE produced in the previous model year? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in the previous model year? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet...
Code of Federal Regulations, 2013 CFR
2013-07-01
... installing stationary SI ICE produced in previous model years? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in previous model years? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the...
NASA Astrophysics Data System (ADS)
Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.
2016-12-01
Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high-resolution Structure from Motion DEM and laser surveys collected during a field campaign utilizing unmanned aircraft.
NASA Astrophysics Data System (ADS)
Schaetzl, Randall J.; Lepper, Kenneth; Thomas, Sarah E.; Grove, Leslie; Treiber, Emma; Farmer, Alison; Fillmore, Austin; Lee, Jordan; Dickerson, Bethany; Alme, Kayleigh
2017-03-01
In association with an undergraduate Honors Seminar at Michigan State University, we studied two small kame deltas in north-central Lower Michigan. These recently identified deltas provide clear evidence for a previously unknown proglacial lake (Glacial Lake Roscommon) in this large basin located in an interlobate upland. Our first goal was to document and characterize the geomorphology of these deltas. Because both deltas are tied to ice-contact ridges that mark the former position of the retreating ice margin within the lake, our second goal was to establish the age of one of the deltas, thereby constraining the timing of ice retreat in this part of Michigan, for which little information currently exists. Both deltas are composed of well-sorted fine and medium sands with little gravel, and have broad, nearly flat surfaces and comparatively steep fronts. Samples taken from the upper 1.5 m of the deltas show little spatial variation in texture, aside from a general fining toward their outer margins. Gullies on the outer margins of both deltas probably postdate the formation of the deltas proper; we suggest that they formed by runoff during a permafrost period, subsequent to lake drawdown. We named the ice lobe that once covered this area the Mackinac Lobe, because it had likely advanced into the region across the Mackinac Straits area. Five of six optically stimulated luminescence (OSL) ages from one of the deltas had minimal scatter and were within ± 1000 years of one another, with a mean age of 23.1 ± 0.4 ka. These ages suggest that the Mackinac Lobe had started to retreat from the region considerably earlier than previously thought, even while ice was near its maximum extent in Illinois and Indiana, and the remainder of Michigan was ice-covered. This early retreat, which appears to coincide with a short-lived warm period indicated from the Greenland ice core, formed an "opening" that was at least occasionally flooded. Thick and deep, fine-textured deposits, which underlie much of the region, probably date to this time. Our work provides the first evidence of this extremely early ice retreat from central Lower Michigan, occurring almost 4000 years before the southern margin of the ice (Saginaw Lobe) had started its retreat from the state.
Nature and History of Cenozoic Polar Ice Covers: The Case of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Spielhagen, R.; Thiede, J.
2009-04-01
The nature of the modern climate System is characterized by steep temperature gradients between the tropical and polar climatic zones and finds its most spectacular expression in the formation of ice caps in high Northern and Southern latitudes. While polar regions of Planet Earth have been glaciated repeatedly in the long course of their geological history, the Cenozoic transition from a „greenhouse" to an „icehouse" has in fact produced a unique climatic scenario with bipolar glacation, different from all previous glacial events. The Greenland ice sheet is a remainder of the Northern Hemisphere last glacial maximum ice sheets and represents hence a spectacular anomaly. Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of ice caps and sea ice covers both on the Southern as well on the Northern hemisphere since Eocene times, aqpprox. 45 Mio. years ago. While this was well known in the case of Antarctica already for some time, previous ideas about the origin of Northern hemisphere glaciation during Pliocene times (approx. 2-3 Mio. years ago) have been superceded by the dramatic findings of coarse, terrigenous ice rafted detritus in Eocene sediments from Lomonosov Ridge (close to the North Pole) apparently slightly older than the oldest Antarctic records of ice rafting.The histories of the onset of Cenozoic glaciation in high Northern and Southern latitudes remain enigmatic and are presently subjects of international geological drilling projects, with prospects to reveal some of their secrets over the coming decades. By virtue of the physical porperties of ice and the processes controlling the dynamics of the turn-over of the ice-sheets only young records of glacial ice caps on Antarctica and on Greemnland have been preserved, on Greenland with ice probably not older than a few hundred thousand years, on Antarctica potentially as old as 1.5-2 Mio. years. Deep-sea cores with their records od ice-rafting from off NE Greenland, Fram Strait and to the South of Greenland suggest the more or less continous existence of the Greenland ice sheet for the past 18 Mio. years, if not more, a phantastic supplement of the Northern hemisphere glaciation deduced from the ice cores. The dramatic decrease of extent and thickness of the Arctic sea ice cover of the past decades has aroused much public and political interest because of the potentially dramatic consequences for the exploitation of living and non-living resources as well as the socio-economic, technical and commercial systems developed in the Arctic seas and in the permafrost-infested adjacent land areas. The fate of the Greenland ice sheet with its impact on global sea level changes is one of the central unresolved problems. We urgently need novel marine research platforms which allow for an all-season presence of research and monitoring programs as well of scientific drilling programs in the Arctic Ocean.
NASA Technical Reports Server (NTRS)
Batterson, James G.; Omara, Thomas M.
1989-01-01
The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.
Skillful Spring Forecasts of September Arctic Sea Ice Extent Using Passive Microwave Data
NASA Technical Reports Server (NTRS)
Petty, A. A.; Schroder, D.; Stroeve, J. C.; Markus, Thorsten; Miller, Jeffrey A.; Kurtz, Nathan Timothy; Feltham, D. L.; Flocco, D.
2017-01-01
In this study, we demonstrate skillful spring forecasts of detrended September Arctic sea ice extent using passive microwave observations of sea ice concentration (SIC) and melt onset (MO). We compare these to forecasts produced using data from a sophisticated melt pond model, and find similar to higher skill values, where the forecast skill is calculated relative to linear trend persistence. The MO forecasts shows the highest skill in March-May, while the SIC forecasts produce the highest skill in June-August, especially when the forecasts are evaluated over recent years (since 2008). The high MO forecast skill in early spring appears to be driven primarily by the presence and timing of open water anomalies, while the high SIC forecast skill appears to be driven by both open water and surface melt processes. Spatial maps of detrended anomalies highlight the drivers of the different forecasts, and enable us to understand regions of predictive importance. Correctly capturing sea ice state anomalies, along with changes in open water coverage appear to be key processes in skillfully forecasting summer Arctic sea ice.
Effects of Ice Formations on Airplane Performance in Level Cruising Flight
NASA Technical Reports Server (NTRS)
Preston, G. Merritt; Blackman, Calvin C.
1948-01-01
A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.
NASA Astrophysics Data System (ADS)
Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.
2016-04-01
The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Clim. Change 3, 744-748, doi:10.1038/nclimate1884 (2013) [2] Palm, S. P., Strey, S. T., Spinhirne, J., and Markus, T.: Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. Journal of Geophysical Research (Atmospheres), 115, D21209, doi:10.1029/2010JD013900 (2010)
NASA Astrophysics Data System (ADS)
Peterson, E. R.; Stanton, T. P.
2016-12-01
Determining ice concentration in the Arctic is necessary to track significant changes in sea ice edge extent. Sea ice concentrations are also needed to interpret data collected by in-situ instruments like buoys, as the amount of ice versus water in a given area determines local solar heating. Ice concentration products are now routinely derived from satellite radiometers including the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Special Sensor Microwave Imager/Sounder (SSMIS). While these radiometers are viewed as reliable to monitor long-term changes in sea ice extent, their accuracy should be analyzed, and compared to determine which radiometer performs best over smaller features such as melt ponds, and how seasonal conditions affect accuracy. Knowledge of the accuracy of radiometers at high resolution can help future researchers determine which radiometer to use, and be aware of radiometer shortcomings in different ice conditions. This will be especially useful when interpreting data from in-situ instruments which deal with small scale measurements. In order to compare these passive microwave radiometers, selected high spatial resolution one-meter resolution Medea images, archived at the Unites States Geological Survey, are used for ground truth comparison. Sea ice concentrations are derived from these images in an interactive process, although estimates are not perfect ground truth due to exposure of images, shadowing and cloud cover. 68 images are retrieved from the USGS website and compared with 9 useable, collocated SSMI, 33 SSMIS, 36 AMSRE, and 14 AMSR2 ice concentrations in the Arctic Ocean. We analyze and compare the accuracy of radiometer instrumentation in differing ice conditions.
Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T.
2009-12-01
A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.
NASA Astrophysics Data System (ADS)
Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.
2011-12-01
Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.
Loss of sea ice in the Arctic.
Perovich, Donald K; Richter-Menge, Jacqueline A
2009-01-01
The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.
Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2011-01-01
Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.
Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan; McDonald, Adrian; Rack, Wolfgang
2016-04-01
Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.
Holocene glacier variability and Neoglacial hydroclimate at Ålfotbreen, western Norway
NASA Astrophysics Data System (ADS)
Gjerde, Marthe; Bakke, Jostein; Vasskog, Kristian; Nesje, Atle; Hormes, Anne
2016-02-01
Glaciers and small ice caps respond rapidly to climate perturbations (mainly winter precipitation, and summer temperature), and the mass-balance of glaciers located in western Norway is governed mainly by winter precipitation (Pw). Records of past Pw can offer important insight into long-term changes in atmospheric circulation, but few proxies are able to accurately capture winter climate variations in Scandinavia. Reconstructions of equilibrium-line-altitude (ELA) variations from glaciers that are sensitive to changes in Pw therefore provide a unique opportunity to quantify past winter climate in this region. Here we present a new, Holocene glacier activity reconstruction for the maritime ice cap Ålfotbreen in western Norway, based on investigations of distal glacier-fed lake sediments and modern mass balance measurements (1963-2010). Several lake sediment cores have been subject to a suite of laboratory analyses, including measurements of physical parameters such as dry bulk density (DBD) and loss-on-ignition (LOI), geochemistry (XRF), surface magnetic susceptibility (MS), and grain size distribution, to identify glacial sedimentation in the lake. Both radiocarbon (AMS 14C) and 210Pb dating were applied to establish age-depth relationships in the sediment cores. A novel approach was used to calibrate the sedimentary record against a simple ELA model, which allowed reconstruction of continuous ELA changes for Ålfotbreen during the Neoglacial (when Ålfotbreen was present, i.e. the last ∼1400 years). Furthermore, the resulting ELA variations were combined with an independent summer temperature record to calculate Neoglacial Pw using the 'Liestøl equation'. The resulting Pw record is of higher resolution than previous reconstructions from glaciers in Norway and shows the potential of glacier records to provide high-resolution data reflecting past variations in hydroclimate. Complete deglaciation of the Ålfotbreen occurred ∼9700 cal yr BP, and the ice cap was subsequently absent or very small until a short-lived glacier event is seen in the lake sediments ∼8200 cal yr BP. The ice cap was most likely completely melted until a new glacier event occurred around ∼5300 cal yr BP, coeval with the onset of the Neoglacial at several other glaciers in southwestern Norway. Ålfotbreen was thereafter absent (or very small) until the onset of the Neoglacial period ∼1400 cal yr BP. The 'Little Ice Age' (LIA) ∼650-50 cal yr BP was the largest glacier advance of Ålfotbreen since deglaciation, with a maximum extent at ∼400-200 cal yr BP, when the ELA was lowered approximately 200 m relative to today. The late onset of the Neoglacial at Ålfotbreen is suggested to be a result of its low altitude relative to the regional ELA. A synthesis of Neoglacial ELA fluctuations along the coast of Norway indicates a time-transgressive trend in the maximum extent of the LIA, which apparently seems to have occurred progressively later as we move northwards. We suggest that this trend is likely due to regional winter precipitation differences along the coast of Norway.
Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin
2013-01-01
Width reduction in growth rings in shortleaf pine (Pinus echinata Mill.) following glaze ice conditions produces a characteristic pattern dependent on live-crown ratio and extent of crown loss. Ring widths of 133 trees for 3 years preceding and 7 years following the December 2000 ice storm (Bragg and others 2002) in western Arkansas and eastern...
NASA Technical Reports Server (NTRS)
Foster, J. L.
1980-01-01
The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.
The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions
NASA Technical Reports Server (NTRS)
Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.
1947-01-01
Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.
2015-03-16
This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247
Wave Information Studies of US Coastlines: Hindcast Wave Information for the Great Lakes: Lake Erie
1991-10-01
total ice cover) for individual grid cells measuring 5 km square. 42. The GLERL analyzed each half-month data set to provide the maximum, minimum...average, median, and modal ice concentrations for each 5-km cell . The median value, which represents an estimate of the 50-percent point of the ice...incorporating the progression and decay of the time-dependent ice cover was complicated by the fact that different grid cell sizes were used for mapping the ice
The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating
NASA Astrophysics Data System (ADS)
Johnson, Joanne S.; Everest, Jeremy D.; Leat, Philip T.; Golledge, Nicholas R.; Rood, Dylan H.; Stuart, Finlay M.
2012-03-01
Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic 10Be exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the 10Be ages are in the range 10.2-21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic 3He ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes.
The Dorsa Argentea Formation and the Noachian-Hesperian climate transition
NASA Astrophysics Data System (ADS)
Scanlon, K. E.; Head, J. W.; Fastook, J. L.; Wordsworth, R. D.
2018-01-01
The Dorsa Argentea Formation (DAF), a set of geomorphologic units covering ∼1.5 million square kilometers in the south circumpolar region of Mars, has been interpreted as the remnants of a large south polar ice sheet that formed near the Noachian-Hesperian boundary and receded in the early Hesperian. Determining the extent and thermal regime of the DAF ice sheet, as well as the mechanism and timing of its recession, can therefore provide insight into the ancient martian climate and the timing of the transition from a presumably thicker CO2 atmosphere to the present climate. We used the Laboratoire de Météorologie Dynamique (LMD) early Mars global climate model (GCM) and the University of Maine Ice Sheet Model (UMISM) glacial flow model to constrain climates allowing development of a south polar ice sheet of DAF-like size and shape. In addition, we modeled basal melting of this ice sheet in amounts and locations consistent with observed glaciofluvial landforms. A large, asymmetric region of ice stability surrounding the south pole is a robust feature of GCM simulations with spin-axis obliquity of 15° or 25° and a 600-1000 mb CO2 atmosphere. The shape results from the large-scale south polar topography of Mars and the strong dependence of surface temperature on altitude under a thicker atmosphere. Of the scenarios considered in this study, the extent of the modeled DAF ice sheet in UMISM simulations most closely matches that of the DAF when the surface water ice inventory of Mars is a ∼137 m global equivalent layer (GEL) and spin-axis obliquity is 15°. In climates warmed only by CO2, significant basal melting does not occur except when the ice inventory is larger than plausible estimates for early Mars. In this case, the extent of the south polar ice sheet is also much larger than that of the DAF, and basal melting is more widespread than observed landforms indicate. When an idealized greenhouse gas warms the surface by at least 20°C near the poles relative to CO2 alone, the stable extent of the ice sheet is less than that of the DAF units, but widespread basal melting occurs, with maxima in the locations where eskers are currently observed. We therefore conclude that warming by a gas other than CO2 alone was necessary to enable the construction of glaciofluvial landforms in the DAF. Previously published crater exposure ages of eskers in the DAF indicate that eskers were being exposed as activity was ceasing in the equatorial valley networks, suggesting that the warming that allowed basal melting at the edges of the DAF ice sheet were broadly contemporaneous with those in which the valley networks were carved. Finally, elevated Tharsis topography is required to produce an ice sheet with the shape of the DAF. Thus, our results are not consistent with the DAF (and the valley networks) forming before the emplacement of Tharsis, as recently suggested.
Lower limb ice application alters ground reaction force during gait initiation.
Muniz, Thiago B; Moraes, Renato; Guirro, Rinaldo R J
2015-01-01
Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task--gait initiation--was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.
Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets
NASA Astrophysics Data System (ADS)
Deconto, R. M.; Pollard, D.
2017-12-01
New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.
MODIS Snow and Sea Ice Products
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.
2004-01-01
In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.
NASA Astrophysics Data System (ADS)
Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.
2017-08-01
Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.
NASA Astrophysics Data System (ADS)
Kocis, J. J.; Petsch, S.; Castañeda, I. S.; Brigham-Grette, J.
2014-12-01
Arctic peatlands and thermokarst lakes (TK) are thought to play a significant role in changing atmospheric methane concentration (AMC) during the last deglacial. However, there is debate concerning timing of their initiation and extent they drove variations in AMC. Models show sea ice cover (SIC) and sea surface temperatures (SSTs) can also play a significant role. Yet, changes in peatland/TK lake areal extent in response to those dynamics as continental shelves were submerged are often not considered. To examine such connections, we report on molecular proxies in marine records that reveal change in terrestrial organic matter (TOM) export, SIC, and SSTs as sea levels rose during the last 18 ka in the Pacific-Arctic Gateway. Here, TOM input to the ocean was tracked by measuring the flux of branched glycerol dialkyl glycerol tetraethers, n-alkyl lipids, and pentacyclic triterpenoids. SIC and SSTs were reconstructed using modern calibrations of highly branched isoprenoid alkene abundances in surface sediments from the Bering and Chukchi Seas. SSTs were also reconstructed based on the relative abundance of isoprenoid glycerol dialkyl glycerol tetraethers. Our sediment records reveal increased flux of TOM coincides with peatland/TK lake initiation, reduced SIC (~20%), and warmer SSTs (~4°C) as AMC increased during the Bølling-Allerød (BA). Terrestrial flux dramatically reduced as SIC increased (~50%) and SSTs cooled as AMC fell during the Younger Dryas. Most notably, TOM export rapidly rebounds as AMC abruptly rose throughout the Holocene Thermal Maximum (HTM), when SSTs warmed by ~3°C and SIC diminished and peatland areal extent increased. Using multi-proxy evidence in combination with a simple model that accounts for submergence of peatland/TK lake area, we estimate that the exposed Beringian shelf emitted an amount of CH4 comparable to previously reported peatland emissions in Alaska during the BA and HTM. The GDGT-based methane index (MI) was <0.3 throughout our sediment records, suggesting destabilized marine gas hydrates were not the principal source of methane. Results of our study provide novel marine-based evidence for the timing of peatland and TK lake initiation and the role sea ice played in contributing to variations in AMC during deglacial sea level rise in the Arctic.
A coupled ice-ocean model of ice breakup and banding in the marginal ice zone
NASA Technical Reports Server (NTRS)
Smedstad, O. M.; Roed, L. P.
1985-01-01
A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.
Bellingshausen Sea Ice Extent Recorded in an Antarctic Peninsula Ice Core
NASA Technical Reports Server (NTRS)
Porter, Stacy E.; Parkinson, Claire L.; Mosley-Thompson, Ellen
2016-01-01
Annual net accumulation (A(sub n)) from the Bruce Plateau (BP) ice core retrieved from the Antarctic Peninsula exhibits a notable relationship with sea ice extent (SIE) in the Bellingshausen Sea. Over the satellite era, both BP A(sub n) and Bellingshausen SIE are influenced by large-scale climatic factors such as the Amundsen Sea Low, Southern Annular Mode, and Southern Oscillation. In addition to the direct response of BP A(sub n) to Bellingshausen SIE (e.g., more open water as a moisture source), these large-scale climate phenomena also link the BP and the Bellingshausen Sea indirectly such that they exhibit similar responses (e.g., northerly wind anomalies advect warm, moist air to the Antarctic Peninsula and neighboring Bellingshausen Sea, which reduces SIE and increases A(sub n)). Comparison with a time series of fast ice at South Orkney Islands reveals a relationship between BP A(sub n) and sea ice in the northern Weddell Sea that is relatively consistent over the twentieth century, except when it is modulated by atmospheric wave patterns described by the Trans-Polar Index. The trend of increasing accumulation on the Bruce Plateau since approximately 1970 agrees with other climate records and reconstructions in the region and suggests that the current rate of sea ice loss in the Bellingshausen Sea is unrivaled in the twentieth century.
NASA Astrophysics Data System (ADS)
Rose, Brian E. J.
2015-02-01
Ongoing controversy about Neoproterozoic Snowball Earth events motivates a theoretical study of stability and hysteresis properties of very cold climates. A coupled atmosphere-ocean-sea ice general circulation model (GCM) has four stable equilibria ranging from 0% to 100% ice cover, including a "Waterbelt" state with tropical sea ice. All four states are found at present-day insolation and greenhouse gas levels and with two idealized ocean basin configurations. The Waterbelt is stabilized against albedo feedback by intense but narrow wind-driven ocean overturning cells that deliver roughly 100 W m-2 heating to the ice edges. This requires three-way feedback between winds, ocean circulation, and ice extent in which circulation is shifted equatorward, following the baroclinicity at the ice margins. The thermocline is much shallower and outcrops in the tropics. Sea ice is snow-covered everywhere and has a minuscule seasonal cycle. The Waterbelt state spans a 46 W m-2 range in solar constant, has a significant hysteresis, and permits near-freezing equatorial surface temperatures. Additional context is provided by a slab ocean GCM and a diffusive energy balance model, both with prescribed ocean heat transport (OHT). Unlike the fully coupled model, these support no more than one stable ice margin, the position of which is slaved to regions of rapid poleward decrease in OHT convergence. Wide ranges of different climates (including the stable Waterbelt) are found by varying the magnitude and spatial structure of OHT in both models. Some thermodynamic arguments for the sensitivity of climate, and ice extent to OHT are presented.
Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.
Warren, Maya M; Hartel, Richard W
2018-03-01
Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.
Geomorphologic Mapping of a Last Glacial Maximum Moraine Sequence in the Far Eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Lindsay, B. J.; Putnam, A. E.; Strand, P.; Radue, M. J.; Dong, G.; Kong, X.; Li, M.; Sheriff, M.; Stevens, J.
2017-12-01
The abrupt millennial-scale climate events of the last glacial cycle constitute an important component of the ice-age puzzle. A complete explanation of glacial cycles, and their rapid terminations, must account for these millennial climatic `flickers'. Here we present a glacial geomorphologic map of a moraine system in a formerly glaciated valley within the mountains of Litang County in the eastern Tibetan Plateau of China. Geomorphologic mapping was conducted by interpreting satellite imagery, structure-from-motion imagery and digital elevation models, and field observations. This map provides context for a parallel ongoing 10Be exposure-dating effort, the preliminary results of which may be available by the time of this 2017 AGU Fall Meeting. We interpret the mapped moraines to document the millennial-scale pulsebeat of glacier advances in this region during the peak of the last ice age. Because changes in mountain glacier extent in this region are driven by atmospheric temperature, these moraines record past millennial climate changes. Altogether this mapping and exposure-dating approach will provide insight into the mechanisms for millennial-scale glacier and climate fluctuations in the interior of Asia.
Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica
del Socorro Lozano-García, Ma.; Caballero, Margarita; Ortega, Beatriz; Rodríguez, Alejandro; Sosa, Susana
2007-01-01
The causes of late-Holocene centennial to millennial scale climatic variability and the impact that such variability had on tropical ecosystems are still poorly understood. Here, we present a high-resolution, multiproxy record from lowland eastern Mesoamerica, studied to reconstruct climate and vegetation history during the last 2,000 years, in particular to evaluate the response of tropical vegetation to the cooling event of the Little Ice Age (LIA). Our data provide evidence that the densest tropical forest cover and the deepest lake of the last two millennia were coeval with the LIA, with two deep lake phases that follow the Spörer and Maunder minima in solar activity. The high tropical pollen accumulation rates limit LIA's winter cooling to a maximum of 2°C. Tropical vegetation expansion during the LIA is best explained by a reduction in the extent of the dry season as a consequence of increased meridional flow leading to higher winter precipitation. These results highlight the importance of seasonal responses to climatic variability, a factor that could be of relevance when evaluating the impact of recent climate change. PMID:17913875