Interfacial characteristics of hybrid nanocomposite under thermomechanical loading
NASA Astrophysics Data System (ADS)
Choyal, Vijay; Kundalwal, Shailesh I.
2017-12-01
In this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.
Stress transfer mechanisms at the submicron level for graphene/polymer systems.
Anagnostopoulos, George; Androulidakis, Charalampos; Koukaras, Emmanuel N; Tsoukleri, Georgia; Polyzos, Ioannis; Parthenios, John; Papagelis, Konstantinos; Galiotis, Costas
2015-02-25
The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼ 2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping.
Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems
2015-01-01
The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping. PMID:25644121
Interfacial stress state present in a 'thin-slice' fibre push-out test
NASA Technical Reports Server (NTRS)
Kallas, M. N.; Koss, D. A.; Hahn, H. T.; Hellmann, J. R.
1992-01-01
An analysis of the stress distributions along the fiber-matrix interface in a 'thin-slice' fiber push-out test is presented for selected test geometries. For the small specimen thicknesses often required to displace large-diameter fibers with high interfacial shear strengths, finite element analysis indicates that large bending stresses may be present. The magnitude of these stresses and their spatial distribution can be very sensitive to the test configuration. For certain test geometries, the specimen configuration itself may alter the interfacial failure process from one which initiates due to a maximum in shear stress near the top surface adjacent to the indentor, to one which involves mixed mode crack growth up from the bottom surface and/or yielding within the matrix near the interface.
NASA Astrophysics Data System (ADS)
Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang
2011-02-01
A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.
Diefenbeck, Michael; Mückley, Thomas; Zankovych, Sergiy; Bossert, Jörg; Jandt, Klaus D; Schrader, Christian; Schmidt, Jürgen; Finger, Ulrich; Faucon, Mathilde
2011-01-01
Background: The effects of freezing-thawing cycles on intramedullary bone-implant interfaces have been studied in a rat model in mechanical pull-out tests. Implants: Twenty TiAl6V4 rods (Ø 0.8 mm, length 10 mm) implanted in rat tibiae Methods: 10 rats underwent bilateral tibial implantation of titanium rods. At eight weeks, the animals were sacrificed and tibiae harvested for biomechanical testing. Eight tibiae were frozen and stored at -20°C for 14 days, the remaining eight were evaluated immediately post-harvest. Pull-out tests were used to determine maximum force and interfacial shear strength. Results: There were no significant differences between fresh and those of the frozen-thawed group in maximum force or in interfacial shear strength. Conclusion: Frozen Storage of rat tibiae containing implants at -20° C has no effects on the biomechanical properties of Bone/ Implant interface. PMID:21760868
An Investigation of Interfacial Fatigue in Fiber Reinforced Composites
NASA Astrophysics Data System (ADS)
Yanhua, Chen; Zhifei, Shi
2005-09-01
Based on the shear-lag model and the modified degradation formula for coefficient of friction, the interfacial fatigue and debonding for fiber reinforced composites under cyclic loading are studied. The loading condition is chosen as the kind that is the most frequently used in fiber-pull-out experiments. The stress components in the debonded and bonded regions are obtained according to the maximum and minimum applied loading. By the aid of theory of fracture mechanics and Paris formula, the governing equation is solved numerically and the interfacial debonding is simulated. The relationships between the parameters (such as the debond rate, debond length, debond force) and the number of cycles are obtained.
Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.
Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V
2017-09-11
The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.
In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.
Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming
2014-12-18
Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tze, William Tai-Yin
The overall objective of this dissertation was to gain an understanding of the relationship between interfacial chemistry and the micromechanics of the cellulose-fiber/polymer composites. Regenerated cellulose (lyocell) fibers were treated with amine-, phenylamine-, phenyl-, and octadecyl-silanes, and also styrene-maleic anhydride copolymer. Inverse gas chromatography was conducted to evaluate the modified surfaces and to examine the adsorption behavior of ethylbenzene, a model compound for polystyrene, onto the fibers. Micro-composites were formed by depositing micro-droplets of polystyrene onto single fibers. The fiber was subjected to a tensile strain, and Raman spectroscopy was employed to determine the point-to-point variation of the strain- and stress-sensitive 895 cm-1 band of cellulose along the embedded region. Inverse gas chromatography studies reveal that the Ia-b values, calculated by matching the Lewis acid parameter ( KA) and basic parameter (KB) between polystyrene and different fibers, were closely correlated to the acid-base adsorption enthalpies of ethylbenzene onto the corresponding fibers. Hence, Ia-b was subsequently used as a convenient indicator for fiber/matrix acid-base interaction. The Raman micro-spectroscopic studies demonstrate that the interfacial tensile strain and stress are highest at the edge of the droplet, and these values decline from the edge region to the middle region of the embedment. The maximum of these local strains corresponds to a strain-control fracture of the matrix polymer. The minimum of the local tensile stress corresponds to the extent of fiber-to-matrix load transfer. The slope of the tensile stress profile allows for an estimation of the maximum interfacial shear stress, which is indicative of fiber/polymer (practical) adhesion. As such, a novel micro-Raman tensile technique was established for evaluating the ductile-fiber/brittle-polymer system in this study. The micro-Raman tensile technique provided maximum interfacial shear stress values of 8.0 to 13.8 MPa, ranking functional groups according to their practical adhesion to polystyrene: alkyl < untreated < phenyl = phenylamine = styrene copolymer < amine. Overall, interfacial bonding can be increased by increasing the acid-base interactions (Ia-b) or reducing the chemical incompatibility (Deltadelta) between the fibers and matrix. Therefore, interfacial chemistry can be employed to enhance and predict cellulose-fiber/polymer adhesion to better engineer composite properties and ultimately better utilize bio-resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roar Skartlien; Espen Sollum; Andreas Akselsen
2012-07-01
A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it atmore » later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.« less
Park, Joung-Man; Kim, Jin-Won; Yoon, Dong-Jin
2002-03-01
Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE). A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber exhibited under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces. For both the untreated and the treated cases AE distributions were separated well in tension, whereas AE distributions were rather closely overlapped in compression. It might be because of the difference in molecular failure energies and failure mechanisms between tension and compression. The maximum AE voltage for the waveform of either carbon or large-diameter basalt fiber breakages in tension exhibited much larger than that in compression. AE could provide more likely the quantitative information on the interfacial adhesion and microfailure.
Suppression of thermally excited capillary waves by shear flow.
Derks, Didi; Aarts, Dirk G A L; Bonn, Daniel; Lekkerkerker, Henk N W; Imhof, Arnout
2006-07-21
We investigate the thermal fluctuations of the colloidal gas-liquid interface subjected to a shear flow parallel to the interface. Strikingly, we find that the shear strongly suppresses capillary waves, making the interface smoother. This phenomenon can be described by introducing an effective interfacial tension that increases with the shear rate. The increase of sigma(eff) is a direct consequence of the loss of interfacial entropy caused by the flow, which affects especially the slow fluctuations. This demonstrates that the interfacial tension of fluids results from an intrinsic as well as a fluctuation contribution.
Influence of interfacial viscosity on the dielectrophoresis of drops
NASA Astrophysics Data System (ADS)
Mandal, Shubhadeep; Chakraborty, Suman
2017-05-01
The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.
NASA Astrophysics Data System (ADS)
Jing, Ze; Yong, Huadong; Zhou, Youhe
2012-08-01
In this paper, a theoretical model is proposed to analyze the transverse normal stress and interfacial shearing stress induced by the electromagnetic force in the superconducting coated conductor. The plane strain approach is used and a singular integral equation is derived. By assuming that the critical current density is magnetic field independent and the superconducting film is infinitely thin, the interfacial shearing stress and normal stress in the film are evaluated for the coated conductor during the increasing and decreasing in the transport current, respectively. The calculation results are discussed and compared for the conductor with different substrate and geometry. The results indicate that the coated conductor with stiffer substrate and larger width experiences larger interfacial shearing stress and less normal stress in the film.
NASA Astrophysics Data System (ADS)
Haddadi, F.; Strong, D.; Prangnell, P. B.
2012-03-01
Dissimilar joining of aluminum to steel sheet in multimaterial automotive structures is an important potential application of ultrasonic spot welding (USW). Here, the weldability of different zinc-coated steels with aluminum is discussed, using a 2.5-kW USW welder. Results show that soft hot-dipped zinc (DX56-Z)-coated steel results in better weld performance than hard (galv-annealed) zinc coatings (DX53-ZF). For Al to hard galv-annealed-coated steel welds, lap shear strengths reached a maximum of ~80% of the strength of an Al-Al joint after a 1.0 s welding time. In comparison, welds between Al6111-T4 and hot dipped soft zinc-coated steel took longer to achieve the same maximum strength, but nearly matched the Al-Al joint properties. The reasons for these different behaviors are discussed in terms of the interfacial reactions between the weld members.
Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K
2018-03-27
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
Zhang, Fangzhou; Bordia, Rajendra K.
2018-01-01
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates. PMID:29584647
Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.
Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae
2002-08-01
In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.
Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites
NASA Astrophysics Data System (ADS)
Hsueh, Chun-Hway
1992-11-01
Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.
Measuring Interlayer Shear Stress in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Wang, Guorui; Dai, Zhaohe; Wang, Yanlei; Tan, PingHeng; Liu, Luqi; Xu, Zhiping; Wei, Yueguang; Huang, Rui; Zhang, Zhong
2017-07-01
Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers and interfaces between 2D materials. Herein, we report the first measurement of the interlayer shear stress of bilayer graphene based on pressurized microscale bubble loading devices. We demonstrate continuous growth of an interlayer shear zone outside the bubble edge and extract an interlayer shear stress of 40 kPa based on a membrane analysis for bilayer graphene bubbles. Meanwhile, a much higher interfacial shear stress of 1.64 MPa was determined for monolayer graphene on a silicon oxide substrate. Our results not only provide insights into the interfacial shear responses of the thinnest structures possible, but also establish an experimental method for characterizing the fundamental interlayer shear properties of the emerging 2D materials for potential applications in multilayer systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Duo; Niu, Hongwei
C{sub f}/LAS composites were successfully jointed to TC4 alloy with Ag−Cu−Ti filler by vacuum brazing. The interfacial microstructure of TC4/C{sub f}/LAS composites joints was characterized by employing scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-diffraction (XRD) and transmission electron microscopy (TEM). The determination of the thin interfacial reaction layer (TiSi{sub 2} + TiC layer) was realized by TEM. The effect of holding time on the interfacial microstructure and shear strength were investigated. With the increasing holding time, the thickness of diffusion layer, Ti{sub 3}Cu{sub 4} layer, and TiSi{sub 2} + TiC layer increased obviously, on the contrary, that ofmore » Ti−Cu intermetallic compound layers decreased gradually. Besides, blocky Ti{sub 3}Cu{sub 4} phase was coarsened when the joint was brazed at 890 °C for 20 min, which deteriorated the mechanical properties of the joint dramatically. The interfacial evolution of TC4/C{sub f}/LAS composites joint and the formation of TiSi{sub 2}, TiC, Ti{sub 3}Cu{sub 4}, TiCu and Ti{sub 2}Cu phases were expounded. The maximum shear strength of 26.4 MPa was obtained when brazed at 890 °C for 10 min. - Highlights: •The thin interface reaction layer was determined to be TiSi{sub 2} + TiC layer by TEM. •Holding time had influence on the interfacial microstructure and joint properties. •Microstructural evolution mechanism and reactions of brazed joints were expounded.« less
A technique for measuring dynamic friction coefficient under impact loading
NASA Astrophysics Data System (ADS)
Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
A technique for measuring dynamic friction coefficient under impact loading.
Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide.
Soler-Crespo, Rafael A; Gao, Wei; Mao, Lily; Nguyen, Hoang T; Roenbeck, Michael R; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D
2018-06-12
Graphene oxide (GO), whose highly tunable surface chemistry enables the formation of strong interfacial hydrogen-bond networks, has garnered increasing interest in the design of devices that operate in the presence of water. For instance, previous studies have suggested that controlling GO's surface chemistry leads to enhancements in interfacial shear strength, allowing engineers to manage deformation pathways and control failure mechanisms. However, these previous reports have not explored the role of ambient humidity and only offer extensive chemical modifications to GO's surface as the main pathway to control GO's interfacial properties. Herein, through atomic force microscopy experiments on GO-GO interfaces, the adhesion energy and interfacial shear strength of GO were measured as a function of ambient humidity. Experimental evidence shows that adhesion energy and interfacial shear strength can be improved by a factor of 2-3 when GO is exposed to moderate (∼30% water weight) water content. Furthermore, complementary molecular dynamics simulations uncovered the mechanisms by which these nanomaterial interfaces achieve their properties. They reveal that the strengthening mechanism arises from the formation of strongly interacting hydrogen-bond networks, driven by the chemistry of the GO basal plane and intercalated water molecules between two GO surfaces. In summary, the methodology and findings here reported provide pathways to simultaneously optimize GO's interfacial and in-plane mechanical properties, by tailoring the chemistry of GO and accounting for water content, in engineering applications such as sensors, filtration membranes, wearable electronics, and structural materials.
Stability of Shapes Held by Surface Tension and Subjected to Flow
NASA Technical Reports Server (NTRS)
Chen, Yi-Ju; Robinson, Nathaniel D.; Steen, Paul H.
1999-01-01
Results of three problems are summarized in this contribution. Each involves the fundamental capillary instability of an interfacial bridge and is an extension of previous work. The first two problems concern equilibrium shapes of liquid bridges near the stability boundary corresponding to maximum length (Plateau-Rayleigh limit). For the first problem, a previously formulated nonlinear theory to account for imposed gravity and interfacial shear disturbances in an isothermal environment is quantitatively tested in experiment. For the second problem, the liquid bridge is subjected to a shear that models the effect of a thermocapillary flow generated by a ring heater in a liquid encapsulated float-zone configuration. In the absence of gravity, this symmetric perturbation can stabilize the bridge to lengths on the order of 30 percent beyond the Plateau-Rayleigh limit, which is on the order of heretofore unexplained Shuttle observations. The third problem considers the dynamics of collapse and pinchoff of a film bridge (no gravity), which happens in the absence of stabilization. Here, we summarize experimental efforts to measure the self-similar cone-and-crater structure predicted by a previous theory.
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2003-03-01
The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887-8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine further variations of the model which consider (1) how interfacial surface energy, when averaged over the mixture, appears to be partitioned between phases; (2) how variability in deformational-work partitioning greatly facilitates localization; and (3) how damage and localization are manifested in heat output and bulk energy exchange. Microphysical considerations of molecular bonding and activation energy suggest that the apparent partitioning of surface energy between phases goes as the viscosity of the phases. When such partitioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie (1984, J. Petrol.,25, 713-765) exactly, as well as the void-damage theory proposed in a companion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this variation of the theory still show at least three possible regimes of damage and localization: at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is possible for the system to undergo broadly distributed damage and no localization. However, the intensity of localization is strongly controlled by the variability of the deformational-work partitioning with dilation rate, represented by the parameter γ. For γ>> 1, extreme localization is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation velocities and effectively singular dilation rates. Finally, the bulk heat output is examined for the 1-D system to discern how much deformational work is effectively stored as surface energy. In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface energy is created. Yet, in either the weak or strong localizing cases, the system always releases surface energy, regardless of the presence of damage or not, and thus slightly more heat is in fact released than energy is input through external work. Moreover, increased levels of damage (represented by the maximum work-partitioning f*) make the localizing system release surface energy faster as damage enhances phase separation and focusing of the porosity field, thus yielding more rapid loss of net interfacial surface area. However, when cases with different levels of damage are compared at similar stages of development (say, the peak porosity of the localization) it is apparent that increased damage causes smaller relative heat release and retards loss of net interfacial surface energy. The energetics and energy partitioning of this damage and shear-localization model are applied to estimating the energy costs of forming plate boundaries and generating plates from mantle convection.
Erni, Philipp; Windhab, Erich J; Gunde, Rok; Graber, Muriel; Pfister, Bruno; Parker, Alan; Fischer, Peter
2007-11-01
Acacia gum is a hybrid polyelectrolyte containing both protein and polysaccharide subunits. We study the interfacial rheology of its adsorption layers at the oil/water interface and compare it with adsorbed layers of hydrophobically modified starch, which for economic and political reasons is often used as a substitute for Acacia gum in technological applications. Both the shear and the dilatational rheological responses of the interfaces are considered. In dilatational experiments, the viscoelastic response of the starch derivative is just slightly weaker than that for Acacia gum, whereas we found pronounced differences in shear flow: The interfaces covered with the plant gum flow like a rigid, solidlike material with large storage moduli and a linear viscoelastic regime limited to small shear deformations, above which we observe apparent yielding behavior. In contrast, the films formed by hydrophobically modified starch are predominantly viscous, and the shear moduli are only weakly dependent on the deformation. Concerning their most important technological use as emulsion stabilizers, the dynamic interfacial responses imply not only distinct interfacial dynamics but also different stabilizing mechanisms for these two biopolymers.
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1990-01-01
The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.
Microstructure and Fatigue Properties of Ultrasonic Spot Welded Joints of Aluminum 5754 Alloy
NASA Astrophysics Data System (ADS)
Mirza, F. A.; Macwan, A.; Bhole, S. D.; Chen, D. L.
2016-05-01
The purpose of this investigation was to evaluate the microstructural change, lap shear tensile load, and fatigue resistance of ultrasonic spot welded joints of aluminum 5754 alloy for automotive applications. A unique "necklace"-type structure with very fine equiaxed grains was observed to form along the weld line due to the mechanical interlocking coupled with the occurrence of dynamic recrystallization. The maximum lap shear tensile strength of 85 MPa and the fatigue limit of about 0.5 kN (at 1 × 107 cycles) were achieved. The tensile fracture occurred at the Al/Al interface in the case of lower energy inputs, and at the edge of nugget zone in the case of higher energy inputs. The maximum cyclic stress for the transition of fatigue fracture mode from the transverse through-thickness crack growth to the interfacial failure increased with increasing energy input. Fatigue crack propagation was mainly characterized by the formation of fatigue striations, which usually appeared perpendicular to the fatigue crack propagation.
Comparison of interphase models for a crack in fiber reinforced composite
NASA Astrophysics Data System (ADS)
Kaw, A. K.; Selvarathinam, A. S.; Besterfield, G. H.
1992-07-01
The influence of a nonhomogeneous interphase on fracture mechanics of a fiber reinforced composite is studied. The stress intensity factor at the crack tips, maximum interfacial shear and normal stresses, maximum cleavage stress in the matrix and load diffusion along the length of the fiber are studied as a function of the fiber width, the interphase thickness, and the relative stiffness properties of the fiber, the matrix and the interphase. The normal stresses at the interface, which represents the possibility of debonding of the interface, is lowest for interphase thicknesses of the order of one-tenth of the fiber-diameter, when the crack is in the stiffer material. These normal stresses are highest at such interphase thicknesses if the crack is in the less stiffer material. The results obtained by using the nonhomogeneous interphase model are also compared with five other interphase models used in the literature for the interphase, namely the perfect, the homogeneous, the distributed uncoupled shear and normal springs, and the distributed shear springs. It is found that the trends of the above parameters as a function of interphase thickness are different for the spring and continuum models, if the crack is in a stiffer material.
Mechanical Behavior of Sapphire Reinforced Alumina Matrix Composites at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eldridge, Jeffrey I.; Setlock, John A.; Gyekenyesi, John Z.
1997-01-01
Zirconia coated sapphire reinforced alumina matrix composites have been tested both after heat treatment to 1400 C and at temperatures ranging from 800 C to 1200 C in. air. Interfacial shear stress has also been measured with fiber pushout tests performed in air at room temperature, 800 C and 1OOO C. Matrix crack spacing was measured for the tensile tested composites and used to estimate interfacial shear stress up to 1200 C. Electron microscopy was used to determine the source of fiber fracture and to study interfacial failure within the composite.
Improving the durability of the optical fiber sensor based on strain transfer analysis
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-05-01
To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.
Boaro, Letícia Cristina Cidreira; Brandt, William Cunha; Meira, Josete Barbosa Cruz; Rodrigues, Flávia Pires; Palin, William M; Braga, Roberto Ruggiero
2014-02-01
To determine the free surface displacement of resin-composite restorations as a function of the C-Factor, volume and substrate stiffness, and to compare the results with interfacial stress values evaluated by finite element analysis (FEA). Surface displacement was determined by an extensometer using restorations with 4 or 6mm diameter and 1 or 2mm depth, prepared in either bovine teeth or glass. The maximum displacement of the free surface was monitored for 5 min from the start of photoactivation, at an acquisition rate of 1s(-1). Axisymmetric cavity models were performed by FEA. Structural stiffness and maximum stresses were investigated. For glass, displacement showed a stronger correlation with volume (r=0.771) than with C-Factor (r=0.395, p<0.001 for both). For teeth, a stronger correlation was found with C-Factor (r=0.709; p<0.001) than with volume (r=0.546, p<0.001). For similar dimensions, stress and displacement were defined by stiffness. Simultaneous increases in volume and C-Factor led to increases in stress and surface displacement. Maximum stresses were located at the cavosurface angle, internal angle (glass) and at the dentine-enamel junction (teeth). The displacement of the restoration's free surface was related to interfacial stress development. Structural stiffness seems to affect the shrinkage stress at the tooth/resin-composite interface in bonded restorations. Deep restorations are always problematic because they showed high shear stress, regardless of their width. FEA is the only tool capable of detecting shear stress due to polymerization as there is still no reliable experimental alternative. Copyright © 2013 Elsevier Ltd. All rights reserved.
Interlaminar shear properties of graphite fiber, high-performance resin composites
NASA Technical Reports Server (NTRS)
Needles, H. L.; Kourtides, D. A.; Fish, R. H.; Varma, D. S.
1983-01-01
Short beam testing was used to determine the shear properties of laminates consisting of T-300 and Celion 3000 and 6000 graphite fibers, in epoxy, hot melt and solvent bismaleimide, polyimide and polystyrylpyridine (PSP). Epoxy, composites showed the highest interlaminar shear strength, with values for all other resins being substantially lower. The dependence of interlaminar shear properties on the fiber-resin interfacial bond and on resin wetting characteristics and mechanical properties is investigated, and it is determined that the lower shear strength of the tested composites, by comparison with epoxy resin matrix composites, is due to their correspondingly lower interfacial bond strengths. An investigation of the effect of the wettability of carbon fiber tow on shear strength shows wetting variations among resins that are too small to account for the large shear strength property differences observed.
Interfacial crystalline structures in injection over-molded polypropylene and bond strength.
Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian
2010-11-01
This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.
Study of interface influence on bending performance of CFRP with embedded optical fibers
NASA Astrophysics Data System (ADS)
Liu, Rong-mei; Liang, Da-kai
2008-11-01
Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.
Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco
2016-06-01
Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50 ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications. © The Author(s) 2015.
Qu, Jing; Ouyang, Liangqi; Kuo, Chin-chen; Martin, David C.
2015-01-01
Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this study the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 ± 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 ± 0.6 MPa. PMID:26607768
Investigation of interfacial shear strength in SiC/Si3N4 composites
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Bhatt, R. T.; Kiser, J. D.
1991-01-01
A fiber push-out technique was used to determine fiber/matrix interfacial shear strength (ISS) for silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composites in the as-fabricated condition and after consolidation by hot isostatic pressing (HIPing). In situ video microscopy and acoustic emission detection greatly aided the interpretation of push-out load/displacement curves.
Effects of bulk and free surface shear flows on amyloid fibril formation
NASA Astrophysics Data System (ADS)
Posada, David; Sorci, Mirco; Belfort, Georges; Hirsa, Amir
2008-11-01
Amyloid diseases such as Alzheimer's and Huntington's, among others, are characterized by the conversion of monomers to oligomers (precursors) and then to amyloid fibrils. Besides factors such as concentration, pH, and ionic strength, evidence exists that shearing flow strongly influences amyloid formation in vitro. Also, during fibrillation in the presence of either gas or solid surfaces, both the polarity and roughness of the surfaces play a significant role in the kinetics of the fibrillation process. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field, we can identify the flow and interfacial conditions that impact protein aggregation kinetics. The present flow system consists of an annular region, bounded by stationary inner and outer cylinders and driven by rotation of the floor, with either a hydrophobic (air) or hydrophilic (solid) interface. We show both the combined and separated effects of shear and interfacial hydrophobicity on the fibrillation process, and the use of interfacial shear viscosity as a parameter for quantifying the oligomerization process.
Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M
The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (p<0.05) initial shear bond strengths and shear fatigue strengths than those without, regardless of the adhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (p<0.05) than on those without, regardless of etching mode. The results of this study suggest that the oxygen inhibition layer of universal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Ping; Mu, Jujie; Yu, Qi; Lu, Chun
2011-05-01
The improved interfacial adhesion of PBO fiber-reinforced bismaleimide composite by oxygen plasma processing was investigated in this paper. After treatment, the maximum value of interlaminar shear strength was 57.5 MPa, with an increase of 28.9%. The oxygen concentration of the fiber surface increased, as did the surface roughness, resulting in improvement of the surface wettability. The cleavage and rearrangement of surface bonds created new functional groups O dbnd C sbnd O, N sbnd C dbnd O and N sbnd O, thereby activating the fiber surface. And long-time treatment increased the reaction degree of surface groups while destroyed the newly-created physical structures. The enhancement of adhesion relied primarily on the strengthening of chemical bonding and mechanical interlocking between the fiber and the matrix. The composite rupture planes indicated that the fracture failure shifted from the interface to the matrix or the fiber.
NASA Astrophysics Data System (ADS)
Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.
2018-07-01
For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5- µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar; Squires, Todd M.
2017-02-01
The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.
NASA Astrophysics Data System (ADS)
Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.
2018-05-01
For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5-µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.
Effect of demulsifiers on interfacial properties governing crude oil demulsification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S.; Kushnick, A.P.
1987-01-01
The purpose of this paper is to illustrate how various parameters such as interfacial tension, interfacial shear viscosity, dynamic interfacial tension gradient, dilational elasticity and demulsifier clustering affect the demulsification effectiveness. The authors believe such an understanding is needed for developing more effective demulsifiers. At small thicknesses, an interfacial oil film can rupture if a continuous hydrophilic pathway exists between the droplets. Such a pathway can be provided by a demulsifier by forming water swollen reverse micelle-like clusters. They believe the differences in the effectiveness between P1 and P2 at low concentrations may be related to this phenomenon. The authorsmore » found that with both P1 and P2, the crude oil-brine interfacial shear viscosity is less than 0.1 surface poise. The interfacial dilational measurements also do not reveal any significant differences in their dynamic tension properties. But the interfacial tension vs. concentration curves show significant differences. The leveling of interfacial tension implies formation of clusters. The data indicate that the demulsifier P1 will form such clusters in the crude oil at a lower concentration than P2. Thus, other parameters being equal, the demulsifier P1 will be more efficient at a lower concentration than P2 for this crude oil emulsion.« less
Differences in interfacial bond strengths of graphite fiber-epoxy resin composites
NASA Technical Reports Server (NTRS)
Needles, H. L.
1985-01-01
The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.
Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter
2014-04-01
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. Copyright © 2013 Elsevier B.V. All rights reserved.
Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.
Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan
2012-09-04
Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.
NASA Astrophysics Data System (ADS)
Ding, Jow; Alexander, C. Scott
2017-06-01
MAPS (Magnetically Applied Pressure Shear) is a new technique that can be used to explore the material behavior under dynamic compression-shear loadings at strain rates and pressures that are much higher than those that can be achieved by gas-gun driven pressure shear experiments. A significant challenge for MAPS is the transmission of large shear stress through material interfaces. In this study, numerical simulations were used to gain insights on the behavior of the interface between molybdenum, which is the driver, and zirconia, the anvil, in MAPS experiments. Molybdenum was stressed into the plastic regime and zirconia stayed elastic but appeared to have incurred some spall damage at the later stage of the experiments. By including damage for the anvil and interfacial sliding in the simulations, both the longitudinal and transverse velocity data were able to be reasonably simulated. The results indicate that the interfacial slip appears to usually occur at the beginning stage of the shear loading when the pressure is relatively low. After the pressure reaches a certain level, the shear stress could be fully transmitted. Some other possible experiment designs to minimize the role of interface in MAPS are discussed. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Evaluation of the interfacial bond properties between carbon phenolic and glass phenolic composites
NASA Technical Reports Server (NTRS)
Jordan, K.; Clinton, R.; Jeelani, S.
1991-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials have been studied. Test results indicate that moisture substantially degrades the integrity of the interfacial bond between C/P and G/P materials. The apparent effect of the autoclave curing of the C/P material reduces the ultimate interlaminar shear length of the C/P material by 20 percent compared to the hydroclave curing of the C/P material. The variation in applied surface finishes is found to have no appreciable effect on the ultimate interlaminar shear strength of the interface in the wet laminate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, J., E-mail: cao_jian@hit.edu.cn; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Song, X.G., E-mail: song_xiaoguohit@yahoo.com.cn
Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and β-Ti were formed in brazedmore » joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + β-Ti + Ti{sub 5}Si{sub 3}/β-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + β + Ti{sub 5}Si{sub 3}/β/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.« less
NASA Technical Reports Server (NTRS)
Asthana, R.; Tiwari, R.; Tewari, S. N.
1995-01-01
Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.
Ultrasonic Spot Welding of a Rare-Earth Containing ZEK100 Magnesium Alloy: Effect of Welding Energy
NASA Astrophysics Data System (ADS)
Macwan, A.; Chen, D. L.
2016-04-01
Ultrasonic spot welding was used to join a low rare-earth containing ZEK100 Mg alloy at different levels of welding energy, and tensile lap shear tests were conducted to evaluate the failure strength in relation to the microstructural changes. It was observed that dynamic recrystallization occurred in the nugget zone; the grain size increased and microhardness decreased with increasing welding energy arising from the increasing interface temperature and strain rate. The weld interface experienced severe plastic deformation at a high strain rate from ~500 to ~2100 s-1 with increasing welding energy from 500 to 2000 J. A relationship between grain size and Zener-Hollomon parameter, and a Hall-Petch-type relationship between microhardness and grain size were established. The tensile lap shear strength and failure energy were observed to first increase with increasing welding energy, reach the maximum values at 1500 J, and then decrease with a further increase in the welding energy. The samples welded at a welding energy ≤1500 J exhibited an interfacial failure mode, while nugget pull-out occurred in the samples welded at a welding energy above 1500 J. The fracture surfaces showed typical shear failure. Low-temperature tests at 233 K (-40 °C) showed no significant effect on the strength and failure mode of joints welded at the optimal welding energy of 1500 J. Elevated temperature tests at 453 K (180 °C) revealed a lower failure load but a higher failure energy due to the increased deformability, and showed a mixed mode of partial interfacial failure and partial nugget pull-out.
Global method for measuring stress in polymer fibers at elevated temperatures
NASA Astrophysics Data System (ADS)
Anagnostopoulos, G.; Andreopoulos, A. G.; Parthenios, J.; Galiotis, C.
2005-09-01
In this work, a methodology is presented for evaluating the interfacial shear stress as well as the corresponding axial stress in full polymer fiber reinforced materials under elevated temperatures. Its validity was confirmed by deriving interfacial shear and axial stress expressions for embedded Kevlar® 29 fibers within an epoxy matrix by means of Raman microscopy. This approach can be established to other systems such as carbon or polyethylene fiber composites, for which the observed Raman bands are both stress and temperature sensitive.
Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric
2009-09-01
We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.
Probing nonlinear rheology layer-by-layer in interfacial hydration water.
Kim, Bongsu; Kwon, Soyoung; Lee, Manhee; Kim, Q Hwan; An, Sangmin; Jhe, Wonho
2015-12-22
Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water.
Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.
1991-01-01
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).
Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.
1989-01-01
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).
Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch
2013-10-01
The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities. Copyright © 2013 Elsevier Inc. All rights reserved.
Sinusoidal Forcing of Interfacial Films
NASA Astrophysics Data System (ADS)
Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan
2015-11-01
Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang
2014-10-01
Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.
Interfacial Shear Strength of Multilayer Graphene Oxide Films.
Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer
2016-02-23
Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.
Megías-Alguacil, David; Fischer, Peter; Windhab, Erich J
2004-06-15
We present experimental investigations on droplet deformation under simple shear flow conditions, using a computer-controlled parallel band apparatus and an optical device which allows us to record the time dependence of the droplet shape. Several methods are applied to determine the interfacial tension from the observed shape and relaxation mechanism. Specific software developed in our laboratory allows the droplet to be fixed in a certain position for extended times, in fact, indefinite. This is an advantage over most other work done in this area, where only limited time is available. In our experiments, the transient deformation of sheared droplets can be observed to reach the steady state. The measured systems were Newtonian, both droplet and fluid phase. Droplet deformation, orientation angle and retraction were studied and compared to several models. The interfacial tension of the different systems was calculated using the theories of Taylor, Rallison, and Hinch and Acrivos. The results obtained from the analysis of the droplet deformation were in very good agreement with drop detachment experiments of Feigl and co-workers. The study of orientation angle shows qualitative agreement to the theory of Hinch and Acrivos but reveals larger quantitative discrepancies for several empirical fitting parameters of the used model. Analysis of the relaxation of sheared drops provided estimates of the interfacial tension that were in very good agreement with the steady-state measurements.
NASA Astrophysics Data System (ADS)
Nguyen, Van Luong; Kim, Ho-Kyung
2015-07-01
Shear tests with velocities between 0.5 m/s and 2.5 m/s were conducted to investigate the deformation characteristics of 0.76 mm lead-free Sn-3Ag-0.5Cu solder ball joints after thermal aging at 373 K up to 1000 h. A scanning electron microscope equipped with energy dispersive spectroscopy was then used to examine the fracture surfaces and microstructures of the solder joints. The results showed that the main failure mode of the solder joints was the brittle interfacial fracture mode with cleavage failure in the intermetallic compound (IMC). The maximum shear strength and the fracture toughness ( K C) of the solder joint decreased substantially after aging for the initial aging time, after which they decreased gradually with further aging or an increase in the strain rate. The evolution of the IMC layer when it was thicker and had coarser nodules due to thermal aging was the primary cause of the reduction in the shear strength and fracture toughness in this study.
Chen, C Q; Scott, W; Barker, T M
1999-01-01
Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.
Fiber pushout and interfacial shear in metal-matrix composites
NASA Technical Reports Server (NTRS)
Koss, Donald A.; Hellmann, John R.; Kallas, M. N.
1993-01-01
Recent thin-slice pushout tests have suggested that MMC matrix-fiber interface failure processes depend not only on such intrinsic factors as bond strength and toughness, and matrix plasticity, but such extrinsic factors as specimen configuration, thermally-induced residual stresses, and the mechanics associated with a given test. After detailing the contrasts in fiber-pullout and fiber-pushout mechanics, attention is given to selected aspects of thin-slice fiber pushout behavior illustrative of the physical nature of interfacial shear response and its dependence on both intrinsic and extrinsic factors.
Effect of Interfacial Microstructures on the Bonding Strength of Sn-3.0Ag-0.5Cu Pb-Free Solder Bump
NASA Astrophysics Data System (ADS)
Kim, Jae-Myeong; Jeong, Myeong-Hyeok; Yoo, Sehoon; Park, Young-Bae
2012-05-01
The effect of interfacial microstructures on the bonding strength of Sn-3.0Ag-0.5Cu Pb-free solder bumps with respect to the loading speed, annealing time, and surface finish was investigated. The shear strength increased and the ductility decreased with increasing shear speed, primarily because of the time-independent plastic hardening and time-dependent strain-rate sensitivity of the solder alloy. The shear strength and toughness decreased for all surface finishes under the high-speed shear test of 500 mm/s as a result of increasing intermetallic compound (IMC) growth and pad interface weakness associated with increased annealing time. The immersion Sn and organic solderability preservative (OSP) finishes showed lower shear strength compared to the electroless nickel immersion gold (ENIG) finish. With increasing annealing time, the ENIG finish exhibited the pad open fracture mode, whereas the immersion Sn and OSP finishes exhibited the brittle fracture mode. In addition, the shear strength of the solder joints was correlated with each fracture mode.
Effect of interfacial species on shear strength of metal-sapphire contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1979-01-01
The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.
Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy.
Lei, Zhenkun; Wang, Quan; Qiu, Wei
2013-06-01
The interfacial stress transfer behavior of a Kevlar 49 aramid fiber-epoxy matrix was studied with fiber pullout tests, the fibers of which were stretched by a homemade microloading device. Raman spectra on the embedded fiber were recorded by micro-Raman spectroscopy, under different strain levels. Then, the fiber axial stress was obtained by the relationship between the stress and Raman shift of the aramid fiber. Experimental results revealed that the fiber axial stress increased significantly with the load. The shear stress concentration occurred at the fiber entry to the epoxy resin. Thus, interfacial friction stages exist in the debonded fiber segment, and the interfacial friction shear stress is constant within one stage. The experimental results are consistent with the theoretical model predictions.
Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading
NASA Technical Reports Server (NTRS)
Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.
Interfacial Reaction and Mechanical Properties of Sn-Bi Solder joints
Huang, Ying; Zhang, Zhijie
2017-01-01
Sn-Bi solder with different Bi content can realize a low-to-medium-to-high soldering process. To obtain the effect of Bi content in Sn-Bi solder on the microstructure of solder, interfacial behaviors in solder joints with Cu and the joints strength, five Sn-Bi solders including Sn-5Bi and Sn-15Bi solid solution, Sn-30Bi and Sn-45Bi hypoeutectic and Sn-58Bi eutectic were selected in this work. The microstructure, interfacial reaction under soldering and subsequent aging and the shear properties of Sn-Bi solder joints were studied. Bi content in Sn-Bi solder had an obvious effect on the microstructure and the distribution of Bi phases. Solid solution Sn-Bi solder was composed of the β-Sn phases embedded with fine Bi particles, while hypoeutectic Sn-Bi solder was composed of the primary β-Sn phases and Sn-Bi eutectic structure from networked Sn and Bi phases, and eutectic Sn-Bi solder was mainly composed of a eutectic structure from short striped Sn and Bi phases. During soldering with Cu, the increase on Bi content in Sn-Bi solder slightly increased the interfacial Cu6Sn5 intermetallic compound (IMC)thickness, gradually flattened the IMC morphology, and promoted the accumulation of more Bi atoms to interfacial Cu6Sn5 IMC. During the subsequent aging, the growth rate of the IMC layer at the interface of Sn-Bi solder/Cu rapidly increased from solid solution Sn-Bi solder to hypoeutectic Sn-Bi solder, and then slightly decreased for Sn-58Bi solder joints. The accumulation of Bi atoms at the interface promoted the rapid growth of interfacial Cu6Sn5 IMC layer in hypoeutectic or eutectic Sn-Bi solder through blocking the formation of Cu6Sn5 in solder matrix and the transition from Cu6Sn5 to Cu3Sn. Ball shear tests on Sn-Bi as-soldered joints showed that the increase of Bi content in Sn-Bi deteriorated the shear strength of solder joints. The addition of Bi into Sn solder was also inclined to produce brittle morphology with interfacial fracture, which suggests that the addition of Bi increased the shear resistance strength of Sn-Bi solder. PMID:28792440
NASA Astrophysics Data System (ADS)
Wang, Xu; Schiavone, Peter
2018-06-01
We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion-coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.
Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D
2018-03-05
Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.
Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong
2003-08-15
Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.
NASA Astrophysics Data System (ADS)
Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong
2016-01-01
Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.
Transient response of nonideal ion-selective microchannel-nanochannel devices
NASA Astrophysics Data System (ADS)
Leibowitz, Neta; Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad
2018-04-01
We report evidence of variation in ion selectivity of a fabricated microchannel-nanochannel device resulting in the appearance of a distinct local maximum in the overlimiting chronopotentiometric response. In this system consisting of shallow microchannels joined by a nanochannel, viscous shear at the microchannel walls suppresses the electro-osmotic instability and prevents any associated contribution to the nonmonotonic response. Thus, this response is primarily electrodiffusive. Numerical simulations indicate that concentration polarization develops not only within the microchannel but also within the nanochannel itself, with a local voltage maximum in the chronopotentiometric response correlated with interfacial depletion and having the classic i-2 Sands time dependence. Furthermore, the occurrence of the local maxima is correlated with the change in selectivity due to internal concentration polarization. Understanding the transient nonideal permselective response is essential for obtaining fundamental insight and for optimizing efficient operation of practical fabricated nanofluidic and membrane devices.
NASA Astrophysics Data System (ADS)
Wang, Hao; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori
2017-01-01
Tensile deformation and failure of Σ9 tilt grain boundaries (GBs) in Al and Cu have been examined by first-principles tensile tests (FPTTs). Local-energy and local-stress schemes were applied to clarify the variations of local energies and local hydrostatic stresses for all atoms during the deformation process. The GBs in Al and Cu exhibited quite different tensile behaviours in the FPTTs, despite their similar initial configurations. For the Al GB, there are two stages of deformation before failure. In the first stage, the back bonds of the interfacial bonds are mainly stretched, due to special high strength of the interfacial reconstructed bonds. In the second stage, the interfacial bonds begin to be significantly stretched due to high concentrated stresses, while stretching of the back bonds is suppressed. The atoms at the interfacial, back and bulk bonds have very different variations of local energies and local stresses during each stage, because the behaviour of each atom is significantly dependent on each local structural change due to the high sensitivity of sp electrons to the local environment in Al. The Cu GB has much higher tensile strength, and a natural introduction of stacking faults (SFs) occurs via the {111}< 112> shear slip in the bulk regions between the interfaces before the maximum stress is reached. This is caused by the smaller SF energy and lower ideal shear strength of Cu than Al, and is triggered by highly accumulated local energies and stress at the interface atoms. The local-energy distribution around the SF is consistent with the previous theoretical estimation. After the introduction of the SF, the local energies and stresses of all the atoms in the Cu GB supercell tend to become similar to each other during the tensile process, in contrast to the inhomogeneity in the Al GB. The origins of the different tensile behaviours observed for Al and Cu GBs are discussed with respect to the different bonding natures of Al and Cu, which are dominated by three sp valence electrons per atom for Al and by fully occupied d bands and s electrons for Cu.
Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6
Squires, Lile; Lim, Yong Chae; Miles, Michael; ...
2015-03-18
In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its highermore » alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.« less
Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Zhihong; Huang Peiyan; Guo Yongchang
2010-05-21
A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectivelymore » utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.« less
Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.
Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi
2017-11-22
We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.
Rheological behavior on treated Malaysian crude oil
NASA Astrophysics Data System (ADS)
Chandran, Krittika; Sinnathambi, Chandra Mohan
2016-11-01
Crude oil is always produced with water. This association causes many problems during oil production, arising from the formation of emulsion. Emulsion is an undesirable substance that increases operational and capital cost in the pipeline and processing equipment. To overcome this issue, demulsifiers are formulated to break the emulsion, where they are able to separate the water-oil emulsions to their respective phases. The emulsifier's main function is to reduce the interfacial tension properties of the emulsion. For this research, both the EOR and natural water-in-oil emulsions were treated with low a concentration demulsifier. The main objective of this paper is to determine the dynamic viscosity and rheological properties of the treated EOR and natural emulsion. The dynamic viscosity was obtained using the Brook-field Digital Viscometer. The components that influence the emulsion's rheological properties are the temperature, shear rate and shear stress. The results obtained demonstrate that the viscosity of the treated crude decreases and portrays the Non-Newtonian shear thinning "pseudo-plastic" behavior. Besides that, to determine the interfacial film of the treated crude, the spinning drop tensiometer was used. With the addition of demulsifier, the thinning rate of the oil film accelerates whereby there is a linear decrease in the interfacial tension with an increase in time. Therefore, from the results, it can be observed that the rheology study plays a significant role in the demulsification test. Furthermore, both the rheology approaches showed that time, temperature, shear rate and shear stress have a great impact on the viscosity behavior as well as the IFT.
NASA Technical Reports Server (NTRS)
Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)
2000-01-01
When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using DPPC as the insoluble surfacant monolayer and measured for it a surface dilatational viscosity in the LE phase that is 20 surface poise.
Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping
2010-03-01
Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.
Fibrillization kinetics of insulin solution in an interfacial shearing flow
NASA Astrophysics Data System (ADS)
Balaraj, Vignesh; McBride, Samantha; Hirsa, Amir; Lopez, Juan
2015-11-01
Although the association of fibril plaques with neurodegenerative diseases like Alzheimer's and Parkinson's is well established, in-depth understanding of the roles played by various physical factors in seeding and growth of fibrils is far from well known. Of the numerous factors affecting this complex phenomenon, the effect of fluid flow and shear at interfaces is paramount as it is ubiquitous and the most varying factor in vivo. Many amyloidogenic proteins have been found to denature upon contact at hydrophobic interfaces due to the self-assembling nature of protein in its monomeric state. Here, fibrillization kinetics of insulin solution is studied in an interfacial shearing flow. The transient surface rheological response of the insulin solution to the flow and its effect on the bulk fibrillization process has been quantified. Minute differences in hydrophobic characteristics between two variants of insulin- Human recombinant and Bovine insulin are found to result in very different responses. Results presented will be in the form of fibrillization assays, images of fibril plaques formed, and changes in surface rheological properties of the insulin solution. The interfacial velocity field, measured from images (via Brewster Angle Microscopy), is compared with computations. Supported by NNX13AQ22G, National Aeronautics and Space Administration.
Fatigue Crack Growth and Crack Bridging in SCS-6/Ti-24-11
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack
1995-01-01
Interfacial damage induced by relative fiber/matrix sliding was found to occur in the bridged zone of unidirectional SCS-6/Ti-24Al-11Nb intermetallic matrix composite specimens subjected to fatigue crack growth conditions. The degree of interfacial damage was not uniform along the bridged crack wake. Higher damage zones were observed near the machined notch in comparison to the crack tip. The interfacial friction shear strength tau(sub f) measured in the crack wake using pushout testing revealed lower values than the as-received interface. Interfacial wear also reduced the strength of the bridging fibers. The reduction in fiber strength is thought to be a function of the magnitude of relative fiber/matrix displacements ind the degree of interfacial damage. Furthermore, two different fiber bridging models were used to predict the influence of bridging on the fatigue crack driving force. The shear lag model required a variable tau(sub f) in the crack wake (reflecting the degradation of the interface) before its predictions agreed with trends exhibited by the experimental data. The fiber pressure model did an excellent job in predicting both the FCG data and the DeltaCOD in the bridged zone even though it does not require a knowledge of tau(sub f).
NASA Astrophysics Data System (ADS)
Cheng, Zheng; Hong, Dawei; Dai, Yu; Jiang, Chan; Meng, Chenbo; Luo, Longbo; Liu, Xiangyang
2018-03-01
The poor Uv stability and weak interfacial adhesion are considered as the bottleneck problems for further application of aramid fiber. Herein, a new strategy, Fe3+ coordination, was reported for aramid fiber to simultaneous improve its Uv resistance and composite interfacial shear strength. Fe3+ was introduced onto aramid fiber by coordinating with benzimidazole unit of fiber structure. It can reach a doping capacity of as high as 1516ug/g fiber, and the fiber surface is saturatedly covered with Fe3+. The chemical structure of Fe3+-benzimidazole brings about strong metal-enhanced fluorescence emission effect, which, in turn, greatly raises its Uv stability. Owing to the Fe3+ coordination, the tensile strength of Fe-coordinated fiber could preserve as high as 96% after Uv irradiation, compared with 73% of untreated fiber. Meanwhile, the introduction of Fe3+ improves the surface polarity of aramid fiber and consequently leads to the increase of the composite interfacial shear strength by 39%. It is believed that the Fe-coordinated fiber integrates the advantages of easy production, cost-effective and increased Uv stability, as well as high composite interfacial adhesion, and can be used as promising enhancement for the advanced composite material in harsh environment.
NASA Astrophysics Data System (ADS)
Yazdanpanah Moghadam, Peyman; Quaegebeur, Nicolas; Masson, Patrice
2015-01-01
Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile.
Zhou, Yi; Yu, Feilong; Deng, Hua; Huang, Yajiang; Li, Guangxian; Fu, Qiang
2017-06-29
The morphology evolution under shear during different processing is indeed an important issue regarding the phase morphology control as well as final physical properties of immiscible polymer blends. High-speed thin wall injection molding (HSTWIM) has recently been demonstrated as an effective method to prepare alternating multilayered structure. To understand the formation mechanism better and explore possible phase morphology for different blends under HSTWIM, the relationship between the morphology evolution of polymer blends based on polypropylene (PP) under HSTWIM and some intrinsic properties of polymer blends, including viscosity ratio, interfacial tension, and melt elasticity, is systematically investigated in this study. Blends based on PP containing polyethylene (PE), ethylene vinyl alcohol copolymer (EVOH), and polylactic acid (PLA) are used as examples. Compatibilizer has also been added into respective blends to alter their interfacial interaction. It is demonstrated that dispersed phase can be deformed into a layered-like structure if interfacial tension, viscosity ratio, and melt elasticity are relatively small. While some of these values are relatively large, these dispersed droplets are not easily deformed under HSTWIM, forming ellipsoidal or fiber-like structure. The addition of a moderate amount of compatibilizer into these blends is shown to be able to reduce interfacial tension and the size of dispersed phase, thus, allowing more deformation on the dispersed phase. Such a study could provide some guidelines on phase morphology control of immiscible polymer blends under shear during various processing methods.
Viscoelastic analysis of a dental metal-ceramic system
NASA Astrophysics Data System (ADS)
Özüpek, Şebnem; Ünlü, Utku Cemal
2012-11-01
Porcelain-fused-to-metal (PFM) restorations used in prosthetic dentistry contain thermal stresses which develop during the cooling phase after firing. These thermal stresses coupled with the stresses produced by mechanical loads may be the dominant reasons for failures in clinical situations. For an accurate calculation of these stresses, viscoelastic behavior of ceramics at high temperatures should not be ignored. In this study, the finite element technique is used to evaluate the effect of viscoelasticity on stress distributions of a three-point flexure test specimen, which is the current international standard, ISO 9693, to characterize the interfacial bond strength of metal-ceramic restorative systems. Results indicate that the probability of interfacial debonding due to normal tensile stress is higher than that due to shear stress. This conclusion suggests modification of ISO 9693 bond strength definition from one in terms of the shear stress only to that accounting for both normal and shear stresses.
Instability-driven interfacial dynamo in protoneutron stars
NASA Astrophysics Data System (ADS)
Mastrano, A.; Melatos, A.
2011-10-01
The existence of a tachocline in the Sun has been proven by helioseismology. It is unknown whether a similar shear layer, widely regarded as the seat of magnetic dynamo action, also exists in a protoneutron star. Sudden jumps in magnetic diffusivity η and turbulent vorticity α, for example at the interface between the neutron-finger and convective zones, are known to be capable of enhancing mean-field dynamo effects in a protoneutron star. Here, we apply the well-known, plane-parallel, MacGregor-Charbonneau analysis of the solar interfacial dynamo to the protoneutron star problem and analytically calculate the growth rate under a range of conditions. It is shown that, like the solar dynamo, it is impossible to achieve self-sustained growth if the discontinuities in α, η and shear are coincident and the magnetic diffusivity is isotropic. In contrast, when the jumps in η and α are situated away from the shear layer, self-sustained growth is possible for P≲ 49.8 ms (if the velocity shear is located at 0.3R) or P≲ 83.6 ms (if the velocity shear is located at 0.6R). This translates into stronger shear and/or α-effect than in the Sun. Self-sustained growth is also possible if the magnetic diffusivity is anisotropic, through the Ω×J effect, even when the α, η and shear discontinuities are coincident.
Scheuble, Nathalie; Lussi, Micha; Geue, Thomas; Carrière, Frédéric; Fischer, Peter
2016-10-10
Delayed fat digestion might help to fight obesity. Fat digestion begins in the stomach by adsorption of gastric lipases to oil/water interfaces. In this study we show how biopolymer covered interfaces can act as a physical barrier for recombinant dog gastric lipase (rDGL) adsorption and thus gastric lipolysis. We used β-lactoglobulin (β-lg) and thermosensitive methylated nanocrystalline cellulose (metNCC) as model biopolymers to investigate the role of interfacial fluid dynamics and morphology for interfacial displacement processes by rDGL and polysorbate 20 (P20) under gastric conditions. Moreover, the influence of the combination of the flexible β-lg and the elastic metNCC was studied. The interfaces were investigated combining interfacial techniques, such as pendant drop, interfacial shear and dilatational rheology, and neutron reflectometry. Displacement of biopolymer layers depended mainly on the fluid dynamics and thickness of the layers, both of which were drastically increased by the thermal induced gelation of metNCC at body temperature. Soft, thin β-lg interfaces were almost fully displaced from the interface, whereas the composite β-lg-metNCC layer thermogelled to a thick interfacial layer incorporating β-lg as filler material and therefore resisted higher shear forces than a pure metNCC layer. Hence, with metNCC alone lipolysis by rDGL was inhibited, whereas the layer performance could be increased by the combination with β-lg.
NASA Astrophysics Data System (ADS)
Jiao, Weiwei; Cai, Yemeng; Liu, Wenbo; Yang, Fan; Jiang, Long; Jiao, Weicheng; Wang, Rongguo
2018-05-01
The practical application of carbon fiber (CF) reinforced vinyl ester resin (VE) composite was hampered seriously by the poor interfacial adhesion property. In this work, a novel unsaturated sizing agent was designed and prepared to improve the interfacial strength by covalently bonding CF with VE matrix. The main component of the sizing agent, N-(4‧4-diaminodiphenyl methane)-2-hydroxypropyl methacrylate (DMHM), was synthesized and confirmed by FTIR and NMR. XPS results of sized carbon fiber (SCF) showed that DMHM has adhered to desized fiber surface and reacted with some active functional groups on the surface. The SCF was characterized by high surface roughness and surface energy (especially the polar component), which means better wettability by VE. As a result, the interface shear strength and interlaminar shear strength of SCF/VE composite were enhanced by 96.56% and 66.07% respectively compared with CF/VE composite, benefited mainly from the strong and tough interphase.
Donnelly, Patrick E.; Chen, Tony; Finch, Anthony; Brial, Caroline; Maher, Suzanne A.; Torzilli, Peter A.
2017-01-01
Articular cartilage lacks the ability to self-repair and a permanent solution for cartilage repair remains elusive. Hydrogel implantation is a promising technique for cartilage repair; however for the technique to be successful hydrogels must interface with the surrounding tissue. The objective of this study was to investigate the tunability of mechanical properties in a hydrogel system using a phenol-substituted polymer, tyramine-substituted hyaluronate (TA-HA), and to determine if the hydrogels could form an interface with cartilage. We hypothesized that tyramine moieties on hyaluronate could crosslink to aromatic amino acids in the cartilage extracellular matrix. Ultraviolet (UV) light and a riboflavin photosensitizer were used to create a hydrogel by tyramine self‐crosslinking. The gel mechanical properties were tuned by varying riboflavin concentration, TA-HA concentration, and UV exposure time. Hydrogels formed with a minimum of 2.5 min of UV exposure. The compressive modulus varied from 5–16 kPa. Fluorescence spectroscopy analysis found differences in dityramine content. Cyanine-3 labelled tyramide reactivity at the surface of cartilage was dependent on the presence of riboflavin and UV exposure time. Hydrogels fabricated within articular cartilage defects had increasing peak interfacial shear stress at the cartilage-hydrogel interface with increasing UV exposure time, reaching a maximum shear stress 3.5× greater than a press‐fit control. Our results found that phenol-substituted polymer/riboflavin systems can be used to fabricate hydrogels with tunable mechanical properties and can interface with the surface tissue, such as articular cartilage. PMID:28134036
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Honecy, F. S.
1990-01-01
AES depth profiling and a fiber push-out test for interfacial shear-strength determination have been used to ascertain the mechanical/chemical properties of the fiber/matrix interface in SiC-reinforced reaction-bonded Si3N4, with attention to the weak point where interfacial failure occurs. In the cases of both composite fracture and fiber push-outs, the interfacial failure occurred either between the two C-rich coatings that are present on the double-coated SiC fibers, or between the inner C-rich coating and the SiC fiber. Interface failure occurs at points of very abrupt concentration changes.
Linear Instability Analysis of non-uniform Bubbly Mixing layer with Two-Fluid model
NASA Astrophysics Data System (ADS)
Sharma, Subash; Chetty, Krishna; Lopez de Bertodano, Martin
We examine the inviscid instability of a non-uniform adiabatic bubbly shear layer with a Two-Fluid model. The Two-Fluid model is made well-posed with the closure relations for interfacial forces. First, a characteristic analysis is carried out to study the well posedness of the model over range of void fraction with interfacial forces for virtual mass, interfacial drag, interfacial pressure. A dispersion analysis then allow us to obtain growth rate and wavelength. Then, the well-posed two-fluid model is solved using CFD to validate the results obtained with the linear stability analysis. The effect of the void fraction and the distribution profile on stability is analyzed.
An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection
NASA Astrophysics Data System (ADS)
Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David
2012-05-01
The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to describe the SH mode generation, propagation and reception. Of particular interest is that one SH guided wave mode (probably SH0) reverberates within the lap joint. Moreover, in both simulations and measurements, features of this so-called reverberation signal appear to be related to interfacial weakness between the plate (substrate) and the epoxy bond. The results of a hybrid numerical (FE) approach based on using COMSOL to calculate the driving forces within an elastic solid and ABAQUS to propagate the resulting elastic disturbances (waves) within the plates and lap joint are compared with measurements of SH wave generation and reception in lap joint specimens having different interfacial and cohesive bonding conditions.
Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L
2017-01-01
Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N2/BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm−1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm−1) and the N2/BET solid surface area (28±2 cm−1). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm−1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm−1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm−1 and 152±8 cm−1, respectively), but much smaller than the N2/BET solid surface area (1387±92 cm−1 and 55224 cm−1, respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard IPTT method. PMID:28959079
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-29
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.
NASA Astrophysics Data System (ADS)
Yang, Jianlei; Wang, Guofeng; Jiao, Xueyan; Gu, Yibin; Liu, Qing; Li, You
2018-05-01
Spark plasma sintering (SPS) technology was used to current-assisted bond extruded Ti-22Al-25Nb alloy. The effects of bonding temperature (920-980 °C) and bonding time (10-30 min) on the microstructure evolution and shear strength of this alloy were investigated systematically. The temperature distribution in the specimen during the current-assisted bonding process was also analyzed by numerical simulation. It is noted that the highest temperature was obtained at the bonding interface. As the bonding temperature and bonding time increased, the voids in the interface shrank increasingly until they vanished. A complete metallurgical bonding interface could be produced at 960 °C/20 min/10 MPa, exhibiting the highest shear strength of 269.3 MPa. In addition, the shear strength of the bonded specimen depended on its interfacial microstructure. With increased bonding temperature, the fracture mode transformed from the intergranular fracture at the bonding interface to the cleavage fracture in the substrate.
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-01
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948
On 'large-scale' stable fiber displacement during interfacial failure in metal matrix composites
NASA Technical Reports Server (NTRS)
Petrich, R. R.; Koss, D. A.; Hellmann, J. R.; Kallas, M. N.
1993-01-01
Experimental results are presented to show that interfacial failure in sapphire-reinforced niobium is characterized by 'large-scale' (5-15 microns) plasticity-controlled fiber displacements occurring under increasing loads. The results are based on the responses during thin-slice fiber pushout tests wherein the fiber is supported over a hole twice the fiber diameter. The results describe an interfacial failure process that should also occur near fiber ends during pullout when a fiber is well-bonded to a soft, ductile matrix, such that eventual failure occurs by shear within the matrix near the interface.
49 CFR 230.27 - Maximum shearing strength of rivets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength...
49 CFR 230.27 - Maximum shearing strength of rivets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength...
Fracture Micromechanics of Intermetallic and Ceramic Matrix Continuous Fiber Composites
1991-05-01
mechanical properties of titanium matrix composites, but much less information has been published. Only data in the published literature is referenced in...1984, pp. 1931-1940. 18. C.J. Yang, S.M. Jeng and J.-M. Yang " Interfacial properties measurements for SiC fiber-reinforced titanium alloy composites...Analyses of these parameters allowed a determination of interfacial shear strength. Fracture mechanics was used to correlate the micromechanical
Microstructure and Mechanical Properties of C/C Composite/TC17 Joints with Ag-Cu-Ti Brazing Alloy
NASA Astrophysics Data System (ADS)
Cao, Xiujie; Zhu, Ying; Guo, Wei; Peng, Peng; Ma, Kaituo
2017-12-01
Carbon/Carbon composite(C/C) was vacuum brazed to titanium alloy (TC17) using Ag-Cu-Ti brazing alloy. The effects of brazing temperature on the interfacial microstructure and joint properties were investigated by energy dispersive spectrometer (EDS), a scanning electron microscope (SEM), X-ray diffraction (XRD) and Gleeble1500D testing machine. Results show that C/C composite and TC17 were successfully brazed using AgCuTi brazing alloy. Various phases including TiC, Ag(s, s), Cu(s, s), Ti3Cu4, TiCu, and Ti2Cu were formed in the brazed joint. The maximum shear strength of the brazed joints with AgCuTi brazing alloy was 24±1 MPa when brazed at 860°C for 15 min.
Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell
Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang
2013-01-01
A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032
Fiber reinforced solids possessing great fracture toughness: The role of interfacial strength
NASA Technical Reports Server (NTRS)
Atkins, A. G.
1974-01-01
The high tensile strength characteristic of strong interfacial filament/matrix bonding can be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of high and low shear stress (and low and high toughness). Such weak and strong areas can be achieved by appropriate intermittent coating of the fibers. An analysis is presented for toughness and strength which demonstrates, in broad terms, the effects of varying the coating parameters of concern. Results show that the toughness of interfaces is an important parameter, differences in which may not be shown up in terms of interfacial strength. Some observations are made upon methods of measuring the components of toughness in composites.
Long, Weifeng; Hu, Xiaowu; Fu, Yanshu
2018-01-01
In order to accelerate the growth of interfacial intermetallic compound (IMC) layers in a soldering structure, Cu/SAC305/Cu was first ultrasonically spot soldered and then subjected to isothermal aging. Relatively short vibration times, i.e., 400 ms and 800 ms, were used for the ultrasonic soldering. The isothermal aging was conducted at 150 °C for 0, 120, 240, and 360 h. The evolution of microstructure, the IMC layer growth mechanism during aging, and the shear strength of the joints after aging were systemically investigated. Results showed the following. (i) Formation of intermetallic compounds was accelerated by ultrasonic cavitation and streaming effects, the thickness of the interfacial Cu6Sn5 layer increased with aging time, and a thin Cu3Sn layer was identified after aging for 360 h. (ii) The growth of the interfacial IMC layer of the ultrasonically soldered Cu/SAC305/Cu joints followed a linear function of the square root of the aging time, revealing a diffusion-controlled mechanism. (iii) The tensile shear strength of the joint decreased to a small extent with increasing aging time, owing to the combined effects of IMC grain coarsening and the increase of the interfacial IMC. (iv) Finally, although the fracture surfaces and failure locations of the joint soldered with 400 ms and 800 ms vibration times show similar characteristics, they are influenced by the aging time. PMID:29316625
Ray, Bahni; Reddy, Puchalapalli Dinesh Sankar; Bandyopadhyay, Dipankar; Joo, Sang W; Sharma, Ashutosh; Qian, Shizhi; Biswas, Gautam
2011-11-01
We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A
2016-10-12
The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m 2 , respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, John H., E-mail: john.h.cantrell@nasa.gov
2015-03-15
The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes K{sub N} of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfacesmore » with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The K{sub N} calculations fall in the range (2.01 – 4.67) ×10{sup 17} N m{sup −3}. The average ratio K{sub N}/|τ| is calculated to be (2.59 ± 0.043) × 10{sup 10} m{sup −1} for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of K{sub N} via a technique such as angle beam ultrasonic spectroscopy.« less
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Brindley, P. K.
1989-01-01
A fiber push-out technique applied at several sample thicknesses was used to determine both the debond shear stress and the frictional shear stress at the fiber-matrix interface at room temperautre for a unidirectional SiC fiber-reinforced T-24Al-11Nb (in at. pct) composite prepared by a powder cloth technique. The push-out technique measures the separate contributions of bond strength and friction to the mechanical shear strength at the fiber-matrix interface. It was found that the fiber-matrix bond shear strength of this material is significantly higher than the fiber-matrix frictional shear stress (119.2 and 47.8 MPa, respectively).
NASA Astrophysics Data System (ADS)
Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert
2015-07-01
The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.
Transport properties at fluids interfaces: a molecular study for a macroscopic modelling
NASA Astrophysics Data System (ADS)
Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim
2017-11-01
Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.
NASA Technical Reports Server (NTRS)
Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.
1997-01-01
Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.
Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong
2010-04-01
The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.
Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties
NASA Technical Reports Server (NTRS)
Nadim, Ali
1996-01-01
The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.
Relationship of Interfacial Compatibility to Durability of Adhesive - Bonded Joints
1981-03-01
same as BR-238, but with the nitrile rubber removed. Because the phenolic matrix resin has different binding properties to the elastomer than do the...primer, which formed phase separated rubber particles having poor mechanical linkage with the matrix resin , resulted in significant loss in shear...having good mechanical linkage with the matrix resin , resulted in good shear strength retention andsignificantly increased toughness. An adhesive
A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding
NASA Astrophysics Data System (ADS)
Rao, Harish Mangebettu
The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack propagation into the top sheet, into the bottom sheet, and interfacial separation. Investigation of the tested welds revealed that the voids in the weld nugget reduced the weld strength, resulting in lower fatigue life. A thin layer of IMCs formed along the faying surface which accelerated the fatigue failure.
Predicted lattice-misfit stresses in a gallium-nitride (GaN) film
NASA Astrophysics Data System (ADS)
Suhir, E.; Yi, S.
2017-02-01
Effective, easy-to-use and physically meaningful analytical predictive models are developed for the evaluation the lattice-misfit stresses (LMS) in a semiconductor film grown on a circular substrate (wafer). The two-dimensional (plane-stress) theory-of-elasticity approximation (TEA) is employed. First of all, the interfacial shearing stresses are evaluated. These stresses might lead to the occurrence and growth of dislocations, as well as to possible delaminations (adhesive strength of the assembly) and the elevated stress and strain in the buffering material, if any (cohesive strength of the assembly). Second of all, the normal radial and circumferential (tangential) stresses acting in the film cross-sections are determined. These stresses determine the short- and long-term strength (fracture toughness) of the film material. It is shown that while the normal stresses in the semiconductor film are independent of its thickness, the interfacial shearing stresses increase with an increase in the induced force (not stress!) acting in the film cross-sections, and that this force increases with an increase in the film thickness. This leads, for a thick enough film, to the occurrence, growth and propagation of dislocations. These start at the assembly ends and propagate, when the film thickness increases, inwards the structure. The TEA data are compared with the results obtained using a simplified strength-of-materials approach (SMA). This approach considers, instead of an actual circular assembly, an elongated bi-material rectangular strip of unit width and of finite length equal to the wafer diameter. The analysis, although applicable to any semiconductor crystal growth (SCG) technology is geared in this analysis to the Gallium-Nitride (GaN) technology. The numerical example is carried out for a GaN film grown on a Silicon Carbide (SiC) substrate. It is concluded that the SMA model is acceptable for understanding the physics of the state of stress and for the prediction of the normal stresses acting in the major mid-portion of the assembly. The SMA model underestimates, however, the maximum interfacial shearing stress at the assembly periphery, and, because of the very nature of the SMA, is unable to address the circumferential stress. This stress can be quite high at the circular boundary of the assembly. At the assembly edge the circumferential stress is as high as σθ = (2-ν1)σ1, i.e., by the factor of 2-ν1 higher than the normal stress, σ1, in the mid-portion of the film. In this formula, ν1 is Poisson's ratio of the film material.
Peng, He; Chen, Daolun; Jiang, Xianquan
2017-01-01
The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW)–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations. PMID:28772809
Mansour, Heidi M; Xu, Zhen; Hickey, Anthony J
2010-08-01
The relationship between physicochemical properties of drug/carrier blends and aerosol drug powder delivery was evaluated. Four pulmonary drugs each representing the major pulmonary therapeutic classes and with a different pharmacological action were employed. Specifically, the four pulmonary drugs were albuterol sulfate, ipratropium bromide monohydrate, disodium cromoglycate, and fluticasone propionate. The two carrier sugars, each representing a different sugar class, were D-mannitol and trehalose dihydrate. Dry powder aerosols (2%, w/w, drug in carrier) delivered using standardized entrainment tubes (SETs) were characterized by twin-stage liquid impinger. The fine particle fraction (FPF) was correlated with SET shear stress, tau(s), and the maximum fine particle fraction (FPF(max)) was correlated with a deaggregation constant, k(d), by using a powder aerosol deaggregation equation (PADE) by nonlinear and linear regression analyses applied to pharmaceutical inhalation aerosol systems in the solid state. For the four pulmonary drugs representing the major pulmonary therapeutic classes and two chemically distinct pulmonary sugar carriers (non-lactose types) aerosolized with SETs having well-defined shear stress values, excellent correlation and predictive relationships were demonstrated for the novel and rigorous application of PADE for dry powder inhalation aerosol dispersion within a well-defined shear stress range, in the context of pulmonary drug/sugar carrier physicochemical and interfacial properties. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Peng, He; Chen, Daolun; Jiang, Xianquan
2017-04-25
The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW)-at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with "river-flow" patterns and characteristic fatigue striations.
Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.
We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy{close_quote}s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. {copyright} {ital 1998} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Song, Zhongchang; Zhang, Yu; Wei, Chong; Wang, Xianyan
2016-01-01
Through numerically solving the appropriate wave equations, propagation of biosonar signals in a Chinese river dolphin (baiji) was studied. The interfacial waves along the rostrum-tissue interfaces, including both compressional (longitudinal) and shear (transverse) waves in the solid rostrum through fluid-solid coupling were examined. The baiji's rostrum was found to effect acoustic beam formation not only as an interfacial wave generator but also as a sound reflector. The wave propagation patterns in the solid rostrum were found to significantly change the wave movement through the bone. Vibrations in the rostrum, expressed in solid displacement, initially increased but eventually decreased from posterior to anterior sides, indicating a complex physical process. Furthermore, the comparisons among seven cases, including the combination of (1) the rostrum, melon, and air sacs; (2) rostrum-air sacs; (3) rostrum-melon; (4) only rostrum; (5) air sacs-melon; (6) only air sacs; and (7) only melon revealed that the cases including the rostrum were better able to approach the complete system by inducing rostrum-tissue interfacial waves and reducing the differences in main beam angle and -3 dB beam width. The interfacial waves in the rostrum were considered complementary with reflection to determine the obbligato role of the rostrum in the baiji's biosonar emission. The far-field beams formed from complete fluid-solid models and non-fluid-solid models were compared to reveal the effects brought by the consideration of shear waves of the solid structures of the baiji. The results may provide useful information for further understanding the role of the rostrum in this odontocete species.
Song, Zhongchang; Zhang, Yu; Wei, Chong; Wang, Xianyan
2016-01-01
Through numerically solving the appropriate wave equations, propagation of biosonar signals in a Chinese river dolphin (baiji) was studied. The interfacial waves along the rostrum-tissue interfaces, including both compressional (longitudinal) and shear (transverse) waves in the solid rostrum through fluid-solid coupling were examined. The baiji's rostrum was found to effect acoustic beam formation not only as an interfacial wave generator but also as a sound reflector. The wave propagation patterns in the solid rostrum were found to significantly change the wave movement through the bone. Vibrations in the rostrum, expressed in solid displacement, initially increased but eventually decreased from posterior to anterior sides, indicating a complex physical process. Furthermore, the comparisons among seven cases, including the combination of (1) the rostrum, melon, and air sacs; (2) rostrum-air sacs; (3) rostrum-melon; (4) only rostrum; (5) air sacs-melon; (6) only air sacs; and (7) only melon revealed that the cases including the rostrum were better able to approach the complete system by inducing rostrum-tissue interfacial waves and reducing the differences in main beam angle and -3 dB beam width. The interfacial waves in the rostrum were considered complementary with reflection to determine the obbligato role of the rostrum in the baiji's biosonar emission. The far-field beams formed from complete fluid-solid models and non-fluid-solid models were compared to reveal the effects brought by the consideration of shear waves of the solid structures of the baiji. The results may provide useful information for further understanding the role of the rostrum in this odontocete species.
NASA Astrophysics Data System (ADS)
Das, Sayan; Bhattacharjee, Anirban; Chakraborty, Suman
2018-03-01
The present study deals with the effect of interfacial slip on the deformation and emulsion rheology of a dilute suspension of droplets in a linear flow. The droplets are laden with surfactants that are bulk-insoluble and get transported only along the interface. An asymptotic approach is adopted for the present analysis in order to tackle the nonlinearity present due to deformation of droplets. The analysis is carried out for two different limiting scenarios, namely, surface diffusion-dominated-surfactant transport and surface convection-dominated surfactant transport. For either of the limiting cases, we look into the droplet dynamics for two commonly encountered bulk flows—uniaxial extensional and simple shear flow. Under the assumption of negligible fluid inertia in either phase, it is shown that slip at the droplet interface significantly affects the surfactant-induced Marangoni stress and hence droplet deformation and emulsion rheology. The presence of interfacial slip not only brings about a decrease in the droplet deformation but also reduces the effective viscosity of the emulsion. The fall in both droplet deformation and effective viscosity is found to be more severe for the limiting case of surface convection-dominated surfactant transport. For the case of an imposed simple shear flow, the normal stress differences generated due to droplet deformation are affected as well due to the presence of interfacial slip.
Thermal effects on an embedded grating sensor in an FRP structure
NASA Astrophysics Data System (ADS)
Lau, Kin-tak; Yuan, Libo; Zhou, Li-min
2001-08-01
Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.
NASA Astrophysics Data System (ADS)
Benyoucef, S.; Tounsi, A.; Yeghnem, R.; Bachir Bouiadjra, M.; Adda Bedia, E. A.
2014-01-01
The strengthening of steel structures in situ with externally bonded fiber-reinforced plastic (FRP) composite sheets is increasingly being used for the repair and rehabilitation of existing structures. The previous researchers have developed several analytical methods to predict the interface performance of bonded repairs. An important feature of a reinforced steel beam is the significant stress concentration in the adhesive at the ends of the FRP plate. In this paper, a closed-form solution for the interfacial shear and normal stresses in simply supported steel beams strengthened with a bonded FRP plate and subjected to thermomechanical loadings is presented. The shear strains of the adherends are included in the present theoretical analysis by assuming a parabolic distribution of shear stress across their thickness. Contrary to some existing studies, the assumption that both adherends have the same curvature is not used in the present study. The results of this numerical study are beneficial for understanding the mechanical behavior of material interfaces and for the design of hybrid FRP-reinforced steel structures.
Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior of DP 780 Steel Sheet
NASA Astrophysics Data System (ADS)
Pal, Tapan Kumar; Bhowmick, Kaushik
2012-02-01
Resistance spot welding characteristics of DP 780 steel was investigated using peel test, microhardness test, tensile shear test, and fatigue test. Tensile shear test provides better spot weld quality than conventional peel test and hardness is not a good indicator of the susceptibility to interfacial fracture. The results of high-cycle fatigue behavior of spot welded DP 780 steel under two different parameters show that at high load low cycle range a significant difference in the S- N curve and almost similar fatigue behavior of spot welds at low load high cycle range are obtained. However, when applied load was converted to stress intensity factor, the difference in the fatigue behavior between welds diminished. Furthermore, a transition in fracture mode, i.e., interfacial and plug and hole-type at about 50% of yield load is observed.
Film condensation in a horizontal rectangular duct
NASA Technical Reports Server (NTRS)
Lu, Qing; Suryanarayana, N. V.
1992-01-01
Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.
NASA Technical Reports Server (NTRS)
Wolf, Kay Woodroof
1982-01-01
Graphite/epoxy (T300/5208) and graphite/polyimide composites (C6000/PMR 15) were exposed to various levels of 0.5 MeV electron radiation with the maximum dose being 10,000 Mrad. A three point bending test was used to evaluate the ultimate stress and modulus of the composites. In all composites except transverse samples of C6000/PMR 15 ultimate stress values remained approximately constant or increased slightly. The modulus values remained approximately constant for all composite types regardless of the radiation level. Interfacial aspects of composites were studied. Interlaminar shear tests were performed on T300/5208 and C6000/PMR 15 composites irradiated to 10,000 Mrad. There was an initial increase in interlaminar shear strength (up to 1,000 Mrad) followed by a sharp decrease with further radiation exposure. Using scanning electron microscopy no visual differences in the mode of fracture could be detected between ruptured control samples and those exposed to various levels of radiation. Electron spectroscopy for chemical analysis (ESCA) revealed little change in the surface elements present in control and highly irradiated T300/5208 composite samples.
Upper Ocean Profiles Measurements with ASIP
NASA Astrophysics Data System (ADS)
Ward, B.; Callaghan, A. H.; Fristedt, T.; Vialard, J.; Cuypers, Y.; Weller, R. A.; Grosch, C. E.
2009-04-01
This presentation describes results from the Air-Sea Interaction Profiler (ASIP), an autonomous profiling instrument for upper ocean measurements. The measurements from ASIP are well suited to enhancing research on air-sea interfacial and near surface processes. Autonomous profiling is accomplished with a thruster, which submerges ASIP to a programmed depth. Once this depth is reached the positively buoyant instrument will ascend to the surface acquiring data. ASIP can profile from a maximum depth of 100 m to the surface, allowing both mixed layer and near-surface measurements to be conducted. The sensor payload on ASIP include microstructure sensors (two shear probes and a thermistor); a slow response accurate thermometer; a pair of conductivity sensors; pressure for a record of depth; PAR for measurements of light absorption in the water column. Other non-environmental sensors are acceleration, rate, and heading for determination of vehicle motion. Power is provided with rechargable lithium-ion batteries, supplying 1000 Whr, allowing approximately 300 profiles. ASIP also contains an iridium/GPS system, which allows realtime reporting of its position. ASIP was deployed extensively during the Cirene Indian Ocean campaign and our results focus on the data from the temperature, salinity, light, and shear sensors.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopoulos, Demetrios; Inghram, Linda; McCorkle, Linda
1997-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and (I) fiber-matrix bonding, (2) Mode II interlaminar fracture toughness, and (3) failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests definitely showed that, for aging times up to 1000 hr, the aging process caused no observable changes in the bulk of the three composite materials that---would degrade the shear properties of the material. Comparisons between the interlaminar shear strength (ILSS) measured by the short beam shear tests and the GII c test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU-4 fiber resulted in weight losses about twice those experienced by the AS-4 reinforced composites, the ones with the best TOS.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopolous, Demetrios S.; Inghram, Linda; Mccorkle, Linda
1995-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and fiber-matrix bonding, Mode 2 interlaminar fracture toughness, and failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests showed that, for times up to 1000 hr, the aging process caused no changes in the bulk of the three composite materials that would degrade the shear properties of the material. Comparisons between the interlaminar shear strengths (ILSS) measured by the short beam shear tests and the GIIC test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU 1 fiber resulted in weight losses about twice those experienced by the AS 1 reinforced composites, the ones with the best TOS.
NASA Astrophysics Data System (ADS)
Ma, Lichun; Li, Nan; Wu, Guangshun; Song, Guojun; Li, Xiaoru; Han, Ping; Wang, Gang; Huang, Yudong
2018-03-01
A novel amine-based functionalization method was developed to improve the interfacial adhesion between TiO2 NWs and CFs in supercritical water. The microstructure, morphology and mechanical properties of CFs were investigated. It was found that introducing hexamethylenetetramine (HMTA) dendrimers and branched polyethyleneimine (PEI) on CF could increase significantly the adhesion strength between CF and TiO2 NWs and their interfacial shear strength with epoxy resin, and the order is CF-PEI-TiO2 NWs > CF-HMTA-TiO2 NWs > CF-COOH-TiO2 NWs > CF-TiO2 NW. Meanwhile, the reinforcing mechanisms and interfacial failure modes have also been discussed. We believe that these effective methods may provide theoretical foundation for the preparation of high performance composite materials.
NASA Astrophysics Data System (ADS)
Yazdchi, K.; Salehi, M.; Shokrieh, M. M.
2009-03-01
By introducing a new simplified 3D representative volume element for wavy carbon nanotubes, an analytical model is developed to study the stress transfer in single-walled carbon nanotube-reinforced polymer composites. Based on the pull-out modeling technique, the effects of waviness, aspect ratio, and Poisson ratio on the axial and interfacial shear stresses are analyzed in detail. The results of the present analytical model are in a good agreement with corresponding results for straight nanotubes.
Influence of Ni Interlayer on Microstructure and Mechanical Properties of Mg/Al Bimetallic Castings
NASA Astrophysics Data System (ADS)
Liu, Ning; Liu, Canchun; Liang, Chunyong; Zhang, Yongguang
2018-05-01
Dissimilar joining of magnesium and aluminum using a compound casting process was investigated in the present work. For the first time, a Ni interlayer prepared by plasma spraying was inserted between the two base metals to improve the interfacial characteristics. Examination of the interfacial regions using scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and X-ray diffraction revealed the formation of a three-layered interface between Mg and Al without the interlayer. The thickness of the interface was approximately 600 μm when the casting was performed at 700 °C and increased with increasing casting temperature. However, with the addition of the Ni interlayer, the Al-Mg reaction was successfully prevented, and metallurgical bonding between the Ni interlayer and two base metals was achieved at a casting temperature of 700 °C. Upon increasing this temperature, Mg-Ni and Al-Ni intermetallics were generated at the separate interfaces. The shear strength of the Mg/Al bimetallic castings with the Ni interlayer was substantially improved compared with that of the direct Mg/Al joint, with a maximum value of 25.4 MPa achieved at 700 °C. Fracture occurred mainly along the Mg/Ni interface for the Mg/Ni/Al multilayer structure castings.
Kinetics of shear-induced gel deswelling/solvent release.
Zeo, Undina; Tarabukina, Elena; Budtova, Tatiana
2005-11-02
The kinetics of shear-induced deswelling of gel particles based on synthetic (sodium polyacrylate) and natural (alginate) polymers was studied by rheo-optical technique. A swollen spherical gel particle of 100+/-50 microm diameter was placed in silicone oil and the evolution of the gel size as a function of time and shear rate was monitored. Different aqueous polymer solutions were used as synthetic gel solvent: polyvinylpyrrolidone, hydroxypropyl cellulose and glucose-based polymer. The interfacial tension (gel solvent)/(silicone oil), gel degree of swelling, solvent quality and viscosity are the main parameters influencing the kinetics of shear-induced gel deswelling. The kinetics of gel volume loss was approximated by a modified Weibull equation.
Yu, Kejing; Wang, Menglei; Wu, Junqing; Qian, Kun; Sun, Jie; Lu, Xuefeng
2016-01-01
The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF) composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM) and optical microscopy (OM). The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA) indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials. PMID:28335217
Interface effects on mechanical properties of particle-reinforced composites.
Debnath, S; Ranade, R; Wunder, S L; McCool, J; Boberick, K; Baran, G
2004-09-01
Effective bonding between the filler and matrix components typically improves the mechanical properties of polymer composites containing inorganic fillers. The aim of this study was to test the hypothesis that composite flexural modulus, flexure strength, and toughness are directly proportional to filler-matrix interfacial shear strength. The resin matrix component of the experimental composite consisted of a 60:40 blend of BisGMA:TEGDMA. Two levels of photoinitiator components were used: 0.15, and 0.5%. Raman spectroscopy was used to determine degree of cure, and thermogravimetry (TGA) was used to quantify the degree of silane, rubber, or polymer attachment to silica and glass particles. Filler-matrix interfacial shear strengths were measured using a microbond test. Composites containing glass particles with various surface treatments were prepared and the modulus, flexure strength, and fracture toughness of these materials obtained using standard methods. Mechanical properties were measured on dry and soaked specimens. The interfacial strength was greatest for the 5% MPS treated silica, and it increased for polymers prepared with 0.5% initiator compared with 0.15% initiator concentrations. For the mechanical properties measured, the authors found that: (1) the flexural modulus was independent of the type of filler surface treatment, though flexural strength and toughness were highest for the silanated glass; (2) rubber at the interface, whether bonded to the filler and matrix or not, did not improve toughness; (3) less grafting of resin to silanated filler particles was observed when the initiator concentration decreased. These findings suggest that increasing the strength of the bond between filler and matrix will not result in improvements in the mechanical properties of particulate-reinforced composites in contrast to fiber-reinforced composites. Also, contraction stresses in the 0.5 vs 0.15% initiator concentration composites may be responsible for increases in interfacial shear strengths, moduli, and flexural strengths.
NASA Astrophysics Data System (ADS)
Qin, M. L.; Kong, H. J.; Yu, M. H.; Teng, C. Q.
2017-06-01
In this paper, aramid fibers were treated under supercritical carbon dioxide (SCCO2) with isocyanate terminated liquid nitrile rubber to improve the adhesion performances of vinyl epoxy composites. The interfacial shear strength (IFSS) of vinyl epoxy composites was investigated by micro-bond test. The results indicate that the surface modification of aramid fibers in SCCO2 was an efficient method to increase the adhesion performances between fibers and vinyl epoxy. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were adopted to investigate the surface structure and composition of aramid fibers. The flexural strength and interlaminar shear strength (ILSS) of treated aramid fibers/vinyl epoxy composites was improved by 18.1% and 28.9% compared with untreated aramid fibers, respectively. Furthermore, the fractured surfaces of the composites were observed by SEM, which showed that the interfacial adhesion of composites has been remarkably changed.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
McCready, M. J.; Chang, H.-C.; Leighton, D. T.
2001-01-01
This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.
Fiber pushout test: A three-dimensional finite element computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.
1990-01-01
A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computationally very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictional stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.
Experimental study on the bed shear stress under breaking waves
NASA Astrophysics Data System (ADS)
Hao, Si-yu; Xia, Yun-feng; Xu, Hua
2017-06-01
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.
NASA Astrophysics Data System (ADS)
Fu, Li; Merabia, Samy; Joly, Laurent
2017-11-01
Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.
Fu, Li; Merabia, Samy; Joly, Laurent
2017-11-24
Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.
NASA Astrophysics Data System (ADS)
Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.
2017-10-01
Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.
NASA Astrophysics Data System (ADS)
Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie
2013-09-01
ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.
Instabilities in wormlike micelle systems. From shear-banding to elastic turbulence.
Fardin, M-A; Lerouge, S
2012-09-01
Shear-banding is ubiquitous in complex fluids. It is related to the organization of the flow into macroscopic bands bearing different viscosities and local shear rates and stacked along the velocity gradient direction. This flow-induced transition towards a heterogeneous flow state has been reported in a variety of systems, including wormlike micellar solutions, telechelic polymers, emulsions, clay suspensions, colloidal gels, star polymers, granular materials, or foams. In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In wormlike micelle solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Different candidates have been identified, the main ones being wall slip, interfacial instability between bands or bulk instability of one of the bands. In this review, we present experimental evidence for a purely elastic instability of the high shear rate band as the main origin for fluctuating shear-banding flows.
Zhang, Chaoyang; Cao, Xia; Xiang, Bin
2012-04-01
We simulated the shear slide behavior of typical mixed HMX-olefin systems and the effect of thickness of olefin layers (4-22 Å) on the behavior at a molecular level by considering two cases: bulk shear and interfacial shear. The results show that: (1) the addition of olefin into HMX can reduce greatly the shear sliding barriers relative to the pure HMX in the two cases, suggesting that the desensitizing mechanism of olefin is controlled dominantly by its good lubricating property; (2) the change of interaction energy in both systoles of shear slide is strongly dominated by van der Waals interaction; and (3) the thickness of olefin layers in the mixed explosives can influence its desensitizing efficiency. That is, the excessive thinness of olefin layers in the mixed explosive systems, for example, several angstroms, can lead to very high sliding barriers.
NASA Astrophysics Data System (ADS)
Lv, Junwei; Wang, Bin; Ma, Qi; Li, Mengyao; Wang, Wenjing; Lu, Gaotaihang; Li, Hui; Zhao, Chunxia
2018-04-01
Ethyltrichlorosilane used as precursor reacted with glass fiber (GF) surface. Then polysiloxane was functionalized onto GF surface to improve GF’s hydrophobicity and interfacial properties of GF reinforced composites. Fourier transform infrared spectroscopy (FTIR) confirmed the successful grafting of polysiloxane onto GF’s surface. Energy dispersive spectroscopy (EDS) characterized the variation of chemical composition of GF surface. Scanning electron microscopy (SEM) images showed that the polysiloxane was grafted onto GF’s surface uniformly and the surface roughness of GF was enhanced obviously. Static contact angle analysis (SCA) revealed the significant improvement of surface hydrophobicity. Compared with the original GF composites, the interfacial shear strength (IFSS) increased by 36.52%. Meanwhile, we discovered a facile way to accomplish the experiment.
Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”
NASA Astrophysics Data System (ADS)
Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong
2014-10-01
Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction "on water" to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction "on water" could be a facile green platform to functionalize carbon fibers for many interesting applications.
Experimental and computational studies on stacking faults in zinc titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, W.; Ageh, V.; Mohseni, H.
Zinc titanate (ZnTiO{sub 3}) thin films grown by atomic layer deposition with ilmenite structure have recently been identified as an excellent solid lubricant, where low interfacial shear and friction are achieved due to intrafilm shear velocity accommodation in sliding contacts. In this Letter, high resolution transmission electron microscopy with electron diffraction revealed that extensive stacking faults are present on ZnTiO{sub 3} textured (104) planes. These growth stacking faults serve as a pathway for dislocations to glide parallel to the sliding direction and hence achieve low interfacial shear/friction. Generalized stacking fault energy plots also known as γ-surfaces were computed for themore » (104) surface of ZnTiO{sub 3} using energy minimization method with classical effective partial charge potential and verified by using density functional theory first principles calculations for stacking fault energies along certain directions. These two are in qualitative agreement but classical simulations generally overestimate the energies. In addition, the lowest energy path was determined to be along the [451{sup ¯}] direction and the most favorable glide system is (104) 〈451{sup ¯}〉 that is responsible for the experimentally observed sliding-induced ductility.« less
Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu
2013-04-01
CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu
2014-08-01
This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A molecular dynamics study on the interaction between epoxy and functionalized graphene sheets
NASA Astrophysics Data System (ADS)
Melro, L. S.; Pyrz, R.; Jensen, L. R.
2016-07-01
The interaction between graphene and epoxy resin was studied using molecular dynamics simulations. The interfacial shear strength and pull out force were calculated for functionalised graphene layers (carboxyl, carbonyl, and hydroxyl) and epoxy composites interfaces. The influence of functional groups, as well as their distribution and coverage density on the graphene sheets were also analysed through the determination of the Young's modulus. Functionalisation proved to be detrimental to the mechanical properties, nonetheless according to interfacial studies the interaction between graphene and epoxy resin increases.
Adhesive interactions of geckos with wet and dry fluoropolymer substrates
Stark, Alyssa Y.; Dryden, Daniel M.; Olderman, Jeffrey; Peterson, Kelly A.; Niewiarowski, Peter H.; French, Roger H.; Dhinojwala, Ali
2015-01-01
Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor–Winterton approximation and the Young–Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air. PMID:26109635
Micromechanics of sea ice frictional slip from test basin scale experiments
NASA Astrophysics Data System (ADS)
Sammonds, Peter R.; Hatton, Daniel C.; Feltham, Daniel L.
2017-02-01
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with ? (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue 'Microdynamics of ice'.
NASA Astrophysics Data System (ADS)
Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.
2018-03-01
In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.
NASA Astrophysics Data System (ADS)
Lee, Ji-Seok; Song, Ki-Won
2015-11-01
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
Viscoelastic Behavior of PDMS Filled with Boron Nitrides
NASA Astrophysics Data System (ADS)
Bian, J. F.; Weinkauf, D. H.; Jeon, H. S.
2004-03-01
The addition of high thermal conductive filler particles such as boron nitride, aluminum nitride, or carbon fiber is an effective way to increase the thermal conductivity of polymeric materials for the industrial applications such as electronic packaging materials, encapsulants, and thermal fluids among others. The effects of particle dispersions, concentrations, and the interactions between BN and polymer matrix on the viscoelastic properties of the boron nitride (BN)/polydimethylsiloxane (PDMS) composites prepared by mechanical mixing are investigated using oscillatory shear rheology. Both untreated and plasma treated boron nitride (BNP) particles with hexafluoropropylene oxide monomers have been used in this study. The addition of the plasma treated BN particles to the PDMS matrix decrease significantly the complex viscosity as well as storage and loss modulus of the composites due to the reduced interfacial energy between the surface of BNP and PDMS chains. For the PDMS/BN and PDMS/BNP composites, the maximum volume packing fraction ( ˜0.4) of the particles has been determined from the complex viscosity as a function of the frequency. Additionally, the shear-induced alignment of the BN particles dispersed in the PDMS matrix decreases the viscoelastic properties of the composites with the irregular oscillations which is related to the network formation of dispersed BN particles at the higher volume fractions (> ˜0.2).
NASA Astrophysics Data System (ADS)
Su, Min; Gu, Aijuan; Liang, Guozheng; Yuan, Li
2011-02-01
The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.
Perturbation of the yield-stress rheology of polymer thin films by nonlinear shear ultrasound.
Léopoldès, J; Conrad, G; Jia, X
2015-01-01
We investigate the nonlinear response of macromolecular thin films subjected to high-amplitude ultrasonic shear oscillation using a sphere-plane contact geometry. At a film thickness comparable to the radius of gyration, we observe the rheological properties intermediate between bulk and boundary nonlinear regimes. As the driving amplitude is increased, these films progressively exhibit oscillatory linear, microslip, and full slip regimes, which can be explained by the modified Coulomb friction law. At highest oscillation amplitudes, the interfacial adhesive failure takes place, being accompanied by a dewettinglike pattern. Moreover, the steady state sliding is investigated in thicker films with imposed shear stresses beyond the yield point. We find that applying high-amplitude shear ultrasound affects not only the yielding threshold but also the sliding velocity at a given shear load. A possible mechanism for the latter effect is discussed.
NASA Astrophysics Data System (ADS)
Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang
2018-06-01
In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.
Tensile and shear methods for measuring strength of bilayer tablets.
Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin
2017-05-15
Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.
Interfacial instability of wormlike micellar solutions sheared in a Taylor-Couette cell
NASA Astrophysics Data System (ADS)
Mohammadigoushki, Hadi; Muller, Susan J.
2014-11-01
We report experiments on wormlike micellar solutions sheared in a custom-made Taylor-Couette (TC) cell. The computer controlled TC cell allows us to rotate both cylinders independently. Wormlike micellar solutions containing water, CTAB, and NaNo3 with different compositions are highly elastic and exhibit shear banding. We visualized the flow field in the θ-z as well as r-z planes, using multiple cameras. When subject to low shear rates, the flow is stable and azimuthal, but becomes unstable above a certain threshold shear rate. This shear rate coincides with the onset of shear banding. Visualizing the θ-z plane shows that this instability is characterized by stationary bands equally spaced in the z direction. Increasing the shear rate results to larger wave lengths. Above a critical shear rate, experiments reveal a chaotic behavior reminiscent of elastic turbulence. We also studied the effect of ramp speed on the onset of instability and report an acceleration below which the critical Weissenberg number for onset of instability is unaffected. Moreover, visualizations in the r-z direction reveals that the interface between the two bands undulates with shear bands evolving towards the outer cylinder regardless of which cylinder is rotating.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased. Copyright © 2012 Elsevier Inc. All rights reserved.
Newtonian to non-Newtonian flow transition in lung surfactants
NASA Astrophysics Data System (ADS)
Sadoughi, Amir; Hirsa, Amir; Lopez, Juan
2010-11-01
The lining of normal lungs is covered by surfactants, because otherwise the surface tension of the aqueous layer would be too large to allow breathing. A lack of functioning surfactants can lead to respiratory distress syndrome, a potentially fatal condition in both premature infants and adults, and a major cause of death in the US and world-wide. We use a home-built Brewster angle microscope on an optically accessible deep channel viscometer to simultaneously observe the mesoscale structures of DPPC, the primary constituent of lung surfactant, on water surface and measure the interfacial velocity field. The measured interfacial velocity is compared to Navier-Stokes computations with the Boussinesq-Scriven surface model. Results show that DPPC monolayer behaves i) purely elastically at low surface pressures on water, ii) viscoelastically at modest surface pressures, exhibiting non-zero surface shear viscosity that is independent of the shear rate and flow inertia, and iii) at surface pressures approaching film collapse, DPPC loses its fluid characteristics, and a Newtonian surface model no longer captures its hydrodynamics.
The mode 3 crack problem in bonded materials with a nonhomogeneous interfacial zone
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.
1988-01-01
The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.
The mode III crack problem in bonded materials with a nonhomogeneous interfacial zone
NASA Technical Reports Server (NTRS)
Erdogan, F.; Joseph, P. F.; Kaya, A. C.
1991-01-01
The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.
Surface modification and characterization of aramid fibers with hybrid coating
NASA Astrophysics Data System (ADS)
Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang
2014-12-01
Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO2/shape memory polyurethane (SiO2/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO2/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special "pizza-like" structure on the fiber surface.
NASA Astrophysics Data System (ADS)
Strom, K.; Rouhnia, M.
2016-12-01
Previous studies have suggested that sedimentation from buoyant, muddy plumes lofting over clear saltwater can take place at rates higher than that expected from individual particle settling (i.e., CWs). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurements were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a floc camera and image analysis routines. This presentation will provide an overview of the stagnant tank experiments, but will focus on results from the stratified flume experiments and an analysis that attempts to synthesizes the results from the entirety of the study. The results from the stratified flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and that the rate increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to URi-2. The resulting effective settling velocity models developed from these experiments are then used to examine the rates and potential locations of operations of these mechanism over the length of a river mouth plume.
Interfacial instability of wormlike micellar solutions sheared in a Taylor-Couette cell
NASA Astrophysics Data System (ADS)
Mohammadigoushki, Hadi; Muller, Susan J.
2014-10-01
We report experiments on wormlike micellar solutions sheared in a custom-made Taylor-Couette (TC) cell. The computer controlled TC cell allows us to rotate both cylinders independently. Wormlike micellar solutions containing water, CTAB, and NaNo3 with different compositions are highly elastic and exhibit shear banding within a range of shear rate. We visualized the flow field in the θ-z as well as r-z planes, using multiple cameras. When subject to low shear rates, the flow is stable and azimuthal, but becomes unstable above a certain threshold shear rate. This shear rate coincides with the onset of shear banding. Visualizing the θ-z plane shows that this instability is characterized by stationary bands equally spaced in the z direction. Increasing the shear rate results to larger wave lengths. Above a critical shear rate, experiments reveal a chaotic behavior reminiscent of elastic turbulence. We also studied the effect of ramp speed on the onset of instability and report an acceleration below which the critical Weissenberg number for onset of instability is unaffected. Moreover, visualizations in the r-z direction reveals that the interface between the two bands undulates. The shear band evolves towards the outer cylinder upon increasing the shear rate, regardless of which cylinder is rotating.
Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W
2016-01-20
The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation.
Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs
NASA Astrophysics Data System (ADS)
Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.
2006-08-01
One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction factor and enhancements in the fluid slip are greater as the cavity-to-rib length ratio is increased (increasing shear-free fraction) and as the channel hydraulic diameter is decreased. The results also show that the slip length and average friction factor-Reynolds number product exhibit a flow Reynolds dependence. Furthermore, the predictions reveal the global impact of the vapor cavity depth on the overall frictional resistance.
Bond strength evaluation in adhesive joints using NDE and DIC methods
NASA Astrophysics Data System (ADS)
Poudel, Anish
Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a decrease of bond shear strength in single lap shear test samples. Through-transmission ultrasonics (TTU) Acoustography at 3.8 MHz showed promising results on the detectability of bondline defects in adhesively bonded CFRP-Al lap shear test samples. A correlation between Acoustography ultrasonic attenuation and average bond shear strength in CFRP-Al lap shear panels demonstrated that differential attenuation increased with the reduction of the bond shear strength. Similarly, optical DIC tests were conducted to identify and quantify kissing bond defects in CFRP-Al single lap shear joints. DIC results demonstrated changes in the normal strain (epsilonyy) contour map of the contaminated specimens at relatively lower load levels (15% ~ 30% of failure loads). Kissing bond regions were characterized by negative strains, and these were attributed to high compressive bending strains and the localized disbonding taking placed at the bondline interface as a result of the load application. It was also observed that contaminated samples suffered from more compressive strains (epsilonyy) compared to the baseline sample along the loading direction and they suffered from less compressive strains (epsilonxx) compared to the baseline sample perpendicular to the loading direction. This demonstrated the adverse effect of the kissing bond on the adhesive joint integrity. This was a very significant finding for the reason that hybrid ultrasonic DIC is being developed as a faster, more efficient, and more reliable NDE technique for determining bond quality and predicting bond shear strength in adhesively bonded structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Lin, E-mail: wangwl77@gmail.com; Tsai, Yi-Chia, E-mail: tij@itri.org.tw
2012-06-15
Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on themore » titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.« less
NASA Astrophysics Data System (ADS)
Szebényi, G.; Faragó, D.; Lámfalusi, Cs.; Göbl, R.
2018-04-01
Interfacial adhesion is a key factor in composite materials. The effective co-working of the reinforcing materials and matrix is essential for the proper load transfer between them, and to achieve the desired reinforcing effect. In case of nanocomposites, especially carbon nanotube (CNT) reinforced nanocomposites the adhesion between the CNTs and the polymer matrix is poor. To improve the interfacial adhesion and exploit the reinforcing effect of these nanoparticles a two step curable epoxy (EP)/vinylester (VE) hybrid resin system was developed where the EP is cured using hardener in the first step, during the composite production, and in the second step the curing of the VE is initiated by gamma irradiation, which also activates the reinforcing materials and the cured matrix component. A total of six carbon fiber reinforced composite systems were compared with neat epoxy and EP/VE hybrid matrices with and without chemical initiator and MWCNT nano-reinforcement. The effect of gamma irradiation was investigated at four absorbed dose levels. According to our three point bending and interlaminar shear test results the adhesion has improved between all constituents of the composite system. It was demonstrated that gamma irradiation has beneficial effect on the static mechanical, especially interlaminar properties of both micro- and nanocomposites in terms of modulus, strength and interlaminar shear strength.
Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models
NASA Astrophysics Data System (ADS)
Sommer, Silke
2010-06-01
This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.
NASA Astrophysics Data System (ADS)
Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna
2015-11-01
This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.
Stability numerical analysis of soil cave in karst area to drawdown of underground water level
NASA Astrophysics Data System (ADS)
Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei
2018-05-01
With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.
Surface temperatures and glassy state investigations in tribology, part 2
NASA Technical Reports Server (NTRS)
Bair, S. S.; Winer, W. O.
1979-01-01
Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.
Modeling and measuring non-Newtonian shear flows of soft interfaces
NASA Astrophysics Data System (ADS)
Lopez, Juan; Raghunandan, Aditya; Underhill, Patrick; Hirsa, Amir
2017-11-01
Soft interfaces of polymers, particles, and proteins between fluid phases are ubiquitous in industrial and natural processes. The flow response of such systems to deformation is often not linear, as one would expect for Newtonian interfaces. The resistance to (pure shear) flow of interfaces is generally characterized by a single intrinsic material property, the surface shear viscosity. Predicted shear responses of Newtonian interfaces have achieved consensus across a wide range of flow conditions and measurement devices, when the nonlinear hydrodynamic coupling to the bulk phase is correctly accounted for. However, predicting the flows of sheared non-Newtonian interfaces remains a challenge. Here, we introduce a computational model that incorporates a non-Newtonian constitutive equation for the sheared interface and properly accounts for the coupled interfacial and bulk phase flows. We compare predictions to experiments performed with a model phospholipid system, DPPC - the main constituent of mammalian lung surfactant. Densely packed films of DPPC are directly sheared in a knife-edge surface viscometer. Yield-stress and shear thinning behaviors are shown to be accurately captured across hydrodynamic regimes straddling the Stokes flow limit to inertia dominated flows. Supported by NASA Grant NNX13AQ22G.
NASA Astrophysics Data System (ADS)
Abd El Baky, Hussien
This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond--slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical analysis for 43 strengthened beams involving the five aforementioned variables. The response surface methodology (RSM) technique is employed to optimize the accuracy of the statistical models while minimizing the numbers of finite element runs. In particular, a face-centred design (FCD) is applied to evaluate the influence of the critical variables on the debonding load and debonding strain limits in the FRP laminates. Based on these statistical models, a nonlinear statistical regression analysis is used to propose design guidelines for the FRP flexural strengthening of reinforced concrete beams. (Abstract shortened by UMI.)
Microstructure and properties of pure iron/copper composite cladding layers on carbon steel
NASA Astrophysics Data System (ADS)
Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang
2016-08-01
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
Jetting of a ultrasound contrast microbubble near a rigid wall
NASA Astrophysics Data System (ADS)
Sarkar, Kausik; Mobadersany, Nima
2017-11-01
Micron sized gas-bubbles coated with a stabilizing shell of lipids or proteins, are used as contrast enhancing agents for ultrasound imaging. However, they are increasingly being explored for novel applications in drug delivery through a process called sonoporation, the reversible permeabilization of the cell membrane. Under sufficiently strong acoustic excitations, bubbles form a jet and collapse near a wall. The jetting of free bubbles has been extensively studied by boundary element method (BEM). Here, for the first time, we implemented a rigorous interfacial rheological model of the shell into BEM and investigated the jet formation. The code has been carefully validated against past results. Increasing shell elasticity decreases the maximum bubble volume and the collapse time, while the jet velocity increases. The shear stress on the wall is computed and analyzed. A phase diagram as functions of excitation pressure and wall separation describes jet formation. Effects of shell elasticity and frequency on the phase diagram are investigated. Partially supported by National Science Foundation.
Three-dimensional finite element analysis of the shear bond test.
DeHoff, P H; Anusavice, K J; Wang, Z
1995-03-01
The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test and then to assess whether these stress states also exist in the clinical situation. Finite element analyses can help to answer this question but much additional work is needed to identify the failure modes in service and to relate these failures to particular loading conditions. The present study represents only a first step in understanding the stress states in the planar shear bond test.
Micromechanics of sea ice frictional slip from test basin scale experiments
Hatton, Daniel C.; Feltham, Daniel L.
2017-01-01
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick–slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick–slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity–asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771–2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025302
Micromechanics of sea ice frictional slip from test basin scale experiments.
Sammonds, Peter R; Hatton, Daniel C; Feltham, Daniel L
2017-02-13
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with [Formula: see text] (where τ is the shear stress and σ n is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = f fractal T ml w s , where f fractal is the fractal asperity height distribution, T ml is the shear strength for frictional melting and lubrication and w s is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
Shear strength of metal-sapphire contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1976-01-01
The shear strength of polycrystalline Ag, Cu, Ni, and Fe contacts on clean (0001) sapphire has been studied in ultrahigh vacuum. Both clean metal surfaces and surfaces exposed to O2, Cl2, and C2H4 were used. The results indicate that there are two sources of strength of Al2O3-metal contacts: an intrinsic one that depends on the particular clean metal in contact with Al2O3 and an additional one due to intermediate films. The shear strength of the clean metal contacts correlated directly with the free energy of oxide formation for the lowest metal oxide, in accord with the hypothesis that a chemical bond is formed between metal cations and oxygen anions in the sapphire surface. Contacts formed by metals exposed to chlorine exhibited uniformly low shear strength indicative of van der Waals bonding between chlorinated metal surfaces and sapphire. Contacts formed by metals exposed to oxygen exhibited enhanced shear strength, in accord with the hypothesis that an intermediate oxide layer increases interfacial strength.
A note on the resonant interaction between a surface wave and two interfacial waves
NASA Astrophysics Data System (ADS)
Jamali, Mirmosadegh; Lawrence, Gregory A.; Seymour, Brian
2003-09-01
Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings there is one seemingly major difference. Hill & Foda's (1998) analysis indicated that there are only narrow bands of frequency, density ratio and direction angle within which growth is possible. On the other hand, Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that Hill & Foda's (1998) second-order representation of the dynamic interfacial boundary condition is missing a term proportional to the time derivative of the square of the velocity shear across the interface. When this missing term is included in the analysis, the resulting predictions are consistent with the laboratory experiments.
A Note on the Resonant Interaction of a Surface Wave With two Interfacial Waves
NASA Astrophysics Data System (ADS)
Jamali, M.; Lawrence, G. A.; Seymour, B. R.
2002-12-01
Recently Hill and Foda (1998) and Jamali (1998) have performed theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings of the two studies there is one seemingly major difference. The analysis of Hill and Foda (1998) indicated that there are only narrow bands of frequency, density ratio, and direction angle within which growth is possible. On the other hand Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that second order representation of the dynamic interfacial boundary condition of Hill and Foda (1998) is missing a term proportional to the velocity shear across the interface. When this missing term is included in the analysis the resulting predictions are consistent with the laboratory experiments.
NASA Astrophysics Data System (ADS)
Zhang, Chengshuang; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong
2013-07-01
Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.
Lin, Gigi L; Pathak, Jai A; Kim, Dong Hyun; Carlson, Marcia; Riguero, Valeria; Kim, Yoen Joo; Buff, Jean S; Fuller, Gerald G
2016-04-14
Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface.
[Bond strength evaluation of four adhesive systems to dentin in vitro].
Xiao, Ximei; Xing, Lu; Xu, Haiping; Jiang, Zhe; Su, Qin
2012-08-01
To compare the adhesive strength and observe the bonding interface. According to statistic analysis and scanning electron microscope (SEM) observation, the resistance capacity of four adhesive systems is evaluated. Prime & Bond NT (PBNT), Tetric N-Bond (TNB), Clearfil SE Bond (CSEB), G Bond (GB) were bonded to the occlusal surfaces and mesial surfaces of third molars respectively. The mesial resins received shear force experiment and the fracture load were recorded. The tensile bond strength (TBS) of the remaining parts were tested. The interfacial configuration were observed under SEM. In the shear bond strength (SBS) experiment, PBNT and TNB showed the best result, but there was no significant difference between them (P>0.05). The SBS of PBNT was stronger than that of CSEB and GB (P<0.05). The SBS of TNB was stronger than that of GB (P<0.05). There was no significant difference between TNB and CSEB (P>0.05). In accordance with the shear force result, the TBS of PBNT and TNB was larger than CSEB and GB (P<0.05). Under SEM, resin tags of PBNT and TNB were longer and slender, the bonding layer was thick. Resin tags of CSEB were shorter, the ones of GB were the fewest and shortest. Compared to self-etching system, total-etching system could reach better bonding strength. There is some connection between the interfacial configuration of adhesives and bond strength of them.
Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang
2015-01-01
This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post.
Toughening mechanisms in interfacially modified HDPE/thermoplastic starch blends.
Taguet, Aurélie; Bureau, Martin N; Huneault, Michel A; Favis, Basil D
2014-12-19
The mechanical behavior of polymer blends containing 80 wt% of HDPE and 20 wt% of TPS and compatibilized with HDPE-g-MA grafted copolymer was investigated. Unmodified HDPE/TPS blends exhibit high fracture resistance, however, the interfacial modification of those blends by addition of HDPE-g-MA leads to a dramatic drop in fracture resistance. The compatibilization of HDPE/TPS blends increases the surface area of TPS particles by decreasing their size. It was postulated that the addition of HDPE-g-MA induces a reaction between maleic anhydride and hydroxyl groups of the glycerol leading to a decrease of the glycerol content in the TPS phase. This phenomenon increases the stiffness of the modified TPS particles and stiffer TPS particles leading to an important reduction in toughness and plastic deformation, as measured by the EWF method. It is shown that the main toughening mechanism in HDPE/TPS blends is shear-yielding. This article demonstrates that stiff, low diameter TPS particles reduce shear band formation and consequently decrease the resistance to crack propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1992-01-01
Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.
Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1992-01-01
Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.
Active Interfacial Shear Microrheology of Aging Protein Films
Dhar, Prajnaparamita; Cao, Yanyan; Fischer, Thomas M.; Zasadzinski, J. A.
2012-01-01
The magnetically driven rotation of 300 nm diameter rods shows the surface viscosity of albumin at an air-water interface increases from 10−9 to 10−5 Ns/m over two hours while the surface pressure saturates in minutes. The increase in surface viscosity is not accompanied by a corresponding increase in elasticity, suggesting that the protein film anneals with time, resulting in a more densely packed film leading to increased resistance to shear. The nanometer dimensions of the rods provide the same sensitivity as passive microrheology with an improved ability to measure more viscous films. PMID:20366371
The free growth criterion for grain initiation in TiB 2 inoculated γ-titanium aluminide based alloys
NASA Astrophysics Data System (ADS)
Gosslar, D.; Günther, R.
2014-02-01
γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.
Kinetics of the head-neck complex in low-speed rear impact.
Stemper, Brian D; Yoganandan, Naryan; Pintar, Frank A
2003-01-01
A comprehensive characterization of the biomechanics of the cervical spine in rear impact will lead to an understanding of the mechanisms of whiplash injury. Cervical kinematics have been experimentally described using human volunteers, full-body cadaver specimens, and isolated and intact head-neck specimens. However, forces and moments at the cervico-thoracic junction have not been clearly delineated. An experimental investigation was performed using ten intact head-neck complexes to delineate the loading at the base of the cervical spine and angular acceleration of the head in whiplash. A pendulum-minisled apparatus was used to simulate whiplash acceleration of the thorax at four impact severities. Lower neck loads were measured using a six-axis load cell attached between the minisled and head-neck specimens, and head angular motion was measured with an angular rate sensor attached to the lateral side of the head. Shear and axial force, extension moment, and head angular acceleration increased with impact severity. Shear force was significantly larger than axial force (p < 0.0001). Shear force reached its maximum value at 46 msec. Maximum extension moment occurred between 7 and 22 msec after maximum shear force. Maximum angular acceleration of the head occurred 2 to 18 msec later. Maximum axial force occurred last (106 msec). All four kinetic components reached maximum values during cervical S-curvature, with maximum shear force and extension moment occurring before the attainment of maximum S-curvature. Results of the present investigation indicate that shear force and extension moment at the cervico-thoracic junction drive the non-physiologic cervical S-curvature responsible for whiplash injury and underscore the importance of understanding cervical kinematics and the underlying kinetics.
Cosmic shear measurement with maximum likelihood and maximum a posteriori inference
NASA Astrophysics Data System (ADS)
Hall, Alex; Taylor, Andy
2017-06-01
We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.
NASA Astrophysics Data System (ADS)
Nozaki, Takayuki; Yamamoto, Tatsuya; Tamaru, Shingo; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji
2018-02-01
We investigated the influence of heavy metal doping at the Fe/MgO interface on the interfacial perpendicular magnetic anisotropy (PMA) and the voltage-controlled magnetic anisotropy (VCMA) in magnetic tunnel junctions prepared by sputtering-based deposition. The interfacial PMA was increased by tungsten doping and a maximum intrinsic interfacial PMA energy, Ki,0 of 2.0 mJ/m2 was obtained. Ir doping led to a large increase in the VCMA coefficient by a factor of 4.7 compared with that for the standard Fe/MgO interface. The developed technique provides an effective approach to enhancing the interfacial PMA and VCMA properties in the development of voltage-controlled spintronic devices.
Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement
NASA Astrophysics Data System (ADS)
Safavizadeh, Seyed Amirshayan
The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odier, Philippe; Ecke, Robert E.
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
Odier, Philippe; Ecke, Robert E.
2017-02-21
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
NASA Astrophysics Data System (ADS)
Maldonado-Valderrama, J.; Gunning, A. P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J.
2009-10-01
Understanding and manipulating the interfacial mechanisms that control human digestion of food emulsions is a crucial step towards improved control of dietary intake. This article reports initial studies on the effects of the physiological conditions within the stomach on the properties of the film formed by the milk protein ( β -lactoglobulin) at the air-water interface. Atomic force microscopy (AFM), surface tension and surface rheology techniques were used to visualize and examine the effect of gastric conditions on the network structure. The effects of changes in temperature, pH and ionic strength on a pre-formed interfacial structure were characterized in order to simulate the actual digestion process. Changes in ionic strength had little effect on the surface properties. In isolation, acidification reduced both the dilatational and the surface shear modulus, mainly due to strong repulsive electrostatic interactions within the surface layer and raising the temperature to body temperature accelerated the rearrangements within the surface layer, resulting in a decrease of the dilatational response and an increase of surface pressure. Together pH and temperature display an unexpected synergism, independent of the ionic strength. Thus, exposure of a pre-formed interfacial β -lactoglobulin film to simulated gastric conditions reduced the surface dilatational modulus and surface shear moduli. This is attributed to a weakening of the surface network in which the surface rearrangements of the protein prior to exposure to gastric conditions might play a crucial role.
Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint
NASA Astrophysics Data System (ADS)
Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo
2011-09-01
Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.
NASA Astrophysics Data System (ADS)
Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre
2017-04-01
Earthquake ruptures often develop along faults separating materials with dissimilar elastic properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial interface is driven by the coupling between interfacial sliding and normal traction perturbations. We numerically investigate in-plane rupture growth along a planar interface, under slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces. We perform a parametric study of the classical Prakash-Clifton regularisation for different material contrasts. In particular mesh-dependence and regularisation-dependence of the numerical solutions are analysed in this parameter space. When regularisation involves a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which numerical solutions no longer depend on the regularisation parameter, i.e. they are consistent solutions of the same physical problem. Such regularisation provides an adaptive high-frequency filter of the slip-induced normal traction perturbations, following the dynamic shrinking of the dissipation zone during the acceleration phase. In contrast, regularisation involving a constant relaxation time leads to numerical solutions that always depend on the regularisation parameter since it fails adapting to the shrinking of the process zone. Dynamic regularisation is further investigated using a non-local regularisation based on a relaxation time that depends on the dynamic length of the dissipation zone. Such reformulation is shown to provide similar results as the dynamic time scale regularisation proposed by Prakash-Clifton when slip rate is replaced by the maximum slip rate along the sliding interface. This leads to the identification of a dissipative length scale associated with the coupling between interfacial sliding and normal traction perturbations, together with a scaling law between the maximum slip rate and the dynamic size of the process zone during the rupture propagation. Dynamic time scale regularisation is show to provide mesh-independent and physically well-posed numerical solutions during the acceleration phase toward an asymptotic speed. When generalised Rayleigh wave does not exist, numerical solutions are shown to tend toward an asymptotic velocity higher than the slowest shear wave speed. When generalised Rayleigh wave speed exists, as numerical solutions tend toward this velocity, increasing spurious oscillations develop and solutions become unstable. In this regime regularisation dependent and unstable finite-size pulses may be generated. This instability is associated with the singular behaviour of the slip-induced normal traction perturbations, and of the slip rate at the rupture front, in relation with complete shrinking of the dissipation zone. This phase requires to be modelled either by more complex interface constitutive laws involving velocity-strengthening effects that may stabilize short wavelength interfacial propagating modes or by considering non-ideal interfaces that introduce a new length scale in the problem that may promote selection and stabilization of the slip pulses.
NASA Technical Reports Server (NTRS)
Guynn, E. G.; Ochoa, Ozden O.; Bradley, Walter L.
1992-01-01
The effects of the stacking sequence (orientation of plies adjacent to the 0-deg plies), free surfaces, fiber/matrix interfacial bond strength, initial fiber waviness, resin-rich regions, and nonlinear shear constitutive behavior of the resin on the initiation of fiber microbuckling in thermoplastic composites were investigated using nonlinear geometric and nonlinear 2D finite-element analyses. Results show that reductions in the resin shear tangent modulus, large amplitudes of the initial fiber waviness, and debonds each cause increases in the localized matrix shear strains; these increases lead in turn to premature initiation of fiber microbuckling. The numerical results are compared to experimental data obtained using three thermoplastic composite material systems: (1) commercial APC-2, (2) QUADRAX Unidirectional Interlaced Tape, and AU4U/PEEK.
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
NASA Astrophysics Data System (ADS)
Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant
2016-04-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less
Correlation between Reynolds number and eccentricity effect in stenosed artery models.
Javadzadegan, Ashkan; Shimizu, Yasutomo; Behnia, Masud; Ohta, Makoto
2013-01-01
Flow recirculation and shear strain are physiological processes within coronary arteries which are associated with pathogenic biological pathways. Distinct Quite apart from coronary stenosis severity, lesion eccentricity can cause flow recirculation and affect shear strain levels within human coronary arteries. The aim of this study is to analyse the effect of lesion eccentricity on the transient flow behaviour in a model of a coronary artery and also to investigate the correlation between Reynolds number (Re) and the eccentricity effect on flow behaviour. A transient particle image velocimetry (PIV) experiment was implemented in two silicone based models with 70% diameter stenosis, one with eccentric stenosis and one with concentric stenosis. At different times throughout the flow cycle, the eccentric model was always associated with a greater recirculation zone length, maximum shear strain rate and maximum axial velocity; however, the highest and lowest impacts of eccentricity were on the recirculation zone length and maximum shear strain rate, respectively. Analysis of the results revealed a negative correlation between the Reynolds number (Re) and the eccentricity effect on maximum axial velocity, maximum shear strain rate and recirculation zone length. As Re number increases the eccentricity effect on the flow behavior becomes negligible.
Mo, A; Wang, J; Liao, Y; Cen, Y; Shi, X
2001-12-01
Sufficient porcelain-titanium bond is a vital factor determining the clinical performance of titanium-porcelain restorations. The purpose of this study was to investigate the effects of self-preparation La-porcelain composition on the porcelain-titanium bonding strength and to compare with the Vita Titankeramik. The present study examines 5 different recipes of porcelain by weight%: SiO2, 12%-17%; LaO2, 7%-10%; Al2O3, 9%-14%; B2O3, 23%-31%; CaO, 6%-8%; K2O, 2%-3%; SrO, 2%-4%; Na2O, 1%-3%; SnO2, 8%-10%; ZrO2, 3%-5%; TiO2, 6%-8%. Specimens were tested in push type shear with a universal testing machine. Scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) were employed to reveal the microstructures and diffusion of elements in the interfacial regions between the porcelain coating and titanium to the bond strength when fired at 800 degrees C. The ratios of crystallized compositions had significant influences on the porcelain-titanium bond strength (P < 0.05). La-porcelain had the highest shear bond strength (37.76 MPa). The shear bond strength of the Vita Titankeramik to titanium was 20.18 MPa. The results of SEM revealed integrity of porcelain-titanium joints in La-porcelain and a greater amount of porosity in the interface of Vita Titankeramik to titanium. EPMA analysis demonstrated the aggregation of Si and Sn in the interfacial regions and their diffusion into the titanium. Chemical compositions of porcelain and ratios of crystallized compositions play the important role in the titanium porcelain bond. La-porcelain had the highest shear bond strength and good porcelain-titanium joints. La-porcelain is a new-style low fusing porcelain/titanium system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Cun; Ren, Yang; Cui, Lishan
Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less
Rotary seal with improved film distribution
Dietle, Lannie Laroy; Schroeder, John Erick
2013-10-08
The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.
Rotary seal with improved film distribution
Dietle, Lannie Laroy; Schroeder, John Erick
2015-09-01
The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.
Intrinsic bond strength of metal films on polymer substrates
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Osaki, Hiroyuki
1990-01-01
A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.
ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori
This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.
On the asymmetric distribution of shear-relative typhoon rainfall
NASA Astrophysics Data System (ADS)
Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan
2018-02-01
The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.
Song, Z Q; Ni, Y; Peng, L M; Liang, H Y; He, L H
2016-03-31
Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.
Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber
NASA Astrophysics Data System (ADS)
Zhenkun, Lei; Quan, Wang; Yilan, Kang; Wei, Qiu; Xuemin, Pan
2010-11-01
The single fiber/microdroplet tensile test is applied for evaluating the interfacial mechanics between a fiber and a resin substrate. It is used to investigate the influence of a polymer coating on a Kevlar-29 fiber surface, specifically the stress transfer between the fiber and epoxy resin in a microdroplet. Unlike usual tests, this new test ensures a symmetrical axial stress on the embedded fiber and reduces the stress singularity that appears at the embedded fiber entry. Using a homemade loading device, symmetrical tensile tests are performed on a Kevlar-29 fiber with or without polyvinylchloride (PVC) coating, the surface of which is in contact with two epoxy resin microdroplets during curing. Raman spectra on the embedded fiber are recorded by micro-Raman Spectroscopy under different strain levels. Then they are transformed to the distributions of fiber axis stress based on the relationship between stress and Raman shift. The Raman results reveal that the fiber axial stresses increase with the applied loads, and the antisymmetric interfacial shear stresses, obtained by a straightforward balance of shear-to-axial forces argument, lead to the appearance of shear stress concentrations at a distance to the embedded fiber entry. The load is transferred from the outer fiber to the embedded fiber in the epoxy microdroplet. As is observed by scanning electronic microscopy (SEM), the existence of a flexible polymer coating on the fiber surface reduces the stress transfer efficiency.
NASA Astrophysics Data System (ADS)
Park, J. M.; Shin, P. S.; Kim, J. H.; Park, H. S.; Baek, Y. M.; DeVries, K. L.
2018-03-01
Interfacial and mechanical properties of thermal aged carbon fiber reinforced epoxy composites (CFRP) were evaluated using acoustic emission (AE), electrical resistance (ER), contact angle (CA) and thermogram measurements. Unidirectional (UD)-composites were aged at 200, 300, and 400 °C to produce different interfacial conditions. The interfacial degradation was identified by Fourier transform infrared (FT-IR) spectroscopy after different thermal aging. AE and ER of UD composites were measured along 0, 30, 60 and 90 °. Changes in wavespeed, with thermal aging, were calculated using wave travel time from AE source to AE sensor and the changes in ER were measured. For a thermogram evaluation, the composites were laid upon on a hotplate and the increase in the surface temperature was measured. Static contact angle were measured after different thermal aging and elapsed times to evaluate wettability. Interlaminar shear Strength (ILSS) and tensile strength at transverse direction tests were also performed to explore the effects of thermal aging on mechanical and interfacial properties. While thermal aging of CFRPs was found to affect all these properties, the changes were particularly evident at 400 °C.
Nonmonotonicity of the Frictional Bimaterial Effect
NASA Astrophysics Data System (ADS)
Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran
2017-10-01
Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.
Zhao, Qiangzhong; Liu, Daolin; Long, Zhao; Yang, Bao; Fang, Min; Kuang, Wanmei; Zhao, Mouming
2014-05-15
The effect of sucrose ester (SE) concentration on interfacial tension and surface dilatational modulus of SE and sodium caseinate (NaCas)-SE solutions were investigated. The critical micelle concentration (CMC) of SE was presumed to be 0.05% by measuring interfacial tension of SE solution. The interfacial tension of NaCas-SE solution decreased with increased SE concentration. A sharp increase in surface dilatational modulus of NaCas solution was observed when 0.01% SE was added and a decline was occurred at higher SE level. The influence of SE concentration on droplet size and confocal micrograph, surface protein concentration, ζ-potential and rheological properties of oil-in-water (O/W) emulsions prepared with 1% NaCas was also examined. The results showed that addition of SE reduced droplet size and surface protein concentration of the O/W emulsions. The ζ-potential of the O/W emulsions increased initially and decreased afterward with increased SE concentration. All the O/W emulsions exhibited a shear-thinning behaviour and the data were well-fitted into the Herschel-Bulkley model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of Roughness and Inertia on Precursors to Frictional Sliding
NASA Astrophysics Data System (ADS)
Robbins, Mark O.; Salerno, K. Michael
2012-02-01
Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)
Kam, Chee Zhou; Kueh, Ahmad Beng Hong
2013-01-01
A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers
NASA Astrophysics Data System (ADS)
Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir H.; Lopez, Juan M.
2017-04-01
Circular systems are advantageous for interfacial studies since they do not suffer from end effects, but their hydrodynamics is more complicated because their flows are not unidirectional. Here, we analyze the shear rheology of a harmonically driven knife-edge viscometer through experiments and computations based on the Navier-Stokes equations with a Newtonian interface. The measured distribution of phase lag in the surface velocity relative to the knife-edge speed is found to have a good signal-to-noise ratio and provides robust comparisons to the computations. For monomolecular films of stearic acid, the surface shear viscosity deduced from the model was found to be the same whether the film is driven steady or oscillatory, for an order of magnitude range in driving frequencies and amplitudes. Results show that increasing either the amplitude or forcing frequency steepens the phase lag next to the knife edge. In all cases, the phase lag is linearly proportional to the radial distance from the knife edge and scales with surface shear viscosity to the power -1 /2 .
Flow induced protein nucleation: Insulin oligomerization under shear.
NASA Astrophysics Data System (ADS)
Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir
2007-11-01
A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
NASA Astrophysics Data System (ADS)
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.
2014-07-01
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.
NASA Astrophysics Data System (ADS)
Xiao, Chufan; Tan, Yefa; Wang, Xiaolong; Gao, Li; Wang, Lulu; Qi, Zehao
2018-07-01
To improve the interfacial properties between carbon fiber (CF) and epoxy resin (EP), T300 carbon fibers were coated with multi-walled carbon nanotubes (MWCNTs) using aqueous suspension deposition method. The carbon fiber/epoxy laminated composites were prepared by molding process. The wettability and interfacial properties between MWCNTs deposited carbon fibers (MWCNTs-T300) and EP were studied. The mechanical properties of carbon fiber/epoxy laminated composites were tested, and the mechanism of the interface strengthening was discussed. The results show that the surface energy of T300 carbon fiber is obviously increased after MWCNT deposition. The contact angle between MWCNTs-T300 and EP is reduced, and the interfacial energy and adhesion work are greatly improved. The MWCNTs-T300/EP laminated composites have excellent mechanical properties, the flexural strength is 822 MPa, the tensile strength is 841 MPa, and the interlaminar shear strength (ILSS) is 25.68 MPa, which are increased by 15.1%, 17.6% and 12.6% compared with those of the original carbon fiber/EP laminated composites (original T300/EP) respectively. The MWCNTs-T300/EP composites have good interface bonding performance, low porosity and uniform fiber distribution. Interfacial friction and resin toughening are the main mechanisms for the interface enhancement of MWCNTs-T300/EP composites.
Effect of demulsifiers on interfacial properties governing crude oil demulsification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S.; Kushnick, A.P.
1988-05-01
Crude oil is almost always produced as persistent water-in-oil emulsions which must be resolved into two separate phases before the crude can be accepted for pipelining. The water droplets are sterically stabilized by the asphaltene and resin fractions of the crude oil. These are condensed aromatic rings containing saturated carbon chains and napthenic rings as substituents, along with a distribution of heteroatoms and metals. They are capable of crosslinking at the water drop-oil interface. Chemical demulsifiers are most commonly used to separate the emulsions into water and oil phases. The demulsifiers are moderate (2,000-50,000) molecular weight polydisperse mostly nonionic blockmore » copolymers with hydrophilic and hydrophobic segments. An example (Figure 1) of the most commonly used demulsifier is the oxyalkylated alkyl phenol formaldehyde resin. The alkyl group can be butyl, amyl, or nonyl and the interfacial activity is controlled by the relative amounts of ethylene oxide (EO) and propylene oxide (PO) attached to the polar end. The purpose of this paper is to illustrate how various parameters such as interfacial tension, interfacial shear viscosity, dynamic interfacial tension gradient, dilational elasticity and demulsifier clustering affect the demulsification effectiveness. To this end, the authors have studied both crude oil as well as asphaltene stabilized ''model' water-in-oil emulsions. In this paper, some of the results of the authors' study are presented.« less
Effects of Soluble Surfactant on Lateral Migration of a Bubble in a Shear Flow
NASA Astrophysics Data System (ADS)
Muradoglu, Metin; Tryggvason, Gretar
2014-11-01
Motivated by the recent experimental study of Takagi et al. (2008), direct numerical simulations are performed to examine effects of soluble surfactant on the lateral migration of a deformable bubble in a pressure-driven channel flow. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. A multiscale method is developed to handle the mass exchange between the interface and bulk fluid at high Peclet numbers, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. It is found that the surfactant induced Marangoni stresses can dominate over the shear-induced lift force and thus alter the behavior of the bubble completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel in contrast with the corresponding clean bubble that drifts toward the wall and stabilizes near the wall. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant 112M181 and Turkish Academy of Sciences (TUBA).
Constituent Effects on the Stress-Strain Behavior of Woven Melt-Infiltrated SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Eldridge, Jeff I.; Levine, Stanley (Technical Monitor)
2001-01-01
The stress-strain behavior of 2D woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with BN interphases were studied for composites fabricated with different fiber tow ends per unit length, different composite thickness, and different numbers of plies. In general, the stress-strain behavior, i.e., the 'knee' in the curve and the final slope of the stress-strain curve, was controlled by the volume fraction of fibers. Some of the composites exhibited debonding and sliding in between the interphase and the matrix rather than the more common debonding and sliding interface between the fiber and the interphase. Composites that exhibited this 'outside debonding' interface, in general, had lower elastic moduli and higher ultimate strains as well as longer pull-out lengths compared to the 'inside debonding' interface composites. Stress-strain curves were modeled where matrix crack formation as a function of stress was approximated from the acoustic emission activity and the measured crack density from the failed specimens. Interfacial shear strength measurements from individual fiber push-in tests were in good agreement with the interfacial shear strength values used to model the stress-strain curves.
Adhesion, friction, and wear behavior of clean metal-ceramic couples
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
When a clean metal is brought into contact with a clean, harder ceramic in ultrahigh vacuum, strong bonds form between the two materials. The interfacial bond strength between the metal and ceramic surfaces in sliding contact is generally greater than the cohesive bond strength in the metal. Thus, fracture of the cohesive bonds in the metal results when shearing occurs. These strong interfacial bonds and the shearing fracture in the metal are the main causes of the observed wear behavior and the transfer of the metal to the ceramic. In the literature, the surface energy (bond energy) per unit area of the metal is shown to be related to the degree of interfacial bond strength per unit area. Because the two materials of a metal-ceramic couple have markedly different ductilities, contact can cause considerable plastic deformation of the softer metal. It is the ductility of the metal, then, that determines the real area of contact. In general, the less ductile the metal, the smaller the real area of contact. The coefficient of friction for clean surfaces of metal-ceramic couples correlates with the metals total surface energy in the real area of contact gamma A (which is the product of the surface energy per unit area of the metal gamma and the real area of contact (A)). The coefficient of friction increases as gamma A increases. Furthermore, gamma A is associated with the wear and transfer of the metal at the metal-ceramic interface: the higher the value of gamma A, the greater the wear and transfer of the metal.
The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo
In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speedmore » and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.« less
A diffuse-interface method for two-phase flows with soluble surfactants
Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125
Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure
Yu, Cun; Ren, Yang; Cui, Lishan; ...
2016-10-17
Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less
Shear thinning effects on blood flow in straight and curved tubes
NASA Astrophysics Data System (ADS)
Cherry, Erica M.; Eaton, John K.
2013-07-01
Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.
Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks
NASA Astrophysics Data System (ADS)
Zhou, Chao Hui
Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good agreement with MRS measurements for most cases except for those with severely debonded interfaces. However, the VBI model usually gives a stress concentration profile narrower than the measured one due to the inelasticity near the fiber break. The low average fiber volume fraction in the model composites caused small relaxation in the stress concentration, which became more obvious at elevated temperatures, especially for large fiber spacing cases. When new break(s) occurred in the original intact neighboring fibers within an effective distance from the original break, the inelastic zones grew at a faster rate due to the strong interactions. Results on the creep-rupture of the bulk composites showed that the failure probability depends on the stress level and the loading time. The time dependent failure probability data could be fitted to a power law function, which suggested a link between the matrix creep, composite short-term strength and the composite creep-rupture.
Safari, Ashkan; Tukovic, Zeljko; Cardiff, Philip; Walter, Maik; Casey, Eoin; Ivankovic, Alojz
2016-02-01
A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Superlubricity behavior with phosphoric acid-water network induced by rubbing.
Li, Jinjin; Zhang, Chenhui; Luo, Jianbin
2011-08-02
In present work, a superlubricity phenomenon of phosphoric acid (H(3)PO(4)) was found under ambient conditions. An ultralow friction coefficient of about 0.004 between glass/Si(3)N(4) and sapphire/sapphire tribopairs was obtained under the lubrication of a phosphoric acid aqueous solution (pH 1.5) at high contact pressure (the maximum pressure can reach about 1.65 GPa) after a running-in period of about 600 s. The experimental results indicate that the superlow friction state was very stable for more than 3 h. In such a state, solidlike films formed on the two sliding surfaces, which are hydrates of phosphoric acid with a hydrogen-bonded network according to the Raman spectrum. The superlubricity mechanism is mainly attributed to the hydrogen bond effect that forms a hydrated water layer with low shearing strength, and the dipole-dipole effects that form an interfacial Coulomb repulsion force also make some contributions to low friction. This work may help us to introduce a new approach to superlubricity and may lead to the wide application of superlubricity in future technological and biomedical areas.
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; ...
2014-07-25
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.« less
Controlling Interfacial Separation in Porous Structures by Void Patterning
NASA Astrophysics Data System (ADS)
Ghareeb, Ahmed; Elbanna, Ahmed
Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.
Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong
2017-09-25
To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.
NASA Technical Reports Server (NTRS)
Somogyi, Dezso; Feiler, Charles E.
1960-01-01
The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.
NASA Astrophysics Data System (ADS)
St-Pierre, Jean-Philippe
The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects of fibroblast growth factor 18 on exopolyphosphatase activity in the tissue. Polyphosphate also appears to act in a feedback loop to control exopolyphosphatase activity. Interestingly, polyphosphate also exhibits positive effects on cartilage matrix accumulation. The potential implication of polyphosphate in the maintenance of articular cartilage homeostasis is intriguing and must be investigated further.
NASA Astrophysics Data System (ADS)
Das, Sayan; Chakraborty, Suman
2018-02-01
The effect of surface viscosity on the motion of a surfactant-laden droplet in the presence of a non-isothermal Poiseuille flow is studied, both analytically and numerically. The presence of bulk-insoluble surfactants along the droplet surface results in interfacial shear and dilatational viscosities. This, in turn, is responsible for the generation of surface-excess viscous stresses that obey the Boussinesq-Scriven constitutive law for constant values of surface shear and dilatational viscosities. The present study is primarily focused on finding out how this confluence can be used to modulate droplet dynamics in the presence of Marangoni stress induced by nonuniform distribution of surfactants and temperature along the droplet surface, by exploiting an intricate interplay of the respective forcing parameters influencing the interfacial stresses. Under the assumption of negligible fluid inertia and thermal convection, the steady-state migration velocity of a non-deformable spherical droplet, placed at the centerline of an imposed unbounded Poiseuille flow, is obtained for the limiting case when the surfactant transport along the interface is dominated by surface diffusion. Our analysis proves that the droplet migration velocity is unaffected by the shear viscosity whereas the dilatational viscosity has a significant effect on the same. The surface viscous effects always retard the migration of a surfactant-laden droplet when the temperature in the far-field increases in the direction of the imposed flow although the droplet always migrates towards the hotter region. On the contrary, if a large temperature gradient is applied in a direction opposite to that of the imposed flow, the direction of droplet migration gets reversed. However, for a sufficiently high value of dilatational surface viscosity, the direction of droplet migration reverses. For the limiting case in which the surfactant transport along the droplet surface is dominated by surface convection, on the other hand, surface viscosities do not have any effect on the motion of the droplet. These results are likely to have far-reaching consequences in designing an optimal migration path in droplet-based microfluidic technology.
Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions
NASA Technical Reports Server (NTRS)
Wheeler, D. R.
1975-01-01
Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.
Hetem, R S; de Witt, B A; Fick, L G; Fuller, A; Kerley, G I H; Maloney, S K; Meyer, L C R; Mitchell, D
2009-07-01
Angora goats are known to be vulnerable to cold stress, especially after shearing, but their thermoregulatory responses to shearing have not been measured. We recorded activity, and abdominal and subcutaneous temperatures, for 10 days pre-shearing and post-shearing, in 10 Angora goats inhabiting the succulent thicket of the Eastern Cape, South Africa, in both March (late summer) and September (late winter). Within each season, environmental conditions were similar pre-shearing and post-shearing, but September was an average 5°C colder than March. Shearing resulted in a decreased mean (P < 0.0001), minimum (P < 0.0001) and maximum daily abdominal temperature (P < 0.0001). Paradoxically, the decrease in daily mean (P = 0.03) and maximum (P = 0.01) abdominal temperatures, from pre-shearing to post-shearing, was greater in March than in September. Daily amplitude of body temperature rhythm (P < 0.0001) and the maximum rate of abdominal temperature rise (P < 0.0001) increased from pre-shearing to post-shearing, resulting in an earlier diurnal peak in abdominal temperature (P = 0.001) post-shearing. These changes in amplitude, rate of abdominal temperature rise and time of diurnal peak in abdominal temperature suggest that the goats' thermoregulatory system was more labile after shearing. Mean daily subcutaneous temperatures also decreased post-shearing (P < 0.0001), despite our index goat selecting more stable microclimates after shearing in March (P = 0.03). Following shearing, there was an increased difference between abdominal and subcutaneous temperatures (P < 0.0001) at night, suggesting that the goats used peripheral vasoconstriction to limit heat loss. In addition to these temperature changes, mean daily activity increased nearly two-fold after March shearing, but not September shearing. This increased activity after March shearing was likely the result of an increased foraging time, food intake and metabolic rate, as suggested by the increased water influx (P = 0.0008). Thus, Angora goats entered a heat conservation mode after shearing in both March and September. That the transition from the fleeced to the shorn state had greater thermoregulatory consequences in March than in September may provide a mechanistic explanation for Angora goats' vulnerability to cold in summer.
Study of interfacial behavior in concurrent gas-liquid flows
NASA Astrophysics Data System (ADS)
McCready, Mark J.
1989-02-01
This research is focused on acquiring an understanding of the fundamental processes which occur within the liquid layer of separated (i.e., annular or stratified) gas-liquid flows. Knowledge of this behavior is essential for interpretation of pressure drops, entrainment fraction, transport processes and possibly flow regime transitions in gas-liquid flows. We are examining the qualitative and quantitative nature of the interface, using this information to predict the behavior of the flow field within the film and also studying the effect of the flow field on interface and wall heat and mass transfer rates. Study of waves on sheared liquid layers is best broken into two limiting cases, film depth ratio to wavelength ratio (epsilon) much less than one (typical of annular flows) and epsilon is greater than or equal to 1 (typical of stratified flows). Our study of waves where epsilon = O(1) has shown that wave amplitude spectrum is determined by overtone interactions between various modes which lead to a net flux of energy from low (where it is fed in from gas shear) to high frequency waves (where it is dissipated). Interfacial shear and film depth determine the interaction rates and therefore the spectral shape. Using a balance equation for wave energy, we developed a procedure for quantitatively predicting the wave spectrum. For waves with epsilon is dominated by 1, it is appropriate to examine individual traveling wave shapes (rather than the wave spectrum). We have found that measured wavelengths and speeds of periodic waves exhibit small but significant deviations from predictions of linear stability theory.
NASA Technical Reports Server (NTRS)
Gentz, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.; Kumosa, M.
2004-01-01
Iosipescu shear tests were performed at room temperature and at 316 C (600 F) o woven composites with either M40J or M60J graphite fibers and PMR-II-50 polyimide resin matrix. The composites were tested as supplied and after thermo-cycling, with the thermo-cycled composites being tested under dry and wet conditions. Acoustic emission (AE) was monitored during the room and high temperature Iosipescu experiments. The shear stresses at the maximum loads and the shear stresses at the significant onset of AE were determined for the composites as function of temperature and conditioning. The combined effects of thermo-cycling and moisture on the strength and stiffness properties of the composites were evaluated. It was determined that the room and high temperature shear stresses at the maximum loads were unaffected by conditioning. However, at room temperature the significant onset of AE was affected by conditioning; the thermal conditioned wet specimens showed the highest shear stress at the onset of AE followed by thermal-conditioned and then as received specimens. Also, at igh temperature the significant onset of AE occurred in some specimens after the maximum load due to the viscoelastoplastic nature of the matrix material.
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing
Ge, Ting; Grest, Gary S.; Robbins, Mark O.
2014-09-26
Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy G I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable crazemore » is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy G I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, G I increases as t 1/2 before saturating at the average bulk fracture energy G b. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, G I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and G I << G b.« less
Three-dimensional printing and porous metallic surfaces: a new orthopedic application.
Melican, M C; Zimmerman, M C; Dhillon, M S; Ponnambalam, A R; Curodeau, A; Parsons, J R
2001-05-01
As-cast, porous surfaced CoCr implants were tested for bone interfacial shear strength in a canine transcortical model. Three-dimensional printing (3DP) was used to create complex molds with a dimensional resolution of 175 microm. 3DP is a solid freeform fabrication technique that can generate ceramic pieces by printing binder onto a bed of ceramic powder. A printhead is rastered across the powder, building a monolithic mold, layer by layer. Using these 3DP molds, surfaces can be textured "as-cast," eliminating the need for additional processing as with commercially available sintered beads or wire mesh surfaces. Three experimental textures were fabricated, each consisting of a surface layer and deep layer with distinct individual porosities. The surface layer ranged from a porosity of 38% (Surface Y) to 67% (Surface Z), whereas the deep layer ranged from 39% (Surface Z) to 63% (Surface Y). An intermediate texture was fabricated that consisted of 43% porosity in both surface and deep layers (Surface X). Control surfaces were commercial sintered beaded coatings with a nominal porosity of 37%. A well-documented canine transcortical implant model was utilized to evaluate these experimental surfaces. In this model, five cylindrical implants were placed in transverse bicortical defects in each femur of purpose bred coonhounds. A Latin Square technique was used to randomize the experimental implants left to right and proximal to distal within a given animal and among animals. Each experimental site was paired with a porous coated control site located at the same level in the contralateral limb. Thus, for each of the three time periods (6, 12, and 26 weeks) five dogs were utilized, yielding a total of 24 experimental sites and 24 matched pair control sites. At each time period, mechanical push-out tests were used to evaluate interfacial shear strength. Other specimens were subjected to histomorphometric analysis. Macrotexture Z, with the highest surface porosity, failed at a significantly higher shear stress (p = 0.05) than the porous coated controls at 26 weeks. It is postulated that an increased volume of ingrown bone, resulting from a combination of high surface porosity and a high percentage of ingrowth, was responsible for the observed improvement in strength. Macrotextures X and Y also had significantly greater bone ingrowth than the controls (p = 0.05 at 26 weeks), and displayed, on average, greater interfacial shear strengths than controls, although they were not statistically significant. Copyright 2001 John Wiley & Sons
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar; Squires, Todd M.
2017-09-01
The surface shear viscosity of an insoluble surfactant monolayer often depends strongly on its surface pressure. Here, we show that a particle moving within a bounded monolayer breaks the kinematic reversibility of low-Reynolds-number flows. The Lorentz reciprocal theorem allows such irreversibilities to be computed without solving the full nonlinear equations, giving the leading-order contribution of surface pressure-dependent surface viscosity. In particular, we show that a disc translating or rotating near an interfacial boundary experiences a force in the direction perpendicular to that boundary. In unbounded monolayers, coupled modes of motion can also lead to non-intuitive trajectories, which we illustrate using an interfacial analogue of the Magnus effect. This perturbative approach can be extended to more complex geometries, and to two-dimensional suspensions more generally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, M.
1977-10-01
In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis of nuclear-reactor transients and accidents in particular, the kinematic constitutive equation for the drift velocity has been studied for various two-phase flow regimes. The constitutive equation that specifies the relative motion between phases in the drift-flux model has been derived by taking into account the interfacial geometry, the body-force field, shear stresses, and the interfacial momentum transfer, since these macroscopic effects govern the relative velocity between phases. A comparison of the model with various experimental data over various flow regimesmore » and a wide range of flow parameters shows a satisfactory agreement.« less
Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves
NASA Astrophysics Data System (ADS)
Zhang, R. P.
2017-04-01
A mathematical model is developed for predicting the transient heat transfer and fluid flow of heat pipe with axially swallow-tailed microgrooves. The effects of liquid convective heat transfer in the microgrooves, liquid-vapor interfacial phase-change heat transfer and liquid-vapor interfacial shear stress are accounted for in the present model. The coupled non-linear control equations are solved numerically. Mass flow rate at the interface is obtained from the application of kinetic theory. Time variation of wall temperature is studied from the initial startup to steady state. The numerical results are verified by experiments. Time constants for startup and shutdown operation are defined to determine how fast a heat pipe responds to an applied input heat flux, which slightly decreases with increasing heat load.
NASA Astrophysics Data System (ADS)
Sobczak, N.; Ksiazek, M.; Radziwill, W.; Asthana, R.; Mikulowski, B.
2004-03-01
A fresh approach has been advanced to examine in the Al/Al2O3 system the effects of temperature, alloying of Al with Ti or Sn, and Ti and Sn coatings on the substrate, on contact angles measured using a sessile-drop test, and on interface strength measured using a modified push-off test that allows shearing of solidified droplets with less than 90 deg contact angle. In the modified test, the solidified sessile-drop samples are bisected perpendicular to the drop/Al2O3 interface at the midplane of the contact circle to obtain samples that permit bond strength measurement by stress application to the flat surface of the bisected couple. The test results show that interface strength is strongly influenced by the wetting properties; low contact angles correspond to high interface strength, which also exhibits a strong temperature dependence. An increase in the wettability test temperature led to an increase in the interface strength in the low-temperature range where contact angles were large and wettability was poor. The room-temperature shear tests conducted on thermally cycled sessile-drop test specimens revealed the effect of chemically formed interfacial oxides; a weakening of the thermally cycled Al/Al2O3 interface was caused under the following conditions: (1) slow contact heating and short contact times in the wettability test, and (2) fast contact heating and longer contact times. The addition of 6 wt pct Ti or 7 wt pct Sn to Al only marginally influenced the contact angle and interfacial shear strength. However, Al2O3 substrates having thin (<1 µm) Ti coatings yielded relatively low contact angles and high bond strength, which appears to be related to the dissolution of the coating in Al and formation of a favorable interface structure.
NASA Astrophysics Data System (ADS)
Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu
1999-11-01
In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.
NASA Astrophysics Data System (ADS)
Winardi, Y.; Triyono; Muhayat, N.
2018-03-01
The aim of the present study was to investigate the effect temperature of heat treatment process on the interfacial microstructure and mechanical properties of cemented carbide/carbon steel single lap joint brazed using Ag based alloy filler metal. The brazing process was carried out using torch brazing. Heat treatment process was carried out in induction furnace on the temperature of 700, 725, and 750°C, for 30 minutes. Microstructural examinations and phase analysis were performed using scanning electron microscopy (SEM) equipped with energy dispersion spectrometry (EDS). Shear strength of the joints was measured by the universal testing machine. The results of the microstructural analyses of the brazed area indicate that the increase temperature of treatment lead to the increase of solid solution phase of enrichted Cu. Based on EDS test, the carbon elements spread to all brazed area, which is disseminated by base metals. Shear strength joint is increased with temperature treatment. The highest shear strength of the brazed joint was 214,14 MPa when the heated up at 725°C.
NASA Astrophysics Data System (ADS)
Ellis, Keith
The aim of the project was to improve the transverse mechanical properties of unidirectional glass fibre reinforced plastics (G.R.P.)* In addition it was intended that the longitudinal mechanical properties should not be Significantly a result of the transverse improvement The scientific and commercial literature were consulted to determine the most feasible means of improving the transverse properties. Four possible methods were identified, the most promising of which was interfacial modification. Interfacial modification involves the introduction of a third material ("the interphase" ) at the interface between the fibre and the matrix. For this project the interphase material was selected to be compliant or rubbery in nature. The Kies model for predicting the magnification of strain in the resin between fibres was extended to include an interphase. The model was developed for two modes of applied stress. The first was pure tension acting transverse to the fibre axis. The second was shear in the plane transverse to the fibre axis. A novel apparatus was constructed to manufacture composites with a compliant interphase. The apparatus combined a self-regulating coating technique with filament winding to give a continuous production facility. A range of mechanical tests were performed on composites both with and without an interphase. Presence of an interphase improved the following properties: transverse flexural strength, interlaminar and intralaminar shear strength , and transverse fiexural fracture energy. No improvement was noted for pure transverse tension. These results indicated that the interphase acted beneficially only when the composite was stressed in a predominantly shear mode. Conclusions from mechanical test results were supported by S.E.M. fractography. Considerable deformation of the interphase was found in composite tested in shear. This deformation was absent in composite tested in tension. It was postulated that these differences between behaviour in tension and shear were the result of constraint of Poisson's ratio contraction in the compliant interphase. To confirm this, dynamic mechanical testing was used to measure tensile and shear moduli of the interphase material as a function of thickness. Constraint and support were provided by a thin steel substrate. The tensile modulus increased by orders of magnitude the thinner, and hence more constrained , the material became. Near to the interphase thickness used in practice the tensile modulus of the interphase was shown to approach that of the matrix. In summary, the use of a compliant interphase resulted in significant improvements in mechanical properties of the composite in shear.
Non-Newtonian fluid flow over a heterogeneously slippery surface
NASA Astrophysics Data System (ADS)
Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.
2015-11-01
The no-slip boundary condition does not always hold. In the past, we have investigated the influence of effective wall slip on interfacial transport for a bubble mattress - a superhydrophobic surface consisting of an array of transverse gas-filled grooves. We proved experimentally that the amount of effective wall slip depends on the bubble protrusion angle and the surface porosity (Karatay et al., PNAS 110, 2013), and predicted that mass transport can be enhanced significantly (Haase et al., Soft Matter 9, 2013). Both studies involve the flow of water. In practise, however, many liquids encountered are non-Newtonian, like blood and polymer solutions. This raises some interesting questions. How does interfacial transport depend on the rheological properties of the liquid? Does the time-scale of the experiment matter? A bubble mattress is a suitable platform to investigate this, due to local variations in shear rate. We predict that for shear-thinning liquids, compared to water, the amount of wall slip can be enhanced considerably, although this depends on the applied flow rate. Experiments are performed to proof this behaviour. Simulations are used to assess what will happen when the characteristic time-scale of the system matches the relaxation time of the visco-elastic liquid. R.G.H.L. acknowledges the European Research Council for the ERC starting grant 307342-TRAM.
Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion
NASA Astrophysics Data System (ADS)
Dias, Eduardo; Miranda, Jose
2013-11-01
As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.
NASA Astrophysics Data System (ADS)
Choi, S.; Jung, H.
2017-12-01
Various seismic anisotropy has been observed in the world, especially along subduction zones, and a part of the seismic anisotropy can be caused by the subducting slab, which is poorly understood. One of the main rocks at the top of the subducting slab in cold subduction zones is lawsonite blueschist, which has been rarely studied experimentally. Since lawsonite blueschist is composed of elastically anisotropic minerals such as glaucophane and lawsonite, development of the lattice preferred orientation (LPO) of these minerals can cause a large seismic anisotropy. Therefore, to understand deformation microstructures (i.e., LPOs) of lawsonite and glaucophane and the resultant seismic anisotropy, we conducted deformation experiments of lawsonite blueschist in simple shear using a modified Griggs apparatus. The experiments were performed under the pressures (P = 1 - 2 GPa), temperatures (T = 230 - 400 °), shear strain (γ = 1 - 4), and shear strain rates (10-6 - 10-4 s-1). LPOs of minerals were determined by SEM/EBSD technique. LPO of glaucophane after experiments at the shear strain (1 < γ ≤ 4.0) showed that the maxima of (110) poles and [100] axes were aligned subnormal to the shear plane and the maximum of [001] axes subparallel to the shear direction. LPO of lawsonite showed that at low strain (γ ≤ 1.4) the maximum of [010] axes were aligned sub-parallel to the shear direction, but at high strain (γ ≥ 2.1) the maximum of [100] axes were aligned sub-parallel to the direction with the [001] axes aligned subnormal to the shear plane. Using the LPO data, seismic properties of each minerals were calculated. Glaucophane showed a high P-wave anisotropy (7.7 - 16.9 %) and relatively low maximum S-wave anisotropy (4.4 - 9.2 %). In contrast, lawsonite showed much higher maximum S-wave anisotropy (8.3 - 20.7 %) than glaucophane, but showed a low P-wave anisotropy in the range of 4.7 - 10.3 %. Our results indicate that seismic anisotropy observed at the top of cold subducting slabs and at the slab-mantle interfaces can be attributed to the LPOs of lawsonite & glaucophane in the deformed blueschist facies rocks.
Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong
2017-01-01
To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view. PMID:28946690
NASA Astrophysics Data System (ADS)
Tan, Caiwang; Xiao, Liyuan; Liu, Fuyun; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai
2017-05-01
In this work, we describe a method to improve the bonding of an immiscible Mg/steel system using Ni as an interlayer by coating it on the steel surface. Laser welding-brazing of AZ31B Mg alloy to Ni-coated Q235 steel using Mg-based filler was performed in a lap configuration. The influence of laser power on the weld characteristics, including joint appearance, formation of interfacial reaction layers and mechanical properties was investigated. The results indicated that the presence of the Ni-coating promoted the wetting of the liquid filler metal on the steel surface. A thermal gradient along the interface led to the formation of heterogeneous interfacial reaction layers. When using a low laser power of 1600 W, the reaction products were an FeAl phase in the direct laser irradiation zone, an AlNi phase close to the intermediate zone and mixtures of AlNi phase and an (α-Mg + Mg2Ni) eutectic structure near the interface at the seam head zone. For high powers of more than 2000 W, the FeAl phase grew thicker in the direct laser irradiation zone and a new Fe(Ni) transition layer formed at the interface of the intermediate zone and the seam head zone. However, the AlNi phase and (α-Mg + Mg2Ni) eutectic structure were scattered at the Mg seam. All the joints fractured at the fusion zone, indicating that the improved interface was not the weakest joint region. The maximum tensile-shear strength of the Mg/Ni-coated steel joint reached 190 N/mm, and the joint efficiency was 70% with respect to the Mg alloy base metal.
NASA Astrophysics Data System (ADS)
Moitra, Pranabendu; Gonnermann, Helge
2014-05-01
Magma often contains crystals of various shapes and sizes. We present experimental results on the effect of the shape- and size-distribution of solid particles on the rheological properties of solid-liquid suspensions, which are hydrodynamically analogous to crystal-bearing magmas. The suspensions were comprised of either a single particle shape and size (unimodal) or a mixture of two different particle shapes and sizes (bimodal). For each type of suspension we characterized the dry maximum packing fraction of the particle mixture using the tap density method. We then systematically varied the total volume fraction of particles in the suspension, as well as the relative proportion of the two different particle types in the bimodal suspensions. For each of the resultant mixtures (suspensions) we performed controlled shear stress experiments using a rotational rheometer in parallel-plate geometry spanning 4 orders of magnitude in shear stress. The resultant data curves of shear stress as a function of shear rate were fitted using a Herschel-Bulkley rheological model. We find that the dry maximum packing decreases with increasing particle aspect ratio (ar) and decreasing particle size ratio (Λ). The highest dry maximum packing was obtained at 60-75% volume of larger particles for bimodal spherical particle mixture. Normalized consistency, Kr, defined as the ratio of the consistency of the suspension and the viscosity of the suspending liquid, was fitted using a Krieger-Dougherty model as a function of the total solid volume fraction (φ). The maximum packing fractions (φm) obtained from the shear experimental data fitting of the unimodal suspensions were similar in magnitude with the dry maximum packing fractions of the unimodal particles. Subsequently, we used the dry maximum packing fractions of the bimodal particle mixtures to fit Kr as a function of φ for the bimodal suspensions. We find that Kr increases rapidly for suspensions with larger ar and smaller Λ. We also find that both the apparent yield stress and the shear thinning behavior of the suspensions increase with increasing ar and become significant at φ/φm ≥ 0.4.
Cerri, M O; Badino, A C
2012-08-01
In biochemical processes involving filamentous microorganisms, the high shear rate may damage suspended cells leading to viability loss and cell disruption. In this work, the influence of the shear conditions in clavulanic acid (CA) production by Streptomyces clavuligerus was evaluated in a 4-dm(3) conventional stirred tank (STB) and in 6-dm(3) concentric-tube airlift (ALB) bioreactors. Batch cultivations were performed in a STB at 600 and 800 rpm and 0.5 vvm (cultivations B1 and B2) and in ALB at 3.0 and 4.1 vvm (cultivations A1 and A2) to define two initial oxygen transfer conditions in both bioreactors. The average shear rate ([Formula: see text]) of the cultivations was estimated using correlations of recent literature based on experimental data of rheological properties of the broth (consistency index, K, and flow index, n) and operating conditions, impeller speed (N) for STB and superficial gas velocity in the riser (UGR) for ALB. In the same oxygen transfer condition, the [Formula: see text] values for ALB were higher than those obtained in STB. The maximum [Formula: see text] presented a strong correlation with a maximum consistency index (K (max)) of the broth. Close values of maximum CA production were obtained in cultivations A1 and A2 (454 and 442 mg L(-1)) with similar maximum [Formula: see text] values of 4,247 and 4,225 s(-1). In cultivations B1 and B2, the maximum CA production of 269 and 402 mg L(-1) were reached with a maximum [Formula: see text] of 904 and 1,786 s(-1). The results show that high values of average shear rate increase the CA production regardless of the oxygen transfer condition and bioreactor model.
NASA Astrophysics Data System (ADS)
Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing
2017-08-01
Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.
NASA Astrophysics Data System (ADS)
Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao
2017-02-01
Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.
Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology
NASA Astrophysics Data System (ADS)
Barekar, N.; Tzamtzis, S.; Dhindaw, B. K.; Patel, J.; Hari Babu, N.; Fan, Z.
2009-12-01
To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (ɛ) is obtained compared with composites produced by conventional processes.
Plastic Faulting in Ice: Shear Localization under Elevated Pressure
NASA Astrophysics Data System (ADS)
Golding, N.; Durham, W. B.
2013-12-01
Ice exhibits, at least, two distinct kinds of shear faults when loaded triaxially under compression. Under moderate levels of confinement, brittle failure follows crack growth, crack coalescence and the development of a fault oriented about 30 degrees from the direction of maximum compression. The mechanism governing this mode of failure, termed frictional or Coulombic faulting, has previously been discussed for ice and rocks in connection with the comb-crack model. Under higher levels of confinement, where frictional sliding is suppressed by confining pressure, failure is characterized by sudden brittle-like loss in load bearing capacity and the development of a narrow shear band, comprised of recrystallized grains, oriented about 45 degrees from the direction of maximum compression, i.e. along the direction of maximum shear. This mode of failure, referred to here as plastic faulting, has previously been discussed for warm ice, T = 233 - 263 K, in connection with adiabatic shear heating and has been discussed for cold ice, T = 77 - 163 K, in connection with phase transformation. Here, new results are presented that examine the mechanical behavior and microstructural properties of plastic faulting in polycrystalline ice loaded at temperatures from T = 175 - 210 K and confining pressures up to P = 200 MPa. The results are reviewed in context of previous work and possible mechanisms to account for shear localization in ice under high pressure, including 1) adiabatic shear heating, 2) grain refinement and 3) phase transformation, are discussed. The present observations highlight the similarities in the behavior of plastic faulting under both warm and cold conditions and suggest adiabatic shear heating as a possible mechanism to account for shear instability and plastic faulting at temperatures ranging from T = 77 - 263 K.
Interphase and particle dispersion correlations in polymer nanocomposites
NASA Astrophysics Data System (ADS)
Senses, Erkan
Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories for polymers on attractive particle surfaces. The shown thermally-induced stiffening behavior is reversible and makes this interfacial mechanism highly attractive in developing new active, remotely controllable engineered materials from non-responsive components.
Microfluidic viscometers for shear rheology of complex fluids and biofluids
Wang, William S.; Vanapalli, Siva A.
2016-01-01
The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids. PMID:27478521
Rate correlation for condensation of pure vapor on turbulent, subcooled liquid
NASA Technical Reports Server (NTRS)
Brown, J. Steven; Khoo, Boo Cheong; Sonin, Ain A.
1990-01-01
An empirical correlation is presented for the condensation of pure vapor on a subcooled, turbulent liquid with a shear-free interface. The correlation expresses the dependence of the condensation rate on fluid properties, on the liquid-side turbulence (which is imposed from below), and on the effects of buoyancy in the interfacial thermal layer. The correlation is derived from experiments with steam and water, but under conditions which simulate typical cryogenic fluids.
Smart Sensing and Dynamic Fitting for Enhanced Comfort and Performance of Prosthetics
2016-10-01
ACCOMPLISHMENTS What were the major goals of the project? The three aims of the projects are: 1) Demonstrating real-time measurements of interfacial...that demonstrates simultaneous measurement of shear and pressure stresses (by July 2015) – experiment is completed. Manuscript preparation under way...beam has a slot at the center so that the strain gauges bonded on the outer walls of the slot have sufficient sensitivity to measure small compression
Adhesion, friction and micromechanical properties of ceramics
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1988-01-01
The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, K.
1990-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P
2016-02-09
The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.
Do Clustering Monoclonal Antibody Solutions Really Have a Concentration Dependence of Viscosity?
Pathak, Jai A.; Sologuren, Rumi R.; Narwal, Rojaramani
2013-01-01
Protein solution rheology data in the biophysics literature have incompletely identified factors that govern hydrodynamics. Whereas spontaneous protein adsorption at the air/water (A/W) interface increases the apparent viscosity of surfactant-free globular protein solutions, it is demonstrated here that irreversible clusters also increase system viscosity in the zero shear limit. Solution rheology measured with double gap geometry in a stress-controlled rheometer on a surfactant-free Immunoglobulin solution demonstrated that both irreversible clusters and the A/W interface increased the apparent low shear rate viscosity. Interfacial shear rheology data showed that the A/W interface yields, i.e., shows solid-like behavior. The A/W interface contribution was smaller, yet nonnegligible, in double gap compared to cone-plate geometry. Apparent nonmonotonic composition dependence of viscosity at low shear rates due to irreversible (nonequilibrium) clusters was resolved by filtration to recover a monotonically increasing viscosity-concentration curve, as expected. Although smaller equilibrium clusters also existed, their size and effective volume fraction were unaffected by filtration, rendering their contribution to viscosity invariant. Surfactant-free antibody systems containing clusters have complex hydrodynamic response, reflecting distinct bulk and interface-adsorbed protein as well as irreversible cluster contributions. Literature models for solution viscosity lack the appropriate physics to describe the bulk shear viscosity of unstable surfactant-free antibody solutions. PMID:23442970
Wrinkling of reinforced plates subjected to shear stresses
NASA Technical Reports Server (NTRS)
Seydel, Edgar
1931-01-01
An analysis is made here of the problem of long plates with transverse stiffeners subject to shear. A typical example would be a long Wagner beam. The shear stress is calculated at which the web wrinkles and shear stress becomes a maximum. The equation is solved for both a condition of free support and rigidity of support on the edges.
Carbon nanotubes on carbon fibers: Synthesis, structures and properties
NASA Astrophysics Data System (ADS)
Zhang, Qiuhong
The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed localized transverse compression at low loads (muN to mN) and small displacements (nm to a few mum). Force, strain, stiffness, and electrical resistance were monitored simultaneously during compression experiments. The results showed that CNT/CF possess a high sensing capability between force and resistance. Hysteresis in both force-displacement and resistance-displacement curves was observed with CNT/CF, but was more evident as maximum strain increased and did not depend on strain rate. Force was higher and resistance was lower during compression as compared to decompression. A model is proposed to explain hysteresis where van der Waals forces between deformed and entangled nanotubes hinder decompression of some of the compressed tubes that are in contact with each other. This study provides a new understanding of the mechanical and electrical behavior of CNT/CF that will facilitate usage as stress and strain sensors in both stand-alone and composite materials applications. A novel method for in situ observation of nano-micro scale CNT/CF mechanical behavior by SEM has been developed in this study. The results indicated that deformation of vertical aligned CNT (VACNT) forest followed a column-like bending mechanism under localized radial (axial) compression. No fracture was observed even at very high compression strain on a VACNT forest. In order to fully understand CNT forest properties, the viscous creep behavior of VACNT arrays grown on flat Si substrate has also been characterized using a nanoindentation method. Resulting creep response was observed to consist of a short transient stage and a steady state stage in which the rate of displacement was constant. The strain rate sensitivity depended on the density of the nanotube arrays, but it was independent of the ramping (compression) rate of the indenter.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
NASA Astrophysics Data System (ADS)
Zhao, Xiaoye; Tan, Caiwang; Meng, Shenghao; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai
2018-03-01
Fiber laser welding-brazing of 1-mm-thick AZ31B Mg alloys to 1.5-mm-thick copper (T2) with Mg-based filler was performed in a lap configuration. The weld appearance, interfacial microstructure and mechanical properties were investigated with different heat inputs. The results indicated that processing windows for optimizing appropriate welding parameters were relatively narrow in this case. Visually acceptable joints with certain strength were achieved at appropriate welding parameters. The maximum tensile-shear fracture load of laser-welded-brazed Mg/Cu joint could reach 1730 N at the laser power of 1200 W, representing 64.1% joint efficiency relative to AZ31Mg base metal. The eutectic structure (α-Mg + Mg2Cu) and Mg-Cu intermetallic compound was observed at the Mg/Cu interface, and Mg-Al-Cu ternary intermetallic compound were identified between intermetallics and eutectic structure at high heat input. All the joints fractured at the Mg-Cu interface. However, the fracture mode was found to differ. For laser power of 1200 W, the surface was characterized by tearing edge, while that with poor joint strength was almost dominated by smooth surface or flat tear pattern.
Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites
NASA Technical Reports Server (NTRS)
Grande, D. H.; Mandell, J. F.; Hong, K. C. C.
1988-01-01
An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.
The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM
NASA Astrophysics Data System (ADS)
Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa
2008-06-01
This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.
Mechanochemical Association Reaction of Interfacial Molecules Driven by Shear.
Khajeh, Arash; He, Xin; Yeon, Jejoon; Kim, Seong H; Martini, Ashlie
2018-05-29
Shear-driven chemical reaction mechanisms are poorly understood because the relevant reactions are often hidden between two solid surfaces moving in relative motion. Here, this phenomenon is explored by characterizing shear-induced polymerization reactions that occur during vapor phase lubrication of α-pinene between sliding hydroxylated and dehydroxylated silica surfaces, complemented by reactive molecular dynamics simulations. The results suggest that oxidative chemisorption of the α-pinene molecules at reactive surface sites, which transfers oxygen atoms from the surface to the adsorbate molecule, is the critical activation step. Such activation takes place more readily on the dehydroxylated surface. During this activation, the most strained part of the α-pinene molecules undergoes a partial distortion from its equilibrium geometry, which appears to be related to the critical activation volume for mechanical activation. Once α-pinene molecules are activated, association reactions occur between the newly attached oxygen and one of the carbon atoms in another molecule, forming ether bonds. These findings have general implications for mechanochemistry because they reveal that shear-driven reactions may occur through reaction pathways very different from their thermally induced counterparts and specifically the critical role of molecular distortion in such reactions.
Tribological properties of boron nitride synthesized by ion beam deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Spalvins, T.
1985-01-01
The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.
NASA Technical Reports Server (NTRS)
Kautz, Harold E.; Bhatt, Ramakrishna T.
1991-01-01
A technique for measuring ultrasonic velocity was used to monitor changes that occur during processing and heat treatment of a SiC/RBSM composite. Results indicated that correlations exist between the ultrasonic velocity data and elastic modulus and interfacial shear strength data determined from mechanical tests. The ultrasonic velocity data can differentiate strength. The advantages and potential of this nondestructive evaluation method for fiber reinforced ceramic matrix composite applications are discussed.
Shimamoto, Daisuke; Hotta, Yuji
2018-01-01
The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation. PMID:29587422
Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V
2016-09-21
We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.
Tominaga, Yuichi; Shimamoto, Daisuke; Hotta, Yuji
2018-03-26
The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation.
Understanding the interfacial chain dynamics of fiber-reinforced polymer composite
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Carrillo, Jan-Michael; Naskar, Amit; Sumpter, Bobby
The polymer-fiber interface plays a major role in determining the structural and dynamical properties of fiber reinforced composite materials. We utilized LAMMPS MD package to understand the interfacial properties at the nanoscale. Coarse-grained flexible polymer chains are introduced to compare the various structures and dynamics of the polymer chains. Our preliminary simulation study shows that the rigidity of the polymer chain affects the interfacial morphology and dynamics of the chain on a flat surface. In this work, we identified the `immobile inter-phase' morphology and relate it to rheological properties. We calculated the viscoelastic properties, e.g., shear modulus and storage modulus, which are compared with experiments. MD simulations are used to show the variation of viscoelastic properties with polymer volume fraction. The nanoscale segmental and chain relaxation are calculated from the MD simulations and compared to the experimental data. These observations will be able to identify the fundamental physics behind the effect of the polymer-fiber interactions and orientation of the fiber to the overall rheological properties of the fiber reinforced polymer matrix. Funding for the project was provided by ORNLs Laboratory Directed Research and Development (LDRD) program.
Effect of surface anodization on stability of orthodontic microimplant
Karmarker, Sanket; Yu, Wonjae
2012-01-01
Objective To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase after placement. Methods A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed after 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants (3.79 ± 1.39 Ncm) than for the machined ones (2.05 ± 1.07 Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage. PMID:23112925
Flow-induced 2D protein crystallization: characterization of the coupled interfacial and bulk flows.
Young, James E; Posada, David; Lopez, Juan M; Hirsa, Amir H
2015-05-14
Two-dimensional crystallization of the protein streptavidin, crystallizing below a biotinylated lipid film spread on a quiescent air-water interface is a well studied phenomenon. More recently, 2D crystallization induced by a shearing interfacial flow has been observed at film surface pressures significantly lower than those required in a quiescent system. Here, we quantify the interfacial and bulk flow associated with 2D protein crystallization through numerical modeling of the flow along with a Newtonian surface model. Experiments were conducted over a wide range of conditions resulting in a state diagram delineating the flow strength required to induce crystals for various surface pressures. Through measurements of the velocity profile at the air-water interface, we found that even in the cases where crystals are formed, the macroscopic flow at the interface is well described by the Newtonian model. However, the results show that even in the absence of any protein in the system, the viscous response of the biotinylated lipid film is complicated and strongly dependent on the strength of the flow. This observation suggests that the insoluble lipid film plays a key role in flow-induced 2D protein crystallization.
NASA Astrophysics Data System (ADS)
Lyu, Ying; Brusseau, Mark L.; El Ouni, Asma; Araujo, Juliana B.; Su, Xiaosi
2017-11-01
The gas-absorption/chemical-reaction (GACR) method used in chemical engineering to quantify gas-liquid interfacial area in reactor systems is adapted for the first time to measure the effective air-water interfacial area of natural porous media. Experiments were conducted with the GACR method, and two standard methods (X-ray microtomographic imaging and interfacial partitioning tracer tests) for comparison, using model glass beads and a natural sand. The results of a series of experiments conducted under identical conditions demonstrated that the GACR method exhibited excellent repeatability for measurement of interfacial area (Aia). Coefficients of variation for Aia were 3.5% for the glass beads and 11% for the sand. Extrapolated maximum interfacial areas (Am) obtained with the GACR method were statistically identical to independent measures of the specific solid surface areas of the media. For example, the Am for the glass beads is 29 (±1) cm-1, compared to 32 (±3), 30 (±2), and 31 (±2) cm-1 determined from geometric calculation, N2/BET measurement, and microtomographic measurement, respectively. This indicates that the method produced accurate measures of interfacial area. Interfacial areas determined with the GACR method were similar to those obtained with the standard methods. For example, Aias of 47 and 44 cm-1 were measured with the GACR and XMT methods, respectively, for the sand at a water saturation of 0.57. The results of the study indicate that the GACR method is a viable alternative for measuring air-water interfacial areas. The method is relatively quick, inexpensive, and requires no specialized instrumentation compared to the standard methods.
Periodically sheared 2D Yukawa systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovács, Anikó Zsuzsa; Hartmann, Peter; Center for Astrophysics, Space Physics and Engineering Research
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
Yang, Xiaobin; Jiang, Xu; Huang, Yudong; Guo, Zhanhu; Shao, Lu
2017-02-15
The nanoporous metal-organic frameworks (MOFs) "armor" is in situ intergrown onto the surfaces of carbon fibers (CFs) by nitric acid oxidization to supply nucleation sites and serves as a novel interfacial linker between the fiber and polymer matrix and a smart cushion to release interior and exterior applied forces. Simultaneous enhancements of the interfacial and interlaminar shear strength as well as the tensile strength of CFs were achieved. With the aid of an ultrasonic "cleaning" process, the optimized surface energy and tensile strength of CFs with a MOF "armor" are 83.79 mN m -1 and 5.09 GPa, for an increase of 102% and 11.6%, respectively. Our work finds that the template-induced nucleation of 3D MOF onto 1D fibers is a general and promising approach toward advanced composite materials for diverse applications to meet scientific and technical demands.
NASA Astrophysics Data System (ADS)
Lv, Junwei; Wang, Bin; Ma, Qi; Wang, Wenjing; Xiang, Dong; Li, Mengyao; Zeng, Lan; Li, Hui; Li, Yuntao; Zhao, Chunxia
2018-06-01
Melamine and multi-walled carbon nanotubes (MWCNTs) were grafted onto Poly-p-phenylene benzobisoxazole (PBO) fiber surface effectively via layer-by-layer method. Both of them have been chemically bonded as fourier transform infrared spectroscopy (FTIR) confirmed. Grafting melamine overcame the inertness of PBO surface. Ammoniation was processed on PBO surface through grafting melamine so that the MWCNTs could be grafted onto PBO surface. Scanning electron microscopy (SEM) images indicated that melamine used as molecular bridge could increase MWCNTs’ quantity on PBO surface. X-ray photoelectron spectroscopy (XPS) results revealed the variation of chemical composition of PBO surface. Test of interfacial shear strength (IFSS) and tensile strength indicated the great mechanical properties of modified PBO fibers when combining with epoxy resin. Furthermore, whole reaction was processed under a simple condition. Results in this research also promised a potential method to modify PBO surface.
NASA Astrophysics Data System (ADS)
Li, L. B.
2017-01-01
The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.
The best features of diamond nanothread for nanofibre applications
NASA Astrophysics Data System (ADS)
Zhan, Haifei; Zhang, Gang; Tan, Vincent B. C.; Gu, Yuantong
2017-03-01
Carbon fibres have attracted interest from both the scientific and engineering communities due to their outstanding physical properties. Here we report that recently synthesized ultrathin diamond nanothread not only possesses excellent torsional deformation capability, but also excellent interfacial load-transfer efficiency. Compared with (10,10) carbon nanotube bundles, the flattening of nanotubes is not observed in diamond nanothread bundles, which leads to a high-torsional elastic limit that is almost three times higher. Pull-out tests reveal that the diamond nanothread bundle has an interface transfer load of more than twice that of the carbon nanotube bundle, corresponding to an order of magnitude higher in terms of the interfacial shear strength. Such high load-transfer efficiency is attributed to the strong mechanical interlocking effect at the interface. These intriguing features suggest that diamond nanothread could be an excellent candidate for constructing next-generation carbon fibres.
NASA Astrophysics Data System (ADS)
Lundstrom, Troy; Clark, William; Jalili, Nader
2017-05-01
In the design and development of end effector pads for silicon wafer handling robots, it is imperative that the static friction/adhesion force properties of the pads with respect to a variety of planar surfaces be characterized. In this work, the overall design, calibration, and data acquisition procedure of an instrument developed for performing these measurements on small (<10 mm × 10 mm) planar samples is presented. This device was used to perform adhesion/maximum shear force measurements on polydimethylsiloxane, a silicon wafer, and custom carbon nanotubes forest surfaces. The device was successfully able to measure an effective, mean profile adhesion force of 715 μN between a silicon wafer and a polydimethylsiloxane (2.768 × 10-6 m2) sample. In addition, a nonlinear maximum shear over normal force relationship was also measured between custom carbon nanotubes forest and the silicon wafer surfaces. The maximum shear over a normal force coefficient was found to decrease with increasing initial normal force. Currently, there are numerous devices for measuring normal/shear forces at the nano/micro- and macroscales; however, this device allows for the consistent measurement of these same types of forces on components with surface dimensions ranging from 0.1 mm to 10 mm.
Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan
2011-05-01
Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.
Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P
2018-03-14
Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.
Anomalous Hall effect assisted by interfacial chemical reaction in perpendicular Co/Pt multilayers
NASA Astrophysics Data System (ADS)
Liu, Qian; Jiang, Shaolong; Teng, Jiao
2018-05-01
To uncover the underlying mechanism of Mg effect on the improved anomalous Hall effect (AHE) of perpendicular [Pt/Co]3/Mg/HfO2 multilayers, the X-ray photoelectron spectroscopy analysis has been carried out. It is found that Mg interlayer at the Co/HfO2 interface could prevent the Co oxidation to some extent via interfacial chemical reaction. As a result, A large anomalous Hall resistivity (ρAH) is obtained in perpendicular [Pt/Co]3/Mg/HfO2 multilayers, with a maximum ρAH of 3.02 μΩ cm, which is 59% larger than that in Co/Pt multilayers without Mg insertion. This effective modification of the AHE based on interfacial chemical reaction provides a promising pathway for spintronic applications.
Instant polysaccharide-based emulsions: impact of microstructure on lipolysis.
Torcello-Gómez, Amelia; Foster, Timothy J
2017-06-21
The development of emulsion-based products through optimisation of ingredients, reduction in energy-input during manufacture, while fulfilling healthy attributes, are major objectives within the food industry. Instant emulsions can meet these features, but comprehensive studies are necessary to investigate the effect of the initial formulation on the final microstructure and, in turn, on the in vitro lipolysis, comprising the double aim of this work. The instant emulsion is formed within 1.5-3 min after pouring the aqueous phase into the oil phase which contains a mixture of emulsifier (Tween 20), swelling particles (Sephadex) and thickeners (hydroxypropylmethylcellulose, HPMC, and guar gum, GG) under mild shearing (180 rpm). The creation of oil-in-water emulsions is monitored in situ by viscosity analysis, the final microstructure visualised by microscopy and the release of free fatty acids under simulated intestinal conditions quantified by titration. Increasing the concentration and molecular weight (M w ) of GG leads to smaller emulsion droplets due to increased bulk viscosity upon shearing. This droplet size reduction is magnified when increasing the M w of HPMC or swelling capacity of viscosifying particles. In addition, in the absence of the emulsifier Tween 20, the sole use of high-Mw HPMC is effective in emulsification due to combined increased bulk viscosity and interfacial activity. Hence, optimisation of the ingredient choice and usage level is possible when designing microstructures. Finally, emulsions with larger droplet size (>20 μm) display a slower rate and lower extent of lipolysis, while finer emulsions (droplet size ≤20 μm) exhibit maximum rate and extent profiles. This correlates with the extent of emulsion destabilisation observed under intestinal conditions.
Improved Bond Strength of Cyanoacrylate Adhesives Through Nanostructured Chromium Adhesion Layers
NASA Astrophysics Data System (ADS)
Gobble, Kyle; Stark, Amelia; Stagon, Stephen P.
2016-09-01
The performance of many consumer products suffers due to weak and inconsistent bonds formed to low surface energy polymer materials, such as polyolefin-based high-density polyethylene (HDPE), with adhesives, such as cyanoacrylate. In this letter, we present an industrially relevant means of increasing bond shear strength and consistency through vacuum metallization of chromium thin films and nanorods, using HDPE as a prototype material and cyanoacrylate as a prototype adhesive. For the as received HDPE surfaces, unmodified bond shear strength is shown to be only 0.20 MPa with a standard deviation of 14 %. When Cr metallization layers are added onto the HDPE at thicknesses of 50 nm or less, nanorod-structured coatings outperform continuous films and have a maximum bond shear strength of 0.96 MPa with a standard deviation of 7 %. When the metallization layer is greater than 50 nm thick, continuous films demonstrate greater performance than nanorod coatings and have a maximum shear strength of 1.03 MPa with a standard deviation of 6 %. Further, when the combination of surface roughening with P400 grit sandpaper and metallization is used, 100-nm-thick nanorod coatings show a tenfold increase in shear strength over the baseline, reaching a maximum of 2.03 MPa with a standard deviation of only 3 %. The substantial increase in shear strength through metallization, and the combination of roughening with metallization, may have wide-reaching implications in consumer products which utilize low surface energy plastics.
A Study of the Response of the Human Cadaver Head to Impact
Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott
2008-01-01
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591
NASA Astrophysics Data System (ADS)
Lemone, Margaret A.; Zipser, Edward J.; Trier, Stanley B.
1998-12-01
A collection of case studies is used to elucidate the influence of environmental soundings on the structure and evolution of the convection in the mesoscale convective systems sampled by the turboprop aircraft in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE). The soundings were constructed primarily from aircraft data below 5-6 km and primarily from radiosonde data at higher altitudes.The well-documented role of the vertical shear of the horizontal wind in determining the mesoscale structure of tropical convection is confirmed and extended. As noted by earlier investigators, nearly all convective bands occurring in environments with appreciable shear below a low-level wind maximum are oriented nearly normal to the shear beneath the wind maximum and propagate in the direction of the low-level shear at a speed close to the wind maximum; when there is appreciable shear at middle levels (800-400 mb), convective bands form parallel to the shear. With appreciable shear at both levels, the lower-level shear determines the orientation of the primary convective bands. If the midlevel shear is opposite the low-level shear, secondary bands parallel to the midlevel shear will extend rearward from the primary band in later stages of its evolution; if the midlevel shear is 90 degrees to the low-level shear, the primary band will retain its two-dimensional mesoscale structure. Convection has no obvious mesoscale organization on days with little shear or days with widespread convection.Environmental temperatures and humidities have no obvious effect on the mesoscale convective pattern, but they affect COARE convection in other ways. The high tops of COARE convection are related to high parcel equilibrium levels, which approach 100 mb in some cases. Convective available potential energies are larger than those in the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) mainly because of the higher equilibrium levels. The buoyancy integrated over the lowest 500 mb is similar for the two experiments. Convective inihibitions are small, enabling convection to propagate with only weak forcing. Comparison of slow-moving shear-parallel bands in COARE and GATE suggests that lower relative humidities between the top of the mixed layer and 500 mb can shorten their lifetimes significantly.COARE mesoscale organization and evolution differs from what was observed in GATE. Less-organized convection is more common in COARE. Of the convective bands observed, a greater fraction in COARE are faster-moving, shear-perpendicular squall lines. GATE slow-moving lines tend to be longer lived than those for COARE. The differences are probably traceable to differences in environmental shear and relative humidity, respectively.
Making and breaking bridges in a Pickering emulsion.
French, David J; Taylor, Phil; Fowler, Jeff; Clegg, Paul S
2015-03-01
Particle bridges form in Pickering emulsions when the oil-water interfacial area generated by an applied shear is greater than that which can be stabilised by the available particles and the particles have a slight preference for the continuous phase. They can subsequently be broken by low shear or by modifying the particle wettability. We have developed a model oil-in-water system for studying particle bridging in Pickering emulsions stabilised by fluorescent Stöber silica. A mixture of dodecane and isopropyl myristate was used as the oil phase. We have used light scattering and microscopy to study the degree to which emulsions are bridged, and how this is affected by parameters including particle volume fraction, particle wettability and shear rate. We have looked for direct evidence of droplets sharing particles using freeze fracture scanning electron microscopy. We have created strongly aggregating Pickering emulsions using our model system. This aggregating state can be accessed by varying several different parameters, including particle wettability and particle volume fraction. Particles with a slight preference for the continuous phase are required for bridging to occur, and the degree of bridging increases with increasing shear rate but decreases with increasing particle volume fraction. Particle bridges can subsequently be removed by applying low shear or by modifying the particle wettability. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel
2014-09-01
The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.
Droplet Breakup in Expansion-contraction Microchannels
Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu
2016-01-01
We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018
NASA Astrophysics Data System (ADS)
Zhang, Fengqi; Huang, Lin; Zou, Jiasui; Yang, Jun; Kang, Xiongwu; Chen, Shaowei
2017-09-01
Ruthenium nanoparticles (2.06 ± 0.46 nm in diameter) stabilized by 1-hexyl-4-isocyanobenzene (CNBH), denoted as RuCNBH, were prepared by the self-assembly of isonitrile molecules onto the surface of "bare" Ru colloids by virtue of the formation of Ru=C=N- interfacial bonds. FTIR measurements showed that the stretching vibration of the terminal -N≡C bonds at 2119 cm-1 for the monomeric ligands disappeared and concurrently three new bands at 2115, 2043, and 1944 cm-1 emerged with RuCNBH nanoparticles, which was ascribed to the transformation of -N≡C to Ru=C=N- by back donation of Ru-d electrons to the π* orbital of the organic ligands. Metathesis reaction of RuCNBH with vinyl derivatives further corroborated the nature of the Ru=C interfacial bonds. When 1-isocyanopyrene (CNPy) was bounded onto the Ru nanoparticles surface through Ru=C=N interfacial bond (denoted as RuCNPy), the emission maximum was found to red-shift by 27 nm, as compared to that of the CNPy monomers, along with a reduced fluorescence lifetime, due to intraparticle charge delocalization that arose from the conjugated Ru=C=N- interfacial bonds. The results of this study further underline the significance of metal-organic interfacial bonds in the control of intraparticle charge-transfer dynamics and the optical and electronic properties of metal nanoparticles. [Figure not available: see fulltext.
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.
NASA Astrophysics Data System (ADS)
Gross, Markus
2018-03-01
We consider a one-dimensional fluctuating interfacial profile governed by the Edwards–Wilkinson or the stochastic Mullins-Herring equation for periodic, standard Dirichlet and Dirichlet no-flux boundary conditions. The minimum action path of an interfacial fluctuation conditioned to reach a given maximum height M at a finite (first-passage) time T is calculated within the weak-noise approximation. Dynamic and static scaling functions for the profile shape are obtained in the transient and the equilibrium regime, i.e. for first-passage times T smaller or larger than the characteristic relaxation time, respectively. In both regimes, the profile approaches the maximum height M with a universal algebraic time dependence characterized solely by the dynamic exponent of the model. It is shown that, in the equilibrium regime, the spatial shape of the profile depends sensitively on boundary conditions and conservation laws, but it is essentially independent of them in the transient regime.
[In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].
Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei
2015-08-01
In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.
Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery
NASA Astrophysics Data System (ADS)
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-02-01
Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.
NASA Astrophysics Data System (ADS)
Levita, Giacomo; Molinari, Elisa; Polcar, Tomas; Righi, Maria Clelia
2015-08-01
Due to their layered structure, graphene and transition-metal dichalcogenides (TMDs) are easily sheared along the basal planes. Despite a growing attention towards their use as solid lubricants, so far no head-to-head comparison has been carried out. By means of ab initio modeling of a bilayer sliding motion, we show that graphene is characterized by a shallower potential energy landscape while more similarities are attained when considering the sliding forces; we propose that the calculated interfacial ideal shear strengths afford the most accurate information on the intrinsic sliding capability of layered materials. We also investigate the effect of an applied uniaxial load: in graphene, this introduces a limited increase in the sliding barrier while in TMDs it has a substantially different impact on the possible polytypes. The polytype presenting a parallel orientation of the layers (R 0 ) bears more similarities to graphene while that with antiparallel orientation (R 180 ) shows deep changes in the potential energy landscape and consequently a sharper increase of its sliding barrier.
Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias
In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscousmore » phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.« less
Comparison of the Effects of Debonds and Voids in Adhesive Joints
NASA Technical Reports Server (NTRS)
Rossettos, J. N.; Lin, P.; Nayeb-Hashemi, Hamid
1997-01-01
An analytical model is developed to compare the effects of voids an debonds on the interfacial shear stresses between the adherends and the adhesive in simple lap joints. Since the adhesive material above the debond may undergo some extension (either due to applied load or thermal expansion or both), a modified shear lag model, where the adhesive can take an extensional as well as shear deformation, is used in the analysis. The adherends take on only axial loads and act as membranes. Two coupled nondimensional differential equations are derived, and in general, five parameters govern the stress distribution in the overlap region. As expected, the major differences between the debond and the void occur for the stresses near the edge of the defect itself. Whether the defect is a debond or a void, is hardly discernible by the stresses at the overlap region. If the defect occurs precisely at or very close to either end of the overlap, however, differences of the order of 20 percent in the peak stresses can be obtained.
Shear rate analysis of water dynamic in the continuous stirred tank
NASA Astrophysics Data System (ADS)
Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.
2018-02-01
Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.
Amador, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F.; Urban, Matthew W.
2017-01-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared to conventional TTP. PMID:28092532
Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew W
2017-04-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocity values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index, ultrasound scanners, scanning protocols, and ultrasound image quality. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this paper, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time [spatiotemporal peak (STP)]; the second method applies an amplitude filter [spatiotemporal thresholding (STTH)] to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared with TTP in phantom. Moreover, in a cohort of 14 healthy subjects, STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared with conventional TTP.
Mixing and Formation of Layers by Internal Wave Forcing
NASA Astrophysics Data System (ADS)
Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry
2017-12-01
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long-term experiments in an idealized setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity KT and background potential energy BPE are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small-scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al. (). The mixing efficiency η is assessed by relating the BPE growth to the linearized KE input. One finds a value of Γ=12-19%, larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by Phillips (1972) argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.
Meniscal shear stress for punching.
Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek
2009-01-01
Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.
Crust-mantle mechanical coupling in Eastern Mediterranean and Eastern Turkey
Sinan Özeren, M.
2012-01-01
Present-day crust-mantle coupling in the Eastern Mediterranean and eastern Turkey is studied using the Global Positioning System (GPS) and seismic anisotropy data. The general trend of the shear wave fast-splitting directions in NE Turkey and Lesser Caucaus align well with the geodetic velocities in an absolute plate motion frame of reference pointing to an effective coupling in this part of the region of weak surface deformation. Farther south, underneath the Bitlis Suture, however, there are significant Pn delays with E-W anisotropy axes indicating significant lateral escape. Meanwhile, the GPS reveals very little surface deformation. This mismatch possibly suggests a decoupling along the suture. In the Aegean, the shear wave anisotropy and the Pn anisotropy directions agree with the extensional component of the right-lateral shear strains except under the Crete Basin and other parts of the southern Aegean Sea. This extensional direction matches perfectly also with the southward pulling force vectors across the Hellenic trench; however, the maximum right-lateral shear directions obtained from the GPS data in the Aegean do not match either of these anisotropies. Seismic anisotropy from Rayleigh waves sampled at 15 s, corresponding to the lower crust, match the maximum right-lateral maximum shear directions from the GPS indicating decoupling between the crust and the mantle. This decoupling most likely results from the lateral variations of the gravitational potential energies and the slab-pull forces. PMID:22592788
Crust-mantle mechanical coupling in Eastern Mediterranean and eastern Turkey.
Özeren, M Sinan
2012-05-29
Present-day crust-mantle coupling in the Eastern Mediterranean and eastern Turkey is studied using the Global Positioning System (GPS) and seismic anisotropy data. The general trend of the shear wave fast-splitting directions in NE Turkey and Lesser Caucaus align well with the geodetic velocities in an absolute plate motion frame of reference pointing to an effective coupling in this part of the region of weak surface deformation. Farther south, underneath the Bitlis Suture, however, there are significant Pn delays with E-W anisotropy axes indicating significant lateral escape. Meanwhile, the GPS reveals very little surface deformation. This mismatch possibly suggests a decoupling along the suture. In the Aegean, the shear wave anisotropy and the Pn anisotropy directions agree with the extensional component of the right-lateral shear strains except under the Crete Basin and other parts of the southern Aegean Sea. This extensional direction matches perfectly also with the southward pulling force vectors across the Hellenic trench; however, the maximum right-lateral shear directions obtained from the GPS data in the Aegean do not match either of these anisotropies. Seismic anisotropy from Rayleigh waves sampled at 15 s, corresponding to the lower crust, match the maximum right-lateral maximum shear directions from the GPS indicating decoupling between the crust and the mantle. This decoupling most likely results from the lateral variations of the gravitational potential energies and the slab-pull forces.
NASA Astrophysics Data System (ADS)
Hirano, S.
2017-12-01
For some great earthquakes, dynamic rupture propagates unilaterally along a horizontal direction of very-long reverse faults (e.g., the Mw9.1 Sumatra earthquake in 2004, the Mw8.0 Wenchuan earthquake in 2008, and the Mw8.8 Maule earthquake in 2010, etc.). It seems that barriers or creeping sections may not lay along the opposite region of the co-seismically ruptured direction. In fact, in the case of Sumatra, the Mw8.6 earthquake occurred in the opposite region only three months after the mainshock. Mechanism of unilateral mode-II rupture along a material interface has been investigated theoretically and numerically. For mode-II rupture propagating along a material interface, an analytical solution implies that co-seismic stress perturbation depends on the rupture direction (Weertman, 1980 JGR; Hirano & Yamashita, 2016 BSSA), and numerical modeling of plastic yielding contributes to simulating the unilateral rupture (DeDonteny et al., 2011 JGR). However, mode-III rupture may dominate for the very-long reverse faults, and it can be shown that stress perturbation due to mode-III rupture does not depend on the rupture direction. Hence, an effect of the material interface is insufficient to understand the mechanism of unilateral rupture along the very-long reverse faults. In this study, I consider a two-dimensional bimaterial system with interfacial dynamic mode-III rupture under an obliquely pre-stressed configuration (i.e., the maximum shear direction of the background stress is inclined from the interfacial fault). First, I derived an analytical solution of regularized elastic stress field around a steady-state interfacial slip pulse using the method of Rice et al. (2005 BSSA). Then I found that the total stress, which is the sum of the background stress and co-seismic stress perturbation, depends on the rupture direction even in the mode-III case. Second, I executed a finite difference numerical simulation with a plastic yielding model of Andrews (1978 JGR; 2005 JGR) and succeeded in a simulation of unilateral rupture propagation in some parameter ranges (see figure). This unilateral rupture might be caused by energy dissipation due to the plastic yielding process that concentrates in the vicinity of only one rupture tip depending on the rupture direction.
Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.
2008-01-01
Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi
2007-08-01
The seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Most of the data for this study come from the Ethiopia broadband seismic experiment, conducted between 2000 and 2002. Shear velocity models obtained from the joint inversion show crustal structure that is similar to previously published models, with crustal thicknesses of 35 to 44 km beneath the Ethiopian Plateau, and 25 to 35 km beneath the Main Ethiopian Rift (MER) and the Afar. The lithospheric mantle beneath the Ethiopian Plateau has a maximum shear wave velocity of about 4.3 km/s and extends to a depth of ˜70-80 km. Beneath the MER and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the Ethiopian Plateau lithosphere can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30-50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure.
Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar
2017-01-01
Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.
NASA Astrophysics Data System (ADS)
Zhang, Yuzhou; Xu, Junbo; He, Xianfeng
2018-07-01
The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.
Chowdhury, Sanjib Chandra; Okabe, Tomonaga; Nishikawa, Masaaki
2010-02-01
We investigate the effects of the vacancy defects (i.e., missing atoms) in carbon nanotubes (CNTs) on the interfacial shear strength (ISS) of the CNT-polyethylene composite with the molecular dynamics simulation. In the simulation, the crystalline polyethylene matrix is set up in a hexagonal array with the polymer chains parallel to the CNT axis. Vacancy defects in the CNT are introduced by removing the corresponding atoms from the pristine CNT (i.e., CNT without any defect). Three patterns of vacancy defects with three different sizes are considered. Two types of interfaces, with and without cross-links between the CNT and the matrix are also considered here. Polyethylene chains are used as cross-links between the CNT and the matrix. The Brenner potential is used for the carbon-carbon interaction in the CNT, while the polymer is modeled by a united-atom potential. The nonbonded van der Waals interaction between the CNT and the polymer matrix and within the polymer matrix itself is modeled with the Lennard-Jones potential. To determine the ISS, we conduct the CNT pull-out from the polymer matrix and the ISS has been estimated with the change of total potential energy of the CNT-polymer system. The simulation results reveal that the vacancy defects significantly influence the ISS. Moreover, the simulation clarifies that CNT breakage occurs during the pull-out process for large size vacancy defect which ultimately reduces the reinforcement.
Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space
NASA Astrophysics Data System (ADS)
Kunnath, R.
2012-12-01
The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.
Adaptive composites with embedded NiTiCu wires
NASA Astrophysics Data System (ADS)
Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.
2001-07-01
Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.
Dynamics of viscoelastic fluid filaments in microfluidic devices
NASA Astrophysics Data System (ADS)
Steinhaus, Benjamin; Shen, Amy Q.; Sureshkumar, Radhakrishna
2007-07-01
The effects of fluid elasticity and channel dimension on polymeric droplet formation in the presence of a flowing continuous Newtonian phase are investigated systematically by using different molecular weight (MW) poly(ethylene oxide) (PEO) solutions and varying microchannel dimensions with constant orifice width (w) to depth (h) ratio (w/h=1/2) and w =25μm, 50μm, 100μm, and 1mm. The flow rate is varied so that the mean shear rate is practically identical for all cases considered. Relevant times scales include inertia-capillary Rayleigh time τR=(Rmax3ρ/σ)1/2, viscocapillary Tomotika time τT=η0Rmax/σ, and the polymer relaxation time λ, where ρ is the fluid density of the dispersed phase, σ is the interfacial tension, η0 is the zero shear viscosity of the dispersed polymer phase, and Rmax is the maximum filament radius. Dimensionless numbers include the elasticity number E =λν/Rmax2, elastocapillary number Ec=λ/τT, and Deborah number, De =λ/τR, where ν =η0/ρ is the kinematic shear viscosity of the fluids. Experiments show that higher MW Boger fluids possessing longer relaxation times and larger extensional viscosities exhibit longer thread lengths and longer pinch-off times (tp). The polymer filament dynamics are controlled primarily by an elastocapillary mechanism with increasing elasticity effect at smaller length scales (larger E and Ec). However, with weaker elastic effects (i.e., larger w and lower MW), pinch-off is initiated by inertia-capillary mechanisms, followed by an elastocapillary regime. A high degree of correlation exists between the dimensionless pinch-off times and the elasticity numbers. We also observe that higher elasticity number E yields smaller effective λ. Based on the estimates of polymer scission probabilities predicted by Brownian dynamics simulations for uniaxial extensional flows, polymer chain scission is likely to occur for ultrasmall orifices and high MW fluids, yielding smaller λ. Finally, the inhibition of bead-on-a-string formation is observed only for flows with large Deborah number (De≫1).
NASA Astrophysics Data System (ADS)
Halliday, I.; Xu, X.; Burgin, K.
2017-02-01
An extended Benzi-Dellar lattice Boltzmann equation scheme [R. Benzi, S. Succi, and M. Vergassola, Europhys. Lett. 13, 727 (1990), 10.1209/0295-5075/13/8/010; R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145 (1992), 10.1016/0370-1573(92)90090-M; P. J. Dellar, Phys. Rev. E 65, 036309 (2002), 10.1103/PhysRevE.65.036309] is developed and applied to the problem of confirming, at low Re and drop fluid concentration, c , the variation of effective shear viscosity, ηeff=η1[1 +f (η1,η2) c ] , with respect to c for a sheared, two-dimensional, initially crystalline emulsion [here η1 (η2) is the fluid (drop fluid) shear viscosity]. Data obtained with our enhanced multicomponent lattice Boltzmann method, using average shear stress and hydrodynamic dissipation, agree well once appropriate corrections to Landau's volume average shear stress [L. Landau and E. M. Lifshitz, Fluid Mechanics, 6th ed. (Pergamon, London, 1966)] are applied. Simulation results also confirm the expected form for f (ηi,η2) , and they provide a reasonable estimate of its parameters. Most significantly, perhaps, the generality of our data supports the validity of Taylor's disputed simplification [G. I. Taylor, Proc. R. Soc. London, Ser. A 138, 133 (1932), 10.1098/rspa.1932.0175] to reduce the effect of one hydrodynamic boundary condition (on the continuity of the normal contraction of stress) to an assumption that interfacial tension is sufficiently strong to maintain a spherical drop shape.
Growth Kinetics of Magnesio-Aluminate Spinel in Al/Mg Lamellar Composite Interface
NASA Astrophysics Data System (ADS)
Fouad, Yasser; Rabeeh, Bakr Mohamed
The synthesis of Mg-Al2O3 double layered interface is introduced via the application of hot isostatic pressing, HIPing, in Al-Mg foils. Polycrystalline spinel layers are grown experimentally at the interfacial contacts between Al-Mg foils. The growth behavior of the spinel layers along with the kinetic parameters characterizing interface motion and long-range diffusion is established. Low melting depressant (LMD), Zn, and alloying element segregation tends to form micro laminated and/or Nano structure interphase in a lamellar composite solid state processing. Nano composite ceramic interphase materials offer interesting mechanical properties not achievable in other materials, such as superplastic flow and metal-like machinability. Microstructural characterization, mechanical characterization is also established via optical microscopy scanning electron microscopy, energy dispersive X-ray spectroscopy and tensile testing. Chemical and mechanical bonding via inter diffusion processing with alloy segregation are dominant for interphase kinetics. Mechanical characterization with interfacial shear strength is also introduced. HIPing processing is successfully applied on 6082 Al-alloy and AZ31 magnesium alloy for either particulate or micro-laminated interfacial composite processing. The interphase kinetic established through localized micro plasticity, metal flow, alloy segregation and delocalized Al oxide and Mg oxide. The kinetic of interface/interphase induce new nontraditional crack mitigation a long with new bridging and toughening mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, O.; Li, Y.; Rabeeh, B.M.
1997-12-01
The effects of interfacial microstructure/thickness on the strength and fatigue behavior of a model four-ply [75]{sub 4} Ti-15V-3Al-3Cr-3Sn/SiC (SCS-6) composite are examined in this article. Interfacial microstructure was controlled by annealing at 815 C for 10, 50, or 100 hours. The reaction layer and coating thickness were observed to increase with increasing annealing duration. Damage initiation/propagation mechanisms were examined in as-received material and composites annealed at 815 C for 10 and 100 hours. Fatigue behavior was observed to be dependent upon the stress amplitude. At high stress amplitudes, the failure was dominated by overload phenomena. However, at all stress levels,more » fatigue crack initiation occurred by early debonding and matrix deformation by stress-induced precipitation. This was followed by matrix crack growth and fiber fracture prior to the onset of catastrophic failure. Matrix shear failure modes were also observed on the fracture surfaces in addition to fatigue striations in the matrix. Correlations were also established between the observed damage modes and acoustic emission signals that were detected under monotonic and cyclic loading conditions.« less
A phenomenological description of BslA assemblies across multiple length scales
Morris, Ryan J.; Bromley, Keith M.; Stanley-Wall, Nicola
2016-01-01
Intrinsically interfacially active proteins have garnered considerable interest recently owing to their potential use in a range of materials applications. Notably, the fungal hydrophobins are known to form robust and well-organized surface layers with high mechanical strength. Recently, it was shown that the bacterial biofilm protein BslA also forms highly elastic surface layers at interfaces. Here we describe several self-assembled structures formed by BslA, both at interfaces and in bulk solution, over a range of length scales spanning from nanometres to millimetres. First, we observe transiently stable and highly elongated air bubbles formed in agitated BslA samples. We study their behaviour in a range of solution conditions and hypothesize that their dissipation is a consequence of the slow adsorption kinetics of BslA to an air–water interface. Second, we describe elongated tubules formed by BslA interfacial films when shear stresses are applied in both a Langmuir trough and a rheometer. These structures bear a striking resemblance, although much larger in scale, to the elongated air bubbles formed during agitation. Taken together, this knowledge will better inform the conditions and applications of how BslA can be used in the stabilization of multi-phase materials. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298433
Influence of interfacial rheology on stabilization of the tear film
NASA Astrophysics Data System (ADS)
Bhamla, M. Saad; Fuller, Gerald G.
2014-11-01
The tear film that protecting the ocular surface is a complex, thin film comprised of a collection of proteins and lipids that come together to provide a number of important functions. Of particular interest in this presentation is meibum, an insoluble layer that is spread from glands lining our eyelids. Past work has focussed on the role of this layer in reducing evaporation, although conflicting evidence on its ability to reduce evaporative loss has been published. We present here the beneficial effects that are derived through the interfacial viscoelasticity of the meibomian lipid film. This is a duplex film is comprised of a rich mixture of phospholipids, long chain fatty esters, and cholesterol esters. Using interfacial rheology measurements, meibum has been shown to be highly viscoelastic. By measuring the drainage and dewetting dynamics of thin aqueous films from hemispherical surfaces where those films are laden with insoluble layers of lipids at controlled surface pressure, we offer evidence that these layers strongly stabilize the films because of their ability to support surface shearing stresses. This alternative view of the role of meibum can help explain the origin of meibomian gland dysfunction, or dry eye disease, where improper compositions of this lipid mixture do not offer the proper mechanical resistance to breakage and dewetting of the tear film.
Deducing multiple interfacial dynamics during polymeric foaming.
Chandan, Mohammed Rehaan; Naskar, Nilanjon; Das, Anuja; Mukherjee, Rabibrata; Harikrishnan, Gopalakrishna Pillai
2018-06-15
Several interfacial phenomena are active during polymeric foaming, the dynamics of which significantly influence terminal stability, cell structure and in turn the thermo-mechanical properties of temporally evolved foam. Understanding these dynamics is important in achieving desired foam properties. Here, we introduce a method to simultaneously portray the time evolution of bubble growth, lamella thinning and Plateau border drainage, occurring during reactive polymeric foaming. In this method, we initially conduct bulk and surface shear rheology under polymerizing and non-foaming conditions. In a subsequent step, foaming experiments were conducted in a rheometer. The microscopic structural dimensions pertaining to the terminal values of the dynamics of each interfacial phenomena are then measured using a combination of scanning electron microscopy, optical microscopy and imaging ellipsometry, after the foaming is over. The measured surface and bulk rheological parameters are incorporated in time evolution equations that are derived from mass and momentum transport occurring when a model viscoelastic fluid is foamed by gas dispersion. Analytical and numerical solutions to these equations portray the dynamics. We demonstrate this method for a series of reactive polyurethane foams generated from different chemical sources. The effectiveness of our method is in simultaneously obtaining these dynamics that are difficult to directly monitor due to short active durations over multiple length scales.
Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang; Shiue, Ren-Kae
2012-07-01
For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567
Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane
NASA Astrophysics Data System (ADS)
Larentzos, James; Steele, Brad
2017-06-01
Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.
NASA Technical Reports Server (NTRS)
Bair, S.; Winer, W. O.
1980-01-01
Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.
Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane
NASA Astrophysics Data System (ADS)
Larentzos, James; Steele, Brad
Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.
NASA Astrophysics Data System (ADS)
Seo, Wonil; Kim, Kyoung-Ho; Kim, Young-Ho; Yoo, Sehoon
2018-01-01
The growth of interfacial intermetallic compound and the brittle fracture behavior of Sn-3.0Ag-0.5-Cu solder (SAC305) joints on electroless nickel immersion gold (ENIG) surface finish have been investigated using Ni-P plating solution at temperatures from 75°C to 85°C and fixed pH of 4.5. SAC305 solder balls with diameter of 450 μm were mounted on the prepared ENIG-finished Cu pads and reflowed with peak temperature of 250°C. The interfacial intermetallic compound (IMC) thickness after reflow decreased with increasing Ni-P plating temperature. After 800 h of thermal aging, the IMC thickness of the sample prepared at 85°C was higher than for that prepared at 75°C. Scanning electron microscopy of the Ni-P surface after removal of the Au layer revealed a nodular structure on the Ni-P surface. The nodule size of the Ni-P decreased with increasing Ni-P plating temperature. The Cu content near the IMC layer increased to 0.6 wt.%, higher than the original Cu content of 0.5 wt.%, indicating that Cu diffused from the Cu pad to the solder ball through the Ni-P layer at a rate depending on the nodule size. The sample prepared at 75°C with thicker interfacial IMC showed greater high-speed shear strength than the sample prepared at 85°C. Brittle fracture increased with decreasing Ni-P plating temperature.
Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall
Mukherjee, Swarnajay; Sarkar, Kausik
2014-01-01
Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-steady state where the lateral velocity only depends on the instantaneous distance from the wall. The drop migration velocity and the deformation scale inversely with the square and the cube of the distance from the wall, respectively. The migration velocity varies non-monotonically with increasing viscoelasticity (increasing Deborah number); initially increasing and then decreasing. An analytical explanation has been given of the effects by computing the migration velocity as arising from an image stresslet field due to the drop. The semi-analytical expression matches well with the simulated migration velocity away from the wall. It contains a viscoelastic stresslet component apart from those arising from interfacial tension and viscosity ratio. The migration dynamics is a result of the competition between the viscous (interfacial tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet contribution towards the migration velocity steadily increases. But the interfacial stresslet—arising purely from the drop shape—first increases and then decreases with rising Deborah number causing the migration velocity to be non-monotonic. The geometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic variation of the drop inclination. High viscosity ratio is briefly considered to show that the drop viscoelasticity could stabilize a drop against breakup, and the increase in migration velocity due to viscoelasticity is larger compared to the viscosity-matched case. PMID:25378894
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Mani, Ali
2018-04-01
Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag reduction performance and robustness of superhydrophobic surfaces.
Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications.
Laszczak, P; Jiang, L; Bader, D L; Moser, D; Zahedi, S
2015-01-01
A novel capacitance-based sensor designed for monitoring mechanical stresses at the stump-socket interface of lower-limb amputees is described. It provides practical means of measuring pressure and shear stresses simultaneously. In particular, it comprises of a flexible frame (20 mm × 20 mm), with thickness of 4mm. By employing rapid prototyping technology in its fabrication, it offers a low-cost and versatile solution, with capability of adopting bespoke shapes of lower-limb residua. The sensor was first analysed using finite element analysis (FEA) and then evaluated using lab-based electromechanical tests. The results validate that the sensor is capable of monitoring both pressure and shear at stresses up to 350 kPa and 80 kPa, respectively. A post-signal processing model is developed to induce pressure and shear stresses, respectively. The effective separation of pressure and shear signals can be potentially advantageous for sensor calibration in clinical applications. The sensor also demonstrates high linearity (approx. 5-8%) and high pressure (approx. 1.3 kPa) and shear (approx. 0.6 kPa) stress resolution performance. Accordingly, the sensor offers the potential for exploitation as an assistive tool to both evaluate prosthetic socket fitting in clinical settings and alert amputees in home settings of excessive loading at the stump-socket interface, effectively preventing stump tissue breakdown at an early stage. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.
Qiu, Liewei; Shen, Yiding; Wang, Tao; Wang, Chen
2018-05-15
A series of sulfonated hydroxypropyl guar gum (SHG) samples with different degrees of substitution (DSs) were prepared, and the SHG solution and SHG fracturing fluid were prepared and analyzed. The SHG aqueous solutions with different DSs all exhibit shear thinning behavior, which is well correlated with the Ostwald-deWaele model. Owing to the electrostatic repulsion of SHG molecular chains, SHG solutions with a higher DS will exhibit weaker thixotropic performance and strong anti-salinity ability. In addition, the SHG fracturing fluids, which were formed by interactions between SHG and organic zirconium, exhibit good temperature- and shear-resistant properties, proppant suspension properties, and salt tolerance. Furthermore, SHG gel-breaking fluids show low interfacial and surface tensions, with low residue content and small core permeability damage. These results provide useful indicators for the applications of SHG in the oil field industry. Copyright © 2017. Published by Elsevier B.V.
Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites
NASA Astrophysics Data System (ADS)
Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.
2017-11-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Ping; Yu, Qi; Ma, Keming; Ding, Zhenfeng
2014-06-01
The mixed O2/Ar plasma was employed to enhance mechanical properties of the PBO/bismaleimide composite. The interlaminar shear strength was improved to 61.6 MPa or by 38.1%, but the composite brittleness increased. The plasma gas compositions exhibited notable effects on the interfacial adhesion strength. XPS results suggested that the mixed plasma presented higher activation effects on the surface chemical compositions than pure gas plasmas and a larger number of oxygen atoms and hydrophilic groups were introduced on the fiber surface due to the synergy effect, but the synergy effect was considerably performed only within the O2 percentage range of 40-60%. The fibers surface was increasingly etched with growing the O2 contents in the plasma, deteriorating the fibers tensile strength. SEM micrographs demonstrated that the composite shear fracture changed from debonding to cohesive failure in the matrices, and the improving mechanisms were discussed.
NASA Technical Reports Server (NTRS)
Beck, B.; Widyani, E.; Wightman, J. P.
1983-01-01
Adhesion was studied with emphasis on the characterization of surface oxide layers, the analysis of fracture surfaces, and the interaction of matrices and fibers. A number of surface features of the fractured lap shear samples were noted in the SEM photomicrographs including the beta phase alloy of the Ti 6-4 adherend, the imprint of the adherend on the adhesive failure surface, increased void density for high temperature samples, and the alumina filler particles. Interfacial failure of some of the fractured lap shear samples is invariably characterized by the appearance of an ESCA oxygen photopeak at 530.3 eV assigned to the surface oxide layer of Ti 6-4 adherend. The effect of grit blasting on carbon fiber composites is evident in the SEM analysis. A high surface fluorine concentration on the composite surface is reduced some ten fold by grit blasting.
Shear strength of metal - SiO2 contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1978-01-01
The strength of the bond between metals and SiO2 is studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.
Shear strength of metal - SiO2 contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1978-01-01
The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.
Molecular-orbital model for metal-sapphire interfacial strength
NASA Technical Reports Server (NTRS)
Johnson, K. H.; Pepper, S. V.
1982-01-01
Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.
NASA Astrophysics Data System (ADS)
Luo, Guoqiang; Zhang, Jian; Li, Meijuan; Wei, Qinqin; Shen, Qiang; Zhang, Lianmeng
2013-02-01
93W alloy and Ta metal were successfully diffusion bonded using a Ni interlayer. Ni4W was found at the W-Ni interface, and Ni3Ta and Ni2Ta were formed at the Ni-Ta interface. The shear strength of the joints increases with increasing holding time, reaching a value of 202 MPa for a joint prepared using a 90-minute holding time at 1103 K (830 °C) and 20 MPa. The fracture of this joint occurred within the Ni/Ta interface.
Revealing spatially heterogeneous relaxation in a model nanocomposite.
Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y; Bocharova, Vera; Sumpter, Bobby G; Schweizer, Kenneth S; Sokolov, Alexei P
2015-11-21
The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.
Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop
2002-01-15
In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.
NASA Astrophysics Data System (ADS)
Zhang, Renping
2017-12-01
A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.
Revealing spatially heterogeneous relaxation in a model nanocomposite
Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y.; ...
2015-11-18
The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no glassy layer, but the -relaxation time near the nanoparticle grows with cooling faster than the -relaxation time in the bulk and is ~20 times longer at low temperatures. The interfacial layer thickness increases from ~1.8 nm at higher temperatures to ~3.5 nm upon cooling to near bulk T g. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory.more » Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. As a result, the theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.« less
Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.
Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-10-01
A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hagyard, M. J.; Davis, J. M.
1987-01-01
The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.
Measurement and interpretation of magnetic shear in solar active regions
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Rabin, D. M.
1986-01-01
In this paper a summary and synthesis are presented for results on the role of magnetic shear in the flare process that have been derived from the series of Flare Buildup Study Workshops in the Solar Maximum Analysis program. With emphasis on observations, the mechanisms that seem to produce the sheared magnetic configurations observed in flaring active regions are discussed. The spatial and temporal correlations of this shear with the onset of solar flares are determined from quantitative analyses of measurements of the vector magnetic field. The question of why some areas of sheared magnetic fields are the sites of flares and others are not is investigated observationally.
NASA Astrophysics Data System (ADS)
Irfan, Mohammad Abdulaziz
Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly effects the sliding resistance of the interface. The experimental results deduced from the response of the sliding interface to step changes in normal pressure and the applied shear stress reinforce the importance of including frictional memory in the development of rate dependent state variable friction models. The second part of the thesis presents an investigation into the dynamic deformation and failure of extrinsically toughened DRA composites. Experiments were conducted using the split Hopkinson pressure bar to investigate the deformation and flow behavior under dynamic compression loading. A modified Hopkinson bar apparatus was used to explore the dynamic fracture behavior of three different extrinsically toughened DRA composites. The study was paralleled by systematic exploration of the failure modes in each composite. For all the composites evaluated the dynamic crack propagation characteristics of the composites are observed to be strongly dependent on the volume fraction of the ductile phase reinforcement in the composite, the yield stress of the ductile phase reinforcement, the micro-structural arrangement of the ductile phase reinforcements with respect to the notch, and the impact velocity employed in the particular experiment.
Characteristics of the Martian atmosphere surface layer
NASA Technical Reports Server (NTRS)
Clow, G. D.; Haberle, R. M.
1990-01-01
Elements of various terrestrial boundary layer models are extended to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface ('constant flux') layer. The atmospheric surface layer consists of an interfacial sublayer immediately adjacent to the ground and an overlying fully turbulent surface sublayer where wind-shear production of turbulence dominates buoyancy production. Within the interfacial sublayer, sensible and latent heat are transported by non-steady molecular diffusion into small-scale eddies which intermittently burst through this zone. Both the thickness of the interfacial sublayer and the characteristics of the turbulent eddies penetrating through it depend on whether airflow is aerodynamically smooth or aerodynamically rough, as determined by the Roughness Reynold's number. Within the overlying surface sublayer, similarity theory can be used to express the mean vertical windspeed, temperature, and water vapor profiles in terms of a single parameter, the Monin-Obukhov stability parameter. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed using data from the TPRC Data Series and the first-order Chapman-Cowling expressions; the required collision integrals were approximated using the Lenard-Jones potential. Parameterizations for specific heat and binary diffusivity were also determined. The Brutsart model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the definition of the Monin-Obukhov length was modified to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.
Self-healing gold mirrors and filters at liquid-liquid interfaces
NASA Astrophysics Data System (ADS)
Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.
2016-03-01
The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k
Diagnostic performance of shear wave elastography of the breast according to scanning orientation.
Kim, Solip; Choi, SeonHyeong; Choi, Yoonjung; Kook, Shin-Ho; Park, Hee Jin; Chung, Eun Chul
2014-10-01
To evaluate the influence of the scanning orientation on diagnostic performance measured by the mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio on ultrasound-based shear wave elastography in differentiating breast cancers from benign lesions. In this study, a total of 260 breast masses from 235 consecutive patients were observed from March 2012 to November 2012. For each lesion, the mean elasticity value, maximum elasticity value, and fat-to-lesion ratio were measured along two orthogonal directions, and all values were compared with pathologic results. There were 59 malignant and 201 benign lesions. Malignant masses showed higher mean elasticity, maximum elasticity, and fat-to-lesion ratio values than benign lesions (P < .0001). The areas under the receiver operating characteristic curves were as follows: average mean elasticity on both views, 0.870; mean elasticity on the transverse view, 0.866; maximum elasticity on both views, 0.865; maximum elasticity on the transverse view, 0.864; mean elasticity on the longitudinal view, 0.849; fat-to-lesion ratio on both views, 0.849; maximum elasticity on the longitudinal view, 0.845; fat-to-lesion ratio on the transverse view, 0.841; and fat-to-lesion ratio on the longitudinal view, 0.814. Intraclass correlation coefficients for agreement between the scanning directions were as follows: mean elasticity, 0.852; maximum elasticity, 0.842; fat-to-lesion ratio, 0.746, for masses; and mean elasticity, 0.392, for anterior mammary fat. Mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio values were helpful in differentiating benign and malignant breast masses. The scanning orientation did not significantly affect the diagnostic performance of shear wave elastography for breast masses. © 2014 by the American Institute of Ultrasound in Medicine.
Bioinspired design and interfacial failure of biomedical systems
NASA Astrophysics Data System (ADS)
Rahbar, Nima
The deformation mechanism of nacre as a model biological material is studied in this project. A numerical model is presented which consists of tensile pillars, shear pillars, asperities and aragonite platelets. It has been shown that the tensile pillars are the main elements that control the global stiffness of the nacre structure. Meanwhile, ultimate strength of the nacre structure is controlled by asperities and their behavior and the ratio of L/2D which is itself a function of the geometry of the platelets. Protein/shear pillars provide the glue which holds the assembly of entire system together, particularly in the direction normal to the platelets main axis. This dissertation also presents the results of a combined theoretical/computational and experimental effort to develop crack resistant dental multilayers that are inspired by the functionally graded dento-enamel junction (DEJ) structure that occurs between dentin and enamel in natural teeth. The complex structures of natural teeth and ceramic crowns are idealized using at layered configurations. The potential effects of occlusal contact are then modeled using finite element simulations of Hertzian contact. The resulting stress distributions are compared for a range of possible bioinspired, functionally graded architecture. The computed stress distributions show that the highest stress concentrations in the top ceramic layer of crown structures are reduced significantly by the use of bioinspired functionally graded architectures. The reduced stresses are shown to be associated with significant improvements (30%) in the pop-in loads over a wide range of clinically-relevant loading rates. The implications of the results are discussed for the design of bioinspired dental ceramic crown structures. The results of a combined experimental and computational study of mixed mode fracture in glass/cement and zirconia/cement interfaces that are relevant to dental restorations is also presented. The interfacial fracture is investigated using Brazil-nut specimens. The kinking in-and-out of the interface that occurs between glass/cement and zirconia/cement interfaces, is also shown to be consistent with predictions from a microstructure-based finite element model. The predictions are later verified using focused ion beam and scanning electron microscopy images. Finally, the adhesion between layers that are relevant to drug-eluting stents is explored. Brazil disk specimens were used to measure the interfacial fracture energies between the layers of a model drug eluting stent over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J.; Cheng, JiangTao; Yu, Ping
2003-01-29
During this reporting period, shown experimentally that the optical coherence imaging system can acquire information on grain interfaces and void shape for a maximum depth of half a millimeter into sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has shown the homogeneity of IAV with depth in a sample when the fluids are in equilibrium.
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
A cyclic oxidation interfacial spalling model has been developed in Part 1. The governing equations have been simplified here by substituting a new algebraic expression for the series (Good-Smialek approximation). This produced a direct relationship between cyclic oxidation weight change and model input parameters. It also allowed for the mathematical derivation of various descriptive parameters as a function of the inputs. It is shown that the maximum in weight change varies directly with the parabolic rate constant and cycle duration and inversely with the spall fraction, all to the 1/2 power. The number of cycles to reach maximum and zero weight change vary inversely with the spall fraction, and the ratio of these cycles is exactly 1:3 for most oxides. By suitably normalizing the weight change and cycle number, it is shown that all cyclic oxidation weight change model curves can be represented by one universal expression for a given oxide scale.
Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong
2014-01-01
This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668
Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong
2014-01-01
This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state.
Stress and strain evolution of folding rocks
NASA Astrophysics Data System (ADS)
Llorens, Maria-Gema; Griera, Albert; Bons, Paul; Gomez-Rivas, Enrique; Weikusat, Ilka
2015-04-01
One of the main objectives of structural geology is to unravel rock deformation histories. Fold shapes can be used to estimate the orientation and amount of strain associated with folding. However, much more information on rheology and kinematics can potentially be extracted from fold geometries (Llorens et al., 2013a). We can study the development of folds, quantify the relationships between the different parameters that determine their geometries and estimate their mechanical evolution. This approach allows us to better understand and predict not only rock but also ice deformation. One of the main parameters in fold development is the viscosity contrast between the folding layer and the matrix in which it is embedded (m), since it determines the initial fold wavelength and the amplification rate of the developing folds. Moreover, non-linear viscous rheology influences fold geometry too (Llorens et al., 2013b). We present a series of 2-dimensional simulations of folding of viscous single layers in pure and simple shear. We vary different parameters in order to compare and determine their influence on the resulting fold patterns and the associated mechanical response of the material. To perform these simulations we use the software platform ELLE (www.elle.ws) with the non-linear viscous finite element code BASIL. The results show that layers thicken at the beginning of deformation in all simulations, and visible folds start earlier or later depending on the viscosity contrast. When folds start to nucleate the layer maximum shear strain decreases, moving away from the theoretical trend for homogeneous strain (no folding). This allows the accurate determination of the onset of folding. Maximum deviatoric stresses are higher in power-law than in linear-viscosity materials, and it is initially double in pure shear than in simple shear conditions. Therefore, folding a competent layer requires less work in simple than in pure shear. The maximum deviatoric stress difference between pure and simple shear is less pronounced in power-law materials. It also depends on the original orientation of the layer relative to the shear plane, being the shortening rate initially relatively low when the layer makes a low angle with the shear plane. The mechanical behaviour is similar in pure and simple shear when the layer is oriented at a relative high angle (45°). M-G Llorens, PD Bons, A Griera and E Gomez-Rivas (2013a) When do folds unfold during progressive shear?. Geology, 41, 563-566. M-G Llorens, PD Bons, A Griera, E Gomez-Rivas and LA Evans (2013b) Single layer folding in simple shear. Journal of Structural Geology, 50, 209-220.
Shear, principal, and equivalent strains in equal-channel angular deformation
NASA Astrophysics Data System (ADS)
Xia, K.; Wang, J.
2001-10-01
The shear and principal strains involved in equal channel angular deformation (ECAD) were analyzed using a variety of methods. A general expression for the total shear strain calculated by integrating infinitesimal strain increments gave the same result as that from simple geometric considerations. The magnitude and direction of the accumulated principal strains were calculated based on a geometric and a matrix algebra method, respectively. For an intersecting angle of π/2, the maximum normal strain is 0.881 in the direction at π/8 (22.5 deg) from the longitudinal direction of the material in the exit channel. The direction of the maximum principal strain should be used as the direction of grain elongation. Since the principal direction of strain rotates during ECAD, the total shear strain and principal strains so calculated do not have the same meaning as those in a strain tensor. Consequently, the “equivalent” strain based on the second invariant of a strain tensor is no longer an invariant. Indeed, the equivalent strains calculated using the total shear strain and that using the total principal strains differed as the intensity of deformation increased. The method based on matrix algebra is potentially useful in mathematical analysis and computer calculation of ECAD.
Assmann, Alexander; Benim, Ali Cemal; Gül, Fethi; Lux, Philipp; Akhyari, Payam; Boeken, Udo; Joos, Franz; Feindt, Peter; Lichtenberg, Artur
2012-01-03
Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gissinger, Jacob R; Pramanik, Chandrani; Newcomb, Bradley; Kumar, Satish; Heinz, Hendrik
2018-01-10
Polyacrylonitrile (PAN)/carbon nanotube (CNT) composites are used as precursors for ultrastrong and lightweight carbon fibers. However, insights into the structure at the nanoscale and the relationships to mechanical and thermal properties have remained difficult to obtain. In this study, molecular dynamics simulation with accurate potentials and available experimental data were used to describe the influence of different degrees of PAN preorientation and CNT diameter on the atomic-scale structure and properties of the composites. The inclusion of CNTs in the polymer matrix is favored for an intermediate degree of PAN orientation and small CNT diameter whereas high PAN crystallinity and larger CNT diameter disfavor CNT inclusion. The glass transition at the CNT/PAN interface involves the release of rotational degrees of freedom of the polymer backbone and increased mobility of the protruding nitrile side groups in contact with the carbon nanotubes. The glass-transition temperature of the composite increases in correlation with the amount of CNT/polymer interfacial area per unit volume, i.e., in the presence of CNTs, for higher CNT volume fraction, and inversely with CNT diameter. The increase in glass-transition temperature upon CNT addition is larger for PAN of lower crystallinity than for PAN of higher crystallinity. Interfacial shear strengths of the composites are higher for CNTs of smaller diameter and for PAN with preorientation, in correlation with more favorable CNT inclusion energies. The lowest interfacial shear strength was observed in amorphous PAN for the same CNT diameter. PAN with ∼75% crystallinity exhibited hexagonal patterns of nitrile groups near and far from the CNT interface which could influence carbonization into regular graphitic structures. The results illustrate the feasibility of near-quantitative insights into macroscale properties of polymer/CNT composites from simulations of nanometer-scale composite domains. Guidance is most effective when key assumptions in experiment and simulation are closely aligned, such as exfoliation versus bundling of CNTs, size, type, potential defects of CNTs, and precise measures for polymer crystallinity.
Baldursdottir, Stefania G; Jorgensen, Lene
2011-10-01
The flexibility and aggregation of proteins can cause adsorption to oil-water interfaces and thereby create challenges during formulation and processing. Protein adsorption is a complex process and the presence of surfactants further complicates the system, in which additional parameters need to be considered. The purpose of this study is to scrutinize the influence of surfactants on protein adsorption to interfaces, using lysozyme as a model protein and sorbitan monooleate 80 (S80), polysorbate 80 (T80), polyethylene-block-poly(ethylene glycol) (PE-PEG) and polyglycerol polyricinoleate (PG-PR) as model surfactants. Rheological properties, measured using a TA AR-G2 rheometer equipped with a double wall ring (DWR) geometry, were used to compare the efficacy of the surfactant in hindering lysozyme adsorption. The system consists of a ring and a Delrin® trough with a circular channel (interfacial area=1882.6 mm(2)). Oscillatory shear measurements were conducted at a constant frequency of 0.1 Hz, a temperature of 25°C, and with strain set to 1%. The adsorption of lysozyme to the oil-water interface results in the formation of a viscoelastic film. This can be prevented by addition of surfactants, in a manner depending on the concentration and the type of surfactant. The more hydrophilic surfactants are more effective in hindering lysozyme adsorption to oil-water interfaces. Additionally, the larger surfactants are more persistent in preventing film formation, whereas the smaller ones eventually give space for the lysozyme on the interface. The addition of a mixture of two different surfactants was only beneficial when the two hydrophilic surfactants were mixed, in which case a delay in the multilayer formation was detected. The method is able to detect the interfacial adsorption of lysozyme and thus the hindering of film formation by model surfactants. It can therefore aid in processing of any delivery systems for proteins in which the protein is introduced to oil-water interfaces. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jun; Wei, Hongmei; He, Peng; Lin, Tiesong; Lu, Fengjiao
2015-10-01
Tin-bismuth solder has emerged as a promising lead-free alternative to tin-lead solder, especially for low-temperature packaging applications. However, the intrinsic brittleness of tin-bismuth solder alloy, aggravated by the coarse bismuth-rich phase and the thick interfacial intermetallic layer, notably limits the mechanical performance of the bonded joints. In this work, the microstructure and mechanical performance of solder joints were improved by adding 3.2 vol.% aluminum borate whiskers to the tin-bismuth solder alloy. This whisker-reinforced composite solder was fabricated through a simple process. Typically, 25- μm to 75- μm tin-bismuth particles were mixed with a small amount of aluminum borate whiskers with diameter of 0.5 μm to 1.5 μm and length of 5 μm to 15 μm. The addition of whiskers restrained the formation of coarse brittle bismuth-rich phase and decreased the lamellar spacing from 0.84 μm to 7.94 μm to the range of 0.22 μm to 1.80 μm. Moreover, the growth rate of the interfacial intermetallic layer during the remelting treatment decreased as well. The joint shear strength increased from 19.4 MPa to 24.7 MPa, and only declined by 4.9% (average, -5.9% to 15.8%) after the tenth remelting, while the shear strength of the joint without whiskers declined by 31.5% (average, 10.1-44.1%). The solder alloy was reinforced because of their high strength and high modulus and also the refinement effect on the solder alloy microstructure.
Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, Robert; Keten, Sinan, E-mail: s-keten@northwestern.edu; Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Room A136, Evanston, Illinois 60208
2014-12-15
Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between Iβ CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, whenmore » water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.« less
Interfacial gauge methods for incompressible fluid dynamics
Saye, R.
2016-06-10
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less
Characterization of interfacial waves in horizontal core-annular flow
NASA Astrophysics Data System (ADS)
Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.
2016-11-01
In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.
NASA Astrophysics Data System (ADS)
Kanjilal, Anwesha; Kumar, Praveen
2018-01-01
The effects of mechanical strain on the growth kinetics of interfacial intermetallic compounds (IMCs) sandwiched between Cu substrate and Sn-1.0 wt.%Ag-0.5 wt.%Cu (SAC105) solder have been investigated. Isothermal aging (IA) at 70°C and 125°C, and thermal cycling (TC) as well as thermomechanical cycling (TMC) with shear strain of 12.8% per cycle between -25°C and 125°C were applied to diffusion-bonded solder joints to study the growth behavior of the interfacial IMC layer under various types of thermomechanical excursion (TME). The microstructure of the solder joint tested under each TME was observed at regular intervals. It was observed that the growth rate of the IMC layer was higher in the case of TMC compared with TC or IA. This increased growth rate of the IMC layer in the presence of mechanical strain suggests an additional driving force that enhances the growth kinetics of the IMC. Finite element analysis was performed to gain insight into the effect of TC and TMC on the stress field in the solder joint, especially near the interface between the solder and the substrate. Finally, an analytical model was developed to quantify the effect of strain on the effective diffusivity and express the growth kinetics for all three types of TME using a single expression.
Geophysical Signatures of Shear-Induced Damage and Frictional Processes on Rock Joints
NASA Astrophysics Data System (ADS)
Hedayat, Ahmadreza; Haeri, Hadi; Hinton, John; Masoumi, Hossein; Spagnoli, Giovanni
2018-02-01
In this study, ultrasonic waves recorded during direct shear experiments on rock joints were employed to investigate the shear failure processes. Three types of wave attributes were systematically observed prior to the shear failure of the rock joints: (a) maximum in the amplitude of the transmitted wave, (b) maximum in the dominant frequency of the transmitted wave, and (c) maximum in the velocity of the wave. Different processes occurring during both frictional sliding and stick-slip oscillations were identified in this study: (a) interseismic phase and (b) preseismic phase. The interseismic phase is associated with elastic loading, very small local slip rate, and increasing ultrasonic transmission along the contact surfaces. The rock joint is considered locked, and the increase in ultrasonic transmission represents an increase in the real (true) area of contact because of interlocking and contact aging. The start of the preseismic phase is marked by the onset of precursors for different regions of the rock joint. Following the interseismic and preseismic phases, coseismic phase occurs. The coseismic phase begins with the reduction in the applied shear stress and is associated with an abrupt increase in the local slip rate. The reductions in transmitted amplitude, wave velocity, and dominant frequency all indicate the preseismic phase when the asperity contacts begin to fail before macroscopic frictional sliding. The observation of the preseismic phase in both the loading phase leading to stable sliding and stick-slip failure modes suggests that microphysical processes of fault weakening may share key features for these two failure modes.
Azadmanjiri, Jalal; Wang, James; Berndt, Christopher C; Kapoor, Ajay; Zhu, De Ming; Ang, Andrew S M; Srivastava, Vijay K
2017-05-17
A nano-grained layer including line defects was formed on the surface of a Ti alloy (Ti alloy , Ti-6Al-4V ELI). Then, the micro- and nano-grained Ti alloy with the formation of TiO 2 on its top surface was coated with a bioactive Ta layer with or without incorporating an antibacterial agent of Ag that was manufactured by magnetron sputtering. Subsequently, the influence of the charged defects (the defects that can be electrically charged on the surface) on the interfacial bonding strength and hardness of the surface system was studied via an electronic model. Thereby, material systems of (i) Ta coated micro-grained titanium alloy (Ta/MGTi alloy ), (ii) Ta coated nano-grained titanium alloy (Ta/NGTi alloy ), (iii) TaAg coated micro-grained titanium alloy (TaAg/MGTi alloy ) and (iv) TaAg coated nano-grained titanium alloy (TaAg/NGTi alloy ) were formed. X-ray photoelectron spectroscopy was used to probe the electronic structure of the micro- and nano-grained Ti alloy , and so-formed heterostructures. The thin film/substrate interfaces exhibited different satellite peak intensities. The satellite peak intensity may be related to the interfacial bonding strength and hardness of the surface system. The interfacial layer of TaAg/NGTi alloy exhibited the highest satellite intensity and maximum hardness value. The increased bonding strength and hardness in the TaAg/NGTi alloy arises due to the negative core charge of the dislocations and neighbor space charge accumulation, as well as electron accumulation in the created semiconductor phases of larger band gap at the interfacial layer. These two factors generate interfacial polarization and enhance the satellite intensity. Consequently, the interfacial bonding strength and hardness of the surface system are improved by the formation of mixed covalent-ionic bonding structures around the dislocation core area and the interfacial layer. The bonding strength relationship by in situ XPS on the metal/TiO 2 interfacial layer may be examined with other noble metals and applied in diverse fields.
Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface
NASA Astrophysics Data System (ADS)
Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.
2018-03-01
Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.
Sarkar, Anwesha; Zhang, Shuning; Murray, Brent; Russell, Jessica A; Boxal, Sally
2017-10-01
In this study, we designed emulsions with an oil-water interface consisting of a composite layer of whey protein isolate (WPI, 1wt%) and cellulose nanocrystals (CNCs) (1-3wt%). The hypothesis was that a secondary layer of CNCs at the WPI-stabilized oil-water interface could protect the interfacial protein layer against in vitro gastric digestion by pepsin at 37°C. A combination of transmission electron microscopy, ζ-potential measurements, interfacial shear viscosity measurements and theoretical surface coverage considerations suggested the presence of CNCs and WPI together at the O/W interface, owing to the electrostatic attraction between complementarily charged WPI and CNCs at pH 3. Microstructural analysis and droplet sizing revealed that the presence of CNCs increased the resistance of the interfacial protein film to rupture by pepsin, thus inhibiting droplet coalescence in the gastric phase, which occurs rapidly in an emulsion stabilized by WPI alone. It appeared that there was an optimum concentration of CNCs at the interface for such barrier effects. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results further confirmed that the presence of 3wt% of CNCs reduced the rate and extent of proteolysis of protein at the interface. Besides, evidence of adsorption of CNCs to the protein-coated droplets to form more rigid layers, there is also the possibility that network formation by the CNCs in the bulk (continuous) phase reduced the kinetics of proteolysis. Nevertheless, structuring emulsions with mixed protein-particle layers could be an effective strategy to tune and control interfacial barrier properties during gastric passage of emulsions. Copyright © 2017 Elsevier B.V. All rights reserved.
Statistical field estimators for multiscale simulations.
Eapen, Jacob; Li, Ju; Yip, Sidney
2005-11-01
We present a systematic approach for generating smooth and accurate fields from particle simulation data using the notions of statistical inference. As an extension to a parametric representation based on the maximum likelihood technique previously developed for velocity and temperature fields, a nonparametric estimator based on the principle of maximum entropy is proposed for particle density and stress fields. Both estimators are applied to represent molecular dynamics data on shear-driven flow in an enclosure which exhibits a high degree of nonlinear characteristics. We show that the present density estimator is a significant improvement over ad hoc bin averaging and is also free of systematic boundary artifacts that appear in the method of smoothing kernel estimates. Similarly, the velocity fields generated by the maximum likelihood estimator do not show any edge effects that can be erroneously interpreted as slip at the wall. For low Reynolds numbers, the velocity fields and streamlines generated by the present estimator are benchmarked against Newtonian continuum calculations. For shear velocities that are a significant fraction of the thermal speed, we observe a form of shear localization that is induced by the confining boundary.
Polymer-surfactant complex formation and its effect on turbulent wall shear stress.
Suksamranchit, Siriluck; Sirivat, Anuvat; Jamieson, Alexander M
2006-02-01
Turbulent drag reduction in Couette flow was investigated in terms of a decrease in wall shear stress for aqueous solutions of a nonionic polymer, poly(ethylene oxide) (PEO), a cationic surfactant, hexadecyltrimethylammonium chloride (HTAC), and their mixtures. Consistent with literature data, drag reduction was observed for PEO solutions above a critical molecular weight, 0.91 x 10(5) < Mc < 3.04 x 10(5) g/mol. Maximum drag reduction occurred at an optimum concentration, c(PEO)*, which scales inversely with molecular weight, and the % maximum drag reduction increases with molecular weight. For aqueous HTAC solutions, wall shear stress decreased with increasing HTAC concentration and leveled off at an optimum concentration, c(HTAC)*, comparable to the critical micelle concentration. For HTAC/PEO mixtures, the critical PEO molecular weight for drag reduction decreases, interpreted as due to an increase in hydrodynamic volume because of binding of HTAC micelles to PEO. Consistent with this interpretation, at fixed PEO concentration, maximum drag reduction was observed at an optimum HTAC concentration, c(HTAC/PEO)*, comparable to the maximum binding concentration, MBC. Also, with HTAC concentration fixed at the MBC, the optimum PEO concentration for drag reduction, c(PEO/HTAC)*, decreases relative to that, c(PEO)*, in the absence of HTAC.
NASA Astrophysics Data System (ADS)
Sinko, Robert; Keten, Sinan
2015-05-01
Cellulose nanocrystals (CNCs) are one of nature's most abundant structural material building blocks and possess outstanding mechanical properties including a tensile modulus comparable to Kevlar. It remains challenging to upscale these properties in CNC neat films and nanocomposites due to the difficulty of characterizing interfacial bonding between CNCs that governs stress transfer under deformation. Here we present new analyses based on atomistic simulations of shear and tensile failure of the interfaces between Iβ CNCs, providing new insight into factors governing the mechanical behavior of hierarchical nanocellulose materials. We compare the two most relevant crystal interfaces and find that hydrogen bonded surfaces have greater tensile strength compared to the surfaces governed by weaker interactions. On the contrary, shearing simulations reveal that friction between the atomic interfaces depends not only on surface energy but also the energy landscape along the shear direction. While being a weaker interface, the intersheet plane exhibits greater energy barriers to shear. The molecular roughness of this interface, characterized by a greater energy barrier, exhibits stick-slip deformation behavior as opposed to a more continuous sliding and rebonding mechanism observed for the interfaces with hydrogen bonds. Analytical models to describe the energy landscapes are developed using energy scaling relations for van der Waals surfaces in combination with a modification of the Prandtl-Tomlinson model for atomic friction. Our simulations pave the way for tailoring hierarchical CNC materials by taking a similar approach to techniques employed for describing metals, where mechanical properties can be tuned through a deeper understanding of grain boundary physics and nanoscale interfaces.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua
2018-06-01
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.
NASA Astrophysics Data System (ADS)
Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir
2017-10-01
The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.
Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang
2016-08-01
The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.
Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications
NASA Astrophysics Data System (ADS)
Lee, Byung-Suk; Yoon, Jeong-Won
2018-01-01
Cu-Sn solid-liquid interdiffusion (SLID) bonded joints were fabricated using a Sn-Cu solder paste and Cu for high-temperature power electronics applications. The interfacial reaction behaviors and the mechanical properties of Cu6Sn5 and Cu3Sn SLID-bonded joints were compared. The intermetallic compounds formed at the interfaces in the Cu-Sn SLID-bonded joints significantly affected the die shear strength of the joint. In terms of thermal and mechanical properties, the Cu3Sn SLID-bonded joint was superior to the conventional solder and the Cu6Sn5 SLID-bonded joints.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1995-01-01
The physical properties of a supersaturated binary solution such as its density rho, shear viscosity eta, and solute mass diffusivity D are dependent on the solute concentration c: rho = rho(c), eta = eta(c), and D = D(c). The diffusion boundary layer equations related to crystal growth from solution are derived for the case of natural convection with a solution density, a shear viscosity, and a solute diffusivity that are all depen- dent on solute concentration. The solution of these equations has demonstrated the following. (1) At the vicinity of the saturation concentration c(sub s) the solution shear viscosity eta depends on rho as eta(sub s) = eta(rho(sub s))varies as square root of rho(c(sub s)). This theoretically derived result has been verified in experiments with several aqueous solutions of inorganic and organic salts. (2) The maximum solute mass transfer towards the growing crystal surface can be achieved for values of c where the ratio of d ln(D(c)/dc) to d ln(eta(c)/dc) is a maximum.
The foaming properties of camel and bovine whey: The impact of pH and heat treatment.
Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A
2018-02-01
The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.
One-Dimensional Modelling of Internal Ballistics
NASA Astrophysics Data System (ADS)
Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.
2017-10-01
A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.
Martin, Anneke H; Cohen Stuart, Martien A; Bos, Martin A; van Vliet, Ton
2005-04-26
The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, sigma(f), and fracture strain, gamma(f), were determined, as well as the relaxation behavior after macroscopic fracture. The dilatational measurements were performed in a Langmuir trough equipped with an infra-red reflection absorption spectroscopy (IRRAS) accessory. During compression and relaxation of the surface, the surface pressure, Pi, and adsorbed amount, Gamma (determined from the IRRAS spectra), were determined simultaneously. In addition, IRRAS spectra revealed information on conformational changes in terms of secondary structure. Possible correlations between macroscopic film properties and intrinsic stability of the proteins were determined and discussed in terms of molecular dimensions of single proteins and interfacial protein films. Molecular properties involved the area per protein molecule at Pi approximately 0 mN/m (A(0)), A(0)/M (M = molecular weight) and the maximum slope of the Pi-Gamma curves (dPi/dGamma). The differences observed in mechanical properties and relaxation behavior indicate that the behavior of a protein film subjected to large deformation may vary widely from predominantly viscous (yielding) to more elastic (fracture). This transition is also observed in gradual changes in A(0)/M. It appeared that in general protein layers with high A(0)/M have a high gamma(f) and behave more fluidlike, whereas solidlike behavior is characterized by low A(0)/M and low gamma(f). Additionally, proteins with a low A(0)/M value have a low adaptability in changing their conformation upon adsorption at the air/water interface. Both results support the conclusion that the hardness (internal cohesion) of protein molecules determines predominantly the mechanical behavior of adsorbed protein layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samavatian, Majid, E-mail: m.samavatian@srbiau.ac.ir; Halvaee, Ayoub; Amadeh, Ahmad Ali
Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup −5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion processmore » led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.« less
Dynamic Adhesion of Umbilical Cord Blood Endothelial Progenitor Cells under Laminar Shear Stress
Angelos, Mathew G.; Brown, Melissa A.; Satterwhite, Lisa L.; Levering, Vrad W.; Shaked, Natan T.; Truskey, George A.
2010-01-01
Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α5β1 integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α5β1 with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress. PMID:21112278
Schultz, R.A.; Soliva, R.; Fossen, H.; Okubo, C.H.; Reeves, D.M.
2008-01-01
Displacement-length data from faults, joints, veins, igneous dikes, shear deformation bands, and compaction bands define two groups. The first group, having a power-law scaling relation with a slope of n = 1 and therefore a linear dependence of maximum displacement and discontinuity length (Dmax = ??L), comprises faults and shear (non-compactional or non-dilational) deformation bands. These shearing-mode structures, having shearing strains that predominate over volumetric strains across them, grow under conditions of constant driving stress, with the magnitude of near-tip stress on the same order as the rock's yield strength in shear. The second group, having a power-law scaling relation with a slope of n = 0.5 and therefore a dependence of maximum displacement on the square root of discontinuity length (Dmax = ??L0.5), comprises joints, veins, igneous dikes, cataclastic deformation bands, and compaction bands. These opening- and closing-mode structures grow under conditions of constant fracture toughness, implying significant amplification of near-tip stress within a zone of small-scale yielding at the discontinuity tip. Volumetric changes accommodated by grain fragmentation, and thus control of propagation by the rock's fracture toughness, are associated with scaling of predominantly dilational and compactional structures with an exponent of n = 0.5. ?? 2008 Elsevier Ltd.
Shear induced phase transitions induced in edible fats
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.
The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain
Lee, Hee-Sung
2017-01-01
The adhesion of porcelain to zirconia is a key factor in the success of bilayered restorations. In this study, the efficacy of a novel experimental liner (EL) containing zirconia for improved bonding between zirconia and veneering porcelain was tested. Four ELs containing various concentrations (0, 3.0, 6.0, and 9.0 wt %) of zirconia were prepared. Testing determined the most effective EL (EL3 containing 3.0 wt % zirconia) in terms of shear bond strength value (n = 15). Three different bar-shaped zirconia/porcelain bilayer specimens were prepared for a three-point flexural strength (TPFS) test (n = 15): no-liner (NL), commercial liner (CL), and EL3. Specimens were tested for TPFS with the porcelain under tension and the maximum load was measured at the first sign of fracture. The strength data were analyzed using one-way ANOVA and Tukey’s test (α = 0.05) as well as Weibull distribution. When compared to NL, the CL application had no effect, while the EL3 application had a significant positive effect (p < 0.001) on the flexural strength. Weibull analysis also revealed the highest shape and scale parameters for group EL3. Within the limitations of this study, the novel ceramic liner containing 3.0 wt % zirconia (EL3) significantly enhanced the zirconia/porcelain interfacial bonding. PMID:28869512
NASA Astrophysics Data System (ADS)
Bian, Shiyao; Zheng, Ying; Grotberg, James B.
2008-11-01
Mucus plugging may occur in pulmonary airways in asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. How to clear the mucus plug is essential and of fundamental importance. Mucus is known to have a yield stress and a mucus plug behaves like a solid plug when the applied stresses are below its yield stress τy. When the local stresses reaches τy, the plug starts to move and can be cleared out of the lung. It is then of great importance to examine how the mucus plug deforms and what is the minimum pressure required to initiate its movement. The present study used the finite element method (FEM) to study the stress distribution and deformation of a solid mucus plug under different pressure loads using ANSYS software. The maximum shear stress is found to occur near the rear transition region of the plug, which can lead to local yielding and flow. The critical pressure increases linearly with the plug length and asymptotes when the plug length is larger than the half channel width. Experimentally a mucus simulant is used to study the process of plug deformation and critical pressure difference required for the plug to propagate. Consistently, the fracture is observed to start at the rear transition region where the plug core connects the films. However, the critical pressure is observed to be dependent on not only the plug length but also the interfacial shape.
Liquid crystal polyester-carbon fiber composites
NASA Technical Reports Server (NTRS)
Chung, T. S.
1984-01-01
Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.
Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity
NASA Technical Reports Server (NTRS)
Chen, Yi-Ju; Steen, Paul H.
1996-01-01
A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).
Nanoscale deicing by molecular dynamics simulation.
Xiao, Senbo; He, Jianying; Zhang, Zhiliang
2016-08-14
Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.
NASA Astrophysics Data System (ADS)
Lin, Wen-Chih; Li, Ying-Sih; Wu, Albert T.
2018-01-01
This paper investigates the interfacial reaction between Sn and Sn3Ag0.5Cu (SAC305) solder on n-type Bi2Te3 thermoelectric material. An electroless Ni-P layer successfully suppressed the formation of porous SnTe intermetallic compound at the interface. The formation of the layers between Bi2Te3 and Ni-P indicates that Te is the dominant diffusing species. Shear tests were conducted on both Sn and SAC305 solder on n- and p-type Bi2Te3 with and without a Ni-P barrier layer. Without a Ni-P layer, porous SnTe would result in a more brittle fracture. A comparison of joint strength for n- and p-type thermoelectric modules is evaluated by the shear test. Adding a diffusion barrier increases the mechanical strength by 19.4% in n-type and 74.0% in p-type thermoelectric modules.
Zhang, Qing-Hang; Tozzi, Gianluca; Tong, Jie
2014-01-01
In this study, two micro finite element models of trabecular bone-cement interface developed from high resolution computed tomography (CT) images were loaded under compression and validated using the in situ experimental data. The models were then used under tension and shear to examine the load transfer between the bone and cement and the micro damage development at the bone-cement interface. In addition, one models was further modified to investigate the effect of cement penetration on the bone-cement interfacial behaviour. The simulated results show that the load transfer at the bone-cement interface occurred mainly in the bone cement partially interdigitated region, while the fully interdigitated region seemed to contribute little to the mechanical response. Consequently, cement penetration beyond a certain value would seem to be ineffective in improving the mechanical strength of trabecular bone-cement interface. Under tension and shear loading conditions, more cement failures were found in denser bones, while the cement damage is generally low under compression.
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar; Squires, Todd
2017-11-01
The surface viscosity of many insoluble surfactants depends strongly on the surface pressure (or surface tension) of that surfactant. Surface pressure gradients naturally arise in interfacial flows, and surface-pressure-dependent surface rheology alters 2D suspension dynamics in significant ways. We use the Lorentz reciprocal theorem to asymptotically quantify the irreversible dynamics that break Newtonian symmetries. We first show that a particle embedded in a surfactant-laden interface and translating parallel to or rotating near an interfacial boundary experiences a force in the direction perpendicular to the boundary. Building on this, we extend the theory to compute the first effects of pressure-dependent surface viscosity on 2D particle pairs in suspension. The fore-aft symmetry of pair trajectories in a Newtonian interface is lost, leading to well-separated (when pressure-thickening) or aggregated (when pressure-thinning) particles. Notably, the relative motion is kinematically irreversible, and pairs steadily evolve toward a particular displacement. Based on these irreversible pair interactions, we hypothesize that pressure-thickening (or -thinning) leads to shear-thinning (or -thickening) in 2D suspensions.
Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior.
Pécastaings, G; Delhaès, P; Derré, A; Saadaoui, H; Carmona, F; Cui, S
2004-09-01
The interfacial effects are critical to understand the nanocomposite behavior based on polymer matrices. These effects are dependent upon the morphology of carbon nanotubes, the type of used polymer and the processing technique. Indeed, we show that the different parameters, as the eventual surfactant use, the ultrasonic treatment and shear mixing have to be carefully examined, in particular, for nanotube dispersion and their possible alignment. A series of multiwalled nanotubes (MWNT) have been mixed with a regular epoxy resin under a controlled way to prepare nanocomposites. The influence of nanotube content is examined through helium bulk density, glass transition temperature of the matrix and direct current electrical conductivity measurements. These results, including the value of the percolation threshold, are analyzed in relationship with the mesostructural organization of these nanotubes, which is observed by standard and conductive probe atomic force microscopy (AFM) measurements. The wrapping effect of the organic matrix along the nanotubes is evidenced and analyzed to get a better understanding of the final composite characteristics, in particular, for eventually reinforcing the matrix without covalent bonding.
A Theoretical Study of Remobilizing Surfactant Retarded Fluid Particle Interfaces
NASA Technical Reports Server (NTRS)
Wang, Yanping; Papageorgiou, Dimitri; Maldarelli, Charles
1996-01-01
Microgravity processes must rely on mechanisms other than bouyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. When a fluid particle contacts this gradient, one pole of the particle becomes warmer than the opposing pole. The interfacial tension between the drop or bubble phase and the continuous phase usually decreases with temperature. Thus the cooler pole is of higher interfacial tension than the warmer pole, and the interface is tugged in the direction of the cooler end. This thermocapillary or thermally induced Marangoni surface stress causes a fluid streaming in the continuous phase from which develops a viscous shear traction and pressure gradient which together propel the particle in the direction of the warmer fluid. In this paper, we provide a theoretical basis for remobilizing surfactant retarded fluid particle interfaces in an effort to make viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity,
The response of dense dry granular material to the shear reversal
NASA Astrophysics Data System (ADS)
Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert
2008-11-01
We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.
Kim, Sun Jai; Shim, June Sung
2017-01-01
PURPOSE The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated. PMID:28435615
NASA Astrophysics Data System (ADS)
Tikale, Sanjay; Prabhu, K. Narayan
2018-05-01
The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.
Molecular Simulations of Shear-Induced Dynamics in Nitromethane
2016-09-01
initially staggered along the y axis, and then after the crystal is sheared b), the NM molecules are rotated to orient themselves in the same... rotation of the grain. ...............................................................................8 List of Tables Table 1 Summary of the maximum...it an ideal candidate to study chemical reaction mechanisms associated with conventional explosive initiation and subsequent detonation .3,6,7
Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.
Chávez-Miyauchi, Tomás E; Firoozabadi, Abbas; Fuller, Gerald G
2016-03-08
Injection of optimized chemistry water in enhanced oil recovery (EOR) has gained much interest in the past few years. Crude oil-water interfaces can have a viscoelastic character affected by the adsorption of amphiphilic molecules. The brine concentration as well as surfactants may strongly affect the fluid-fluid interfacial viscoelasticity. In this work we investigate interfacial viscoelasticity of two different oils in terms of brine concentration and a nonionic surfactant. We correlate these measurements with oil recovery in a glass-etched flow microchannel. Interfacial viscoelasticity develops relatively fast in both oils, stabilizing at about 48 h. The interfaces are found to be more elastic than viscous. The interfacial elastic (G') and viscous (G″) moduli increase as the salt concentration decreases until a maximum in viscoelasticity is observed around 0.01 wt % of salt. Monovalent (Na(+)) and divalent (Mg(2+)) cations are used to investigate the effect of ion type; no difference is observed at low salinity. The introduction of a small amount of a surfactant (100 ppm) increases the elasticity of the crude oil-water interface at high salt concentration. Aqueous solutions that give the maximum interface viscoelasticity and high salinity brines are used to displace oil in a glass-etched "porous media" micromodel. Pressure fluctuations after breakthrough are observed in systems with high salt concentration while at low salt concentration there are no appreciable pressure fluctuations. Oil recovery increases by 5-10% in low salinity brines. By using a small amount of a nonionic surfactant with high salinity brine, oil recovery is enhanced 10% with no pressure fluctuations. Interface elasticity reduces the snap-off of the oil phase, leading to reduced pressure fluctuations. This study sheds light on significance of interface viscoelasticity in oil recovery by change in salt concentration and by addition of a small amount of a nonionic surfactant.
Castrati, Luca; Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Rossi, Alessandra; Colombo, Paolo; Tchoreloff, Pierre
2016-11-20
The bilayer tableting technology is gaining more acceptance in the drug industry, due to its ability to improve the drug delivery strategies. It is currently assessed by the European Pharmacopoeia, that the mechanical strength of tablets can be evaluated using a diametral breaking tester. This device applies a force diametrically, and records the tablet breaking point. This approach has been used to measure the structural integrity of single layer tablets as well as bilayer (and multi-layer) tablets. The latter ones, however, have a much complex structure. Therefore, testing a bilayer tablet with the currently used breaking test methodology might not be appropriate. The aim of this work was to compare results from several tests that have been proposed to quantify the interfacial strength of bilayer tablets. The obtained results would provide an indication on which tests are appropriate to evaluate the robustness of a bilayer tablet. Bilayer tablets were fabricated using a model formulation: Microcrystalline Cellulose (MCC) for the first layer, and spray dried lactose (SDLac) as second layer. Each set of tablets were tested using the following tests: Diametral Test, Shear Test and Indentation Test. The tablets were examined before and after the breaking test using Scanning Electron Microscopy (SEM). When a bilayer tablet was subjected to shearing or indentation, it showed signs of clear delamination. Differently, using the diametral test system, the tablets showed no clear difference, before and after the testing. However, when examining each layer via SEM, it was clear that a fracture occurred in the layer made of SDLac. Thus, the diametral test is a measure of the strength of one of the two layers and therefore it is not suited to test the mechanical strength of bilayer tablets. Copyright © 2016 Elsevier B.V. All rights reserved.
Scattering of antiplane shear waves by a circular cylinder in a traction-free plate
Wang; Ying; Li
2000-09-01
Following a well-established formula used by many researchers, the scattering of an anti-plane shear wave by an infinite elastic cylinder of arbitrary relative radius centered in a traction-free two-dimensional isotropic plate has been examined. The plate is divided into three regions by introducing two imaginary planes located symmetrically away from the surface of the cylinder and perpendicular to surfaces of the plate. The wave field is expanded into cylinder wave modes in the central bounded region containing the cylinder, while the fields in the other two outer regions are expanded into plate wave modes. A system of equations determining the expansion coefficients is obtained according to the traction-free boundary conditions on the plate walls and the stress and displacement continuity conditions across the imaginary planes. By taking an appropriate finite number of terms of the infinite expansion series and a few selected points on the two properly chosen virtual planes and the surfaces of the plate through convergence and precision tests, a matrix equation to numerically evaluate the expansion coefficients is found. The method of how to choose the locations of the imaginary planes and the terms of the expansion series as well as the points on each respective boundary is given in Sec. III in detail. Curves of the reflection and transmission coefficients against the relative radius of the cylinder in welded and slip or cracked interfacial conditions are shown. Analysis on the contrast variations of the reflection and transmission coefficients for a cylinder in bonded and debonded interfacial situations is made. The relative errors estimated by the deviation of the numerical results from the principle of the conservation of energy are found to be less than 2%.
NASA Astrophysics Data System (ADS)
Wu, Chenglin
Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (< 6% error) and crack spacing (< 6% error). The validated bond model is applied to derive various interrelations among concrete crushing, concrete splitting, interfacial behavior, and the rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.
Carlà, M; Cuomo, M; Arcangeli, A; Olivotto, M
1995-06-01
The interfacial adsorption properties of polar/apolar inducers of cell differentiation (PAIs) were studied on a mercury electrode. This study, on a clean and reproducible charged surface, unraveled the purely physical interactions among these compounds and the surface, apart from the complexity of the biological membrane. The interfacial behavior of two classical inducers, hexamethylenebisacetamide (HMBA) and dimethylsulfoxide, was compared with that of a typical apolar aliphatic compound, 1-octanol, that has a similar hydrophobic moiety as HMBA but a much smaller dipolar moment. Both HMBA and Octanol adsorb flat in contact with the surface because of hydrophobic forces, with a very similar free energy of adsorption. However, the ratio of polar to apolar moieties in PAIs turned out to be crucial to drive the adsorption maximum toward physiological values of surface charge density, where octanol is desorbed. The electrostatic effects in the interfacial region reflected the adsorption properties: the changes in the potential drop across the interfacial region as a function of the surface charge density, in the physiological range, were opposite in PAIs as compared with apolar aliphatic compounds, as exemplified by octanol. This peculiar electrostatic effect of PAIs has far-reaching relevance for the design of inducers with an adequate therapeutic index to be used in clinical trials.
NOLIN: A nonlinear laminate analysis program
NASA Technical Reports Server (NTRS)
Kibler, J. J.
1975-01-01
A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.
Effect of speed and press fit on fatigue life of roller-bearing inner-race contact
NASA Technical Reports Server (NTRS)
Coe, H. H.; Zaretsky, E. V.
1985-01-01
An analysis was performed to determine the effects of inner ring speed and press fit on the rolling element fatigue life of a roller bearing inner race contact. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner ring speed, load, and geometry and were applied to a conventional ring life analysis. The race contact fatigue life was reduced by more than 90 percent for some conditions when speed and press fit were considered. The depth of the maximum shear stress remained virtually unchanged.
NASA Astrophysics Data System (ADS)
Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata
2018-05-01
In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.
NASA Astrophysics Data System (ADS)
Zhang, Shuoting; Duan, Li; Kang, Qi
2018-05-01
The migration and interaction of axisymmetric two drops in a vertical temperature gradient is investigated experimentally on the ground. A silicon oil is used as the continuous phase, and a water-ethanol mixture is used as the drop phase, respectively. The migration and interaction of two drops, under the combined effects of buoyancy and thermocapillary, is recorded by a digital holographic interferometry measurement in the experiment to analyse the velocities and temperature distribution of the drops. As a result, when two drops migrate together, the drop affects the other drop by perturbing the temperature field around itself. For the leading drop, the velocity is faster than the one of the isolated drop, and the maximum of the interfacial temperature distribution is larger than the one of the isolated drop. For the trailing drop, the velocity is slower than the one of the isolated drop, and the maximum of the interfacial temperature distribution is less than the one of the isolated drop. The influence of the dimensionless initial distance between the drop centres to the drop migration is discussed in detail in this study.
NASA Astrophysics Data System (ADS)
Butler, S. L.
2010-09-01
A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the wavelength becomes similar to one compaction length. Once the wavelength becomes similar to one compaction length, the growth of the amplitude of the band slows and shorter wavelength bands that are increasing in amplitude at a greater rate take over. This may provide a mechanism to explain the experimental observation that band spacing is controlled by the compaction length ( Kohlstedt and Holtzman, 2009).
Rate and state dependent processes in sea ice deformation
NASA Astrophysics Data System (ADS)
Sammonds, P. R.; Scourfield, S.; Lishman, B.
2014-12-01
Realistic models of sea ice processes and properties are needed to assess sea ice thickness, extent and concentration and, when run within GCMs, provide prediction of climate change. The deformation of sea ice is a key control on the Arctic Ocean dynamics. But the deformation of sea ice is dependent not only on the rate of the processes involved but also the state of the sea ice and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction to block sliding in ice ridges. The shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and sea ice properties such as size distribution of interfacial broken ice, angularity, porosity, salinity, etc. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of sea ice friction made during experiments in the Barents Sea to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.
Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio
2016-04-21
We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.
Plasma-grafting polymerization on carbon fibers and its effect on their composite properties
NASA Astrophysics Data System (ADS)
Zhang, Huanxia; Li, Wei
2015-11-01
Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.
Deformation structure analysis of material at fatigue on the basis of the vector field
NASA Astrophysics Data System (ADS)
Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.
2017-12-01
In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.
On double shearing in frictional materials
NASA Astrophysics Data System (ADS)
Teunissen, J. A. M.
2007-01-01
This paper evaluates the mechanical behaviour of yielding frictional geomaterials. The general Double Shearing model describes this behaviour. Non-coaxiality of stress and plastic strain increments for plane strain conditions forms an important part of this model. The model is based on a micro-mechanical and macro-mechanical formulation. The stress-dilatancy theory in the model combines the mechanical behaviour on both scales.It is shown that the general Double Shearing formulation comprises other Double Shearing models. These models differ in the relation between the mobilized friction and dilatancy and in non-coaxiality. In order to describe reversible and irreversible deformations the general Double Shearing model is extended with elasticity.The failure of soil masses is controlled by shear mechanisms. These shear mechanisms are determined by the conditions along the shear band. The shear stress ratio of a shear band depends on the orientation of the stress in the shear band. There is a difference between the peak strength and the residual strength in the shear band. While peak stress depends on strength properties only, the residual strength depends upon the yield conditions and the plastic deformation mechanisms and is generally considerably lower than the maximum strength. It is shown that non-coaxial models give non-unique solutions for the shear stress ratio on the shear band. The Double Shearing model is applied to various failure problems of soils such as the direct simple shear test, the biaxial test, infinite slopes, interfaces and for the calculation of the undrained shear strength. Copyright
Estimation of basal shear stresses from now ice-free LIA glacier forefields in the Swiss Alps
NASA Astrophysics Data System (ADS)
Fischer, Mauro; Haeberli, Wilfried; Huss, Matthias; Paul, Frank; Linsbauer, Andreas; Hoelzle, Martin
2013-04-01
In most cases, assessing the impacts of climatic changes on glaciers requires knowledge about the ice thickness distribution. Miscellaneous methodological approaches with different degrees of sophistication have been applied to model glacier thickness so far. However, all of them include significant uncertainty. By applying a parameterization scheme for ice thickness determination relying on assumptions about basal shear stress by Haeberli and Hoelzle (1995) to now ice-free glacier forefields in the Swiss Alps, basal shear stress values can be calculated based on a fast and robust experimental approach. In a GIS, the combination of recent (1973) and Little Ice Age (LIA) maximum (around 1850) glacier outlines, central flowlines, a recent Digital Elevation Model (DEM) and a DEM of glacier surface topography for the LIA maximum allows extracting local ice thickness over the forefield of individual glaciers. Subsequently, basal shear stress is calculated via the rheological assumption of perfect-plasticity relating ice thickness and surface slope to shear stress. The need of only very few input data commonly stored in glacier inventories permits an application to a large number of glaciers. Basal shear stresses are first calculated for subsamples of glaciers belonging to two test sites where the LIA maximum glacier surface is modeled with DEMs derived from accurate topographic maps for the mid 19th century. Neglecting outliers, the average resulting mean basal shear stress is around 80 kPa for the Bernina region (range 25-100 kPa) and 120 kPa (range 50-150 kPa) for the Aletsch region. For the entire Swiss Alps it is 100 kPa (range 40-175 kPa). Because complete LIA glacier surface elevation information is lacking there, a DEM is first created from reconstructed height of LIA lateral moraines and trimlines by using a simple GIS-based tool. A sensitivity analysis of the input parameters reveals that the performance of the developed approach primarily depends on the accuracy of the ice thickness determination and thus on the accuracy of the LIA DEMs used. Good results are expected for LIA valley or mountain glaciers with ice thicknesses larger than 100 m at the position of their terminus in 1973. Calculated shear stresses are representative in terms of average values over 20 to 40% of the total glacier length in 1850. Shear stresses strongly vary with glacier size, topographic conditions and climate. This study confirmed that reasonable values for mean basal shear stress of mountain glaciers can be estimated from an empirical and non-linear relation using the vertical extent as a proxy for mass turnover. The now available database could be used to independently test the plausibility of approaches applying simple flow models.
Le, Nhan; Song, ShaoZhen; Nabi, Ghulam; Wang, Ruikang; Huang, Zhihong
2016-09-01
Phase-sensitive optical coherence tomography (PhS-OCT) is proposed, as a new high intensity focused ultrasound (HIFU) imaging guidance to detect and track HIFU focus inside 1% agar samples in this work. The experiments studied the effect of varying HIFU power on the induction of shear wave, which can be implemented as a new technique to monitor focused ultrasound surgery (FUS). A miniature HIFU transducer (1.02 MHz, 20 mm aperture diameter, 15 mm radius of curvature) was produced in-house, pressure-field mapped, and calibrated. The transducer was then embedded inside a 1% agar phantom, which was placed under PhS-OCT for observation, under various HIFU power settings (acoustic power, and number of cycles per pulse). Shear wave was induced on the sample surface by HIFU and was captured in full under PhS-OCT. The lowest HIFU acoustic power output for the detection of shear wave was found to be 0.36 W (1.02 MHz, 100 cycles/pulse), or with the number of cycles/pulse as low as 20 (1.02 MHz, 0.98 W acoustic power output). A linear relationship between acoustic power output and the maximum shear wave displacement was found in the first study. The second study explores a non-linear correlation between the (HIFU) numbers of cycles per pulse, and the maximum shear wave displacement. PhS-OCT demonstrates excellent tracking and detection of HIFU-induced shear wave. The results could benefit other imaging techniques in tracking and guiding HIFU focus. Further studies will explore the relationship between the physical transducer characteristics and the HIFU-induced shear wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Warren, Charles David; ERDMAN III, DONALD L
Due to its increased use in the automotive and aerospace industries, joining of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) to metals demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using a new laser based technique, in which the laser interference power profile was created by splitting the beam and guiding those beams to the sample surface by overlapping each other with defined angles to each other. Results were presented for the overlap shear testing of single-lap joints made with Al 5182 and CFPCmore » specimens whose surfaces prepared by (a) surface abrasion and solvent cleaning; and (b) laser-interference structured surfaces by rastering with a 4 mm laser beam at approximately 3.5 W power. CFPC specimens of T700S carbon fiber, Prepreg T70 epoxy, 4 or 5 ply thick, 0/90o plaques were used. Adhesive DP810 was used to bond Al and CFPC. The bondline was 0.25mm and the bond length was consistent among all joints produced. First, the effect of the laser speed on the joint performance was evaluated by laser-interference structure Al and CFPC surfaces with a beam angle of 3o and laser beam speeds of 3, 5, and 10 mm/s. For this sensitivity study, 3 joint specimens were used per each joint type. Based on the results for minimum, maximum, and mean values for the shear lap strength and maximum load for all the 9 joint types, two joint types were selected for further evaluations. Six additional joint specimens were prepared for these two joint types in order to obtain better statistics and the shear test data was presented for the range, mean, and standard deviation. The results for the single-lap shear tests obtained for six joint specimens, indicate that the shear lap strength, maximum load, and displacement at maximum load for those joints made with laser-interference structured surfaces were increased by approximately 14.8%, 16%, and 100%, respectively over those measured for the baseline joints.« less
Interpretation of transport measurements in ZnO-thin films
NASA Astrophysics Data System (ADS)
Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas
2011-01-01
In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers.
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Behavior of Tilted Angle Shear Connectors.
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1995-01-01
The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.
Ultrasonic characterization of the fiber-matrix interfacial bond in aerospace composites.
Aggelis, D G; Kleitsa, D; Matikas, T E
2013-01-01
The properties of advanced composites rely on the quality of the fiber-matrix bonding. Service-induced damage results in deterioration of bonding quality, seriously compromising the load-bearing capacity of the structure. While traditional methods to assess bonding are destructive, herein a nondestructive methodology based on shear wave reflection is numerically investigated. Reflection relies on the bonding quality and results in discernable changes in the received waveform. The key element is the "interphase" model material with varying stiffness. The study is an example of how computational methods enhance the understanding of delicate features concerning the nondestructive evaluation of materials used in advanced structures.
Microencapsulated Bioactive Agents and Method of Making
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)
2003-01-01
The invention is directed to microcapsules encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane. The microcapsules are formed by interfacial coacervation where shear forces are limited to 0-100 dynes per square centimeter. The resulting uniform microcapsules can then be subjected to dewatering in order to cause the internal solution to become supersaturated with the dissolved substance. This dewatering allows controlled nucleation and crystallization of the dissolved substance. The crystal-filled microcapsules can be stored, keeping the encapsulated crystals in good condition for further direct use in x-ray crystallography or as injectable formulations of the dissolved drug, protein or other bioactive substance.
NASA Astrophysics Data System (ADS)
Asadizadeh, Mostafa; Moosavi, Mahdi; Hossaini, Mohammad Farouq; Masoumi, Hossein
2018-02-01
In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length ( L), bridge angle ( γ), joint roughness coefficient (JRC) and normal stress ( σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as "interlocking cracks" which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile-shear cracking.
Badve, Mandar P; Alpar, Tibor; Pandit, Aniruddha B; Gogate, Parag R; Csoka, Levente
2015-01-01
A mathematical model describing the shear rate and pressure variation in a complex flow field created in a hydrodynamic cavitation reactor (stator and rotor assembly) has been depicted in the present study. The design of the reactor is such that the rotor is provided with surface indentations and cavitational events are expected to occur on the surface of the rotor as well as within the indentations. The flow characteristics of the fluid have been investigated on the basis of high accuracy compact difference schemes and Navier-Stokes method. The evolution of streamlining structures during rotation, pressure field and shear rate of a Newtonian fluid flow have been numerically established. The simulation results suggest that the characteristics of shear rate and pressure area are quite different based on the magnitude of the rotation velocity of the rotor. It was observed that area of the high shear zone at the indentation leading edge shrinks with an increase in the rotational speed of the rotor, although the magnitude of the shear rate increases linearly. It is therefore concluded that higher rotational speeds of the rotor, tends to stabilize the flow, which in turn results into less cavitational activity compared to that observed around 2200-2500RPM. Experiments were carried out with initial concentration of KI as 2000ppm. Maximum of 50ppm of iodine liberation was observed at 2200RPM. Experimental as well as simulation results indicate that the maximum cavitational activity can be seen when rotation speed is around 2200-2500RPM. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect on interference fits on roller bearing fatigue life
NASA Technical Reports Server (NTRS)
Coe, H. H.; Zaretsky, E. V.
1986-01-01
An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reductions of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.
Effect of interference fits on roller bearing fatigue life
NASA Technical Reports Server (NTRS)
Coe, Harold H.; Zaretsky, Erwin V.
1987-01-01
An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reduction of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.
Rheology of concentrated suspensions of non-colloidal rigid fibers
NASA Astrophysics Data System (ADS)
Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier
2017-11-01
Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.
Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun
2013-06-18
This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.
Wang, Yue; Li, Xiangming; Tian, Hongmiao; Hu, Hong; Tian, Yu; Shao, Jinyou; Ding, Yucheng
2015-01-01
Dry adhesion observed in the feet of various small creatures has attracted considerable attention owing to the unique advantages such as self-cleaning, adaptability to rough surfaces along with repeatable and reversible adhesiveness. Among these advantages, for practical applications, proper detachability is critical for dry adhesives with artificial microstructures. In this study, we present a microstructured array consisting of both asymmetric rectangle-capped tip and tilted shafts, which produce an orthogonal anisotropy of the shearing strength along the long and short dimensions of the tip, with a maximum anti-shearing in the two directions along the longer dimension. Meanwhile, the tilt feature can enhance anisotropic shearing adhesion by increasing shearing strength in the forward shearing direction and decreasing strength in the reverse shearing direction along the short dimension of the tip, leading to a minimum anti-shearing in only one of the two directions along the shorter dimension of the rectangular tip. Such a microstructured adhesive with only one weak shearing direction, leading to well-controlled attachment and detachment of the adhesive, is created in our experiment by conventional double-sided exposure of a photoresist followed by a moulding process. PMID:25808338
Some constraints on levels of shear stress in the crust from observations and theory.
McGarr, A.
1980-01-01
In situ stress determinations in North America, southern Africa, and Australia indicate that on the average the maximum shear stress increases linearly with depth to at least 5.1 km measured in soft rock, such as shale and sandstone, and to 3.7 km in hard rock, including granite and quartzite. Regression lines fitted to the data yield gradients of 3.8 MPa/km and 6.6 MPa/km for soft and hard rock, respectively. Generally, the maximum shear stress in compressional states of stress for which the least principal stress is oriented near vertically is substantially greater than in extensional stress regimes, with the greatest principal stress in a vertical direction. The equations of equilibrium and compatibility can be used to provide functional constrains on the state of stress. If the stress is assumed to vary only with depth z in a given region, then all nonzero components must have the form A + Bz, where A and B are constants which generally differ for the various components. - Author
Aerothermodynamic Design of the Mars Science Laboratory Heatshield
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.
2009-01-01
Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.
Instability of a shear layer between multicomponent fluids at supercritical pressure
NASA Astrophysics Data System (ADS)
Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun
2018-04-01
The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.
Small-bubble transport and splitting dynamics in a symmetric bifurcation.
Qamar, Adnan; Warnez, Matthew; Valassis, Doug T; Guetzko, Megan E; Bull, Joseph L
2017-08-01
Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.
DeWall, Ryan J.; Varghese, Tomy; Brace, Chris L.
2012-01-01
Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological–pathological correlations using multiple observers. Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. Results: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. Conclusions: Statistically significant radiological–pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically. PMID:23127063
The effects of buoyancy on shear-induced melt bands in a compacting porous medium
NASA Astrophysics Data System (ADS)
Butler, S. L.
2009-03-01
It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The results of the numerical model indicate that bands form when buoyancy forces are large and that these can significantly alter the direction of the flow of liquid away from vertical. The bands form at angles similar to the angle of maximum instantaneous growth rate. Consequently, for strongly strain-rate dependent rheology, there may be two sets of bands formed that are symmetric about the direction of maximum compressive stress in the background mantle flow. This second set of bands would reduce the efficiency with which melt bands would focus melts towards the ridge axis.
NASA Technical Reports Server (NTRS)
Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel
2014-01-01
The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful model can be developed.
Controls on Turbulent Mixing in a Strongly Stratified and Sheared Tidal River Plume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurisa, Joseph T.; Nash, Jonathan D.; Moum, James N.
Considerable effort has been made to parameterize turbulent kinetic energy (TKE) dissipation rate ..epsilon.. and mixing in buoyant plumes and stratified shear flows. Here, a parameterization based on Kunze et al. is examined, which estimates ..epsilon.. as the amount of energy contained in an unstable shear layer (Ri < Ric) that must be dissipated to increase the Richardson number Ri = N2/S2 to a critical value Ric within a turbulent decay time scale. Observations from the tidal Columbia River plume are used to quantitatively assess the relevant parameters controlling ..epsilon.. over a range of tidal and river discharge forcings. Observedmore » ..epsilon.. is found to be characterized by Kunze et al.'s form within a factor of 2, while exhibiting slightly decreased skill near Ri = Ric. Observed dissipation rates are compared to estimates from a constant interfacial drag formulation that neglects the direct effects of stratification. This is found to be appropriate in energetic regimes when the bulk-averaged Richardson number Rib is less than Ric/4. However, when Rib > Ric/4, the effects of stratification must be included. Similarly, ..epsilon.. scaled by the bulk velocity and density differences over the plume displays a clear dependence on Rib, decreasing as Rib approaches Ric. The Kunze et al. ..epsilon.. parameterization is modified to form an expression for the nondimensional dissipation rate that is solely a function of Rib, displaying good agreement with the observations. It is suggested that this formulation is broadly applicable for unstable to marginally unstable stratified shear flows.« less
NASA Astrophysics Data System (ADS)
Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.
2017-12-01
A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.
Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.
2017-05-01
We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.
Stable plume rise in a shear layer.
Overcamp, Thomas J
2007-03-01
Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.
Kim, K; Lee, S K; Kim, Y H
2010-10-01
The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.
Representation of turbulent shear stress by a product of mean velocity differences
NASA Technical Reports Server (NTRS)
Braun, W. H.
1977-01-01
A quadratic form in the mean velocity for the turbulent shear stress is presented. It is expressed as the product of two velocity differences whose roots are the maximum velocity in the flow and a cutoff velocity below which the turbulent shear stress vanishes. Application to pipe and channel flows yields the centerline velocity as a function of pressure gradient, as well as the velocity profile. The flat plate, boundary-layer problem is solved by a system of integral equations to obtain friction coefficient, displacement thickness, and momentum-loss thickness. Comparisons are made with experiment.
Effect of vorticity on polycrystalline ice deformation
NASA Astrophysics Data System (ADS)
Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka
2017-04-01
Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our results further show that subgrain boundaries can be developed by the activity of the non-basal slip systems. The implementation of the polygonisation routine reduces grain size and SPO, but does not significantly change the final LPO, because newly nucleated grains approximately keep the c-axis orientations of their parental grains. However, it enables the establishment of an equilibrium grain size, and therefore the differential stress reaches a steady-state. Lebensohn. 2001 N-site modelling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Materialia, 49(14), 2723-2737. Llorens, et al., 2016a. Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach. Journal of Glaciology, 62(232), 359-377. Llorens, et al., 2016b. Full-field predictions of ice dynamic recrystallisation under simple shear conditions, Earth and Planetary Science Letters, 450, 233-242. Llorens, et al., 2017. Dynamic recrystallisation during deformation of polycrystalline ice: insights from numerical simulations, Philosophical Transactions of the Royal Society A, 375 (2086), 20150346.
Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong-Ah
2014-01-01
To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.
NASA Astrophysics Data System (ADS)
Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.
2017-12-01
Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the contribution of small strain-free recrystallized grains is larger in CTR than in CT samples. Our results suggest that loading conditions substantially affect material heterogeneity-induced localization in its nucleation and transient stages.
NASA Astrophysics Data System (ADS)
Sotokoba, Yasumasa; Okajima, Kenji; Iida, Toshiaki; Tanaka, Tadatsugu
We propose the trenchless box culvert construction method to construct box culverts in small covering soil layers while keeping roads or tracks open. When we use this construction method, it is necessary to clarify deformation and shear failure by excavation of grounds. In order to investigate the soil behavior, model experiments and elasto-plactic finite element analysis were performed. In the model experiments, it was shown that the shear failure was developed from the end of the roof to the toe of the boundary surface. In the finite element analysis, a shear band effect was introduced. Comparing the observed shear bands in model experiments with computed maximum shear strain contours, it was found that the observed direction of the shear band could be simulated reasonably by the finite element analysis. We may say that the finite element method used in this study is useful tool for this construction method.
Resolved shear stress intensity coefficient and fatigue crack growth in large crystals
NASA Technical Reports Server (NTRS)
Chen, Q.; Liu, H. W.
1988-01-01
Fatigue crack growth tests were carried out on large-grain Al 7029 aluminum alloy and the finite element method was used to calculate the stress field near the tip of a zigzag crack. The resolved shear stresses on all 12 slip systems were computed, and the resolved shear stress intensity coefficient (RSSIC) was defined. The RSSIC was used to analyze the irregular crack path and was correlated with the rate of single-slip-plane shear crack growth. Fatigue crack growth was found to be caused primarily by shear decohesion at a crack tip. When the RSSIC on a single-slip system was much larger than all the others, the crack followed a single-slip plane. When the RSSICs on two conjugate slip systems were comparable, a crack grew in a zigzag manner on these planes and the macrocrack-plane bisected the two active slip planes. The maximum RSSIC on the most active slip system is proposed as a parameter to correlate with the shear fatigue crack growth rate in large crystals.
NASA Astrophysics Data System (ADS)
Memon, Muhammad Omar
Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance between the lift induced drag (wingtip vortices) and parasite drag (free shear layer) can have a significant impact. Particle Image Velocimetry (PIV) experiments were performed at a) a water tunnel at ILR Aachen, Germany, and b) at the University of Dayton Low Speed Wind Tunnel in the near wake of an AR 6 wing with a Clark-Y airfoil to investigate the characteristics of the wingtip vortex and free shear layer at angles of attack in the vicinity of maximum aerodynamic efficiency for the wing. The data was taken 1.5 and 3 chord lengths downstream of the wing at varying free-stream velocities. A unique exergy-based technique was introduced to quantify distinct changes in the wingtip vortex axial core flow. The existence of wingtip vortex axial core flow transformation from wake-like (velocity less-than the freestream) to jet-like (velocity greater-than the freestream) behavior in the vicinity of the maximum (L/D) angles was observed. The exergy-based technique was able to identify the change in the out of plane profile and corresponding changes in the L/D performance. The resulting velocity components in and around the free shear layer in the wing wake showed counter flow in the cross-flow plane presumably corresponding to behavior associated with the flow over the upper and lower surfaces of the wing. Even though the velocity magnitudes in the free shear layer in cross-flow plane are a small fraction of the freestream velocity ( 10%), significant directional flow was observed. An indication of the possibility of the transfer of momentum (from inboard to outboard of the wing) was identified through spanwise flow corresponding to the upper and lower surfaces through the free shear layer in the wake. A transition from minimal cross flow in the free shear layer to a well-established shear flow in the spanwise direction occurs in the vicinity of maximum lift-to-drag ratio (max L/D) angle of attack. A distinctive balance between the lift induced drag and parasite drag was identified. Improved understanding of this relationship could be extended not only to improve aircraft performance through the reduction of lift induced drag, but also to air vehicle performance in off-design cruise conditions.
Yang, Bo; Guo, Jiawen; Huang, Qin; Heo, Young; Fok, Alex; Wang, Yan
2016-06-01
(1) To investigate the properties, and their correlations, of the acoustic emission (AE) from interfacial debonding of Class-I composite restorations during curing. (2) To establish the relationship between the theoretical shrinkage stress and the level of interfacial debonding in such restorations as determined by AE measurement. An AE sensor was attached onto the surface of human molars with a Class-I composite restoration of 4mm (length)×3mm (width)×2mm (depth) to monitor their debonding from the tooth tissues during curing. Background signals were analyzed before curing to determine the threshold amplitude for noise filtering. Three groups (n=3) of composites with different levels of shrinkage were tested: (1) Z100™, (2) Filtek™ Z250, and (3) Filtek™ LS. All restorations were cured with an LED blue light operated at 1200mW/cm(2) for 40s. AE signals were recorded continuously from the start of curing for 10min, and their frequency, amplitude and duration were analyzed. Finally, the cumulative number of AE events was compared with the theoretical maximum shrinkage stress that could be generated by the composites. The amplitude of the background signals was below 30dB, which was chosen as the threshold for noise filtering. The amplitude of all debonding events ranged from 30 to 50dB, and their duration was below 100μs. The peak frequency had two main bands: 100-200kHz and 700-800kHz. The duration time increased with increasing amplitude, but no correlation was found between the peak frequency and the other two parameters. The cumulative number of AE events was 30.67±2.31, 14.00±7.81 and 5.67±3.06 for Z100, Z250 and LS, respectively, which corresponded well with the theoretical maximum shrinkage stress they could produce, i.e. 42.5, 97.5 and 182.5MPa. R(2)=0.9955 for the linear regression. The theoretical shrinkage stress below which no AE events were detected was about 14.3MPa. For the materials considered, the amount of interfacial debonding produced in a Class-I restoration during curing increased linearly with the theoretical maximum shrinkage stress of the composite. The theoretical stress below which no AE events were detected was similar to composite-dentin bond strength reported in the literature. Copyright © 2016 Academy of Dental Materials. All rights reserved.
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
Fluid Effects on Shear for Seismic Waves in Finely Layered Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J G
Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus of the layered system (namely the uniaxial shear) contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored in this modulus by an amount that ranges from the smallest to the largest effective shear moduli of the VTI system. But, since there are five shear moduli in play, the overall increase in shear energy due to fluids is reducedmore » by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of overall shear modulus, being about 20% of the allowed range as liquid is fully substituted for gas. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% decreases the shear wave speed and, thereby, partially offsets the effect of this shear modulus increase. The final result is an increase of shear wave speed on the order of 5 to 10%. This increase is shown to be possible under most favorable circumstances - i.e. when the shear modulus fluctuations are large (resulting in strong anisotropy) and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), resulting short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity.« less
Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.
Kim, Daehyeon; Ha, Sungwoo
2014-02-07
In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.
Aggregation of concentrated monoclonal antibody solutions studied by rheology and neutron scattering
NASA Astrophysics Data System (ADS)
Castellanos, Maria Monica; Pathak, Jai; Colby, Ralph
2013-03-01
Protein solutions are studied using rheology and scattering techniques to investigate aggregation. Here we present a monoclonal antibody (mAb) that aggregates after incubation at 40 °C (below its unfolding temperature), with a decrease in monomer purity of 6% in 10 days. The mAb solution contains surfactant and behaves as a Newtonian fluid when reconstituted into solution from the lyophilized form (before incubation at 40 °C). In contrast, mAb solutions incubated at 40 °C for 1 month exhibit shear yielding in torsional bulk rheometers. Interfacial rheology reveals that interfacial properties are controlled by the surfactant, producing a negligible surface contribution to the bulk yield stress. These results provide evidence that protein aggregates formed in the bulk are responsible for the yield stress. Small-angle neutron scattering (SANS) measurements show an increase in intensity at low wavevectors (q < 4*10-2 nm-1) that we attribute to protein aggregation, and is not observed in solutions stored at 4 °C for 3 days before the measurement. This work suggests a correlation between the aggregated state of the protein (stability) and the yield stress from rheology. Research funded by MedImmune
NASA Astrophysics Data System (ADS)
Fang, Bingcheng; Li, Jiajun; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo
2017-12-01
In order to explore an efficient way of modifying graphene to improve the Cu/graphene interfacial bonding and remain the excellent mechanical and physical properties of graphene, the interaction between Cu and the pristine, atomic oxygen functionalized and boron- or nitrogen-doped graphene with and without defects was systematically investigated by density functional theory calculation. The electronic structure analysis revealed that the chemically active oxygen can enhance the binding energy Eb of Cu with graphene by forming strong covalent bonds, supporting the experimental study suggesting an vital role of intermediate oxygen in the improvement of the mechanical properties of graphene/Cu composites. Due to the strong hybridization between Cu-3d electron states and the 2p states of both boron and carbon atoms, the boron-doping effect is comparable to or even better than the chemical bridging role of oxygen in the reduced graphene oxide reinforced Cu matrix composite. Furthermore, we evidenced an enhancement of mechanical properties including bulk modulus, shear modulus and Young modulus of graphene/Cu composite after boron doping, which closely relates to the increased interfacial binding energy between boron-doped graphene and Cu surfaces.
Thermally assisted peeling of an elastic strip in adhesion with a substrate via molecular bonds
NASA Astrophysics Data System (ADS)
Qian, Jin; Lin, Ji; Xu, Guang-Kui; Lin, Yuan; Gao, Huajian
A statistical model is proposed to describe the peeling of an elastic strip in adhesion with a flat substrate via an array of non-covalent molecular bonds. Under an imposed tensile peeling force, the interfacial bonds undergo diffusion-type transition in their bonding state, a process governed by a set of probabilistic equations coupled to the stretching, bending and shearing of the elastic strip. Because of the low characteristic energy scale associated with molecular bonding, thermal excitations are found to play an important role in assisting the escape of individual molecular bonds from their bonding energy well, leading to propagation of the peeling front well below the threshold peel-off force predicted by the classical theories. Our study establishes a link between the deformation of the strip and the spatiotemporal evolution of interfacial bonds, and delineates how factors like the peeling force, bending rigidity of the strip and binding energy of bonds influence the resultant peeling velocity and dimensions of the process zone. In terms of the apparent adhesion strength and dissipated energy, the bond-mediated interface is found to resist peeling in a strongly rate-dependent manner.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.; Ochoa, Ozden O.
1990-01-01
A better understanding of the factors that affect the semi-circular edge-notched compressive strength is developed, and the associated failure mode(s) of thermoplastic composite laminates with multidirectional stacking sequences are identified. The primary variables in this investigation are the resin nonlinear shear constitutive behavior, stacking sequence (orientation of plies adjacent to the 0 degree plies), resin-rich regions between the 0 degree plies and the off-axis supporting plies, fiber/matrix interfacial bond strength, and initial fiber waviness. Two thermoplastic composite material systems are used in this investigation. The materials are the commercial APC-2 (AS4/PEEK) and a poor interface experimental material, AU4U/PEEK, designed for this investigation. Notched compression specimens are studied at 21, 77, and 132 C. Geometric and material nonlinear two-dimensional finite element analysis is used to model the initiation of fiber microbuckling of both the ideal straight fiber and the more realistic initially wavy fiber. The effects of free surface, fiber constitutive properties, matrix constitutive behavior, initial fiber curvature, and fiber/matrix interfacial bond strength on fiber microbuckling initiation strain levels are considered.
Lessons Learned from Numerical Simulations of Interfacial Instabilities
NASA Astrophysics Data System (ADS)
Cook, Andrew
2015-11-01
Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Munk, M B; Larsen, F H; van den Berg, F W J; Knudsen, J C; Andersen, M L
2014-07-29
Low-molecular-weight (LMW) emulsifiers are used to promote controlled destabilization in many dairy-type emulsions in order to obtain stable foams in whippable products. The relation between fat globule aggregation induced by three LMW emulsifiers, lactic acid ester of monoglyceride (LACTEM), saturated monoglyceride (GMS), and unsaturated monoglyceride (GMU) and their effect on interfacial protein displacement was investigated. It was found that protein displacement by LMW emulsifiers was not necessary for fat globule aggregation in emulsions, and conversely fat globule aggregation was not necessarily accompanied by protein displacement. The three LMW emulsifiers had very different effects on emulsions. LACTEM induced shear instability of emulsions, which was accompanied by protein displacement. High stability was characteristic for emulsions with GMS where protein was displaced from the interface. Emulsions containing GMU were semisolid, but only low concentrations of protein were detected in the separated serum phase. The effects of LACTEM, GMS, and GMU may be explained by three different mechanisms involving formation of interfacial α-gel, pickering stabilization and increased exposure of bound casein to the water phase. The latter may facilitate partial coalescence. Stabilizing hydrocolloids did not have any effect on the LMW emulsifiers' ability to induce protein displacement.
Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng
2018-01-31
In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.
Visco-instability of shear viscoelastic collisional dusty plasma systems
NASA Astrophysics Data System (ADS)
Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.
2018-04-01
In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.
Dynamic thermal field-induced gradient soft-shear for highly oriented block copolymer thin films.
Singh, Gurpreet; Yager, Kevin G; Berry, Brian; Kim, Ho-Cheol; Karim, Alamgir
2012-11-27
As demand for smaller, more powerful, and energy-efficient devices continues, conventional patterning technologies are pushing up against fundamental limits. Block copolymers (BCPs) are considered prime candidates for a potential solution via directed self-assembly of nanostructures. We introduce here a facile directed self-assembly method to rapidly fabricate unidirectionally aligned BCP nanopatterns at large scale, on rigid or flexible template-free substrates via a thermally induced dynamic gradient soft-shear field. A localized differential thermal expansion at the interface between a BCP film and a confining polydimethylsiloxane (PDMS) layer due to a dynamic thermal field imposes the gradient soft-shear field. PDMS undergoes directional expansion (along the annealing direction) in the heating zone and contracts back in the cooling zone, thus setting up a single cycle of oscillatory shear (maximum lateral shear stress ∼12 × 10(4) Pa) in the system. We successfully apply this process to create unidirectional alignment of BCP thin films over a wide range of thicknesses (nm to μm) and processing speeds (μm/s to mm/s) using both a flat and patterned PDMS layer. Grazing incidence small-angle X-ray scattering measurements show absolutely no sign of isotropic population and reveal ≥99% aligned orientational order with an angular spread Δθ(fwhm) ≤ 5° (full width at half-maximum). This method may pave the way to practical industrial use of hierarchically patterned BCP nanostructures.
Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng
2011-09-01
Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase. Copyright © 2011 Elsevier B.V. All rights reserved.
Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun
2015-11-01
Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling the initial mechanical response and yielding behavior of gelled crude oil
NASA Astrophysics Data System (ADS)
Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang
2018-05-01
The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.
Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout
2007-10-01
We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.
Temperature-dependent tensile and shear response of graphite/aluminum
NASA Technical Reports Server (NTRS)
Fujita, T.; Pindera, M. J.; Herakovich, C. T.
1987-01-01
The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.
TWO-LAYER MODEL FOR PULL-OUT BEHAVIOR OF POST-INSTALLED ANCHOR
NASA Astrophysics Data System (ADS)
Saleem, Muhammad; Tsubaki, Tatsuya
A new two-layer anchor-infill assembly structure for the post-installed anchor is introduced with the analytical model to simulate its pull-out deformational response. The post-installed anchor is such that used in strengthening techniques for reinforced concrete structures. The properties of the infill material used for post-installed anchor are characterized by nonlinear interfaces. Because of the mechanical properties of the infill layer the existing pull-out model of deformed bars is not applicable in this case. Interfacial de-bonding is examined using energy criterion and strength criterion. The effect of the interface properties such as stiffness and strength on the pull-out behavior of a post-installed anchor is investigated. Using sensitivity analysis, the effect of these parameters on load-displacement curve, shear stress distribution, de-bonded length and damage to the surrounding concrete is clarified. Then, the optimum combination of these parameters is presented. It is confirmed that the elastic modulus of infill should be large to reduce the pull-out displacement and the increase of the shear strength of infill makes the pull-out load larger.
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)
2003-01-01
Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1992-01-01
To date, the effect of thermo-oxidative aging on unidirectional composite mechanical properties has been monitored by the measurement of interlaminar shear strength (ILSS) and either three or four point longitudinal flexural strength (LFS) of the composites being tested. Both results are affected by the fiber-to-matrix bonding, the former being dependent on the shear resistance of the interface and the latter on the degree of load sharing by the fibers through the fiber/matrix interface. Recently, fiber/matrix interfacial bond strengths have been monitored using a transverse flexural strength (TFS) test method. This test method was used to evaluate the effect of fiber surface treatment on the fiber/matrix bond. The interface bonding was varied in these tests using Hercules A-fibers with three-types of surfaces that produce bonds of poor, better, and good quality. The TFS was found not only to be sensitive to the bonding, but also to the aging time of unidirectional A-fiber/PMR-15 composites. This relationship reflects the mechanism by which the PMR-15 degrades during thermal aging.