Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages
Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.
2008-01-01
The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.
Postglacial Terrestrial Carbon Dynamics and Atmospheric CO2
NASA Astrophysics Data System (ADS)
Prentice, C. I.; Harrison, S. P.; Kaplan, J. O.
2002-12-01
Combining PMIP climate model results from the last glacial maximum (LGM) with biome modelling indicates the involvement of both cold, dry climate and physiological effects of low atmospheric CO2 in reducing tree cover on the continents. Further results with the LPJ dynamic vegetation model agree with independent evidence for greatly reduced terrestrial carbon storage at LGM, and suggest that terrestrial carbon storage continued to increase during the Holocene. These results point to predominantly oceanic explanations for preindustrial changes in atmospheric CO2, although land changes after the LGM may have contributed indirectly by reducing the aeolian marine Fe source and (on a longer time scale) by triggering CaCO3 compensation in the ocean.
NASA Astrophysics Data System (ADS)
Nichols, K. A.; Johnson, J.; Goehring, B. M.; Balco, G.
2017-12-01
We present a suite of in situ 14C cosmogenic nuclide exposure ages from nunataks at the Lassiter Coast in West Antarctica on the west side of the Weddell Sea Embayment (WSE) to constrain the thinning history of the Ronne-Filchner Ice Shelf. Constraints on past ice extents in the WSE remain relatively understudied, despite the WSE draining 22% of the Antarctic Ice Sheet (AIS). Information lacking includes unambiguous geological evidence for the maximum Last Glacial Maximum (LGM) ice thickness and the timing of subsequent ice retreat in key peripheral locations. Past studies using long-lived cosmogenic nuclides have shown that, due to the cold-based nature of the AIS, inheritance of nuclide concentrations from previous periods of exposure is a common problem. We utilised the cosmogenic nuclide 14C to circumvent the issue of inheritance. The short half-life of 14C means measured concentrations are largely insensitive to inheritance, as relatively short periods of ice cover (20-30 kyr) result in significant 14C decay. Furthermore, samples saturated in 14C will demonstrate that their location was above the maximum LGM thickness of the ice sheet and exposed for at least the past ca. 35 kyr. Preliminary results from four samples indicate elevations between 63 and 360 m above the present-day ice surface elevations were deglaciated between 7 and 6 ka. With little exposed rock above these elevations (ca. 70 m), this may indicate that the locality was entirely covered by ice during the LGM. Additional 14C measurements will form a full elevation transect of samples to decipher the post-LGM thinning history of ice at this location.
NASA Astrophysics Data System (ADS)
Mathien-Blard, Elise; Bassinot, Franck
2009-12-01
Mg/Ca in foraminiferal calcite has recently been extensively used to estimate past oceanic temperatures. Here we show, however, that the Mg/Ca temperature relationship of the planktonic species Globigerinoides ruber is significantly affected by seawater salinity, with a +1 psu change in salinity resulting in a +1.6°C bias in Mg/Ca temperature calculations. If not accounted for, such a bias could lead, for instance, to systematic overestimations of Mg/Ca temperatures during glacial periods, when global ocean salinity had significantly increased compared to today. We present here a correction procedure to derive unbiased sea surface temperatures (SST) and δ18Osw from G. ruber TMg/Ca and δ18Of measurements. This correction procedure was applied to a sedimentary record to reconstruct hydrographic changes since the Last Glacial Maximum (LGM) in the Western Pacific Warm Pool. While uncorrected TMg/Ca data indicate a 3°C warming of the Western Pacific Warm Pool since the LGM, the salinity-corrected SST result in a stronger warming of 4°C.
NASA Astrophysics Data System (ADS)
O'ishi, R.; Abe-Ouchi, A.
2013-07-01
When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.
Ovodov, Nikolai D; Crockford, Susan J; Kuzmin, Yaroslav V; Higham, Thomas F G; Hodgins, Gregory W L; van der Plicht, Johannes
2011-01-01
Virtually all well-documented remains of early domestic dog (Canis familiaris) come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP), with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP). The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia). Because of the extraordinary preservation of the material, including skull, mandibles (both sides) and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old), and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial-early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim) and Siberia (Razboinichya), separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of origin (as some DNA data have suggested) and subsequent spread.
Central Equatorial Pacific Sea Surface Temperatures During the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Monteagudo, M. M.; Lynch-Stieglitz, J.; Schmidt, M. W.
2017-12-01
The state of the tropical Pacific ocean-atmosphere system during the Last Glacial Maximum (LGM, 19,000-23,000 years BP) remains an area of uncertainty. Spatial patterns of tropical Pacific sea surface temperature (SST) offer insight into atmospheric circulation (i.e. Walker Circulation), however, few records exist for the Central Tropical Pacific (CTP). The few existing glacial CTP SST reconstructions indicate 1-2 °C of warming based on foraminiferal transfer functions (CLIMAP Project Members, 1976). In contrast, evidence from geochemical proxies (Mg/Ca, UK'37, TEX86) show 1-3.5 °C cooling in the eastern and western tropical Pacific (e.g. MARGO Project Members, 2009). In this study we present the first Mg/Ca estimates of glacial CTP SST from a meridional sediment core transect along the Line Islands Ridge (0-7°N, 156-162 °W). We use a time slice approach to establish the magnitude of glacial-interglacial SST change between the LGM (19,000-23,0000 years BP) and the Holocene (0-10,000 years BP) using Mg/Ca in the surface-dwelling foraminifera Globigerinoides ruber. Our results indicate cooling at all latitudes, ranging between 1.2-2.7 °C (Holocene-LGM SST). Northern cores (6.83-2.77 °N) exhibit a smaller glacial-interglacial SST difference than equatorial site 20BB at 1.27 °N. The data generated thus far suggest the glacial meridional SST gradient may have been steeper, possibly as a result of increased zonal winds, equatorial upwelling, or westward expansion of the Eastern Pacific Cold Tongue.
Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics
Bigg, Grant R; Cunningham, Clifford W; Ottersen, Geir; Pogson, Grant H; Wadley, Martin R; Williamson, Phillip
2007-01-01
Scant scientific attention has been given to the abundance and distribution of marine biota in the face of the lower sea level, and steeper latitudinal gradient in climate, during the ice-age conditions that have dominated the past million years. Here we examine the glacial persistence of Atlantic cod (Gadus morhua) populations using two ecological-niche-models (ENM) and the first broad synthesis of multi-locus gene sequence data for this species. One ENM uses a maximum entropy approach (Maxent); the other is a new ENM for Atlantic cod, using ecophysiological parameters based on observed reproductive events rather than adult distribution. Both the ENMs were tested for present-day conditions, then used to hindcast ranges at the last glacial maximum (LGM) ca 21 kyr ago, employing climate model data. Although the LGM range of Atlantic cod was much smaller, and fragmented, both the ENMs agreed that populations should have been able to persist in suitable habitat on both sides of the Atlantic. The genetic results showed a degree of trans-Atlantic divergence consistent with genealogically continuous populations on both sides of the North Atlantic since long before the LGM, confirming the ENM results. In contrast, both the ENMs and the genetic data suggest that the Greenland G. morhua population post-dates the LGM. PMID:17999951
Perera, Nimal; Kourampas, Nikos; Simpson, Ian A; Deraniyagala, Siran U; Bulbeck, David; Kamminga, Johan; Perera, Jude; Fuller, Dorian Q; Szabó, Katherine; Oliveira, Nuno V
2011-09-01
Batadomba-lena, a rockshelter in the rainforest of southwestern Sri Lanka, has yielded some of the earliest evidence of Homo sapiens in South Asia. H. sapiens foragers were present at Batadomba-lena from ca. 36,000 cal BP to the terminal Pleistocene and Holocene. Human occupation was sporadic before the global Last Glacial Maximum (LGM). Batadomba-lena's Late Pleistocene inhabitants foraged for a broad spectrum of plant and mainly arboreal animal resources (monkeys, squirrels and abundant rainforest snails), derived from a landscape that retained equatorial rainforest cover through periods of pronounced regional aridity during the LGM. Juxtaposed hearths, palaeofloors with habitation debris, postholes, excavated pits, and animal and plant remains, including abundant Canarium nutshells, reflect intensive habitation of the rockshelter in times of monsoon intensification and biome reorganisation after ca. 16,000 cal BP. This period corresponds with further broadening of the economic spectrum, evidenced though increased contribution of squirrels, freshwater snails and Canarium nuts in the diet of the rockshelter occupants. Microliths are more abundant and morphologically diverse in the earliest, pre-LGM layer and decline markedly during intensified rockshelter use on the wane of the LGM. We propose that changing toolkits and subsistence base reflect changing foraging practices, from shorter-lived visits of highly mobile foraging bands in the period before the LGM, to intensified use of Batadomba-lena and intense foraging for diverse resources around the site during and, especially, following the LGM. Traces of ochre, marine shell beads and other objects from an 80 km-distant shore, and, possibly burials reflect symbolic practices from the outset of human presence at the rockshelter. Evidence for differentiated use of space (individual hearths, possible habitation structures) is present in LGM and terminal Pleistocene layers. The record of Batadomba-lena demonstrates that Late Pleistocene pathways to (aspects of) behavioural 'modernity' (composite tools, practice of symbolism and ritual, broad spectrum economy) were diverse and ecologically contingent. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bourgeon, Lauriane; Burke, Ariane; Higham, Thomas
2017-01-01
The timing of the first entry of humans into North America is still hotly debated within the scientific community. Excavations conducted at Bluefish Caves (Yukon Territory) from 1977 to 1987 yielded a series of radiocarbon dates that led archaeologists to propose that the initial dispersal of human groups into Eastern Beringia (Alaska and the Yukon Territory) occurred during the Last Glacial Maximum (LGM). This hypothesis proved highly controversial in the absence of other sites of similar age and concerns about the stratigraphy and anthropogenic signature of the bone assemblages that yielded the dates. The weight of the available archaeological evidence suggests that the first peopling of North America occurred ca. 14,000 cal BP (calibrated years Before Present), i.e., well after the LGM. Here, we report new AMS radiocarbon dates obtained on cut-marked bone samples identified during a comprehensive taphonomic analysis of the Bluefish Caves fauna. Our results demonstrate that humans occupied the site as early as 24,000 cal BP (19,650 ± 130 14C BP). In addition to proving that Bluefish Caves is the oldest known archaeological site in North America, the results offer archaeological support for the "Beringian standstill hypothesis", which proposes that a genetically isolated human population persisted in Beringia during the LGM and dispersed from there to North and South America during the post-LGM period.
Bourgeon, Lauriane; Burke, Ariane; Higham, Thomas
2017-01-01
The timing of the first entry of humans into North America is still hotly debated within the scientific community. Excavations conducted at Bluefish Caves (Yukon Territory) from 1977 to 1987 yielded a series of radiocarbon dates that led archaeologists to propose that the initial dispersal of human groups into Eastern Beringia (Alaska and the Yukon Territory) occurred during the Last Glacial Maximum (LGM). This hypothesis proved highly controversial in the absence of other sites of similar age and concerns about the stratigraphy and anthropogenic signature of the bone assemblages that yielded the dates. The weight of the available archaeological evidence suggests that the first peopling of North America occurred ca. 14,000 cal BP (calibrated years Before Present), i.e., well after the LGM. Here, we report new AMS radiocarbon dates obtained on cut-marked bone samples identified during a comprehensive taphonomic analysis of the Bluefish Caves fauna. Our results demonstrate that humans occupied the site as early as 24,000 cal BP (19,650 ± 130 14C BP). In addition to proving that Bluefish Caves is the oldest known archaeological site in North America, the results offer archaeological support for the “Beringian standstill hypothesis”, which proposes that a genetically isolated human population persisted in Beringia during the LGM and dispersed from there to North and South America during the post-LGM period. PMID:28060931
NASA Astrophysics Data System (ADS)
McChesney, C. L.; Ford, H. L.; McManus, J. F.
2016-12-01
The Eastern Equatorial Pacific (EEP) is an important region of study due to its dynamic nature and role in El Niño-Southern Oscillation (ENSO), which is the biggest source of global interannual variability. The EEP is characterized by cool sea surface temperatures that are tightly coupled to a shallow thermocline. Variability in the depth of the EEP thermocline is important in initiating and propagating El Niño events. Here, we investigate changes in thermocline depth during the Last Glacial Maximum (LGM) to gain insight into how conditions within the EEP changed in the context of different boundary conditions (e.g., low CO2, greater ice volume). Using the stable oxygen isotope values of planktonic foraminifera from a range of calcification depths in the water column, we show that the thermocline was deep during the LGM relative to the Holocene at Ocean Drilling Program Site 849 (0°N, 110°W, 3839 m water depth). In comparison to previous studies that have been done in the region, site 849 has the smallest change of δ18O surface values, indicating less glacial cooling. However, site 849 displays even less apparent cooling in subsurface isotopic values, with a difference of -0.39 ‰ when comparing the LGM to the Holocene, suggesting little temperature change. The δ18O values of site 849 during the LGM had a smaller range between subsurface and surface foraminifera of 1.64‰ compared to the Holocene range of 2.11‰. This difference indicates that the thermocline was deeper in the equatorial cold tongue during the LGM. A deep thermocline may have inhibited some of the thermocline related feedbacks in ENSO variability and led to reduced ENSO during the LGM. Future Mg/Ca data will be incorporated to verify temperature.
NASA Astrophysics Data System (ADS)
Ugan, Andrew; Byers, David
2007-12-01
The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene-Holocene transition.
NASA Astrophysics Data System (ADS)
Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek
2014-07-01
During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.
NASA Astrophysics Data System (ADS)
de la Fuente, Maria; Calvo, Eva; Skinner, Luke; Pelejero, Carles; Evans, David; Müller, Wolfgang; Povea, Patricia; Cacho, Isabel
2017-12-01
It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios from Ocean Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO32-], and therefore [CO32-]), along with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator of oxygenation changes. Our results show lower [CO32-], δ13C, and [O2] values during the LGM, which would be consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water ventilation. However, the difference between LGM and Holocene [CO32-] observed at our site is relatively small, in accordance with other records from across the Pacific, suggesting that a "counteracting" mechanism, such as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average ocean alkalinity, allowing even more atmospheric CO2 to be "sequestered" by the ocean. Therefore, the deep Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a more efficient biological carbon pump and also an increase in average ocean alkalinity.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.
2014-03-01
The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.
Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska
NASA Astrophysics Data System (ADS)
Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.
2018-02-01
Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.
NASA Astrophysics Data System (ADS)
Tune, Jesse W.; Waters, Michael R.; Schmalle, Kayla A.; DeSantis, Larisa R. G.; Kamenov, George D.
2018-04-01
Genomic studies indicate that the first Pleistocene foragers who entered North America diverged from ancestral populations in Beringia sometime after the Last Glacial Maximum (LGM); however, several archaeological sites in North America have been proposed to predate the LGM. We present the results of our excavation and analysis of one such site, Coats-Hines-Litchy, Tennessee, which show that this site is a paleontological locality containing a geofact assemblage that pre-dates the LGM. Other sites in North America that purportedly predate the LGM occur in geomorphic contexts that are also conducive to the formation of geofact assemblages. As such, we propose that the reported artifacts from these sites were created by natural processes. No sites in North America currently provide credible evidence of a pre-LGM occupation.
Brewster, Ciarán; Meiklejohn, Christopher; von Cramon-Taubadel, Noreen; Pinhasi, Ron
2014-01-01
The Last Glacial Maximum (LGM) represents the most significant climatic event since the emergence of anatomically modern humans (AMH). In Europe, the LGM may have played a role in changing morphological features as a result of adaptive and stochastic processes. We use craniometric data to examine morphological diversity in pre- and post-LGM specimens. Craniometric variation is assessed across four periods—pre-LGM, late glacial, Early Holocene and Middle Holocene—using a large, well-dated, dataset. Our results show significant differences across the four periods, using a MANOVA on size-adjusted cranial measurements. A discriminant function analysis shows separation between pre-LGM and later groups. Analyses repeated on a subsample, controlled for time and location, yield similar results. The results are largely influenced by facial measurements and are most consistent with neutral demographic processes. These findings suggest that the LGM had a major impact on AMH populations in Europe prior to the Neolithic. PMID:24912847
Sensitivity of southern hemisphere westerly wind to boundary conditions for the last glacial maximum
NASA Astrophysics Data System (ADS)
Jun, S. Y.; Kim, S. J.; Kim, B. M.
2017-12-01
To examine the change in SH westerly wind in the LGM, we performed LGM simulation with sensitivity experiments by specifying the LGM sea ice in the Southern Ocean (SO), ice sheet over Antarctica, and tropical pacific sea surface temperature to CAM5 atmosphere general circulation model (GCM). The SH westerly response to LGM boundary conditions in the CAM5 was compared with those from CMIP5 LGM simulations. In the CAM5 LGM simulation, the SH westerly wind substantially increases between 40°S and 65°S, while the zonal-mean zonal wind decreases at latitudes higher than 65°S. The position of the SH maximum westerly wind moves poleward by about 8° in the LGM simulation. Sensitivity experiments suggest that the increase in SH westerly winds is mainly due to the increase in sea ice in the SO that accounts for 60% of total wind change. In the CMIP5-PMIP3 LGM experiments, most of the models show the slight increase and poleward shift of the SH westerly wind as in the CAM5 experiment. The increased and poleward shifted westerly wind in the LGM obtained in the current model result is consistent with previous model results and some lines of proxy evidence, though opposite model responses and proxy evidence exist for the SH westerly wind change.
Late Cenozoic Climate Change and its Implications on the Denudation of Orogen Syntaxes
NASA Astrophysics Data System (ADS)
Mutz, Sebastian; Ehlers, Todd
2017-04-01
The denudation history of active orogens is often interpreted in the context of modern climate gradients. Despite the influence of climatic conditions on erosion rates, information about paleoclimate evolution is often not available and thus not considered when denudation histories are interpreted. In this study, we analyze output from paleoclimate simulations conducted with ECHAM5-wiso at T159 (ca. 80x80km) resolution. Specifically, we analyze simulations of pre-industrial (PI, pre-1850), Mid-Holocene (MH, ca. 6ka), Last Glacial Maximum (LGM, ca. 21ka) and Pliocene (PLIO, ca. 3ka) climates and focus on a selection of orogen syntaxes as study regions (e.g. Himalaya, SE Alaska, Cascadia, and Central Andes). For the selected region, we carry out a cluster analysis using a hybrid of hierarchical and k-means clustering procedures using mean annual temperature (MAT), temperature amplitude, mean annual precipitation (MAP), precipitation amplitude and u-wind and v-wind in different months to provide a general overview of paleoclimates in the study regions. Additionally, we quantify differences between paleoclimates by applying two-group linear discrimination analyses to the simulation output for a similar selection of variables. Results indicate the largest differences to the PI climate are observed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. These global trends can be observed for most locations in the investigated areas, but the strength varies regionally and the trends in precipitation are less uniform than trends in temperatures. The LGM climate shows the largest deviation in annual precipitation from the PI climate, and shows enhanced precipitation in the temperate Andes, and coastal regions for both SE Alaska and the US Pacific Northwest Pacific. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen towards the eastern syntax. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time-slice experiments conducted here. Results from the discriminant analysis show that the quantified differences in climate and the relative contribution to these differences by each of the analyzed parameters are highly variable in space for each of the paleoclimates. Taken together, these results highlight significant changes in Late Cenozoic regional climatology over active orogens on time scales ranging from glacial cycles to geologic. As a result, future interpretation of recent and paleo denudation rates in these areas from sediment flux inventories, cosmogenic radionuclides, or low-temperature thermochronology techniques warrant careful consideration of these changes.
Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling
Hostetler, S.W.; Clark, P.U.
2000-01-01
Model-derived equilibrium line altitudes (ELAs) of former tropical glaciers support arguments, based on other paleoclimate data, for both the magnitude and spatial pattern of terrestrial cooling in the tropics at the last glacial maximum (LGM). Relative to the present, LGM ELAs were maintained by air temperatures that were 3.5??to 6.6 ??C lower and precipitation that ranged from 63% wetter in Hawaii to 25% drier on Mt. Kenya, Africa. Our results imply the need for a ~3 ??C cooling of LGM sea surface temperatures in the western Pacific warm pool. Sensitivity tests suggest that LGM ELAs could have persisted until 16,000 years before the present in the Peruvian Andes and on Papua, New Guinea.
NASA Technical Reports Server (NTRS)
Kageyama, Masa; Albani, Samuel; Braconnot, Pascale; Harrison, Sandy P.; Hopcroft, Peter O.; Ivanovic, Ruza F.; Lambert, Fabrice; Marti, Olivier; Peltier, W. Richard; Peterschmitt, Jean-Yves;
2017-01-01
The Last Glacial Maximum (LGM, 21,000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM.
NASA Astrophysics Data System (ADS)
Kageyama, Masa; Albani, Samuel; Braconnot, Pascale; Harrison, Sandy P.; Hopcroft, Peter O.; Ivanovic, Ruza F.; Lambert, Fabrice; Marti, Olivier; Peltier, W. Richard; Peterschmitt, Jean-Yves; Roche, Didier M.; Tarasov, Lev; Zhang, Xu; Brady, Esther C.; Haywood, Alan M.; LeGrande, Allegra N.; Lunt, Daniel J.; Mahowald, Natalie M.; Mikolajewicz, Uwe; Nisancioglu, Kerim H.; Otto-Bliesner, Bette L.; Renssen, Hans; Tomas, Robert A.; Zhang, Qiong; Abe-Ouchi, Ayako; Bartlein, Patrick J.; Cao, Jian; Li, Qiang; Lohmann, Gerrit; Ohgaito, Rumi; Shi, Xiaoxu; Volodin, Evgeny; Yoshida, Kohei; Zhang, Xiao; Zheng, Weipeng
2017-11-01
The Last Glacial Maximum (LGM, 21 000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM.
NASA Astrophysics Data System (ADS)
Zhao, Yongtao; An, Cheng-Bang; Mao, Limi; Zhao, Jiaju; Tang, Lingyu; Zhou, Aifeng; Li, Hu; Dong, Weimiao; Duan, Futao; Chen, Fahu
2015-10-01
Marine Isotope Stage (MIS) 2 is mostly a cold period encompassing the Last Glacial Maximum (LGM), but the regional expression of MIS2 in arid areas of China is not well known. In this paper, we use high-resolution lacustrine pollen and grain-size records from Balikun Lake to infer vegetation, lake evolution, and climate in arid western China during MIS2. Our results suggest that: 1) the regional vegetation around Balikun was mainly dominated by desert and/or desert-steppe, and Balikun Lake was relatively shallow and experienced high aeolian input during MIS2; 2) distinctive runoff from mountain glacial meltwater in the eastern parts of the Balikun basin caused a high relative abundance of Artemisia pollen during the LGM (26.5-19.2 cal kyr BP), while simultaneously the desert areas expanded as indicated by the high abundance of desert shrubs (e.g., Elaeagnaceae, Rhamnaceae, Hippophae). This cold and dry LGM climate triggered a substantial lowering of lake level; 3) an extremely cold and dry climate prevailing from 17.0 to 15.2 cal kyr BP, correlated with Heinrich event 1 (H1), would explain the low vegetation cover found then; and 4) the warm and humid Bølling/Allerød interstadial (BA: ca. 15-ca. 13 cal kyr BP) is clearly recorded in the Balikun region by the development of wetland herb communities (e.g., Poaceae, Cyperaceae, Typha), and the lake level rose due to increased runoff. Our results challenge the traditional view of cold and wet climatic conditions and high lake levels in arid western China during the LGM, and we propose that changes in local temperature modulated by July insolation was an indispensable factor in triggering vegetation evolution in the Balikun region during MIS2.
NASA Astrophysics Data System (ADS)
Umling, Natalie E.; Thunell, Robert C.
2018-06-01
A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.
NASA Astrophysics Data System (ADS)
K V, S.; Kurian, J.; Meloth, T.; Rasik, R.
2011-12-01
Reconstruction of the Indian monsoon precipitation on a centennial to millennial scale has important relevance on the future climate and hydrologic change over the entire South Asia. Here we present paleo-monsoon records from a AMS 14C dated sediment core from the Bay of Bengal (ABP-24/01; location - 11°15.52' N & 90°21.84' E, water depth - 3206 m) that span the past 24.5 ka BP (calendar age). The array of inorganic and organic geochemical proxy records examined here assist the reconstruction of monsoon associated precipitation/ runoff, oceanic productivity and water column processes during the last glacial maximum (LGM ~21±2 ka BP) to the late Holocene. During the early stages of LGM, terrigenous elemental concentrations (Al, Fe) remained low, with substantial increase towards late LGM stage. Significantly, the substantial LGM increase in the eolian proxy concentrations (Mg, Rb) suggest that with the diminishing strength of the rain bearing SW monsoon during LGM the dry NE monsoon strengthened, leading to increased dust input to the Bay of Bengal. Although the LGM biological productivity (Corg, CaCO3, Ba) at the site remained low due to the relative decrease in runoff-derived nutrients, the ocean bottom seems to have less ventilated (Mn, U, V). The deglacial period is associated with slightly increasing monsoonal runoff increasing trend in terrigenous input, without any increase in biological productivity. Interestingly, the enhanced terrigenous input to the core site occurred during 12.5 - 10 ka BP. The Holocene was characterised by a dramatic increase in biological productivity between 8.5 and 7 ka BP as well as relatively enhanced river influx. While the various proxy records suggest a substantial decrease in monsoonal terrigenous influx after 7 ka BP, the productivity records remained at elevated values with better ventilated bottom waters.
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Valdes, Paul J.
2015-07-01
Previous work demonstrated a significant correlation between tropical surface air temperature and equilibrium climate sensitivity (ECS) in PMIP (Paleoclimate Modelling Intercomparison Project) phase 2 model simulations of the last glacial maximum (LGM). This implies that reconstructed LGM cooling in this region could provide information about the climate system ECS value. We analyze results from new simulations of the LGM performed as part of Coupled Model Intercomparison Project (CMIP5) and PMIP phase 3. These results show no consistent relationship between the LGM tropical cooling and ECS. A radiative forcing and feedback analysis shows that a number of factors are responsible for this decoupling, some of which are related to vegetation and aerosol feedbacks. While several of the processes identified are LGM specific and do not impact on elevated CO2 simulations, this analysis demonstrates one area where the newer CMIP5 models behave in a qualitatively different manner compared with the older ensemble. The results imply that so-called Earth System components such as vegetation and aerosols can have a significant impact on the climate response in LGM simulations, and this should be taken into account in future analyses.
Reduced El Niño-Southern Oscillation during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Ford, Heather L.; Ravelo, A. Christina; Polissar, Pratigya J.
2015-01-01
El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.
Cosmogenic evidence for limited local LGM glacial expansion, Denton Hills, Antarctica
NASA Astrophysics Data System (ADS)
Joy, Kurt; Fink, David; Storey, Bryan; De Pascale, Gregory P.; Quigley, Mark; Fujioka, Toshiyuki
2017-12-01
The geomorphology of the Denton Hills provides insight into the timing and magnitude of glacial retreats in a region of Antarctica isolated from the influence of the East Antarctic ice sheet. We present 26 Beryllium-10 surface exposure ages from a variety of glacial and lacustrine features in the Garwood and Miers valleys to document the glacial history of the area from 10 to 286 ka. Our data show that the cold-based Miers, Joyce and Garwood glaciers retreated little since their maximum positions at 37.2 ± 6.9 (1σ n = 4), 35.1 ± 1.5 (1σ, n = 3) and 35.6 ± 10.1 (1σ, n = 6) ka respectively. The similar timing of advance of all three glaciers and the lack of a significant glacial expansion during the global LGM suggests a local LGM for the Denton Hills between ca. 26 and 51 ka, with a mean age of 36.0 ± 7.5 (1σ, n = 13) ka. A second cohort of exposure ages provides constraints to the behaviour of Glacial Lake Trowbridge that formerly occupied Miers Valley in the late Pleistocene. These data show active modification of the landscape from ∼20 ka until the withdrawal of ice from the valley mouths, and deposition of Ross Sea Drift, at 10-14 ka.
Bartlein, Patrick J.; Hostetler, Steven W.; Alder, Jay R.; Ohring, G.
2014-01-01
As host to one of the major continental-scale ice sheets, and with considerable spatial variability of climate related to its physiography and location, North America has experienced a wide range of climates over time. The aim of this chapter is to review the history of those climate variations, focusing in particular on the continental-scale climatic variations between the Last Glacial Maximum (LGM, ca. 21,000 years ago or 21 ka) and the present, which were as large in amplitude as any experienced over a similar time span during the past several million years. As background to that discussion, the climatic variations over the Cenozoic (the past 65.5 Myr, or 65.5 Ma to present) that led ultimately to the onset of Northern Hemisphere glaciation at 2.59 Ma will also be discussed. Superimposed on the large-amplitude, broad-scale variations from the LGM to present, are climatic variations on millennial-to-decadal scales, and these will be reviewed in particular for the Holocene (11.7 ka to present) and the past millennium.
You, Jianling; Qin, Xiaoping; Ranjitkar, Sailesh; Lougheed, Stephen C; Wang, Mingcheng; Zhou, Wen; Ouyang, Dongxin; Zhou, Yin; Xu, Jianchu; Zhang, Wenju; Wang, Yuguo; Yang, Ji; Song, Zhiping
2018-04-12
Climate change profoundly influences species distributions. These effects are evident in poleward latitudinal range shifts for many taxa, and upward altitudinal range shifts for alpine species, that resulted from increased annual global temperatures since the Last Glacial Maximum (LGM, ca. 22,000 BP). For the latter, the ultimate consequence of upward shifts may be extinction as species in the highest alpine ecosystems can migrate no further, a phenomenon often characterized as "nowhere to go". To predict responses to climate change of the alpine plants on the Qinghai-Tibetan Plateau (QTP), we used ecological niche modelling (ENM) to estimate the range shifts of 14 Rhodiola species, beginning with the Last Interglacial (ca. 120,000-140,000 BP) through to 2050. Distributions of Rhodiola species appear to be shaped by temperature-related variables. The southeastern QTP, and especially the Hengduan Mountains, were the origin and center of distribution for Rhodiola, and also served as refugia during the LGM. Under future climate scenario in 2050, Rhodiola species might have to migrate upward and northward, but many species would expand their ranges contra the prediction of the "nowhere to go" hypothesis, caused by the appearance of additional potential habitat concomitant with the reduction of permafrost with climate warming.
Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum
NASA Astrophysics Data System (ADS)
Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine
2018-06-01
To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.
Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Andreasen, Dyke H.; Ravelo, A. Christina; Broccoli, Anthony J.
2001-01-01
We present results of a Last Glacial Maximum (LGM) wind stress sensitivity experiment using a high-resolution ocean general circulation model of the tropical Pacific Ocean. LGM wind stress, used to drive the ocean model, was generated using an atmospheric general circulation model simulation forced by LGM boundary conditions as part of the Paleoclimate Modeling Intercomparison Project (PMIP) [Broccoli, 2000]. LGM wind stress anomalies were large in the western half of the basin, yet there was a significant hydrographic response in the eastern half. This ocean model experiment hind casts changes that are in close agreement with paleoceanographic data from the entire region, even without the explicit modeling of the air-sea interactions. Data and model both predict that the annual average thermocline tilt across the basin was enhanced. Data and model are consistent with a stronger equatorial undercurrent which shoaled to the west of where it does today, and stronger advection of water from the Peru Current into the east equatorial Pacific and across the equator. Paleoproductivity and sea surface temperature (SST) data are interpreted in light of the modeling results, indicating that paleoproductivity changes were related to wind-forced dynamical changes resulting from LGM boundary conditions, while SST changes were related to independent, possibly radiative, forcing. Overall, our results imply that much of the dynamic response of the tropical Pacific during the LGM can be explained by wind field changes resulting from global LGM boundary conditions.
Mapping Soil Age at Continental Scales
NASA Astrophysics Data System (ADS)
Slessarev, E.; Feng, X.
2017-12-01
Soil age controls the balance between weathered and unweathered minerals in soil, and thus strongly influences many of the biological, geochemical, and hydrological functions of the critical zone. However, most quantitative models of soil development do not represent soil age. Instead, they rely on a steady-state assumption: physical erosion controls the residence time of unweathered minerals in soil, and thus fixes the chemical weathering rate. This assumption may hold true in mountainous landscapes, where physical erosion rates are high. However, the steady-state assumption may fail in low-relief landscapes, where physical erosion rates have been insufficient to remove unweathered minerals left by glaciation and dust deposition since the Last Glacial Maximum (LGM). To test the applicability of the steady-state assumption at continental scales, we developed an empirical predictor for physical erosion, and then simulated soil development since LGM with a numerical model. We calibrated the physical erosion predictor using a compilation of watershed-scale sediment yield data, and in-situ 10Be denudation measurements corrected for weathering by Zr/Ti mass-balance. Physical erosion rates can be predicted using a power-law function of local relief and peak ground acceleration, a proxy for tectonic activity. Coupling physical erosion rates with the numerical model reveals that extensive low-relief areas of North America may depart from steady-state because they were glaciated, or received high dust fluxes during LGM. These LGM legacy effects are reflected in topsoil Ca:Al and Quartz:Feldspar ratios derived from United States Geological Survey data, and in a global compilation of soil pH measurements. Our results quantitatively support the classic idea that soils in the mid-high latitudes of the Northern Hemisphere are "young", in the sense that they are undergoing transient response to LGM conditions. Where they occur, such departures from steady-state likely increase mineral weathering rates and the supply of rock-derived nutrients to ecosystems.
The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago.
Politis, Gustavo G; Gutiérrez, María A; Rafuse, Daniel J; Blasi, Adriana
The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P.) and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.). Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM) in the North America.
NASA Astrophysics Data System (ADS)
Berman, Ana Laura; Silvestri, Gabriel E.; Tonello, Marcela S.
2018-04-01
Differences between climate conditions during the Last Glacial Maximum (LGM) and the Mid-Holocene (MH) in southern South America inferred from the state-of-the-art PMIP3 paleoclimatic simulations are described for the first time in this paper. The aim is to expose characteristics of past climate changes occurred without human influence. In this context, numerical simulations are an indispensable tool for inferring changes in near-surface air temperature and precipitation in regions where proxy information is scarce or absent. The analyzed PMIP3 models describe MH temperatures significantly warmer than those of LGM with magnitudes of change depending on the season and the specific geographic region. In addition, models indicate that seasonal mean precipitation during MH increased with respect to LGM values in wide southern continental areas to the east of the Andes Cordillera whereas seasonal precipitation developed in areas to the west of Patagonian Andes reduced from LGM to MH.
Gridded climate data from 5 GCMs of the Last Glacial Maximum downscaled to 30 arc s for Europe
NASA Astrophysics Data System (ADS)
Schmatz, D. R.; Luterbacher, J.; Zimmermann, N. E.; Pearman, P. B.
2015-06-01
Studies of the impacts of historical, current and future global change require very high-resolution climate data (≤ 1 km) as a basis for modelled responses, meaning that data from digital climate models generally require substantial rescaling. Another shortcoming of available datasets on past climate is that the effects of sea level rise and fall are not considered. Without such information, the study of glacial refugia or early Holocene plant and animal migration are incomplete if not impossible. Sea level at the last glacial maximum (LGM) was approximately 125 m lower, creating substantial additional terrestrial area for which no current baseline data exist. Here, we introduce the development of a novel, gridded climate dataset for LGM that is both very high resolution (1 km) and extends to the LGM sea and land mask. We developed two methods to extend current terrestrial precipitation and temperature data to areas between the current and LGM coastlines. The absolute interpolation error is less than 1 and 0.5 °C for 98.9 and 87.8 %, respectively, of all pixels within two arc degrees of the current coastline. We use the change factor method with these newly assembled baseline data to downscale five global circulation models of LGM climate to a resolution of 1 km for Europe. As additional variables we calculate 19 "bioclimatic" variables, which are often used in climate change impact studies on biological diversity. The new LGM climate maps are well suited for analysing refugia and migration during Holocene warming following the LGM.
NASA Astrophysics Data System (ADS)
Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin
2017-03-01
We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.
NASA Astrophysics Data System (ADS)
Liew, P. M.; Kuo, C. M.; Huang, S. Y.; Tseng, M. H.
1998-05-01
Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today's Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage.
NASA Astrophysics Data System (ADS)
Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David
2015-11-01
During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM, challenges the conventional geomorphic model of glaciation in New Zealand where the vertical arrangement of glacial landform-associations is used to assign successively older glaciation ages.
Shelf evolution along a transpressive transform margin, Santa Barbara Channel, California
Johnson, Samuel Y.; Hartwell, Stephen; Sorlien, Christopher C.; Dartnell, Peter; Ritchie, Andrew C.
2017-01-01
High-resolution bathymetric and seismic reflection data provide new insights for understanding the post–Last Glacial Maximum (LGM, ca. 21 ka) evolution of the ∼120-km-long Santa Barbara shelf, located within a transpressive segment of the transform continental margin of western North America. The goal is to determine how rising sea level, sediment supply, and tectonics combine to control shelf geomorphology and history. Morphologic, stratigraphic, and structural data highlight regional variability and support division of the shelf into three domains. (1) The eastern Santa Barbara shelf is south of and in the hanging wall of the blind south-dipping Oak Ridge fault. The broad gently dipping shelf has a convex-upward shape resulting from thick post-LGM sediment (mean = 24.7 m) derived from the Santa Clara River. (2) The ∼5–8-km-wide Ventura Basin obliquely crosses the shelf and forms an asymmetric trough with thick post-LGM sediment fill (mean = 30.4 m) derived from the Santa Clara and Ventura Rivers. The basin is between and in the footwalls of the Oak Ridge fault to the south and the blind north-dipping Pitas Point fault to the north. (3) The central and western Santa Barbara shelf is located north of and in the hanging wall of the North Channel–Pitas Point fault system. The concave-up shape of the shelf results from folding, marine erosion, and the relative lack of post-LGM sediment cover (mean = 3.8 m). Sediment is derived from small steep coastal watersheds and largely stored in the Gaviota bar and other nearshore mouth bars. Three distinct upper slope morphologies result from a mix of progradation and submarine landsliding.Ages and rates of deformation are derived from a local sea-level-rise model that incorporates an inferred LGM shoreline angle and the LGM wave-cut platform. Post-LGM slip rates on the offshore Oak Ridge fault are a minimum of 0.7 ± 0.1 mm/yr. Slip rates on the Pitas Point fault system are a minimum of 2.3 ± 0.3 mm/yr near Pitas Point, and decrease to the west across the Santa Barbara Channel. Documentation of fault lengths, slip rates, and rupture modes, as well as potential zones of submarine landsliding, provide essential information for enhanced regional earthquake and tsunami hazard assessment.
Does Southern Ocean Surface Forcing Shape the Global Ocean Overturning Circulation?
NASA Astrophysics Data System (ADS)
Sun, Shantong; Eisenman, Ian; Stewart, Andrew L.
2018-03-01
Paleoclimate proxy data suggest that the Atlantic Meridional Overturning Circulation (AMOC) was shallower at the Last Glacial Maximum (LGM) than its preindustrial (PI) depth. Previous studies have suggested that this shoaling necessarily accompanies Antarctic sea ice expansion at the LGM. Here the influence of Southern Ocean surface forcing on the AMOC depth is investigated using ocean-only simulations from a state-of-the-art climate model with surface forcing specified from the output of previous coupled PI and LGM simulations. In contrast to previous expectations, we find that applying LGM surface forcing in the Southern Ocean and PI surface forcing elsewhere causes the AMOC to shoal only about half as much as when LGM surface forcing is applied globally. We show that this occurs because diapycnal mixing renders the Southern Ocean overturning circulation more diabatic than previously assumed, which diminishes the influence of Southern Ocean surface buoyancy forcing on the depth of the AMOC.
Last Glacial Maximum Salinity Reconstruction
NASA Astrophysics Data System (ADS)
Homola, K.; Spivack, A. J.
2016-12-01
It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were determined experimentally. We compare the high precision salinity profiles determined using our new method to profiles determined from the traditional chloride titrations of parallel samples. Our technique provides a more accurate reconstruction of past salinity, informing questions of water mass composition and distribution during the LGM.
NASA Astrophysics Data System (ADS)
Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin
2018-04-01
The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and LGM reveal satisfactory to good performance of the model in reproducing precipitation changes, although in some cases discrepancies between neighbouring proxy observations highlight contradictions between proxy observations themselves. Finally, we document regions where the largest magnitudes of late Cenozoic changes in precipitation and temperature occur and offer the highest potential for future observational studies that quantify the impact of climate change on denudation and weathering rates.
Stable water isotope behavior during the last glacial maximum: A general circulation model analysis
NASA Technical Reports Server (NTRS)
Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.
1994-01-01
Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.
The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago
Politis, Gustavo G.; Gutiérrez, María A.; Blasi, Adriana
2016-01-01
The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P.) and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.). Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM) in the North America. PMID:27683248
NASA Astrophysics Data System (ADS)
Magyari, E. K.; Veres, D.; Wennrich, V.; Wagner, B.; Braun, M.; Jakab, G.; Karátson, D.; Pál, Z.; Ferenczy, Gy; St-Onge, G.; Rethemeyer, J.; Francois, J.-P.; von Reumont, F.; Schäbitz, F.
2014-12-01
The Carpathian Mountains were one of the main mountain reserves of the boreal and cool temperate flora during the Last Glacial Maximum (LGM) in East-Central Europe. Previous studies demonstrated Lateglacial vegetation dynamics in this area; however, our knowledge on the LGM vegetation composition is very limited due to the scarcity of suitable sedimentary archives. Here we present a new record of vegetation, fire and lacustrine sedimentation from the youngest volcanic crater of the Carpathians (Lake St Anne, Lacul Sfânta Ana, Szent-Anna-tó) to examine environmental change in this region during the LGM and the subsequent deglaciation. Our record indicates the persistence of boreal forest steppe vegetation (with Pinus, Betula, Salix, Populus and Picea) in the foreland and low mountain zone of the East Carpathians and Juniperus shrubland at higher elevation. We demonstrate attenuated response of the regional vegetation to maximum global cooling. Between ˜22,870 and 19,150 cal yr BP we find increased regional biomass burning that is antagonistic with the global trend. Increased regional fire activity suggests extreme continentality likely with relatively warm and dry summers. We also demonstrate xerophytic steppe expansion directly after the LGM, from ˜19,150 cal yr BP, and regional increase in boreal woodland cover with Pinus and Betula from 16,300 cal yr BP. Plant macrofossils indicate local (950 m a.s.l.) establishment of Betula nana and Betula pubescens at 15,150 cal yr BP, Pinus sylvestris at 14,700 cal yr BP and Larix decidua at 12,870 cal yr BP. Pollen data furthermore support population genetic inferences regarding the regional presence of some temperate deciduous trees during the LGM (Fagus sylvatica, Corylus avellana, Fraxinus excelsior). Our sedimentological data also demonstrate intensified aeolian dust accumulation between 26,000 and 20,000 cal yr BP.
NASA Astrophysics Data System (ADS)
Hertzberg, Jennifer E.; Schmidt, Matthew W.; Bianchi, Thomas S.; Smith, Richard W.; Shields, Michael R.; Marcantonio, Franco
2016-01-01
The use of the TEX86 temperature proxy has thus far come to differing results as to whether TEX86 temperatures are representative of surface or subsurface conditions. In addition, although TEX86 temperatures might reflect sea surface temperatures based on core-top (Holocene) values, this relationship might not hold further back in time. Here, we investigate the TEX86 temperature proxy by comparing TEX86 temperatures to Mg/Ca temperatures of multiple species of planktonic foraminifera for two sites in the eastern tropical Pacific (on the Cocos and Carnegie Ridges) across the Holocene and Last Glacial Maximum. Core-top and Holocene TEX86H temperatures at both study regions agree well, within error, with the Mg/Ca temperatures of Globigerinoides ruber, a surface dwelling planktonic foraminifera. However, during the Last Glacial Maximum, TEX86H temperatures are more representative of upper thermocline temperatures, and are offset from G. ruber Mg/Ca temperatures by 5.8 °C and 2.9 °C on the Cocos Ridge and Carnegie Ridge, respectively. This offset between proxies cannot be reconciled by using different TEX86 temperature calibrations, and instead, we suggest that the offset is due to a deeper export depth of GDGTs at the LGM. We also compare the degree of glacial cooling at both sites based on both temperature proxies, and find that TEX86H temperatures greatly overestimate glacial cooling, especially on the Cocos Ridge. This study has important implications for applying the TEX86 paleothermometer in the eastern tropical Pacific.
Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?
Leonard, Saoirse A.; Risley, Claire L.; Turvey, Samuel T.
2013-01-01
Brown bears are recorded from Ireland during both the Late Pleistocene and early–mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British–Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear–polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions. PMID:23676655
Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?
Leonard, Saoirse A; Risley, Claire L; Turvey, Samuel T
2013-08-23
Brown bears are recorded from Ireland during both the Late Pleistocene and early-mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British-Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear-polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions.
Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum
Fraser, Ceridwen I.; Nikula, Raisa; Spencer, Hamish G.; Waters, Jonathan M.
2009-01-01
The end of the Last Glacial Maximum (LGM) dramatically reshaped temperate ecosystems, with many species moving poleward as temperatures rose and ice receded. Whereas reinvading terrestrial taxa tracked melting glaciers, marine biota recolonized ocean habitats freed by retreating sea ice. The extent of sea ice in the Southern Hemisphere during the LGM has, however, yet to be fully resolved, with most palaeogeographic studies suggesting only minimal or patchy ice cover in subantarctic waters. Here, through population genetic analyses of the widespread Southern Bull Kelp (Durvillaea antarctica), we present evidence for persistent ice scour affecting subantarctic islands during the LGM. Using mitochondrial and chloroplast genetic markers (COI; rbcL) to genetically characterize some 300 kelp samples from 45 Southern Ocean localities, we reveal a remarkable pattern of recent recolonization in the subantarctic. Specifically, in contrast to the marked phylogeographic structure observed across coastal New Zealand and Chile (10- to 100-km scales), subantarctic samples show striking genetic homogeneity over vast distances (10,000-km scales), with a single widespread haplotype observed for each marker. From these results, we suggest that sea ice expanded further and ice scour during the LGM impacted shallow-water subantarctic marine ecosystems more extensively than previously suggested. PMID:19204277
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.
2014-11-01
The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.
Export production in the New-Zealand region since the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Kitchener, Priya; Townsend, Ashley T.; Jansen, Nils; Kinsley, Les; Jacobsen, Geraldine; Johnson, Sean; Neil, Helen
2017-07-01
Increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron fertilisation has been proposed as a key mechanism for explaining carbon drawdown during the last glacial maximum (LGM). This work reconstructs marine EP since the LGM at four sites around New Zealand. For the first time in this region, 230-Thorium-normalised fluxes of biogenic opal, carbonate, excess barium, and organic carbon are presented. In Subtropical Waters and the SAZ, these flux variations show that EP has not changed markedly since the LGM. The only exception is a site currently north of the subtropical front. Here we suggest the subtropical front shifted over the core site between 18 and 12 ka, driving increased EP. To understand why EP remained mostly low and constant elsewhere, lithogenic fluxes at the four sites were measured to investigate changes in dust deposition. At all sites, lithogenic fluxes were greater during the LGM compared to the Holocene. The positive temporal correlation between the Antarctic dust record and lithogenic flux at a site in the Tasman Sea shows that regionally, increased dust deposition contributed to the high glacial lithogenic fluxes. Additionally, it is inferred that lithogenic material from erosion and glacier melting deposited on the Campbell Plateau during the deglaciation (18-12 ka). From these observations, it is proposed that even though increased glacial dust deposition may have relieved iron limitation within the SAZ around New Zealand, the availability of silicic acid limited diatom growth and thus any resultant increase in carbon export during the LGM. Therefore, silicic acid concentrations have remained low since the LGM. This result suggests that both silicic acid and iron co-limit EP in the SAZ around New Zealand, consistent with modern process studies.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Brodeau, L.; Brandefelt, J.; Lundberg, P.; Döös, K.
2013-01-01
Most state-of-the-art climate models include a coarsely resolved oceanic component, which has difficulties in capturing detailed dynamics, and therefore eddy-permitting/eddy-resolving simulations have been developed to reproduce the observed World Ocean. In this study, an eddy-permitting numerical experiment is conducted to simulate the global ocean state for a period of the Last Glacial Maximum (LGM, ~ 26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account these higher spatial scales. The ocean general circulation model is forced by a 49-yr sample of LGM atmospheric fields constructed from a quasi-equilibrated climate-model simulation. The initial state and the bottom boundary condition conform to the Paleoclimate Modelling Intercomparison Project (PMIP) recommendations. Before evaluating the model efficiency in representing the paleo-proxy reconstruction of the surface state, the LGM experiment is in this first part of the investigation, compared with a present-day eddy-permitting hindcast simulation as well as with the available PMIP results. It is shown that the LGM eddy-permitting simulation is consistent with the quasi-equilibrated climate-model simulation, but large discrepancies are found with the PMIP model analyses, probably due to the different equilibration states. The strongest meridional gradients of the sea-surface temperature are located near 40° N and S, this due to particularly large North-Atlantic and Southern-Ocean sea-ice covers. These also modify the locations of the convection sites (where deep-water forms) and most of the LGM Conveyor Belt circulation consequently takes place in a thinner layer than today. Despite some discrepancies with other LGM simulations, a glacial state is captured and the eddy-permitting simulation undertaken here yielded a useful set of data for comparisons with paleo-proxy reconstructions.
NASA Astrophysics Data System (ADS)
Kageyama, Masa; Braconnot, Pascale; Bopp, Laurent; Mariotti, Véronique; Roy, Tilla; Woillez, Marie-Noëlle; Caubel, Arnaud; Foujols, Marie-Alice; Guilyardi, Eric; Khodri, Myriam; Lloyd, James; Lombard, Fabien; Marti, Olivier
2013-05-01
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM-PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.
Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene
NASA Astrophysics Data System (ADS)
Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude
2017-08-01
Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong melting under the influence of atmosphere and ocean warming and a steep reverse slope toward the deep fjords. We conclude that ocean warming played an important role in the palaeo-retreat dynamics of the GIS during the last deglaciation.
NASA Astrophysics Data System (ADS)
Ivy-Ochs, Susan; Braakhekke, Jochem; Monegato, Giovanni; Gianotti, Franco; Forno, Gabriella; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian
2017-04-01
The Last Glacial Maximum (LGM) in the Alps saw much of the mountains inundated by ice. Several main accumulation areas comprising local ice caps and plateau icefields fit into a picture of transection glaciers flowing into huge valley glaciers. In the north the valley glaciers covered long distances (hundreds of kilometers) to reach the forelands where they spread out in fan-shaped piedmont lobes tens of kilometers across, e.g. the Rhine glacier. In the south travel distances to the mountain front were often shorter, the pathway steeper. Nevertheless, not all glaciers even reached beyond the front, as the temperatures were notably warmer in the south. For example at Orta the glacier snout remained within the mountains. Where glaciers reached the forelands they stopped abruptly and the moraine amphitheaters were constructed, e.g. at Ivrea and Rivoli-Avigliana. Sets of stacked moraines built-up as glacier advance was directly confined by the older moraines. We may temporally and spatially identify the culmination of the last glacial cycle by pinpointing the outermost moraines that date to the LGM (generally about 26-24 ka). On the other hand, the timing of abandonment of foreland positions is given by ages of the innermost, often lake-bounding, moraines (about 19-18 ka). Between the two, glacier fluctuations left the stadial moraines. In the Linth-Rhine system three stadials have been recognized: Killwangen, Schlieren and Zurich. Nevertheless, already in the Swiss sector correlation of the LGM stadials among the several foreland lobes is not unambiguous. Across the Alps, not only north to south but also west to east, how do the timing and extent of glaciers during the LGM vary? Recent glacier modelling by Seguinot et al. (2017) informs and suggests the possibility of differences in timing for reaching of the maximum extent and for the number of oscillations of individual lobes during the LGM. At present few sites in the Alps have detailed enough geomorphological constraints with well-dated ice-marginal positions for in depth discussion of outermost, innermost and in between moraines. Where locations of the LGM farthest extent are conflicting depending on author, we are trying to establish the precise location of the most extensive LGM position by directly dating moraine boulders with cosmogenic 10Be. Here we present 10Be data from the Orta and Rivoli-Avigliana amphitheatres. A key comparison is with the Tagliamento amphitheatre to the east, where dating testifies to a two-phase maximum (Monegato et al. 2007). Furthermore, comparison is made to sites north of the Alps including previously unpublished data. Monegato G. et al. 2007. Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68: 284-302. Seguinot J. et al. 2017. Modelling last glacial cycle ice dynamics in the Alps. EGU2017-8982
The simulated climate of the Last Glacial Maximum and insights into the global carbon cycle.
NASA Astrophysics Data System (ADS)
Buchanan, P. J.; Matear, R.; Lenton, A.; Phipps, S. J.; Chase, Z.; Etheridge, D. M.
2016-12-01
The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL Earth System Model to test the contribution of key biogeochemical processes to ocean carbon storage. For the coupled LGM simulation, we find that significant cooling (3.2 °C), expanded minimum (Northern Hemisphere: 105 %; Southern Hemisphere: 225 %) and maximum (Northern Hemisphere: 145 %; Southern Hemisphere: 120 %) sea ice cover, and a reorganisation of the overturning circulation caused significant changes in ocean biogeochemical fields. The coupled LGM simulation stores an additional 322 Pg C in the deep ocean relative to the Pre-Industrial (PI) simulation. However, 839 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration, causing a net loss of 517 Pg C relative to the PI simulation. The LGM deep ocean also experiences an oxygenation (>100 mmol O2 m-3) and deepening of the aragonite saturation depth (> 2,000 m deeper) at odds with proxy reconstructions. Hence, these physical changes cannot in isolation produce plausible biogeochemistry nor the required drawdown of atmospheric CO2 of 80-100 ppm at the LGM. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content in the glacial oceanic reservoir can be increased (326 Pg C) to a level that is sufficient to explain the reduction in atmospheric and terrestrial carbon at the LGM (520 ± 400 Pg C). These modifications also go some way to reconcile simulated export production, aragonite saturation state and oxygen fields with those that have been reconstructed by proxy measurements, thereby implicating past changes in ocean biogeochemistry as an essential driver of the climate system.
Jezkova, Tereza; Jaeger, Jef R.; Oláh-Hemmings, Viktória; Jones, K. Bruce; Lara-Resendiz, Rafael A.; Mulcahy, Daniel G.; Riddle, Brett R.
2015-01-01
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard (Phrynosoma platyrhinos), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change. PMID:27231410
Jezkova, Tereza; Jaeger, Jef R; Oláh-Hemmings, Viktória; Jones, K Bruce; Lara-Resendiz, Rafael A; Mulcahy, Daniel G; Riddle, Brett R
2016-05-01
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions - niches - to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard ( Phrynosoma platyrhinos ), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.
NASA Astrophysics Data System (ADS)
Loomis, S. E.; Russell, J. M.; Kelly, M. A.; Eggermont, H.; Verschuren, D.
2013-12-01
Tropical lapse rate variability on glacial/interglacial time scales has been hotly debated since the publication of CLIMAP in 1976. Low-elevation paleotemperature reconstructions from the tropics have repeatedly shown less warming from the Last Glacial Maximum (LGM) to present than reconstructions from high elevations, leading to widespread difficulty in estimating the true LGM-present temperature change in the tropics. This debate is further complicated by the fact that most paleotemperature estimates from high elevations in the tropics are derived from pollen- and moraine-based reconstructions of altitudinal shifts in vegetation belts and glacial equilibrium line altitudes (ELAs). These traditional approaches rely on the assumption that lapse rates have remained constant through time. However, this assumption is problematic in the case of the LGM, when pervasive tropical aridity most likely led to substantial changes in lapse rates. Glycerol dialkyl glycerol tetraethers (GDGTs) can be used to reconstruct paleotemperatures independent of hydrological changes, making them the ideal proxy to reconstruct high elevation temperature change and assess lapse rate variability through time. Here we present two new equatorial paleotemperature records from high elevations in East Africa (Lake Rutundu, Mt. Kenya and Lake Mahoma, Rwenzori Mountains, Uganda) based on branched GDGTs. Our record from Lake Rutundu shows deglacial warming starting near 17 ka and a mid-Holocene thermal maximum near 5 ka. The overall amplitude of warming in the Lake Rutundu record is 6.8×1.0°C from the LGM to the present, with mid-Holocene temperatures 1.6×0.9°C warmer than modern. Our record from Lake Mahoma extends back to 7 ka and shows similar temperature trends to our record from Lake Rutundu, indicating similar temporal resolution of high-elevation temperature change throughout the region. Combining these new records with three previously published GDGT temperature records from different elevations in East Africa (Sacred Lake, Lake Tanganyika, and Lake Malawi), we are able to reconstruct a continuous record of lapse rates and freezing level heights (FLHs) back to the LGM. We find that tropical lapse rates have varied widely over the last 22 ky, with the largest (lowest) lapse rate (FLH) around the LGM, while the smallest (highest) lapse rate (FLH) occurs during the mid-Holocene, confirming the amplification of warming at high altitudes between the LGM and present. These lapse rate and FLH reconstructions match records of regional hydrological variability, confirming the importance of glacial/interglacial humidity variations on altitudinal temperature gradients in the tropics. Furthermore, the FLH record largely matches records of tropical glacier ELA changes, indicating that warming from LGM-present was likely amplified at high altitudes throughout the tropics.
Pore fluids and the LGM ocean salinity-Reconsidered
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2016-03-01
Pore fluid chlorinity/salinity data from deep-sea cores related to the salinity maximum of the last glacial maximum (LGM) are analyzed using estimation methods deriving from linear control theory. With conventional diffusion coefficient values and no vertical advection, results show a very strong dependence upon initial conditions at -100 ky. Earlier inferences that the abyssal Southern Ocean was strongly salt-stratified in the LGM with a relatively fresh North Atlantic Ocean are found to be consistent within uncertainties of the salinity determination, which remain of order ±1 g/kg. However, an LGM Southern Ocean abyss with an important relative excess of salt is an assumption, one not required by existing core data. None of the present results show statistically significant abyssal salinity values above the global average, and results remain consistent, apart from a general increase owing to diminished sea level, with a more conventional salinity distribution having deep values lower than the global mean. The Southern Ocean core does show a higher salinity than the North Atlantic one on the Bermuda Rise at different water depths. Although much more sophisticated models of the pore-fluid salinity can be used, they will only increase the resulting uncertainties, unless considerably more data can be obtained. Results are consistent with complex regional variations in abyssal salinity during deglaciation, but none are statistically significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Lu, Jian; Leung, Lai-Yung R.
2015-02-22
This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition hasmore » most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.« less
Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates
NASA Astrophysics Data System (ADS)
Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo
2015-07-01
Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10 ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J.; Plummer, M. A.; Huss, E.; Spiess, V. M.; Mackall, B. T.; Jacobsen, R. E.; Quirk, B.
2012-12-01
Climate conditions at the time of the local Last Glacial Maximum (LGM) in the US Rocky Mountains were assessed using a 2-d coupled glacier energy/mass-balance and ice-flow model (Plummer and Phillips, 2003). The model was employed to understand the conditions that would be necessary to sustain valley glaciers and small mountain icecaps at their maximum extents in eight areas distributed along the crest of the range from northern New Mexico (35.8oN) to northern Montana (48.6oN). For each setting, model experiments yield a set of temperature and precipitation combinations that may have accompanied the local LGM. If the results of global and regional climate models are used to constrain temperature depression estimates from our model experiments, the following precipitation pattern emerges for the local LGM. In the northern Rocky Mountains in Montana and northern Wyoming, model results suggest a strong reduction in precipitation of 50% or more. In the central Rocky Mountains of southern Wyoming and Colorado, precipitation appears to have been 50-90% of modern. By contrast, precipitation appears to have been strongly enhanced in the southern Rocky Mountains of New Mexico. These results are broadly consistent with a pattern of precipitation observed in global and regional climate simulations of the LGM in the western U.S., in which precipitation was reduced in the northern Rocky Mountains but increased in the southern Rocky Mountains. This pattern may reflect a southward displacement of mean position the Pacific Jet Stream in western North America during and possibly following the LGM.
Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola
2016-01-01
Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2–4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to −5 °C. PMID:27241795
Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola
2016-05-31
Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2-4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to -5 °C.
NASA Astrophysics Data System (ADS)
Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott
2017-04-01
High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.
The Origin of Antarctic Precipitation: A Modeling Approach
NASA Technical Reports Server (NTRS)
Delaygue, Gilles; Masson, Valerie; Jouzel, Jean; Koster, Randal D.; Healy, Richard J.
1998-01-01
Isotope concentrations in polar ice cores have long been used to estimate paleotemperatures. Underlying the use of this "isotope paleothermometer" is the assumption that the relationship between surface temperature and isotope concentration over time at a single geographical point is the same as that observed over space during the present-day climate. The validity of this assumption may in fact be compromised by several factors related to climate change. The specific factor studied in this paper involves the evaporative sources for polar precipitation. Climatic changes in the relative strengths of these sources would imply a need for a recalibration of the paleothermometer. To quantify such changes, we performed two GCM simulations, one of present-day climate and the other of the climate during the Last Glacial Maximum (LGM), roughly 18000 years ago. Evaporative sources of Antarctic precipitation were established using special tracer diagnostics. Results suggest that polar precipitation during the LGM does indeed consist of (relatively) more water from tropical oceans, a direct reflection of the LGM's increased equator-to-pole temperature gradient and its increased sea ice extent, which reduces high latitude evaporation. This result implies that an uncalibrated ice core paleothermometer would produce LGM temperatures that are biased slightly low. Because LGM boundary conditions are still under debate, we performed a third GCM simulation using a modified set of LGM boundary conditions. Using this simulation gives some qualitatively similar results, though the tropical contribution is not quite as high. Uncertainties in the LGM boundary conditions does hamper success in calibrating the paleothermometer.
NASA Astrophysics Data System (ADS)
Gavrilov, Milivoj B.; Marković, Slobodan B.; Schaetzl, Randall J.; Tošić, Ivana; Zeeden, Christian; Obreht, Igor; Sipos, György; Ruman, Albert; Putniković, Suzana; Emunds, Kathrin; Perić, Zoran; Hambach, Ulrich; Lehmkuhl, Frank
2018-04-01
This study utilizes four different methodological approaches to examine the prevailing surface winds and their associated aeolian processes in Northern Serbia, focusing on the southeastern part of the Carpathian Basin. We utilized wind and atmospheric pressure data from 1939-2014 and 1960-2010 for the climatological analyses. Geomorphological data and numerical simulations were used to estimate prevailing paleowind systems. Northern Serbia is currently dominated by surface winds coming from the fourth (270°-360°) and second (90°-180°) quadrants, with frequencies of ca. 116 and 105 days/year, respectively. Comparable frequencies within Banatska Peščara are 115 and 129 days/year, respectively. Crestal orientations of the vast majority of the ≈1300 parabolic dunes here suggest that they have formed from winds derived from the second quadrant, indicating formation during the early Holocene. The remaining dunes, of the transverse type, have orientations aligned to the third quadrant. Grain size analysis of loess deposits near Banatska Peščara points to deposition driven by southeasterly winds, probably during the period between the Last Glacial Maximum (LGM) and the early Holocene. Modern wind measurements and geomorphological data showed that the prevailing winds in the recent and past periods were from the same quadrant, in and around Banatska Peščara. These results were confirmed with an explicit numerical simulation that modelled prevailing winds from the second quadrant during the LGM. Thus, the various geomorphologic and climatic data analyzed in this study show that the general air circulation patterns in the recent period are not dissimilar to those operative during the LGM.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Jackson, M. S.; Russel, J.; Doughty, A. M.; Howley, J. A.; Cavagnaro, D. B.; Zimmerman, S. R. H.
2016-12-01
The tropics exert a profound influence on global climate; however, the role of the tropics in past climate change is uncertain. In particular, it is unclear whether the tropics may initiate abrupt climate changes or instead respond to high-latitude change. Determining the timing and spatial variability of past change in the tropics is a first step to addressing the role of the low-latitudes in both past and future climate changes. To investigate these questions, we present a cosmogenic 10Be chronology from a suite of moraines in the Rwenzori Mountains, Uganda. These results indicate that ice was most extensive early during the Last Glacial Maximum (LGM; 26.0-19.5 kyr), prior to the global sea-level lowstand at 20.5 kyr. Low-magnitude, millennial-scale glacial oscillations occurred throughout the LGM. Retreat from the LGM position was underway by 21.5 kyr, though ice remained extensive in the Rwenzori until at least 18.5 ka. Similar chronologies from elsewhere in the tropics suggest that glaciers across the low-latitudes achieved their maxima in the earliest stages of the LGM, during a period of high (mean annual) equatorial insolation and decreasing Northern Hemisphere summer insolation. In addition, the larger-scale recession that occurred subsequent to 21.5 kyr predates the post-glacial rise in atmospheric CO2 at 18.1 kyr. Therefore, we suggest that something other than Northern Hemisphere or equatorial insolation or atmospheric CO2 may have influenced the millennial-scale glacial oscillations throughout the LGM as registered by Rwenzori moraines. The chronology of glacial fluctuations in the Rwenzori Mountains is similar to other glacial chronologies located outside the tropics in both the Northern and Southern Hemispheres, suggesting that glaciers across the globe may have responded to a common forcing throughout the LGM and Termination 1.
Nevill, Paul G; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L
2014-01-01
Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r(2) = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.
Nevill, Paul G.; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L.
2014-01-01
Background and Aims Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. Methods The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. Key Results The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. Conclusions The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns. PMID:24284819
Pinhasi, Ron; Meshveliani, Tengiz; Matskevich, Zinovi; Bar-Oz, Guy; Weissbrod, Lior; Miller, Christopher E.; Wilkinson, Keith; Lordkipanidze, David; Jakeli, Nino; Kvavadze, Eliso; Higham, Thomas F. G.; Belfer-Cohen, Anna
2014-01-01
The region of western Georgia (Imereti) has been a major geographic corridor for human migrations during the Middle and Upper Palaeolithic (MP/UP). Knowledge of the MP and UP in this region, however, stems mostly from a small number of recent excavations at the sites of Ortvale Klde, Dzudzuana, Bondi, and Kotias Klde. These provide an absolute chronology for the Late MP and MP–UP transition, but only a partial perspective on the nature and timing of UP occupations, and limited data on how human groups in this region responded to the harsh climatic oscillations between 37,000–11,500 years before present. Here we report new UP archaeological sequences from fieldwork in Satsurblia cavein the same region. A series of living surfaces with combustion features, faunal remains, stone and bone tools, and ornaments provide new information about human occupations in this region (a) prior to the Last Glacial Maximum (LGM) at 25.5–24.4 ka cal. BP and (b) after the LGM at 17.9–16.2 ka cal. BP. The latter provides new evidence in the southern Caucasus for human occupation immediately after the LGM. The results of the campaigns in Satsurblia and Dzudzuana suggest that at present the most plausible scenario is one of a hiatus in the occupation of this region during the LGM (between 24.4–17.9 ka cal. BP). Analysis of the living surfaces at Satsurblia offers information about human activities such as the production and utilisation of lithics and bone tools, butchering, cooking and consumption of meat and wild cereals, the utilisation of fibers, and the use of certain woods. Microfaunal and palynological analyses point to fluctuations in the climate with consequent shifts in vegetation and the faunal spectrum not only before and after the LGM, but also during the two millennia following the end of the LGM. PMID:25354048
Pinhasi, Ron; Meshveliani, Tengiz; Matskevich, Zinovi; Bar-Oz, Guy; Weissbrod, Lior; Miller, Christopher E; Wilkinson, Keith; Lordkipanidze, David; Jakeli, Nino; Kvavadze, Eliso; Higham, Thomas F G; Belfer-Cohen, Anna
2014-01-01
The region of western Georgia (Imereti) has been a major geographic corridor for human migrations during the Middle and Upper Palaeolithic (MP/UP). Knowledge of the MP and UP in this region, however, stems mostly from a small number of recent excavations at the sites of Ortvale Klde, Dzudzuana, Bondi, and Kotias Klde. These provide an absolute chronology for the Late MP and MP-UP transition, but only a partial perspective on the nature and timing of UP occupations, and limited data on how human groups in this region responded to the harsh climatic oscillations between 37,000-11,500 years before present. Here we report new UP archaeological sequences from fieldwork in Satsurblia cavein the same region. A series of living surfaces with combustion features, faunal remains, stone and bone tools, and ornaments provide new information about human occupations in this region (a) prior to the Last Glacial Maximum (LGM) at 25.5-24.4 ka cal. BP and (b) after the LGM at 17.9-16.2 ka cal. BP. The latter provides new evidence in the southern Caucasus for human occupation immediately after the LGM. The results of the campaigns in Satsurblia and Dzudzuana suggest that at present the most plausible scenario is one of a hiatus in the occupation of this region during the LGM (between 24.4-17.9 ka cal. BP). Analysis of the living surfaces at Satsurblia offers information about human activities such as the production and utilisation of lithics and bone tools, butchering, cooking and consumption of meat and wild cereals, the utilisation of fibers, and the use of certain woods. Microfaunal and palynological analyses point to fluctuations in the climate with consequent shifts in vegetation and the faunal spectrum not only before and after the LGM, but also during the two millennia following the end of the LGM.
Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.)
Aradhya, Mallikarjuna; Ibrahimov, Zakir; Toktoraliev, Biimyrza; Maghradze, David; Musayev, Mirza; Bobokashvili, Zviadi; Preece, John E.
2017-01-01
The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21–18 kyr BP) and LIG (130–116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps survived the last glaciations in several refugia across a wide geographic area between 30° and 45° North latitude. However, humans probably played a significant role in the recent history and modern distribution of walnut. PMID:29023476
Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.).
Aradhya, Mallikarjuna; Velasco, Dianne; Ibrahimov, Zakir; Toktoraliev, Biimyrza; Maghradze, David; Musayev, Mirza; Bobokashvili, Zviadi; Preece, John E
2017-01-01
The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21-18 kyr BP) and LIG (130-116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps survived the last glaciations in several refugia across a wide geographic area between 30° and 45° North latitude. However, humans probably played a significant role in the recent history and modern distribution of walnut.
Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Amosov, Mikhail; Strelkov, Ivan
2017-04-01
A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant precipitations. For example, the paleo-lakes of Bonneville and Lahontan located in the Great Basin, US vividly present the pluvial hypothesis. However, the lake-level of Central Asia and Altiplano altered because of a simultaneous climate cooling and moisture decrease. This phenomenon is called a climate cryoaridization. The moisture reduction in two studied regions is proved by the palinologic data. Beside the fact above, the climate cryoaridization of Altiplano lakes is also confirmed by the data taken from the flatland water bodies of South America that are located to the north of the described region. Even though they had an influence from Amazon convective center with its humid air masses moved towards Altiplano, these flatland lakes used to have lower level at the LGM stage. According to the explained hypothesis, there is one more assumption supporting an increasing effect of cryoaridic lakes. These water bodies occurred on the endorheic basins due to the snow accumulation in the surrounding mountain ranges, hence the snow line moved down closer to the Altiplano valleys.
Pleistocene Indian Monsoon Rainfall Variability
NASA Astrophysics Data System (ADS)
Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.
2014-12-01
The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.
Human population dynamics in Europe over the Last Glacial Maximum.
Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki
2015-07-07
The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe.
Human population dynamics in Europe over the Last Glacial Maximum
Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki
2015-01-01
The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880
Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu
2014-08-01
The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wicaksono, Satrio A.; Russell, James M.; Holbourn, Ann; Kuhnt, Wolfgang
2017-02-01
Precipitation is the most important variable of Indonesian climate, yet there are substantial uncertainties about past and future hydroclimate dynamics over the region. This study explores vegetation and rainfall and associated changes in atmospheric circulation during the past 26,000 years in Wallacea, a biogeographical area in central Indonesia, wedged between the Sunda and Sahul shelves and known for its exceptionally high rainforest biodiversity. We use terrestrial plant biomarkers from sediment cores retrieved from Mandar Bay, off west Sulawesi, to reconstruct changes in Wallacean vegetation and climate since the Last Glacial Maximum (LGM). Enriched leaf wax carbon isotope (δ13Cwax) values recorded in Mandar Bay during the LGM, together with other regional vegetation records, document grassland expansion, implying a regionally dry, and possibly more seasonal, glacial climate. Depleted leaf wax deuterium isotope (δDwax) values in Mandar Bay during the LGM, and low reconstructed precipitation isotope compositions from nearby sites, reveal an intensified Austral-Asian summer monsoon circulation and a southward shift of the mean position of the Intertropical Convergence Zone, likely due to strong southern hemisphere summer insolation and the presence of large northern hemisphere ice sheets. Mandar Bay δ13Cwax was anti-correlated with δDwax during the LGM and the last deglaciation, but was positively correlated during most of the Holocene, indicating time-varying controls on the isotopic composition of rainfall in this region. The inundation event of the Sunda Shelf and in particular the opening of the Java Sea and Karimata Strait between 9.4 and 11.1 thousand years ago might have provided new moisture sources for regional convection and/or influenced moisture source trajectories, providing the trigger for shifts in atmospheric circulation and the controls on precipitation isotope compositions from the LGM to the Holocene.
Yang, Shiling; Ding, Zhongli; Li, Yangyang; Wang, Xu; Jiang, Wenying; Huang, Xiaofang
2015-01-01
Glacial–interglacial changes in the distribution of C3/C4 vegetation on the Chinese Loess Plateau have been related to East Asian summer monsoon intensity and position, and could provide insights into future changes caused by global warming. Here, we present δ13C records of bulk organic matter since the Last Glacial Maximum (LGM) from 21 loess sections across the Loess Plateau. The δ13C values (range: –25‰ to –16‰) increased gradually both from the LGM to the mid-Holocene in each section and from northwest to southeast in each time interval. During the LGM, C4 biomass increased from <5% in the northwest to 10–20% in the southeast, while during the mid-Holocene C4 vegetation increased throughout the Plateau, with estimated biomass increasing from 10% to 20% in the northwest to >40% in the southeast. The spatial pattern of C4 biomass in both the LGM and the mid-Holocene closely resembles that of modern warm-season precipitation, and thus can serve as a robust analog for the contemporary East Asian summer monsoon rain belt. Using the 10–20% isolines for C4 biomass in the cold LGM as a reference, we derived a minimum 300-km northwestward migration of the monsoon rain belt for the warm Holocene. Our results strongly support the prediction that Earth's thermal equator will move northward in a warmer world. The southward displacement of the monsoon rain belt and the drying trend observed during the last few decades in northern China will soon reverse as global warming continues. PMID:26460029
NASA Astrophysics Data System (ADS)
Huss, E.; Laabs, B. J.; Leonard, E. M.; Licciardi, J. M.; Plummer, M. A.; Caffee, M. W.
2012-12-01
The timing of glaciation and the changes in climate that occurred both during and after the Last Glacial Maximum (LGM) in the Rocky Mountains are not well defined. Given the sensitivity of mountain glaciers to factors such as temperature, precipitation, and solar radiation, reconstructions of the history and extent of paleo-glaciers can be used to infer paleoclimate. Pine Creek Valley, located in the Absaroka Mountains in southwestern Montana, is an ideal setting for this type of research because it was occupied by a discrete valley glacier, the extent of which is precisely known during the LGM. To determine the pace and timing of ice retreat in this valley, glacially polished bedrock surfaces along the path of deglaciation were sampled at several points for cosmogenic 10Be surface exposure dating. The ages obtained range from 17.9 ± 0.8 to 13.2 ± 0.5 ka. When combined with the reconstructed ice extent during the LGM and subsequent deglaciation, these ages yield maximum and minimum retreat rates of 3.1 m/yr and 1.1 m/yr, respectively. These values constrain how long it took the glacier to retreat into a well-defined cirque from the terminal moraines. Paleoclimate conditions for the LGM were estimated using a two-dimensional, numerical, combined energy and mass balance and ice flow model. Previous qualitative inferences of paleoclimate in southern Montana indicate climate during the local LGM was colder and drier than modern values. If precipitation values were held constant or reduced for the Pine Creek glacier, the model suggests a temperature depression of at least 8°C.
Yang, Shiling; Ding, Zhongli; Li, Yangyang; Wang, Xu; Jiang, Wenying; Huang, Xiaofang
2015-10-27
Glacial-interglacial changes in the distribution of C3/C4 vegetation on the Chinese Loess Plateau have been related to East Asian summer monsoon intensity and position, and could provide insights into future changes caused by global warming. Here, we present δ(13)C records of bulk organic matter since the Last Glacial Maximum (LGM) from 21 loess sections across the Loess Plateau. The δ(13)C values (range: -25‰ to -16‰) increased gradually both from the LGM to the mid-Holocene in each section and from northwest to southeast in each time interval. During the LGM, C4 biomass increased from <5% in the northwest to 10-20% in the southeast, while during the mid-Holocene C4 vegetation increased throughout the Plateau, with estimated biomass increasing from 10% to 20% in the northwest to >40% in the southeast. The spatial pattern of C4 biomass in both the LGM and the mid-Holocene closely resembles that of modern warm-season precipitation, and thus can serve as a robust analog for the contemporary East Asian summer monsoon rain belt. Using the 10-20% isolines for C4 biomass in the cold LGM as a reference, we derived a minimum 300-km northwestward migration of the monsoon rain belt for the warm Holocene. Our results strongly support the prediction that Earth's thermal equator will move northward in a warmer world. The southward displacement of the monsoon rain belt and the drying trend observed during the last few decades in northern China will soon reverse as global warming continues.
Rosenbaum, Joseph G.; Reynolds, Richard L.; Colman, Steven M.
2012-01-01
Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~1000 yr, and underwent two stages of retreat separated by a short period of expansion.
NASA Astrophysics Data System (ADS)
Rosenbaum, Joseph G.; Reynolds, Richard L.; Colman, Steven M.
2012-09-01
Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~ 1000 yr, and underwent two stages of retreat separated by a short period of expansion.
Late Pleistocene equilibrium-line reconstructions in the northern Peruvian Andes
Rodbell, D.T.
1992-01-01
ELA reconstructions using the toe-to-headwall-altitude ratio method for paleoglaciers in the Cordilleras Blanca and Oriental, northern Peruvian Andes indicate that ELAs during the last glacial maximum (LGM; marine isotope stage 2)) were c.4300 m in the Cordillera Blanca, c.3900-3600 m on the west side of the Cordillera Oriental, and c.3200 m on the east (Amazon Basin) side of the Cordillera Oriental. Comparison with estimated modern ELAs and glaciation thresholds indicate that ELA depression ranged from c.700 m in the Cordillera Blanca to c.1200 m on the east side of the Cordillera Oriental. Palynological evidence for drier conditions during the LGM in the tropical Andes suggests that ELA depression of this amount involved a temperature reduction (>5-6??C) that greatly exceeded the tropical sea-surface temperature depression estimates of CLIMAP (<2??C). The west to east increase in ELA depression during the LGM indicates that the steep modern precipitation gradients may have been even steeper during the LGM. -from Author
Understanding the glacial methane cycle
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Valdes, Paul J.; O'Connor, Fiona M.; Kaplan, Jed O.; Beerling, David J.
2017-02-01
Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375 p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680 p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28-46%, and the lifetime increased by 2-8%, with a best-estimate LGM CH4 concentration of 463-480 p.p.b.v. Simulating the observed LGM concentration requires a 46-49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources.
Rakotoarinivo, Mijoro; Blach-Overgaard, Anne; Baker, William J.; Dransfield, John; Moat, Justin; Svenning, Jens-Christian
2013-01-01
The distribution of rainforest in many regions across the Earth was strongly affected by Pleistocene ice ages. However, the extent to which these dynamics are still important for modern-day biodiversity patterns within tropical biodiversity hotspots has not been assessed. We employ a comprehensive dataset of Madagascan palms (Arecaceae) and climate reconstructions from the last glacial maximum (LGM; 21 000 years ago) to assess the relative role of modern environment and LGM climate in explaining geographical species richness patterns in this major tropical biodiversity hotspot. We found that palaeoclimate exerted a strong influence on palm species richness patterns, with richness peaking in areas with higher LGM precipitation relative to present-day even after controlling for modern environment, in particular in northeastern Madagascar, consistent with the persistence of tropical rainforest during the LGM primarily in this region. Our results provide evidence that diversity patterns in the World's most biodiverse regions may be shaped by long-term climate history as well as contemporary environment. PMID:23427173
NASA Astrophysics Data System (ADS)
García, Juan-Luis; Hein, Andrew S.; Binnie, Steven A.; Gómez, Gabriel A.; González, Mauricio A.; Dunai, Tibor J.
2018-04-01
The timing, structure and termination of the last southern mountain glaciation and its forcing remains unclear. Most studies have focused on the global Last Glacial Maximum (LGM; 26.5-19 ka) time period, which is just part of the extensive time-frame within the last glacial period, including Marine Isotope Stages 3 and 4. Understanding the glacial fluctuations throughout the glacial period is a prerequisite for uncovering the cause and climate mechanism driving southern glaciation and the interhemispheric linkages of climate change. Here, we present an extensive (n = 65) cosmogenic 10Be glacier chronology derived from moraine belts marking the pre-global LGM extent of the former Patagonian Ice Sheet in southernmost South America. Our results show the mountain ice sheet reached its maximum extent at 48.0 ± 1.8 ka during the local LGM, but attained just half this extent at 21.5 ± 1.8 ka during the global LGM. This finding, supported by nearby glacier chronologies, indicates that at orbital time scales, the southern mid-latitude glaciers fluctuated out-of-phase with northern hemisphere ice sheets. At millennial time-scales, our data suggest that Patagonian and New Zealand glaciers advanced in unison with cold Antarctic stadials and reductions in Southern Ocean sea surface temperatures. This implies a southern middle latitudes-wide millennial rhythm of climate change throughout the last glacial period linked to the north Atlantic by the bipolar seesaw. We suggest that winter insolation, acting alongside other drivers such as the strength and/or position of the southern westerlies, controlled the extents of major southern mountain glaciers such as those in southernmost South America.
Relative timing of last glacial maximum and late-glacial events in the central tropical Andes
NASA Astrophysics Data System (ADS)
Bromley, Gordon R. M.; Schaefer, Joerg M.; Winckler, Gisela; Hall, Brenda L.; Todd, Claire E.; Rademaker, Kurt M.
2009-11-01
Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions. Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.
Stratotype for the Mérida Glaciation at Pueblo Llano in the northern Venezuelan Andes
NASA Astrophysics Data System (ADS)
Mahaney, W. C.; Milner, M. W.; Voros, J.; Kalm, V.; Hütt, G.; Bezada, M.; Hancock, R. G. V.; Aufreiter, S.
2000-12-01
The Mérida Glaciation (cf. Wisconsinan, Weichselian) as proposed by Schubert (1974b) culminated at about 18 ka during the last glacial maximum (LGM) and ended at about 13 ka as indicated by 14C dating and correlation with the Cordillera Oriental of Colombia. Moraines of an early stade of Mérida Glaciation reached to 2800 m a.s.l. and were largely overrun or eradicated by the maximum Wisconsinan advance (LGM); where they outcrop, the older moraines are characterized by eroded, weathered glacial diamictons and outwash fans. At Pueblo Llano in the central Mérida Andes (Cordillera de Trujillo), older to younger beds of contorted glacitectonized diamict, overlying beds of bouldery till and indurated outwash, all belong to the early Mérida stade. Overlying the early Mérida stade, deposits of rhythmically bedded glaciolacustrine sediments are in turn overlain with contorted sand and silt beds capped with outwash. Above the outwash terrace a loop moraine of LGM age completely encircles the margins of the basin. A stream cut exposed by catastrophic (tectonic or surge?) release of meltwater displays a lithostratigraphic succession that is bereft of organic material for radiocarbon dating. Five optically-stimulated luminescence (OSL) dates place the maximum age of the lowest till at 81 ka. Particle size distributions allow clear distinctions between major lithic units. Heavy mineral analysis of the middle and lower coarse units in the section provide information on sediment sourcing and on major lithostratigraphic divisions. Trace element concentrations provide information on the relative homogeneity of the deposits. The HREE (heavy rare earth element) concentrations allow discrimination of the lower till from the rest of the section; the LREE (light rare earth element) concentrations highlight differences between the lower till, LGM till, and the rest of the section.
Paleolithic human exploitation of plant foods during the last glacial maximum in North China
Liu, Li; Bestel, Sheahan; Shi, Jinming; Song, Yanhua; Chen, Xingcan
2013-01-01
Three grinding stones from Shizitan Locality 14 (ca. 23,000–19,500 calendar years before present) in the middle Yellow River region were subjected to usewear and residue analyses to investigate human adaptation during the last glacial maximum (LGM) period, when resources were generally scarce and plant foods may have become increasingly important in the human diet. The results show that these tools were used to process various plants, including Triticeae and Paniceae grasses, Vigna beans, Dioscorea opposita yam, and Trichosanthes kirilowii snakegourd roots. Tubers were important food resources for Paleolithic hunter–gatherers, and Paniceae grasses were exploited about 12,000 y before their domestication. The long tradition of intensive exploitation of certain types of flora helped Paleolithic people understand the properties of these plants, including their medicinal uses, and eventually led to the plants' domestication. This study sheds light on the deep history of the broad spectrum subsistence strategy characteristic of late Pleistocene north China before the origins of agriculture in this region. PMID:23509257
Paleolithic human exploitation of plant foods during the last glacial maximum in North China.
Liu, Li; Bestel, Sheahan; Shi, Jinming; Song, Yanhua; Chen, Xingcan
2013-04-02
Three grinding stones from Shizitan Locality 14 (ca. 23,000-19,500 calendar years before present) in the middle Yellow River region were subjected to usewear and residue analyses to investigate human adaptation during the last glacial maximum (LGM) period, when resources were generally scarce and plant foods may have become increasingly important in the human diet. The results show that these tools were used to process various plants, including Triticeae and Paniceae grasses, Vigna beans, Dioscorea opposita yam, and Trichosanthes kirilowii snakegourd roots. Tubers were important food resources for Paleolithic hunter-gatherers, and Paniceae grasses were exploited about 12,000 y before their domestication. The long tradition of intensive exploitation of certain types of flora helped Paleolithic people understand the properties of these plants, including their medicinal uses, and eventually led to the plants' domestication. This study sheds light on the deep history of the broad spectrum subsistence strategy characteristic of late Pleistocene north China before the origins of agriculture in this region.
Sediment Buffering and Transport in the Holocene Indus River System
NASA Astrophysics Data System (ADS)
Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.
2009-12-01
Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.
Atlantic Ocean Circulation at the Last Glacial Maximum: Inferences from Data and Models
2012-09-01
available. Uncertainties in proxies themselves, and in the dating of the proxy records, are generally lower for the LGM than for periods further back...proven useful in understanding new aspects of the modern ocean circulation. Due to the poor dating resolution of sediment cores from the LGM period, and...Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPI- LOG) project was an effort to reconstruct the state of the Earth in glacial states; a
NASA Astrophysics Data System (ADS)
Khodri, M.; Kageyama, M.; Roche, D. M.
2009-12-01
Proxy data over tropical latitudes for the Last Glacial Maximum (LGM) has been interpreted as a southward shift of the Inter Tropical Convergence Zone (ITCZ) and so far linked to a mechanism analogous to the modern day “meridional-mode” in the Atlantic Ocean. Here we have explored alternative mechanisms, related to the direct impact of the LGM global changes in the dry static stability on tropical moist deep convection. We have used a coupled ocean-atmosphere model capable of capturing the thermodynamical structure of the atmosphere and the tropical component of the Hadley and Walker circulations. In each experiment, we have applied either all the LGM forcings, or the individual contributions of greenhouse gases (GHG) concentrations, ice sheet topography and/or albedo to explore the hydrological response over tropical latitudes with a focus on South America. The dominant forcing for the LGM tropical temperature and precipitation changes is found to be due to the reduced GHG, through the direct effect of reduced radiative heating (Clausius-Clapeyron relationship). The LGM GHG is also responsible for increased extra-tropical static stability which strengthens the Hadley Cell. Stronger subsidence over northern tropics then produces an amplification of the northern tropics drying initially due to the direct cooling effect. The land ice sheet is also able to promote the Hadley cell feedback mostly via the topographic effect on the extra-tropical dry static stability and on the position of the subtropical jets. Our results therefore suggest that the communication between the extratropics and the tropics is tighter during LGM and does not necessarily rely on the “meridional-mode” mechanism. The Hadley cell response is constrained by the requirement that diabatic heating in the tropics balances cooling in subtropics. We show that such extratropics-tropics dependence is stronger at the LGM because of the stronger perturbation of northern extra tropical thermal and dynamical equilibrium due to both reduced GHG and land ice sheets. We also show that the overall tropical Pacific circulation response to land ice albedo alone consists in a substantial thermo-dynamical stabilisation of the equatorial atmosphere. The upper troposphere warming spreading out from South East Central Pacific, analogous to the atmosphere response to El-Niño conditions, results in enhanced rainfall over Nordeste and Southeastern Brazil. Such tropics-tropics teleconnection is essential to explain the moistening of the southern tropics, amplifying thereby the influence of the extratropical atmosphere on the LGM tropical climate.
NASA Astrophysics Data System (ADS)
Ruszkiczay-Rüdiger, Zsófia; Kern, Zoltán; Urdea, Petru; Braucher, Régis; Madarász, Balázs; Schimmelpfennig, Irene
2015-04-01
Our knowledge on the timing of glacial advances in the Southern Carpathians is limited. Recently, some attempts have been made to develop an improved temporal framework for the glaciations of the region using cosmogenic 10Be exposure dating. However, glacial chronology of the Romanian Carpathians remains contradictory. E.g. the timing of the maximum ice advance appears to be asynchronous within the area and also with other dated glacial events in Europe. Main objective of our study is to utilize cosmogenic in situ produced 10Be dating to disentangle the contradictions of the Southern Carpathian Late Pleistocene glacial chronology. Firstly, previously published 10Be data are recalculated in accordance with the new half-life, standardization and production rate of 10Be. The recalculated 10Be exposure ages of the second largest (M2) moraines in the Retezat Mts. appear to be ca. 19-24% older than exposure ages calculated by Reuther et al. (2007, Quat. Int. 164-165, 151-169). This contradicts the earlier conclusions suggesting post LGM age of M2 glacial advance and suggests that M2 moraines can be connected to the end of the LGM with final stabilization possibly at the beginning of the Late Glacial. We emphasize that it is ambiguous to correlate directly the exposure-dated glacier chronologies with millennial scale climate changes due to uncertainties in sample collection and in computation of exposure ages from measured nuclide concentrations. New 10Be samples were collected in order to determine the 10Be exposure age of moraines outside the most prominent generation (M2) including the largest and oldest moraine (M1) and the landforms connected to the smallest ice advances (M4), which remained undated so far. The new exposure ages of M2 moraines are well in harmony with the recalculated ages of Reuther at al. (2007). 10Be exposure age of boulders on the smallest moraine suggest that the last glaciers disappeared in the area during the Late Glacial, indicating no glaciation during the Younger Dryas and Holocene. Previous works, based on geomorphologic analogies and pedological properties suggested that the M1 ice advance was older than LGM, and possibly occurred during the MIS4. Our 10Be exposure dating provided LGM ages for boulders on the M1 side moraine. It is question of further research whether these ages show the time when the glacier abandoned the moraine or they only indicate an LGM erosional event affecting an older moraine. If we accept the LGM age of maximum ice extent (M1), our 10Be exposure age data enables the calculation of a mean glacier retreat rate of 1.3 m/a for the period between M1 and M4 (21.4 to 13.6ka). Alternatively, considering only the oldest 10Be exposure age of the M2 moraine, the M2 to M4 (20.2-13.6ka) glacier retreat rate was slightly lower: 1.1 m/a. Our research was supported by the OTKA PD83610, by the MTA-CNRS cooperation (NKM-96/2014), by the Bolyai Scholarship, and by the 'Lendület' program of the HAS (LP2012-27/2012). The 10Be measurements were performed at the ASTER AMS national facility (CEREGE, Aix en Provence, France).
NASA Astrophysics Data System (ADS)
Woodward, C. A.; Shulmeister, J.
2007-01-01
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000-18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.
NASA Astrophysics Data System (ADS)
Lea, D. W.; de Garidel-Thoron, T.; Bard, E. G.; Kienast, M.
2016-12-01
Proxy paleoclimate data provides an important constrain on climate sensitivity. The tropics have been identified as a region which primarily responds to greenhouse gas forcing (GHF). The SENSETROP (Sensitivity of the Tropics) group has identified the LGM, HS1 and HS2 as key time windows to test the hypothesis that SST anomalies recorded by two geochemical paleothermometers, Mg/Ca and UK37', can be used to establish tropical climate response and, via the magnitude and spatial pattern of these anomalies, provide robust comparisons to the output of general circulation models. This work is a logical extension of prior efforts such as CLIMAP and MARGO, which largely relied on faunal SST proxies that are affected by other factors such as productivity or water column structure. With this goal in mind we have developed the SENSETROP database of published and unpublished Mg/Ca and UK37' data from low latitude (30° N to 30° S) marine cores spanning the last glacial cycle. The database contains 78 Mg/Ca records and 40 UK37' records, distributed between the tropical ocean basins: 49 in the Pacific Ocean, 32 in the Indian Ocean, and 27 in the Atlantic Ocean. Most of the cores are confined to the ocean margins. All of the data come from well dated records that include radiocarbon. As a test of the database, we determined the average SST anomaly during the LGM, 19,000-23,000 yr BP, relative to the late Holocene, 0-4,000 yr BP, from select records that contain at least 4 SST points in each time window for which the SDs < 0.75 °C. For G. ruber (all morphotypes) Mg/Ca, the recorded anomaly from 23 cores is -2.6 ± 0.6 °C, based on >1100 individual determinations. For UK37', the recorded anomaly for 14 cores is -2.4 ± 0.9 °C, based on >400 individual determinations. Agreement between these two independent proxies increases confidence in the LGM cooling level. The new results from the SENSETROP database show a strong level of homogeneity throughout the tropics, with slightly ( 0.3 °C) greater cooling in the NH. These results are in marked contrast to MARGO, which showed a strong level of heterogeneity in tropical SST. The new SENSETROP results are consistent with a primary control of greenhouse gas forcing on tropical SSTs during the LGM. Extension of these results to ECS determinations suggests values consistent with the IPCC canonical range.
NASA Astrophysics Data System (ADS)
Lowry, D. P.; Morrill, C.
2011-12-01
Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region receives. Our results indicate that the causes of hydrologic fluctuations are spatially diverse and that future projections will need to consider more than just thermodynamic changes for accurate regional predictions.
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.
2010-12-01
Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain region supports the results of GCM simulations of western U.S. precipitation distribution during the LGM, and suggests that this approach provides a practical means of testing such hypotheses about large-scale paleoclimate patterns. Finally, we note that most GCM results indicate greater LGM temperature depression in the northern and eastern portions of the study region than in its southern and western portions - which would necessitate LGM precipitation differences even greater than those determined based on an assumed uniform temperature depression.
A reversal of fortunes: climate change ‘winners’ and ‘losers’ in Antarctic Peninsula penguins
Clucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom
2014-01-01
Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’. PMID:24865774
A reversal of fortunes: climate change 'winners' and 'losers' in Antarctic Peninsula penguins.
Clucas, Gemma V; Dunn, Michael J; Dyke, Gareth; Emslie, Steven D; Naveen, Ron; Polito, Michael J; Pybus, Oliver G; Rogers, Alex D; Hart, Tom
2014-06-12
Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces 'winners', species that benefit from these events and 'losers', species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a 'reversal of fortunes' as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change 'winners', while Adélie and chinstrap penguins have become climate change 'losers'.
Asymmetric Signature of Glacial Antarctic Intermediate Water in the Central South Pacific
NASA Astrophysics Data System (ADS)
Tapia, R.; Nuernberg, D.; Ho, S. L.; Lamy, F.; Ullermann, J.; Gersonde, R.; Tiedemann, R.
2017-12-01
Southern Ocean Intermediate Waters (SOIWs) play a key role in modulating the global climate on glacial-interglacial time scales as they connect the Southern Ocean and the tropics. Despite their importance, the past evolution of the SOIWs in the central South Pacific is largely unknown due to a dearth of sedimentary archives. Here we compare Mg/Ca-temperature, stable carbon and oxygen isotope records from surface-dwelling (G. bulloides) and deep-dwelling (G. inflata) planktic foraminifera at site PS75/059-2 (54°12.9' S, 125°25.53' W; recovery 13.98 m; 3.613 m water depth), located north of the modern Subantarctic Front. Our study focuses on the temperature and salinity variability controlled by SOIWs, which were subducted at the Subantarctic Front during the Last Glacial Maximum (LGM; 29-17ka BP) and the Penultimate Glacial Maximum (PGM; 180-150ka BP). During both glacial periods conditions at the subsurface ocean were colder and fresher relative to the Holocene (<10ka) suggesting an enhanced presence of SOIWs. In spite of the comparable subsurface cooling during both glacial, the subsurface ocean during the PGM was saltier and 0.35‰ more depleted in δ13C in comparison to the LGM. Interestingly, the mean δ13C value of the PGM is comparable to the Carbon Isotope Minimum Events, which might suggests a larger contribution of "old" low δ13C deep waters to the study site during the PGM. A Latitudinal comparison of subsurface proxies suggests glacial asymmetries in the advection of SOIWs into the central Pacific, plausibly related to glacial changes in the convection depth of SOIWs at the South Antarctic Front area rather than changes in production of the SOIWs.
NASA Astrophysics Data System (ADS)
Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.
2014-02-01
Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness; CO2 availability, in turn, constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence CO2 availability, the links between atmospheric CO2 and biomass burning are not well known. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to CO2 increase, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided Last Glacial Maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase 2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes in biomass burning were corrected for the model's observed biases in contemporary biome-average values. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux was 70 to 80% lower at the LGM than in PI time. LGM climate with pre-industrial CO2 (280 ppm) however yielded unrealistic results, with global and Northern Hemisphere biomass burning fluxes greater than in the pre-industrial climate. Using the PI CO2 concentration increased the modelled LGM biomass burning fluxes for all climate models and latitudinal bands to between four and ten times their values under LGM CO2 concentration. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on productivity and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.
Earth system component responses under LGM boundary conditions in HadGAM2
NASA Astrophysics Data System (ADS)
Hopcroft, Peter; Valdes, Paul; Gedney, Nicola
2013-04-01
In this work we use the atmospheric and terrestrial components of the Earth System model HadGEM2-ES to explore the sensitivity of vegetation, the mineral dust cycle and wetland methane emissions under boundary conditions relevant to the last glacial maximum (LGM) relative to the pre-industrial (PI). For the LGM we configured HadGAM2 with LGM greenhouse gas concentrations, 21kyr ice sheets, orography and sea level and 21kyr orbital parameters. For the PI and LGM simulations HadGAM2 was forced with sea surface temperatures and sea-ice cover from equivalent coupled atmosphere-ocean HadCM3 simulations. We have also optionally prescribed vegetation distributions simulated with HadCM3M2 which employs the TRIFFID vegetation model (this model is also used within HadGAM2). In HadGAM2 the LGM-PI temperature change is generally similar to that found in HadCM3, though it is found to be more extreme over Asia, where feedbacks from snow cover and changes in vegetation enhance the local signal. The dust model is sensitive to changes in the bare soil fraction, with particularly large emissions changes over South America and Australia. The globally averaged radiative forcing from mineral dust changes is consistent with the higher end of the range found in previous studies, ranging from -0.4Wm-2 for no vegetation change to -1.7Wm-2 with prescribed HadCM3M2 vegetation distributions. The HadGEM2 methane emission model is used both online and offline in a number of different configurations in order to address uncertainty in the model formulation. A subset of the model versions considered suggests a completely source driven change in atmospheric CH4 at the LGM relative to the PI, consistent with recent modelling studies of the atmospheric composition at the LGM. Future work will consider the sensitivity of these HadGAM2 Earth System components to SST and sea-ice area perturbations.
The salinity, temperature, and delta18O of the glacial deep ocean.
Adkins, Jess F; McIntyre, Katherine; Schrag, Daniel P
2002-11-29
We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.
Understanding the glacial methane cycle
Hopcroft, Peter O.; Valdes, Paul J.; O'Connor, Fiona M.; Kaplan, Jed O.; Beerling, David J.
2017-01-01
Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375 p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680 p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28–46%, and the lifetime increased by 2–8%, with a best-estimate LGM CH4 concentration of 463–480 p.p.b.v. Simulating the observed LGM concentration requires a 46–49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources. PMID:28220787
NASA Astrophysics Data System (ADS)
Anand, Pallavi; Kroon, Dick; Singh, Arun Deo; Ganeshram, Raja S.; Ganssen, Gerald; Elderfield, Henry
2008-12-01
Two sediment cores from the western (905; 10.46°9'N, 51.56°4'E, water depth 1586 m) and eastern (SK17; 15°15'N, 72°58'E, water depth 840 m) Arabian Sea were used to study past sea surface temperatures (SST) and seawater δ18O (δ18Ow) variations for the past 35 ka. We used coupled Mg/Ca-δ18O calcite variability in two planktonic foraminiferal species: Globigerinoides ruber, which thrives throughout the year, and Globigerina bulloides, which occurs mainly when surface waters contain high nutrients during upwelling or convective mixing. SSTs in both areas based on Mg/Ca in G. ruber were ˜3 to 4°C lower during the Last Glacial Maximum (LGM; ˜21 ka) than today and the Holocene period. The SST records based on G. bulloides also indicate general cooling, down to 18°C in both areas. SSTs in the western Arabian Sea based on G. bulloides were always lower than those based on G. ruber, indicating the presence of strong seasonal temperature contrast during the Holocene and LGM. We interpret the consistent presence of this seasonal temperature contrast to reflect a combination of seasonal summer upwelling (SW monsoon) and winter convective mixing (NE monsoon) in the western Arabian Sea. In the eastern Arabian Sea, G. bulloides-based SSTs were slightly lower (about 1°C) than G. ruber-based SSTs during the Holocene, indicating the almost absence of a seasonal temperature gradient, similar to today. However, a large seasonal temperature contrast occurred during the LGM which favors the assumption that strong NE monsoon winds forced winter upwelling or convective mixing offshore Goa. SST and δ18Ow reconstructions reveal evidence of millennial-scale cycles, particularly in the eastern Arabian Sea. Here, the stadial periods (Northern Hemisphere cold periods such as Younger Dryas and Heinrich events) are marked by increasing SSTs and salty sea surface conditions relative to those during the interstadial periods. Indeed, the δ18Ow record shows evidence of low-saline surface waters during interstadial periods, indicating increased freshwater runoff from the Western Ghats as a consequence of enhanced SW monsoon intensity.
Atmospheric Rivers Enhanced Water Delivery to Southwestern North America at the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Lora, J. M.; Mitchell, J.; Risi, C. M.; Tripati, A. K.
2015-12-01
Proxy reconstructions of the late Pleistocene paleoclimate indicate that southwestern North America was significantly more wet at the Last Glacial Maximum (LGM; ~21 ka) than in the present. Pluvial paleolakes were abundant throughout the Great Basin and as far south as the modern Mojave Desert. The source of precipitation that fed these lakes and the role of evaporation in the hydrologic balance are debated. A leading hypothesis is increased Pacific winter storm frequency as a result of the jet stream being split or shifted south by the North American ice sheets. Alternative hypotheses include enhanced monsoonal precipitation, a re-routing of the storm track across the continent, and/or reduced evaporation. Using LGM simulations from the PMIP3 ensemble and the LMDZ general circulation model, and comparing to proxy records of LGM precipitation in the region, we find that atmospheric rivers, narrow filaments of humid tropical air, were strengthened over the eastern Pacific during glacial intervals and directed into southern California. A strengthened Aleutian Low and a weakened North Pacific High produced a mean state conducive to this strong, south-shifted atmospheric river system, which enhanced moisture delivery into the southwestern part of the Great Basin.
The history of South American tropical precipitation for the past 25,000 years.
Baker, P A; Seltzer, G O; Fritz, S C; Dunbar, R B; Grove, M J; Tapia, P M; Cross, S L; Rowe, H D; Broda, J P
2001-01-26
Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko
2017-01-01
The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of the Indian monsoon.
NASA Astrophysics Data System (ADS)
Carton, Alberto; Bondesan, Aldino; Fontana, Alessandro; Meneghel, Mirco; Miola, Antonella; Mozzi, Paolo; Primon, Sandra; Surian, Nicola
2010-05-01
Aim of this study is the definition of sediment production, transfer and deposition in the Piave River system from the Last Glacial Maximum to the Present, through a basin-scale approach. The Piave River flows from North to South in the eastern sector of the Italian Alps and reaches the Adriatic Sea. Its length is 220 km and the catchment is 3899 km2. The fluvial system consists of a mountainous portion, with maximum elevation of 3343 m a.s.l., and a lower part where the river flows in the Venetian alluvial plain. Average precipitation is 1350 mm/a; the runoff coefficient is 0.63 and the mean discharge at the mouth is 60 m3/s. The highest sediment delivery to the plain was at the peak of LGM, when the Piave glacier had its maximum expansion and reached the Alpine piedmont. In this period the Piave megafan received large volumes of sediments through glaciofluvial streams and achieved its maximum expansion. LGM alluvial sediments in the distal portion of the megafan are 20-30 m thick. The last glacial advance in the Vittorio Veneto terminal moraines, at the debouch of the valley in the Venetian Plain, dates 17.6 ka 14C BP. Deglaciation started immediately afterwards and the retreat of the glacial front was rather fast, considering that at around 15.0 ka 14C BP the Prealpine tract of valley was already ice-free. Following the onset of deglaciation until about 8.0 ka 14C BP, alluvial sediments were mostly trapped in the terminal valley tracts, while the whole alluvial plain experienced a severe erosive phase, comprising the whole Lateglacial and early Holocene. At ca. 8.0 ka 14C BP, the Piave River started to downcut its Prealpine valley fill, an event which re-mobilized the alluvial sediments and contributed to delta formation on the Adriatic coast since 6.0 ka 14C BP. Post-glacial aggradation in the distal tract of the Nervesa megafan started only at about 4.0 - 3.0 ka 14C BP. In Roman times the fluvial system was rather stable, while between the 5th and 10th century AD there were several major avulsions in the distal Nervesa megafan. The last 100 years are characterized by a dramatic decrease of sediment transport due to a range of human activities (e.g. sediment mining and dams). Climate change was the main external driving factor in this fluvial system at the LGM termination, controlling both sediment production in the catchment and sea-level position. Local factors, such as the occurrence of large landslides, lake formation, post-glacial reforestation and valley topography had a major impact on sediment transfer from source to sink. Holocene millennial- and centennial-scale climatic fluctuations were able to modulate the sediment flux, increasingly intermingling with human impact during the last 6 millennia.
Global Monsoon Change During the Last Glacial Maximum: A Multi-Model Study
NASA Astrophysics Data System (ADS)
Yan, M.; Wang, B.; Liu, J.
2016-12-01
Change of Global Monsoon (GM) during the Last Glacial Maximum (LGM) is investigated using results from the multi-model ensemble of 7 coupled climate models participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The GM changes during LGM are identified by comparison of the results from the pre-industrial control run and the LGM run. The results show (1) The annual mean GM precipitation and GM domain are reduced by about 10% and 5%, respectively; (2) The monsoon intensity (demonstrated by the local summer-minus-winter precipitation) is also weakened over most monsoon regions except Australian monsoon; (3) The monsoon precipitation is reduced more during the local summer than winter; (4) Distinct from all other regional monsoons, the Australian monsoon is strengthened and the monsoon area is enlarged. Four major factors contribute to these changes. The lower greenhouse gas concentration and the presence of the ice sheets decrease air temperature and water vapor content, resulting in a general weakening of the GM precipitation and reduction of GM domain. The reduced hemispheric difference in seasonal variation of insolation may contribute to the weakened GM intensity. The changed land-ocean configuration in the vicinity of the Maritime Continent, along with the presence of the ice sheets and lower greenhouse gas concentration, result in strengthened land-ocean and North-South hemispheric thermal contrasts, leading to the unique strengthened Australian monsoon. Although some of the results are consistent with the proxy data, uncertainties remain in different models. More comparison is needed between proxy data and model experiments to better understand the changes of the GM during the LGM.
Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng
2017-01-01
Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780
Dépraz, A; Cordellier, M; Hausser, J; Pfenninger, M
2008-05-01
The localization of Last Glacial Maximum (LGM) refugia is crucial information to understand a species' history and predict its reaction to future climate changes. However, many phylogeographical studies often lack sampling designs intensive enough to precisely localize these refugia. The hairy land snail Trochulus villosus has a small range centred on Switzerland, which could be intensively covered by sampling 455 individuals from 52 populations. Based on mitochondrial DNA sequences (COI and 16S), we identified two divergent lineages with distinct geographical distributions. Bayesian skyline plots suggested that both lineages expanded at the end of the LGM. To find where the origin populations were located, we applied the principles of ancestral character reconstruction and identified a candidate refugium for each mtDNA lineage: the French Jura and Central Switzerland, both ice-free during the LGM. Additional refugia, however, could not be excluded, as suggested by the microsatellite analysis of a population subset. Modelling the LGM niche of T. villosus, we showed that suitable climatic conditions were expected in the inferred refugia, but potentially also in the nunataks of the alpine ice shield. In a model selection approach, we compared several alternative recolonization scenarios by estimating the Akaike information criterion for their respective maximum-likelihood migration rates. The 'two refugia' scenario received by far the best support given the distribution of genetic diversity in T. villosus populations. Provided that fine-scale sampling designs and various analytical approaches are combined, it is possible to refine our necessary understanding of species responses to environmental changes.
Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the Alps
NASA Astrophysics Data System (ADS)
Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian
2016-04-01
During the Last Glacial Maximum (LGM) in the European Alps (late Würm) local ice caps and extensive ice fields in the high Alps fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the Alps was underway by about 24 ka. In the high Alps, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central Alps (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high Alps was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the Alps. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.
NASA Astrophysics Data System (ADS)
Hillenbrand, C. D.; Klages, J. P.; Kuhn, G.; Smith, J.; Graham, A. G. C.; Gohl, K.; Wacker, L.
2016-02-01
We present the first age control and sedimentological data for the upper part of a stratified seismic unit that is unusually thick ( 6-9 m) for the outer shelf of the ASE and overlies an acoustically transparent unit. The transparent unit probably consists of soft till deposited during the last advance of grounded ice onto the outer shelf. We mapped subtle mega-scale glacial lineations (MSGL) on the seafloor and suggest that these are probably the expressions of bedforms originally moulded into the surface of the underlying till layer. We note that the lineations are less distinct when compared to MSGLs recorded in bathymetric data collected further upstream and suggest that this is because of the blanketing influence of the thick overlying drape. The uppermost part (≤ 3 m) of the stratified drape was sampled by two of our sediment cores and contains sufficient amounts of calcareous foraminifera throughout to establish reliable age models by radiocarbon dating. In combination with facies analysis of the recovered sediments the obtained radiocarbon dates suggest deposition of the draping unit in a sub-ice shelf/sub-sea ice to seasonal-open marine environment that existed on the outer shelf from well before (>45 ka BP) the Last Glacial Maximum until today. This indicates the maximum extent of grounded ice at the LGM must have been situated south of the two core locations, where a well-defined grounding-zone wedge (`GZWa') was deposited. The third sediment core was recovered from the toe of this wedge and retrieved grounding-line proximal glaciogenic debris flow sediments that were deposited by 14 cal. ka BP. Our new data therefore provide direct evidence for 1) the maximum extent of grounded ice in the easternmost ASE at the LGM (=GZWa), 2) the existence of a large shelf area seawards the wedge that was not covered by grounded ice during that time, and 3) landward grounding line retreat from GZWa prior to 14 cal. ka BP. This knowledge will help to improve LGM ice sheet reconstructions and to quantify precisely the volume of LGM ice-sheet build-up in Antarctica. Our study also alludes to the possibility that refugia for Antarctic shelf benthos may have existed in the ASE during the last glacial period.
Effects of fire and CO2 on biogeography and primary production in glacial and modern climates.
Martin Calvo, Maria; Prentice, Iain Colin
2015-11-01
Dynamic global vegetation models (DGVMs) can disentangle causes and effects in the control of vegetation and fire. We used a DGVM to analyse climate, CO2 and fire influences on biome distribution and net primary production (NPP) in last glacial maximum (LGM) and pre-industrial (PI) times. The Land surface Processes and eXchanges (LPX) DGVM was run in a factorial design with fire 'off' or 'on', CO2 at LGM (185 ppm) or PI (280 ppm) concentrations, and LGM (modelled) or recent climates. Results were analysed by Stein-Alpert decomposition to separate primary effects from synergies. Fire removal causes forests to expand and global NPP to increase slightly. Low CO2 greatly reduces forest area (dramatically in a PI climate; realistically under an LGM climate) and global NPP. NPP under an LGM climate was reduced by a quarter as a result of low CO2 . The reduction in global NPP was smaller at low temperatures, but greater in the presence of fire. Global NPP is controlled by climate and CO2 directly through photosynthesis, but also through biome distribution, which is strongly influenced by fire. Future vegetation simulations will need to consider the coupled responses of vegetation and fire to CO2 and climate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle
NASA Astrophysics Data System (ADS)
Buchanan, Pearse J.; Matear, Richard J.; Lenton, Andrew; Phipps, Steven J.; Chase, Zanna; Etheridge, David M.
2016-12-01
The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL (Carbon-Ocean-Atmosphere-Land) earth system model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2 °C) and the expansion of both minimum and maximum sea ice cover broadly consistent with proxy reconstructions. The glacial ocean stores an additional 267 Pg C in the deep ocean relative to the pre-industrial (PI) simulation due to stronger Antarctic Bottom Water formation. However, 889 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration and a global decrease in export production, causing a net loss of carbon relative to the PI ocean. The LGM deep ocean also experiences an oxygenation ( > 100 mmol O2 m-3) and deepening of the calcite saturation horizon (exceeds the ocean bottom) at odds with proxy reconstructions. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content of the glacial ocean can be sufficiently increased (317 Pg C) to explain the reduction in atmospheric and terrestrial carbon at the LGM (194 ± 2 and 330 ± 400 Pg C, respectively). Assuming an LGM-PI difference of 95 ppm pCO2, we find that 55 ppm can be attributed to the biological pump, 28 ppm to circulation changes and the remaining 12 ppm to solubility. The biogeochemical modifications also improve model-proxy agreement in export production, carbonate chemistry and dissolved oxygen fields. Thus, we find strong evidence that variations in the oceanic biological pump exert a primary control on the climate.
Glacial isostatic uplift of the European Alps
Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.
2016-01-01
Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth’s viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions. PMID:27830704
Glacial isostatic uplift of the European Alps.
Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D; Egholm, David L; Tesauro, Magdala; Schildgen, Taylor F; Strecker, Manfred R
2016-11-10
Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions.
Groom, Scott V C; Stevens, Mark I; Schwarz, Michael P
2014-06-22
The impacts of glacial cycles on the geographical distribution and size of populations have been explored for numerous terrestrial and marine taxa. However, most studies have focused on high latitudes, with only a few focused on the response of biota to the last glacial maximum (LGM) in equatorial regions. Here, we examine how population sizes of key bee fauna in the southwest Pacific archipelagos of Fiji, Vanuatu and Samoa have fluctuated over the Quaternary. We show that all three island faunas suffered massive population declines, roughly corresponding in time to the LGM, followed by rapid expansion post-LGM. Our data therefore suggest that Pleistocene climate change has had major impacts across a very broad tropical region. While other studies indicate widespread Holarctic effects of the LGM, our data suggest a much wider range of latitudes, extending to the tropics, where these climate change repercussions were important. As key pollinators, the inferred changes in these bee faunas may have been critical in the development of the diverse Pacific island flora. The magnitude of these responses indicates future climate change scenarios may have alarming consequences for Pacific island systems involving pollinator-dependent plant communities and agricultural crops.
NASA Astrophysics Data System (ADS)
Marshall, J. A.; Roering, J. J.; Bartlein, P. J.; Praskievicz, S. J.; Gavin, D. G.; Hales, T. C.; Granger, D. E.
2014-12-01
Whereas glaciated landscapes record increased erosional efficiency through moraines and U-shaped valleys, unglaciated hillslopes and rivers lack a mechanistic theory for climate controls on their dynamics and form. Changes in precipitation and associated aggradation due to vegetation loss or incision due to increased river discharge are commonly invoked when considering the effect of glacial intervals on unglaciated terrains, but there is scant evidence supporting or discounting these hypotheses. Surprisingly, there is little consideration that temperature, rather than precipitation, may dictate the frequency, magnitude, or style of erosion in unglaciated landscapes during glacial intervals. Here, we present results combining a mechanistic frost-cracking model with downscaled general circulation model output to predict the extent and intensity of sediment production via frost processes across the unglaciated Oregon Coast Range (OCR) during the Last Glacial Maximum (LGM). Our results show that in this mid-latitude region, well south of the Cordilleran ice sheet, frost-driven processes likely shaped 90% of the present-day landmass during the LGM. A suite of geomorphic and vegetation data from a 50-ky sediment core from a paleo landslide-dammed lake in the OCR support our model results. Our study site, Little Lake, is located in the central portion of the OCR, over 400 m south of the maximum extent of the Cordilleran ice sheet. Based on 10Be-derived erosion rates, present-day catchment erosion rates average 0.07 ± 0.03 mm/yr (mean ± sd), while LGM erosion rates remained constant around 0.19 ± 0.01 mm/yr. These LGM values are nearly 3X greater than present-day erosion rates and coincide with high frost cracking intensity predicted by our model. We also observe a transition from finely laminated lacustrine clays and sands to coarse lacustrine blue-grey sands at ~ 28 ka, during the transition to the LGM. The presence of Picea sitchensis (Sitka spruce) and Abies lasiocarpa (subalpine fir) in the core during the LGM imply mean annual temperatures of ~ 1 °C and January mean temperatures of ~ -7 °C. Our results suggest that broad swaths of continental landscapes likely experienced accelerated sediment production via frost processes rather than via changes in precipitation during glacial intervals.
NASA Astrophysics Data System (ADS)
Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc
2016-06-01
Reconstructions of the extent and height of the Irish Ice Sheet (IIS) during the Last Glacial Maximum (LGM, ∼19-26 ka) are widely debated, in large part due to limited age constraints on former ice margins and due to uncertainties in the origin of the trimlines. A key area is southwestern Ireland, where various LGM reconstructions range from complete coverage by a contiguous IIS that extends to the continental shelf edge to a separate, more restricted southern-sourced Kerry-Cork Ice Cap (KCIC). We present new 10Be surface exposure ages from two moraines in a cirque basin in the Macgillycuddy's Reeks that provide a unique and unequivocal constraint on ice thickness for this region. Nine 10Be ages from an outer moraine yield a mean age of 24.5 ± 1.4 ka while six ages from an inner moraine yield a mean age of 20.4 ± 1.2 ka. These ages show that the northern flanks of the Macgillycuddy's Reeks were not covered by the IIS or a KCIC since at least 24.5 ± 1.4 ka. If there was more extensive ice coverage over the Macgillycuddy's Reeks during the LGM, it occurred prior to our oldest ages.
How important is interannual variability in the climatic interpretation of moraine sequences?
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.
2017-12-01
Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.
NASA Astrophysics Data System (ADS)
Arpe, K.; Leroy, S. A. G.; Mikolajewicz, U.
2010-04-01
Model simulations of the last glacial maximum (21±2 ka) with the ECHAM3 T42, ECHAM5 T31 coupled and ECHAM5 T106 uncoupled models are compared. The ECHAM5 T106 simulations were forced at the boundaries by results from the coupled ECHAM5-MPIOM atmosphere ocean model while the ECHAM3 T42 model was forced with prescribed sea surface temperatures (SSTs) provided by Climate/Long-Range Investigation, Mapping Prediction project (CLIMAP). The topography, land-sea mask and glacier distribution for the ECHAM5 simulations were taken from the PMIP2 data set while for ECHAM3 they were taken from PMIP1. The ECHAM5 simulations were run with a variable SST in time simulated by the coupled model. These were also used for the T106 run but corrected for systematic errors. The SSTs in the ECHAM5-MPIOM simulations for the last glacial maximum (LGM) were much warmer in the northern Atlantic than those suggested by CLIMAP or GLAMAP while they were cooler everywhere else. This had a clear effect on the temperatures over Europe, warmer for winters in Western Europe and cooler for Eastern Europe than the simulation with CLIMAP SSTs. Considerable differences in the general circulation patterns were found in the different simulations. A ridge over Western Europe for the present climate during winter in the 500 hPa height field remains in the ECHAM5 simulations for the LGM, more so in the T106 version, while the ECHAM3 CLIMAP simulation provided a trough. The zonal wind between 30° W and 10° E shows a southward shift of the polar and subtropical jet in the T106 simulation for the LGM and an extremely strong polar jet for the ECHAM3 CLIMAP. The latter can probably be assigned to the much stronger north-south gradient in the CLIMAP SSTs. The southward shift of the polar jet during LGM is supported by observation evidence. Cyclone tracks in winter represented by high precipitation are characterised over Europe for the present by a main branch from Great Britain to Norway and a secondary branch towards the Mediterranean Sea. For the LGM the different models show very different solutions: the ECHAM3 CLIMAP simulations show just one track going eastward from Great Britain into central Europe, while the ECHAM5 T106 simulation still has two branches but the main one goes to the Mediterranean Sea, with enhanced precipitation in the Levant. This agrees with an observed high stand of the Dead Sea during the LGM. For summer the ECHAM5 T106 simulations provide much more precipitation for the present over Europe than the other simulations thus agreeing with estimates by the Global Precipitation Climatology Project (GPCP). Also during the LGM this model makes Europe less arid than the other simulations. In many respects the ECHAM5 T106 simulations for the present were more realistic than the ECHAM5 T31 coupled simulation and the older ECHAM3 T42 simulations, when comparing them with the ECMWF reanalysis or the GPCP data. For validating the model data for the LGM, pollen and charcoal analyses were compared with possible summer-green tree growth from model estimates using summer precipitation, minimum winter temperatures and growing degree days (above 5 °C). The ECHAM5 T106 simulations suggest at more sites with findings from pollen or charcoal analyses likely tree growth during the LGM than the other simulations, especially over Western Europe. The clear message especially from the ECHAM5 T106 simulations is that warm-loving summer-green trees could have survived mainly in Spain but also in Greece in agreement with findings of pollen or charcoal.
Reconstructing ice-age palaeoclimates: Quantifying low-CO2 effects on plants
NASA Astrophysics Data System (ADS)
Prentice, I. C.; Cleator, S. F.; Huang, Y. H.; Harrison, S. P.; Roulstone, I.
2017-02-01
We present a novel method to quantify the ecophysiological effects of changes in CO2 concentration during the reconstruction of climate changes from fossil pollen assemblages. The method does not depend on any particular vegetation model. Instead, it makes use of general equations from ecophysiology and hydrology that link moisture index (MI) to transpiration and the ratio of leaf-internal to ambient CO2 (χ). Statistically reconstructed MI values are corrected post facto for effects of CO2 concentration. The correction is based on the principle that e, the rate of water loss per unit carbon gain, should be inversely related to effective moisture availability as sensed by plants. The method involves solving a non-linear equation that relates e to MI, temperature and CO2 concentration via the Fu-Zhang relation between evapotranspiration and MI, Monteith's empirical relationship between vapour pressure deficit and evapotranspiration, and recently developed theory that predicts the response of χ to vapour pressure deficit and temperature. The solution to this equation provides a correction term for MI. The numerical value of the correction depends on the reconstructed MI. It is slightly sensitive to temperature, but primarily sensitive to CO2 concentration. Under low LGM CO2 concentration the correction is always positive, implying that LGM climate was wetter than it would seem from vegetation composition. A statistical reconstruction of last glacial maximum (LGM, 21±1 kyr BP) palaeoclimates, based on a new compilation of modern and LGM pollen assemblage data from Australia, is used to illustrate the method in practice. Applying the correction brings pollen-reconstructed LGM moisture availability in southeastern Australia better into line with palaeohydrological estimates of LGM climate.
Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Amosov, Mikhail
2014-05-01
Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and for its west part (the piedmonts of Tien Shan and Pamir Mountains). So it confirms a synchronous aridization in different parts of Central Asia. It was the result of amplification of winter Siberian anticyclone, weakening westerlies and East Asian summer monsoons. The observed discrepancy between vegetation conditions and lake-levels during LGM can be explained by lake-levels dependence on runoff as now from mountains, where snow and glaciers melt. Investigations in the area of Mongun Tayga (Tyva Republic in Russian Federation, Lake Hyargas Nuur basin) suggest that precipitation decreased by 30% during LGM, but at the same time snow accumulation increased due to lower temperature in mountains. Thus, special conditions were provided for climate cryoaridization, when vegetation was degraded due to lowering precipitation, but lake-levels grew due to higher runoff from mountain ranges.
NASA Astrophysics Data System (ADS)
Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.
2017-12-01
The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.
South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon
NASA Astrophysics Data System (ADS)
Cook, K. H.; Vizy, E. K.
2006-01-01
The climate of the Last Glacial Maximum (LGM) over South America is simulated using a regional climate model with 60-km resolution, providing a simulation that is superior to those available from global models that do not resolve the topography and regional-scale features of the South American climate realistically. LGM conditions on SST, insolation, vegetation, and reduced atmospheric CO2 on the South American climate are imposed together and individually. Remote influences are not included. Annual rainfall is 25-35% lower in the LGM than in the present day simulation throughout the Amazon basin. A primary cause is a 2-3 month delay in the onset of the rainy season, so that the dry season is about twice as long as in the present day. The delayed onset occurs because the low-level inflow from the tropical Atlantic onto the South American continent is drier than in the present day simulation due to reduced evaporation from cooler surface waters, and this slows the springtime buildup of moist static energy that is needed to initiate convection. Once the monsoon begins in the Southern Hemisphere, LGM rainfall rates are similar to those in the present day. In the Northern Hemisphere, however, rainfall is lower throughout the (shortened) rainy season. Regional-scale structure includes slight precipitation increases in the Nordeste region of Brazil and along the eastern foothills of the Andes, and a region in the center of the Amazon basin that does not experience annual drying. In the Andes Mountains, the signal is complicated, with regions of significant rainfall increases adjacent to regions with reduced precipitation.
NASA Astrophysics Data System (ADS)
Guido, Zackry S.; Ward, Dylan J.; Anderson, Robert S.
2007-08-01
During the Last Glacial Maximum (LGM), a 5000 km2 ice cap covered the San Juan Mountains of southwest Colorado. The largest valley glacier draining this ice cap occupied the Animas Valley and flowed 91 km to the south. To characterize the post-LGM demise of the Animas Valley glacier, we employ cosmogenic 10Be to date the LGM terrace outside the terminal moraines and a suite of seven glacially polished bedrock samples. The 10Be depth profile within the terrace sediments suggests abandonment at 19.4 ± 1.5 ka. As deglaciation began, the ponding of Glacial Lake Durango behind the terminal moraines shut off fluvial sediment supply and caused terrace abandonment. The age of the terrace therefore records the initiation of LGM retreat. Negligible 10Be inheritance in the terrace profile suggests that glacial erosion of the bedrock valley floor from which sediments were derived erased all cosmogenic inventory. Glacial polish exposure ages monotonically decrease up-valley from 17.1 to 12.3 ka, with the single exception of a sample collected from a quartzite rib, yielding an average retreat rate of 15.4 m/yr. This trend and the lack of inherited cosmogenic nuclides in the terrace sediments imply that polish ages accurately record the glacial retreat history. Retreat of the Animas lobe began at a time of regional drying recorded in sediments and shoreline elevations of large lakes. Deglaciation lasted for ˜7.2 k.y., and was complete by 12.3 ± 1.0 ka. The retreat history followed the pattern of increasing insolation and was perhaps fastest during a time of regional drying.
The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions
NASA Astrophysics Data System (ADS)
Gildor, H.; Biton, E.; Peltier, W. R.
2006-12-01
The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).
NASA Astrophysics Data System (ADS)
Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.
2017-12-01
In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.
Dambach, Johannes; Thatje, Sven; Rödder, Dennis; Basher, Zeenatul; Raupach, Michael J.
2012-01-01
Marine invertebrates inhabiting the high Antarctic continental shelves are challenged by disturbance of the seafloor by grounded ice, low but stable water temperatures and variable food availability in response to seasonal sea-ice cover. Though a high diversity of life has successfully adapted to such conditions, it is generally agreed that during the Last Glacial Maximum (LGM) the large-scale cover of the Southern Ocean by multi-annual sea ice and the advance of the continental ice sheets across the shelf faced life with conditions, exceeding those seen today by an order of magnitude. Conditions prevailing at the LGM may have therefore acted as a bottleneck event to both the ecology as well as genetic diversity of today's fauna. Here, we use for the first time specific Species Distribution Models (SDMs) for marine arthropods of the Southern Ocean to assess effects of habitat contraction during the LGM on the three most common benthic caridean shrimp species that exhibit a strong depth zonation on the Antarctic continental shelf. While the shallow-water species Chorismus antarcticus and Notocrangon antarcticus were limited to a drastically reduced habitat during the LGM, the deep-water shrimp Nematocarcinus lanceopes found refuge in the Southern Ocean deep sea. The modeling results are in accordance with genetic diversity patterns available for C. antarcticus and N. lanceopes and support the hypothesis that habitat contraction at the LGM resulted in a loss of genetic diversity in shallow water benthos. PMID:23029463
Dambach, Johannes; Thatje, Sven; Rödder, Dennis; Basher, Zeenatul; Raupach, Michael J
2012-01-01
Marine invertebrates inhabiting the high Antarctic continental shelves are challenged by disturbance of the seafloor by grounded ice, low but stable water temperatures and variable food availability in response to seasonal sea-ice cover. Though a high diversity of life has successfully adapted to such conditions, it is generally agreed that during the Last Glacial Maximum (LGM) the large-scale cover of the Southern Ocean by multi-annual sea ice and the advance of the continental ice sheets across the shelf faced life with conditions, exceeding those seen today by an order of magnitude. Conditions prevailing at the LGM may have therefore acted as a bottleneck event to both the ecology as well as genetic diversity of today's fauna. Here, we use for the first time specific Species Distribution Models (SDMs) for marine arthropods of the Southern Ocean to assess effects of habitat contraction during the LGM on the three most common benthic caridean shrimp species that exhibit a strong depth zonation on the Antarctic continental shelf. While the shallow-water species Chorismus antarcticus and Notocrangon antarcticus were limited to a drastically reduced habitat during the LGM, the deep-water shrimp Nematocarcinus lanceopes found refuge in the Southern Ocean deep sea. The modeling results are in accordance with genetic diversity patterns available for C. antarcticus and N. lanceopes and support the hypothesis that habitat contraction at the LGM resulted in a loss of genetic diversity in shallow water benthos.
Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio
2000-01-01
We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.
A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers.
Varela, Sara; Lima-Ribeiro, Matheus S; Terribile, Levi Carina
2015-01-01
Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12-BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/.
Simulated Last Glacial Maximum Δ14CATM and the Deep Glacial Ocean Reservoir
NASA Astrophysics Data System (ADS)
Mariotti, V.; Paillard, D.; Roche, D. M.; Bouttes, N.; Bopp, L.
2012-12-01
Δ14Catm has been estimated at 420 ± 80‰ (INTCAL09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. Δ14Catm is a function of cosmogenic production in high atmosphere and of carbon cycling in the Earth system (through carbon exchange with the superficial reservoirs, ocean and continental biosphere). 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ at the LGM. The remaining 220‰ of Δ14Catm variation between the LGM and preindustrial times have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010) proposed to explain most of the difference in atmospheric pCO2 between glacial and interglacial times by brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that can store Dissolved Inorganic Carbon (DIC) in the deep ocean. During glacial times, the sinking of brines is enhanced and more DIC is stored in the deep ocean, lowering atmospheric pCO2. Such an isolated ocean reservoir would be characterized by a low Δ14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al., 2010). The degassing of this carbon with low Δ14C would then reduce Δ14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both sinking of brines and cosmogenic production, alongside iron and vertical diffusion mechanisms to explain changes in Δ14Catm during the last deglaciation. In our simulations, not only the sinking of brine mechanism is consistent with past Δ14C data but also it explains most of the differences in atmospheric pCO2 and Δ14C between LGM and preindustrial times.
A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers
Varela, Sara; Lima-Ribeiro, Matheus S.; Terribile, Levi Carina
2015-01-01
Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12- BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/. PMID:26068930
Reduced ENSO Variability at the LGM Revealed by an Isotope-Enabled Earth System Model
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Liu, Zhengyu; Brady, Esther; Otto-Bliesner, Bette; Zhang, Jiaxu; Noone, David; Tomas, Robert; Nusbaumer, Jesse; Wong, Tony; Jahn, Alexandra;
2017-01-01
Studying the El Nino Southern Oscillation (ENSO) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of ENSO strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from ENSO reconstructions using the individual foraminifera analysis (IFA). We find that the LGM ENSO is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of ENSO variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.
NASA Astrophysics Data System (ADS)
Arpe, K.; Leroy, S. A. G.; Mikolajewicz, U.
2011-02-01
Model simulations of the last glacial maximum (21 ± 2 ka) with the ECHAM3 T42 atmosphere-only, ECHAM5-MPIOM T31 atmosphere-ocean coupled and ECHAM5 T106 atmosphere-only models are compared. The topography, land-sea mask and glacier distribution for the ECHAM5 simulations were taken from the Paleoclimate Modelling Intercomparison Project Phase II (PMIP2) data set while for ECHAM3 they were taken from PMIP1. The ECHAM5-MPIOM T31 model produced its own sea surface temperatures (SST) while the ECHAM5 T106 simulations were forced at the boundaries by this coupled model SSTs corrected from their present-day biases and the ECHAM3 T42 model was forced with prescribed SSTs provided by Climate/Long-Range Investigation, Mapping, and Prediction project (CLIMAP). The SSTs in the ECHAM5-MPIOM simulation for the last glacial maximum (LGM) were much warmer in the northern Atlantic than those suggested by CLIMAP or Overview of Glacial Atlantic Ocean Mapping (GLAMAP) while the SSTs were cooler everywhere else. This had a clear effect on the temperatures over Europe, warmer for winters in western Europe and cooler for eastern Europe than the simulation with CLIMAP SSTs. Considerable differences in the general circulation patterns were found in the different simulations. A ridge over western Europe for the present climate during winter in the 500 hPa height field remains in both ECHAM5 simulations for the LGM, more so in the T106 version, while the ECHAM3 CLIMAP-SST simulation provided a trough which is consistent with cooler temperatures over western Europe. The zonal wind between 30° W and 10° E shows a southward shift of the polar and subtropical jets in the simulations for the LGM, least obvious in the ECHAM5 T31 one, and an extremely strong polar jet for the ECHAM3 CLIMAP-SST run. The latter can probably be assigned to the much stronger north-south gradient in the CLIMAP SSTs. The southward shift of the polar jet during the LGM is supported by palaeo-data. Cyclone tracks in winter represented by high precipitation are characterised over Europe for the present by a main branch from the British Isles to Norway and a secondary branch towards the Mediterranean Sea, observed and simulated. For the LGM the different models show very different solutions: the ECHAM3 CLIMAP-SST simulation shows just one track going eastward from the British Isles into central Europe, while the ECHAM5 T106 simulation still has two branches but during the LGM the main one goes to the Mediterranean Sea, with enhanced precipitation in the Levant. This agrees with an observed high stand of the Dead Sea during the LGM. For summer the ECHAM5 T106 simulation provides much more precipitation for the present over Europe than the other simulations, thus agreeing with estimates by the Global Precipitation Climatology Project (GPCP). Also during the LGM this model makes Europe less arid than the other simulations. In many respects the ECHAM5 T106 simulation for the present is more realistic than the ECHAM5 T31 coupled simulation and the older ECHAM3 T42 simulation, when comparing them with the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis or the GPCP precipitation data. For validating the model data for the LGM, pollen, wood and charcoal analyses were compared with possible summer-green tree growth from model estimates using summer precipitation, minimum winter temperatures and growing degree days (above 5 °C). The ECHAM5 T106 simulation suggests for more sites with findings of palaeo-data, likely tree growth during the LGM than the other simulations, especially over western Europe. The clear message especially from the ECHAM5 T106 simulation is that warm-loving summer-green trees could have survived mainly in Spain but also in Greece in agreement with findings of pollen or charcoal. Southern Italy is also suggested but this could not be validated because of absence of palaeo-data. Previous climate simulations of the LGM have suggested less cold and more humid climate than that reconstructed from pollen findings. Our model results do agree more or less with those of other models but we do not find a contradiction with palaeo-data because we use the pollen data directly without an intermediate reconstruction of temperatures and precipitation from the pollen spectra.
NASA Astrophysics Data System (ADS)
Wißing, Christoph; Matzerath, Simon; Turner, Elaine; Bocherens, Hervé
2015-07-01
Climatic and ecological conditions during Marine Oxygen Isotope Stage (MIS) 3 are complex and the impact of cold spells on the ecosystems in Central Europe still needs to be investigated thoroughly. Ziegeleigrube Coenen (ZC) is a late Pleistocene MIS 3 locality in the Lower Rhine Embayment of Germany, radiocarbon-dated to > 34 14C ka BP. The site yielded a broad spectrum of mammal species. We investigated the carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) isotope signatures of bone collagen, since these are valuable tools in characterizing ecological niches, environmental conditions and aspects of climate and mobility. By comparison with pre- and post-Last Glacial Maximum (LGM) sites in Central Europe we show that ZC belongs in a cold event of MIS 3 and was climatically more similar to post-LGM sites than to pre-LGM sites. However, the trophic structure resembled that of typical pre-LGM sites in Belgium. This cold event in MIS 3 changed the bottom of the foodweb, but do not seem to have had a direct impact on the occurrence of the mammalian species and their ecological distribution. Apparently the (mega-) faunal community could adapt also to harsher environmental conditions during MIS 3.
NASA Astrophysics Data System (ADS)
Longo, W. M.; Crowther, J.; Daniels, W.; Russell, J. M.; Giblin, A. E.; Morrill, C.; Zhang, X.; Wang, X.; Huang, Y.
2015-12-01
Paleoclimate reconstructions have provided little consensus on how continental temperatures in Eastern Beringia changed from the Last Glacial Maximum (LGM) to the present. Reconstructions show regional differences in LGM severity, the timing of deglacial warming, and Holocene temperature variability. Currently, arctic temperatures are increasing at the fastest rates on the planet, highlighting the need to identify the sensitivities of arctic systems to various climate forcings. This cannot be done without resolving the complex climate history of Eastern Beringia. Here, we present two new organic geochemical temperature reconstructions from Lake E5, north central Alaska that span the LGM, last glacial termination and Holocene. The proxies (alkenones and brGDGTs) record seasonally distinct temperatures, allowing for the attribution of different forcings to each proxy. The alkenone-based UK37 reconstruction records spring/early summer lake temperatures and indicates a 4 oC abrupt warming at 13.1 ka and a relatively warm late Holocene, which peaks at 2.4 ka and exhibits a cooling trend from 2.4 to 0.1 ka. The brGDGT reconstruction is calibrated to mean annual air temperature and interpreted here as exhibiting a strong warm season bias. BrGDGTs show an abrupt 4.5 oC warming at 14 ka, and show evidence for an early Holocene Thermal Maximum (HTM), which cools by 3 oC after 8.4 ka. Because UK37 temperatures do not exhibit an early HTM, we hypothesize that summer insolation had a minimal effect on spring/early summer lake temperatures. Instead, the UK37 reconstruction agrees with sea ice and sea surface temperature reconstructions from the Beaufort and Chukchi Seas and northeast Pacific Ocean. We hypothesize that forcings associated with sea ice concentration and changes in atmospheric circulation had stronger affects on spring/early summer lake temperatures and we present modern observational data in support of this hypothesis. By contrast, the summer-biased brGDGT reconstruction suggests a strong and relatively direct temperature response to summer insolation forcing. Together, these records suggest that both internal and external forcings significantly affected LGM to present temperature variability in Eastern Beringia, with different seasonal biases.
NASA Astrophysics Data System (ADS)
Fink, David; Joy, Kurt; Storey, Bryan
2014-05-01
It has been hypothesised that during interglacials, thinning of the Ross Ice Shelf allowed a more open water environment with increased local precipitation. This resulted in outlet glaciers, which drain the Transantarctic Mountains and fed by the East Antarctic Ice Sheet, advancing during moist warmer periods, apparently out of phase with colder arid dry periods. Significantly the ice core record during these warm periods also shows increased accumulation continent wide The geomorphology of the Denton Hills in the Royal Society Range, West Antarctica, is a result of Miocene fluvial incision reworked by subsequent glacial advances throughout the Quaternary. The Garwood and Miers glacial valleys drain ice across the Denton Hills into the Shelf, and should thus show maximum extent during interstadials. To understand the chronology of late Quaternary glaciations, 15 granitic boulders from terminal moraines were sampled for 10Be and 26Al cosmogenic dating. Obtaining reliable exposure ages of erratics within moraines that represent timing of deposition (i.e. glacial advances) is problematic in polar regions, where glacial activity is principally controlled by ice sheet dynamics. Recycling of previously exposed debris, uncertainty in provenance of glacially transported boulders and a lack of a post-depositional hydrologic process to remove previously exposed material from a valley system, leads to ambiguities in multiple exposure ages from a single coeval glacial landform. More importantly, cold-based ice advance can leave a landform unmodified resulting in young erratics deposited on bedrock that shows weathering and/or inconsistent age-altitude relationships. Primarily, inheritance becomes a difficulty in qualifying exposure ages from polar regions. Preliminary results from the Garwood and Miers Valleys indicate that glaciers in the Denton Hills had begun to retreat from their last maximum positions no later than 23-37 ka, and thus the local last glacial maximum occurred prior to the Antarctic LGM (18-22 ka). No evidence based on cosmogenic ages for post-LGM or Holocene advances were found. These results support an extensive exposure age data set from the nearby Darwin-Hatherton Glacier system that indicates an absence of EAIS expansion across the Transantarctic Mnts during the global LGM period.
Sea-Level Change in the Russian Arctic Since the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Horton, B.; Baranskaya, A.; Khan, N.; Romanenko, F. A.
2017-12-01
Relative sea-level (RSL) databases that span the Last Glacial Maximum (LGM) to present have been used to infer changes in climate, regional ice sheet variations, the rate and geographic source of meltwater influx, and the rheological structure of the solid Earth. Here, we have produced a quality-controlled RSL database for the Russian Arctic since the LGM. The database contains 394 index points, which locate the position of RSL in time and space, and 244 limiting points, which constrain the minimum or maximum limit of former sea level. In the western part of the Russian Arctic (Barents and White seas,) RSL was driven by glacial isostatic adjustment (GIA) due to deglaciation of the Scandinavian ice sheet, which covered the Baltic crystalline shield at the LGM. RSL data from isolation basins show rapid RSL from 80-100 m at 11-12 ka BP to 15-25 m at 4-5 ka BP. In the Arctic Islands of Franz-Joseph Land and Novaya Zemlya, RSL data from dated driftwood in raised beaches show a gradual fall from 25-35 m at 9-10 ka BP to 5-10 m at 3 ka BP. In the Russian plain, situated at the margins of the formerly glaciated Baltic crystalline shield, RSL data from raised beaches and isolation basins show an early Holocene rise from less than -20 m at 9-11 ka BP before falling in the late Holocene, illustrating the complex interplay between ice-equivalent meltwater input and GIA. The Western Siberian Arctic (Yamal and Gydan Peninsulas, Beliy Island and islands of the Kara Sea) was not glaciated at the LGM. Sea-level data from marine and salt-marsh deposits show RSL rise at the beginning of the Holocene to a mid-Holocene highstand of 1-5 m at 5-1 ka BP. A similar, but more complex RSL pattern is shown for Eastern Siberia. RSL data from the Laptev Sea shelf show RSL at -40- -45 m and 11-14 ka BP. RSL data from the Lena Delta and Tiksi region have a highstand from 5 to 1 ka BP. The research is supported by RSF project 17-77-10130
NASA Astrophysics Data System (ADS)
Bash, E. A.; Laabs, B. J.
2006-12-01
The Wasatch Mountains of northern Utah contained numerous valley glaciers east and immediately downwind of Lake Bonneville during the Last Glacial Maximum (LGM). While the extent and chronology of glaciation in the Wasatch Mountains and the rise and fall of Lake Bonneville are becoming increasingly well understood, inferences of climatic conditions during the LGM for this area and elsewhere in the Rocky Mountains and northern Great Basin have yielded a wide range of temperature depression estimates. For example, previous estimates of temperature depression based on glacier and lake reconstructions in this region generally range from 7° to 9° C colder than modern. Glacier modeling studies for Little Cottonwood Canyon (northern Wasatch Mountains) suggest that such temperature depressions would have been accompanied by precipitation increases of about 3 to 1x modern, respectively (McCoy and Williams, 1985; Laabs et al., 2006). However, interpretations of other proxies suggest that temperature depression in this area may have been significantly greater, up to 13° C (e.g., Kaufman 2003), which would likely have been accompanied by less precipitation than modern. To address this issue, we reconstructed ice extent in the American Fork Canyon of the Wasatch Mountains and applied glacier modeling methods of Plummer and Phillips (2003) to infer climatic conditions during the LGM. Field mapping indicates that glaciers occupied an area of more than 20 km2 in the canyon and reached maximum lengths of about 9 km. To link ice extent to climatic changes, a physically based, two- dimensional numerical model of glacier mass balance and ice flow was applied to these valleys. The modeling approach allows the combined effects of temperature, precipitation and solar radiation on net mass balance of a drainage basin to be explored. Results of model experiments indicate that a temperature depression of less than 9° C in the American Fork Canyon would have been accompanied by greater precipitation than modern, whereas greater temperature depressions would have required less-than-modern precipitation to sustain glaciers in the Wasatch Mountains. Without independent estimates of either temperature or precipitation for the LGM, model results do not provide a unique combination of these two variables based on simulated ice extent. However, the reconstructed pattern of glaciation in the Wasatch and Uinta Mountains indicates a sharp westward decline in glacier equilibrium- line altitudes in valleys immediately downwind of Lake Bonneville (Munroe et al, 2006), which suggests that precipitation in the Wasatch Mountains was enhanced during the LGM. Therefore, model results can be used to set limits on the temperature and precipitation. We estimate that, if temperatures during the LGM were 6° to 8° C less than modern, precipitation was 3 to 1.5x modern. Such precipitation increases would reflect the importance of Lake Bonneville as a moisture source for valleys in the Wasatch Mountains, as suggested by previous studies.
NASA Astrophysics Data System (ADS)
Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.
2010-05-01
Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.
NASA Astrophysics Data System (ADS)
Garrett, H.
2016-12-01
The behavior of the jet stream during the last glacial maximum (LGM 21ka) has been the focus of multiple studies but remains highly debated. Proxy data shows that during this time in the United States, the northwest was drier than modern conditions and the southwest was wetter than modern conditions. To explain this there are two competing hypothesis, one which suggests that the jet stream shifted uniformly south and the other which suggests a stronger jet that split shifting both north and south. For this study we used TECA, to reanalyze model out-put, looking at the frequency and patterns of Extra Tropical Cyclones (ETC's), which have been found to be steered by the jet stream. We used the CCSM4 model based on its agreement with proxy data, and compared data from both the LGM and pre-industrial time periods. Initial results show a dramatic shift of ETC's north by about 10º-15º degrees and a decrease in frequency compared to pre-industrial conditions, coupled with a less pronounced southward shift of 5º-10º degrees.This evidence supports the idea that the jet stream split during the LGM. A stronger understanding of jet stream behavior will help to improve future models and prediction capabilities to prepare for hydro-climate change in drought sensitive areas.
Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L.).
Meiri, Meirav; Lister, Adrian M; Higham, Thomas F G; Stewart, John R; Straus, Lawrence G; Obermaier, Henriette; González Morales, Manuel R; Marín-Arroyo, Ana B; Barnes, Ian
2013-09-01
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion-contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40,000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South-East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South-Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North-West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas. © 2013 John Wiley & Sons Ltd.
A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments
NASA Astrophysics Data System (ADS)
Yoshimori, M.; Yokohata, T.; Abe-Ouchi, A.
2008-12-01
Studies of past climate potentially provide a constraint on the uncertainty of climate sensitivity, but previous studies warn against a simple scaling to the future. The climate sensitivity is determined by various feedback processes and they may vary with climate states and forcings. In this study, we investigate similarities and differences of feedbacks for a CO2 doubling, a last glacial maximum (LGM), and LGM greenhouse gas (GHG) forcing experiments, using an atmospheric general circulation model coupled to a slab ocean model. After computing the radiative forcing, the individual feedback strengths: water vapor, lapse rate, albedo, and cloud feedbacks, are evaluated explicitly. For this particular model, the difference in the climate sensitivity among experiments is attributed to the shortwave cloud feedback in which there is a tendency that it becomes weaker or even negative in the cooling experiments. No significant difference is found in the water vapor feedback between warming and cooling experiments by GHGs despite the nonlinear dependence of the Clausius-Clapeyron relation on temperature. The weaker water vapor feedback in the LGM experiment due to a relatively weaker tropical forcing is compensated by the stronger lapse rate feedback due to a relatively stronger extratropical forcing. A hypothesis is proposed which explains the asymmetric cloud response between warming and cooling experiments associated with a displacement of the region of mixed- phase clouds. The difference in the total feedback strength between experiments is, however, relatively small compared to the current intermodel spread, and does not necessarily preclude the use of LGM climate as a future constraint.
NASA Astrophysics Data System (ADS)
Makos, Michał; Rinterknecht, Vincent; Braucher, Régis; Tołoczko-Pasek, Anna; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim; Aster Team
2018-05-01
Deglaciation chronology of the Polish High Tatra Mountains has been reconstructed based on 10Be exposure age dating. Fifty-seven rock samples were collected from boulders located on the terminal and lateral moraines that limit the horizontal extent of the LGM and the Lateglacial glaciers in the Biała Woda and Sucha Woda catchments. The uncertainty-weighted mean age of 21.5 ± 2.5 ka obtained for the maximum terminal moraine in the Sucha Woda Valley indicates that the oldest preserved moraines were formed during the global LGM. The age population ranges between 15.1 ± 1.0 and 28.3 ± 2.0 ka, and suggests that glaciers reached their maximum position (LGM I) as early as 28-25 ka and the final stabilization of the form occurred much later possibly after melting of buried dead ice. The younger glacial oscillation (LGM II) occurred no later than 20.5 ka and is represented by well-preserved termino-lateral moraine systems in the Pańszczyca Valley. The first Lateglacial stage (LG1) in the study area is documented in the Rybi Potok Valley at the RP1 moraine (1300 m a.s.l.), which was stable at around 16.6 ± 0.3 ka. The younger LG2 stage has no defined absolute age, however, it is constrained between 16.5 and 15.5 ka by the timing of the LG3 stage. This cold event is represented by well-formed moraines in the Roztoka/Pięć Stawów Polskich, Rybi Potok and Pańszczyca valleys of which exposure age indicates their deposition between 15.0 ± 0.5 and 15.6 ± 0.1 ka. The LG1, LG2 and LG3 stages likely occurred during the Oldest Dryas cold stage (Greenland Stadial 2.1a) related to the North Atlantic cooling Heinrich Event 1. The youngest glacial oscillation is evidenced by moraines in the Pusta and Pańszczyca valleys. These moraines are composed of very large granitic blocks of which exposure ages often exhibit isotope inheritance. This is reflected by the youngest P3 moraine in the Pańszczyca Valley with a mean age of deposition close to the LGM. The R4 moraine system in the Pusta Valley, however, indicates two oscillations phases that occurred at around 13 ka and correlates well with the timing of RP5 moraine formation in the Za Mnichem Valley. The LG4 stage is related to the climate cooling during the Younger Dryas (Greenland Stadial 1). LGM ELAs reconstructed for the Biała Woda and Sucha Woda/Pańszczyca glaciers were located at 1460-1480 m a.s.l. During the Oldest Dryas stages, the ELA in the High Tatras rose from 1600 to 1650 m a.s.l. in the Rybi Potok Valley and from 1700 to 1800 m a.s.l. in the Roztoka/Pięć Stawów Polskich Valley. The Younger Dryas ELA, depending on glacier's exposition, was located between 1950 and 2000 m a.s.l. Climate modelling results show that the LGM glaciers (maximum advance) could have advanced in the High Tatras when the mean annual temperature was lower than today by 11-12 °C and precipitation was reduced by 40-60%. During the Lateglacial stages the temperature decrease in the study area changed from 10 °C during the Oldest Dryas to 6 °C during the Younger Dryas and precipitation lowering decreased from -50% to -30% or even -10%, respectively compare to modern conditions.
NASA Astrophysics Data System (ADS)
Wriston, T.; Smith, G. M.
2017-12-01
Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.
NASA Astrophysics Data System (ADS)
Broccoli, A. J.; Manabe, S.
1987-02-01
The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined. Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum. Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern.
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles reconstruct?
NASA Astrophysics Data System (ADS)
Saito, K.; Sueyoshi, T.; Marchenko, S.; Romanovsky, V.; Otto-Bliesner, B.; Walsh, J.; Bigelow, N.; Hendricks, A.; Yoshikawa, K.
2013-03-01
Global-scale frozen ground distribution during the Last Glacial Maximum (LGM) was reconstructed using multi-model ensembles of global climate models, and then compared with evidence-based knowledge and earlier numerical results. Modeled soil temperatures, taken from Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) simulations, were used to diagnose the subsurface thermal regime and determine underlying frozen ground types for the present-day (pre-industrial; 0 k) and the LGM (21 k). This direct method was then compared to the earlier indirect method, which categorizes the underlying frozen ground type from surface air temperature, applied to both the PMIP2 (phase II) and PMIP3 products. Both direct and indirect diagnoses for 0 k showed strong agreement with the present-day observation-based map, although the soil temperature ensemble showed a higher diversity among the models partly due to varying complexity of the implemented subsurface processes. The area of continuous permafrost estimated by the multi-model analysis was 25.6 million km2 for LGM, in contrast to 12.7 million km2 for the pre-industrial control, whereas seasonally, frozen ground increased from 22.5 million km2 to 32.6 million km2. These changes in area resulted mainly from a cooler climate at LGM, but other factors as well, such as the presence of huge land ice sheets and the consequent expansion of total land area due to sea-level change. LGM permafrost boundaries modeled by the PMIP3 ensemble-improved over those of the PMIP2 due to higher spatial resolutions and improved climatology-also compared better to previous knowledge derived from the geomorphological and geocryological evidences. Combinatorial applications of coupled climate models and detailed stand-alone physical-ecological models for the cold-region terrestrial, paleo-, and modern climates will advance our understanding of the functionality and variability of the frozen ground subsystem in the global eco-climate system.
NASA Astrophysics Data System (ADS)
Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.
2014-11-01
Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0-1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.
Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate
NASA Technical Reports Server (NTRS)
Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.
2014-01-01
Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates, with implications for estimating climate sensitivity to greenhouse gas forcing utilizing past climate states.
NASA Astrophysics Data System (ADS)
Henderiks, J.; Bollmann, J.
In Holocene deep-sea sediments, the relative abundance of different morphotypes within the coccolithophore genus Gephyrocapsa is closely correlated with sea sur- face temperature (Bollmann, 1997). Based on this relationship, a regional temperature transfer function was established using a set of 35 Holocene sediments from the NE Atlantic, covering a temperature range from 14C to 24C. Using this approach, ab- solute annual mean sea surface temperatures for a given location can be calculated from the relative abundance of two Gephyrocapsa morphotypes, Gephyrocapsa Cold and Gephyrocapsa Equatorial, with a standard deviation of +/-1.06C. A global regres- sion model (N=110) was applied as well, which calculates absolute mean sea surface temperatures from the relative abundance of three Gephyrocapsa morphotypes, with a standard deviation of +/-1.78C. Using both calibration models, we have estimated sea surface temperatures during the Last Glacial Maximum in a dispersed set of eigh- teen well-dated gravity cores off NW Africa (16-35N; 20-8W). The regional model revealed that annual mean temperatures during the LGM were 4 to 6C colder than today in the Canary Islands region, with lowest temperatures (14-15.5C) off-shore Morocco and south of the volcanic islands, likely due to intensified upwelling related to stronger trade winds. These values are consistent with estimates from the CLIMAP Project (1981) and other paleotemperature reconstructions for the same region. In con- trast, offshore Cape Blanc, our temperature estimates for the LGM are significantly warmer (Ttoday -LGM <4C) than proposed by CLIMAP (Ttoday -LGM 6-10C). Nevertheless, our results support temperature reconstructions based on alkenones that also indicate rather small temperature changes (Ttoday -LGM <3C) in this area (e.g. Zhao et al., 2000). Glacial sea surface temperature estimates derived from the global calibration are on average 1C warmer than those derived from the regional model. However, the overall geographic patterns and temperature gradients for both reconstructions are very similar. To compare our Gephyrocapsa proxy with other pa- leotemperature proxies, we investigated a down-core record off Cape Blanc (GeoB 1048; 2055 N, 1943 W) in the vicinity of BOFS core 31K (1900 N, 2010 W). For the latter core, a detailed multiproxy paleotemperature record already exists based on alkenones, Mg/Ca ratios in foraminiferal calcite and planktic foraminifera assem- 1 blages (Chapman et al., 1996; Elderfield Ganssen, 2000). Here, we show an especially good and consistent correspondence between our new proxy and alkenones, reflecting the fact that both proxies originated from the phytoplankton community. References Bollmann, Marine Micropaleontology 29 (3/4), 319-350 (1997). Chapman et al. Paleoceanography 11, 343-357 (1996). Elderfield Ganssen. Nature 405, 442-445 (2000). Zhao et al. Organic Geochemistry 31, 919-930 (2000). 2
Impact of the Agulhas Return Current on the glacial Subantarctic region in the South Indian Ocean
NASA Astrophysics Data System (ADS)
Ikehara, M.; Crosta, X.; Manoj, M. C.
2017-12-01
The Southern Ocean has played an important role in the evolution of the global climate system. The Southern Ocean circulation is dominated by the Antarctic Circumpolar Current (ACC), the world's longest and largest current system. Sea ice coverage on sea surface strongly affects the climate of the Southern Hemisphere through its impacts on the energy and gas budget, on the atmospheric circulation, on the hydrological cycle, and on the biological productivity. The Agulhas Return Current (ARC) originates from the Agulhas Current, the major western boundary current in the Indian Ocean, and transports heat from subtropical to subantarctic region. It's thought that the Agulhas leakage from the Indian Ocean to the Atlantic was reduced for the last glacial due to a northward shift of the westerlies and ACC, however, there are still unknown yet how the ARC was responded to the reduced Agulhas leakage. A piston core DCR-1PC was collected from the Del Caño Rise (46°S, 44°E, 2632m), Indian sector of the Southern Ocean. Core site located in the Subantarctic region between the Subtropical Front (STF) and Subantarctic Front (SAF). Age model of the core was established by radiocarbon dating of planktic foraminifer Globorotalia bulloides and oxygen isotope stratigraphy of benthic foraminifers Cibicidoides wuellerstorfi and Melonis bareelanus. Sediment of DCR-1PC show the cyclic changes of diatom/carbonate ooze sedimentation corresponding to Southern Ocean fronts' migrations on glacial-interglacial timescales. Records of ice-rafted debris (IRD) and oxygen isotope in planktic foraminfer G. bulloides suggest that the melting of sea ice was significantly increased during the last glacial maximum (LGM) in the Subantarctic surface water. Diatom assemblage based summer SST also shows the relative warmer condition in the Subantarctic during the LGM. These results might be explained by the strong influence of the Agulhas Return Current during the LGM in the Subantarctic. The reduced Agulhas leakage due to a northward shift of the westerlies and ACC impacted significantly on sea ice melting in the glacial Subantarctic region in the South Indian Ocean.
NASA Astrophysics Data System (ADS)
Burke, Ariane; Kageyama, Masa; Latombe, Guilllaume; Fasel, Marc; Vrac, Mathieu; Ramstein, Gilles; James, Patrick M. A.
2017-05-01
The extent to which climate change has affected the course of human evolution is an enduring question. The ability to maintain spatially extensive social networks and a fluid social structure allows human foragers to ;map onto; the landscape, mitigating the impact of ecological risk and conferring resilience. But what are the limits of resilience and to which environmental variables are foraging populations sensitive? We address this question by testing the impact of a suite of environmental variables, including climate variability, on the distribution of human populations in Western Europe during the Last Glacial Maximum (LGM). Climate variability affects the distribution of plant and animal resources unpredictably, creating an element of risk for foragers for whom mobility comes at a cost. We produce a model of habitat suitability that allows us to generate predictions about the probable distribution of human populations and discuss the implications of these predictions for the structure of human populations and their social and cultural evolution during the LGM.
NASA Astrophysics Data System (ADS)
Kohn, Matthew J.; McKay, Moriah
2010-11-01
Oxygen isotope data provide a key test of general circulation models (GCMs) for the Last Glacial Maximum (LGM) in North America, which have otherwise proved difficult to validate. High δ18O pedogenic carbonates in central Wyoming have been interpreted to indicate increased summer precipitation sourced from the Gulf of Mexico. Here we show that tooth enamel δ18O of large mammals, which is strongly correlated with local water and precipitation δ18O, is lower during the LGM in Wyoming, not higher. Similar data from Texas, California, Florida and Arizona indicate higher δ18O values than in the Holocene, which is also predicted by GCMs. Tooth enamel data closely validate some recent models of atmospheric circulation and precipitation δ18O, including an increase in the proportion of winter precipitation for central North America, and summer precipitation in the southern US, but suggest aridity can bias pedogenic carbonate δ18O values significantly.
Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2
NASA Astrophysics Data System (ADS)
Skinner, L. C.; Primeau, F.; Freeman, E.; de La Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.
2017-07-01
While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ~689+/-53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.
NASA Astrophysics Data System (ADS)
Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Rae, James W. B.; Opdyke, Bradley N.; Eggins, Stephen M.
2013-09-01
We present new deep water carbonate ion concentration ([CO32-]) records, reconstructed using Cibicidoides wuellerstorfi B/Ca, for one core from Caribbean Basin (water depth = 3623 m, sill depth = 1.8 km) and three cores located at 2.3-4.3 km water depth from the equatorial Pacific Ocean during the Last Glacial-interglacial cycle. The pattern of deep water [CO32-] in the Caribbean Basin roughly mirrors that of atmospheric CO2, reflecting a dominant influence from preformed [CO32-] in the North Atlantic Ocean. Compared to the amplitude of ˜65 μmol/kg in the deep Caribbean Basin, deep water [CO32-] in the equatorial Pacific Ocean has varied by no more than ˜15 μmol/kg due to effective buffering of CaCO3 on deep-sea pH in the Pacific Ocean. Our results suggest little change in the global mean deep ocean [CO32-] between the Last Glacial Maximum (LGM) and the Late Holocene. The three records from the Pacific Ocean show long-term increases in [CO32-] by ˜7 μmol/kg from Marine Isotope Stage (MIS) 5c to mid MIS 3, consistent with the response of the deep ocean carbonate system to a decline in neritic carbonate production associated with ˜60 m drop in sea-level (the “coral-reef” hypothesis). Superimposed upon the long-term trend, deep water [CO32-] in the Pacific Ocean displays transient changes, which decouple with δ13C in the same cores, at the start and end of MIS 4. These changes in [CO32-] and δ13C are consistent with what would be expected from vertical nutrient fractionation and carbonate compensation. The observed ˜4 μmol/kg [CO32-] decline in the two Pacific cores at >3.4 km water depth from MIS 3 to the LGM indicate further strengthening of deep ocean stratification, which contributed to the final step of atmospheric CO2 drawdown during the last glaciation. The striking similarity between deep water [CO32-] and 230Th-normalized CaCO3 flux at two adjacent sites from the central equatorial Pacific Ocean provides convincing evidence that deep-sea carbonate dissolution dominantly controlled CaCO3 preservation at these sites in the past. Our results offer new and quantitative constraints from deep ocean carbonate chemistry to understand roles of various mechanisms in atmospheric CO2 changes over the Last Glacial-interglacial cycle.
NASA Astrophysics Data System (ADS)
Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.
2017-12-01
Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability recorded in our record suggests complex responses to major and abrupt shifts during these periods, likely due to Florida's subtropical location and the influence of multiple climate forcing mechanisms in the region.
Paleoglaciation of the Tibetan Plateau based on exposure ages and ELA depression estimates
NASA Astrophysics Data System (ADS)
Heyman, Jakob
2014-05-01
The Tibetan Plateau holds a major part of all glaciers outside the polar regions and an ample record of past glaciations. The glacial history of the Tibetan Plateau has attracted significant interest, with a large body of research investigating the extent, timing, and climatic implications of past glaciations. Here I present an extensive compilation of exposure ages and equilibrium line altitude (ELA) depression estimates from glacial deposits across the Tibetan Plateau to address the timing and degree of past glaciations. I compiled Be-10 exposure age data for a total of 1877 samples and recalculated exposure ages using an updated (lower) global Be-10 production rate. All samples were organized in groups of individual glacial deposits where each deposit represents one glacial event enabling evaluation of the exposure age clustering. For each glacial deposit I estimated the ELA depression based on a simple toe to headwall ratio approach using Google Earth. To discriminate good (well-clustered) from poor (scattered) exposure age groups the glacial deposits were divided into three groups based on exposure age clustering. A major part of the glacial deposits have scattered exposure ages affected by prior or incomplete exposure, complicating exposure age interpretations. The well-clustered exposure age groups are primarily from mountain ranges along the margins of the Tibetan Plateau with a main peak in age between 10 and 30 ka, indicating glacial advances during the global last glacial maximum (LGM). A large number of exposure ages older than 30 ka indicates maximum glaciation predating the LGM, but the exposure age scatter generally prohibits accurate definition of the glacial chronology. The ELA depression estimates scatter significantly, but a major part is remarkably low. Average ELA depressions of 333 ± 191 m for the LGM and 494 ± 280 m for the pre-LGM exposure indicate restricted glacier expansion and limited glacial cooling.
Migration Patterns of Subgenus Alnus in Europe since the Last Glacial Maximum: A Systematic Review
Douda, Jan; Doudová, Jana; Drašnarová, Alena; Kuneš, Petr; Hadincová, Věroslava; Krak, Karol; Zákravský, Petr; Mandák, Bohumil
2014-01-01
Background/Aims Recently, new palaeoecological records supported by molecular analyses and palaeodistributional modelling have provided more comprehensive insights into plant behaviour during the last Quaternary cycle. We reviewed the migration history of species of subgenus Alnus during the last 50,000 years in Europe with a focus on (1) a general revision of Alnus history since the Last Glacial Maximum (LGM), (2) evidence of northern refugia of Alnus populations during the LGM and (3) the specific history of Alnus in particular European regions. Methodology We determined changes in Alnus distribution on the basis of 811 and 68 radiocarbon-dated pollen and macrofossil sites, respectively. We compiled data from the European Pollen Database, the Czech Quaternary Palynological Database, the Eurasian Macrofossil Database and additional literature. Pollen percentage thresholds indicating expansions or retreats were used to describe patterns of past Alnus occurrence. Principal Findings An expansion of Alnus during the Late Glacial and early Holocene periods supports the presence of alders during the LGM in southern peninsulas and northerly areas in western Europe, the foothills of the Alps, the Carpathians and northeastern Europe. After glaciers withdrew, the ice-free area of Europe was likely colonized from several regional refugia; the deglaciated area of Scandinavia was likely colonized from a single refugium in northeastern Europe. In the more northerly parts of Europe, we found a scale-dependent pattern of Alnus expansion characterised by a synchronous increase of Alnus within individual regions, though with regional differences in the times of the expansion. In southern peninsulas, the Alps and the Carpathians, by contrast, it seems that Alnus expanded differently at individual sites rather than synchronously in whole regions. Conclusions Our synthesis supports the idea that northern LGM populations were important sources of postglacial Alnus expansion. The delayed Alnus expansion apparent in some regions was likely a result of environmental limitations. PMID:24586374
NASA Astrophysics Data System (ADS)
Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus
2017-04-01
Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that low biogenic fluxes during the LGM were the most likely cause of the decreased biogenic carbonate concentrations.
Pigati, J.S.; Miller, D.M.; Bright, J.E.; Mahan, S.A.; Nekola, J.C.; Paces, J.B.
2011-01-01
groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4-12 ??C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0-11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing of these fluctuations is consistent with changes in other paleowetland systems in the Mojave Desert, the nearby Great Basin Desert, and in southeastern Arizona, near the border of the Sonoran and Chihuahuan Deserts. The similarities in hydrologic conditions between these disparate locations suggest that changes in groundwater levels during the late Pleistocene in desert wetlands scattered throughout the American Southwest were likely driven by synopticscale climate processes. ?? 2011 Geological Society of America.
Pigati, Jeffrey S.; Miller, David M.; Bright, Jordon E.; Mahan, Shannon; Nekola, Jeffrey C.; Paces, James B.
2011-01-01
During the late Pleistocene, emergent groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4–12 °C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0–11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing of these fluctuations is consistent with changes in other paleowetland systems in the Mojave Desert, the nearby Great Basin Desert, and in southeastern Arizona, near the border of the Sonoran and Chihuahuan Deserts. The similarities in hydrologic conditions between these disparate locations suggest that changes in groundwater levels during the late Pleistocene in desert wetlands scattered throughout the American Southwest were likely driven by synoptic-scale climate processes.
Gugger, Paul F; Ikegami, Makihiko; Sork, Victoria L
2013-07-01
Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate-based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large-scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28-1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11-18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion-contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions. © 2013 John Wiley & Sons Ltd.
Are glacials "dry" - and in what sense?
NASA Astrophysics Data System (ADS)
Scheff, J.; Seager, R.; Coats, S.; Liu, H.
2016-12-01
Glacial maxima during the Pleistocene are generally thought to be arid on land, with a few regional exceptions. Recent work on future climate change, however, has found that different wetness-related variables have opposite-signed responses over large portions of the continents, belying simple ideas of local "drying" or "wetting" with global temperature change in models. Here, we show that this behavior extends to simulations of the Last Glacial Maximum as well: the continents are modeled to have generally wetter topsoils and higher values of standard climate-wetness metrics in the LGM than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with the streamflow response falling in between. Is this model-derived view of the LGM an accurate one? Using a large community pollen and plant-fossil compilation, we confirm that LGM grasslands and open woodlands grew at many sites of present potential forest, seasonal or dry forests at many sites of present potential rain- or seasonal forests, and so forth, while changes in the opposite sense were extremely few and spatially confined. We show that this strongly resembles the simulated photosynthesis changes, but not the simulated streamflow or soil moisture changes. Meanwhile, published LGM lake-level estimates resemble the simulated streamflow changes, but not the photosynthesis changes. Thus, the last glacial does not appear to be systematically "dry" outside the high latitudes, but merely carbon-starved. Similarly, local findings of reduced or more open vegetation at the LGM (e.g. from pollen, carbon isotopes, or dustiness) do not indicate local "aridity" unless corroborating hydrological proxies are also found. Finally, this work suggests that glacial-era evidence of open vegetation with high lake levels (as in the eastern Mediterranean) is not odd or paradoxical, but entirely consistent with climate model output.
González, Juan F.; Boric-Bargetto, Dusan; Torres-Pérez, Fernando
2017-01-01
We evaluated if two sigmodontine rodent taxa (Abrothrix olivacea and Phyllotis darwini) from the Andes and Coastal mountaintops of central Chile, experienced distributional shifts due to altitudinal movements of habitat and climate change during and after the Last Glacial Maximum (LGM). We tested the hypothesis that during LGM populations of both species experienced altitudinal shifts from the Andes to the lowlands and the coastal Cordillera, and then range retractions during interglacial towards higher elevations in the Andes. These distributional shifts may have left remnants populations on the mountaintops. We evaluated the occurrence of intraspecific lineages for each species, to construct distribution models at LGM and at present, as extreme climatic conditions for each lineage. Differences in distribution between extreme climatic conditions were interpreted as post-glacial distributional shifts. Abrothrix olivacea displayed a lineage with shared sequences between both mountain systems, whereas a second lineage was restricted to the Andes. A similar scenario of panmictic unit in the past was recovered for A. olivacea in the Andes, along with an additional unit that included localities from the rest of its distribution. For P. darwini, both lineages recovered were distributed in coastal and Andean mountain ranges at present as well, and structuring analyses for this species recovered coastal and Andean localities as panmictic units in the past. Niche modeling depicted differential postglacial expansions in the recovered lineages. Results suggest that historical events such as LGM triggered the descending of populations to Andean refuge areas (one of the A. olivacea’s lineages), to the lowlands, and to the coastal Cordillera. Backward movements of populations after glacial retreats may have left isolates on mountaintops of the coastal Cordillera, suggesting that current species distribution would be the outcome of climate change and habitat reconfiguration after LGM. PMID:28672032
INTERACTION OF CLIMATE AND LAND USE IN FUTURE TERRESTRIAL CARBON STORAGE AND RELEASE
The processes controlling total carbon (C) storage and release from the terrestrial biosphere are still poorly quantified. e conclude from analysis of paleodata and climate biome model output that terrestrial C exchanges since the last glacial maximum (LGM) were dominated by slow...
Climate, CO2, and the history of North American grasses since the Last Glacial Maximum
Cotton, Jennifer M.; Cerling, Thure E.; Hoppe, Kathryn A.; Mosier, Thomas M.; Still, Christopher J.
2016-01-01
The spread of C4 grasses in the late Neogene is one of the most important ecological transitions of the Cenozoic, but the primary driver of this global expansion is widely debated. We use the stable carbon isotopic composition (δ13C) of bison and mammoth tissues as a proxy for the relative abundance of C3 and C4 vegetation in their grazing habitat to determine climatic and atmospheric CO2 controls on C4 grass distributions from the Last Glacial Maximum (LGM) to the present. We predict the spatial variability of grass δ13C in North America using a mean of three different methods of classification and regression tree (CART) machine learning techniques and nine climatic variables. We show that growing season precipitation and temperature are the strongest predictors of all single climate variables. We apply this CART analysis to high-resolution gridded climate data and Coupled Model Intercomparison Project (CMIP5) mean paleoclimate model outputs to produce predictive isotope landscape models (“isoscapes”) for the current, mid-Holocene, and LGM average δ13C of grass-dominated areas across North America. From the LGM to the present, C4 grass abundances substantially increased in the Great Plains despite concurrent increases in atmospheric CO2. These results suggest that changes in growing season precipitation rather than atmospheric CO2 were critically important in the Neogene expansion of C4 grasses. PMID:27051865
NASA Astrophysics Data System (ADS)
Hendry, Katharine R.; Georg, R. Bastian; Rickaby, Rosalind E. M.; Robinson, Laura F.; Halliday, Alex N.
2010-04-01
The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO 2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep waters. In particular, the upwelling of silicic acid (Si(OH) 4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep water Si(OH) 4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH) 4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH) 4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH) 4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.
Intensified Indian Ocean climate variability during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.
2017-12-01
Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.
NASA Astrophysics Data System (ADS)
Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar
2016-04-01
With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Valdes, Paul J.; Kaplan, Jed O.
2018-04-01
The observed rise in atmospheric methane (CH4) from 375 ppbv during the Last Glacial Maximum (LGM: 21,000 years ago) to 680 ppbv during the late preindustrial era is not well understood. Atmospheric chemistry considerations implicate an increase in CH4 sources, but process-based estimates fail to reproduce the required amplitude. CH4 stable isotopes provide complementary information that can help constrain the underlying causes of the increase. We combine Earth System model simulations of the late preindustrial and LGM CH4 cycles, including process-based estimates of the isotopic discrimination of vegetation, in a box model of atmospheric CH4 and its isotopes. Using a Bayesian approach, we show how model-based constraints and ice core observations may be combined in a consistent probabilistic framework. The resultant posterior distributions point to a strong reduction in wetland and other biogenic CH4 emissions during the LGM, with a modest increase in the geological source, or potentially natural or anthropogenic fires, accounting for the observed enrichment of δ13CH4.
NASA Astrophysics Data System (ADS)
Russell, C.; Leonard, E. M.
2016-12-01
The current study employs a combination of cosmogenic radionuclide (CRN) surface-exposure dating and numerical glacier modeling to investigate the climate during and following the last glacial maximum (LGM) in the Sawatch Range of Colorado. A coupled 2-D energy/mass balance and flow model is used to asses the combinations of temperature and precipitation change that could have sustained glaciers in the range at their LGM extents in five valleys along the eastern flank of the range, by matching modeled ice extent to the well-preserved LGM moraines in each valley. In addition, the study couples modeling with CRN geochronology of post-LGM ice recession to try to understand the dynamics of deglaciation and the magnitudes and rates of the climate changes that drove it. Results to date include an equilibrium glacier model that fits LGM moraines in all five valleys with a 5.4°C temperature depression and no change from modern precipitation amounts or seasonality. Modeling of deglaciation indicates, however, that the response of individual glacier systems is strongly influenced by valley hypsometry as was suggested by previous workers. Low-gradient glacier systems in the range, including the Lake Creek and Clear Creek glaciers, respond dramatically to even small temperature increases, while much steeper systems, such as the Pine Creek glacier, experience much more limited retreat in response to the same climate forcing A CRN-based deglaciation chronology is available for the Lake Creek glacier, the largest of five paleoglaciers studied. The ages show that portions of the valley floor were ice-covered for several hundred years longer than the cirques above. The numerical model is currently being used to investigate two possible explanations for this. One possibility is that climate ameliorated and deglaciation proceeded so fast that thin ice in the cirques melted out before much thicker stagnant ice melted in the valley. A second possibility is that cross-divide flow from the wetter west side of the range maintained small east-side valley glaciers even as the east-side cirques deglaciated. Ongoing work will model a larger area of range to gain a better understanding of range-wide patterns of ice flow that could have affected deglaciation of the Lake Creek valley.
NASA Astrophysics Data System (ADS)
Benthien, A.; Schulte, S.; Andersen, N.; Müller, P. J.; Schneider, R. R.
The carbon isotopic signal of the C37-alkenone, a taxon-specific biomarker for hap- tophyte algae, has been used in various paleoceanographic studies as a proxy for an- cient surface water CO2 concentration ([CO2aq]). However, a number of recent cul- ture, field and sediment studies imply that the carbon isotopic fractionation (ep) of alkenones is controlled predominantly by physiological processes and environmental factors other than the ambient CO2 concentration (i.e., growth rate, nutrient availabil- ity, light intensity, active carbon uptake, bicarbonate utilisation). The environmental conditions controlling phytoplankton growth are likely to vary strongly with oceano- graphic setting. Culture experiments can not perfectly recreate natural growth con- ditions and physical processes which affect the carbon isotopic signal in the field and its preservation in the sediment. Consequently, the use of the carbon isotopic record of alkenones as a reliable paleoceonographic proxy also requires sediment- based studies covering a broad range of different oceanic regimes for the past and modern ocean. Here, we present the first basin-wide comparison of alkenone ep val- ues from sediments of the Last Glacial Maximum (LGM) and the latest Holocene. Different oceanographic regions from the equatorial and South Atlantic Ocean were examined. Generally, alkenone ep is lower during the LGM compared to the Holocene. Considering present understanding of LGM-Holocene changes in surface water condi- tions, the observed glacial/interglacial difference in ep indicates that different effects controlled the isotopic fractionation in alkenone-producing algae depending on the regional setting. In upwelling regions, the variations in ep probably reflect a glacial increase in haptophyte productivity controlled by the availability of surface water nu- trient concentrations. By contrast, in oligotrophic areas slightly lower nutrient content was available during LGM. Here, the observed ep difference can be explained partly with an assumed glacial decrease in surface water [CO2aq]. However, it can not be ruled out that changes in haptophyte productivity also affected the ep signal to some extent. This study clearly demonstrates that a reliable reconstruction of [CO2aq] on the basis of the isotopic composition of alkenones is not feasible without a detailed 1 knowledge of ancient haptophyte growth conditions. 2
NASA Astrophysics Data System (ADS)
Gerhart, L. M.; Harris, J. M.; Ward, J. K.
2011-12-01
During the Last Glacial Maximum, atmospheric [CO2] was as low as 180 ppm and has currently risen to a modern value of 393 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced trees over the last 50,000 years, we analyzed carbon isotope ratios and width of individual tree rings from glacial Juniperus specimens preserved in the Rancho La Brea tar pits in southern California (aged 14-49 kyr BP). Modern trees were also analyzed to compare effects of changing precipitation, temperature and atmospheric [CO2] on physiology and growth. To assess physiological responses, we calculated ci/ca (intercellular [CO2]/atmospheric [CO2]) for each annual ring of each tree. This ratio incorporates numerous aspects of plant physiology, including stomatal conductance and photosynthetic capacity. In addition, we measured ring widths for each sample, and standardized these measurements into indices in order to compare across individuals. Mean ci/ca values remained constant throughout 50,000 years despite major environmental changes, indicating a long-term physiological set point for ci/ca in this group. Constant ci/ca ratios would be maintained through offsetting changes in stomatal conductance and photosynthetic capacity. Glacial Juniperus never experienced ci values below 90 ppm, suggesting a survival compensation point for Juniperus. In addition, glacial trees showed significantly reduced interannual variation in ci/ca, even though interannual climatic variability was as high during the LGM in this region as it is today. A lack of variability in ci/ca of glacial trees suggests that tree physiology was dominated by low [CO2], which shows low interannual variation. Modern trees showed high interannual variation in ci/ca, since water availability dominates current physiological responses and varies greatly from year to year. Interestingly, interannual variation in ring width index did not show significant differences between glacial and modern trees, suggesting these trees were adapted to maintain growth under low [CO2]. These adaptations may constrain the ability of modern trees to fully utilize increases in atmospheric [CO2]. These results have significant implications for our understanding of the adaptations of trees to changing [CO2] and indicate that the environmental factors that most strongly influence plant physiology may have changed over geologic time scales.
NASA Astrophysics Data System (ADS)
Götz, Joachim; Kraxberger, Stefan; Weidinger, Johannes Thomas; Buckel, Johannes
2017-04-01
The giant Khumjung-Namche and Lukla Rockslides are located in the steep Khumbu Himal (Nepal) within the probably most impressive mountain catchment on earth drained by the Dudh Kosi River (1560 km2, altitudinal range 1341-8848 m). Both rockslides are of considerable size (each deposit ca 5.5 km2) but so far just barely described, partly misinterpreted and widely unknown. The aim of this study is twofold: First, the rockslides bear the potential to bring more light in the debate about the timing and extent of the LGM in the region, since both are of considerable age (huge parts of the masses have already been excavated) but none of them show signs of post-depositional glacial modification. Second, both deposits provide a gentle topography and the most extensive areas for settlements in the region (with the centres of Lukla and Namche Bazar) - a fact that demands for hydrogeological analyses of the rockslide material and consequences for landuse and (drinking) water availability and quality. The study is based on a bundle of methods, including the interpretation of orthophotos and digital elevation models, geomorphologic field mapping, mapping and analyses of rockslide outcrops, spring water sampling and analyses, as well as surface exposure dating (SED) of rockslide boulders and OSL dating of partly preserved fines upstream the rockslides (in progress). First results for both rockslides include the locations of the head scarps, directions of movement, extents, volumes, and internal composition of the deposits, as well as the timing of the so far undated events. For the southern Lukla Rockslide, SED clearly indicates an age of ca 22 ka BP and confirms a single rockslide event (which was partly interpreted as multiphase event due to its terraced morphology). Samples from the northern Khumjung-Namche Rockslide delivered deviating, but older ages of 50 and 79 ka BP, verifying a pre-LGM event and a maximum LGM ice limit of 4000 m asl in the area. We further provide first information on hydrogeologic characteristics of the deposits and show that they are composed of fragmented and highly shattered rockslide material that is characterized by effective infiltration, short residence times of percolating water and only small amounts of surface runoff. Subsurface water flow might follow various ways, e.g., along hollows and pipes between the blocks on top, along microstructures or internal sliding planes within the mass, and along the basal sliding plane, especially if controlled by pre-event topography. The topography of rockslide deposits thus facilitates human activity, whereas their internal composition implies a scarcity of water - a critical issue for the local population demanding for adaptation strategies, especially in the light of the increasing tourism in the region.
LGM-30B, Stage II Dissected Motors Test Report,
1980-07-01
Relaxation Test Data (Outer Propellant) 29 Table 9, Stress Relaxation Test Data (Inner Propellant) 31 Table 10 , Cohesive Tear Energy Test Data (Outer...Outer) 45 7 Maximum Stress (Inner) 46 8Strain at Rupture (Inner) 47 9 Modulus (Inner) 48 Regression Plot, Low Rate Tensile 10 Maximum Stress (Outer...outer propellants are almost the same. H. TEAR ENERGY TEST: Data from this test period are contained in Tables 10 and 11. Sufficient valid data became
NASA Astrophysics Data System (ADS)
Saito, K.; Sueyoshi, T.; Marchenko, S.; Romanovsky, V.; Otto-Bliesner, B.; Walsh, J.; Bigelow, N.; Hendricks, A.; Yoshikawa, K.
2013-08-01
Here, global-scale frozen ground distribution from the Last Glacial Maximum (LGM) has been reconstructed using multi-model ensembles of global climate models, and then compared with evidence-based knowledge and earlier numerical results. Modeled soil temperatures, taken from Paleoclimate Modelling Intercomparison Project phase III (PMIP3) simulations, were used to diagnose the subsurface thermal regime and determine underlying frozen ground types for the present day (pre-industrial; 0 kya) and the LGM (21 kya). This direct method was then compared to an earlier indirect method, which categorizes underlying frozen ground type from surface air temperature, applying to both the PMIP2 (phase II) and PMIP3 products. Both direct and indirect diagnoses for 0 kya showed strong agreement with the present-day observation-based map. The soil temperature ensemble showed a higher diversity around the border between permafrost and seasonally frozen ground among the models, partly due to varying subsurface processes, implementation, and settings. The area of continuous permafrost estimated by the PMIP3 multi-model analysis through the direct (indirect) method was 26.0 (17.7) million km2 for LGM, in contrast to 15.1 (11.2) million km2 for the pre-industrial control, whereas seasonally frozen ground decreased from 34.5 (26.6) million km2 to 18.1 (16.0) million km2. These changes in area resulted mainly from a cooler climate at LGM, but from other factors as well, such as the presence of huge land ice sheets and the consequent expansion of total land area due to sea-level change. LGM permafrost boundaries modeled by the PMIP3 ensemble - improved over those of the PMIP2 due to higher spatial resolutions and improved climatology - also compared better to previous knowledge derived from geomorphological and geocryological evidence. Combinatorial applications of coupled climate models and detailed stand-alone physical-ecological models for the cold-region terrestrial, paleo-, and modern climates will advance our understanding of the functionality and variability of the frozen ground subsystem in the global eco-climate system.
NASA Astrophysics Data System (ADS)
Adloff, Markus; Reick, Christian H.; Claussen, Martin
2018-04-01
In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment. For PI, ocean and land contributions to the total feedback are of similar size, while in the LGM case the terrestrial feedback is dominant.
NASA Astrophysics Data System (ADS)
Loveley, Matthew R.; Marcantonio, Franco; Lyle, Mitchell; Ibrahim, Rami; Hertzberg, Jennifer E.; Schmidt, Matthew W.
2017-12-01
Here, we examine how redistribution of differing grain sizes by sediment focusing processes in Panama Basin sediments affects the use of 230Th as a constant-flux proxy. We study representative sediments of Holocene and Last Glacial Maximum (LGM) time slices from four sediment cores from two different localities close to the ridges that bound the Panama Basin. Each locality contains paired sites that are seismically interpreted to have undergone extremes in sediment redistribution, i.e., focused versus winnowed sites. Both Holocene and LGM samples from sites where winnowing has occurred contain significant amounts (up to 50%) of the 230Th within the >63 μm grain size fraction, which makes up 40-70% of the bulk sediment analyzed. For sites where focusing has occurred, Holocene and LGM samples contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4 μm), which makes up 26-40% of the bulk sediment analyzed. There are slight underestimations of 230Th-derived mass accumulation rates (MARs) and overestimations of 230Th-derived focusing factors at focused sites, while the opposite is true for winnowed sites. Corrections made using a model by Kretschmer et al. (2010) suggest a maximum change of about 30% in 230Th-derived MARs and focusing factors at focused sites, except for our most focused site which requires an approximate 70% correction in one sample. Our 230Th-corrected 232Th flux results suggest that the boundary between hemipelagically- and pelagically-derived sediments falls between 350 and 600 km from the continental margin.
Khan, Shfaqat A; Sasgen, Ingo; Bevis, Michael; van Dam, Tonie; Bamber, Jonathan L; Wahr, John; Willis, Michael; Kjær, Kurt H; Wouters, Bert; Helm, Veit; Csatho, Beata; Fleming, Kevin; Bjørk, Anders A; Aschwanden, Andy; Knudsen, Per; Munneke, Peter Kuipers
2016-09-01
Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.
NASA Astrophysics Data System (ADS)
Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David
2016-04-01
The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.
Khan, Shfaqat A.; Sasgen, Ingo; Bevis, Michael; van Dam, Tonie; Bamber, Jonathan L.; Wahr, John; Willis, Michael; Kjær, Kurt H.; Wouters, Bert; Helm, Veit; Csatho, Beata; Fleming, Kevin; Bjørk, Anders A.; Aschwanden, Andy; Knudsen, Per; Munneke, Peter Kuipers
2016-01-01
Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year. PMID:27679819
Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum
Conway, T.M.; Wolff, E.W.; Röthlisberger, R.; Mulvaney, R.; Elderfield, H.E.
2015-01-01
Relief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial–interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble atmospheric Fe fluxes to the oceans limit assessment of the role of Fe in glacial–interglacial change. Here, using novel techniques, we present estimates of water- and seawater-soluble Fe solubility in Last Glacial Maximum (LGM) atmospheric dust from the European Project for Ice Coring in Antarctica (EPICA) Dome C and Berkner Island ice cores. Fe solubility was very variable (1–42%) during the interval, and frequently higher than typically assumed by models. Soluble aerosol Fe fluxes to Dome C at the LGM (0.01–0.84 mg m−2 per year) suggest that soluble Fe deposition to the Southern Ocean would have been ≥10 × modern deposition, rivalling upwelling supply. PMID:26204562
Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2
Skinner, L. C.; Primeau, F.; Freeman, E.; de la Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.
2017-01-01
While the ocean’s large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean–atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial–interglacial CO2 change. PMID:28703126
NASA Astrophysics Data System (ADS)
Li, Q.; Wu, H.; Yu, Y.; Sun, A.; Luo, Y.
2017-12-01
Reconstructing patterns of past vegetation change on a large-scale facilitates a better understanding of the interactions and feedbacks between climate change and the terrestrial biosphere. In addition, reducing the uncertainty in predictions of vegetation change under global warming highlights the importance of reconstructing vegetation patterns during past warming intervals. Here, we present a quantitative regional vegetation reconstruction for China during three intervals: Last Glacial Maximum (LGM, 18±2 14C kyr B.P.), early Holocene (8.5±0.5 14C kyr B.P.), and mid-Holocene (6±0.5 14C kyr B.P.). The biomization method, based on 249 pollen records, was used for the reconstructions. The results demonstrate that during the LGM, steppe and desert expanded eastwards and southwards, reaching the present-day temperate deciduous forest (TEDE) zone, and dominated northern China. In contrast, the forest in Eastern China underwent a substantial southwards retreat and the percentage of forest-type sites was at a minimum. In addition, the warm mixed forest (WAMF) and TEDE shifted southwards of 10° N relative to the present-day, and tropical seasonal rain forest (TSFO) was almost absent. At the same time, the forest-steppe boundary shifted southwards to near the middle and lower reaches of Yangtze River. For the early Holocene and mid-Holocene, the TSFO, WAMF, and TEDE shifted northwards by 2-5° relative to today, and the percentage of forest sites increased and reached a maximum in the mid-Holocene. The slight expansion of forest from the early Holocene to the mid-Holocene caused the forest-steppe boundary to shift northwestwards to near the present-day 300 mm isohyet by the mid-Holocene. Our results also indicate that climatic warming since the LGM, which strengthened the East Asian summer monsoon, favored the development of forest in China. This is potentially an important finding for evaluating the possible response of forest in China to future global warming.
NASA Astrophysics Data System (ADS)
Bromley, Gordon R. M.; Schaefer, Joerg M.; Hall, Brenda L.; Rademaker, Kurt M.; Putnam, Aaron E.; Todd, Claire E.; Hegland, Matthew; Winckler, Gisela; Jackson, Margaret S.; Strand, Peter D.
2016-09-01
Resolving patterns of tropical climate variability during and since the last glacial maximum (LGM) is fundamental to assessing the role of the tropics in global change, both on ice-age and sub-millennial timescales. Here, we present a10Be moraine chronology from the Cordillera Carabaya (14.3°S), a sub-range of the Cordillera Oriental in southern Peru, covering the LGM and the first half of the last glacial termination. Additionally, we recalculate existing 10Be ages using a new tropical high-altitude production rate in order to put our record into broader spatial context. Our results indicate that glaciers deposited a series of moraines during marine isotope stage 2, broadly synchronous with global glacier maxima, but that maximum glacier extent may have occurred prior to stage 2. Thereafter, atmospheric warming drove widespread deglaciation of the Cordillera Carabaya. A subsequent glacier resurgence culminated at ∼16,100 yrs, followed by a second period of glacier recession. Together, the observed deglaciation corresponds to Heinrich Stadial 1 (HS1: ∼18,000-14,600 yrs), during which pluvial lakes on the adjacent Peruvian-Bolivian altiplano rose to their highest levels of the late Pleistocene as a consequence of southward displacement of the inter-tropical convergence zone and intensification of the South American summer monsoon. Deglaciation in the Cordillera Carabaya also coincided with the retreat of higher-latitude mountain glaciers in the Southern Hemisphere. Our findings suggest that HS1 was characterised by atmospheric warming and indicate that deglaciation of the southern Peruvian Andes was driven by rising temperatures, despite increased precipitation. Recalculated 10Be data from other tropical Andean sites support this model. Finally, we suggest that the broadly uniform response during the LGM and termination of the glaciers examined here involved equatorial Pacific sea-surface temperature anomalies and propose a framework for testing the viability of this conceptual model.
Hypsometry and the distribution of high-alpine lakes in the European Alps
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Otto, Jan-Christoph; Buckel, Johannes; Keuschnig, Markus
2017-04-01
Climate change strongly affects alpine landscapes. Cold-climate processes shape the terrain in a typical way and ice-free overdeepenings in cirques and glacial valleys as well as different types of moraines favor the formation of lakes. These water bodies act as sediment sinks and high-alpine water storage but may also favor outburst and flooding events. Glacier retreat worldwide is associated with an increasing number and size of high-alpine lakes which implies a concurrent expansion of sediment retention and natural hazard potential. Rising temperatures are regarded to be the major cause for this development, but other factors such as the distribution of area over elevation and glacier erosional and depositional dynamics may play an important role as well. While models of ice flow and glacial erosion are employed to understand the impact of glaciers on mountain landscapes, comprehensive datasets and analyses on the distribution of existing high-alpine lakes are lacking. In this study we present an exhaustive database of natural lakes in the European Alps and analyze lake distribution with respect to hypsometry. We find that the distribution of lake number and lake area over elevation only weakly coincides with hypsometry. Unsurprisingly, largest lakes are often tectonically influenced and located at the fringe of the mountain range and in prominent inter-montane basins. With increasing elevation, however, the number of lakes, lake area and total area decrease until a local minimum is reached around the equilibrium line latitude (ELA) of the last glacial maximum (LGM). Above the LGM ELA, total area further decreases, but lake number and area increase again. A local maximum in lake area coincides with an absolute maximum in lake number between the ELAs of the LGM and the little ice age around 2500 m. We conclude that glacial erosional and depositional dynamics control the distribution and size of high-alpine lakes and thus demand for exceptional attention when predicting future lake development.
Continuity of brown bear maternal lineages in northern England through the Last-glacial period
NASA Astrophysics Data System (ADS)
Edwards, Ceiridwen J.; Ho, Simon Y. W.; Barnett, Ross; Coxon, Peter; Bradley, Daniel G.; Lord, Tom C.; O'Connor, Terry
2014-07-01
Brown bears recolonised Europe rapidly after the Last Glacial Maximum (LGM), but there has been debate about whether bear populations were confined to separate glacial refugia in southern Europe, or if there was continuous gene flow among groups. To look in more detail at recolonisation routes into the British Isles after the LGM, 16 brown bear (Ursus arctos) samples from Lateglacial Yorkshire were analysed for mitochondrial DNA survival. The resulting data were compared with earlier work on Late Pleistocene and Holocene bears from Ireland (Edwards et al., 2011), as well as with both modern and ancient bears from across continental Europe. The results highlight the temporal and spatial continuity of brown bear maternal lineages through the Lateglacial period in northern England. While this region was not a refugial area in the LGM for the Irish Clade 2 brown bears, our data suggest that populations of brown bear in England did act as refugial sources for the later colonisation of Ireland, by Clade 1-i bears, during the Holocene. Our results contribute to a wider understanding of the phylogenetic relationships of brown bears through the Late Quaternary, and lend a valuable perspective on bear migration into peripheral Europe.
Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis
Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.
2010-01-01
Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.
Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian
2014-01-01
Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252
Origin of British and Irish mammals: disparate post-glacial colonisation and species introductions
NASA Astrophysics Data System (ADS)
Montgomery, W. Ian; Provan, Jim; McCabe, A. Marshal; Yalden, Derek W.
2014-08-01
Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions. There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock' will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and ecological divergence in Ireland in comparison to Britain and continental Europe, were also those which arrived in Ireland very early in the Holocene either with or without the assistance of people. Cold tolerant mammal species recolonized quickly after LGM but disappeared, potentially as a result of a short period of rapid warming. Other early arrivals were less cold tolerant and succumbed to the colder conditions during the Younger Dryas or shortly after the start of the Holocene (11.5 kya), or the area of suitable habitat was insufficient to sustain a viable population especially in larger species. Late Pleistocene mammals in Ireland were restricted to those able to colonize up to ca 15 kya, probably originating from adjacent areas of unglaciated Britain and land now below sea level, to the south and west (of Ireland). These few, early colonizers retain genetic diversity which dates from before the LGM. Late Pleistocene Ireland, therefore, had a much depleted complement of mammal species in comparison to Britain. Mammal species, colonising predominantly from southeast and east Europe occupied west Europe only as far as Britain between ca 15 and 8 kya, were excluded from Ireland by the Irish and Celtic Seas. Smaller species in particular failed to colonise Ireland. Britain being isolated as an island from ca. 8 kya has similar species richness and composition to adjacent lowland areas of northwest continental Europe and its mammals almost all show strongest genetic affinity to populations in neighbouring continental Europe with a few retaining genotypes associated with earlier, western lineages. The role of people in the deliberate introduction of mammal species and distinct genotypes is much more significant with regards to Ireland than Britain reflecting the larger species richness of the latter and its more enduring land link with continental Europe. The prime motivation of early people in moving mammals was likely to be resource driven but also potentially cultural; as elsewhere, people exploring uninhabited places introduced species for food and the materials they required to survive. It is possible that the process of introduction of mammals to Ireland commenced during the Mesolithic and accelerated with Neolithic people. Irish populations of these long established, introduced species show some unique genetic variation whilst retaining traces of their origins principally from Britain but in some cases, Scandinavia and Iberia. It is of particular interest that they may retain genetic forms now absent from their source populations. Further species introductions, during the Bronze and late Iron Ages, and Viking and Norman invasions, follow the same pattern but lack the time for genetic divergence from their source populations. Accidental introductions of commensal species show considerable genetic diversity based on numerous translocations along the eastern Atlantic coastline. More recent accidental and deliberate introductions are characterised by a lack of genetic diversity other than that explicable by more than one introduction. The substantial advances in understanding the postglacial origins and genetic diversity of British and Irish mammals, the role of early people in species translocations, and determination of species that are more recently introduced, should inform policy decisions with regards to species and genetic conservation. Conservation should prioritise early, naturally recolonizing species and those brought in by early people reflecting their long association with these islands. These early arrivals in Britain and Ireland and associated islands show genetic diversity that may be of value in mitigating anthropogenic climate change across Europe. In contrast, more recent introductions are likely to disturb ecosystems greatly, lead to loss of diversity and should be controlled. This challenge is more severe in Ireland where the number and proportion of invasive species from the 19th century to the present has been greater than in Britain.
NASA Astrophysics Data System (ADS)
Miller, J.; Dekens, P. S.; Weber, M. E.; Spiess, V.; France-Lanord, C.
2015-12-01
The International Ocean Discovery Program (IODP) Expedition 354 drilled 7 sites in the Bay of Bengal, providing a unique opportunity to improve our understanding of the link between glacial cycles, tropical oceanographic changes, and monsoon strength. Deep-sea sediment cores of the Bengal Fan fluctuate between sand, hemipelagic and terrestrial sediment layers. All but one of the sites (U1454) contain a layer of calcareous clay in the uppermost part of the core that is late Pleistocene in age. During Expedition 354 site U1452C was sampled at high resolution (every 2cm) by a broad group of collaborators with the goal of reconstructing monsoon strength and oceanographic conditions using a variety of proxies. The top 480 cm of site U1452C (8ºN, 87ºE, 3671m water depth) contains primarily nannofossil rich calcareous clay. The relatively high abundance of foraminifera will allow us to generate a high resolution record of sea surface temperature (SST) and sea surface salinity (SSS) using standard foraminifera proxies. We will present oxygen isotopes (δ18O) and Mg/Ca data of mixed layer planktonic foraminifera from the top 70cm of the core, representing the Holocene to the last glacial maximum. δ18O of planktonic foraminifera records global ice volume and local SST and SSS, while Mg/Ca of foraminifera is a proxy for SST. The paired Mg/Ca and δ18O measurements on the same samples of foraminifera, together with published estimates with global ocean δ18O, can be used to reconstruct both SST and local δ18O of seawater, which is a function of the evaporation/precipitation balance. In future work, the local SSS and SST during the LGM will be paired with terrestrial and other oceanic proxies to increase our understanding of how global climate is connected to monsoon strength.
The vegetation cover of New Zealand at the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Newnham, Rewi; McGlone, Matt; Moar, Neville; Wilmshurst, Janet; Vandergoes, Marcus
2013-08-01
A new reconstruction of the vegetation cover for New Zealand at the Last Glacial Maximum (LGM) is presented, based primarily on a database of 66 pollen site records and a more limited range of plant macrofossil and coleopteran records. Extensive forest is evident only from Auckland northwards. Conifer-broadleaf forest similar to that in the region today, but with Agathis australis scarce, persisted in the far north, whilst Nothofagus trees and a range of shrub taxa characterised the more open forests elsewhere in Northland. Survival of Nothofagus-dominated forest in coastal and exposed continental shelf locations to the southwest of Auckland and northwestern South Island is also indicated. Beyond these regions, vegetation cover comprised shrubland- and grassland-dominant communities, with the latter more prominent in eastern areas, to the south and presumably at higher altitudes. Nevertheless the survival of forest trees is indicated unambiguously in most regions apart from the eastern South Island. Thus the concept of 'micro glacial forest refugia' in New Zealand remains supported by this latest glacial vegetation reconstruction and we draw possible parallels with the developing but contentious concept of 'northern cryptic refugia' in Europe. Recent assertions that pollen and beetle reconstructions of the New Zealand LGM vegetation patterns diverge significantly are not supported by this analysis. Rather, the two proxies are readily reconciled if the term 'woody' as indicated by coleoptera is not restricted to tall forest trees but extended to the widespread woody shrub and small tree elements of the New Zealand flora. Regional distinctions in the LGM vegetation reconstruction concur broadly with the contemporary vegetation pattern, suggesting that, along with temperature depression and likely drier growing conditions, a zonal circulation regime with prominent southern westerly winds was important at 21 ka, as it is today. Pollen-climate modelling of the extent of temperature change is limited by the lack of LGM analogues and the relatively small number of cool climate indicator taxa in the modern (predeforestation) pollen training set. Nevertheless, a group of 17 sites which display a >90% match with the modern training set, and therefore should provide more reliable estimates, give an average reconstructed mean annual temperature depression of -6.01 ± 1.91 °C using the partial least squares method. This value, towards the upper end of the range of most independently derived estimates, accords with recent reconstructions of LGM temperature depression derived from glacial modelling.
Asynchronous Glacial Chronologies in the Central Andes (15-40°S) and Paleoclimatic Implications
NASA Astrophysics Data System (ADS)
Zech, R.; Kull, C.; Kubik, P. W.; Veit, H.
2006-12-01
We have established glacial chronologies along a N-S transect over the Central Andes using 10Be surface exposure dating. Our results show that maximum glacial advances occurred asynchronously and reflect the varying influence and shifts of the major atmospheric circulation systems during the Late Quaternary: the tropical circulation in the north and the westerlies in the south. In Bolivia (three research areas in the Cordillera Real and the Cordillera Cochabamba, ~15°S) glacial advances could be dated to ~20 and 12 ka BP. This is in good agreement with published exposure age data from moraines in Bolivia and Peru (provided that all ages are calculated following the same scaling system). Accordingly, the maximum glaciation there probably occurred roughly synchronous to the temperature minimum of the global Last Glacial Maximum (LGM) and the lateglacial cold reversals. Strict correlation with neither the Younger Dryas in the northern hemisphere, nor the Antarctic Cold Reversal is possible due to the current systematic exposure age uncertainties (~10%). Glacier-Climate-Modelling corroborates the sensitivity of the reconstructed glaciers to temperature changes, rather than precipitation. On the contrary, there is good evidence for the dominant role of precipitation changes on the glacial chronologies in the lee of the Cordillera Occidental, i.e. on the Altiplano and further south. The pronounced lateglacial wet phase, which is well documented in lake transgression phases as far south as 28°S (-> tropical moisture source), seems to have caused glacial advances even at ~30°S. In two research areas in Chile at that latitude, we were able to date several lateglacial moraines. Besides, the maximum datable glaciation there occurred at ~30 ka BP. That is significantly earlier than the LGM (sensu strictu) and points to favourable climate conditions for glaciation at that time (particularly increased precipitation). We conclude that the westerlies were more intensive or shifted northward at ~30 ka BP. We have not yet been able to date LGM moraines as far south as ~40°, which would indicate the transition of precipitation- to temperature-sensitive glaciers. Instead, our preliminary exposure age chronology from Valle Rucachoroi (~39°S, Argentina) suggests that the maximum glaciation there occurred also at ~30 ka BP, but that the valleys became ice-free only by ~15 ka BP. Samples from moraines in the cirques are currently in progress and may document lateglacial re-advances.
NASA Astrophysics Data System (ADS)
Dai, Lu; Weng, Chengyu
2015-12-01
The upper part (191-1439 cm) of the marine sediment core MD05-2906 from the northern South China Sea (SCS) was palynologically investigated. The chronology suggested that it covered the record since ~19 calendar kiloyears before present (cal ka BP) and revealed a detailed environmental change history since the late last glacial maximum (LGM). During the late LGM, due to the lowered sea level (~100 m lower) and the shortened distance from the shore to the study site, the pollen concentration was very high. The pollen assemblages were dominated by non-arboreal taxa, especially Artemisia pollen, before ~15 cal ka BP. Abundant subtropical and tropical pollen taxa were still important components and a south subtropical climate prevailed during the late LGM. The coexistent rich Artemisia pollen possibly was not derived from near shores, but was derived mainly from the northern exposed continental shelf in the East China Sea (ECS). After ~15 cal ka BP, with the rise in the sea level and enhanced distance from the pollen source areas to the core site, pollen concentrations started to decline gradually. However, during the late deglaciation and early Holocene, the higher concentrations of many pollen taxa reoccurred, which cannot be attributed to the sea level changes. Pinus pollen deposited in the core, which is considered to be mostly water-carried based on many modern pollen surveys, also started to dramatically increase at the same time. Therefore, the higher pollen concentration, with more Pinus and Typha (an aquatic plant) pollen indicated a notably enhanced terrestrial runoff and precipitation during the last deglaciation/Holocene transition (~11.3-9.4 cal ka BP). We inferred that a strong summer monsoon occurred at this time. During the late LGM/deglaciation transition period, the pollen assemblage reflected a gradually warming climate, and the climate fluctuations derived from the high-latitudes were not well-identified. This study suggests that solar insolation played a crucial role in controlling the East Asian monsoon and hydrological cycle in the northern SCS.
Faith, J Tyler
2013-12-01
Excavations conducted by H.J. Deacon in the 1970s at Boomplaas Cave (BPA) uncovered a stratified sequence of Middle Stone Age (MSA) and Later Stone Age (LSA) deposits spanning the last >65,000 years. This study provides the first comprehensive and integrated taphonomic and paleoecological analysis of the BPA large mammals, with a focus on its implications for understanding human adaptations and environmental changes in southern Africa's Cape Floristic Region (CFR), an area that features prominently in understanding modern human origins. Taphonomic data indicate a complex history of human, carnivore, and raptor accumulation of the large mammal assemblage. The anthropogenic signal is largely absent from the bottom of the sequence (>65,000 years ago), intermediate in MSA and LSA assemblages from ~50,000 to 20,000 years ago, and strong in LSA deposits post-dating the Last Glacial Maximum (LGM). When viewed in the broader CFR context, the inferred occupation history of BPA is consistent with the hypothesis that both MSA and LSA human populations were concentrated on the submerged coastline from ~60,000 to ~20,000 years ago. Intensive occupation following the LGM parallels an apparent increase in regional population densities, which may have been driven in part by rising sea levels. The BPA ungulate assemblage is characterized by the rise and decline of a taxonomically diverse grazing community, which peaks during the LGM. These changes are not correlated with taphonomic shifts, meaning that they are likely driven by environmental factors, namely the expansion and contraction of grassland habitats. Changes in ungulate diversity indicate that effective precipitation was highest during the LGM, corresponding with an intensified winter rainfall system. This is consistent with recent arguments that the LGM in this region may not have been extremely harsh and arid. Copyright © 2013 Elsevier Ltd. All rights reserved.
de Melo, Warita Alves; Lima-Ribeiro, Matheus S.; Terribile, Levi Carina
2016-01-01
Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South American dry forest refugia hypothesis. PMID:27458982
de Melo, Warita Alves; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G
2016-01-01
Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South American dry forest refugia hypothesis.
NASA Astrophysics Data System (ADS)
Beghin, P.; Charbit, S.; Kageyama, M.; Combourieu-Nebout, N.; Hatté, C.; Dumas, C.; Peterschmitt, J.-Y.
2016-04-01
The evolution of precipitation is a key question concerning future climatic changes, especially in regions like the Mediterranean area which are currently prone to droughts. The influence of atmospheric circulation changes (in the mid-latitude westerlies or in the strength of the subtropical subsidence), along with changes in local mechanisms generating precipitation (such as convection) make it difficult to predict precipitation changes confidently over this area. Understanding its governing mechanisms is crucial. A possible approach is to test our understanding on different documented past climatic contexts. This paper focuses on the Last Glacial Maximum period (LGM) over the western Mediterranean region and puts in perspective the available information inferred from paleo-climatic records and the outputs of nine global climate models. We first review the available information on LGM precipitation in this region and find that the environmental conditions prevailing at this period range from humid to semi-arid, depending on the proxies. Model outputs from the PMIP3-CMIP5 database also yield a wide range of mean annual responses in this area, from wetter to drier conditions with respect to the pre-industrial period. This variety of responses allows to investigate the mechanisms governing LGM precipitation in the western Mediterranean area. Over the Iberian Peninsula and northern Morocco, most models simulate a larger amount of LGM precipitation in winter w.r.t. the pre-industrial period. This feature is mainly due to the large-scale effect of the southward shift of the North Atlantic jet stream, which is closely associated with the surface air temperature changes over the northwestern North Atlantic. In summer, precipitation changes mainly result from convection and are correlated to local surface air temperature anomalies, highlighting the key role of local processes. These contrasted changes in winter and summer, linked to different mechanisms, could explain the range of various signals derived from paleo-climatic archives, especially if the climatic indicators are sensitive to seasonal precipitation.
A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea
Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M.
2007-01-01
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.
NASA Astrophysics Data System (ADS)
Ferguson, J. E.; Henderson, G. M.; Fa, D.; Finlayson, C.
2008-12-01
Molluscs have shown great potential to act as seasonal-resolution archives of sea-surface temperatures (SST) at mid to high latitudes, outside the range of tropical surface corals. Seasonal resolution climate records from higher latitudes are important to allow investigation of the role of seasonality in controlling mean climate on diverse timescales, and of the evolution of climate systems such as the North Atlantic Oscillation. Long sequences of intertidal mollusc shells are difficult to find due to sea level fluctuations over glacial- interglacial periods. This study makes use of Patella shells collected by Neanderthals and humans and transported inland to caves on Gibraltar over at least the last 120 kyrs. Some 30 fossil Patella shells were selected from several hundred excavated from Gorham's and Vanguard Caves at Gibraltar. Oxygen isotope analysis of micromilled samples of modern Patella shells from the Gibraltar coastline demonstrate that the shells accurately record absolute SSTs and capture more than 80% of the full seasonal range. Analysis of fossil Patella shells, dated using 14C, provides records of the change in absolute SST and seasonality during the last glacial. Paired Mg/Ca ratios of micromilled samples in modern Patella shells follow a consistent positive relationship with SST providing an independent paleothermometer, analogous with coral Sr/Ca. Applying this Mg/Ca-SST relationship to fossil Patella shells allows the independent reconstruction of the absolute values and range of SSTs and the reconstruction of seawater δ18O for the western Mediterranean. Results show a cooling of glacial summer SSTs from 36 kyr BP to the LGM with maximum cooling of glacial summer SSTs of 7.5 °C relative to modern. In contrast, winter SSTs show greater variability on millennial timescales with a maximum cooling of up to 10 °C. SST seasonality is therefore extended due to greater winter cooling but SST seasonality is highly variable as a result of large fluctuation in the extent of winter cooling. These results contrast with GCM model estimates of SST values and seasonality during the glacial.
NASA Astrophysics Data System (ADS)
De Cort, Gijs; Creutz, Mike; Barao, Lucia; Conley, Daniel; Haug, Gerald; Bodé, Samuel; Blaauw, Maarten; Engstrom, Dan; Verschuren, Dirk
2015-04-01
Following the generally arid conditions of the Last Glacial Maximum (LGM), a large part of the African continent experienced the Early to Mid-Holocene as a much more humid period than today. This so-called African Humid Period (AHP) coincided with high summertime insolation over the Northern Hemisphere subtropics, causing invigorated monsoons to create moist conditions over the northern parts of the continent. Similarly, equatorial and even low-latitude southeastern Africa experienced a wetter climate due to the post-glacial increase in atmospheric greenhouse gasses ultimately leading to altered Atlantic and Indian Ocean monsoon dynamics. The timing and abruptness of the onset and ending of the AHP in the different regions of the continent have been the subject of major discussion. On the other hand, shorter-lived climate fluctuations within the AHP have received much less attention, due to a scarcity of well-dated, high-resolution African paleoclimate records spanning the entire Holocene. In this study we used the sediment record of Lake Rutundu, a high-altitude crater lake on Mount Kenya, to document multidecadal to millennial-scale hydroclimate variability on the East African equator from the LGM to the present. A multiproxy approach combining core-surface scanning techniques (magnetic susceptibility, X-ray fluorescence) and close-interval bulk-sediment analyses (organic matter and biogenic Si content, grain size, organic δ15N and δ13C) resulted in a high-resolution record firmly anchored in time by an age model based on 210Pb dating and sixteen calibrated radiocarbon ages. This new Lake Rutundu hydroclimate record confirms that moister conditions following the LGM returned to East Africa ca.16 kyr BP, and it contains a perfectly timed Younger Dryas episode (12.8-11.5 kyr BP) of intermittent drought. We find that the Early- to Mid-Holocene period, which in African records is often described as uniformly wet, was in fact punctuated by three distinct, century-scale drought episodes. The first of these provides robust evidence that the 8.2 kyr cooling event, well-known from high northern latitudes, impacted tropical East Africa's moisture balance as well. The two other drought episodes, centered at c.6.5 and 5.5 kyr BP, punctuate the mid-Holocene drying which eventually ended the AHP in this region around 4 kyr BP.
Bigelow, N.H.; Brubaker, L.B.; Edwards, M.E.; Harrison, S.P.; Prentice, I.C.; Anderson, P.M.; Andreev, A.A.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Kaplan, J.O.; Lozhkin, A.V.; Matveyeva, N.V.; Murray, D.F.; McGuire, A.D.; Razzhivin, V.Y.; Ritchie, J.C.; Smith, B.; Walker, D.A.; Gajewski, K.; Wolf, V.; Holmqvist, B.H.; Igarashi, Y.; Kremenetskii, K.; Paus, A.; Pisaric, M.F.J.; Volkova, V.S.
2003-01-01
A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55??N at the last glacial maximum (LGM) and mid-Holocene (6000 years B.P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (???200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (???200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.
NASA Astrophysics Data System (ADS)
Rossato, Sandro; Mozzi, Paolo
2016-09-01
The analysis of a database of radiocarbon ages is proposed as a tool for investigating major glaciofluvial systems of the Last Glacial Maximum (LGM) in the Alpine foreland, and their relations with glacier dynamics and climatic fluctuations. Our research concerns the Brenta megafan (NE Italy), where 110 radiocarbon dates integrate a robust regional stratigraphic and palaeoclimatic framework. Age-depth models allowed us to calculate sedimentation rates, while the time distribution of peat layers, which recurrently formed in this region during the LGM, were estimated through meta-analysis. The reliability of statistical results was carefully evaluated using Pearson and Spearman coefficients. Sedimentation rates in the Brenta megafan markedly fluctuated during LGM: ≈1.8 m/ka between 40 and 26.7 ka cal BP; ≈3 m/ka between 26.7 and 23.8 ka cal BP and ≈1.4 m/ka from 23.8 to 17.5 ka cal BP, when the distributary system deactivated due to fan-head trenching. This is evidence that sediment input and routing in the glaciofluvial distributary system was particularly efficient during the central part of LGM, when glaciers were stable at their outermost position. Meta-analysis indicates an increase in peat formation in correspondence with global (Heinrich Event 3 and/or the Greenland Interstadial 5.1 and 4 for the 30.5, 29.6 and 28.8 ka cal BP peaks) and regional (23.5 ka cal BP) wet events. Other peaks at 22.2, 21.8, 20.2 and 19 ka cal BP correlate with fluctuations of south-eastern Alpine glaciers. Significant peat formation continued until ≈18 ka cal BP, when the last peak occurred. A marked decrease in peat formation is recorded concomitantly with the onset of Heinrich Event 2 (i.e. the 26 ka cal BP trough). The good correspondence of sedimentary events in the Brenta glaciofluvial system with the dynamics of glaciers and glaciofluvial and lacustrine systems in the southern Eastern Alps suggests a common climatic forcing on the whole region during the LGM. Peat layer formation in the floodplain fens increased significantly in correspondence with glacier withdrawals and/or wetter climatic episodes, constituting a good proxy for climatic fluctuations during glacial periods. It also allows correlations across different continental environments and regions in the northern hemisphere.
New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica
Dunbar, Nelia W.; Iverson, Nels A.; Van Eaton, Alexa R.; Sigl, Michael; Alloway, Brent V.; Kurbatov, Andrei V.; Mastin, Larry G.; McConnell, Joseph R.; Wilson, Colin J. N.
2017-01-01
Multiple, independent time markers are essential to correlate sediment and ice cores from the terrestrial, marine and glacial realms. These records constrain global paleoclimate reconstructions and inform future climate change scenarios. In the Northern Hemisphere, sub-visible layers of volcanic ash (cryptotephra) are valuable time markers due to their widespread dispersal and unique geochemical fingerprints. However, cryptotephra are not as widely identified in the Southern Hemisphere, leaving a gap in the climate record, particularly during the Last Glacial Maximum (LGM). Here we report the first identification of New Zealand volcanic ash in Antarctic ice. The Oruanui supereruption from Taupo volcano (25,580 ± 258 cal. a BP) provides a key time marker for the LGM in the New Zealand sector of the SW Pacific. This finding provides a high-precision chronological link to mid-latitude terrestrial and marine sites, and sheds light on the long-distance transport of tephra in the Southern Hemisphere. As occurred after identification of the Alaskan White River Ash in northern Europe, recognition of ash from the Oruanui eruption in Antarctica dramatically increases the reach and value of tephrochronology, providing links among climate records in widely different geographic areas and depositional environments.
Climate-induced fluvial dynamics in tropical Africa around the last glacial maximum?
NASA Astrophysics Data System (ADS)
Sangen, Mark; Neumann, Katharina; Eisenberg, Joachim
2011-11-01
The alluvia of the Ntem, Nyong and Sanaga fluvial systems in southern Cameroon recorded repeated fluvial activity fluctuations during the Late Pleistocene, including the last glacial maximum (LGM), the beginning of the African Humid Period and the northern hemispheric Bølling-Allerød. We applied a multi-proxy approach on alluvial stratigraphies dated between 22.4 and 13.0 cal ka BP, including remote sensing, sedimentological and morphogenetic methods, phytoliths, sponge spicules, 14C and δ 13C data. A distinct NE-SW gradient of landscape and fluvial dynamics around the LGM can be drawn, with evidence for the persistence of extended fluvial rainforest refuges only in the Ntem catchment. The Sanaga and Nyong catchment areas were characterized by frequent channel migrations, floodplain reorganization and unstable vegetation subject to fire, including grasslands, woodlands, and gallery forests with bamboo thickets. In spite of increasing rainfall after 16.4 cal ka BP, persisting landscape instability played the major role for fluvial system dynamics, floodplain transformations and vegetation development until 13.0 cal ka BP, before a general landscape stabilization and rainforest expansion set in at the beginning of the Holocene.
Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard; Mahan, Shannon; Garrity, Christopher P.; Aleman Gonzalez, Wilma B.; Dobbs, Kerby M.
2016-01-01
The Carolina Sandhills is a physiographic region of the Atlantic Coastal Plain province in the southeastern United States. In Chesterfield County (South Carolina), the surficial sand of this region is the Pinehurst Formation, which is interpreted as eolian sand derived from the underlying Cretaceous Middendorf Formation. This sand has yielded three clusters of optically stimulated luminescence ages: (1) 75 to 37 thousand years ago (ka), coincident with growth of the Laurentide Ice Sheet; (2) 28 to 18 ka, coincident with the last glacial maximum (LGM); and (3) 12 to 6 ka, mostly coincident with the Younger Dryas through final collapse of the Laurentide Ice Sheet. Relict dune morphologies are consistent with winds from the west or northwest, coincident with modern and inferred LGM January wind directions. Sand sheets are more common than dunes because of effects of coarse grain size (mean range: 0.35–0.59 mm) and vegetation. The coarse grain size would have required LGM wind velocities of at least 4–6 m/sec, accounting for effects of colder air temperatures on eolian sand transport. The eolian interpretation of the Carolina Sandhills is consistent with other evidence for eolian activity in the southeastern United States during the last glaciation.
Late Quaternary climate change shapes island biodiversity.
Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger
2016-04-07
Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.
Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania
NASA Astrophysics Data System (ADS)
Mumbi, C. T.; Marchant, R.; Hooghiemstra, H.; Wooller, M. J.
2008-03-01
Pollen, spore, macrofossil and stable isotope (C and N) analyses from a 266-cm sediment core collected from a swamp on the Eastern Arc Mountains, Tanzania, are used to reconstruct vegetation and environmental history. An estimated time scale based on five 14C ages records approximately 38,000 yr. This palaeorecord is the first from this biodiversity hotspot and importantly extends through the last glacial maximum (LGM). The altitudinal transition from montane to upper montane forest shifted from 1700-1800 m (38,000 14C yr BP) to 1800-1900 m (35,000-29,000 14C yr BP). From 29,000 to 10,000 14C yr BP, it shifted from 1850-1950 m across the LGM to 1750-1800 m (during 10,000-3500 14C yr BP), and to present-day elevations at 2000 m during the last 3500 14C yr BP. The relative ecosystem stability across the LGM may be explained by the Indian Ocean's influence in maintaining continuous moist forest cover during a period of East African regional climate aridity. During the late Holocene, presence of abundant coprophilous fungi and algal blooms demonstrates increasing human impact. Neurospora spores indicate frequent fires, coinciding with clear signals of decline in Podocarpus and Psychotria trees that possibly represent selective logging.
Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis
Bartlein, P.J.; Harrison, S.P.; Brewer, Sandra; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T. I.; Henderson, A.; Peyron, O.; Prentice, I.C.; Scholze, M.; Seppa, H.; Shuman, B.; Sugita, S.; Thompson, R.S.; Viau, A.E.; Williams, J.; Wu, H.
2011-01-01
Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance. ?? 2010 The Author(s).
Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited
NASA Astrophysics Data System (ADS)
Hanebuth, T. J. J.; Stattegger, K.; Bojanowski, A.
2009-03-01
The sea-level history around the last glaciation is in the focus of recent, controversial debates. A profound understanding of sea-level changes during this time interval is, however, essential since sea level is a central parameter in the climate system as well as a major force on continental margin sedimentation. Here, we present a seismic record together with augmented data from the Sunda Shelf [Hanebuth, T.J.J., Stattegger, K., Saito, Y., 2002. The architecture of the central Sunda Shelf (SE Asia) recorded by shallow-seismic surveying. Geo-Marine Letters 22, 86-94.] and compare our results in a careful evaluation with the sparse existing data sets of global validity, i.e. the Bonaparte Gulf record [Yokoyama, Y., Lambeck, K., DeDeckker, P., Johnston, P., Fifield, L.K., 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713-716.; Yokoyama, Y., De Deckker, P., Lambeck, K., Johnston, P., Fifield, L.K., 2001. Sea-level at the Last Glacial Maximum: evidence from nortwestern Australia to constrain ice volumes for oxygen isotope stage 2. Paleogeography Paleoclimatology Paleoecology 165, 281-297.], the Barbados coral record [Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting dates on the Younger Dryas event and deep ocean circulation. Nature 342, 637-642.; Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25 (23-24), 3322-3337.] and the latest numerical model of continental deglaciation [Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25 (23-24), 3322-3337.]. Sea level seems to have been lower shortly prior to the conventional Last Glacial Maximum (LGM; 21-19 cal kyr BP). The time interval around this glacial lowstand is not covered by ages from the Sunda Shelf, but documented by an ancient barrier — tidal-flat system. These palaeo-coastal relict forms indicate such an early lowstand some 5 m deeper than sea level was during LGM times. The LGM sea level on the Sunda shelf is recalculated to - 123 ± 2 m modern water depth. This depth fits nicely with the lowstand data derived from Barbados and the Bonaparte Gulf. The recently assumed 19-kyr sea-level rise is supported by the Sunda and Bonaparte data sets combined, although it might have started already as early as at 19.6 cal kyr BP lasting for some 800 kyr with an amplitude of at least 10 m. This early pulse-like rise might have played a crucial role in the physical preservation of the high-glacial to early deglacial deposits on the Sunda Shelf. The modelled sea-level history is, thus, supported with respect to an initial high-glacial lowstand prior to the LGM, which might be in apparent contrast to observations from Bonaparte. Nevertheless, field data suggest a glacial sea-level evolution about 10 m deeper than the model. Also, the gradual rising trend from 26 to 16 cal kyr BP, as deduced from the model, can definitively not be approved by any field data. However, our knowledge is still unsatisfactory and an expansion of field data from suited areas is urgently needed.
NASA Astrophysics Data System (ADS)
McFarlin, J. M.; Axford, Y.; Osburn, M. R.; Lasher, G. E.; Francis, D. R.; Kelly, M. A.; Osterberg, E. C.
2015-12-01
Lake sediment records provide opportunities for high-resolution observations of paleoclimate that help to place modern climate change in geologic context. Here we present a terrestrial record of July air temperature for northwest Greenland (Nunatarssuaq, ~25 km east of the Thule Air Base) through the Holocene and a prior warm period, inferred from subfossil insect remains (Chironomidae) preserved in lacustrine sediments. In addition, we discuss ongoing work in characterizing the sources and isotopic composition of leaf waxes preserved in the same sediments. Multiple parallel sediment cores were collected in the summers of 2012 and 2014 from Wax Lips Lake (informal name), a non-glacial lake situated <2 km from the current margin of the Greenland Ice Sheet. Radiocarbon ages were obtained on aquatic mosses from intact laminae, and indicate that the record spans the Holocene, beginning at ~10.4 ka, as well as an interval beyond the range of 14C (>44 ka) and thus predates the Last Glacial Maximum (LGM). Our results demonstrate temperatures warmer than present through the early and mid Holocene followed by cooling in the late Holocene. Material that pre-dates the LGM contains insect assemblages indicating temperatures warmer than the warmest millennia of the Holocene. We interpret this material as most likely dating to the Last Interglacial Period (MIS 5). Along with assemblages of Chironomidae, we find subfossil Chaoboridae in one section of the pre-LGM sediments, suggesting exceptionally warm conditions based upon the distribution of modern-day Chaoborus. We find abundant n-alkanes and n-acids are preserved in the Holocene and pre-LGM sediments, allowing for complementary compound-specific δD analyses and identification of organic matter source in addition to chironomid derived temperature records.
Bilgin, Raşit; Gürün, Kanat; Rebelo, Hugo; Puechmaille, Sebastien J; Maracı, Öncü; Presetnik, Primoz; Benda, Petr; Hulva, Pavel; Ibáñez, Carlos; Hamidovic, Daniela; Fressel, Norma; Horáček, Ivan; Karataş, Ayşegül; Karataş, Ahmet; Allegrini, Benjamin; Georgiakakis, Panagiotis; Gazaryan, Suren; Nagy, Zoltan L; Abi-Said, Mounir; Lučan, Radek K; Bartonička, Tomáš; Nicolaou, Haris; Scaravelli, Dino; Karapandža, Branko; Uhrin, Marcel; Paunović, Milan; Juste, Javier
2016-06-01
The isolation of populations in the Iberian, Italian and Balkan peninsulas during the ice ages define four main paradigms that explain much of the known distribution of intraspecific genetic diversity in Europe. In this study we investigated the phylogeography of a wide-spread bat species, the bent-winged bat, Miniopterus schreibersii around the Mediterranean basin and in the Caucasus. Environmental Niche Modeling (ENM) analysis was applied to predict both the current distribution of the species and its distribution during the last glacial maximum (LGM). The combination of genetics and ENM results suggest that the populations of M. schreibersii in Europe, the Caucasus and Anatolia went extinct during the LGM, and the refugium for the species was a relatively small area to the east of the Levantine Sea, corresponding to the Mediterranean coasts of present-day Syria, Lebanon, Israel, and northeastern and northwestern Egypt. Subsequently the species first repopulated Anatolia, diversified there, and afterwards expanded into the Caucasus, continental Europe and North Africa after the end of the LGM. The fossil record in Iberia and the ENM results indicate continuous presence of Miniopterus in this peninsula that most probably was related to the Maghrebian lineage during the LGM, which did not persist afterwards. Using our results combined with similar findings in previous studies, we propose a new paradigm explaining the general distribution of genetic diversity in Europe involving the recolonization of the continent, with the main contribution from refugial populations in Anatolia and the Middle East. The study shows how genetics and ENM approaches can complement each other in providing a more detailed picture of intraspecific evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khodri, M.
2006-12-01
On a regional perspective the database of proxy information for South America during the Last Glacial Maximum (LGM) shows large and regionally extensive changes of the mean climate and vegetation types over the Amazon basin. In some instances these changes were associated with decrease in the mean precipitation amount (and most probably in moist deep convection) over the Amazonian and South East Brazil monsoon regions and wetter mean conditions in present day drought-prone regions such as Northeast of Brazil (Nordeste). These changes have been interpreted as local responses to shift in the mean position and intensity of the Atlantic ITCZ due to glacial extratropical forcings or to changes in the South American Monsoons. However there are still two issues is the path to further understand the mechanism of climate change over South America during the LGM. The first is incomplete knowledge in both the modeling and observational communities of how the moist deep convection over the Amazonian region respond to glacial boundary condition and how this changes might interact with the meridional shift of rainfall over Nordeste and Atlantic Ocean. The second is our understanding of how ocean-atmosphere changes that do occur in the tropical Pacific region influence the climate of the remainder of the planet and on a regional way over South America. Using PMIP-2 coupled Ocean-Atmosphere simulations for LGM and comparison to paleodata we show that hydrological cycle changes over the Amazon basin might be independent of their Atlantic Ocean counterpart, while teleconnections with Pacific Ocean might have played a significant role in the observed changes over tropical South America.
Glacial Buzzcutting and Scarp Encroachment Limit the Height of Tropical Mountains
NASA Astrophysics Data System (ADS)
Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.
2016-12-01
In many mountain ranges hypsometric maxima occur between the glacial equilibrium line altitude (ELA) of the Last Glacial Maximum (LGM) and that of today. A common interpretation of this large-scale observation is that a "glacial buzzsaw" acting throughout the Pleistocene concentrated area within the altitudinal band of ELA fluctuation. This hypothesis remains controversial, however, as there are many examples of uplifted relict surfaces in heavily glaciated areas that occur near the ELA by coincidence. We have focused on the role of glacial erosion in the tropics, where it is spatially restricted to high elevations and temporally limited to global glacial maxima, but appears to have nevertheless truncated vertical orogen growth. Evidence of glacial buzzcutting in some of these ranges has been obscured by post-glacial destruction of glacial valleys by expanding fluvial catchments. We deduce that a duel between glacial buzzcuting and fluvially-driven scarp encroachment has proceeded throughout the Pleistocene in these places. In Costa Rica, we use 10Be and 3He surface-exposure age dating and topographic analysis to confirm that substantial glacial denudation took place at high elevations during the LGM, and employ topographic metrics there and in the Central Range of Taiwan to reveal shrinkage of glacially buzzcut surfaces driven by post-glacial scarp encroachment. These data cast new light on the buzzsaw hypothesis by showing that glacial erosion works with remarkable efficiency in the tropics, precisely where it is likely to be least effective. Our work also draws attention to landscapes with ambiguous signs of glacial erosion, as there are apparent instances of heavily modified, pre-LGM buzzcut surfaces in several tropical ranges. These perched, possibly pre-LGM landscapes may offer a window into previous phases of buzzcutting, and place speed limits on the rate of post-glacial scarp encroachment.
NASA Astrophysics Data System (ADS)
Subt, C.; Rosenheim, B. E.; Lee, J. I.; Yoo, K. C.; Browne, I. M.; Shevenell, A.
2017-12-01
The Ross Embayment is among the most well-studied regions in Antarctica. Despite the relative abundance of data, the style and forcing of deglaciation of the Ross Sea sector following the Last Glacial Maximum (LGM; 23-19 ka) is challenging due to the region's considerable size, complex geometry, and the difficulties in dating Antarctic glaciomarine sedimentary sequences. Ross Sea sediments indicate a dynamic glacial retreat in the western Ross Sea, whereas regional glacial systems may have retreated and advanced multiple times during the last deglaciation. Two marine sediment cores collected near the Drygalski Ice Tongue in the western Ross Sea during 2012 and 2015 Korea Polar Research Institute (KOPRI) expeditions reveal a sequence of alternating diatomaceous muds and oozes interbedded with diamict, which suggest dynamic post-LGM grounded ice retreat in the Ross Sea. Dynamic retreat is hypothesized to have been driven by rising sea levels and warmer ocean waters on the continental shelf, thus a record of upper ocean temperatures should reflect this. Here we present the first post-LGM upper ocean temperature record from the Ross Sea, developed using the TEX86 (tetraether index of lipids consisting of 86 carbons) paleothermometer. To overcome the difficulties of dating these sediments using traditional methods, we apply specialized Ramped PyrOx 14C dating for sediments with high proportions of relict carbon . This technique is particularly well-suited for the post-LGM retreat sedimentary sequences from Antarctic margins because it allows for separation of autochthonous and relict material for dating. By combining organic paleothermometry and state-of-the-art chronologic techniques, we gain a more thorough understanding of upper ocean temperatures in the Ross Sea during the last deglaciation, and their implications for ice retreat.
Gradual demise of a thin southern Laurentide ice sheet recorded by Mississippi drainage.
Wickert, Andrew D; Mitrovica, Jerry X; Williams, Carlie; Anderson, Robert S
2013-10-31
At the Last Glacial Maximum (LGM), about 21,000 years before present, land-based ice sheets held enough water to reduce global mean sea level by 130 metres. Yet after decades of study, major uncertainties remain as to the distribution of that ice. Here we test four reconstructions of North American deglacial ice-sheet history by quantitatively connecting them to high-resolution oxygen isotope (δ(18)O) records from the Gulf of Mexico using a water mixing model. For each reconstruction, we route meltwater and seasonal runoff through the time-evolving Mississippi drainage basin, which co-evolves with ice geometry and changing topography as ice loads deform the solid Earth and produce spatially variable sea level in a process known as glacial isostatic adjustment. The δ(18)O records show that the Mississippi-drained southern Laurentide ice sheet contributed only 5.4 ± 2.1 metres to global sea level rise, of which 0.66 ± 0.07 metres were released during the meltwater pulse 1A event 14,650-14,310 years before present, far less water than previously thought. In contrast, the three reconstructions based on glacial isostatic adjustment overpredict the δ(18)O-based post-LGM meltwater volume by a factor of 1.6 to 3.6. The fourth reconstruction, which is based on ice physics, has a low enough Mississippi-routed meltwater discharge to be consistent with δ(18)O constraints, but also contains the largest LGM North American ice volume. This suggests that modelling based on ice physics may be the best way of matching isotopic records while also sequestering enough water in the North American ice sheets to match the observed LGM sea level fall.
NASA Astrophysics Data System (ADS)
Fink, David; Storey, Bryan; Hood, David; Joy, Kurt; Shulmeister, James
2010-05-01
Quantitative assessment of the spatial and temporal scale of ice volume change of the West Antarctic ice sheet (WAIS) and Ross Ice Shelf since the last glacial maximum (LGM) ~20 ka is essential to accurately predict ice sheet response to current and future climate change. Although global sea level rose by approximately 120 metres since the LGM, the contribution of polar ice sheets is uncertain and the timing of any such contribution is controversial. Mackintosh et al (2007) suggest that sectors of the EAIS, similar to those studied at Framnes Mountains where the ice sheet slowly calves at coastal margins, have made marginal contributions to global sea-level rise between 13 and 7 ka. In contrast, Stone et al (2003) document continuing WAIS decay during the mid-late Holocene, raising the question of what was the response of the WAIS since LGM and into the Holocene. Terrestrial evidence is restricted to sparse coastal oasis and ice free mountains which archive limits of former ice advances. Mountain ranges flanking the Darwin-Hatherton glaciers exhibit well-defined moraines, weathering signatures, boulder rich plateaus and glacial tills, which preserve the evidence of advance and retreat of the ice sheet during previous glacial cycles. Previous studies suggest a WAIS at the LGM in this location to be at least 1,000 meters thicker than today. As part of the New Zealand Latitudinal Gradient Project along the Transantarctic, we collected samples for cosmogenic exposure dating at a) Lake Wellman area bordering the Hatherton Glacier, (b) Roadend Nunatak at the confluence of the Darwin and Hatherton glaciers and (c) Diamond Hill which is positioned at the intersection of the Ross Ice Shelf and Darwin Glacier outlet. While the technique of exposure dating is very successful in mid-latitude alpine glacier systems, it is more challenging in polar ice-sheet regions due to the prevalence of cold-based ice over-riding events and absence of outwash processes which removes glacially transported debris. Our glacial geomorphic survey from ice sheet contact edge (~850 masl) to mountain peak at 1600 masl together with a suite of 10Be and 26Al exposure ages, documents a pre-LGM ice volume at least 800 meters thicker than current ice levels which was established at least 2 million years ago. However a complex history of exposure and re-exposure of the ice free regions in this area is seen in accordance with advance and retreat of the ice sheets that feeds into the Darwin -Hatherton system. A cluster of mid-altitude boulders, located below a prominent moraine feature mapped previously as demarcating the LGM ice advance limits, have exposure ages ranging from 30 to 40 ka. Exposure ages for boulders just above the ice contact range from 1to 19 ka and allow an estimate of inheritance. Hence, we conclude that LGM ice volume was not as large as previously estimated and actually little different from what is observed today. These results raise rather serious questions about the implications of a reduced WAIS at the LGM, its effect on the development of the Ross Ice Shelf, and how the Antarctic ice sheets respond to global warming. J. O. Stone et al., Science v299, 99 (2003). A. Mackintosh, D. White, D. Fink, D. Gore et al, Geology, v 35; 551-554 (2007).
Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Nakamaru-Ogiso, Eiko; Andrake, Mark; Christofidou-Solomidou, Melpo
2018-06-01
Myeloperoxidase (MPO) generates hypochlorous acid (HOCl) during inflammation and infection. We showed that secoisolariciresinol diglucoside (SDG) scavenges radiation-induced HOCl in physiological solutions. However, the action of SDG and its synthetic version, LGM2605, on MPO-catalyzed generation of HOCl is unknown. The present study evaluated the effect of LGM2605 on human MPO, and murine MPO from macrophages and neutrophils. MPO activity was determined fluorometrically using hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF). The effect of LGM2605 on (a) the peroxidase cycle of MPO was determined using Amplex Red while the effect on (b) the chlorination cycle was determined using a taurine chloramine assay. Using electron paramagnetic resonance (EPR) spectroscopy we determined the effect of LGM2605 on the EPR signals of MPO. Finally, computational docking of SDG was used to identify energetically favorable docking poses to enzyme's active site. LGM2605 inhibited human and murine MPO activity. MPO inhibition was observed in the absence and presence of Cl - . EPR confirmed that LGM2605 suppressed the formation of Compound I, an oxoiron (IV) intermediate [Fe(IV)O] containing a porphyrin π-radical of MPO's catalytic cycle. Computational docking revealed that SDG can act as an inhibitor by binding to the enzyme's active site. We conclude that LGM2605 inhibits MPO activity by suppressing both the peroxidase and chlorination cycles. EPR analysis demonstrated that LGM2605 inhibits MPO by decreasing the formation of the highly oxidative Compound I. This study identifies a novel mechanism of LGM2605 action as an inhibitor of MPO and indicates that LGM2605 may be a promising attenuator of oxidant-dependent inflammatory tissue damage. Copyright © 2018 Elsevier B.V. All rights reserved.
Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation.
Marshall, David C; Hill, Kathy B R; Marske, Katharine A; Chambers, Colleen; Buckley, Thomas R; Simon, Chris
2012-09-11
The New Zealand (NZ) cicada fauna contains two co-distributed lineages that independently colonized the isolated continental fragment in the Miocene. One extensively studied lineage includes 90% of the extant species (Kikihia + Maoricicada + Rhodopsalta; ca 51 spp.), while the other contains just four extant species (Amphipsalta - 3 spp. + Notopsalta - 1 sp.) and has been little studied. We examined mitochondrial and nuclear-gene phylogenies and phylogeography, Bayesian relaxed-clock divergence timing (incorporating literature-based uncertainty of molecular clock estimates) and ecological niche models of the species from the smaller radiation. Mitochondrial and nuclear-gene trees supported the monophyly of Amphipsalta. Most interspecific diversification within Amphipsalta-Notopsalta occurred from the mid-Miocene to the Pliocene. However, interspecific divergence time estimates had large confidence intervals and were highly dependent on the assumed tree prior, and comparisons of uncorrected and patristic distances suggested difficulty in estimation of branch lengths. In contrast, intraspecific divergence times varied little across analyses, and all appear to have occurred during the Pleistocene. Two large-bodied forest taxa (A. cingulata, A. zelandica) showed minimal phylogeographic structure, with intraspecific diversification dating to ca. 0.16 and 0.37 Ma, respectively. Mid-Pleistocene-age phylogeographic structure was found within two smaller-bodied species (A. strepitans - 1.16 Ma, N. sericea - 1.36 Ma] inhabiting dry open habitats. Branches separating independently evolving species were long compared to intraspecific branches. Ecological niche models hindcast to the Last Glacial Maximum (LGM) matched expectations from the genetic datasets for A. zelandica and A. strepitans, suggesting that the range of A. zelandica was greatly reduced while A. strepitans refugia were more extensive. However, no LGM habitat could be reconstructed for A. cingulata and N. sericea, suggesting survival in microhabitats not detectable with our downscaled climate data. Unlike the large and continuous diversification exhibited by the Kikihia-Maoricicada-Rhodopsalta clade, the contemporaneous Amphipsalta-Notopsalta lineage contains four comparatively old (early branching) species that show only recent diversification. This indicates either a long period of stasis with no speciation, or one or more bouts of extinction that have pruned the radiation. Within Amphipsalta-Notopsalta, greater population structure is found in dry-open-habitat species versus forest specialists. We attribute this difference to the fact that NZ lowland forests were repeatedly reduced in extent during glacial periods, while steep, open habitats likely became more available during late Pleistocene uplift.
N.S. Zimov; S.A. Zimov; A.E. Zimova; G.M. Zimova; V.I. Chuprynin; F.S. Chapin
2009-01-01
During the Last Glacial Maximum (LGM), atmospheric CO2 concentration was 80-100 ppmv lower than in preindustrial times. At that time steppe-tundra was the most extensive biome on Earth. Some authors assume that C storage in that biome was very small, similar to today's deserts, and that the terrestrial carbon (C) reservoir increased at the...
Last Glacial Maximum Dated by Means of 10Be in the Maritime Alps (Italy)
NASA Astrophysics Data System (ADS)
Granger, D. E.; Spagnolo, M.; Federici, P.; Pappalardo, M.; Ribolini, A.; Cyr, A. J.
2006-12-01
Relatively few exposure dates of LGM moraines boulders are available for the European Alps, and none on the southern flank. Ponte Murato (PM) is a frontal moraine at 860 m asl in the Gesso Basin (Maritime Alps, SW European Alps). The PM moraine dams the 157 km2 Gesso della Barra Valley and it represents the lowermost frontal moraine of the entire Gesso Valley, near the outlet of the valley in the Po Plain. Its ELA, determined from the paleo- shape of the supposed Gesso della Barra glacier, is 1746 m asl. Tetti Bandito (TB) is a small and badly preserved glacial deposit, tentatively attributed to a lateral-frontal moraine, that is positioned 5 km downvalley from the PM deposit at 800 m asl. There are no other glacial deposits downvalley from the TB moraine in the Gesso Basin or farther NE in the piedmont region of the upper Po Plain. Boulders sampled on the PM and on the TB moraine crests gave a 10Be cosmogenic age of respectively 16300 ± 880 ka (average value) and 18798 ± 973 ka. This result constrains the PM frontal moraine within the LGM interval but also suggests that the maximum expansion of the Gesso Basin glacier was more downvalley at some point during the last glaciation. If the TB is a lateral-frontal moraine as supposed, the two TB and PM moraines would represent the outer and inner moraine crests of the same LGM stadial, with the outer moraine much less pronounced than the inner moraine, similarly to the maximalstand and the hochstand described in the Eastern Alps (Van Husen, 1997). Within this perspective, the PM and TB dates are consistent with a European Alps LGM corresponding to MIS 2 (Ivy-Ochs et al., 2004). This study of the Maritime Alps moraines is also in agreement with the Upper Würm climatic theory (Florineth and Schlüchter, 2000) of a stronger influence of the W and SW incoming humid airflows in the European Alps, differently from the nearby Vosges and Pyrenees mountain chains where more dry conditions were probably responsible for a very little glacial expansion during MIS 2 (Seret et al., 1990; Garcia-Ruiz et al., 2003).
NASA Astrophysics Data System (ADS)
Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria
2016-08-01
The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in mid-depth (1-2 km) cores of the eastern equatorial Pacific (EEP) which may suggest a stronger influence of NPDW return flow to the core sites and decreased local input in the EEP. Taken together, our Nd records do not support a dynamically slower glacial Pacific overturning circulation, and imply that the increased carbon inventory of Pacific deep water might be due to poor high latitude air-sea exchange and increased biological pump efficiency in glacial times.
Reduced ENSO Variability at the LGM Revealed by an Isotope-enabled Earth System Model
NASA Astrophysics Data System (ADS)
Zhu, J.; Liu, Z.; Otto-Bliesner, B. L.; Brady, E. C.; Noone, D.; Zhang, J.; Tomas, R. A.; Jahn, A.; Nusbaumer, J. M.; Wong, T. E.
2016-12-01
El Nino-Southern Oscillation (ENSO) is the most important climate variability at interannual timescale, greatly affecting the weather and climate worldwide. Studying the ENSO at the Last Glacial Maximum (LGM, 21 kyrs before present) can help us better understand its dynamics and improve its projections under anthropogenic global warming. However, both numerical simulations and paleoclimate reconstructions show contradicting results among themselves, e.g., using the Individual Foraminifera Analysis (IFA) approach, some paleo-records suggest an amplified ENSO at the LGM relative to present day; while others indicate a weakened ENSO. These contradictions are hard to explore using traditional climate models due to the indirect nature of model-data comparison: numerical models usually simulate variations in climate state variables (e.g., temperature); while reconstructions can only use proxies (e.g., water isotopes) to infer changes in these state variables. Here we employ the recently developed isotope-enabled Community Earth System Model (iCESM) to study the ENSO strength at the LGM and attempt to provide a consistent picture between climate model and different reconstructions. We find that ENSO at the LGM is about 30% weaker than that of the preindustrial in iCESM, primarily attributable to the weakened atmosphere-ocean coupled feedbacks in a colder climate with a deeper thermocline. With the capability of simulating water isotopes, our model demonstrates that total variance recorded by the IFA water-isotope records in the eastern equatorial Pacific (e.g., Core CD21-30) could actually increase because of an intensified annual cycle, instead of an amplified ENSO. Furthermore, our isotope-enabled simulations suggest that caution should be applied when interpreting the subsurface IFA water-isotope records (e.g., Cores CD38-17P and MD02-2529) due to the wide spread of habitat depth of thermocline-dwelling foraminifera and their possible migration with temporally varying thermocline, which could largely filter out the ENSO signal. Therefore, by realizing these complications, we argue that the weakened ENSO in our model is within the data uncertainty.
Hamilton, Marcus J; Buchanan, Briggs
2010-08-30
Understanding the dynamics of the human range expansion across northeastern Eurasia during the late Pleistocene is central to establishing empirical temporal constraints on the colonization of the Americas. Opinions vary widely on how and when the Americas were colonized, with advocates supporting either a pre- or post- last glacial maximum (LGM) colonization, via either a land bridge across Beringia, a sea-faring Pacific Rim coastal route, a trans-Arctic route, or a trans-Atlantic oceanic route. Here we analyze a large sample of radiocarbon dates from the northeast Eurasian Upper Paleolithic to identify the origin of this expansion, and estimate the velocity of colonization wave as it moved across northern Eurasia and into the Americas. We use diffusion models to quantify these dynamics. Our results show the expansion originated in the Altai region of southern Siberia approximately 46kBP , and from there expanded across northern Eurasia at an average velocity of 0.16 km per year. However, the movement of the colonizing wave was not continuous but underwent three distinct phases: 1) an initial expansion from 47-32k calBP; 2) a hiatus from approximately 32-16k calBP, and 3) a second expansion after the LGM approximately 16k calBP. These results provide archaeological support for the recently proposed three-stage model of the colonization of the Americas. Our results falsify the hypothesis of a pre-LGM terrestrial colonization of the Americas and we discuss the importance of these empirical results in the light of alternative models. Our results demonstrate that the radiocarbon record of Upper Paleolithic northeastern Eurasia supports a post-LGM terrestrial colonization of the Americas falsifying the proposed pre-LGM terrestrial colonization of the Americas. We show that this expansion was not a simple process, but proceeded in three phases, consistent with genetic data, largely in response to the variable climatic conditions of late Pleistocene northeast Eurasia. Further, the constraints imposed by the spatiotemporal gradient in the empirical radiocarbon record across this entire region suggests that North America cannot have been colonized much before the existing Clovis radiocarbon record suggests.
A fresh look at the Last Glacial Maximum using Paleoclimate Data Assimilation
NASA Astrophysics Data System (ADS)
Malevich, S. B.; Tierney, J. E.; Hakim, G. J.; Tardif, R.
2017-12-01
Quantifying climate conditions during the Last Glacial Maximum ( 21ka) can help us to understand climate responses to forcing and climate states that are poorly represented in the instrumental record. Paleoclimate proxies may be used to estimate these climate conditions, but proxies are sparsely distributed and possess uncertainties from environmental and biogeochemical processes. Alternatively, climate model simulations provide a full-field view, but may predict unrealistic climate states or states not faithful to proxy records. Here, we use data assimilation - combining climate proxy records with a theoretical understanding from climate models - to produce field reconstructions of the LGM that leverage the information from both data and models. To date, data assimilation has mainly been used to produce reconstructions of climate fields through the last millennium. We expand this approach in order to produce a climate fields for the Last Glacial Maximum using an ensemble Kalman filter assimilation. Ensemble samples were formed from output from multiple models including CCSM3, CESM2.1, and HadCM3. These model simulations are combined with marine sediment proxies for upper ocean temperature (TEX86, UK'37, Mg/Ca and δ18O of foraminifera), utilizing forward models based on a newly developed suite of Bayesian proxy system models. We also incorporate age model and radiocarbon reservoir uncertainty into our reconstructions using Bayesian age modeling software. The resulting fields show familiar patterns based on comparison with previous proxy-based reconstructions, but additionally reveal novel patterns of large-scale shifts in ocean-atmosphere dynamics, as the surface temperature data inform upon atmospheric circulation and precipitation patterns.
NASA Astrophysics Data System (ADS)
Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.
2016-04-01
The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.
NASA Astrophysics Data System (ADS)
Yu, Shaohua; Zheng, Zhuo; Chen, Fang; Jing, Xia; Kershaw, Peter; Moss, Patrick; Peng, Xuechao; Zhang, Xin; Chen, Chixin; Zhou, Yang; Huang, Kangyou; Gan, Huayang
2017-02-01
This study presents a marine palynological record of the Asian summer monsoon and sea level change in the Last Glacial Maximum (LGM) and the deglacial period in the northern South China Sea (SCS). A fossil core STD 235 (855 cm in length) and 273 surface sediment samples from the northern SCS were pollen analysed to reconstruct the paleoenvironment of the continental shelf during the last glacial period. Results from fossil pollen show that the main pollen source region fundamentally changed from the LGM to the deglacial period as sea level rapidly rose. The modern marine surface samples show that pollen concentrations in the estuary of the Pearl River are extremely high, and modern pollen assemblages are in good agreement with the regional vegetation. However, wind transport becomes more important in the deeper ocean as the percentages of Pinus, a taxon with very high pollen production and dispersal capacity, is highest in these sediments, which otherwise have very low pollen concentrations. The concentration of total pollen between surface and fossil pollen samples is compared in order to determine the possible vegetation sources areas for the marine core. Pollen concentration as high as >100 grains/g at the LGM suggested that the paleo-shoreline was located within 80 km of the core. Consequently, pollen would mostly have derived from the exposed continental shelf in the northern SCS. By contrast, pollen concentrations were very low due to a much greater transport distance (318 km at present, core STD 235) under higher sea levels, and windblown pollen played a more important role because of the limitation of riverine input into the deep ocean during this highstand period. Such alternation of pollen flux and source distance should be repeated during all glacial-interglacial cycles, reflecting closely sea level and climate dynamics. According to fossil pollen assemblages from Core STD 235, we conclude that wetland and/or grassland communities with sparse subtropical trees dominated most of the exposed shelf during the LGM rather than forest that characterizes the region today. The existence of a predominantly open landscape on the exposed continental shelf suggests lower precipitation during the LGM, which in turn indicates a weaker Asian summer monsoon. This finding is supported by other records from the Okinawa Trough and the East China Sea, suggesting that a weaker summer monsoon was a key characteristic of the LGM in East Asia.
NASA Astrophysics Data System (ADS)
Sylvestre, F.; Williams, M. A.; Gasse, F.; Chalie, F.; Vincens, A.; David, W.
2006-12-01
The timing and amplitude of climate changes during the Last Glacial Maximum (LGM) and Termination I have led to considerable debate around the mechanisms driving the reorganisation of the global climate system and its regional expression. The LGM over the southern tropics and subtropics is still poorly understood and the interpretation of different proxies sometimes appears controversial. Here, we summarise the best, well-dated continental records spanning the interval 30-11 cal. kyr, from Africa south of the equator, Australia and South America. Due to the scarcity of the usable records, we had to decipher several proxies (pollen-inferred vegetation, diatom-inferred lake level, isotopes, sea-surface temperatures SST- in the surrounding oceans) and to consider all existing types of archives (wetlands, lakes, speleothems, (peri)glacial deposits, dunes and aeolian dusts), to characterize as completely as possible, the major features of the climate variability over the three continents. Regional similarities and divergences are pointed out, especially East-West asymmetry linked with oceanic currents and topography. The processes driving the observed temperature and hydrological changes are discussed focusing on the following questions: -How did monsoonal climates in the southern tropics respond to orbital forcing versus other glacial boundary conditions, e.g., sea-surface conditions, during the LGM? Example: several tropical lakes from southern Africa were low during the LGM probably in response to low SST. -How did the convergence zones (e.g. the Intertropical Convergence Zone ITCZ) have migrated through time and why? Example: in South America, LGM dryness in Amazonia has been associated with a southward migration of the ITCZ. -How did the extratropical, winter rainfall domain expand/retreat in response to meridian shifts of the Subtropical Westerly Jet and of the oceanic Subtropical Front, and to latitudinal thermal gradient in the Southern Ocean? Example: in tropical Andes and southwestern Africa, several pollen and hydrological records suggest winter rainfall influence further north than today at the LGM. -When did continental glaciers reach their greatest extent? We discuss the factors driving glacier advances with examples from Peru and Bolivia and from the Snowy Mountains in Australia. -How, when and where rapid climate changes can be related with climate shifts at northern and southern high latitudes? Example: some records show that the first deglaciation steps have been in phase with those in Antarctica, but the end of the Younger Dryas is well recorded in many places, e.g. from N to S in Africa.
Late Quaternary deglacial history across the Larsen B embayment, Antarctica
NASA Astrophysics Data System (ADS)
Jeong, Ara; Lee, Jae Il; Seong, Yeong Bae; Balco, Greg; Yoo, Kyu-Cheul; Yoon, Ho Il; Domack, Eugene; Rhee, Hyun Hee; Yu, Byung Yong
2018-06-01
We measured meteoric 10Be variation throughout a marine sediment core from the Larsen B embayment (LBE) of the Antarctic Peninsula, and collected in situ 10Be and 14C exposure ages on terrestrial glacial deposits from the northern and southern margins of the LBE. We use these data to reconstruct Last Glacial Maximum (LGM) to present deglaciation and ice shelf change in the LBE. Core sedimentary facies and meteoric 10Be data show a monotonic progression from subglacial deposits to sub-ice-shelf deposits to open-marine conditions, indicating that its collapse in 2002 was unprecedented since the LGM. Exposure-age data from the southern LBE indicate 40 m of ice surface lowering between 14 and 6 ka, then little change between 6 ka and the 2002 collapse. Exposure-age data from the northern LBE show a bimodal distribution in which clusters of apparent exposure ages in the ranges 4.9-5.1 ka and 1.0-2.0 ka coexist near 50 m elevation. Based on these results, other published terrestrial and marine deglaciation ages, and a compilation of sea bed imagery, we suggest a north-to-south progression of deglaciation in the northeast Antarctic Peninsula in response to Holocene atmospheric and oceanic warming. We argue that local topography and ice configuration inherited from the LGM, in addition to climate change, are important in controlling the deglaciation history in this region.
NASA Astrophysics Data System (ADS)
Premathilake, Rathnasiri
2012-09-01
This study utilizes radiocarbon-dated pollen, spores, Sphagnum spp. macrofossils and total organic carbon proxies to examine variability of past climate, environment and human activity in montane rainforest, grassland and wetland of the Horton Plains (HP), central Sri Lanka since the Last Glacial Maximum (LGM). The LGM is largely characterized by grasslands and xerophytic herbs dominated open habitats. Arid-LGM punctuated climatic ameliorations, which took place in short episodes. Humans appear to have reached the HP ecosystem after 18,000 cal yrs BP occasionally. The first Intertropical Convergence Zone (ITCZ) induced changes in South West Monsoon (SWM) rains occurred at low latitudes between 16,200 and 15,900 cal yrs BP suggesting an onset of monsoon rains. After this event, monsoon rains weakened for several millennia except the period 13,700-13,000 cal yrs BP, but human activity seems to have continued with biomass burning and clearances by slash and burn. Very large size grass pollen grains, which are morphologically similar to pollen from closer forms of Oryza nivara, were found after 13,800 cal yrs BP. Early Holocene extreme and abrupt climate changes seem to have promoted the forms of O. nivara populations in association with humans. New data from the HP would therefore be most interesting to investigate the dispersal and use of domesticated rice in South Asia.
Signatures of Climatic Change In Human Mitochondrial Dna From Europe
NASA Astrophysics Data System (ADS)
Richards, M. B.; Macaulay, V. A.; Torroni, A.; Bandelt, H.-J.
Founder analysis is an approach to analysing non-recombining DNA sequence data, such as variation in the mitochondrial DNA (mtDNA), which aims at identifying and dating migrations into new territory. We applied the approach to about 4,000 human mtDNA sequences from Europe and the Near East, in order to estimate the proportion of modern lineages whose ancestors arrived at various times during the continent's past. We found that the major signal dates to about 15,000 years ago, at the time of rewarming following the Last Glacial Maximum (LGM). There is little or no archaeological evidence for immigration into Europe at this time, and the record indicates that at least parts of southern Europe remained populated during the LGM. Therefore, we interpret this signal as the trace of a bottleneck at the time of the LGM, as a result of the retreat from northern Europe during the peak of the glaciation, followed by a re-expansion from one or more refugial zones. Immigration episodes then figure at the beginning of the Early Upper Palaeolithic, during the Middle Upper Palaeolithic, and with the Neolithic. The impact of the latter on the composition of the European mtDNA pool was evidently rather minor. This result implies that climate is likely to have been a major force shaping human demographic history in Europe.
NASA Astrophysics Data System (ADS)
Bhattacharya, A.; Lora, J. M.; Pollen, A.; Vollmer, T.; Thomas, M.; Leithold, E. L.; Mitchell, J.; Tripati, A.
2016-12-01
The net amount of mineral dust accumulation in arid and semi-arid regions might not be entirely sourced locally or even regionally; in fact, new evidence suggests that there could be significant contributions from distal sources. The contribution from the distal sources needs to be identified, and accounted for, in order to accurately understand the meteorological and climatologic factors, both regional and global, that control mineral dust accumulation in arid and semi-arid regions. Most importantly, if identified, the two components of mineral dust accumulation- fine fraction (typically <4 microns) and coarse fraction (typically >25 microns)- could provide critical information about regional as well as global climate. There are large-scale climatological controls on the finer fraction of mineral dust, while the coarser fraction is related to intense invents (i.e., the occurrence of cyclones). However, studies attempting to separate these two size fractions in terrestrial archives have been limited. Here we separate the two size fractions using grain size analysis, and use trace element analysis in each size fraction to identify contributing source regions. We apply this technique to well-dated cores collected from three lakes that are distributed across the western, southwestern and Great Plains in the United States: Pear Lake in the Sierra Nevada Mountains (CA), Senator Beck Lake in the San Juan Mountains (CO), and North Lake (WY). These lakes are uniquely situated to monitor dust fluxes; previous studies have demonstrated that sedimentation in these lakes are dominated by mineral dust accumulation; there is also evidence of remotely and locally sourced dust in these lakes, and of textural differences between the two types of dust fractions. We compare our results with previously published data on dust from loess deposits in the United States, and isotopic modeling (LMDZ). We find evidence that the finer-grain size fraction in alpine lake cores could be of remote origin; work is underway to quantify this contribution. Most importantly, we find that during the Last Glacial Maximum (LGM) the Great Plains may not have witnessed an increase in the incidence of tornado frequency. Acknowledgements: James Sigman, Jacob Ashford, Jason Neff and Amato Evan
Zhu, Dan; Ciais, Philippe; Chang, Jinfeng; Krinner, Gerhard; Peng, Shushi; Viovy, Nicolas; Peñuelas, Josep; Zimov, Sergey
2018-04-01
Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO 2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.
Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe
Pfeiffer, Mirjam; Kolen, Jan C. A.; Davis, Basil A. S.
2016-01-01
Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM) are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system. PMID:27902716
Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.
Braconnot, Pascale; Kageyama, Masa
2015-11-13
Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).
Barthe, Stéphanie; Binelli, Giorgio; Hérault, Bruno; Scotti-Saintagne, Caroline; Sabatier, Daniel; Scotti, Ivan
2017-02-01
How Quaternary climatic and geological disturbances influenced the composition of Neotropical forests is hotly debated. Rainfall and temperature changes during and/or immediately after the last glacial maximum (LGM) are thought to have strongly affected the geographical distribution and local abundance of tree species. The paucity of the fossil records in Neotropical forests prevents a direct reconstruction of such processes. To describe community-level historical trends in forest composition, we turned therefore to inferential methods based on the reconstruction of past demographic changes. In particular, we modelled the history of rainforests in the eastern Guiana Shield over a timescale of several thousand generations, through the application of approximate Bayesian computation and maximum-likelihood methods to diversity data at nuclear and chloroplast loci in eight species or subspecies of rainforest trees. Depending on the species and on the method applied, we detected population contraction, expansion or stability, with a general trend in favour of stability or expansion, with changes presumably having occurred during or after the LGM. These findings suggest that Guiana Shield rainforests have globally persisted, while expanding, through the Quaternary, but that different species have experienced different demographic events, with a trend towards the increase in frequency of light-demanding, disturbance-associated species. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ward, B. M.; Mekik, F.; Pourmand, A.
2015-12-01
In light of evidence for extensive modern ocean acidification, it has become imperative to better understand the global carbon cycle by reconstructing past ocean acidification/alkalization events. Our goal is to test the deglacial global alkalization hypothesis using a multi-proxy approach by reconstructing the pH, temperature, and [CO32-] of thermocline waters and the dissolution in deep sea sediments over the last 25,000 years in core ME-27 from the eastern equatorial Pacific. Our specific research questions are: Is there unequivocal evidence for a deglacial ocean alkalization event? If yes, what was the magnitude of the alkalization event? If no, how can we explain why evidence of this event is missing from our core? We inferred temperature from Mg/Ca, and habitat water [CO32-] from sized-normalized shell weight in Neogloboquadrina dutertrei. Dissolution in sediments was estimated using the Globorotalia menardii Fragmentation Index (MFI). We see no clear indication of a deglacial ocean alkalization event with our proxies. Neither our shell weight, nor MFI data show a more alkaline deglacial ocean compared to the Last Glacial Maximum and the modern Interglacial. Instead, we observe a steady decrease in thermocline [CO32-], and increase in deep sea calcite preservation since the LGM. Our results may indicate that the global alkalization event was obscured in ME-27 due to higher organic carbon fluxes during the deglacial, and/or due to yet undetermined effects of temperature on the foraminifer shell weight proxy.
NASA Astrophysics Data System (ADS)
Brenner, L. D.; Linsley, B. K.; Potts, D. C.; Felis, T.; Mcgregor, H. V.; Gagan, M. K.; Inoue, M.; Tudhope, A. W.; Esat, T. M.; Thompson, W. G.; Tiwari, M.; Fallon, S.; Humblet, M.; Yokoyama, Y.; Webster, J.
2016-12-01
Isopora (Acroporidae) are sub-massive to massive corals found on most modern and fossil Indo-Pacific reefs. Despite their abundance, they are largely absent from the paleoceanographic literature but have the potential to provide proxy data where other commonly used corals, such as Porites, are sparse. The retrieval of Isopora fossils during International Ocean Discovery Program Leg 325 in the Great Barrier Reef (GBR) signaled the need to evaluate their possible paleoceanographic utility. We developed modern skeletal Sr/Ca- and δ18O-sea surface temperature (SST) calibrations for six modern Isopora colonies collected at Heron Island in the southern GBR. Pairing the coral Sr/Ca record with monthly SST data yielded Reduced Major Axis Sr/Ca- and δ18O-SST sensitivities of -0.054 mmol/mol/°C and -0.152 ‰/°C, respectively, falling within the range of published Porites values. We applied our Isopora-based regressions and previously published sensitivities from other species to a suite (n=37) of fossil samples collected from IODP 32. The calibrations produced a range of 3-7°C of warming, averaging 5°C, in the GBR from 22 ka to modern climate. This SST change is similar or slightly larger than other coral studies and larger than planktonic foraminifera Mg/Ca records. The planktonic Mg/Ca records from the Indonesian and Western Pacific Warm Pools indicate a warming of 3-3.5°C since 23ka (Linsley et al., 2010) while a fossil coral record from Tahiti indicates a warming of 3.2°C from 9.5ka to present (DeLong et al., 2010) and western Pacific coral records suggest a cooling of 5-6°C (Gagan et al., 2010; Guilderson et al., 1994: Beck et al., 1997), although these value might require rescaling (Gagan et al., 2012) resulting in slightly warmer temperature calculations. Our Isopora fossils from the GBR speak to the spatial heterogeneity of warming since the LGM and the continued need to develop more records for a more comprehensive understanding of the deglaciation.
NASA Astrophysics Data System (ADS)
Kretschmer, K.; Kucera, M.; Schulz, M.
2016-02-01
Plankton phenology is a key aspect of ecosystem dynamics. Up to now, it is not known how sensitive this parameter is to environmental perturbations and what magnitude of change is conceivable under extreme climate change scenarios. For example, one could argue that the phenology of the dominant Arctic planktonic foraminifera species Neogloboquadrina pachyderma will only shift slightly recording the more or less delayed onset of spring ocean warming. This assumption can be tested by examining the likely phenology of this species in the fossil record. Although phenology is difficult to derive directly from proxies, it can be estimated for past periods by models. Here we use an ecosystem modeling approach to investigate seasonal variations of N. pachyderma since the Last Glacial Maximum (LGM) in the North Atlantic. The model implies that the phenology of N. pachyderma during the LGM and the ensuing Heinrich Event 1 shifted by several months from the modern situation with a maximum seasonal production occurring later in the year (i.e. boreal summer). In comparison with the fossil records our model performs well in reproducing the observed abundance patterns and range shifts in the studied species during the last glacial period. Hence, the predicted large (and partly no-analog) shifts in the phenology of N. pachyderma are a plausible scenario. For instance, its maximum growth during Heinrich Event 1 in a region northeast of Newfoundland occurred during a part of the season where this species never peaks anywhere in the North Atlantic at present. Understanding the drivers of this change and knowing the potential adaptive space of phenology shifts are essential in predictions of plankton response to future global change scenarios.
Paleohydrology of the Polar Urals from the Last Glacial Maximum Through the Holocene
NASA Astrophysics Data System (ADS)
Cowling, O.; Thomas, E.; Svendsen, J. I.; Haflidason, H.
2017-12-01
Paleohydrologic records provide important information concerning the past response of local hydrology to abrupt temperature changes. Arctic hydrology is particularly sensitive to temperature due to feedbacks involving sea ice and ice sheets. The most recent deglacial interval contains multiple abrupt temperature changes, which provide opportunities to study the relationship between temperature, ice sheets, and hydrology. We present a lacustrine δ2Hwax record from Bolshoye Schuchye, in the Polar Ural Mountains, spanning 24.5- 1.3 ka, and interpret hydroclimate conditions at a multi-centennial scale from the Last Glacial Maximum (LGM) through the Holocene. Bolshoye Schuchye's position beyond the reach of local glaciers during the LGM makes it a unique site, since lacustrine paleoclimate records from the Arctic rarely span this entire interval, so Bolshoye Schuchye helps to cover a gap in understanding of paleoclimate. Compound specific analysis of leaf wax hydrogen isotopes (δ2Hwax) is a hydroclimate proxy that can be used to infer moisture source area, transport history, and local aridity. Inferences based on δ2Hwax rely on mechanistic understanding of the process by which hydrogen from meteoric water is incorporated into waxes, and subsequently deposited in lake sediments. The δ2Hwax value of a sample reflects the isotopic composition of precipitation, while also incorporating fractionation that occurs between precipitation and uptake by plants, and biosynthetic fractionation during wax synthesis. Comparisons between different chain length waxes can be used to infer the isotopic composition of terrestrial and aquatic waxes, as terrestrial plants tend to produce longer chain lengths than aquatic macrophytes. The offset between terrestrial and aquatic δ2Hwax, expressed as ɛt-a, indicates differences between the precipitation used by terrestrial plants, and the lake water used by aquatic plants. Significant changes in ɛt-a can represent shifts in local aridity or precipitation seasonality. The record we present from Bolshoye Schuchye gives insights into terrestrial hydrologic changes resulting from rapid temperature shifts since the LGM.
Zhang, Jinju; Li, Zuozhou; Fritsch, Peter W.; Tian, Hua; Yang, Aihong; Yao, Xiaohong
2015-01-01
Background and Aims The phylogeography of plant species in sub-tropical China remains largely unclear. This study used Tapiscia sinensis, an endemic and endangered tree species widely but disjunctly distributed in sub-tropical China, as a model to reveal the patterns of genetic diversity and phylogeographical history of Tertiary relict plant species in this region. The implications of the results are discussed in relation to its conservation management. Methods Samples were taken from 24 populations covering the natural geographical distribution of T. sinensis. Genetic structure was investigated by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA). Phylogenetic relationships among haplotypes were constructed with maximum parsimony and haplotype network methods. Historical population expansion events were tested with pairwise mismatch distribution analysis and neutrality tests. Species potential range was deduced by ecological niche modelling (ENM). Key Results A low level of genetic diversity was detected at the population level. A high level of genetic differentiation and a significant phylogeographical structure were revealed. The mean divergence time of the haplotypes was approx. 1·33 million years ago. Recent range expansion in this species is suggested by a star-like haplotype network and by the results from the mismatch distribution analysis and neutrality tests. Conclusions Climatic oscillations during the Pleistocene have had pronounced effects on the extant distribution of Tapiscia relative to the Last Glacial Maximum (LGM). Spatial patterns of molecular variation and ENM suggest that T. sinensis may have retreated in south-western and central China and colonized eastern China prior to the LGM. Multiple montane refugia for T. sinense existing during the LGM are inferred in central and western China. The populations adjacent to or within these refugia of T. sinense should be given high priority in the development of conservation policies and management strategies for this endangered species. PMID:26187222
NASA Astrophysics Data System (ADS)
Knight, Jasper
2016-10-01
Southwest Ireland is a critical location to examine the sensitivity of late Pleistocene glaciers to climate variability in the northeast Atlantic, because of its proximal location to Atlantic moisture sources and the presence of high mountains in the Macgillycuddy's Reeks range which acted as a focus for glacierization (Harrison et al., 2010). The extent of Last Glacial Maximum (LGM) glaciers in southwest Ireland and their link to the wider British-Irish Ice Sheet (BIIS), however, is under debate. Some models suggest that during the LGM the region was wholly inundated by ice from the larger BIIS (Warren, 1992; Sejrup et al., 2005), whereas others suggest north-flowing ice from the semi-independent Cork-Kerry Ice Cap (CKIC) was diverted around mountain peaks, resulting in exposed nunataks in the Macgillycuddy's Reeks (Anderson et al., 2001; Ballantyne et al., 2011). Cirque glaciers may also have been present on mountain slopes above this regional ice surface (Warren, 1979; Rea et al., 2004). More recently, investigations have focused on the extent and age of cirque glaciers in the Reeks, based on the mapped distribution of end moraines (Warren, 1979; Harrison et al., 2010), and on cosmogenic dates on boulders on these moraines (Harrison et al., 2010) and on associated scoured bedrock surfaces across the region (Ballantyne et al., 2011). The recent paper by Barth et al. (2016) contributes to this debate by providing nine cosmogenic 10Be ages on boulders from two moraines from one small (∼1.7 km2) and low (373 m elevation of the cirque floor) cirque basin at Alohart (52°00‧50″N, 9°40‧30″W) within the Reeks range. These dates are welcomed because they add to the lengthening list of age constraints on geomorphic activity in the region that spans the time period from the LGM to early Holocene.
Arctic sea ice variability during the last deglaciation: a biomarker approach
NASA Astrophysics Data System (ADS)
Müller, J.; Stein, R. H.
2014-12-01
The last transition from full glacial to current interglacial conditions was accompanied by distinct short-term climate fluctuations caused by changes in the global ocean circulation system. Most palaeoceanographic studies focus on the documentation of the behaviour of the Atlantic Meridional Overturning Circulation (AMOC) during the last deglaciation in response to freshwater forcing events. In this respect, the role of Arctic sea ice remained relatively unconsidered - primarily because of the difficulty of its reconstruction. Here we present new proxy data on late glacial (including the Last Glacial Maximum; LGM) and deglacial sea ice variability in the Arctic Ocean and its main gateway - the Fram Strait - and how these changes in sea ice coverage contributed to AMOC perturbations observed during Heinrich Event 1 and the Younger Dryas. Recurrent short-term advances and retreats of sea ice in Fram Strait, prior and during the LGM, are in line with a variable (or intermittent) North Atlantic heat flow along the eastern corridor of the Nordic Seas. Possibly in direct response to the initial freshwater discharge from melting continental ice-sheets, a permanent sea ice cover established only at about 19 ka BP (i.e. post-LGM) and lasted until 17.6 ka BP, when an abrupt break-up of this thick ice cover and a sudden discharge of huge amounts of sea ice and icebergs through Fram Strait coincided with the weakening of the AMOC during Heinrich Event 1. Similarly, another sea ice maximum at about 12.8 ka BP is associated with the slowdown of the AMOC during the Younger Dryas. The new data sets clearly highlight the important role of Arctic sea ice for the re-organisation of the oceanographic setting in the North Atlantic during the last deglaciation. Further studies and sensitivity experiments to identify crucial driving (and feedback) mechanisms within the High Latitude ice-ocean-atmosphere system will contribute the understanding of rapid climate changes.
NASA Astrophysics Data System (ADS)
Wang, M.
2017-12-01
The use of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct mean annual air temperatures (MAATs) and environmental pH from soils has sparked significant interest in the terrestrial paleoclimate community. However, the reconstruction of these climate proxies from peat bogs is rare in monsoonal regions of the East Asia. This research was carried out on a core from the Shuizhuyang (SZY) peat bog located in Fujian Province. Branched GDGT (brGDGT) indexes were used for reconstructing the paleoclimate of the last 30 cal ka. The aim was to evaluate quantitatively the MAAT and pH values since the Last Glacial Maximum (LGM) in the subtropical zone of China. Results show that the CBT-MBT'-derived MAAT at MIS 3 is about 15.6 °C on average, which is followed by a significant fall at the LGM (11.7-12.1 °C). The temperature difference between the LGM and the present-day value is as high as 5.8 °C. The synchronous variation of biomarker and pollen proxies indicates that replacement of subtropical evergreen broadleaved forests by coldtolerant, deciduous broadleaved forests was driven by the significant drop in air temperature. Our results also indicate that the Younger Dryas event lasted from about 12.9 to about 11.3 cal ka, and cooling event at 3.2 cal ka in the late Holocene was detected, showing the sensitivity of peat bogs to rapid cooling. Our pH reconstructions indicate that the pH of the bog rose during Heinrich 1 and Bølling-Allerød periods, probably due to low precipitation, and were lowest in the Holocene thermal maximum between 8 ka and 2.5 ka, probably due to higher precipitation. The decoupling of reconstructed MAAT and pH during particularly deglaciation and YD periods supports the hypothesis that the variations in temperature and precipitation are not always synchronous.
Reconstruction of past equilibrium line altitude using ice extent data
NASA Astrophysics Data System (ADS)
Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri
2017-04-01
With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.
Zhang, Jinju; Li, Zuozhou; Fritsch, Peter W; Tian, Hua; Yang, Aihong; Yao, Xiaohong
2015-10-01
The phylogeography of plant species in sub-tropical China remains largely unclear. This study used Tapiscia sinensis, an endemic and endangered tree species widely but disjunctly distributed in sub-tropical China, as a model to reveal the patterns of genetic diversity and phylogeographical history of Tertiary relict plant species in this region. The implications of the results are discussed in relation to its conservation management. Samples were taken from 24 populations covering the natural geographical distribution of T. sinensis. Genetic structure was investigated by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA). Phylogenetic relationships among haplotypes were constructed with maximum parsimony and haplotype network methods. Historical population expansion events were tested with pairwise mismatch distribution analysis and neutrality tests. Species potential range was deduced by ecological niche modelling (ENM). A low level of genetic diversity was detected at the population level. A high level of genetic differentiation and a significant phylogeographical structure were revealed. The mean divergence time of the haplotypes was approx. 1·33 million years ago. Recent range expansion in this species is suggested by a star-like haplotype network and by the results from the mismatch distribution analysis and neutrality tests. Climatic oscillations during the Pleistocene have had pronounced effects on the extant distribution of Tapiscia relative to the Last Glacial Maximum (LGM). Spatial patterns of molecular variation and ENM suggest that T. sinensis may have retreated in south-western and central China and colonized eastern China prior to the LGM. Multiple montane refugia for T. sinense existing during the LGM are inferred in central and western China. The populations adjacent to or within these refugia of T. sinense should be given high priority in the development of conservation policies and management strategies for this endangered species. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hostetler, S.; Pisias, N.; Mix, A.
2006-01-01
The faunal and floral gradients that underlie the CLIMAP (1981) sea-surface temperature (SST) reconstructions for the Last Glacial Maximum (LGM) reflect ocean temperature gradients and frontal positions. The transfer functions used to reconstruct SSTs from biologic gradients are biased, however, because at the warmest sites they display inherently low sensitivity in translating fauna to SST and they underestimate SST within the euphotic zones where the pycnocline is strong. Here we assemble available data and apply a statistical approach to adjust for hypothetical biases in the faunal-based SST estimates of LGM temperature. The largest bias adjustments are distributed in the tropics (to address low sensitivity) and subtropics (to address underestimation in the euphotic zones). The resulting SSTs are generally in better agreement than CLIMAP with recent geochemical estimates of glacial-interglacial temperature changes. We conducted a series of model experiments using the GENESIS general atmospheric circulation model to assess the sensitivity of the climate system to our bias-adjusted SSTs. Globally, the new SST field results in a modeled LGM surface-air cooling relative to present of 6.4 ??C (1.9 ??C cooler than that of CLIMAP). Relative to the simulation with CLIMAP SSTs, modeled precipitation over the oceans is reduced by 0.4 mm d-1 (an anomaly -0.4 versus 0.0 mm d-1 for CLIMAP) and increased over land (an anomaly -0.2 versus -0.5 mm d-1 for CLIMAP). Regionally strong responses are induced by changes in SST gradients. Data-model comparisons indicate improvement in agreement relative to CLIMAP, but differences among terrestrial data inferences and simulated moisture and temperature remain. Our SSTs result in positive mass balance over the northern hemisphere ice sheets (primarily through reduced summer ablation), supporting the hypothesis that tropical and subtropical ocean temperatures may have played a role in triggering glacial changes at higher latitudes.
NASA Astrophysics Data System (ADS)
Hillenbrand, C. D.; Smith, J.; Klages, J. P.; Kuhn, G.; Maher, B.; Moreton, S.; Wacker, L.; Frederichs, T.; Wiers, S.; Jernas, P.; Anderson, J. B.; Ehrmann, W. U.; Graham, A. G. C.; Gohl, K.; Larter, R. D.
2016-02-01
Satellite data and in-situ measurements show that today considerable mass loss is occurring from the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS). The observational record only spans the past four decades, and until recently the long-term context of the current deglaciation was poorly constrained. This information is, however, crucial for understanding WAIS dynamics, evaluating the role of forcing mechanisms for ice-sheet melting, and testing and calibrating ice-sheet models that attempt to predict future WAIS behavior and its impact on global sea level. Over the past decade several multinational marine expeditions and terrestrial fieldwork campaigns have targeted the Amundsen Sea shelf and its hinterland to reconstruct the WAIS configuration during the Last Glacial Maximum (LGM) and its subsequent deglacial history. The resulting studies succeeded in shedding light on the maximum WAIS extent at the LGM and the style, pattern and speed of its retreat and thinning thereafter. Despite this progress, however, significant uncertainties and discrepancies between marine and terrestrial reconstructions remain, which may arise from difficulties in dating sediment cores from the Antarctic shelf, especially their deglacial sections. Resolving these issues is crucial for understanding the WAIS' contribution to post-LGM sea-level rise, its sensitivity to different forcing mechanisms and its future evolution. Here we present chronological constraints on WAIS advance in the Amundsen Sea and its retreat from 20 ka BP into the Holocene that were obtained by various techniques, such as 14C dating of large ( 10 mg) and small (<<1 mg) sample aliquots of calcareous microfossils, 14C dating of acid-insoluble organic matter combusted at low (300 °C) and high (800 °C) temperatures and dating of sediment cores by using geomagnetic paleointensity. We will compare the different age constraints and discuss their reliability, applicability and implications for WAIS history.
NASA Astrophysics Data System (ADS)
Shakun, J. D.; Clark, P. U.; Marcott, S. A.; Brook, E. J.; Caffee, M. W.
2007-12-01
Eighteen 10Be ages were determined on quartzite boulders from two latest Pleistocene moraines in the northern Peruvian Andes at 7°S. Pleistocene moraines in this area are only a few hundred meters below the highest summits and represent small glaciers sensitive to climate change. A moraine corresponding to the local Last Glacial Maximum (LGM) yields a mean age of 19.2 +/- 1.1 10Be ka using the scaling of Lal (1991) and the production rate of Stone (2000). This age agrees fairly well with the onset of deglaciation inferred from other records in the tropical Andes including 10Be dating of moraines in the Cordillera Blanca, glaciogenic sediment input into Lakes Junin and Titicaca, and Huascaran d18O, as well as the initiation of warming seen in many marine records throughout the tropics at ~19 ka. These data do not seem to support an early local LGM in the tropical Andes, although ongoing cosmogenic work at our field site seeks to better clarify this issue. A deglacial moraine in an adjacent valley has a mean age of 15.8 +/- 1.4 10Be ka and best represents the timing of ice withdrawal from this region. Numerous other moraines throughout Peru and northern Bolivia have also been dated to ~15 10Be ka (Farber et al, 2005; Smith et al, 2005). Other records from the southern tropics indicate drying at this time, perhaps in response to a northward shift of the intertropical convergence zone associated with a resumption of thermohaline circulation, which may explain this deglacial event. While Schaefer et al. (2006) found a near-synchronous termination of the LGM in the mid-latitudes of both the Northern and Southern Hemispheres at ~17 10Be ka, the ~15 10Be ka age of moraines from the tropical Andes may indicate an asynchronous onset of the last deglaciation between the low and mid-latitudes.
Pietrofesa, Ralph A; Chatterjee, Shampa; Park, Kyewon; Arguiri, Evguenia; Albelda, Steven M; Christofidou-Solomidou, Melpo
2018-03-02
Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2 - / - ) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm²) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2 -/- macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation.
Pietrofesa, Ralph A.; Chatterjee, Shampa; Park, Kyewon; Arguiri, Evguenia; Albelda, Steven M.; Christofidou-Solomidou, Melpo
2018-01-01
Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2−/−) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm2) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2−/− macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation. PMID:29498660
High unexpected genetic diversity of a narrow endemic terrestrial mollusc
Madeira, Pedro M.; Chefaoui, Rosa M.; Cunha, Regina L.; Moreira, Francisco; Dias, Susana; Calado, Gonçalo
2017-01-01
The Iberian Peninsula has an extensive record of species displaying strong genetic structure as a result of their survival in isolated pockets throughout the Pleistocene ice ages. We used mitochondrial and nuclear sequence data to analyze phylogeographic patterns in endemic land snails from a valley of central Portugal (Vale da Couda), putatively assigned to Candidula coudensis, that show an exceptionally narrow distributional range. The genetic survey presented here shows the existence of five main mitochondrial lineages in Vale da Couda that do not cluster together suggesting independent evolutionary histories. Our results also indicate a departure from the expectation that species with restricted distributions have low genetic variability. The putative past and contemporary models of geographic distribution of Vale da Couda lineages are compatible with a scenario of species co-existence in more southern locations during the last glacial maximum (LGM) followed by a post-LGM northern dispersal tracking the species optimal thermal, humidity and soil physical conditions. PMID:28321363
Rodrigues, Shirlley; Avilla, Leonardo S; Soibelzon, Leopoldo H; Bernardes, Camila
2014-12-01
The Brazilian Quaternary terrestrial Carnivora are represented by the following families: Canidae, Felidae, Ursidae, Procyonidae Mephitidae and Mustelidae. Their recent evolutionary history in South America is associated with the uplift of the Panamanian Isthmus, and which enabled the Great American Biotic Interchange (GABI). Here we present new fossil records of Carnivora found in a cave in Aurora do Tocantins, Tocantins, northern Brazil. A stratigraphical controlled collection in the sedimentary deposit of the studied cave revealed a fossiliferous level where the following Carnivora taxa were present: Panthera onca, Leopardus sp., Galictis cuja, Procyon cancrivorus, Nasua nasua and Arctotherium wingei. Dating by Electron Spinning Resonance indicates that this assemblage was deposited during the Last Glacial Maximum (LGM), at least, 22.000 YBP. The weasel, G. cuja, is currently reported much further south than the record presented here. This may suggest that the environment around the cave was relatively drier during the LGM, with more open vegetation, and more moderate temperatures than the current Brazilian Cerrado.
Rodrigues, Shirlley; Avilla, Leonardo S; Soibelzon, Leopoldo H; Bernardes, Camila
2014-11-28
The Brazilian Quaternary terrestrial Carnivora are represented by the following families: Canidae, Felidae, Ursidae, Procyonidae Mephitidae and Mustelidae. Their recent evolutionary history in South America is associated with the uplift of the Panamanian Isthmus, and which enabled the Great American Biotic Interchange (GABI). Here we present new fossil records of Carnivora found in a cave in Aurora do Tocantins, Tocantins, northern Brazil. A stratigraphical controlled collection in the sedimentary deposit of the studied cave revealed a fossiliferous level where the following Carnivora taxa were present: Panthera onca, Leopardus sp., Galictis cuja, Procyon cancrivorus, Nasua nasua and Arctotherium wingei. Dating by Electron Spinning Resonance indicates that this assemblage was deposited during the Last Glacial Maximum (LGM), at least, 22.000 YBP. The weasel, G. cuja, is currently reported much further south than the record presented here. This may suggest that the environment around the cave was relatively drier during the LGM, with more open vegetation, and more moderate temperatures than the current Brazilian Cerrado.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
Ice stream reorganization and glacial retreat on the northwest Greenland shelf
NASA Astrophysics Data System (ADS)
Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.
2017-08-01
Understanding conditions at the grounding-line of marine-based ice sheets is essential for understanding ice sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) ice sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear margin moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM ice sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the margin stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The ice sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.
Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM
NASA Astrophysics Data System (ADS)
Anderson, John B.; Conway, Howard; Bart, Philip J.; Witus, Alexandra E.; Greenwood, Sarah L.; McKay, Robert M.; Hall, Brenda L.; Ackert, Robert P.; Licht, Kathy; Jakobsson, Martin; Stone, John O.
2014-09-01
Onshore and offshore studies show that an expanded, grounded ice sheet occupied the Ross Sea Embayment during the Last Glacial Maximum (LGM). Results from studies of till provenance and the orientation of geomorphic features on the continental shelf show that more than half of the grounded ice sheet consisted of East Antarctic ice flowing through Transantarctic Mountain (TAM) outlet glaciers; the remainder came from West Antarctica. Terrestrial data indicate little or no thickening in the upper catchment regions in both West and East Antarctica during the LGM. In contrast, evidence from the mouths of the southern and central TAM outlet glaciers indicate surface elevations between 1000 m and 1100 m (above present-day sea level). Farther north along the western margin of the Ross Ice Sheet, surface elevations reached 720 m on Ross Island, and 400 m at Terra Nova Bay. Evidence from Marie Byrd Land at the eastern margin of the ice sheet indicates that the elevation near the present-day grounding line was more than 800 m asl, while at Siple Dome in the central Ross Embayment, the surface elevation was about 950 m asl. Farther north, evidence that the ice sheet was grounded on the middle and the outer continental shelf during the LGM implies that surface elevations had to be at least 100 m above the LGM sea level. The apparent low surface profile and implied low basal shear stress in the central and eastern embayment suggests that although the ice streams may have slowed during the LGM, they remained active. Ice-sheet retreat from the western Ross Embayment during the Holocene is constrained by marine and terrestrial data. Ages from marine sediments suggest that the grounding line had retreated from its LGM outer shelf location only a few tens of kilometer to a location south of Coulman Island by ˜13 ka BP. The ice sheet margin was located in the vicinity of the Drygalski Ice Tongue by ˜11 ka BP, just north of Ross Island by ˜7.8 ka BP, and near Hatherton Glacier by ˜6.8 ka BP. Farther south, 10Be exposure ages from glacial erratics on nunataks near the mouths of Reedy, Scott and Beardmore Glaciers indicate thinning during the mid to late Holocene, but the grounding line did not reach its present position until 2 to 3 ka BP. Marine dates, which are almost exclusively Acid Insoluble Organic (AIO) dates, are consistently older than those derived from terrestrial data. However, even these ages indicate that the ice sheet experienced significant retreat after ˜13 ka BP. Geomorphic features indicate that during the final stages of ice sheet retreat ice flowing through the TAM remained grounded on the shallow western margin of Ross Sea. The timing of retreat from the central Ross Sea remains unresolved; the simplest reconstruction is to assume that the grounding line here started to retreat from the continental shelf more or less in step with the retreat from the western and eastern sectors. An alternative hypothesis, which relies on the validity of radiocarbon ages from marine sediments, is that grounded ice had retreated from the outer continental shelf prior to the LGM. More reliable ages from marine sediments in the central Ross Embayment are needed to test and validate this hypothesis.
NASA Astrophysics Data System (ADS)
Makos, Michał; Rinterknecht, Vincent; Braucher, Régis; Żarnowski, Michał
2016-02-01
Deglaciation chronology of the Bystra catchment (Western Tatra Mountains) has been reconstructed based on 10Be exposure age dating. Fourteen rock samples were collected from boulders located on three moraines that limit the horizontal extent of the LGM maximum advance and the Lateglacial recessional stage. The oldest preserved, maximum moraine was dated at 15.5 ± 0.8 ka, an age that could be explained more likely by post-depositional erosion of the moraine. Such scenario is supported by geomorphologic and palaeoclimatological evidence. The younger cold stage is represented by well-preserved termino-lateral moraine systems in the Kondratowa and Sucha Kasprowa valleys. The distribution of the moraine ridges in both valleys suggest a complex history of deglaciation of the area. The first Late-glacial re-advance (LG1) was followed by a cold oscillation (LG2), that occurred at around 14.0 ± 0.7-13.7 ± 1.2 ka. Glaciers during both stages had nearly the same horizontal extent, however, their thickness and geometry changed significantly, mainly due to local climatic conditions triggered by topography, controlling the exposition to solar radiation. The LG1 stage occurred probably during the pre-Bølling cold stage (Greenland Stadial 2.1a), however, the LG2 stage can be correlated with the cooling at around 14 ka during the Greenland Interstadial 1 (GI-1d - Older Dryas). This is the first chronological evidence of the Older Dryas in the Tatra Mountains. The ELA of the maximum Bystra glacier was located at 1480 m a.s.l. in accordance with the ELA in the High Tatra Mountains during the LGM. During the LG1 and LG2 stages, the ELA in the catchment rose up to 1520-1530 m a.s.l. and was located approximately 100-150 m lower than in the eastern part of the massif. Climate modelling results show that the Bystra glacier (maximum advance) could have advanced in the catchment when mean annual temperature was lower than today by 11-12 °C and precipitation was reduced by 40-60%. This is in accordance with LGM conditions previously reported for the High Tatras. During the LG1 and LG2 stages the temperature decrease in the study area reached 10 °C and precipitation was lower by ∼30% compare to modern conditions. This resulted in slightly higher accumulation (20-30%) in the Western Tatra Mountains compare to the High Tatra Mountains.
NASA Astrophysics Data System (ADS)
Sagredo, E. A.; Araya, P. S.; Schaefer, J. M.; Kaplan, M. R.; Kelly, M. A.; Lowell, T. V.; Aravena, J. C.
2014-12-01
Deciphering the timing and the inter-hemispheric phasing of former glacial fluctuations is critical for understanding the mechanisms and climate signals underlying these glacial events. Here, we present a detailed chronology of glacial fluctuations for Río Tranquilo glacier (47°S), since the LGM, including up to the present. Río Tranquilo is a small glacial valley located on the northern flank of Monte San Lorenzo, an isolated granitic massif, ~70 km to the east of the southern limit of the Northern Patagonian Icefield. Although Mt. San Lorenzo is located on the leeward side of the Andes, it is one of the most glacierized mountains in the region, with an ice surface area of ~140 km2. Geomorphic evidence suggests that during past episodes of climate change several small glaciers that today occupy the headwalls of Río Tranquilo valley expanded and coalesced, depositing a series of moraines complexes along the flanks and bottom of the valley. We used two independent dating techniques to constrain the age of the glacial history of the area. 10Be surface exposure ages from boulders located atop moraine ridges reveal that Río Tranquilo valley underwent glacial expansion/stabilization during at least the LGM (late LGM?), Late glacial (ACR and Younger Dryas) and Mid-Holocene. Within the Mid-Holocene limits, tree-ring based chronology indicates that Río Tranquilo glacier expanded during the Late Holocene as well. Our results are the first detailed chronology of glacial fluctuations from a single valley glacier, spanning the entire period from the (end of the) LGM up to the present, in southern South America. By identifying different glacial episodes within a single alpine valley, this study provides baseline data for studying the relative magnitude of the climate events responsible for these glacial events.
Alder, Jay R.; Hostetler, Steven W.
2015-01-01
We apply GENMOM, a coupled atmosphere–ocean climate model, to simulate eight equilibrium time slices at 3000-year intervals for the past 21 000 years forced by changes in Earth–Sun geometry, atmospheric greenhouse gases (GHGs), continental ice sheets, and sea level. Simulated global cooling during the Last Glacial Maximum (LGM) is 3.8 ◦C and the rate of post-glacial warming is in overall agreement with recently published temperature reconstructions. The greatest rate of warming occurs between 15 and 12 ka (2.4 ◦C over land, 0.7 ◦C over oceans, and 1.4 ◦C globally) in response to changes in radiative forcing from the diminished extent of the Northern Hemisphere (NH) ice sheets and increases in GHGs and NH summer insolation. The modeled LGM and 6 ka temperature and precipitation climatologies are generally consistent with proxy reconstructions, the PMIP2 and PMIP3 simulations, and other paleoclimate data–model analyses. The model does not capture the mid-Holocene “thermal maximum” and gradual cooling to preindustrial (PI) global temperature found in the data. Simulated monsoonal precipitation in North Africa peaks between 12 and 9 ka at values ∼ 50 % greater than those of the PI, and Indian monsoonal precipitation peaks at 12 and 9 ka at values ∼ 45 % greater than the PI. GENMOM captures the reconstructed LGM extent of NH and Southern Hemisphere (SH) sea ice. The simulated present-day Antarctica Circumpolar Current (ACC) is ∼ 48 % weaker than the observed (62 versus 119 Sv). The simulated present-day Atlantic Meridional Overturning Circulation (AMOC) of 19.3 ± 1.4 Sv on the Bermuda Rise (33◦ N) is comparable with observed value of 18.7 ± 4.8 Sv. AMOC at 33◦ N is reduced by ∼ 15 % during the LGM, and the largest post-glacial increase (∼ 11 %) occurs during the 15 ka time slice.
NASA Astrophysics Data System (ADS)
Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.
2016-12-01
The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.
Evolution of environmental factors affecting tropical cyclones from the LGM through the Holocene
NASA Astrophysics Data System (ADS)
Korty, R.
2010-12-01
The debate about whether and how tropical cyclones respond to warming climates has raised several interesting questions, but it has also revealed there is much we do not understand about controls on frequency and cumulative metrics of intensity and activity. In this work, I examine how the models used for anthropogenic climate predictions handle large-scale factors influencing tropical cyclone development in a different regime: the paleoclimate simulations of the LGM and Holocene. The models were forced under guidelines set forth by the second paleoclimate model intercomparison project (PMIP2), and produce equilibrium solutions for forcings far removed from small perturbations to the present-day world. (LGM has substantially lower CO2 and CH4 levels, while mid-Holocene cases have similar levels to today but different seasonal amplitudes from orbital variations.) The large-scale environmental factors that support tropical cyclones in today’s climate undergo complex and at times counter-intuitive changes in the colder simulations. The maximum potential intensity of tropical cyclones (MPI) is lower throughout the tropics in the mid-Holocene simulations, despite having SSTs very similar to today. MPI changes at LGM are more complex: lower in some regions but higher in much of the subtropics, while SSTs are uniformly lower than today. The water vapor deficits in the tropical midtroposphere change in such a way as to make tropical cyclone formation easier in the colder states; this is a counterintuitive result, but one consistent with the predictions of fewer storms in model simulations of a warmer climate by the end of the 21st century. I analyze the thermodynamic reasons behind the evolution in the large-scale environmental factors as well as relevant dynamic factors such as low-level vorticity and tropospheric wind shear. This analysis is the first part of a long-term project to analyze model prediction of tropical cyclone activity in the recent geologic past; the analysis provides a new line of evidence to compare with geologic proxies of tropical cyclone activity through the Holocene. Changes in midtropospheric entropy deficit from preindustrial (PI) climate to mid-Holocene (6ka) and LGM. Lower values indicate a smaller saturation deficit, which is conducive for tropical cyclone development.
NASA Astrophysics Data System (ADS)
Gebbie, G.; Peterson, C. D.; Lisiecki, L. E.; Spero, H. J.
2014-12-01
Estimates of the whole-ocean d13C change between the Last Glacial Maximum (LGM) and the modern-day are converging to values of about 0.4 per mil, and are of great use in partitioning land versus ocean contributions to the deglacial carbon cycle. To determine which specific oceanic processes are at play, however, knowledge of the spatial pattern of LGM-to-modern d13C and d18O change is critical. Spatial maps have mostly focused on Atlantic d13C, with less progress for d18O and the Pacific and Indian sectors, due to the concentration of sediment-core observations in the Atlantic and the difficulty in making meaningful maps from sparse data. Here, we demonstrate that a state estimation (or data assimilation) method based on recently compiled data and a simple kinematic ocean model simultaneously produces reasonable results for: 1) global maps of d13C and d18O, 2) uncertainty in the estimated properties, and 3) oceanic water-mass geometry. The observations include benthic d13C and d18O data from 493 marine sediment cores that were collected from the scientific literature and NOAA, PANGEA, and Delphi databases. The kinematic model permits each data point to have influence both up- and downstream along a water-mass pathway, typically allowing a larger geographical range than a statistical interpolation method. No assumption regarding the state of the circulation is necessary, and the modern-day circulation need not be assumed to be representative of the LGM. With this method, meridional (or other) sections can be compared between ocean basins. Furthermore, the internally-consistent d18O and d13C maps are used to determine the LGM-to-modern spatial changes that are robust given the uncertainty and sparsity of data. Rather than simply focus on property maps, we suggest that the link between observations and circulation changes (as reflected by the paths that water travels), points the way toward dynamical processes that must be explained. A particular application of our result is the geographic constraint of possible unobserved reservoirs of d13C or radiocarbon and calculation of their potential impact on the global chain of events during the deglaciation.
Hamilton, Marcus J.; Buchanan, Briggs
2010-01-01
Background Understanding the dynamics of the human range expansion across northeastern Eurasia during the late Pleistocene is central to establishing empirical temporal constraints on the colonization of the Americas [1]. Opinions vary widely on how and when the Americas were colonized, with advocates supporting either a pre-[2] or post-[1], [3], [4], [5], [6] last glacial maximum (LGM) colonization, via either a land bridge across Beringia [3], [4], [5], a sea-faring Pacific Rim coastal route [1], [3], a trans-Arctic route [4], or a trans-Atlantic oceanic route [5]. Here we analyze a large sample of radiocarbon dates from the northeast Eurasian Upper Paleolithic to identify the origin of this expansion, and estimate the velocity of colonization wave as it moved across northern Eurasia and into the Americas. Methodology/Principal Findings We use diffusion models [6], [7] to quantify these dynamics. Our results show the expansion originated in the Altai region of southern Siberia ∼46kBP , and from there expanded across northern Eurasia at an average velocity of 0.16 km per year. However, the movement of the colonizing wave was not continuous but underwent three distinct phases: 1) an initial expansion from 47-32k calBP; 2) a hiatus from ∼32-16k calBP, and 3) a second expansion after the LGM ∼16k calBP. These results provide archaeological support for the recently proposed three-stage model of the colonization of the Americas [8], [9]. Our results falsify the hypothesis of a pre-LGM terrestrial colonization of the Americas and we discuss the importance of these empirical results in the light of alternative models. Conclusions/Significance Our results demonstrate that the radiocarbon record of Upper Paleolithic northeastern Eurasia supports a post-LGM terrestrial colonization of the Americas falsifying the proposed pre-LGM terrestrial colonization of the Americas. We show that this expansion was not a simple process, but proceeded in three phases, consistent with genetic data, largely in response to the variable climatic conditions of late Pleistocene northeast Eurasia. Further, the constraints imposed by the spatiotemporal gradient in the empirical radiocarbon record across this entire region suggests that North America cannot have been colonized much before the existing Clovis radiocarbon record suggests. PMID:20814574
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi; Yokoyama, Yusuke
2016-02-01
Inference of globally averaged eustatic sea level (ESL) rise since the Last Glacial Maximum (LGM) highly depends on the interpretation of relative sea level (RSL) observations at Barbados and Bonaparte Gulf, Australia, which are sensitive to the viscosity structure of Earth's mantle. Here we examine the RSL changes at the LGM for Barbados and Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}), differential RSL for both sites (Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}}) and rate of change of degree-two harmonics of Earth's geopotential due to glacial isostatic adjustment (GIA) process (GIA-induced J˙2) to infer the ESL component and viscosity structure of Earth's mantle. Differential RSL, Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} and GIA-induced J˙2 are dominantly sensitive to the lower-mantle viscosity, and nearly insensitive to the upper-mantle rheological structure and GIA ice models with an ESL component of about (120-130) m. The comparison between the predicted and observationally derived Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} indicates the lower-mantle viscosity higher than ˜2 × 1022 Pa s, and the observationally derived GIA-induced J˙2 of -(6.0-6.5) × 10-11 yr-1 indicates two permissible solutions for the lower mantle, ˜1022 and (5-10) × 1022 Pa s. That is, the effective lower-mantle viscosity inferred from these two observational constraints is (5-10) × 1022 Pa s. The LGM RSL changes at both sites, {{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}, are also sensitive to the ESL component and upper-mantle viscosity as well as the lower-mantle viscosity. The permissible upper-mantle viscosity increases with decreasing ESL component due to the sensitivity of the LGM sea level at Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bon}}}) to the upper-mantle viscosity, and inferred upper-mantle viscosity for adopted lithospheric thicknesses of 65 and 100 km is (1-3) × 1020 Pa s for ESL˜130 m and (4-10) × 1020 Pa s for ESL˜125 m. The former solution of (1-3) × 1020 Pa s is consistent with the inferences from the postglacial differential RSL changes in the Australian region and also inversion study of far-field sea-level data. The inference of the viscosity structure based on these four observational constraints is, however, relatively insensitive to the viscosity structure of D″ layer.
NASA Astrophysics Data System (ADS)
Boxleitner, Max; Maisch, Max; Brandova, Dagmar; Egli, Markus; Ochs, Susan Ivy; Christl, Marcus
2017-04-01
The deglaciation of the Alps after the Last Glacial Maximum was not a linear process. Moraines as traces of glacier re-advances show that the climate within the general Late-Pleistocene-warming is characterized by repeated cold intervals. While moraine series resulting from these cold spells have been already described for many Alpine valleys at the beginning of the 20th century, absolute chronologies of the Lateglacial climate and glacier development are still fragmentary. The advent of surface exposure dating as a new absolute dating method some 30 years ago made it possible to directly target the deposition-age of moraines. But still many questions regarding the local-to-regional glacier development and its coupling to the overall climate change remain open. In the framework of my PhD-project we study key sites in Central (Uri) and Southeast (Engadine) Switzerland with the aim to develop an absolute post-LGM chronology. More than 50 rock-samples from boulders of different moraine complexes from both regions have been analyzed using 10Be-surface-expsure-dating. Our results show that especially the Younger Dryas plays not unexpected an important role as a very pronounced cold interval. With our results we will refine the understanding of the glacier development in the Swiss Alps during the Lateglacial and the Holocene and improve estimates of equilibrium lines of altitude (ELA) of glaciers from the LGM to the beginning of the Holocene.
Shi, Xiao-Jun; Zhang, Ming-Li
2015-03-01
Zygophyllum xanthoxylon, a desert species, displaying a broad east-west continuous distribution pattern in arid Northwestern China, can be considered as a model species to investigate the biogeographical history of this region. We sequenced two chloroplast DNA spacers (psbK-psbI and rpl32-trnL) in 226 individuals from 31 populations to explore the phylogeographical structure. Median-joining network was constructed and analysis of AMOVA, SMOVA, neutrality tests and distribution analysis were used to examine genetic structure and potential range expansion. Using species distribution modeling, the geographical distribution of Z. xanthoxylon was modeled during the present and at the Last Glacial Maximum (LGM). Among 26 haplotypes, one was widely distributed, but most was restricted to either the eastern or western region. The populations with the highest levels of haplotype diversity were found in the Tianshan Mountains and its surroundings in the west, and the Helan Mountains and Alxa Plateau in the east. AMOVA and SAMOVA showed that over all populations, the species lacks phylogeographical structure, which is speculated to be the result of its specific biology. Neutrality tests and mismatch distribution analysis support past range expansions of the species. Comparing the current distribution to those cold and dry conditions in LGM, Z. xanthoxylon had a shrunken and more fragmented range during LGM. Based on the evidences from phylogeographical patterns, distribution of genetic variability, and paleodistribution modeling, Z. xanthoxylon is speculated most likely to have originated from the east and migrated westward via the Hexi Corridor.
Inferring Past Climate in Equatorial East Africa using Glacier Models
NASA Astrophysics Data System (ADS)
Doughty, A. M.; Kelly, M. A.; Anderson, B.; Russell, J. M.; Jackson, M. S.
2016-12-01
Mountain glaciers in the northern and southern middle latitudes advanced nearly synchronously during the Last Glacial Maximum (LGM), but the timing and magnitude of cooling is less certain for the tropics. Knowing the degree of cooling in high altitude, low latitude regions advances our understanding of the cryosphere in understudied areas and contributes to our understanding of what causes ice ages. Here we use a 2-D ice flow and mass balance model to simulate glacier extents in the Rwenzori Mountains of Uganda and the Democratic Republic of the Congo during the Last Glacial Maximum. In particular, we model steady-state ice extent that matches the dated moraines in the Rwenzori Mountains to infer past climate. Steady-state simulations of LGM glacier extents, which match moraines dated to 20,000 years ago, can be obtained with a 20% reduction in precipitation and a 7°C cooling to match the associated moraines. A 0-50% reduction in precipitation combined with a 5-8°C cooling, respectively, agrees well with paleoclimate estimates from independent proxy records. As expected in a high precipitation environment, these glaciers are very sensitive to decreases in temperature, converting large volumes of precipitation from rain to snow as well as decreasing melting. Glaciers in equatorial Africa appear to have been waxing and waning synchronously and by the same magnitude as glaciers in the middle latitudes, suggesting a common, global forcing mechanism.
NASA Astrophysics Data System (ADS)
Marcantonio, Franco; Anderson, Robert F.; Higgins, Sean; Fleisher, Martin Q.; Stute, Martin; Schlosser, Peter
2001-01-01
Sediments from western Arabian Sea core 74KL representing the last 23 ka were analyzed for helium, thorium, and protactinium isotopes. Assuming global average fluxes of extraterrestrial 3He and 230Th, the average 3He-derived sediment mass accumulation rate (MAR) is a factor of 1.8 higher than the average 230Th-derived MAR. 3He- and 230Th-derived MARs converge, however, during the Younger Dryas (YD) and during the peak of the early Holocene humid interval. These features, not seen anywhere else in the world, probably reflect a combination of climate-driven changes in the flux of 230Th and 3He. Ratios of xs 231Pa/xs 230Th, proxies of paleoproductivity, are lowest during the last glacial maximum (LGM), and increase abruptly during the Bolling-Allerod. Later, following a sudden decrease to near-LGM values during the YD, they rise abruptly to maximum values for the entire record in the early Holocene. We hypothesize that low xs 231Pa/xs 230Th ratios reflect low productivity due to the decreased intensity of the SW monsoon, whereas the opposite is true for high ratios. The correlation between Arabian Sea productivity and monsoonal upwelling, on the one hand, and North Atlantic climate variability, on the other, suggests a linkage between high- and low-latitude climates caused by changing patterns of atmospheric circulation.
Fernández-Mazuecos, Mario; Vargas, Pablo
2013-06-01
· The role of Quaternary climatic shifts in shaping the distribution of Linaria elegans, an Iberian annual plant, was investigated using species distribution modelling and molecular phylogeographical analyses. Three hypotheses are proposed to explain the Quaternary history of its mountain ring range. · The distribution of L. elegans was modelled using the maximum entropy method and projected to the last interglacial and to the last glacial maximum (LGM) using two different paleoclimatic models: the Community Climate System Model (CCSM) and the Model for Interdisciplinary Research on Climate (MIROC). Two nuclear and three plastid DNA regions were sequenced for 24 populations (119 individuals sampled). Bayesian phylogenetic, phylogeographical, dating and coalescent-based population genetic analyses were conducted. · Molecular analyses indicated the existence of northern and southern glacial refugia and supported two routes of post-glacial recolonization. These results were consistent with the LGM distribution as inferred under the CCSM paleoclimatic model (but not under the MIROC model). Isolation between two major refugia was dated back to the Riss or Mindel glaciations, > 100 kyr before present (bp). · The Atlantic distribution of inferred refugia suggests that the oceanic (buffered)-continental (harsh) gradient may have played a key and previously unrecognized role in determining Quaternary distribution shifts of Mediterranean plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Kurek, Joshua; Cwynar, Les C.; Ager, Thomas A.; Abbott, Mark B.; Edwards, Mary E.
2009-01-01
Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (~39,000-34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ~4000 years later. Summer climates during the last glacial maximum (LGM) were on average ~3.5C° below the modern temperatures at each site. Major shifts in vegetation occurred from ~19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ~17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ~12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.
A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas
NASA Astrophysics Data System (ADS)
Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen
2015-04-01
Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.
A Comparison of Latent Growth Models for Constructs Measured by Multiple Items
ERIC Educational Resources Information Center
Leite, Walter L.
2007-01-01
Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…
Genetics, Gene Flow, and Glaciation: The Case of the South American Limpet Nacella mytilina
González-Wevar, Claudio A.; Rosenfeld, Sebastián; Segovia, Nicolás I.; Hüne, Mathias; Gérard, Karin; Ojeda, Jaime; Mansilla, Andrés; Brickle, Paul; Díaz, Angie; Poulin, Elie
2016-01-01
Glacial episodes of the Quaternary, and particularly the Last Glacial Maximum (LGM) drastically altered the distribution of the Southern-Hemisphere biota, principally at higher latitudes. The irregular coastline of Patagonia expanding for more than 84.000 km constitutes a remarkable area to evaluate the effect of Quaternary landscape and seascape shifts over the demography of near-shore marine benthic organisms. Few studies describing the biogeographic responses of marine species to the LGM have been conducted in Patagonia, but existing data from coastal marine species have demonstrated marked genetic signatures of post-LGM recolonization and expansion. The kelp-dweller limpet Nacella mytilina is broadly distributed along the southern tip of South America and at the Falkland/Malvinas Islands. Considering its distribution, abundance, and narrow bathymetry, N. mytilina represents an appropriate model to infer how historical and contemporary processes affected the distribution of intraspecific genetic diversity and structure along the southern tip of South America. At the same time, it will be possible to determine how life history traits and the ecology of the species are responsible for the current pattern of gene flow and connectivity across the study area. We conducted phylogeographic and demographic inference analyses in N. mytilina from 12 localities along Pacific Patagonia (PP) and one population from the Falkland/Malvinas Islands (FI). Analyses of the mitochondrial gene COI in 300 individuals of N. mytilina revealed low levels of genetic polymorphism and the absence of genetic differentiation along PP. In contrast, FI showed a strong and significant differentiation from Pacific Patagonian populations. Higher levels of genetic diversity were also recorded in the FI population, together with a more expanded genealogy supporting the hypothesis of glacial persistence of the species in these islands. Haplotype genealogy, and mismatch analyses in the FI population recognized an older and more complex demographic history than in PP. Demographic reconstructions along PP suggest a post-LGM expansion process (7.5 ka), also supported by neutrality tests, mismatch distribution and maximum parsimony haplotype genealogies. Migration rate estimations showed evidence of asymmetrical gene flow from PP to FI. The absence of genetic differentiation, the presence of a single dominant haplotype, high estimated migration rates, and marked signal of recent demographic growth, support the hypothesis of rapid post-glacial expansion in N. mytilina along PP. This expansion could have been sustained by larval and rafting-mediated dispersal of adults from northernmost populations following the Cape Horn Current System. Marked genetic differentiation between PP and FI could be explained through differences in their respective glacial histories. During the LGM, Pacific Patagonia (PP) was almost fully covered by the Patagonian Ice Sheet, while sheet coverage in the FI ice was restricted to small cirques and valleys. As previously recorded in the sister-species N. magellanica, the FI rather than represent a classical glacial refugium for N. mytilina, seems to represent a sink area and/or a secondary contact zone. Accordingly, historical and contemporary processes, contrasting glacial histories between the analyzed sectors, as well as life history traits constitute the main factors explaining the current biogeographical patterns of most shallow Patagonian marine benthic organisms. PMID:27598461
Genetics, Gene Flow, and Glaciation: The Case of the South American Limpet Nacella mytilina.
González-Wevar, Claudio A; Rosenfeld, Sebastián; Segovia, Nicolás I; Hüne, Mathias; Gérard, Karin; Ojeda, Jaime; Mansilla, Andrés; Brickle, Paul; Díaz, Angie; Poulin, Elie
2016-01-01
Glacial episodes of the Quaternary, and particularly the Last Glacial Maximum (LGM) drastically altered the distribution of the Southern-Hemisphere biota, principally at higher latitudes. The irregular coastline of Patagonia expanding for more than 84.000 km constitutes a remarkable area to evaluate the effect of Quaternary landscape and seascape shifts over the demography of near-shore marine benthic organisms. Few studies describing the biogeographic responses of marine species to the LGM have been conducted in Patagonia, but existing data from coastal marine species have demonstrated marked genetic signatures of post-LGM recolonization and expansion. The kelp-dweller limpet Nacella mytilina is broadly distributed along the southern tip of South America and at the Falkland/Malvinas Islands. Considering its distribution, abundance, and narrow bathymetry, N. mytilina represents an appropriate model to infer how historical and contemporary processes affected the distribution of intraspecific genetic diversity and structure along the southern tip of South America. At the same time, it will be possible to determine how life history traits and the ecology of the species are responsible for the current pattern of gene flow and connectivity across the study area. We conducted phylogeographic and demographic inference analyses in N. mytilina from 12 localities along Pacific Patagonia (PP) and one population from the Falkland/Malvinas Islands (FI). Analyses of the mitochondrial gene COI in 300 individuals of N. mytilina revealed low levels of genetic polymorphism and the absence of genetic differentiation along PP. In contrast, FI showed a strong and significant differentiation from Pacific Patagonian populations. Higher levels of genetic diversity were also recorded in the FI population, together with a more expanded genealogy supporting the hypothesis of glacial persistence of the species in these islands. Haplotype genealogy, and mismatch analyses in the FI population recognized an older and more complex demographic history than in PP. Demographic reconstructions along PP suggest a post-LGM expansion process (7.5 ka), also supported by neutrality tests, mismatch distribution and maximum parsimony haplotype genealogies. Migration rate estimations showed evidence of asymmetrical gene flow from PP to FI. The absence of genetic differentiation, the presence of a single dominant haplotype, high estimated migration rates, and marked signal of recent demographic growth, support the hypothesis of rapid post-glacial expansion in N. mytilina along PP. This expansion could have been sustained by larval and rafting-mediated dispersal of adults from northernmost populations following the Cape Horn Current System. Marked genetic differentiation between PP and FI could be explained through differences in their respective glacial histories. During the LGM, Pacific Patagonia (PP) was almost fully covered by the Patagonian Ice Sheet, while sheet coverage in the FI ice was restricted to small cirques and valleys. As previously recorded in the sister-species N. magellanica, the FI rather than represent a classical glacial refugium for N. mytilina, seems to represent a sink area and/or a secondary contact zone. Accordingly, historical and contemporary processes, contrasting glacial histories between the analyzed sectors, as well as life history traits constitute the main factors explaining the current biogeographical patterns of most shallow Patagonian marine benthic organisms.
B. Buma; P.E. Hennon; A.L. Bidlack; J.F. Baichtal; T.A. Ager; G. Streveier
2014-01-01
The velocity of species dispersal post-last glacial maximum (LGM) is an interesting question from both paleo-historical and contemporary perspectives. The apparent time lag between a locationâs climate becoming suitable for a given species and that speciesâ arrival at that location has important implications for our understanding of the relationship between climate...
Fuentes-Hurtado, Marcelo; Hof, Anouschka R; Jansson, Roland
2016-01-01
Quaternary glacial cycles have shaped the geographic distributions and evolution of numerous species in the Arctic. Ancient DNA suggests that the Arctic fox went extinct in Europe at the end of the Pleistocene and that Scandinavia was subsequently recolonized from Siberia, indicating inability to track its habitat through space as climate changed. Using ecological niche modeling, we found that climatically suitable conditions for Arctic fox were found in Scandinavia both during the last glacial maximum (LGM) and the mid-Holocene. Our results are supported by fossil occurrences from the last glacial. Furthermore, the model projection for the LGM, validated with fossil records, suggested an approximate distance of 2000 km between suitable Arctic conditions and the Tibetan Plateau well within the dispersal distance of the species, supporting the recently proposed hypothesis of range expansion from an origin on the Tibetan Plateau to the rest of Eurasia. The fact that the Arctic fox disappeared from Scandinavia despite suitable conditions suggests that extant populations may be more sensitive to climate change than previously thought.
Palaeoenvironmental Transitions Between 22 ka and 8 ka in Monsoonally Influenced Namibia
NASA Astrophysics Data System (ADS)
Eitel, Bernhard; Blümel, Wolf Dieter; Hüser, Klaus
The paper presents a preliminary reconstruction of the development of different palaeoenvironments between the Last Glacial Maximum (LGM; c. 22 - 18 ka) and the Holocene Altithermal (HA; c. 8 ka - 4 ka) in Namibia. The synopsis is based on 36 optical datations of dune sands and fine-grained, silty deposits (OSL and TL). Most of the data were published by different research groups during the last decade. The synoptic view of all available optical age determinations is necessary because palaeoclimatic interpretations for southwestern Africa are not possible using results based only on local studies and on partly unreliable datations (e. g. 14C ages of calcretes). The compilation of all available datations and a synoptical interpretation such as the one presented here, show that gradual transitions and not abrupt changes from arid to more humid conditions occurred. These transitions did not affect all regions of Namibia at the same time and intensity. Differentiations in time and space are necessary for arriving a consistent model of the palaeoenvironmental transitions between LGM and HA.
Somma-Vesuvius ground deformation over the last glacial cycle
NASA Astrophysics Data System (ADS)
Marturano, Aldo; Aiello, Giuseppe; Barra, Diana
2013-04-01
Vertical ground movements at Somma-Vesuvius during the last glacial cycle have been inferred from micropalaeontological and petrochemical analyses of rock samples from boreholes drilled at the archaeological sites of Herculaneum and Pompeii as well as on the apron of the volcano and the adjacent Sebeto and Sarno Valleys. Opposing movements occurred during the periods preceding and following the Last Glacial Maximum (LGM). The uplift began 20 ka ago with marine deposits rising several tens of metres up to 25 m a.s.l., recovering previous subsidence which occurred during the Late glacial period, suggesting a strict connection between volcano-tectonic and glacial cycles. Here we present the analysis of deposits predating the LGM, which confirms subsidence of the Campanian Plain where Mt. Somma-Vesuvius is located, shows variable surface loading effects and highlights the volcano-tectonic stages experienced by the volcano. The self-balancing mechanism of the volcanic system, evolving towards an explosive, subaerial activity 60 ka ago, is testified to by a large ground oscillation in phase with sea level change during the last glacial cycle.
Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia
Alves, Isabel; Arenas, Miguel; Currat, Mathias; Sramkova Hanulova, Anna; Sousa, Vitor C.; Ray, Nicolas; Excoffier, Laurent
2016-01-01
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations. PMID:26637555
Dodd, Richard S; DeSilva, Rainbow
2016-05-01
Mediterranean ecosystems comprise a high proportion of endemic taxa whose response to climate change will depend on their evolutionary origins. In the California flora, relatively little attention has been given to the evolutionary history of paleoendemics from a molecular perspective, yet they number among some of the world's most iconic plant species. Here, we address questions of demographic change in Sequoiadendron giganteum (giant sequoia) that is restricted to a narrow belt of groves in the Sierra Nevada Mountains. We ask whether the current distribution is a result of northward colonization since the last glacial maximum (LGM), restriction of a broader range in the recent past (LGM) or independent colonizations in the deeper past. Genetic diversity at eleven microsatellite loci decreased with increasing latitude, but partial regressions suggested this was a function of smaller population sizes in the north. Disjunct populations north of the Kings River were divergent from those south of the Kings River that formed a single cluster in Bayesian assignment tests. Demographic inferences supported a demographic contraction just prior to the LGM as the most likely scenario for the current disjunct range of the species. This contraction appeared to be superimposed upon a long-term decline in giant sequoia over the last 2 million years, associated with increasing aridity due to the Mediterranean climate. Overall, low genetic diversity, together with competition in an environment to which giant sequoia is likely already poorly adapted, will pose major constraints on its success in the face of increasing aridity.
AMOC response to global warming: dependence on the background climate and response timescale
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Liu, Zhengyu; Zhang, Jiaxu; Liu, Wei
2015-06-01
This paper investigates the response of the Atlantic meridional overturning circulation (AMOC) to a sudden doubling of atmospheric CO2 in the National Center for Atmospheric Research Community Climate System Model version 3, with a focus on differences under different background climates. The findings reveal that the evolution of the AMOC differs significantly between the modern climate and the last glacial maximum (LGM). In the modern climate, the AMOC decreases (by 25 %, 4 Sv) in the first 100 years and then recovers slowly (by 6 %, 1 Sv) by the end of the 1,500-year simulation. At the LGM, the AMOC also weakens (by 8 %, 1 Sv) in the initial 90 years, but then recovers, first rapidly (by 30 %, 4 Sv) over the following 300 years, and then slowly (by 13 %, 1.6 Sv) during the remainder of the integration. These results suggest that the responses of the AMOC under both climates have a similar initial rapid weakening period of ~100 years and a final slow strengthening period over 1,000 years long. However, additional intermediate period of ~300 years does occur for the LGM, with rapid intensification in the AMOC. Analyses suggest that the rapid intensification is triggered and sustained primarily by a coupled sea ice-ocean feedback: the reduction of meltwater flux in the northern North Atlantic—associated with the remarkable sea-ice retreat at the LGM—intensifies the AMOC and northward heat transport, which, in turn, causes further sea-ice retreat and more reduction of meltwater. These processes are insignificant under modern conditions.
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le
2018-04-01
Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.
New research on the origin of mottled clay in Quaternary basins in the coastal area of south China
NASA Astrophysics Data System (ADS)
Wang, Jing; Chen, Zhen; Gao, Quanzhou; Chen, Guoneng
2018-06-01
Last Glacial Maximum (LGM) mottled clay occurs widely in Late Quaternary basins in south China coastal areas. Current research attributes its origin to exposure weathering of Late Pleistocene marine/fluvial deposits during the LGM. However, field data suggest that this is not the case as there is no gradual transition in lithology, grain size, structure and material composition among these layers. Instead, the mottled clay possesses sedimentary characteristics of exotic dust. In this study, three typical drill cores in the Pearl River Delta were studied using grain size analysis, diffuse reflection spectroscopy (DRS) and geochemical analysis to ascertain the clay's sedimentary characteristics and origin. Grain size distribution patterns and parameters of the mottled clay were similar to those of a typical loess, indicating aeolian origin. In DRS curves, the peak height of hematite > goethite, indicating that the mottled clay had not experienced strong hydration and constitutes a continental product. This conforms to a typical loess but differs from the underlying marine/fluvial deposits. The chemical composition of the mottled clay was homogeneous in the vertical and planar directions. Upper continental crust (UCC) normalized curves of major and trace elements of the mottled clay were close to the average UCC and were consistent with typical aeolian deposits. The spatial and temporal distribution characteristics and relationship with the underlying layer suggest that the mottled clay was a loess-like deposit during the LGM and its mottled structure originated from strong modification of oxidation during the postglacial period after homogeneous dust had accumulated.
The climate response of the Indo-Pacific warm pool to glacial sea level
NASA Astrophysics Data System (ADS)
Di Nezio, Pedro N.; Timmermann, Axel; Tierney, Jessica E.; Jin, Fei-Fei; Otto-Bliesner, Bette; Rosenbloom, Nan; Mapes, Brian; Neale, Rich; Ivanovic, Ruza F.; Montenegro, Alvaro
2016-06-01
Growing climate proxy evidence suggests that changes in sea level are important drivers of tropical climate change on glacial-interglacial timescales. These paleodata suggest that rainfall patterns over the Indo-Pacific warm pool (IPWP) are highly sensitive to the landmass configuration of the Maritime Continent and that lowered sea level contributed to large-scale drying during the Last Glacial Maximum (LGM, approximately 21,000 years B.P.). Using the Community Earth System Model Version 1.2 (CESM1), we investigate the mechanisms by which lowered sea level influenced the climate of the IPWP during the LGM. The CESM1 simulations show that, in agreement with previous hypotheses, changes in atmospheric circulation are initiated by the exposure of the Sunda and Sahul shelves. Ocean dynamical processes amplify the changes in atmospheric circulation by increasing the east-west sea surface temperature (SST) gradient along the equatorial Indian Ocean. The coupled mechanism driving this response is akin to the Bjerknes feedback and results in a large-scale climatic reorganization over the Indian Ocean with impacts extending from east Africa to the western tropical Pacific. Unlike exposure of the Sunda shelf, exposure of Sahul shelf and the associated changes in surface albedo play a key role because of the positive feedback. This mechanism could explain the pattern of dry (wet) eastern (western) Indian Ocean identified in climate proxies and LGM simulations. However, this response also requires a strengthened SST gradient along the equatorial Indian Ocean, a pattern that is not evident in marine paleoreconstructions. Strategies to resolve this issue are discussed.
Kennedy, John Paul; Pil, Maria W; Proffitt, C Edward; Boeger, Walter A; Stanford, Alice M; Devlin, Donna J
2016-02-01
The Last Glacial Maximum (LGM) was a period of massive range contraction. Post-LGM, water-dispersed coastal species, including the red mangrove (Rhizophora mangle), expanded poleward as propagules were transported by ocean currents. We assessed postglacial marine expansion pathways for R. mangle within the Caribbean Basin and Florida. Six microsatellite loci were used to genotype 237 individuals from nine R. mangle populations in the Caribbean, Florida, and Northwest Africa. We evaluated genetic variation, population structure, gene flow along alternative post-LGM expansion pathways to Florida, and potential long-distance dispersal (LDD) from West Africa to Caribbean islands. These R. mangle populations had substantial genetic structure (FST = 0.37, P < 0.0001) with three discrete population clusters (Caribbean mainland, Caribbean islands, and Florida). Genetic connectivity along the mainland pathway (Caribbean mainland to Florida) vs. limited gene dispersal along the Antilles Island pathway (Caribbean islands to Florida) supported Florida recolonization from Caribbean mainland sources. Genetic similarity of Northwest Africa and two Caribbean islands provided evidence for trans-Atlantic LDD. We did not find a pattern of decreasing genetic diversity with latitude. We outline a complex expansion history for R. mangle, with discrete pathways of recolonization for Florida and Caribbean islands. Contrary to expectation, connectivity to putative Caribbean mainland refugial populations via ocean currents, and not latitude, appears to dictate genetic diversity within Caribbean island and Florida R. mangle. These findings provide a framework for further investigation of additional water-dispersed neotropical species, and insights for management initiatives. © 2016 Botanical Society of America.
Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa
Allal, F; Sanou, H; Millet, L; Vaillant, A; Camus-Kulandaivelu, L; Logossa, Z A; Lefèvre, F; Bouvet, J-M
2011-01-01
The evolution of the savanna biome has been deeply marked by repeated contraction/expansion phases due to climate perturbations during the Quaternary period. In this study, we investigated the impact of the last glacial maximum (LGM) on the present genetic pattern of Vitellaria paradoxa (shea tree), a major African savanna tree. A range-wide sampling of the species enabled us to sample 374 individuals from 71 populations distributed throughout sub-Sahelian Africa. Trees were genotyped using 3 chloroplasts and 12 nuclear microsatellites, and were sequenced for 2 polymorphic chloroplast intergenic spacers. Analyses of genetic diversity and structure were based on frequency-based and Bayesian methods. Potential distributions of V. paradoxa at present, during the LGM and the last interglacial period, were examined using DIVA-GIS ecological niche modelling (ENM). Haplotypic and allelic richness varied significantly across the range according to chloroplast and nuclear microsatellites, which pointed to higher diversity in West Africa. A high but contrasted level of differentiation was revealed among populations with a clear phylogeographic signal, with both nuclear (FST=0.21; RST=0.28; RST>RST (permuted)) and chloroplast simple sequence repeats (SSRs) (GST=0.81; NST=0.90; NST>NST (permuted)). We identified a strong geographically related structure separating western and eastern populations, and a substructure in the eastern part of the area consistent with subspecies distinction. Using ENM, we deduced that perturbations during the LGM fragmented the potential eastern distribution of shea tree, but not its distribution in West Africa. Our main results suggest that climate variations are the major factor explaining the genetic pattern of V. paradoxa. PMID:21407253
NASA Astrophysics Data System (ADS)
Brook, Martin
2017-04-01
Evidence for the timing of inter-hemispheric climate fluctuations during the Pleistocene is important, with reconstructed mountain glacier extents routinely used as a proxy for climate. While valley glaciers extended out from an ice sheet centred on New Zealand's Southern Alps during Pleistocene climate cooling to below present-day sea level, evidence of former glacial activity on the North Island of New Zealand is rare, in comparison. A newly-identified glaciated site is Mt Aston, an isolated cirque-like basin within the Tararua Range on New Zealand's North Island. Previously published cosmogenic isotope ages and paleo-glacier reconstructions of a 3 km-long valley glacier 30 km to the north show that paleo-equilibrium line altitudes (ELAs) increased northwards across New Zealand during the regional last glacial maximum (LGM). Hence, at this latitude (41˚ 00' S), only topography >1300 m above present day sea-level was of feasible elevation to intersect the prevailing south-westerly airflow and to allow niche glaciers to form. In the basin below Mt Aston, a c. 0.38 km2 cirque glacier existed with ELA of c. 1290 ± 10 m above present-day sea level. This paleo-ELA closely approximates the extrapolated ELA trend surface for the regional LGM. The mean glacier thickness of 35 m gives a maximum basal shear stress of c. 102 kPa-1, with a mean January temperature at the ELA of c. 5.5 ˚ C. It is well-established that present-day glaciers in New Zealand are particularly sensitive to climate change, manifested by glacial advances and retreats in response to simple mass balance dynamics. Consistent with this, the paleo-glacier reconstruction implies that rather than simple temperature decreases driving paleo-ELA depression, changes in south-westerly airflow over New Zealand, bringing moisture-laden but cool air, maximized snowfall and minimised winter melt. The corollary is that (1) patterns of Pleistocene glacier fluctuations may be interpreted as responses, in-part, to precipitation-driven changes, and (2) the extent of LGM glaciation on New Zealand's North Island was probably more extensive than previously assumed.
Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica
Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; ...
2015-05-19
The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less
NASA Astrophysics Data System (ADS)
Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.
2016-01-01
We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.
The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less
NASA Astrophysics Data System (ADS)
Schmittner, A.; Somes, C. J.
2016-12-01
A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which mimicks iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) than the pre-industrial control. Dissolved oxygen in the thermocline increase, which reduces water column denitrification and nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3. This simulation already fits observed carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the fit. Modest increases in μmax result in higher subpolar δ15NNO3 due to enhanced local nutrient utilization, and better agreement with reconstructions. Large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models with modest increases in μmax reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg. These results are consistent with the idea that the soft-tissue pump was more efficient during the LGM. Both circulation and biological nutrient utilization contribute. However, these conclusions are preliminary given our idealized experiments, which do not consider changes in benthic denitrification and spatially inhomogenous changes in aeolian iron fluxes. The analysis illustrates interactions between the carbon and nitrogen cycles as well as the complementary constraints provided by their isotopes. Whereas carbon isotopes are sensitive to circulation changes and indicate well the three-dimensional Corg distribution, nitrogen isotopes are more sensitive to biological nutrient utilization.
Dyke, A.S.; Hooper, J.; Harington, C.R.; Savelle, J.M.
1999-01-01
The Late Wisconsinan and Holocene record of the Atlantic walrus is known from numerous collections of bones and tusks from Arctic Canada and south to North Carolina, as well as from many archaeological sites in the Arctic and Subarctic. In contrast, the Pacific walrus has no dated Late Wisconsinan or early Holocene record in North America, and it may have been displaced into the northwest Pacific at Last Glacial Maximum (LGM). The Atlantic walrus rapidly exploited newly deglaciated territory, moving northward from its LGM refugium and reaching the Bay of Fundy by 12800 B.P., the Grand Banks by 12500 B.P., southern Labrador by 11500 B.P., and the central Canadian Arctic Archipelago (CAA) by 9700 B.P. Its southern range limit may have retracted to the Bay of Fundy by ca. 7500 B.P. Within the CAA, walrus remains cluster in two main age groups: 9700 to 8500 B.P. and 5000 to 4/3000 B.P. This pattern strongly resembles the distribution of bowhead whale radiocarbon ages from the same area, which suggests a common control by sea-ice conditions. Walrus remains occur in Indian culture archaeological sites as old as 7500 B.P. and, in some cases (Namu, British Columbia, and Mackinac Island, Michigan), they evidently represent long-distance human transport. They are much more common in Paleoeskimo and Neoeskimo culture sites. However, they occur in very low abundances, and generally as debitage, in sites older than Dorset (2500 B.P.). The walrus, therefore, may not have been hunted by early Paleoeskimos. Beginning with Early Dorset, walrus remains occur in definite diet-related contexts. Middle Dorset (2300 to 1500 B.P.) and late Thule (<400 B.P.) sites are missing from the High Arctic, and there may be a similar gap in the middle Pre-Dorset (3400 to 2600 B.P.). Sea-ice conditions at these times may have adversely affected availability of walrus and other marine mammal resources. Walrus is a prominent faunal element in Middle Dorset sites on the Labrador coast; this is consistent with a southward displacement of people and resources.
Magnetic and mineralogical properties of central Baffin Bay sediments since the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Simon, Q.; St-Onge, G.; Hillaire-Marcel, C.
2011-12-01
Magnetic and mineralogical properties of terrigenous sediments from the deep central Baffin Bay (HU2008-029-016PC - 70°46,14N/-64°65,77W - 2063 m) were analyzed as a means of linking sedimentological changes to ice-margin dynamics along the surrounding coastlines of W. Greenland, E. Baffin Island and N.E. Ellesmere Island since the Last Glacial Maximum (LGM). A chronology based on relative paleointensity (RPI) and secular variation (PSV) in sections where magnetism properties were suitable has been set. The age-model yields a low mean sedimentation rate varying between 4 - 8 cm/kyr along the core and illustrates a significant increase during Termination 1. Carbonate content increases drastically from 16 ka due to increasing supplies of dolomitic material from dolostone rocks outcropping in the Canadian Arctic Archipelago and associated with inputs from the Innuitian Ice Sheet margin. The magnetic properties demonstrate major changes during the deglaciation and especially during Heinrich event 1 (H1), the Younger Dryas (YD) and throughout the Holocene. Very low median destructive field (MDF) of the natural remanent magnetization (NRM) values are observed during the 11.5 - 12.6 ka (YD) and 14.8 - 16 (H1) ka intervals, and are reflecting coarser magnetic grains. Similarly, the kARM/kLF grain-size ratio shows coarser magnetic grain size during the H1 and YD intervals, and finer magnetic grains during the LGM (19 - 22 ka). During the LGM, "glacial flour" formed by mechanical grinding of rocks by ice sheets released finer magnetic grains from lateral source (e.g., Greenland continental shelf). On the contrary, during the YD and H1 periods, icebergs released coarser magnetic grains from a northern source (axial source). The Holocene is marked by the highest median destructive field (MDF) and ARM20mT/ARM0mT values of the core, indicating an increased proportion of finer magnetic grains during this interval. Together with the large increase in the silt fraction, these different proxies tend to demonstrate the establishment of the modern Baffin Bay oceanic circulation that followed the deglaciation and the opening of Lancaster Sound, Jones Sound and Nares Strait, and the onset of the Western Greenland Current. These data provide strong marine evidence of 1) increasing supplies of sedimentary material coming from the rapid retreat of ice streams in the northern part of Baffin Bay starting at 16 ka and 2) the ice-margin dynamics (Innuitian vs. Greenland ice sheets) since the LGM. The study enables to document these sedimentological changes with regard to regional and Northern Hemisphere climatic variability, and highlights the importance of Baffin Bay for the establishment of modern oceanic circulation.
NASA Astrophysics Data System (ADS)
Chen, D.; Luo, M.; Algeo, T. J.; Chen, L.
2017-12-01
The strontium (Sr) and neodymium (Nd) isotope compositions and clay-mineral assemblages of the detrital fraction of sediments in the southern Mariana Trench together with major- and trace-elements concentrations of bulk sediments have been determined to trace the sediment provenance and investigate the relationship between Asian dust input and blooms of the giant diatom Ethmodiscus rex. Enrichment of barium (Ba) in relative to upper continental crust (UCC) and low average Rb/K ratios in all study cores point to both hydrothermal and volcaniclastic inputs to the sediments. Both the Sr-Nd isotope compositions and the clay-mineral assemblages of the detrital fraction reflect a two-component mixing system consisting of Mariana arc volcaniclastics and eolian Asian dust. A decrease in smectite content and an increase in illite content just before formation of laminated diatom mats (LDMs) suggest a change in the source of the eolian dust from eastern Asian deserts (EADs) to central Asian deserts (CADs) at the onset of the Last Glacial Maximum (LGM). This observation suggests a causal linkage between atmospheric circulation patterns, the sources of eolian Asian dust, and marine productivity in the western Pacific region. We postulate that the shift to CAD-sourced dust may have played a greater role in promoting biological productivity in the oligotrophic western Pacific Ocean during the LGM than previously realized.
Bopp, L; Resplandy, L; Untersee, A; Le Mezo, P; Kageyama, M
2017-09-13
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O 2sat ) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O 2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O 2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
Ramírez-Barahona, Santiago; Eguiarte, Luis E
2013-01-01
The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi-disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models. PMID:23531632
NASA Astrophysics Data System (ADS)
Kurek, Joshua; Cwynar, Les C.; Ager, Thomas A.; Abbott, Mark B.; Edwards, Mary E.
2009-05-01
Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (˜39,000-34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ˜4000 years later. Summer climates during the last glacial maximum (LGM) were on average ˜3.5 °C below the modern temperatures at each site. Major shifts in vegetation occurred from ˜19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ˜17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ˜12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.
Why the Australian Monsoon Strengthened During the Cold Last Glacial Maximum?
NASA Astrophysics Data System (ADS)
Yan, M.; Wang, B.; Liu, J.; Ning, L.
2017-12-01
The multi-model ensemble simulation suggests that the global monsoon and most sub-monsoons are weakened during the Last Glacial Maximum (LGM) due to the lower green-house gases concentration, the presence of the ice-sheets and the weakened seasonal distribution of insolation. In contrast, the Australian monsoon is strengthened during the LGM. The precipitation there increases in austral summer and decreases in austral winter, so that the annual range or monsoonality increases. The strengthened monsoonality is mainly due to the decreased precipitation in austral winter, which is primarily caused by circulation changes, although the reduced atmospheric water vapor also has a moderate contribution. On the other hand, the strengthened Australian summer monsoon rainfall is likely caused by the change of land-sea thermal contrast due to the alteration of land-sea configuration and by the asymmetric change in sea surface temperature (SST) over Indo-Pacific warm pool region. The strengthened land-sea thermal contrast and Western Pacific-Eastern Indian Ocean thermal gradients in the pre-summer monsoon season triggers a cyclonic wind anomaly that is maintained to the monsoon season, thereby increasing summer precipitation. The increased summer precipitation is associated with the increased cloud cover over the land and decreased cloud cover over the ocean. This may weaken the land-sea thermal contrast, which agrees with the paleoclimate reconstruction. The biases between different models are likely related to the different responses of SST over the North Atlantic Ocean in the pre-summer monsoon season.
NASA Astrophysics Data System (ADS)
Chow, J. M.; Bart, P. J.
2005-05-01
Ross Sea (Antarctica) Eastern Basin bathymetric ridges have been interpreted to be ice stream divides created during the Last Glacial Maximum (LGM) advance of the Antarctic Ice Sheet based on radiocarbon dating of organic matter from near-seafloor sediments recovered in piston cores (Domack et al., 1999). Detailed seismic correlations and contour mapping show that there are at least five thick units outcropping in Eastern Basin. Four of these seismically-defined units can be correlated to age control at DSDP sites 270 and 272. In contrast to the near-seafloor sampling, the interiors of these units were initially assigned a Pliocene age based on a variety of microfossil biozones (Hayes and Frakes, 1975). Savage and Ciesielski (1983) determined that the youngest unit was deposited during the Coscinodiscus lentiginosus (since renamed Thalassiosira lentiginosa) diatom biozone (i.e., the unit formed sometime between 0.65 Ma to Recent timeframe). Thus, seafloor units in the area probably are of Quaternary age, but not necessarily LGM age. More recently, diatom biozonations for the Southern Ocean have been revised to provide more detailed biochronostratigraphic resolution (Zielinski and Gersonde, 2002; Zielinski et al., 2002). We are using the most recently-revised Southern Ocean diatom-zonation schemes to systematically evaluate ages of samples taken from the base of piston cores penetrating the five individual seismically-defined units in Eastern Basin. Using this sampling strategy, we increase the chances of penetrating through the Recent hemipelagic drape to sample the underlying seismically-defined units.
NASA Astrophysics Data System (ADS)
Bopp, L.; Resplandy, L.; Untersee, A.; Le Mezo, P.; Kageyama, M.
2017-08-01
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
NASA Astrophysics Data System (ADS)
Handiani, D.; Paul, A.; Dupont, L.
2011-06-01
Abrupt climate changes associated with Heinrich Event 1 (HE1) about 18 to 15 thousand years before present (ka BP) strongly affected climate and vegetation patterns not only in the Northern Hemisphere, but also in tropical regions in the South Atlantic Ocean. We used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era (PI), the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). The HE1-like simulation with a glacial climate background produced sea surface temperature patterns and enhanced interhemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. It allowed us to investigate the vegetation changes that result from a transition to a drier climate as predicted for northern tropical Africa due to a southward shift of the Intertropical Convergence Zone (ITCZ). We found that a cooling of the Northern Hemisphere caused a southward shift of those plant-functional types (PFTs) in Northern Tropical Africa that are indicative of an increased desertification, and a retreat of broadleaf forests in Western Africa and Northern South America. We used the PFTs generated by the model to calculate mega-biomes to allow for a direct comparison between paleodata and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well to the modern and LGM sites of the BIOME6000 (v.4.2) reconstruction, except that our present-day simulation predicted the dominance of grassland in Southern Europe and our LGM simulation simulated more forest cover in tropical and sub-tropical South America. The mega-biomes from the HE1 simulation with glacial background climate were in agreement with paleovegetation data from land and ocean proxies in West, Central, and Northern Tropical Africa as well as Northeast South America. However, our model did not agree well with predicted biome distributions in Eastern South America.
NASA Astrophysics Data System (ADS)
Hu, R.
2015-12-01
Neodymium isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera have been intensively used as a proxy for water mass reconstruction in the deep Atlantic and Indian Ocean, but their suitability is not well constrained in the Pacific and may be affected by enhanced inputs and scavenging relative to advection. In this study, Nd isotopes and Rare Earth Element (REE) concentrations of planktonic foraminifera from ~60 sites widely distributed throughout the Pacific are presented. We found that the REE pattern associated with planktonic foraminifera in our study and Fe-Mn oxides/coatings in the global ocean have a common heavy REE depleted pattern when normalized to their ambient seawater due to preferential removal of light REEs onto particles relative to heavy REEs during scavenging. The core-top ɛNd results agree with the proximal seawater compositions, indicating that planktonic foraminiferal coatings can give a reliable record of past changes in bottom water Nd isotopes in the Pacific. A good correlation between foraminifera Nd isotopes and seawater phosphate suggests that Nd with a predominantly radiogenic isotopic composition was probably added gradually along continental boundaries so that the Nd isotopic composition change paralleled the accumulation of nutrients in the deep Pacific. By confirming Nd isotopes as a reliable water mass tracer in the Pacific Ocean, this proxy is then applied to reconstruct how the water mass circulation changes during the Last Glacial Maximum (LGM). Most of the cores in deep North Pacific show essentially invariant Nd isotopic compositions during the LGM compared with core-top values, suggesting that Nd isotope of Pacific end-member did not change during glacial times. However, the LGM Southwest Pacific cores have more radiogenic ɛNd than core-tops corroborating the previous findings of reduced inflow of North Atlantic Deep Water. The Eastern Equatorial Pacific cores above ~2 km showed consistently lower LGM ɛNd values, which might suggest a reduced influence of more radiogenic North Pacific Deep Water return flow. Taken together, our results indicate a slower Pacific overturning circulation during the glacial times, and the inflow and return flow of the Pacific meridional overturning were closely linked in the glacial-interglacial cycles.
NASA Astrophysics Data System (ADS)
Graham, Alastair G. C.; Smith, James A.
2012-03-01
The glacial history of the continental shelf northwest of Alexander Island is not well known, due mainly to a lack of targeted marine data on Antarctica's palaeo-ice sheets in their inter-ice-stream areas. Recently it has been argued that the region was ice-free at the Last Glacial Maximum (LGM) and thus a potential site for glacial refugia. In this paper, multibeam swath bathymetry, sub-bottom profiles and sediment cores are used to map the Alexander Island sector of the Antarctic Peninsula margin, in order to reconstruct the shelf's palaeoglaciology. Sea-floor bedforms provide evidence that an independent ice cap persisted on Alexander Island through the LGM and deglaciation. We show that this ice cap drained via two major, previously-undescribed tidewater outlets (Rothschild and Charcot Glaciers) sourced from an ice dome centred over the west of the island and near-shore areas. The glaciers grounded along deep, fjord-like cross-shelf troughs to within at least ˜10-20 km of the shelf edge, and probably reached the shelf break. Only one small outer-shelf zone appears to have remained free of ice throughout an otherwise extensive LGM. During retreat, grounding-line geomorphology indicates periodic stabilisation of Charcot Glacier on the mid-shelf after 13,500 cal yrs BP, while Rothschild Glacier retreated across its mid-shelf by 14,450 cal yrs BP. The timing of these events is in phase with retreat in nearby Marguerite Trough, and we take this as evidence of a common history and forcing with the Antarctic Peninsula Ice Sheet. The fine details of ice flow documented by our new reconstruction highlight the importance of capturing complex ice flow patterns in models (e.g. in inter-stream areas), for understanding how region-specific parts of Antarctica may change in the future. Moreover, the reconstruction shows that glacial refugia, if present, cannot have been extensive on the Alexander Island shelf at the LGM as indicated by previous biological studies; instead, we argue that any ice-free refugia were probably restricted to isolated outer-shelf pockets, that opened, closed, or were maintained through diachronous ice-sheet advance and retreat.
The Southern Glacial Maximum 65,000 years ago and its Unfinished Termination
NASA Astrophysics Data System (ADS)
Schaefer, Joerg M.; Putnam, Aaron E.; Denton, George H.; Kaplan, Michael R.; Birkel, Sean; Doughty, Alice M.; Kelley, Sam; Barrell, David J. A.; Finkel, Robert C.; Winckler, Gisela; Anderson, Robert F.; Ninneman, Ulysses S.; Barker, Stephen; Schwartz, Roseanne; Andersen, Bjorn G.; Schluechter, Christian
2015-04-01
Glacial maxima and their terminations provide key insights into inter-hemispheric climate dynamics and the coupling of atmosphere, surface and deep ocean, hydrology, and cryosphere, which is fundamental for evaluating the robustness of earth's climate in view of ongoing climate change. The Last Glacial Maximum (LGM, ∼26-19 ka ago) is widely seen as the global cold peak during the last glacial cycle, and its transition to the Holocene interglacial, dubbed 'Termination 1 (T1)', as the most dramatic climate reorganization during this interval. Climate records show that over the last 800 ka, ice ages peaked and terminated on average every 100 ka ('100 ka world'). However, the mechanisms pacing glacial-interglacial transitions remain controversial and in particular the hemispheric manifestations and underlying orbital to regional driving forces of glacial maxima and subsequent terminations remain poorly understood. Here we show evidence for a full glacial maximum in the Southern Hemisphere 65.1 ± 2.7 ka ago and its 'Unfinished Termination'. Our 10Be chronology combined with a model simulation demonstrates that New Zealand's glaciers reached their maximum position of the last glacial cycle during Marine Isotope Stage-4 (MIS-4). Southern ocean and greenhouse gas records indicate coeval peak glacial conditions, making the case for the Southern Glacial Maximum about halfway through the last glacial cycle and only 15 ka after the last warm period (MIS-5a). We present the hypothesis that subsequently, driven by boreal summer insolation forcing, a termination began but remained unfinished, possibly because the northern ice sheets were only moderately large and could not supply enough meltwater to the North Atlantic through Heinrich Stadial 6 to drive a full termination. Yet the Unfinished Termination left behind substantial ice on the northern continents (about 50% of the full LGM ice volume) and after another 45 ka of cooling and ice sheet growth the earth was at inter-hemispheric Last Glacial Maximum configuration, when similar orbital forcing hit maximum-size northern ice sheets and ushered in T1 and thus the ongoing interglacial. This argument highlights the critical role of full glacial conditions in both hemispheres for terminations and implies that the Southern Hemisphere climate could transition from interglacial to full glacial conditions in about 15,000 years, while the Northern Hemisphere and its continental ice-sheets required half a glacial cycle.
NASA Astrophysics Data System (ADS)
Ortega-Guerrero, Beatriz; Lozano-García, Socorro; Herrera-Hernández, Dimitris; Caballero, Margarita; Beramendi-Orosco, Laura; Bernal, Juan Pablo; Torres-Rodríguez, Esperanza; Avendaño-Villeda, Diana
2017-11-01
The recognition of past climatic fluctuations in sedimentary sequences in central Mexico is relevant for understanding the forcing mechanisms and responses of climatic system in the northern American tropic. Moreover, in this active volcanic setting the sedimentary record preserves the history of past volcanic activity. Climatic and environmental variability has been documented for the last tenths of thousands of years from the upper lacustrine sediments in Chalco basin. A series of cores drilled down to 122 m depth in this basin offer a long, continuous and high resolution record of past climatic changes of the last ca. 150 kyr in this region. Here we present the detailed lithostratigraphy and some physical properties (magnetic susceptibility and density) of the master sequence. Sedimentary components and their abundance were identified and quantified in smear slides and direct core observations. Age model is based on 13 14C and one 230Th/U dates. Based on their facies association seven lithostratigraphic units were defined, which reflect the main stages of lake Chalco evolution. These phases closely match the marine isotopic stages. The data reveal that at the end of MIS6 Chalco was a relatively deep and stratified freshwater lake. During MIS5 the depositional environment fluctuated between low lake stands to marshy and marginal playa settings with sporadic flooding events, and severe arid periods resulted in aerial exposure of lake sediments. Low lake stands persisted during MIS4 and MIS3, with minor fluctuations towards slightly deeper phases. The Last Glacial Maximum (LGM) and the deglacial period (21-13 kyr) are characterized by intense volcanism. The early and mid-Holocene high calcareous content and alkaline-subsaline lake suggest dry conditions. The fluctuations of lake levels inferred provide the basis for future paleoclimatic works.
Kolanowska, Marta; Mystkowska, Katarzyna; Kras, Marta; Dudek, Magdalena; Konowalik, Kamil
2016-01-01
The location of possible glacial refugia of six Apostasioideae representatives is estimated based on ecological niche modeling analysis. The distribution of their suitable niches during the last glacial maximum (LGM) is compared with their current potential and documented geographical ranges. The climatic factors limiting the studied species occurrences are evaluated and the niche overlap between the studied orchids is assessed and discussed. The predicted niche occupancy profiles and reconstruction of ancestral climatic tolerances suggest high level of phylogenetic niche conservatism within Apostasioideae.
NASA Technical Reports Server (NTRS)
Egbert, Gary D.
2001-01-01
A numerical ocean tide model has been developed and tested using highly accurate TOPEX/Poseidon (T/P) tidal solutions. The hydrodynamic model is based on time stepping a finite difference approximation to the non-linear shallow water equations. Two novel features of our implementation are a rigorous treatment of self attraction and loading (SAL), and a physically based parameterization for internal tide (IT) radiation drag. The model was run for a range of grid resolutions, and with variations in model parameters and bathymetry. For a rational treatment of SAL and IT drag, the model run at high resolution (1/12 degree) fits the T/P solutions to within 5 cm RMS in the open ocean. Both the rigorous SAL treatment and the IT drag parameterization are required to obtain solutions of this quality. The sensitivity of the solution to perturbations in bathymetry suggest that the fit to T/P is probably now limited by errors in this critical input. Since the model is not constrained by any data, we can test the effect of dropping sea-level to match estimated bathymetry from the last glacial maximum (LGM). Our results suggest that the 100 m drop in sea-level in the LGM would have significantly increased tidal amplitudes in the North Atlantic, and increased overall tidal dissipation by about 40%. However, details in tidal solutions for the past 20 ka are sensitive to the assumed stratification. IT drag accounts for a significant fraction of dissipation, especially in the LGM when large areas of present day shallow sea were exposed, and this parameter is poorly constrained at present.
Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia.
Alves, Isabel; Arenas, Miguel; Currat, Mathias; Sramkova Hanulova, Anna; Sousa, Vitor C; Ray, Nicolas; Excoffier, Laurent
2016-04-01
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Root, Bart; Tarasov, Lev; van der Wal, Wouter
2014-05-01
The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.
NASA Astrophysics Data System (ADS)
Hall, M.; Rinterknecht, V. R.; Schaefer, J. M.; Seager, R.; Greene, A.
2004-12-01
Paleoclimate reconstructions are essential for evaluating the future evolution of natural climate variability and for determining climate sensitivity to external forcing. Reconstructing climate conditions from the Last Glacial Maximum (LGM) to the Holocene represents a unique opportunity to understand climate variability from full glacial conditions to modern warm conditions. The primary goal of our project, is to verify if the changes in temperature and precipitation driving the glacier event in the tropics during the well-documented Little Ice Age (LIA), may also account for the glaciations related to the LGM and the late glacial period. This inter-disciplinary project brings together specialists in glacial geology, surface exposure dating, and climate modeling. Our first trip to Ecuador took us to the Papallacta Valley at the rim of the Potrerillos Plateau. We developed detailed maps of the snowline lowering in the valley and took samples in well-exposed sections for radiocarbon dating. We used our maps and the age constraints on the deglacial history of the Papallacta Valley to estimate the possible combinations of changes in climate parameters related to reconstructed snowline variations. This local study represents the first step in a broader project that will cover most of the Ecuadorian Andes. We will also provide direct dating (3He, 10Be, and 36Cl) of the moraine sequences deposited during the retreat of the glaciers during the late Pleistocene. By the time of the project completion we want to evaluate the nature of the driving forces underlying the LGM and the late glacial event in view of the relatively well understood mechanisms behind the termination of the LIA, and we want to compare the produced data to mid- and high- latitude areas in order to evaluate the regional footprint of dimension and timing of glacier response to climate change.
Graham, Matthew R; Jaeger, Jef R; Prendini, Lorenzo; Riddle, Brett R
2013-12-01
The distribution of Beck's Desert Scorpion, Paruroctonus becki (Gertsch and Allred, 1965), spans the 'warm' Mojave Desert and the western portion of the 'cold' Great Basin Desert. We used genetic analyses and species distribution modeling to test whether P. becki persisted in the Great Basin Desert during the Last Glacial Maximum (LGM), or colonized the area as glacial conditions retreated and the climate warmed. Phylogenetic and network analyses of mitochondrial cytochrome c oxidase 1 (cox1), 16S rDNA, and nuclear internal transcribed spacer (ITS-2) DNA sequences uncovered five geographically-structured groups in P. becki with varying degrees of statistical support. Molecular clock estimates and the geographical arrangement of three of the groups suggested that Pliocene geological events in the tectonically dynamic Eastern California Shear Zone may have driven diversification by vicariance. Diversification was estimated to have continued through the Pleistocene, during which a group endemic to the western Great Basin diverged from a related group in the eastern Mojave Desert and western Colorado Plateau. Demographic and network analyses suggested that P. becki underwent a recent expansion in the Great Basin. According to a landscape interpolation of genetic distances, this expansion appears to have occurred from the northwest, implying that P. becki may have persisted in part of the Great Basin during the LGM. This prediction is supported by species distribution models which suggest that climate was unsuitable throughout most of the Great Basin during the LGM, but that small patches of suitable climate may have remained in areas of the Lahontan Trough. Published by Elsevier Inc.
Western Arctic Temperature Sensitivity Varies under Different Mean States
NASA Astrophysics Data System (ADS)
Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.
2017-12-01
The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.
Vitorino, Luciana Cristina; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G
2016-10-13
We studied the phylogeography and demographical history of Tabebuia serratifolia (Bignoniaceae) to understand the disjunct geographical distribution of South American seasonally dry tropical forests (SDTFs). We specifically tested if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the last glacial maximum (LGM), the so called South American dry forest refugia hypothesis, using ecological niche modelling (ENM) and statistical phylogeography. We sampled 235 individuals of T. serratifolia in 17 populations in Brazil and analysed the polymorphisms at three intergenic chloroplast regions and ITS nuclear ribosomal DNA. Coalescent analyses showed a demographical expansion at the last c. 130 ka (thousand years before present). Simulations and ENM also showed that the current spatial pattern of genetic diversity is most likely due to a scenario of range expansion and range shift towards the Amazon Basin during the colder and arid climatic conditions associated with the LGM, matching the expected for the South American dry forest refugia hypothesis, although contrasting to the Pleistocene Arc hypothesis. Populations in more stable areas or with higher suitability through time showed higher genetic diversity. Postglacial range shift towards the Southeast and Atlantic coast may have led to spatial genome assortment due to leading edge colonization as the species tracks suitable environments, leading to lower genetic diversity in populations at higher distance from the distribution centroid at 21 ka. Haplotype sharing or common ancestry among populations from Caatinga in Northeast Brazil, Atlantic Forest in Southeast and Cerrado biome and ENM evince the past connection among these biomes.
Temperature and seawater isotopic controls on two stalagmite records since 83 ka from maritime Japan
NASA Astrophysics Data System (ADS)
Mori, Taiki; Kashiwagi, Kenji; Amekawa, Shota; Kato, Hirokazu; Okumura, Tomoyo; Takashima, Chiduru; Wu, Chung-Che; Shen, Chuan-Chou; Quade, Jay; Kano, Akihiro
2018-07-01
Millennial-scale interstadial Dansgaard-Oeschger (D-O) cycles and Heinrich (H) stadial events are pronounced paleoclimatic features during the last glacial period, which were first demonstrated in the North Atlantic region. These stadial and interstadial events are expressed in marine and terrestrial high-resolution records elsewhere in the world, but the magnitude and mode of the regional climate changes are still poorly quantified. Here we present new replicated stalagmite δ18O profiles from two caves in central Japan, which extend back to 83.4 ka. The records clearly display the H7 to H3 events, but not D-O cycles. An important feature of the two Japanese stalagmites is the small difference (∼2.9‰) in δ18O values between the mid-Holocene and the Last Glacial Maximum (LGM). Long-term trends of the stalagmite δ18O values at the more maritime site generally follow that of the δ18O record of seawater, which is responsible for ∼1.1‰ of the ∼2.9‰ difference between mid-Holocene and LGM. The remaining 1.8‰ in the difference can be accounted for by +9 °C of warming between the LGM and mid-Holocene and -3 °C cooling at H events, which are comparable with the previous estimates of land paleo-temperature in the Japanese Islands. The attenuated isotopic signal associated with D-O interstadials indicates that the warming in the Atlantic did not significantly transfer to the maritime Japan. These unique features of the isotopic records of the Japanese stalagmites are due to the geographic position at the vicinity of the moisture source, Kuroshio warm current.
Wang, Wenjuan; Lin, Congtian; Gao, Bin; Yang, Xiaojun; Zhang, Zhengwang; Lei, Fumin
2011-01-01
Although a number of studies have assessed the effects of geological and climatic changes on species distributions in East Asian, we still have limited knowledge of how these changes have impacted avian species in south-western and southern China. Here, we aim to study paleo-climatic effects on an East Asian bird, two subspecies of black-throated tit (A. c. talifuensis–concinnus) with the combined analysis of phylogeography and Ecological Niche Models (ENMs). We sequenced three mitochondrial DNA markers from 32 populations (203 individuals) and used phylogenetic inferences to reconstruct the intra-specific relationships among haplotypes. Population genetic analyses were undertaken to gain insight into the demographic history of these populations. We used ENMs to predict the distribution of target species during three periods; last inter-glacial (LIG), last glacial maximum (LGM) and present. We found three highly supported, monophyletic MtDNA lineages and different historical demography among lineages in A. c. talifuensis–concinnus. These lineages formed a narrowly circumscribed intra-specific contact zone. The estimated times of lineage divergences were about 2.4 Ma and 0.32 Ma respectively. ENMs predictions were similar between present and LGM but substantially reduced during LIG. ENMs reconstructions and molecular dating suggest that Pleistocene climate changes had triggered and shaped the genetic structure of black-throated tit. Interestingly, in contrast to profound impacts of other glacial cycles, ENMs and phylogeographic analysis suggest that LGM had limited effect on these two subspecies. ENMs also suggest that Pleistocene climatic oscillations enabled the formation of the contact zone and thus support the refuge theory. PMID:22195047
Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica
NASA Astrophysics Data System (ADS)
Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.
2017-12-01
The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.
Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle
NASA Astrophysics Data System (ADS)
Willeit, M.; Ganopolski, A.
2015-09-01
Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.
Ice thickness and topographic relief in glaciated landscapes of the western USA
NASA Astrophysics Data System (ADS)
Brocklehurst, Simon H.; Whipple, Kelin X.; Foster, David
2008-05-01
The development of relief in glaciated landscapes plays a crucial role in hypotheses relating climate change and tectonic processes. In particular, glaciers can only be responsible for peak uplift if they are capable of generating significant relief in formerly nonglaciated landscapes. Previous work has suggested that relief in glaciated landscapes should scale with the thickness of the ice. Here we summarise a field-based test of this hypothesis in two mountain ranges in the western United States, the Sierra Nevada, California, and the Sangre de Cristo Range, Colorado. These areas exhibit a range of degrees of glacial occupation during the Quaternary, including some drainage basins essentially unoccupied by ice, allowing a detailed exploration of how relief in different parts of a drainage basin evolves in response to glacial modification. We mapped last glacial maximum (LGM) trimlines to estimate the ice thickness at the equilibrium line altitude during the LGM, and determined several metrics of relief for drainage basins across the full spectrum of LGM ice extents. Comparison between measures of relief and ice thickness estimates indicates that relief production in glaciated mountain belts scales with ice thickness and consequently also drainage area. We extended our study to the Bitterroot Range in Idaho/Montana, and the Teton Range in Wyoming, for a more comprehensive understanding of sub-ridgeline relief, or 'missing mass'. This measure of mean relief is surprisingly little affected by either the degree of glacial modification or the total material removed by glaciers, but appears to be influenced by the more active tectonics of the Teton Range. While the effects of glacial modification on the landscape are clear (valley widening, hanging valley formation), the overall change in the relief structure of the mountain ranges studied here is surprisingly modest.
NASA Astrophysics Data System (ADS)
Darvill, Christopher M.; Bentley, Michael J.; Stokes, Chris R.; Hein, Andrew S.; Rodés, Ángel
2015-11-01
The timing and extent of former glacial advances can demonstrate leads and lags during periods of climatic change and their forcing, but this requires robust glacial chronologies. In parts of southernmost Patagonia, dating pre-global Last Glacial Maximum (gLGM) ice limits has proven difficult due to post-deposition processes affecting the build-up of cosmogenic nuclides in moraine boulders. Here we provide ages for the Río Cullen and San Sebastián glacial limits of the former Bahía Inútil-San Sebastián (BI-SSb) ice lobe on Tierra del Fuego (53-54°S), previously hypothesised to represent advances during Marine Isotope Stages (MIS) 12 and 10, respectively. Our approach uses cosmogenic 10Be and 26Al exposure dating, but targets glacial outwash associated with these limits and uses depth-profiles and surface cobble samples, thereby accounting for surface deflation and inheritance. The data reveal that the limits formed more recently than previously thought, giving ages of 45.6 ka (+139.9/-14.3) for the Río Cullen, and 30.1 ka (+45.6/-23.1) for the San Sebastián limits. These dates indicate extensive glaciation in southern Patagonia during MIS 3, prior to the well-constrained, but much less extensive MIS 2 (gLGM) limit. This suggests the pattern of ice advances in the region was different to northern Patagonia, with the terrestrial limits relating to the last glacial cycle, rather than progressively less extensive glaciations over hundreds of thousands of years. However, the dates are consistent with MIS 3 glaciation elsewhere in the southern mid-latitudes, and the combination of cooler summers and warmer winters with increased precipitation, may have caused extensive glaciation prior to the gLGM.
A continuous record of glacial-interglacial cycles spanning more than 500 kyr from Lake Junín, Perú
NASA Astrophysics Data System (ADS)
Rodbell, D. T.; Abbott, M. B.; McGee, D.; Chen, C. Y.; Stoner, J. S.; Hatfield, R. G.; Tapia, P. M.; Bush, M. B.; Weidhaas, N.; Woods, A.; Valero-Garces, B. L.; Lehmann, S. B.; Bustamante, M. G.; Larsen, D. J.
2017-12-01
Lake Junín (11.0°S, 76.2°W) is a shallow (zmax 12 m), intermontane, high-elevation (4080 masl) lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. It is dammed by coalescing alluvial fans that are >250 ka that emanate from glacial valleys. Lake Junín has not been overrun by glacial ice in several hundred thousand years and is ideally located to receive glacigenic sediment. The Junín basin is underlain by carbonate rocks that have provided a source of Ca and HCO3 ions; precipitation of CaCO3 in the western margin of the lake during the present interglacial period has occurred at 1mm yr-1. An airgun seismic survey revealed a strong reflector at 105 meters depth, which marks the base of the lacustrine section. Drilling focused on three sites. Site 1, located near the depocenter and most distal to glacial sources, yielded a composite sediment thickness of 95m; Site 2, proximal to glacial outwash fans, yielded a composite thickness of 28 m; Site 3, located at an intermediate distance yielded a sediment thickness of 55m. The stratigraphy of Site 1 is marked by 8 glacial/interglacial cycles; the latter are characterized by low bulk density and magnetic susceptibility (MS) and high CaCO3. These units are intercalated with glacigenic sediment that has high density and MS, and low CaCO3. The age model for Site 1 is based on AMS radiocarbon dates on terrestrial macrofossils and dozens of U/Th ages on authigenic CaCO3. Strong and protracted interglacial periods appear to be associated with intervals of reduced variability of solar insolation in the Southern Hemisphere tropics. During these intervals there is strong covariation (r2>0.9) between the δ13C and δ18O of authigenic calcium carbonate, and δ18O values are relatively enriched (-12 to -2‰); examples include interglacial periods correlative with marine isotope stages (MIS) 1, 13, and 15. The magnitude of tropical glaciation appears to have been greater during glacial cycles prior to the LGM ( MIS 2-4) and this is consistent with dated moraine sequences in glacial valleys within the Junin basin, but contrasts with the record of global ice volume. Sediment correlative with the LGM at Site 1 is marked by cycles of grain size variability that may be associated with short term variations in glacier mass balance, ablation rates, and/or subglacial plumbing.
NASA Astrophysics Data System (ADS)
Zhang, Cheng-liang; Feng, Jing-jing; Rong, Li-ming; Zhao, Ting-ning
2017-11-01
Large amounts of quarry wastes are produced during quarrying. Though quarry wastes are commonly used in pavement construction and concrete production, in situ utilization during ecological restoration of abandoned quarries has the advantage of simplicity. In this paper, rock fragments 2-3 cm in size were mixed with landfill stabilized waste (LSW) in different proportions (LSW : gravel, RL), which was called LGM. The water content, runoff and plant growth under natural precipitation were monitored for 2 years using a runoff plot experiment. LGM with a low fraction of LSW was compacted to different degrees to achieve an appropriate porosity; water dynamics and plant growth of compacted LGM were studied in a field experiment. The results showed the following: (1) LGM can be used during restoration in abandoned quarries as growing material for plants. (2) RL had a significant effect on the infiltration and water-holding capacity of LGM and thus influenced the retention of precipitation, water condition and plant growth. LGM with RL ranging from 8:1 to 3:7 was suitable for plant growth, and the target species grew best when RL was 5:5. (3) Compaction significantly enhanced water content of LGM with a low RL of 2:8, but leaf water content of plants was lower or unchanged in the more compacted plots. Moderate compaction was beneficial to the survival and growth of Robinia pseudoacacia L. Platycladus orientalis (L.) Franco and Medicago sativa L. were not significantly affected by compaction, and they grew better under a high degree of compaction, which was disadvantageous for the uppermost layer of vegetation.
The influence of climate on species distribution over time and space during the late Quaternary
NASA Astrophysics Data System (ADS)
Carotenuto, F.; Di Febbraro, M.; Melchionna, M.; Castiglione, S.; Saggese, F.; Serio, C.; Mondanaro, A.; Passaro, F.; Loy, A.; Raia, P.
2016-10-01
Understanding the effect of climate on the composition of communities and its change over time and space is one of the major aims in ecology and paleoecology. Herein, we tackled on this issue by studying late Quaternary large mammal paleocommunities of Eurasia. The late Quaternary was a period of strong environmental instability, especially characterized by the occurrence of the last glacial maximum (LGM). We used community phylogenetics and joint species distribution models in order to understand the factors determining paleocommunity composition in the late Quaternary. Our results support the existence of strong climatic selection operating on the LGM fauna, both through the disappearance of warm-adapted species such as Elephas antiquus, Hippopothamus amphibious, and Stephanorhinus hemitoechus, and by setting the stage for the existence of a community characterized by cold-adapted large mammals. Patterns of abundance in the fossil record, co-occurrence between species pairs, and the extent of climatic forcing on faunal composition, differ between paleocommunities, but not between extinct and extant species, which is consistent with the idea that climate change, rather than the presence of humans, exerted a major effect on the survival of the late Quaternary megafauna.
Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA
NASA Astrophysics Data System (ADS)
Hoppe, Kathryn A.; Koch, Paul L.
2007-11-01
We used analyses of the strontium isotope ( 87Sr/ 86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/ 86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/ 86Sr ratios. Some individuals in each taxon displayed low 87Sr/ 86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/ 86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/ 86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.
The Celtic fringe of Britain: insights from small mammal phylogeography
Searle, Jeremy B.; Kotlík, Petr; Rambau, Ramugondo V.; Marková, Silvia; Herman, Jeremy S.; McDevitt, Allan D.
2009-01-01
Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people. We show that mtDNA lineages of three other small mammal species (bank vole Myodes glareolus, field vole Microtus agrestis and pygmy shrew Sorex minutus) also form a ‘Celtic fringe’. We argue that these small mammals most reasonably colonized Britain in a two-phase process following the last glacial maximum (LGM), with climatically driven partial replacement of the first colonists by the second colonists, leaving a peripheral geographical distribution for the first colonists. We suggest that these natural Celtic fringes provide insight into the same phenomenon in humans and support its origin in processes following the end of the LGM. PMID:19793757
Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core
NASA Astrophysics Data System (ADS)
Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.
2017-12-01
The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.
Marshall, Jill A; Roering, Joshua J; Bartlein, Patrick J; Gavin, Daniel G; Granger, Darryl E; Rempel, Alan W; Praskievicz, Sarah J; Hales, Tristram C
2015-11-01
Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain.
NASA Astrophysics Data System (ADS)
Chiu, Pin-Yao Bernie; Löwemark, Ludvig
2016-04-01
The distinctive pattern of Mn content in Arctic deep marine sediment has been used as a proxy to indicate glacial-interglacial cyclicity (Löwemark et al., 2014). As has been observed in many sediment cores, Mn peaks correspond to warm interglacial periods. In order to improve the preciseness of Mn pattern as a proxy, we collected the foraminifera Neogloboquadrina pachyderma (sinistral) from brownish, Mn-rich layers, and performed radiocarbon dating on selected cores collected during the LOMROG07, LOMROG09 and LOMROG12 expeditions. Additional cores form the YMER and AO96 expeditions are also included. Based on our general understanding of the Mn system in the Arctic Ocean, we predicted a Mn pattern with a high peak in the uppermost core top, representing the Holocene. This Holocene peak in Mn is separated from the underlying warm period MIS 3 by a Mn-poor interval also characterized by a drop in Ca. This Mn and Ca poor interval reperesents MIS 2 and the LGM. Older warm periods, such as MIS 3, 5, 7 etc will display a similar pattern with distinct Mn peaks, separated by Mn minima representing cold iperiods For example, the MIS 5 sometimes shown a distinct pattern with three Mn peaks representing MIS 5a, 5c and 5e. However, there are still some limitations in the applicability of Mn stratigraphy, such as the remobilization of the Mn layer and the core-top loss during coring. We performed AMS carbon 14 dating on more than 10 cores, and the result revealed several cases of lost core tops, leading to depletion or complete loss of the Holocene interval. In several cores, our AMS dating revealed a hiatus in the MIS2 interval. The complete lack of MIS2 sediment likely is the result of extremely slow sedimentation rate due to severe sea ice conditions, while places with records of LGM may be the result of polynyas within the sea ice, or certain circulation pattern. Consequently, although Mn pattern can be used as a preliminary tool to identify glacial-interglacial cycles, the loss core tops and glacial hiatuses limits the usage and accuracy of the correlation of Mn stratigraphies. Therefore, additional radiocarbon dating can refine our understanding of the Mn patterns in Arctic marine sediment and help to make it a better proxy for both paleoenvironmental reconstructions and for the age models. Further study on the cause of hiatus often encountered in the LGM interval is necessary to ensure the usefulness of Mn stratigraphy.
NASA Astrophysics Data System (ADS)
Fernández-Fernández, José M.; Palacios, David; García-Ruiz, José M.; Andrés, Nuria; Schimmelpfennig, Irene; Gómez-Villar, Amelia; Santos-González, Javier; Álvarez-Martínez, Javier; Arnáez, José; Úbeda, José; Léanni, Laëtitia; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim; Aster Team
2017-08-01
In this study, fossil debris-covered glaciers are investigated and dated in the Sierra de la Demanda, northern Spain. They are located in glacial valleys of approximately 1 km in length, where several moraines represent distinct phases of the deglaciation period. Several boulders in the moraines and fossil debris-covered glaciers were selected for analysis of 10Be surface exposure dating. A minimum age of 17.8 ± 2.2 ka was obtained for the outermost moraine in the San Lorenzo cirque, and was attributed to the global Last Glacial Maximum (LGM) or earlier glacial stages, based on deglaciation dates determined in other mountain areas of northern Spain. The youngest moraines were dated to approximately 16.7 ± 1.4 ka, and hence correspond to the GS-2a stadial (Oldest Dryas). Given that the debris-covered glaciers fossilize intermediate moraines, it was deduced that they developed between the LGM and the Oldest Dryas, coinciding with a period of extensive deglaciation. During this deglaciation phase, the cirque headwalls likely discharged large quantities of boulders and blocks that covered the residual ice masses. The resulting debris-covered glaciers evolved slowly because the debris mantle preserved the ice core from rapid ablation, and consequently they remained active until the end of the Late Glacial or the beginning of the Holocene (for the San Lorenzo cirque) and the Holocene Thermal Maximum (for the Mencilla cirque). The north-facing part of the Mencilla cirque ensured longer preservation of the ice core.
NASA Astrophysics Data System (ADS)
Howe, Jacob N. W.; Huang, Kuo-Fang; Oppo, Delia W.; Chiessi, Cristiano M.; Mulitza, Stefan; Blusztajn, Jurek; Piotrowski, Alexander M.
2018-05-01
The delivery of freshwater to the North Atlantic during Heinrich Stadial 1 (HS1) is thought to have fundamentally altered the operation of Atlantic meridional overturning circulation (AMOC). Although benthic foraminiferal carbon isotope records from the mid-depth Atlantic show a pronounced excursion to lower values during HS1, whether these shifts correspond to changes in water mass proportions, advection, or shifts in the carbon cycle remains unclear. Here we present new deglacial records of authigenic neodymium isotopes - a water mass tracer that is independent of the carbon cycle - from two cores in the mid-depth South Atlantic. We find no change in neodymium isotopic composition, and thus water mass proportions, between the Last Glacial Maximum (LGM) and HS1, despite large decreases in carbon isotope values at the onset of HS1 in the same cores. We suggest that the excursions of carbon isotopes to lower values were likely caused by the accumulation of respired organic matter due to slow overturning circulation, rather than to increased southern-sourced water, as typically assumed. The finding that there was little change in water mass provenance in the mid-depth South Atlantic between the LGM and HS1, despite decreased overturning, suggests that the rate of production of mid-depth southern-sourced water mass decreased in concert with decreased production of northern-sourced intermediate water at the onset of HS1. Consequently, we propose that even drastic changes in the strength of AMOC need not cause a significant change in South Atlantic mid-depth water mass proportions.
Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing
Golledge, Nicholas R.; Fogwill, Christopher J.; Mackintosh, Andrew N.; Buckley, Kevin M.
2012-01-01
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments—a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078
Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.
Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M
2012-10-02
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.
NASA Astrophysics Data System (ADS)
Samartin, Stéphanie; Heiri, Oliver; Kaltenrieder, Petra; Kühl, Norbert; Tinner, Willy
2016-07-01
Vegetation and climate during the last ice age and the Last Glacial Maximum (LGM, ∼23,000-19,000 cal BP) were considerably different than during the current interglacial (Holocene). Cold climatic conditions and growing ice-sheets during the last glaciation radically reduced forest extent in Europe to a restricted number of so-called ;refugia;, mostly located in the southern part of the continent. On the basis of paleobotanical analyses the Euganian Hills (Colli Euganei) in northeastern Italy have previously been proposed as one of the northernmost refugia of temperate trees (e.g. deciduous Quercus, Tilia, Ulmus, Fraxinus excelsior, Acer, Abies alba, Fagus sylvatica, Carpinus and Castanea) in Europe. In this study we provide the first quantitative, vegetation independent summer air temperature reconstruction for Northern Italy spanning the time ∼31,000-17,000 cal yr BP, which covers the coldest periods of the last glacial, including the LGM and Heinrich stadials 1 to 3. Chironomids preserved in a lake sediment core from Lago della Costa (7m a.s.l.), a small lake at the south-eastern edge of the Euganean Hills, allowed quantitative reconstruction of Full and Late Glacial summer air temperatures using a combined Swiss-Norwegian temperature inference model based on chironomid assemblages from 274 lakes. Chironomid and pollen evidence from Lago della Costa derives from finely stratified autochthonous organic gyttja sediments, which excludes major sediment mixing or reworking. After reconstructing paleo-temperatures, we address the question whether climate conditions were warm enough to permit the local survival of temperate tree species during the LGM and whether local expansions and pollen-inferred contractions of temperate tree taxa coincided with chironomid-inferred climatic changes. Our results suggest that chironomids at Lago della Costa have responded to major climatic fluctuations such as temperature decreases during the LGM and Heinrich stadials. The vegetation of the Euganean Hills shows responses to these climatic oscillations although the effects of temperature changes were probably also strongly influenced by changes in humidity. Reconstructed July air temperatures at Lago della Costa never fell below 10-13 °C (error range of reconstruction ∼ ±1.5-1.6 °C), which is considerably above the limit considered necessary for forest growth (8-10 °C). Instead rather mild climatic conditions prevailed ∼31,000-17,000 cal yr BP with average summer temperatures between ∼12 and 16 °C, which most likely allowed survival of temperate tree taxa in the warmest (and moistest) microhabitats of the Euganean Hills during the LGM. Only assuming local survival is it possible to explain the repeated expansions and collapses of temperate trees at Lago della Costa which faithfully accompanied the climatic oscillations.
The role of ice shelves in the Holocene evolution of the Antarctic ice sheet
NASA Astrophysics Data System (ADS)
Bernales, Jorge; Rogozhina, Irina; Thomas, Maik
2014-05-01
Using the continental-scale ice sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]), we assess the influence of ice shelves on the Holocene evolution and present-day geometry of the Antarctic ice sheet. We have designed a series of paleoclimate simulations driven by a time-evolved climate forcing that couples the surface temperature record from the Vostok ice core with precipitation pattern using an empirical relation of Dahl-Jensen et al., (1998) [3]. Our numerical experiments show that the geometry of ice shelves is determined by the evolution of climate and ocean conditions over time scales of 15 to 25 kyr. This implies that the initial configuration of ice shelves at the Last Glacial Maximum (LGM, about 21 kyr before present) has a significant effect on the modelled Early Holocene volume of ice shelves (up to 20%) that gradually diminishes to a negligible level for the present-day ice shelf configuration. Thus, the present-day geometry of the Antarctic ice shelves can be attained even if an ice-shelf-free initial condition is chosen at the LGM. However, the grounded ice volume, thickness and dynamic states are found to be sensitive to the ice shelf dynamics over a longer history spanning several tens of thousands of years. A presence of extensive marine ice at the LGM, supported by sediment core reconstructions (e.g. Naish et al., 2009 [4]), has a clear buttressing effect on the grounded ice that remains significant over a period of 30 to 50 kyr. If ice-shelf-free conditions are prescribed at the LGM, the modelled Early Holocene and present-day grounded ice volumes are underestimated by up to 10%, as opposed to simulations incorporating ice shelf dynamics over longer periods. The use of ice-shelf-free LGM conditions thus results in 50 to over 200 meters thinner ice sheet across much of East Antarctica. References [1] Greve, R. (1997). Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. Journal of Climate, 10(5), 901-918. [2] Sato, T., and Greve, R. (2012). Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology, 53(60), 221-228. [3] Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., and Balling, N. (1998). Past temperatures directly from the Greenland ice sheet. Science, 282(5387), 268-271. [4] Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., ... and Schmitt, D. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322-328.
[Analysis of generic drug supply in France].
Taboulet, F; Haramburu, F; Latry, Ph
2003-09-01
The list of generic medicines (LGM), published since 1997 by the Agence Française de Sécurité Sanitaire des Produits de Santé (AFFSSaPS), the French Medicine Agency, concerns a special part of the medicines reimbursed by the National Health Insurance (Social Security). The objectives of the present study were: i) to describe the components of this list, based on pharmaceutical, economical and therapeutic characteristics, ii) to study differences between generic and reference products (formulations, excipients, prices, etc.), iii) to analyze information on excipients provided to health care professionals. The 21st version of the LGM (April 2001) was used. Therapeutic value was retrieved from the 2001 AFSSaPS report on the therapeutic value of 4490 reimbursed medicines. Information on excipients in the LGM and the Vidal dictionary (reference prescription book in France) was compared. The products included in the LGM represent 20% of all reimbursed medicines. The mean price differences between generics and their reference products vary between 30 and 50% for more than two thirds of the generic groups. The therapeutic value of the products of the LGM was judged important in 71% of cases (vs 63% for the 4409 assessed medicines) and insufficient in 13% of cases (vs 19%). Information on excipients is often missing and sometimes erroneous. Although the LGM is regularly revised and thus the generic market in perpetual change, the 2001 cross description of this pharmaceutical market provides much informations and raises some concern.
NASA Astrophysics Data System (ADS)
Ward, Dylan J.; Cesta, Jason M.; Galewsky, Joseph; Sagredo, Esteban
2015-11-01
The spatiotemporal pattern of glaciation along the Andes Mountains is an important proxy record reflecting the varying influence of global and regional circulation features on South American climate. However, the timing and extent of glaciation in key parts of the orogen, particularly the deglaciated arid Andes, are poorly constrained. We present new cosmogenic 10Be and 36Cl exposure ages for glacial features on and near the Chajnantor Plateau (23 °S). The new dates, although scattered due to cosmogenic inheritance, imply that the most recent extensive glacial occupation ended before or during the global Last Glacial Maximum (LGM). We discuss this new record in the context of published glacial chronologies from glacial features in Peru, Bolivia, and northern Chile rescaled using the latest cosmogenic 10Be production rate calibration for the tropical Andes. The results imply regionally synchronous moraine stabilization ca. 25-40 ka, 15-17 ka, and 12-14 ka, with the youngest of these moraines absent in records south of ∼20 °S, including in our new Chajnantor area chronology. This spatial pattern implicates easterly moisture in generating sufficient snowfall to glaciate the driest parts of the Andes, while allowing a role for westerly moisture, possibly modulated by the migration of the Southern Westerly Wind belt, in the regions near and south of the Atacama Desert.
Lawson, Tracy; Geider, Richard J.
2017-01-01
Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 − 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt. PMID:28081236
Boatman, Tobias G; Lawson, Tracy; Geider, Richard J
2017-01-01
Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 - 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt.
The influence of high viscosity slabs on post-glacial sea-level change: the case of Barbados
NASA Astrophysics Data System (ADS)
Austermann, Jacqueline; Mitrovica, Jerry X.; Latychev, Konstantin
2013-04-01
The coral record at Barbados is one of the best available measures of relative sea level during the last glacial cycle and has been widely used to reconstruct ice volume (or, equivalently, eustatic sea-level, ESL) changes during the last deglaciation phase of the ice age. However, to estimate ESL variations from the local relative sea level (RSL) history at Barbados, one has to account for the contaminating effect of glacial isostatic adjustment (GIA). In previous work, the GIA signal at this site has been corrected for by assuming a spherically symmetric (i.e., 1-D) viscoelastic Earth. Since Barbados is located at the margin of the South American - Caribbean subduction zone, this assumption may introduce a significant error in inferences of ice volumes. To address this issue, we use a finite-volume numerical code to model GIA in the Caribbean region including the effects of a lithosphere with variable elastic thickness, plate boundaries, lateral variations in lower mantle viscosity, and a high viscosity slab within the upper mantle. The geometry of the subducted slab is inferred from local seismicity. We find that predictions of relative sea-level change since the Last Glacial Maximum (LGM) in the Caribbean region are diminished by ~10 m, relative to 1-D calculations, which suggests that previous studies have underestimated post-LGM ESL change by the same amount. This perturbation, which largely reflects the impact of the high viscosity slab, is nearly twice the total GIA-induced departure from eustasy predicted at Barbados using the 1-D Earth model. Our calculations imply an excess ice-volume equivalent to ~130 m ESL at the LGM, which brings the Barbados-based estimate into agreement with inferences based on other far-field RSL histories, such as at Bonaparte Gulf. This inference, together with recent studies that have substantially lowered estimates of Antarctic Ice Sheet mass at LGM, suggest that a significant amount of ice remains unaccounted for in sea-level based ice sheet reconstructions. In addition, we conclude that inference of ice age ice volumes derived from RSL histories at sites in proximity to subduction zones must incorporate slab structure into the numerical predictions of the GIA process.
NASA Astrophysics Data System (ADS)
Wurster, C. M.; Bird, M. I.; Bull, I.; Dungait, J.; Bryant, C. L.; Ertunç, T.; Hunt, C.; Lewis, H. A.; Paz, V.
2008-12-01
During the Last Glacial Period (LGP), reduced global sea level exposed the continental shelf south of Thailand to Sumatra, Java, and Borneo to form the contiguous continent of Sundaland. However, the type and extent of vegetation that existed on much of this exposed landmass during the LGP remains speculative. Extensive bird and bat guano deposits in caves throughout this region span beyond 40,000 yr BP, and contain a wealth of untapped stratigraphic palaeoenvironmental information. Stable carbon isotope ratios of insectivorous bird and bat guano contain a reliable record of the animal's diet and, through non-specific insect predation, reflect the relative abundance of major physiological pathways in plants. Various physiological pathways of carbon fixation in plants yield differing stable carbon isotope ratios. Stable carbon isotope values of C3 plants are lower than C4 vegetation due to different enzymatic discriminations of the heavy isotope through the carbon fixing pathways. In tropical locales, grasses nearly always follow the C4 photosynthetic pathway, whereas tropical rainforest uses C3 photosynthesis, providing a proxy for vegetation and therefore climate change in the past. Here we discuss four guano stable-isotope records, based on insect cuticle and n-alkane analysis, supplemented by pollen analysis. All sites suggest a C3 dominated ecosystem for the Holocene, consistent with the wet tropical forest vegetation present at all locations. Two sites from Palawan Island, Philippines, record stable carbon isotope values of guano that document a drastic change from C3 (forest) to C4 (savanna) dominated ecosystems during the Last Glacial Maximum (LGM). A third location, at Niah Great Cave, Malaysia, indicates C3-dominant vegetation throughout the record, but does display variation in stable carbon isotope values likely linked to humidity changes. A fourth location, Batu Caves in Peninsular Malaysia, also indicates open vegetation during the LGM. Vegetation models disagree as to the nature of vegetation during the LGM in Sundaland, but our results suggest major contraction of forest area with significant implications for carbon storage during the LGM and also for understanding the development of modern biogeographic and genetic patterns in the region. Additional cave guano sites will provide further constraints on the nature of environmental change in the region over the last glacial cycle.
A 33 kyr Paleomagnetic Secular Variation Record from Fish Lake, Utah
NASA Astrophysics Data System (ADS)
Reilly, B. T.; Stoner, J. S.; Hatfield, R. G.; Ziegler, L. B.; Abbott, M. B.; Larsen, D. J.; Hillman, A. L.
2014-12-01
We present a new North American lacustrine PSV record spanning the last ~ 33 ka from Fish Lake, Utah. Eleven meters of sediment were recovered from three holes with overlapping drives using a UWITECH coring system. Magnetic susceptibility was measured in the field to ensure stratigraphic completeness and to provide real time information on the material recovered. The recovered lake stratigraphy includes three distinct facies, interpreted to represent the post-glacial (0.75-6.75 m), last glacial maximum (LGM)/deglaciation (6.75-9.5 m), and pre-LGM period (9.5-11.75 m), with an initial chronology constrained by ten radiocarbon dates. CT scans were made on each section and used to monitor for coring deformation and establish precise stratigraphic correlation. Magnetic remanence was studied using AF demagnetization of u-channel samples measured on the OSU 2-G Enterprises u-channel magnetometer. The NRM is characterized by a viscous remanent magnetization (VRM), present throughout the core but successfully removed by 20 mT AF demagnetization. Weak NRM intensities in the post-glacial interval (3-6 x 10-4 A/m before AF demagnetization and 1-3 x 10-4 A/m following 20 mT AF demagnetization) approach the sensitivity of the u-channel magnetometer with increasing demagnetization and result in high MAD values during PCA analysis. Accordingly, we choose to use the NRM measured after 20 mT AF demagnetization for the post-glacial sediments to avoid both the VRM overprint and noise introduced due to week intensities at higher demagnetization steps. Major inclination features are consistent with other western North American PSV records providing confidence in this approach. NRM intensities are significantly higher below 6.75 m, reflecting increased terrigenous input during the LGM/deglaciation and pre LGM periods. A stable magnetization is isolated using a PCA over the 20-60 mT AF demagnetization steps, yielding MAD values of <1 and ~2, respectively. Declination is rotated to a mean of zero and inclinations vary around geocentric axial dipole predictions for the site's location further suggesting that a reliable PSV record is preserved. The continuous PSV record reveals higher amplitude swings during the late Pleistocene. Here we assess the reliability and implications of these observations.
NASA Astrophysics Data System (ADS)
Madarász, Balázs; Ruszkiczay-Rüdiger, Zsófia; Kern, Zoltán; Urdea, Petru
2016-04-01
Quaternary glaciations had a major imprint on the landscape and topography of the Southern Carpathians. Their transitional position between continental and Mediterranean climate zones arouses special interest concerning the timing and pattern of glaciations in this area. Probably the Retezat Mts hosted the most extended glaciation during the Late Pleistocene within this range. The peak elevations of the study area reach 2500 m asl, and the most extended glaciers descended to 1040 m in the northern and to 1130 m on the southern valleys. Major cirque floors are typically situated at 2000-2100 m asl. Glacial landforms have been mapped in order to reconstruct the past ice bodies and the elevation shifts of the paleo equilibrium line altitudes (ELA) during several deglaciation phases of the Last Glacial Maximum (LGM) and Lateglacial in the Retezat Mts. On the basis of published 10Be exposure age data on the northern valleys of the study area, deglaciation of the Retezat Mts occurred at least in five phases between ~21.0 ka and 13.5 ka [1]. Various methods (THAR, AAR, AABR) have been tested using a GIS tool to estimate the ELA of the reconstructed paleoglaciers [2] and paleo ELAs were calculated for each of the deglaciation phases. Preliminary estimates of regional LGM paleoELA employing the simplest THAR method (with a ratio of 0.5) ranged from ~1670 m during the LGM to ~2210 m for the smallest cirque glacier at 13.5 ka, respectively. The AAR and AABR methods provide somewhat higher ELAs for each phase. The obtained paleoELAs were compared to ELA reconstructions available from other Carpathian ranges and also to the Alps and Dinarides. Our data will contribute to a more accurate ELA distribution during the LGM, which may be indicative of the past state of the climate system (moisture gradient, circulation regimes). Thanks to OTKA PD83610, PD104899; NKM-96/2014, NKM-31/2015; OMAA 90öu17; LP2012-27/2012. References: [1] Ruszkiczay-Rüdiger et al. 2016 Quat. Int. (in press) doi:10.1016/j.quaint.2015.10.085 [2] Pellitero et al. 2015 Computers & Geosciences 82: 55-62
NASA Astrophysics Data System (ADS)
Murton, J.; Edwards, M. E.; Murton, D.; Bateman, M.; Haile, J.
2010-12-01
Silty Yedoma deposits at the important Beringian site of Duvanny Yar (68o,37’ N; 159o08’ E) in northeast Siberia, have been interpreted before as both loess and nival deposits. The yedoma deposits form a stratigraphic unit more than 30 m thick that comprises sandy silts which are generally massive and rich in ground ice and organic material. The ground ice includes pore ice, segregated ice and wedge ice (both syngenetic and epigenetic), and much of it accumulated more or less coevally with deposition of the silt and upward growth of permafrost. Organic material includes pervasive rootlets of former steppe-tundra vegetation (e.g. grasses), vertebrate bones (e.g. mammoth, bison, horse), pollen, insect remains, and plant macrofossils. A number of cryoturbated organic horizons within the silts are interpreted as incipient palaeosols. The sedimentary properties of the silts (particle size and magnetic susceptibility) and the palaeocological characteristics of the contained organic material are both consistent with deposition of silts primarily as loess and loess-sand intergrades, sedimentologically similar to known aeolian deposits in northwest Europe (e.g. Pegwell Bay, UK). Deposition primarily by snow meltwater is unlikely because the nearest uplands where snow could have accumulated and hillslopes could have provided runoff sites are many kilometers distant. The remnants of the original landsurface—prior to thermokarst activity during the late-glacial and Holocene—indicate an essentially flat landscape during dust deposition. Radiocarbon dating of mainly in situ rootlets indicates a complete record of dust deposition during the Last Glacial Maximum (LGM), potentially one of the best terrestrial records of LGM palaeoenvironments. Older radiocarbon dates suggest at least two periods of soil formation between the LGM and about 40,000 radiocarbon years BP (within Marine Isotope Stage 3). Optical dating is currently being undertaken to constrain the ages of older dust deposits and palaeosols. U-series dating of wood contained within thaw-lake deposits at the base of the sequence provides an age from the Last Interglacial. Overall, dating of the yedoma sequence constrains interpretation of ancient soil DNA contained within the silts and provides a basis for reconstructing LGM palaeo-wind conditions associated with the Siberian high-pressure cell.
Time constraints for post-LGM landscape response to deglaciation in Val Viola, Central Italian Alps
NASA Astrophysics Data System (ADS)
Scotti, Riccardo; Brardinoni, Francesco; Crosta, Giovanni Battista; Cola, Giuseppe; Mair, Volkmar
2017-12-01
Across the northern European Alps, a long tradition of Quaternary studies has constrained post-LGM (Last Glacial Maximum) landscape history. The same picture remains largely unknown for the southern portion of the orogen. In this work, starting from existing 10Be exposure dating of three boulders in Val Viola, Central Italian Alps, we present the first detailed, post-LGM reconstruction of landscape (i.e., glacial, periglacial and paraglacial) response south of the Alpine divide. We pursue this task through Schmidt-hammer exposure-age dating (SHD) at 34 sites including moraines, rock glaciers, protalus ramparts, rock avalanche deposits and talus cones. In addition, based on the mapping of preserved moraines and on the numerical SHD ages, we reconstruct the glacier extent of four different stadials, including Egesen I (13.1 ± 1.1 ka), Egesen II (12.3 ± 0.6 ka), Kartell (11.0 ± 1.4 ka) and Kromer (9.7 ± 1.4 ka), whose chronologies agree with available counterparts from north of the Alpine divide. Results show that Equilibrium Line Altitude depressions (ΔELAs) associated to Younger Dryas and Early Holocene stadials are smaller than documented at most available sites in the northern Alps. These findings not only support the hypothesis of a dominant north westerly atmospheric circulation during the Younger Dryas, but also suggest that this pattern could have lasted until the Early Holocene. SHD ages on rock glaciers and protalus ramparts indicate that favourable conditions to periglacial landform development occurred during the Younger Dryas (12.7 ± 1.1 ka), on the valley slopes above the glacier, as well as in newly de-glaciated areas, during the Early Holocene (10.7 ± 1.3 and 8.8 ± 1.8 ka). The currently active rock glacier started to develop before 3.7 ± 0.8 ka and can be associated to the Löbben oscillation. Four of the five rock avalanches dated in Val Viola cluster within the Early Holocene, in correspondence of an atmospheric warming phase. By contrast, the timing of the main Val Viola rock avalanche, 7.7 ± 0.3 ka during the Holocene Thermal Optimum, suggests a possible causal linkage to permafrost degradation. Overall, Schmidt-hammer proved to be an effective, inexpensive and versatile tool for improving the spatial resolution of Val Viola post-LGM landscape history, starting from existing numerical age constrains.
Pietrofesa, Ralph A; Velalopoulou, Anastasia; Albelda, Steven M; Christofidou-Solomidou, Melpo
2016-03-01
The interaction of asbestos fibers with macrophages generates harmful reactive oxygen species (ROS) and subsequent oxidative cell damage that are key processes linked to malignancy. Secoisolariciresinol diglucoside (SDG) is a non-toxic, flaxseed-derived pluripotent compound that has antioxidant properties and may thus function as a chemopreventive agent for asbestos-induced mesothelioma. We thus evaluated synthetic SDG (LGM2605) in asbestos-exposed, elicited murine peritoneal macrophages as an in vitro model of tissue phagocytic response to the presence of asbestos in the pleural space. Murine peritoneal macrophages (MFs) were exposed to crocidolite asbestos fibers (20 µg/cm²) and evaluated at various times post exposure for cytotoxicity, ROS generation, malondialdehyde (MDA), and levels of 8-iso Prostaglandin F2α (8-isoP). We then evaluated the ability of LGM2605 to mitigate asbestos-induced oxidative stress by administering LGM2605 (50 µM) 4-h prior to asbestos exposure. We observed a significant (p < 0.0001), time-dependent increase in asbestos-induced cytotoxicity, ROS generation, and the release of MDA and 8-iso Prostaglandin F2α, markers of lipid peroxidation, which increased linearly over time. LGM2605 treatment significantly (p < 0.0001) reduced asbestos-induced cytotoxicity and ROS generation, while decreasing levels of MDA and 8-isoP by 71%-88% and 41%-73%, respectively. Importantly, exposure to asbestos fibers induced cell protective defenses, such as cellular Nrf2 activation and the expression of phase II antioxidant enzymes, HO-1 and Nqo1 that were further enhanced by LGM2605 treatment. LGM2605 boosted antioxidant defenses, as well as reduced asbestos-induced ROS generation and markers of oxidative stress in murine peritoneal macrophages, supporting its possible use as a chemoprevention agent in the development of asbestos-induced malignant mesothelioma.
Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Albelda, Steven M.; Christofidou-Solomidou, Melpo
2016-01-01
The interaction of asbestos fibers with macrophages generates harmful reactive oxygen species (ROS) and subsequent oxidative cell damage that are key processes linked to malignancy. Secoisolariciresinol diglucoside (SDG) is a non-toxic, flaxseed-derived pluripotent compound that has antioxidant properties and may thus function as a chemopreventive agent for asbestos-induced mesothelioma. We thus evaluated synthetic SDG (LGM2605) in asbestos-exposed, elicited murine peritoneal macrophages as an in vitro model of tissue phagocytic response to the presence of asbestos in the pleural space. Murine peritoneal macrophages (MFs) were exposed to crocidolite asbestos fibers (20 µg/cm2) and evaluated at various times post exposure for cytotoxicity, ROS generation, malondialdehyde (MDA), and levels of 8-iso Prostaglandin F2α (8-isoP). We then evaluated the ability of LGM2605 to mitigate asbestos-induced oxidative stress by administering LGM2605 (50 µM) 4-h prior to asbestos exposure. We observed a significant (p < 0.0001), time-dependent increase in asbestos-induced cytotoxicity, ROS generation, and the release of MDA and 8-iso Prostaglandin F2α, markers of lipid peroxidation, which increased linearly over time. LGM2605 treatment significantly (p < 0.0001) reduced asbestos-induced cytotoxicity and ROS generation, while decreasing levels of MDA and 8-isoP by 71%–88% and 41%–73%, respectively. Importantly, exposure to asbestos fibers induced cell protective defenses, such as cellular Nrf2 activation and the expression of phase II antioxidant enzymes, HO-1 and Nqo1 that were further enhanced by LGM2605 treatment. LGM2605 boosted antioxidant defenses, as well as reduced asbestos-induced ROS generation and markers of oxidative stress in murine peritoneal macrophages, supporting its possible use as a chemoprevention agent in the development of asbestos-induced malignant mesothelioma. PMID:26938529
Mystkowska, Katarzyna; Kras, Marta; Dudek, Magdalena
2016-01-01
The location of possible glacial refugia of six Apostasioideae representatives is estimated based on ecological niche modeling analysis. The distribution of their suitable niches during the last glacial maximum (LGM) is compared with their current potential and documented geographical ranges. The climatic factors limiting the studied species occurrences are evaluated and the niche overlap between the studied orchids is assessed and discussed. The predicted niche occupancy profiles and reconstruction of ancestral climatic tolerances suggest high level of phylogenetic niche conservatism within Apostasioideae. PMID:27635348
NASA Astrophysics Data System (ADS)
Hezel, Paul J.
Observational studies have examined the relationship between methanesulfonic acid (MSA) measured in Antarctic ice cores and sea ice extent measured by satellites with the aim of producing a proxy for past sea ice extent. MSA is an oxidation product of dimethylsulfide (DMS) and is potentially linked to sea ice based on observations of very high surface seawater DMS in the sea ice zone. Using a global chemical transport model, we present the first modeling study that specifically examines this relationship on interannual and on glacial-interglacial time scales. On interannual time scales, the model shows no robust relationship between MSA deposited in Antarctica and sea ice extent. We show that lifetimes of MSA and DMS are longer in the high latitudes than in the global mean, interannual variability of sea ice is small (<25%) as a fraction of sea ice area, and sea ice determines only a fraction of the variability (<30%) of DMS emissions from the ocean surface. A potentially larger fraction of the variability in DMS emissions is determined by surface wind speed (up to 46%) via the parameterization for ocean-to-atmosphere gas exchange. Furthermore, we find that a significant fraction (up to 74%) of MSA deposited in Antarctica originates from north of 60°S, north of the seasonal sea ice zone. We then examine the deposition of MSA and non-sea-salt sulfate (nss SO2-4 ) on glacial-interglacial time scales. Ice core observations on the East Antarctic Plateau suggest that MSA increases much more than nss SO2-4 during the last glacial maximum (LGM) compared to the modern period. It has been suggested that high MSA during the LGM is indicative of higher primary productivity and DMS emissions in the LGM compared to the modern day. Studies have also shown that MSA is subject to post-depositional volatilization, especially during the modern period. Using the same chemical transport model driven by meteorology from a global climate model, we examine the sensitivity of MSA and nss SO2-4 deposition to differences between the modern and LGM climates, including sea ice extent, sea surface temperatures, oxidant concentrations, and meteorological conditions. We are unable to find a mechanism whereby MSA deposition fluxes are higher than nss SO2-4 deposition fluxes on the East Antarctic Plateau in the LGM compared the modern period. We conclude that the observed differences between MSA and nss SO2-4 on glacial-interglacial time scales are due to post-depositional processes that affect the ice core MSA concentrations. We can not rule out the possibility of increased DMS emissions in the LGM compared to the modern day. If oceanic DMS production and ocean-to-air fluxes in the sea ice zone are significantly enhanced by the presence of sea ice as indicated by observations, we suggest that the potentially larger amplitude of the seasonal cycle in sea ice extent in the LGM implies a more important role for sea ice in modulating the sulfur cycle during the LGM compared to the modern period. We then shift our focus to study the evolution of snow depth on sea ice in global climate model simulations of the 20th and 21st centuries from the Coupled Model Intercomparison Project 5 (CMIP5). Two competing processes, decreasing sea ice extent and increasing precipitation, will affect snow accumulation on sea ice in the future, and it is not known a priori which will dominate. The decline in Arctic sea ice extent is a well-studied problem in future scenarios of climate change. Moisture convergence into the Arctic is also expected to increase in a warmer world, which may result in increasing snowfall rates. We show that the accumulated snow depth on sea ice in the spring declines as a result of decreased ice extent in the early autumn, in spite of increased winter snowfall rates. The ringed seal (Phoca hispida ) depends on accumulated snow in the spring to build subnivean birth lairs, and provides one of the motivations for this study. Using an empirical threshold of 20 cm of snow depth on level sea ice for ringed seal lair success, we estimate a decline of potential ringed seal habitat of nearly 70%.
Alim, M Abdul; Tsuji, Naotoshi; Miyoshi, Takeharu; Islam, M Khyrul; Hatta, Takeshi; Fujisaki, Kozo
2009-01-01
The biology and vectorial capacity of haematophagous ticks are directly related to effective blood feeding and digestion. The midgut-associated proteases in ticks are involved in the blood (Hb) digestion cascade, the molecular mechanisms of which are yet poorly understood. Our previous studies indicated that Haemaphysalis longicornis midgut-specific asparaginyl endopeptidases/legumains, HlLgm and HlLgm2, act in the Hb digestion cascade. Here, we investigated the potential of these enzymes in blood feeding and digestion, midgut remodelling and reproduction of ticks by employing RNA interference (RNAi) techniques. Injection of HlLgm- and HlLgm2 gene-specific double-stranded RNAs into unfed adult female H. longicornis caused gene-specific transcriptional and translational disruptions. RNAi impacted on tick blood feeding leading to death of the feeding ticks, failure of ticks to reach repletion and significant reductions in engorged tick body weight. Histological examination revealed that deletion of legumains resulted in damage to the midgut tissues and disruption of normal cellular remodelling during feeding. Gene knock-down also caused significantly delayed onset of oviposition, reduced number of eggs and, most strikingly, structurally deformed eggs that failed to hatch suggesting imperfect embryogenesis. Synergistic impacts of RNAi were reflected on all parameters evaluated when HlLgm and HlLgm2 were silenced together. These findings suggest that legumains may play modulatory roles in blood feeding and digestion, midgut cellular remodelling and embryogenesis in H. longicornis. Deletion of legumains in H. longicornis would help in controlling the tick population and thereby transmission of diseases to their hosts.
Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean
NASA Astrophysics Data System (ADS)
Albani, S.; Mahowald, N. M.; Murphy, L. N.; Raiswell, R.; Moore, J. K.; Anderson, R. F.; McGee, D.; Bradtmiller, L. I.; Delmonte, B.; Hesse, P. P.; Mayewski, P. A.
2016-04-01
Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. In this study we use observationally constrained model reconstructions of the global dust cycle since the Last Glacial Maximum, combined with different simplified assumptions of atmospheric and sea ice processing of dust-borne iron, to provide estimates of soluble iron deposition to the oceans. For different climate conditions, we discuss uncertainties in model-based estimates of atmospheric processing and dust deposition to key oceanic regions, highlighting the large degree of uncertainty of this important variable for ocean biogeochemistry and the global carbon cycle. We also show the role of sea ice acting as a time buffer and processing agent, which results in a delayed and pulse-like soluble iron release into the ocean during the melting season, with monthly peaks up to ~17 Gg/month released into the Southern Oceans during the Last Glacial Maximum (LGM).
NASA Astrophysics Data System (ADS)
Abarzua, Ana M.; Jarpa, Leonora; Martel, Alejandra; Vega, Rodrigo; Pino, Mario
2010-05-01
Multiproxy approach from Purén Lumaco Valley (38°S) describes the paleonvironmental history during the Last Maximum Glacial (LGM) in south-central Chile. Three sediment cores and severals AMS 14C dates were used to perform a complete pollen, diatoms, chironomids, and sedimentological records demonstrating the existence of a large and non profundal paleolake, between 25 and 20kyr BP. Some of these evidence are laminated silty-clay sediments (lacustrine rhythmites), associated with the presence of siderite mineral (FeCO3), besides biological proxies like Fragilaria construens and Stauroforma inermes (planctonic diatoms), and Dicrotendipes sp. and Tanytarsini tribe (littoral chironomids). The pollen ensemble reveals the first glacial refuge of Araucaria araucana forests in the low lands during the LGM. The lake was drained abruptly into a swamp/bog at 12kyr BP and colonized by Myrtaceae wet forest. This evidence suggest the dry/warm climate period of early Holocene in south-central Chile. Later, the sediments indicate variable lacustrine levels, and increase of charcoal particles, associated to current climatic conditions. The pollen spectrum dominated by Myrtaceae and Nothofagus contrasts with a strongly disturb current landscape. Actually, Purén-Lumaco valley constitutes a complex peat-bog system dominated by exotic grasses and forest species (Tritricum aestivum, Pinus radiata and Eucalyptus spp.). Some archaeological antecedents in the area document the human development at ca. 7yrs BP. The greatest archaeological characteristic present in the valley is the kuel, a Mapuche earth accumulation. The presence and extension of almost 300 kuel in the valley reflect the social/economic development, and partly explains why the region was the major resistance area for Spanish colonizer during XVI-XVII centuries. Also the archaeological findings reveal the presence of maize pollen (Zea mays) within their food consumption. The influence of climate and human impact in Holocene environments provide a better basis for understanding and managing the present landscape in Araucanian Region. Almost the absence of native forests in the area makes urgent strategies for the recovery and rehabilitation of a relict ecosystem that today represents their regional analog only in the tops of the Chilean Coastal Range. Acknowledgments: Universidad Austral de Chile (DID 2007-08, FORECOS P04-065-F), BSN-34567-04.
Tropical African Glacier Fluctuations During Termination 1
NASA Astrophysics Data System (ADS)
Jackson, M. S.; Kelly, M. A.; Russell, J. M.; Doughty, A. M.; Howley, J. A.; Zimmerman, S. R. H.
2017-12-01
As the primary source of latent heat and water vapor to the atmosphere, the tropics are a key element of Earth's climate system. However, the potential role of the tropics in past climate change, and particularly abrupt climate changes, is uncertain. A first step to assessing the role of the low latitudes in both past and future climate is to determine the timing and spatial variability of past climate change in the tropics. Termination 1, the time of most rapid global warming of the last glacial cycle, is an ideal period on which to focus. We present a 10Be chronology of glaciation from the Rwenzori Mountains, Uganda, which elucidates the timing and magnitude of deglacial warming in the African tropics through the Termination, from the Last Glacial Maximum (LGM) to the Holocene. Ice retreated from its maximum LGM extent by 20.7 ka. In the Bujuku valley, a series of nested moraines deposited between 15-14 ka attest to late-glacial ice extent. In both the Bujuku and Nyamugasani valleys, moraine sequences and erratic boulders indicate glacier retreat following the Younger Dryas (YD) and during the early Holocene. The preliminary chronology from these moraines suggests that glaciers were more extensive during the Antarctic Cold Reversal (ACR) than during the YD. This chronology is similar to that observed in the South American tropics, where expanded glaciers during the ACR are recognized across the high Andes. This suggests that glaciers across the tropics responded to a common forcing during Termination 1, likely temperature. Possible mechanisms to induce such temperature change include global climate boundary conditions, and greenhouse gas forcing in particular, as well as tropical ocean variability.
Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins
NASA Astrophysics Data System (ADS)
Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.
2016-12-01
Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which integrates our findings with those from Alaska, Canada, and east Greenland.
Drivers of pluvial lake distributions in western North America
NASA Astrophysics Data System (ADS)
Ibarra, D. E.; Oster, J. L.; Winnick, M.; Caves, J. K.; Ritch, A. J.; Chamberlain, C. P.; Maher, K.
2016-12-01
The distribution of large inland lakes in western North America during the Plio-Pleistocene is intimately linked to the regional hydroclimate and moisture delivery dynamics. We investigate the climatological conditions driving terminal basin lakes in western North America during the mid-Pliocene warm period and the latest Pleistocene glacial maximum. Lacustrine deposits and geologic proxies suggest that lakes and wet conditions persisted during both warm and cold periods in the southwest, despite dramatically different global climate, ice sheet configuration and pCO2 levels. We use two complementary methods to quantify the hydroclimate drivers of terminal basin lake levels. First, a quantitative proxy-model comparison is conducted using compilations of geologic proxies and an ensemble of climate models. We utilize archived climate model simulations of the Last Glacial Maximum (21 ka, LGM) and mid-Pliocene (3.3 Ma) produced by the Paleoclimate Modelling Intercomparison Project (PMIP and PlioMIP). Our proxy network is made up of stable isotope records from caves, soils and paleosols, lake deposits and shorelines, glacier chronologies, and packrat middens. Second, we forward model the spatial distribution of lakes in the region using a Budyko framework to constrain the water balance for terminally draining watersheds, and make quantitative comparisons to mapped lacustrine shorelines and outcrops. Cumulatively these two approaches suggest that reduced evaporation and moderate increases in precipitation, relative to modern, drove moderate to large pluvial lakes during the LGM in the Great Basin. In contrast, larger precipitation increases appear to be the primary driver of lake levels during the mid-Pliocene in the southwest, with this spatial difference suggesting a role for El Niño teleconnections. These results demonstrate that during past periods of global change patterns of `dry-gets-drier, wet-gets-wetter' do not hold true for western North America.
NASA Astrophysics Data System (ADS)
Quade, J.; Kaplan, M. R.
2017-12-01
Paleoshorelines around Lago (Lake) Cardiel in southern Argentina (S48.9°, W71.3°; ∼275 m) record substantial changes in lake area over the past 25 ka. Our results combined with previous research show that during the last glacial maximum (or LGM, 23-21 ka), the lake stood at near modern levels, but had nearly dried up by ∼13 ka. Between 11.3 and 10.1 ka the lake reached its highest point (+54-58 m) and greatest extent in at least the last 40 ka. Lake levels dropped thereafter and experienced two lower-lake periods: 8.5-7.5 ka and 5-3.3 ka; and two higher-lake periods: 7.4-6 and ∼5.2 ka. In the last 3.5 ka, the lake has remained generally near or slightly above its present level. The depth and surface area of Lago Cardiel are controlled mainly by precipitation onto the lake and surrounding catchment, air and water temperature, and wind-speed related to local strength of the Southern Hemispheric Westerlies (SHW). Our lake-level reconstruction combined with evidence from other studies suggest that on average the core of the SHW was located well to the north (<45°S) of the Cardiel basin during the deep lake phase associated with the LGM, and was well to the south (>55°S?) during the hydrologic maximum of Cardiel in the early Holocene. The lower phases of the lake at 20.0-11.5, 8.5-7.5, and 5.0-3.3 ka generally correspond to cold conditions in other records, when we infer that the SHW were strongly focused around the latitudes of Cardiel at 49°S.
A multi-model analysis of moisture changes during the last glacial maximum
NASA Astrophysics Data System (ADS)
Liu, Shanshan; Jiang, Dabang; Lang, Xianmei
2018-07-01
This study investigates terrestrial moisture changes and associated mechanisms during the last glacial maximum (LGM; approximately 21,000 calendar years ago) using multi-model simulations from the Paleoclimate Modelling Intercomparison Project phase 3 (PMIP3). Considering that terrestrial moisture is not determined solely by precipitation, an aridity index (AI) is employed for measuring the terrestrial moisture by combining the effects of both precipitation and potential evapotranspiration (PET), where the latter represents atmospheric water demand and is greatly decreased mainly by the intense cooling during the LGM. Compared to the preindustrial period, the magnitude of global mean terrestrial moisture change is small, as the wetness brought by decreased PET counteracts the dryness induced by decreased precipitation. Regionally, the moisture changes depend on the different combinations of changes in precipitation and PET: (i) drying occurs where precipitation deceases and PET hardly changes, such as the northern tropical Americas and Southeast Asia; (ii) wetting is found in regions with precipitation increases and PET decreases (e.g., northwestern Africa and the central Andes), and their contributions are comparable; (iii) in particular, wetting can also occur in regions of decreased precipitation if a sufficient decrease in PET also occurs (i.e., southeastern North America and the northern and southern parts of eastern Asia), with the latter wetting effect reversing the former drying effect. The multi-model median field is consistent with available paleo-records in southern North America, the northern tropical Americas, the Andes, northwestern Africa, the southern Iberian Peninsula, southwestern Africa, the central part of eastern Asia, and Java but disagrees with proxies in Australia, central Brazil, southeastern Africa, the northern Iberian Peninsula, and the southern part of eastern Asia.
GUTIÉRREZ-TAPIA, PABLO; PALMA, R. EDUARDO
2016-01-01
Aim Biodiversity losses under the species level may have been severely underestimated in future global climate change scenarios. Therefore, it is important to characterize the diversity units at this level, as well as to understand their ecological responses to climatic forcings. We have chosen an endemic rodent from a highly endangered ecogeographic area as a model to look for distributional responses below the species level: Phyllotis darwini. Location The central Chile biodiversity hotspot: This area harbours a high number of endemic species, and it is known to have experienced vegetational displacements between two mountain systems during and after the Last Glacial Maximum. Methods We have characterized cryptic lineages inside P. darwini in a classic phylogeographic approach; those intraspecific lineages were considered as relevant units to construct distribution models at Last Glacial Maximum and at present, as border climatic conditions. Differences in distribution between border conditions for each lineage were interpreted as distributional responses to post-glacial climate change. Results The species is composed of two major phylogroups: one of them has a broad distribution mainly across the valley but also in mountain ranges, whereas the other displays a disjunct distribution across both mountain ranges and always above 1500 m. The lineage distribution model under LGM climatic conditions suggests that both lineages were co-distributed in the southern portion of P. darwini’s current geographic range, mainly at the valley and at the coast. Main conclusions Present distribution of lineages in P. darwini is the consequence of a cryptic distributional response to climate change after LGM: postglacial northward colonization, with strict altitudinal segregation of both phylogroups. PMID:27453686
Vera-Escalona, Iván; D'Elía, Guillermo; Gouin, Nicolás; Fontanella, Frank M.; Muñoz-Mendoza, Carla; Sites, Jack W.; Victoriano, Pedro F.
2012-01-01
Historical climate changes and orogenesis are two important factors that have shaped intraspecific biodiversity patterns worldwide. Although southern South America has experienced such complex events, there is a paucity of studies examining the effects on intraspecific diversification in this part of the world. Liolaemus pictus is the southernmost distributed lizard in the Chilean temperate forest, whose genetic structure has likely been influenced by Pleistocene glaciations. We conducted a phylogeographic study of L. pictus in Chile and Argentina based on one mitochondrial and two nuclear genes recovering two strongly divergent groups, Northern and Southern clades. The first group is distributed from the northernmost limit of the species to the Araucanía region while the second group is distributed throughout the Andes and the Chiloé archipelago in Southern Chile. Our results suggest that L. pictus originated 751 Kya, with divergence between the two clades occurring in the late Pleistocene. Demographic reconstructions for the Northern and Southern clades indicate a decrease in effective population sizes likely associated with Pleistocene glaciations. Surprisingly, patterns of genetic variation, clades age and historical gene flow in populations distributed within the limits of the Last Glacial Maximum (LGM) are not explained by recent colonization. We propose an “intra-Andean multiple refuge” hypothesis, along with the classical refuge hypothesis previously proposed for the biota of the Chilean Coastal range and Eastern Andean Cordillera. Our hypothesis is supported by niche modelling analysis suggesting the persistence of fragments of suitable habitat for the species within the limits of the LGM ice shield. This type of refuge hypothesis is proposed for the first time for an ectothermic species. PMID:23209552
Paleoglacier reconstruction of the central massif of Gredos range during Last Glacial Maximum.
NASA Astrophysics Data System (ADS)
Campos, Néstor; Tanarro, Luis Miguel
2017-04-01
The accurate reconstruction of paleoglaciers require a well determined extent and morphology of them, one of the main problems is the absence of glacial geomorphic evidences which made possible the delimitation of the ice limits, for this reason physical-based models are useful for ice surface reconstruction in areas where geomorphological information is incomplete. A paleoglacier reconstruction during its maximum extension is presented for a high mountain area of the western part of the central massif of Gredos range, in the center of Iberian Peninsula, this area is located 30 km west of Almanzor (40˚ 14' 48? N; 5˚ 17' 52? W; 2596 m a.s.l.), the highest peak of Iberian Central System (ICS) and covers five gorges: La Nava, Taheña- Honda, La Vega, San Martín and Los Infiernos, the first three facing North, San Martin facing Northwest and Los Infiernos facing West. Despite the existence of some works analyzing the extension of paleoglaciers in the ICS during its maximum extension, there is still a need to improve the understanding of this zone, to provide a more detailed knowlegde of the evolution of the range and to know more in detail the full extent of paleoglaciers in this area. For delimitate the glaciated area the most distant frontal moraines with a larger geomorphological entity that indicates a great advance or a prolonged stay and stabilization which would presumably correspond with the maximum advance of the glaciers have been mapped, for that, photo interpretation of digital aerial photographs (25 cm resolution) has been done, in some areas where the location or limits of the moraines were not clear 3D images were used, all the work was complemented with detailed field surveys. Once the ice limits have been determined is necessary to estimate the topography of the paleoglaciers, for that purpose a simple steady-state models that assume a perfectly plastic ice rheology have been used, reconstructing the theoretical ice profiles and obtaining the extent of the paleoglaciers (based on the largest moraines of the front and sides of the valley as the main indicator of the LGM), in order to reconstruct the ice surface we calculated longitudinal profiles, with these reconstructed profiles a digital elevation model (DEM) of 5 m pixel size was created and combined with actual topography in order to obtain the ice thickness at the LGM. The combination of these physical-based models and geomorphological evidences has demonstrated to be a successful method to reconstruct the topography of paleoglaciers, the most distant frontal moraines of the studied area are located at different altitudes depending on the paleoglacier, the lower altitude of a frontal moraine is 1320 meters and the higher is located at 1570 meters, the preliminary results show that during the LGM, the studied paleoglaciers had a maximum ice thickness of 366 meters in La Vega gorge, with a total volume of 28.56 x 108 m3 and a mean paleoELA of 1940 meters. References: Benn, D.I., Hulton, N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36, 605e610. Schilling, D.H., Hollin, J., 1981. Numerical reconstructions of valley glaciers and small ice caps. In: Denton, G.H., Hughes, T.J. (Eds.), The Last Great Ice Sheets. Willey, New York, USA, pp. 207e220. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain
Tang, Cindy Q.; Dong, Yi-Fei; Herrando-Moraira, Sonia; Matsui, Tetsuya; Ohashi, Haruka; He, Long-Yuan; Nakao, Katsuhiro; Tanaka, Nobuyuki; Tomita, Mizuki; Li, Xiao-Shuang; Yan, Hai-Zhong; Peng, Ming-Chun; Hu, Jun; Yang, Ruo-Han; Li, Wang-Jun; Yan, Kai; Hou, Xiuli; Zhang, Zhi-Ying; López-Pujol, Jordi
2017-01-01
This study, using species distribution modeling (involving a new approach that allows for uncertainty), predicts the distribution of climatically suitable areas prevailing during the mid-Holocene, the Last Glacial Maximum (LGM), and at present, and estimates the potential formation of new habitats in 2070 of the endangered and rare Tertiary relict tree Davidia involucrata Baill. The results regarding the mid-Holocene and the LGM demonstrate that south-central and southwestern China have been long-term stable refugia, and that the current distribution is limited to the prehistoric refugia. Given future distribution under six possible climate scenarios, only some parts of the current range of D. involucrata in the mid-high mountains of south-central and southwestern China would be maintained, while some shift west into higher mountains would occur. Our results show that the predicted suitable area offering high probability (0.5‒1) accounts for an average of only 29.2% among the models predicted for the future (2070), making D. involucrata highly vulnerable. We assess and propose priority protected areas in light of climate change. The information provided will also be relevant in planning conservation of other paleoendemic species having ecological traits and distribution ranges comparable to those of D. involucrata. PMID:28272437
A Late Pleistocene sea level stack
NASA Astrophysics Data System (ADS)
Spratt, R. M.; Lisiecki, L. E.
2015-08-01
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.
Marshall, Jill A.; Roering, Joshua J.; Bartlein, Patrick J.; Gavin, Daniel G.; Granger, Darryl E.; Rempel, Alan W.; Praskievicz, Sarah J.; Hales, Tristram C.
2015-01-01
Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain. PMID:26702434
He, Shui-Lian; Wang, Yun-Sheng; Li, De-Zhu; Yi, Ting-Shuang
2016-01-01
Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes. PMID:26952904
Marine tephrochronology of the Mt. Edgecumbe volcanic field, southeast Alaska, USA
Addison, Jason A.; Beget, James E.; Ager, Thomas A.; Finney, Bruce P.
2010-01-01
The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, experienced a large multiple-stage eruption during the last glacial maximum (LGM)-Holocene transition that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major oxide compositions of glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine cryptotephras were also identified. Three of these units appear to be derived from mid-Holocene MEVF activity, while the youngest cryptotephra corresponds well with the White River Ash eruption at not, vert, similar 1147 cal yr BP. Furthermore, the sedimentology of the Sitka Sound marine core EW0408-40JC and high-resolution SWATH bathymetry both suggest that extensive pyroclastic flow deposits associated with the activity that generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may pose significant risk to local population centers.
NASA Astrophysics Data System (ADS)
Gribenski, Natacha; Lukas, Sven; Stroeven, Arjen P.; Jansson, Krister N.; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry A.; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.
2017-07-01
We thank Herget et al. (2017) for their keen interest in our study about the paleoglacial history of the Chagan Uzun Valley, in the Russian Altai (Gribenski et al., 2016). In our study, we proposed a detailed chronological and glaciodynamic reconstruction of a succession of glacial events represented by prominent moraine complexes, based on remotely-sensed data and field-geomorphological mapping, sedimentological logging, and cosmogenic 10Be and 26Al surface exposure dating of glacially-transported boulders. Herget et al. (2017) express skepticism about the outermost moraine complex dated in our study (CUMC 1; Gribenski et al., 2016), which slightly predates 19 thousand years (ka), during marine isotope stage (MIS) 2. To quote: "we suspect that their claim of regional climatic significance-that the ∼19 ka Chagan-Uzun moraine they dated can be used to show that the local LGM and regional LGM were the same, and occurred during MIS 2-may be premature" (Herget et al., 2017: p. 1). Their comment appears to relate to an ongoing debate regarding the timing of maximum glaciation in Central Asia during the last glacial cycle, however it is based on misinterpretations of our paper.
Sasaki, Takeshi; Kobayashi, Mari; Haneda, Takayuki; Masubuchi, Takahito
2018-01-01
In this study, we used relatively large number of samples (n = 178) and control region of mtDNA (454bp) to clearify the divergence history of Japanese harbour seals (Phoca vitulina stejnegeri) and phylogenetic relationship between the seals in Japan and other countries. Our results suggested that Japanese harbour seals possibly consisted of more than two lineages and secondary contact of populations after a long isolation. Furthermore, one of the lineage was made only by Japanese harbour seals (Group P1). The proportion of Group P1 was the highest at the South West and gradually decreased towards the North East of Hokkaido, Japan. On the other hand, the haplotypes do not belonged to Group P1 showed close relationship to the seals in the North Pacific. Based on the fossil record of harbour seal in Japan and the range of sea ice during the Last Glacial Maximum (LGM), Group P1 might have entered Japan before the LGM and became isolated due to the geographical boundary, and gradually extended its range from the South West towards the North East of Hokkaido after the disappearance of the sea ice, while the seals which are not in Group P1 immigrated into Japan from the North Pacific. PMID:29385193
Ice Age Sea Level Change on a Dynamic Earth
NASA Astrophysics Data System (ADS)
Austermann, J.; Mitrovica, J. X.; Latychev, K.; Rovere, A.; Moucha, R.
2014-12-01
Changes in global mean sea level (GMSL) are a sensitive indicator of climate variability during the current ice age. Reconstructions are largely based on local sea level records, and the mapping to GMSL is computed from simulations of glacial isostatic adjustment (GIA) on 1-D Earth models. We argue, using two case studies, that resolving important, outstanding issues in ice age paleoclimate requires a more sophisticated consideration of mantle structure and dynamics. First, we consider the coral record from Barbados, which is widely used to constrain global ice volume changes since the Last Glacial Maximum (LGM, ~21 ka). Analyses of the record using 1-D viscoelastic Earth models have estimated a GMSL change since LGM of ~120 m, a value at odds with analyses of other far field records, which range from 130-135 m. We revisit the Barbados case using a GIA model that includes laterally varying Earth structure (Austermann et al., Nature Geo., 2013) and demonstrate that neglecting this structure, in particular the high-viscosity slab in the mantle linked to the subduction of the South American plate, has biased (low) previous estimates of GMSL change since LGM by ~10 m. Our analysis brings the Barbados estimate into accord with studies from other far-field sites. Second, we revisit estimates of GMSL during the mid-Pliocene warm period (MPWP, ~3 Ma), which was characterized by temperatures 2-3°C higher than present. The ice volume deficit during this period is a source of contention, with estimates ranging from 0-40 m GMSL equivalent. We argue that refining estimates of ice volume during MPWP requires a correction for mantle flow induced dynamic topography (DT; Rowley et al., Science, 2013), a signal neglected in previous studies of ice age sea level change. We present estimates of GIA- and DT-corrected elevations of MPWP shorelines from the U.S. east coast, Australia and South Africa in an attempt to reconcile these records with a single GMSL value.
Alluvium-Buttressed Landslides: Conceptual Model and Examples from California
NASA Astrophysics Data System (ADS)
Johnson, P. L.; Cotton, W. R., Sr.; Shires, P. O.
2016-12-01
Large, deep-seated landslides typically occur in hillside settings without any natural buttressing, and many of these landslides have relatively low factors of safety (FS), the ratio of driving to resisting forces. However, where deep-seated landslides failed millennia ago into valleys that subsequently experienced alluvial aggradation, a natural buttress of alluvium may be deposited over the landslide toe, increasing the FS of these landslides. The eustatic model for alluvial buttressing of Quaternary landslides involves failure of slopes during sea level low stand at or near the late Pleistocene last glacial maximum (LGM, approximately 20 ka). Following LGM, mean sea level rose by over 120m to its present elevation. This rise in base level resulted in deposition of alluvial sediment in coastal valleys that had been v-shaped and downcutting prior to and during LGM. These valleys now have broad, low gradient floors formed by alluvial sediment, and the thick alluvial strata filling these valleys cover the toes of late Pleistocene landslides. In this study, three examples of large, deep-seated Pleistocene landslides that are buttressed by alluvium are presented. The McCracken Hill Landslide in Orange County and the Potrero Canyon Landslide Complex in Monterey County are located approximately 1.5 and 6 km, respectively, from the modern Pacific shore and closely fit the eustatic model of alluvial buttressing. At Knights Valley, in the upper Russian River watershed of eastern Sonoma County, a deep-seated alluvium-buttressed landslide is located approximately 65 km from the modern shore (measured along the Russian River and its tributary stream). The alluvium in Knights Valley may have ponded due to late Quaternary tectonic uplift of hills west of the valley. Streams that cross these hills are incised into bedrock downstream from Knights Valley and approaching the Russian River. Thus, the Knights Valley example (of an alluvium-buttressed landslide) demonstrates a rare exception to the broadly applicable eustatic model.
NASA Astrophysics Data System (ADS)
Erdem, Z.; Schönfeld, J.; Glock, N.
2015-12-01
Benthic foraminifera have been used as proxies for the prevailing conditions at the sediment-water interface. Their distribution patterns are thought to facilitate reconstruction of past environmental conditions. Variations of bottom water oxygenation can be traced by the downcore distribution of benthic foraminifera and some of their morphological characters. Being one of the strongest and most pronounced OMZs in today's world oceans, the Peruvian OMZ is a key area to study such variations in relation with changing climate. Spatial changes or an extension of the OMZ through time and space are investigated using sediment cores from the lower OMZ boundary. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum (LGM) to investigate changes in bottom-water oxygen and redox conditions. The recent distributions of benthic foraminiferal assemblages provide background data for an interpretation of the past conditions. Living benthic foraminiferal faunas from the Peruvian margin are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations and a decreasing trend in bottom water oxygen conditions since the LGM. In addition, changes in bottom-water oxygen and nitrate concentrations are reconstructed for the same time intervals by the pore density in tests of Planulina limbata and Bolivina spissa (Glock et al., 2011), respectively. The pore densities also indicate a trend of higher oxygen and nitrate concentrations in the LGM compared to the Holocene. Combination of both proxies provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin. Glock et al., 2011: Environmental influences on the pore density of Bolivina spissa (Cushman), Journal of Foraminiferal Research, v. 41, no. 1, p. 22-32. Mallon et al., 2012: The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone, in ANOXIA, pp.305-322.
Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica
Kimura, Megumi K.; Uchiyama, Kentaro; Nakao, Katsuhiro; Moriguchi, Yoshinari; San Jose-Maldia, Lerma; Tsumura, Yoshihiko
2014-01-01
Background and Aims Distribution shifts and natural selection during past climatic changes are important factors in determining the genetic structure of forest species. In particular, climatic fluctuations during the Quaternary appear to have caused changes in the distribution ranges of plants, and thus strongly affected their genetic structure. This study was undertaken to identify the responses of the conifer Cryptomeria japonica, endemic to the Japanese Archipelago, to past climatic changes using a combination of phylogeography and species distribution modelling (SDM) methods. Specifically, this study focused on the locations of refugia during the last glacial maximum (LGM). Methods Genetic diversity and structure were examined using 20 microsatellite markers in 37 populations of C. japonica. The locations of glacial refugia were assessed using STRUCTURE analysis, and potential habitats under current and past climate conditions were predicted using SDM. The process of genetic divergence was also examined using the approximate Bayesian computation procedure (ABC) in DIY ABC to test the divergence time between the gene pools detected by the STRUCTURE analysis. Key Results STRUCTURE analysis identified four gene pools: northern Tohoku district; from Chubu to Chugoku district; from Tohoku to Shikoku district on the Pacific Ocean side of the Archipelago; and Yakushima Island. DIY ABC analysis indicated that the four gene pools diverged at the same time before the LGM. SDM also indicated potential northern cryptic refugia. Conclusions The combined evidence from microsatellites and SDM clearly indicates that climatic changes have shaped the genetic structure of C. japonica. The gene pool detected in northern Tohoku district is likely to have been established by cryptic northern refugia on the coast of the Japan Sea to the west of the Archipelago. The gene pool in Yakushima Island can probably be explained simply by long-term isolation from the other gene pools since the LGM. These results are supported by those of SDM and the predicted divergence time determined using ABC analysis. PMID:25355521
Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes
NASA Astrophysics Data System (ADS)
Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne
2017-09-01
The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.
NASA Astrophysics Data System (ADS)
Salehipour, H.; Peltier, W. R.
2014-12-01
In this paper we will describe the results obtained through integration of a further refined version of the truly global barotropic tidal model of Salehipour et al. (Ocean Modell., 69, 2013) using the most recent reconstruction of ice-age bathymetric conditions as embodied in the recently constructed ICE-6G_C (VM5a) model of Peltier et al. (JGR-Solid Earth, in press, 2014). Our interest is in the spatial and temporal evolution of tidal amplitude, phase and dissipation from the Last Glacial Maximum (LGM) 26,000 years ago until the present. The state-of-the-art higher order nonlinear tidal model of Salehipour et al. (2013) includes a highly parallelized multi-scale framework in which an unstructured tessellation of the global ocean enables extensive local refinement around regions of interest such as the Hawaiian Ridge, the Brazil Basin and the Southern Ocean. At LGM, features such as the Patagonian Shelf were fully exposed land which during the deglaciation process would have been flooded leading to significant changes of tidal range along the evolving coastline. In the further development of this model we have included the fully iterated treatment of the influence of gravitational self-attraction and loading as in, e.g. Egbert et al. (JGR-Oceans, 109, 2004). The treatment of the dissipation of the barotropic tide through dissipation of the internal tide has also been significantly improved. Our paleobathymetry and coastline data sets extend from LGM to present at 500 year intervals and constitute a significant refinement of the widely employed ICE-5G (VM2) model of Peltier (Annu. Rev. Earth Planet. Sci., 32, 2004). Our results will be compared with those recently published by Green & Nycander (JPO, 43, 2013) and Wilmes & Green (JGR-Oceans, 119, 2014) as well as with the earlier results of Griffiths & Peltier (GRL, 35, 2008; J. Clim., 22, 2009).
Critical Zone Architecture and the Last Glacial Legacy in Unglaciated North America
NASA Astrophysics Data System (ADS)
Marshall, J. A.; Roering, J. J.; Rempel, A. W.; Bartlein, P. J.; Merritts, D. J.; Walter, R. C.
2015-12-01
As fresh bedrock is exhumed into the Critical Zone and intersects with water and life, rock attributes controlling geochemical reactions, hydrologic routing, accommodation space for roots, surface area, and the mobile fraction of regolith are set not just by present-day processes, but are predicated on the 'ghosts' of past processes embedded in the subsurface architecture. Easily observable modern ecosystem processes such as tree throw can erase the past and bias our interpretation of landscape evolution. Abundant paleoenvironmental records demonstrate that unglaciated regions experienced profound climate changes through the late Pleistocene-Holocene transition, but studies quantifying how environmental variables affect erosion and weathering rates in these settings often marginalize or even forego consideration of the role of past climate regimes. Here we combine seven downscaled Last Glacial Maximum (LGM) paleoclimate reconstructions with a state of the art frost cracking model to explore frost weathering potential across the North American continent 21 ka. We analyze existing evidence of LGM periglacial processes and features to better constrain frost weathering model predictions. All seven models predict frost cracking across a large swath to the west of the Continental Divide, with the southernmost extent at ~ latitude 35° N, and increasing latitude towards the buffering influence of the Pacific Ocean. All models predict significant frost cracking in the unglaciated Rocky Mountains. To the east of the Continental Divide, models results diverge more, but all predict regions with LGM temperatures too cold for significant frost cracking (mean annual temperatures < 15 °C), corroborated by observations of permafrost relics such as ice wedges in some areas. Our results provide a framework for coupling paleoclimate reconstructions with a predictive frost weathering model, and importantly, suggest that modeling modern Critical Zone process evolution may require a consideration of vastly different processes when rock was first exhumed into the Critical Zone reactor.
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
NASA Astrophysics Data System (ADS)
Lofverstrom, Marcus; Liakka, Johan
2018-04-01
Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.
Vegetation over hydrologic control of sediment transport over the past 100,000 yr
NASA Astrophysics Data System (ADS)
Dosseto, A.; Maher, K.; Turner, S. P.; Hesse, P.; Fryirs, K.
2008-12-01
Uranium isotopes can be used to determine the residence time of sediments in a catchment, i.e. how long they are stored in weathering profiles and transported through the catchment by rivers. We have measured uranium isotopes in sediments from palaeo-channels of the Murrumbidgee River (Murray-Darling Basin, southeastern Australia) to quantify variations in sediment residence times over the past 100,000 years. Results indicate that sediments transported through the Murrumbidgee catchment during the Last Glacial Maximum (LGM) resided for 10's of thousands of years in the catchment. This contrasts with modern and 100ka-old channel sediments where the residence time reaches values as high as 400,000-500,000 years. Variations in sediment residence time in the Murrumbidgee basin do not strictly follow changes in bankfull discharge but instead are correlated with shifts in vegetation and atmospheric CO2. In the absence of significant glacial erosion in this basin during LGM, this is at odds with what is expected from the links between climate and erosion (a decrease in CO2 and temperature is expected to induce a decrease in weathering and erosion). Vegetation may be the link between climate and sediment transport: sparse vegetation in the upper catchment allows significant hillslope erosion during LGM but dense woodlands in the Holocene and during the last interglacial inhibit sediment delivery to the river from hillslopes and sediments are derived from the re-working of old (a few 100s ka) alluvial deposits. These observations would suggest that (i) changes in hydrology cannot explain alone changes in sediment transport and (ii) the impact of climate change on catchment erosion is operating indirectly, via changes in vegetation type and density. These hypothesis will be tested with studies of a more detailed sedimentary record of the Late Holocene in the Murrumbidgee and sedimentary deposits in Eastern US.
The Post-Glacial Species Velocity of Picea glauca following the Last Glacial Maximum in Alaska.
NASA Astrophysics Data System (ADS)
Morrison, B. D.; Napier, J.; Kelly, R.; Li, B.; Heath, K.; Hug, B.; Hu, F.; Greenberg, J. A.
2015-12-01
Anthropogenic climate change is leading to dramatic fluctuations to Earth's biodiversity that has not been observed since past interglacial periods. There is rising concern that Earth's warming climate will have significant impacts to current species ranges and the ability of a species to persist in a rapidly changing environment. The paleorecord provides information on past species distributions in relation to climate change, which can illuminate the patterns of potential future distributions of species. Particularly in areas where there are multiple potential limiting factors on a species' range, e.g. temperature, radiation, and evaporative demand, the spatial patterns of species migrations may be particularly complex. In this study, we assessed the change in the distributions of white spruce (Picea glauca) from the Last Glacial Maxima (LGM) to present-day for the entire state of Alaska. To accomplish this, we created species distribution models (SDMs) calibrated from modern vegetation data and high-resolution, downscaled climate surfaces at 60m. These SDMs were applied to downscaled modern and paleoclimate surfaces to produce estimated ranges of white spruce during the LGM and today. From this, we assessed the "species velocity", the rate at which white spruce would need to migrate to keep pace with climate change, with the goal of determining whether the expansion from the LGM to today originated from microclimate refugia. Higher species velocities indicate locations where climate changed drastically and white spruce would have needed to migrate rapidly to persist and avoid local extinction. Conversely, lower species velocities indicated locations where the local climate was changing less rapidly or was within the center of the range of white spruce, and indicated locations where white spruce distributions were unlikely to have changed significantly. Our results indicate the importance of topographic complexity in buffering the effects of climate change, particularly near the edges of the species' range.
The changing seascape of Galway Bay, Western Ireland
NASA Astrophysics Data System (ADS)
Mc Cullagh, D.; Benetti, S.; Plets, R. M. K.; Edwards, R.
2016-12-01
During the late Quaternary significant environmental and relative sea-level variations have contributed to shaping present day coastlines. This is particularly evident along formerly glaciated continental margins. Strong evidence of these changes are recorded in Galway Bay, Western Ireland. This research uses a multidisciplinary approach. Seismic and multibeam data, sedimentological, micropaleontological, geochemical analysis and 15 radiocarbon dates of sediment cores from the bay provide post last glacial maximum (LGM) sea level and environmental reconstructions for the region. The acoustic stratigraphy of the bay includes 3 seismic units: the deepest unit represents the acoustic basement, composed of limestone and granite bedrock; the middle unit is composed of the oldest preserved sediments, deposited during and after the LGM, and interpreted to be glacial till. The uppermost unit represents deposition and reworking after glacial retreat. The erosive action of the ice sheet that extended off the Irish coast is thought to be responsible for the removal and reworking of all sediments older that the LGM. In the sediment cores, three main lithofacies were identified: 1) a sandy silt and clay facies, 2) a distinct shell hash interlayer and, 3) a fine silty sand facies. These 3 facies are found within the uppermost seismic unit, and initial radiocarbon dating of shells in 4 cores, constrain these sediments and the uppermost seismic unit to the Holocene. Preliminary qualitative analysis on foraminifera from several cores shows a general trend of progression from estuarine to open marine conditions, inferred from indicator species. This trend is supported by X-ray fluorescence (XRF) analysis which shows increased ratios of Cl/Fe in younger deposits. Constraining dates on sea level variations in the region will be added to the sea level database for Ireland and possibly used to adjust the existing relative sea level models. These are important for understating past sea level variations and modelling future trends.
Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea
NASA Astrophysics Data System (ADS)
Wu, Ziyin; Jin, Xianglong; Zhou, Jieqiong; Zhao, Dineng; Shang, Jihong; Li, Shoujun; Cao, Zhenyi; Liang, Yuyang
2017-06-01
Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320-200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.
NASA Astrophysics Data System (ADS)
Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc
2016-10-01
We concluded that our new 10Be chronology records onset of retreat of a cirque glacier within the Alohart basin of southwestern Ireland 24.5 ± 1.4 ka, placing limiting constraints on reconstructions of the Irish Ice Sheet (IIS) and Kerry-Cork Ice Cap (KCIC) during the Last Glacial Maximum (LGM) (Barth et al., 2016). Knight (2016) raises two main arguments against our interpretation: (1) the glacier in the Alohart basin was not a cirque glacier, but instead a southern-sourced ice tongue from the KCIC overtopping the MacGillycuddy's Reeks, and (2) that the boulders we sampled for 10Be exposure dating were derived from supraglacial rockfall rather than transported subglacially, experienced nuclide inheritance, and are thus too old. In the following, we address both of these arguments.
NASA Astrophysics Data System (ADS)
Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.
2018-05-01
Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub-ice-shelf melting which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcings, with a uniform response in all simulations controlled by the surface air temperature, derived from ice cores.
NASA Astrophysics Data System (ADS)
Schmittner, A.; Somes, C. J.
2016-06-01
A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient during the LGM. Both circulation and biological nutrient utilization could contribute. However, these conclusions are preliminary given our idealized experiments, which do not consider changes in benthic denitrification and spatially inhomogenous changes in aeolian iron fluxes. The analysis illustrates interactions between the carbon and nitrogen cycles as well as the complementary constraints provided by their isotopes. Whereas carbon isotopes are sensitive to circulation changes and indicate well the three-dimensional Corg distribution, nitrogen isotopes are more sensitive to biological nutrient utilization.
Fossil Coral Records of ENSO during the Last Glacial Period
NASA Astrophysics Data System (ADS)
Partin, J. W.; Taylor, F. W.; Shen, C. C.; Edwards, R. L.; Quinn, T. M.; DiNezro, P.
2017-12-01
Only a handful of paleoclimate records exist that can resolve interannual changes, and hence El Nino/Southern Oscillation (ENSO) variability, during the last glacial period, a time of altered mean climate. The few existing data suggest reduced ENSO variability compared to the Holocene, possibly due to a weaker zonal sea surface temperature gradient across the tropical Pacific and/or a deeper thermocline in the eastern tropical Pacific. Our goal is to add crucial data to this extremely limited subset using sub-annually resolved fossil corals that grew during this time period to reconstruct ENSO. We seek to recover fossil corals from Vanuatu, SW Pacific (16°S, 167°E) with the objective of using coral δ18O to reconstruct changes in the ENSO during and near the Last Glacial Maximum (LGM). Modern δ18O coral records from Vanuatu show a high degree of skill in capturing ENSO variability, making it a suitable site for reconstructing ENSO variability. We have custom designed and are building a drill system that can rapidly core many 0-25 m holes resulting in much more meters of penetration than achieved by previous land-based reef drilling. As the new drill system is extremely portable and can be quickly relocated by workers without landing craft or vehicles, it is time and cost efficient. Because the proposed drilling sites have uplifted extremely fast, 7 mm/year, the LGM shoreline has been raised from 120-140 m depth to within a depth range of 10 below to 20 m above present sea level. This enables all the drilling to be within the time range of interest ( 15-25 ka). A last advantage is that the LGM corals either are still submersed in seawater or emerged only within the last 2000 years at the uplift rate of 7 mm/yr. This greatly reduces the chances of disruption of the original climate signal because sea water is less diagenetically damaging than meteoric water in the mixed, phreatic, or vadose zones. LGM coral records will enable us to compare the proxy variability to climate model simulations in order to elucidate the mechanisms driving the changes in ENSO. The proposed research activities will shed light on the sensitivity of ENSO to external forcings, a highly critical issue given that climate model projections used for future climate projection do not agree if ENSO will strengthen or weaken as the Earth warms.
NASA Astrophysics Data System (ADS)
Mills, Stephanie C.; Rowan, Ann V.; Barrow, Timothy T.; Plummer, Mitchell A.; Smith, Michael; Grab, Stefan W.; Carr, Simon J.; Fifield, L. Keith
2014-05-01
Moraines identified at high-altitude sites in southern Africa and dated to the last glacial maximum (LGM) indicate that the climate in this region was cold enough to support glaciers. Small glaciers are very sensitive to changes in temperature and precipitation and the identification of LGM moraines in southern Africa has important palaeoclimatic implications concerning the magnitude of temperature change and the seasonality of precipitation during the last glacial cycle. This paper presents a refined time-frame for likely glaciations based on surface exposure dating using Cl-36 at sites in Lesotho and reports results of a 2D glacier energy balance and ice flow modelling approach (Plummer and Phillips, 2003) to evaluate the most likely climatic scenarios associated with mapped moraine limits. Samples for surface exposure dating were collected from glacially eroded bedrock at several locations and yield ages within the timescale of the LGM. Scatter in the ages may be due to insufficient erosion of the bedrock surface due to the small and relatively thin nature of the glaciers. To determine the most likely climatic conditions that may have caused the glaciers to reach their mapped extent, we use a glacier-climate model, driven by data from local weather stations and a 30m (ASTER) DEM (sub-sampled to 10m) representation of the topographic surface. The model is forced using modern climate data for primary climatic controls (temperature and precipitation) and for secondary climatic parameters (relative humidity, cloudiness, wind speed). Various sensitivity tests were run by dropping temperature by small increments and by varying the amount of precipitation and its seasonality relative to present-day values. Results suggest that glaciers could have existed in the Lesotho highlands with a temperature depression of ~5-6 ºC and that the glaciers were highly sensitive to small changes in temperature. The additional accumulation of mass through wind redistribution appears to have been important at all but a few sites, suggesting that this must be taken into account when trying to determine a regional climate signal from small glaciers. Our dating and glacier-climate model simulations reinforce the idea that small glaciers existed in the Lesotho Highlands during the LGM, under climatic scenarios that are consistent with other proxy records. Plummer, M.A. and Phillips, F.M. (2003) 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews, 22, 1389-1406.
NASA Astrophysics Data System (ADS)
Itaki, Takuya; Kim, Sunghan; Rella, Stephan F.; Uchida, Masao; Tada, Ryuji; Khim, Boo-Keun
2012-02-01
A high-resolution record of the radiolarian assemblage from 60 to 10 ka was investigated using a piston core (PC-23A) obtained from the northern slope of the Bering Sea. Faunal changes based on the 29 major radiolarian taxa demonstrated that the surface and deep water conditions in the Bering Sea were related to the orbital and millennial-scale climatic variations known as glacial-interglacial and Dansgaard-Oeschger (D-O) cycles, respectively. During interstadial periods of the D-O cycles, the assemblage was characterized by increases in the high-latitude coastal species Rhizoplegma boreale and the upper-intermediate water species Cycladophora davisiana, while the sea-ice related species Actinomma boreale and A. leptodermum and many deep-water species such as Dictyophimus crisiae and D. hirundo tended to be reduced. This trend was more apparent in two laminated intervals at 15-13.5 and 11.5-11 ka, which were correlated with well-known ice-sheet collapse events that occurred during the last deglaciation: melt-water pulse (MWP)-1A and MWP-1B, respectively. The radiolarian faunal composition in these periods suggests that oceanic conditions were different from today: (1) surface water was affected by increased melt-water discharge from continental ice-sheet, occurring at the same time as an abrupt increase in atmospheric temperature, (2) upper-intermediate water (ca. 200-500 m) was well-ventilated and organic-rich, and (3) lower-intermediate water (ca. 500-1000 m) was oxygen-poor. Conversely, the sea-ice season might have been longer during stadial periods of the D-O cycles and the last glacial maximum (LGM) compared to the interstadial periods and the earliest Holocene. In these colder periods, deep-water species were very abundant, and this corresponded to increases in the oxygen isotope value of benthic foraminifera. Our findings suggest that the oxygen-rich water was present in the lower-intermediate layer resulting from intensified ventilation.
A revised climatology of SE Australia at the LGM
NASA Astrophysics Data System (ADS)
Shulmeister, James; Cohen, Tim; Kiernan, Kevin; Woodward, Craig; Clark, Doug; Fitzsimmons, Kat; Kemp, Justine; Gontz, Allen; Haworth, Robert; Moss, Patrick; Chang, Jie; Mueller, Daniela; Slee, Adrian; Ellerton, Dan
2015-04-01
This paper summarises some of the results of a recently completed project aimed at defining climate conditions at the LGM in south eastern Australia. We conclude that overall cooling on the SE mainland was 8-10°C but that cooling along the eastern coastal strip and in Tasmania was somewhat less (4-7°C). The persistence of a humid climate along the east coast and in the adjacent highlands allowed rivers to flow more strongly than during the Holocene. We suggest that onshore flow on the northern limbs of east coast high pressure cells, supplemented by moisture from east coast lows maintained this humid fringe. The processes were enhanced by increased sea-land temperature contrasts especially in winter and by reduced evapotranspiration under lower temperatures and altered vegetation cover. We can explain most of the paleoenvironmental observations in SE Australia at the LGM by invoking an enhanced high pressure cell over the modern SE mainland while westerly flow continued to dominate in Tasmania. At the true LGM westerly penetration of the SE mainland was reduced but east coast systems were either unaffected or enhanced.
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-11-25
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-01-01
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841
NASA Astrophysics Data System (ADS)
Bilohuščin, Vladimír; Uher, Pavel; Koděra, Peter; Milovská, Stanislava; Mikuš, Tomáš; Bačík, Peter
2017-09-01
Borate minerals of the ludwigite group (LGM) and szaibélyite in association with hydroxylclinohumite, clinochlore, a serpentine mineral, magnesian magnetite, spinel, magnesite, dolomite and sulphide minerals, occur in a magnesian exoskarn in the R-20 borehole located in the Vysoká - Zlatno Cu-Au porphyry-skarn deposit, located within the Štiavnica Neogene stratovolcano, Western Carpathians, central Slovakia. The skarn is developed along the contact of Miocene granodiorite to quartz-diorite porphyry and a Middle-Upper Triassic dolomite-shale-psammite-anhydrite sedimentary sequence. The boron minerals were investigated by electron probe micro-analyser (EPMA) and micro-Raman techniques. The source of boron could have been from the granodiorite/quartz diorite intrusion; however some supply of B from adjacent evaporite-bearing sediments is also possible. Based on textural and compositional data, the minerals originated during two stages. (1) An early high-temperature, contact-metamorphic and metasomatic stage comprises coarse-crystalline aggregate of LGM (types 1 to 3) in association with hydroxylclinohumite, magnetite, and rarely spinel inclusions in LGM. Compositional variations of LGM show a crystallization sequence from early azoproite [≤17 wt% TiO2; 0.40 atoms pre formula unit (apfu) Ti, which correspond to ≤79 mol% of the Mg2(Mg0.5Ti0.5)O2(BO3) end-member], Ti-Al-rich members of LGM, "aluminoludwigite "[≤14 wt% Al2O3; ≤0.53 apfu, ≤53 mol% of Mg2AlO2(BO3) end-member] and Al-rich ludwigite in the central zone of crystals, to Ti-Al-poor ludwigite in outer parts of crystals. (2) Minerals of the late retrograde serpentinization and hydrothermal stage form irregular veinlets and aggregates, including partial alteration of hydroxylclinohumite to the serpentine-group mineral and clinochlore, replacement of LGM by szaibélyite, formation of the latest generation of Fe-rich, Ti-Al poor ludwigite in veinlets (type 4), and precipitation of dolomite, magnesite and sulphide minerals (valleriite, sphalerite, chalcopyrite). The distinct compositional zoning of the LGM documents a complex evolution of the skarn beginning with a high-temperature stage 1 and ending with a low-temperature overprint, stage 2.
NASA Astrophysics Data System (ADS)
Weilbach, K.; O'Cofaigh, C.; Lloyd, J. M.; Benetti, S.; Dunlop, P.
2016-12-01
Recent studies of the British and Irish Ice Sheet (BIIS) have identified evidence of ice extending to the continental shelf edge along the western margin of the ice sheet off NW Ireland. While this advance is assumed to have occurred during the LGM, exact timing of maximum advance, and the timing and nature of the subsequent retreat is not well constrained. The location of the north-western sector of the BIIS adjacent to the North Atlantic makes this area ideal to study the ice sheet dynamics of a major marine terminating ice sheet, and the rate and nature of its retreat following the LGM. High resolution swath bathymetry and sub-bottom profiler (SBP) data along with sedimentological, micropalaeontological and geochronological investigations of sediment cores, collected across the NW Irish shelf, have been used to establish the extent, timing and nature of retreat of this sector of the BIIS. Swath bathymetry show glacial landforms on the shelf, and SBP-data along with twenty seven vibro-cores were collected in east-west oriented transects across a series of arcuate recessional moraines stretching from the shelf edge to Donegal Bay. These moraines record progressive still stands of a lobate ice margin during its retreat from the shelf edge, and are therefore ideal for the investigation of ice-sheet dynamics and chronology during retreat. Twenty two radiocarbon dates from foraminifera and macrofossils, sampled from the sediment cores, indicate that maximum ice sheet extent occurred around 26200 y cal BP, with an initial rapid retreat across the shelf. Visual logging, X-ray imagery, MSCL data and palaeoenvironmental analyses of the sediment cores, indicate that retreat happened in a glacimarine environment, and was punctuated by multiple stillstands and possible readvances across the mid and inner shelf, forming the arcuate moraines. The radiocarbon dates suggest that final retreat occurred after 17857 y. cal BP, which is consistent with onshore cosmogenic exposure ages from NW Ireland, showing de-glaciation around 17400 y cal BP.
NASA Astrophysics Data System (ADS)
May, J.-H.; Preusser, F.; Zech, R.; Ilgner, J.; Veit, H.
2009-04-01
Throughout the Central Andes, glacial landscapes have long been used for the reconstruction of Late Quaternary glaciations and landscape evolution. Much work has focused on the Andes in Peru, Chile and the Bolivian Altiplano, whereas relatively little data has been published on glaciation history in the eastern Andean ranges and slopes. Even less is known with regard to the postglacial evolution of these glacial landscapes. In the Cordillera de Cochabamba (Bolivia), local maximum advances probably peaked around 20-25 ka BP and were followed by significant readvances between ~12-16 ka BP. This generally points to temperature controlled maximum glacial advances along the humid eastern slopes of the Central Andes, which is supported by glacier-climate-modelling studies. However, most studies include only marginal information with regard to the complex geomorphic and sedimentary situation in the Cordillera de Cochabamba. Furthermore, the chronological results are afflicted with several methodological uncertainties inherent to surface exposure dating and call for application of alternative, independent age dating methods. Therefore this study aims at i) documenting and interpreting the complex glacial geomorphology of the Huara Loma valley in the Cordillera de Cochabamba (Bolivia), ii) analyzing the involved units of glacial sediments, and iii) improving the chronological framework by applying optically stimulated luminescence (OSL) and radiocarbon dating (14C). For this purpose, geomorphic mapping was combined with field documentation of sedimentary profiles. The involved sediments were subject to geochemical and mineralogical analysis in order to deduce information on their erosional and weathering histories. In addition, the interpretation of OSL ages from glacial and proglacial sediments integrated several methodological procedures with regard to sample preparation and statistical analysis of the measurements in order to increase the degree of confidence. These combined efforts confirm two major glacial advances in the Cordillera de Cochabamba, which took place during the global LGM and during the Lateglacial. However, their relative chronologies and sedimentary interpretation indicate that the maximum extent of glaciation at Huara Loma was reached during humid Lateglacial times whereas conditions during the LGM were probably too dry.
10Be and 36Cl Surface Exposure age of the Puerto Banderas Moraine, Lago Argentino, Argentina, 50°S
NASA Astrophysics Data System (ADS)
Becker, R. A.; Ackert, R. P.; Singer, B. S.; Douglass, D. C.; Caffee, M.; Kurz, M.; Mickelson, D. M.; Rabassa, J.
2005-12-01
The Antarctic Cold Reversal (ACR) and Younger Dryas (YD) are prominent late deglacial cool periods expressed in polar ice and high latitude marine sediments between 14.8-12.7 and 12.7-11.5 ka, respectively. Debate centers on the extent to which YD cooling affected the earth`s surface, particularly in the mid- to high latitudes of the Southern Hemisphere. Resolving the timing of late glacial cooling is critical to determining the degree of inter-hemispheric synchroneity as the climate system evolved after the global Last Glaciation Maximum (LGM) 16 ka. The Puerto Banderas moraine was deposited at 50°S in the rain shadow east of the Andes and between LGM moraines 60 km to the east and the present south Patagonian Ice Cap 40 km to the west. It is a sharp-crested ridge 30 km long and 10-15 m high, topped by numerous erratic boulders >1 m high ideally suited for surface exposure dating. Radiocarbon dating provides only broad age limits. A weighted mean of three 14C ages on peat younger than the moraine of 11.7±0.3 cal. ka (2 σ), along with glacier behavior elsewhere in the Andes, led John Mercer to propose that the Puerto Banderas moraine is late glacial, ca. 15 ka. Recent mapping and two additional 14C ages suggest that the moraine may have been deposited in stages between 15.4 and 11.9 ka. New cosmogenic surface exposure ages from the most prominent part of this moraine, however, indicate a considerably younger age. The weighted mean of 10Be ages from quartz in 8 boulders is 11.3±0.7 ka. Moreover, the weighted mean of 36Cl ages from 8 other boulders is 10.9±0.9 ka. The weighted mean age of all 16 boulders is 11.1±0.5 ka. Uncertainties include analytical and production rate contributions. Our previous work in the region suggests that production rates may be 10% higher than expected owing to reduced air pressure during the late glacial and the early Holocene. Thus, the age of 11.1±0.5 ka is a maximum for the Puerto Banderas moraine and although it is possible that it formed after the YD, it is highly unlikely that it was deposited during the ACR. Lago Cardiel, a closed lake basin 175 km to the NE, was highest at 11.7 ka. Marine sediments cored west of the Andes at 41°S show warm sea surface temperatures and low salinity at 11.0 ka, consistent with increased precipitation and glacial erosion. These paleoclimate proxies imply that the Puerto Banderas records southern Patagonian Ice Cap expansion due to increased precipitation, likely tied to focusing of the moisture-laden southern Westerly storm track at 50°S between 12 and 11 ka.
NASA Astrophysics Data System (ADS)
Lakeman, Thomas R.; England, John H.
2013-07-01
The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.
A Late Pleistocene sea level stack
NASA Astrophysics Data System (ADS)
Spratt, Rachel M.; Lisiecki, Lorraine E.
2016-04-01
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.
NASA Astrophysics Data System (ADS)
Wang, Xingchen Tony; Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-03-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.
10Be exposure age chronology of the last glaciation in the Krkonoše Mountains, Central Europe
NASA Astrophysics Data System (ADS)
Engel, Zbyněk; Braucher, Régis; Traczyk, Andrzej; Laetitia, Léanni; AsterTeam
2014-02-01
A new chronology of the last glaciation is established for the Krkonoše (Giant) Mountains, Central Europe, based on in-situ produced 10Be in moraine boulders. Exposure ages and Schmidt Hammer rebound values obtained for terminal moraines on the northern and southern flank of the mountains suggest that the oldest preserved moraines represent early phases of the Last Glacial Maximum (LGM). Large moraines at the outlet of the Snowy Cirques (Śnieżne Kotły) and in the middle part of the Úpa (Obří důl) trough were deposited around 21 ka while a series of smaller moraines above the LGM deposits represent readvances that occurred no later than 18.1 ± 0.6 ka, 15.7 ± 0.5 ka, 13.5 ± 0.5 ka and 12.9 ± 0.7 ka. An exposure age of 13.8 ± 0.4 ka obtained for protalus ramparts at the foot of the Úpská jáma Cirque headwall indicates that glaciers advanced only in north- to east-facing cirques during the Lateglacial. The last glacier fluctuation was synchronous with the Younger Dryas cold event. The timing of local glacier advances during the last glacial episode correlates with the late Weichselian glacier phases in the Alps and in the Bavarian/Bohemian Forest.
Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-01-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively. PMID:28298529
Assessing the Reliability of Curriculum-Based Measurement: An Application of Latent Growth Modeling
ERIC Educational Resources Information Center
Yeo, Seungsoo; Kim, Dong-Il; Branum-Martin, Lee; Wayman, Miya Miura; Espin, Christine A.
2012-01-01
The purpose of this study was to demonstrate the use of Latent Growth Modeling (LGM) as a method for estimating reliability of Curriculum-Based Measurement (CBM) progress-monitoring data. The LGM approach permits the error associated with each measure to differ at each time point, thus providing an alternative method for examining of the…
NASA Astrophysics Data System (ADS)
Galbraith, Eric; de Lavergne, Casimir
2018-03-01
Over the past few million years, the Earth descended from the relatively warm and stable climate of the Pliocene into the increasingly dramatic ice age cycles of the Pleistocene. The influences of orbital forcing and atmospheric CO2 on land-based ice sheets have long been considered as the key drivers of the ice ages, but less attention has been paid to their direct influences on the circulation of the deep ocean. Here we provide a broad view on the influences of CO2, orbital forcing and ice sheet size according to a comprehensive Earth system model, by integrating the model to equilibrium under 40 different combinations of the three external forcings. We find that the volume contribution of Antarctic (AABW) vs. North Atlantic (NADW) waters to the deep ocean varies widely among the simulations, and can be predicted from the difference between the surface densities at AABW and NADW deep water formation sites. Minima of both the AABW-NADW density difference and the AABW volume occur near interglacial CO2 (270-400 ppm). At low CO2, abundant formation and northward export of sea ice in the Southern Ocean contributes to very salty and dense Antarctic waters that dominate the global deep ocean. Furthermore, when the Earth is cold, low obliquity (i.e. a reduced tilt of Earth's rotational axis) enhances the Antarctic water volume by expanding sea ice further. At high CO2, AABW dominance is favoured due to relatively warm subpolar North Atlantic waters, with more dependence on precession. Meanwhile, a large Laurentide ice sheet steers atmospheric circulation as to strengthen the Atlantic Meridional Overturning Circulation, but cools the Southern Ocean remotely, enhancing Antarctic sea ice export and leading to very salty and expanded AABW. Together, these results suggest that a `sweet spot' of low CO2, low obliquity and relatively small ice sheets would have poised the AMOC for interruption, promoting Dansgaard-Oeschger-type abrupt change. The deep ocean temperature and salinity simulated under the most representative `glacial' state agree very well with reconstructions from the Last Glacial Maximum (LGM), which lends confidence in the ability of the model to estimate large-scale changes in water-mass geometry. The model also simulates a circulation-driven increase of preformed radiocarbon reservoir age, which could explain most of the reconstructed LGM-preindustrial ocean radiocarbon change. However, the radiocarbon content of the simulated glacial ocean is still higher than reconstructed for the LGM, and the model does not reproduce reconstructed LGM deep ocean oxygen depletions. These ventilation-related disagreements probably reflect unresolved physical aspects of ventilation and ecosystem processes, but also raise the possibility that the LGM ocean circulation was not in equilibrium. Finally, the simulations display an increased sensitivity of both surface air temperature and AABW volume to orbital forcing under low CO2. We suggest that this enhanced orbital sensitivity contributed to the development of the ice age cycles by amplifying the responses of climate and the carbon cycle to orbital forcing, following a gradual downward trend of CO2.
NASA Astrophysics Data System (ADS)
Huang, K.; Oppo, D.; Curry, W. B.
2012-12-01
Reconstruction of changes in Antarctic Intermediate Water (AAIW) circulation across the last deglaciation is critical in constraining the links between AAIW and Atlantic Meridional Overturning Circulation (AMOC) and understanding how AAIW influences oceanic heat transport and carbon budget across abrupt climate events. Here we systematically establish in situ calibrations for carbonate saturation state (B/Ca), nutrient (Cd/Ca and δ13C) and watermass proxies (ɛNd) in foraminifera using multicore tops and ambient seawater samples collected from the Demerara Rise, western tropical Atlantic. Through the multi-proxy reconstructions, deglacial variability of intermediate water circulation in the western tropical Atlantic can be further constrained. The reconstructed seawater Cd record from the Demerara Rise sediment core (KNR197-3-46CDH, at 947 m water depth) over the last 21 kyrs suggests reduced presence of AAIW during the cold intervals (LGM, H1 and YD) when AMOC was reduced. Down-core B/Ca record shows elevated intermediate water Δ[CO32-] during these cold intervals, further indicating a weaker influence of AAIW in the western tropical Atlantic. The δ13C record exhibits a pronounced deglacial minimum and a clear decoupling between δ13C and Cd/Ca after the AMOC completely recovered at around 8 kyr BP. This could be due to the carbonate ion effect on benthic Cd/Ca or the influence of organic matter remineralization on benthic δ13C. A new ɛNd record for the last deglaciation will be provided to evaluate the relative proportions of southern and northern waters at this intermediate site in the western tropical Atlantic.
NASA Astrophysics Data System (ADS)
Johnson, B. J.; Wakeham, S.; Gelinas, Y.; Luly, J.; Miller, G.
2004-12-01
In northern and central Australia, late Quaternary records of terrestrial environmental change are rare due to generally poor preservation of pollen grains and a derth of long-term, continuous lacustrine sedimentary deposits. The Wombe mound spring in the Keep River National Park, Northern Territory, is an organic mound and isolated patch of monsoon vine thicket thought to have formed tens of thousands of years ago. In an effort to obtain a record of paleovegetation and fire history from northern Australia, a 3.4 m sediment core was recovered from the Wombe mound spring and subject to multiple types of analyses. The core represents a continuous depositional sequence with radiocarbon ages spanning the last 35 ka cal years (hereafter referred to as 35 ka). Paleovegetation was reconstructed using a combination of pollen and carbon isotopes in bulk sediment and higher plant leaf wax (HPLW) lipid biomarkers. The fire history was reconstructed from paired graphitic black carbon (GBC) and polycyclic aromatic hydrocarbon (PAH) analyses of the core sediments. Between 35 and 11 ka, the bulk organic carbon (OC) isotope data fluctuate between -22 and -15%, with the most isotopically enriched values measured at 11.4 ka. Between 12.3 and 6.8 ka, OC isotope values decrease by 13%, and remain steady from 6.8 ka to the present at -28%. There are two distinct peaks of isotopic enrichment in the higher plant leaf wax biomarkers. These two peaks coincide with the Last Glacial Maximum (LGM; 21 ka) and the Younger Dryas (YD; 11.4 ka) and represent maximum increases in C4 grasses relative to C3 plants. Relative increases in C4 grasses during the LGM in other parts of the tropics (i.e., Sacred Lake, Mt. Kenya) have been attributed to the competitive advantage of C4 plants relative to C3 plants under reduced atmospheric pCO2 and is likely the cause for C4 expansion in northern Australia. The increase in C4 grasses during the YD is reflected in the bulk sediment and HPLW isotope data and is also documented in the Sacred Lake record and may result from an increase in intensity of the easterly trade winds. GBC and PAH analyses are correlated to each other with maximum concentrations of each occurring between 28 and 30 ka and between 13 and 18 ka. The fact that these records are correlated suggests that each is an independent proxy for fire frequency at the Wombe mound spring. These periods of increased fire frequency may be associated with excessive fuel build-up and burn, or increased vulnerability of the vegetation to periods of enhanced aridity. Low GBC and PAH concentrations at approximately 20 ka and 11 ka are attributed to relatively reduced fuel loads during extreme dry events of the LGM and YD. Low GBC and PAH values during the Holocene coupled with establishment of the C3 mound spring indicate that there is very little evidence of fire over the last 8 ka preserved at the site. This likely reflects the moist microenvironment of the mound spring and not the regional fire history of the area.
Simulation of comprehensive chemistry and atmospheric methane lifetime in the LGM with EMAC
NASA Astrophysics Data System (ADS)
Gromov, Sergey; Steil, Benedikt
2017-04-01
Past records of atmospheric methane (CH4) abundance/isotope composition may provide a substantial insight on C exchanges in the Earth System (ES). When simulated in the climate models, CH4 helps to identify climate parameters transitions via triggering of its different (natural) sources, with a proviso that its sinks are adequately represented in the model. The latter are still a matter of large uncertainty in the studies focussing on the interpretation of CH4 evolution throughout Last Glacial Maximum (LGM), judging the conferred span of tropospheric CH4 lifetime (λ) of 3-16 yr [1-4]. In this study, we attempt to: (i) deliver the most adequate estimate of the LGM atmospheric sink of CH4 in the EMAC AC-GCM [5] equipped with the comprehensive representation of atmospheric chemistry [6], (ii) reveal the ES and CH4 emission parameters that are most influential for λ and (iii) based on these findings, suggest a parameterisation for λ that may be consistently used in climate models. In pursuing (i) we have tuned the EMAC model for simulating LGM atmospheric chemistry state, including careful revisiting of the trace gases emissions from the biosphere, biomass burning/lightning source, etc. The latter affect the key simulated component bound with λ, viz. the abundance and distribution of the hydroxyl radicals (OH) which, upon reacting with CH4, constitute its main tropospheric sink. Our preliminary findings suggest that OH is buffered in the atmosphere in a similar fashion to preindustrial climate, which in line with the recent studies employing comprehensive chemistry mechanisms (e.g., [3]). The analysis in (ii) suggests that tropospheric λ values may be qualitatively described as a convolution of values typical for zonal domain with high and low photolytic recycling rates (i.e. tropics and extra-tropics), as in the latter a dependence of the zonal average λ value on the CH4 emission strength exists. We further use the extensive diagnostic in EMAC to infer the sensitivity of zonal OH to changes in various component of the ES, e.g. in stratospheric O3 input and dynamics. Finally, we discuss the potential set of parameters required for efficient λ and/or OH parameterisation implementation in models dealing with (transient) climate simulations. References 1. Fischer, H., et al.: Changing boreal methane sources and constant biomass burning during the last termination, Nature, 452, 864-867, doi: 10.1038/nature06825, 2008. 2. Kaplan, J. O., Folberth, G.,and Hauglustaine, D. A.: Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations, Global Biogeochemical Cycles, 20, n/a-n/a, doi: 10.1029/2005GB002590, 2006. 3. Murray, L. T., et al.: Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, Atmos. Chem. Phys., 14, 3589-3622, doi: 10.5194/acp-14-3589-2014, 2014. 4. Valdes, P. J., Beerling, D. J.,and Johnson, C. E.: The ice age methane budget, Geophysical Research Letters, 32, n/a-n/a, doi: 10.1029/2004GL021004, 2005. 5. Jöckel, P., et al.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717-752, doi: 10.5194/gmd-3-717-2010, 2010. 6. Lelieveld, J., et al.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477-12493, doi: 10.5194/acp-16-12477-2016, 2016.
NASA Astrophysics Data System (ADS)
Hirsch, Florian; Raab, Thomas
2016-04-01
According to the state of knowledge, the glacial advances in the Eastern Pyrenees were synchronous with the global LGM during the Late Pleistocene (MIS 2), but the glacial advances in the Central Spanish Pyrenees at MIS 3 were asynchron with the global LGM. Whereas in the Eastern Pyrenees the glacial advances are dated in several well agreeing studies by surface exposure dating of boulders from lateral or terminal moraines, the asynchronity of the Central Spanish Pyrenees was postulated mainly by OSL dating on glacial and fluvial sediments and on radiocarbon dating of pollen from lacustrine deposits. The time difference of about 15 ka raises the question if this is a result of (local) climate factors or owed to failures caused by using several dating techniques on different archives. Anyway, if this time lag is correct, post-LGM formation of soils and sediments from the Late Pleistocene should be different between the Eastern Pyrenees and the Central Spanish Pyrenees. We therefore applied a combined approach of geomorphological, sedimentological and pedological investigations to reconstruct the Late Quaternary landscape development in the Aragon- and Gallego Valley of the Central Spanish Pyrenees. Our study reveals that in both valleys the Pre-Holocene geomorphodynamics on the lateglacial deposits show clear analogies with findings from Pleistocene periglacial landscapes in Central Europe. For MIS 4 and early MIS 3 periglacial processes are proven by loess deposition and formation of solifluction sediments. The glacial sediments, which were dated in earlier studies into mid MIS 3 and counted so far as prove for the asynchronous LGM of the Central Spanish Pyrenees, are covered by periglacial deposits of lateglacial age (14 ka to 11 ka). Surprisingly neither the glacial sediments have pedogenic features that indicate lateglacial soil development, nor do the periglacial deposits show indications for lateglacial soil erosion. Therefore we conclude that soil formation began after the sedimentation of the periglacial deposits, either implying a striking timeframe of more than 15 ka with a stable landscape without any pedogenesis, or the untenability of the MIS 3 age of the glacial sediments. Because we can clearly differentiate further phases of geomorphodynamics during the Holocene with truncated soil profiles and the correlate sediments of soil erosion next to undisturbed soils in periglacial sediments with a lateglacial age, we challenge the thesis of an asynchronous LGM in the Central Spanish Pyrenees and advocate a synchronous LGM in the Gallego- and Aragon valley analog to the Eastern Pyrenees.
Griebeler, Eva Maria; Klein, Nicole; Sander, P. Martin
2013-01-01
Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp.) and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti). Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM), all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average mammals, but younger than scaled-up megaherbivores. PMID:23840575
Griebeler, Eva Maria; Klein, Nicole; Sander, P Martin
2013-01-01
Information on aging, maturation, and growth is important for understanding life histories of organisms. In extinct dinosaurs, such information can be derived from the histological growth record preserved in the mid-shaft cortex of long bones. Here, we construct growth models to estimate ages at death, ages at sexual maturity, ages at which individuals were fully-grown, and maximum growth rates from the growth record preserved in long bones of six sauropod dinosaur individuals (one indeterminate mamenchisaurid, two Apatosaurus sp., two indeterminate diplodocids, and one Camarasaurus sp.) and one basal sauropodomorph dinosaur individual (Plateosaurus engelhardti). Using these estimates, we establish allometries between body mass and each of these traits and compare these to extant taxa. Growth models considered for each dinosaur individual were the von Bertalanffy model, the Gompertz model, and the logistic model (LGM), all of which have inherently fixed inflection points, and the Chapman-Richards model in which the point is not fixed. We use the arithmetic mean of the age at the inflection point and of the age at which 90% of asymptotic mass is reached to assess respectively the age at sexual maturity or the age at onset of reproduction, because unambiguous indicators of maturity in Sauropodomorpha are lacking. According to an AIC-based model selection process, the LGM was the best model for our sauropodomorph sample. Allometries established are consistent with literature data on other Sauropodomorpha. All Sauropodomorpha reached full size within a time span similar to scaled-up modern mammalian megaherbivores and had similar maximum growth rates to scaled-up modern megaherbivores and ratites, but growth rates of Sauropodomorpha were lower than of an average mammal. Sauropodomorph ages at death probably were lower than that of average scaled-up ratites and megaherbivores. Sauropodomorpha were older at maturation than scaled-up ratites and average mammals, but younger than scaled-up megaherbivores.
NASA Astrophysics Data System (ADS)
Engel, Zbyněk; Mentlík, Pavel; Braucher, Régis; Křížek, Marek; Pluháčková, Markéta; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim; Aster Team; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim
2017-09-01
10Be exposure ages from moraines and bedrock sites in the Roháčská Valley provide chronology of the last glaciation in the largest valley of the Western Tatra Mts., the Western Carpathians. The minimum apparent exposure age of 19.4 ± 2.1 ka obtained for the oldest sampled boulder and the mean age of 18.0 ± 0.8 ka calculated for the terminal moraine indicate that the oldest preserved moraine was probably deposited at the time of the global Last Glacial Maximum (LGM). The age of this moraine coincides with the termination of the maximum glacier expansion in other central European ranges, including the adjacent High Tatra Mts. and the Alps. The equilibrium line altitude (ELA) of the LGM glacier in the Roháčská Valley, estimated at 1400-1410 m a.s.l., was 50-80 m lower than in the eastern part of the range, indicating a positive ELA gradient from west to east among the north-facing glaciers in the Tatra Mts. Lateglacial glacier expansion occurred no later than 13.4 ± 0.5 ka and 11.9 ± 0.5 ka, as indicated by the mean exposure ages calculated for re-advance moraines. This timing is consistent with the exposure age chronology of the last Lateglacial re-advance in the High Tatra Mts., Alps and lower mountain ranges in central Europe. The ELA in the Roháčská Valley estimated at 1690-1770 m a.s.l. in this period was located 130-300 m lower than in the north-facing valleys in the High Tatra Mts. 10Be exposure ages obtained for a rock glacier constrains the timing of this landform stabilization in the Salatínska Valley and provides the first chronological evidence for the Lateglacial activity of rock glaciers in the Carpathians.
NASA Astrophysics Data System (ADS)
Lehmkuhl, Frank; Nottebaum, Veit; Hülle, Daniela
2018-07-01
The reconstruction of geomorphological processes as a result of environmental change is approached by investigating and dating some fluvial, aeolian and lacustrine archives at specific locations that form a N-S basin and range transect across the Khangai Mountains south to the eastern Gobi Altai mountains in Mongolia. Geomorphological processes varied a) spatially with different climatic conditions and vegetation cover in relation to different elevation and latitude and b) temporally due to climatic shifts during the late Quaternary. In total, 15 sections from three distinct sub-regions along that transect were dated by 22 OSL ages. The Khangai Mountain sub-region exhibits mainly late Glacial to Holocene aeolian silty to sandy cover sediments mainly in the upper catchment reaches (>1800 m a.s.l.). Sections in the northern and central Gobi represent river terraces and alluvial fans in basin areas as well as aeolian sediments in the mountains above 2200 m a.s.l. The oldest terrace surface found in this study (T2; NGa1) dates to the penultimate Glacial cycle. The T1 terrace surfaces, on the northern Khangai Mountain front and in the central Gobi sub-region yield a maximum accumulation during the global Last Glacial Maximum (gLGM) and late Glacial time. During the gLGM phase represents rather sheetflow dominated transport built the alluvial fans and in late Glacial times the sediments exhibit more debrisflow controlled accumulation. Incision, forming the T1-terrace edges is therefore, supposed for the Pleistocene-Holocene transition and subsequent early Holocene. The geomorphic evidence is interpreted as stronger fluvial morphodynamics induced by enhanced humidity under beginning interglacial conditions. These processes coincided with the development of aeolian mantles at higher altitudes in the Khangai and Gobi Altai mountains where higher temperatures and humidities supported the formation of a vegetation cover, that served as a dust trap at least since late Glacial times and reduced the sediment supply on the alluvial fans.
Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)
NASA Astrophysics Data System (ADS)
Pellitero, Ramon
2014-05-01
Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.
NASA Astrophysics Data System (ADS)
Pitulko, Vladimir; Pavlova, Elena; Nikolskiy, Pavel
2017-06-01
As the main external driver, environmental changes largely predetermine human population distribution, especially in the Arctic, where environmental conditions were often too extreme for human survival. Not that long ago the only evidence of human presence here was the Berelekh site in the lower reaches of the Indighirka River. This landmark dates to 13,000-12,000 years ago but it was widely accepted as documentation of the earliest stage of human dispersal in the Arctic. New research discussed here, shows that humans began colonizing the Siberian Arctic at least by the end of the early stage of MIS 3 at around 45,000 years ago. For now, this earliest known stage of human occupation in the arctic regions is documented by the evidence of human hunting. The archaeological record of continued human occupation is fragmentary; nevertheless, evidence exists for each significant phase including the Last Glacial Maximum (LGM). Siberian Arctic human populations were likely supported by the local mammoth population, which provided humans with food and raw material in the form of mammoth tusks. Processing of mammoth ivory is recognized widely as one of the most important peculiarities of the material culture of ancient humans. In fact, ivory tool manufacturing is one of the most important innovations of the Upper Palaeolithic in northern Eurasia. Technology that allowed manufacturing of long ivory shafts - long points and full-size spears - was critical in the tree-less open landscapes of Eurasian mammoth steppe belt. These technological skills reach their greatest extent and development shortly before the Last Glacial Maximum but are recognizable until the Pleistocene-Holocene boundary across Northern Eurasia in all areas populated by mammoths and humans. Loss of this stable source of raw material due to the late Pleistocene mammoth extinction may have provoked a shift in post-LGM Siberia to the Beringian microblade tradition. This paper reviews the most important archaeological findings made in arctic Siberia over the last twenty years.
A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core
NASA Astrophysics Data System (ADS)
D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.
2017-05-01
Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.
NASA Astrophysics Data System (ADS)
Cohen, D.; Zwinger, T.; Haeberli, W.; Fischer, U. H.
2016-12-01
The safe disposal of radioactive wastes in deep geological repositories requires their containment and isolation for up to one million years. Over that time period, the performance of the repositories in mid- and high-latitude regions can be impacted by future ice-age conditions which may cause deep glacial erosion, permafrost development, and changes in groundwater fluxes. In Switzerland, repositories are planned in the northern Swiss lowlands near the marginal zone of the former Rhine Glacier that repeatedly formed two extensive piedmont lobes (the Rhine and Linth lobes) over the Swiss Plateau. There, overdeepenings formed by glacial erosion indicate that the glacier was warm-based. Yet the Last Glacial Maximum (LGM) occurred under cold conditions: central Europe experienced extremely cold and dry conditions caused by the penetration of winter sea ice to low latitudes in the Atlantic Ocean and the corresponding closure of the primary humidity source north of the Alps. At the LGM, flat and extended lobes of large piedmont glaciers spreading out over much of the Swiss Plateau were polythermal, characterized by low driving stresses (typically around 30 kPa) and surrounded by continuous periglacial permafrost up to 150 m thick. Subsurface temperatures and groundwater flow conditions were strongly influenced by the presence of extended surface and subsurface ice. Using numerical models we explore the effects of permafrost on basal conditions of the piedmont lobes during the build-up of the Rhine Glacier. We apply a two-dimensional transient fully coupled thermomechanical full stress ice-flow and permafrost model along a flowline characterizing the Rhine lobe. The energy equation is solved in both ice and rock and permafrost is modeled using an effective heat capacity formulation to account for phase transitions. Transient effects during ice advances and permafrost build-up up to the LGM are resolved by modeling the full glacial cycle using reconstructed temperature and mass balance gradients from either Greenland or Antarctic ice cores. We explore how climate parameterization (temperature offset, mass balance gradients in the accumulation and ablation zones, climate signals) affect the development of temperate basal conditions necessary for significant erosion to occur.
Palaeocirculation across New Zealand during the last glacial maximum at ˜21 ka
NASA Astrophysics Data System (ADS)
Lorrey, Andrew M.; Vandergoes, Marcus; Almond, Peter; Renwick, James; Stephens, Tom; Bostock, Helen; Mackintosh, Andrew; Newnham, Rewi; Williams, Paul W.; Ackerley, Duncan; Neil, Helen; Fowler, Anthony M.
2012-03-01
What circulation pattern drove Southern Alps glacial advances at ˜21 ka? Late 20th century glacial advances in New Zealand are commonly attributed to a dual precipitation increase and cooler than normal temperatures associated with enhanced westerly flow that occur under synoptic pressure patterns termed 'zonal' regimes (Kidson, 2000). But was the circulation pattern that supported major Southern Alps glacial advances during the global LGM similar to the modern analog? Here, a Regional Climate Regime Classification (RCRC) time slice was used to infer past circulation for New Zealand during the LGM at ˜21 ka. Palaeoclimate information that supported the construction of the ˜21 ka time slice was derived from the NZ-INTIMATE Climate Event Stratigraphy (CES), one new Auckland maar proxy record, and additional low-resolution data sourced from the literature. The terrestrial evidence at ˜21 ka implicates several possibilities for past circulation, depending on how interpretations for some proxies are made. The interpretation considered most tenable for the LGM, based on the agreement between terrestrial evidence, marine reconstructions and palaeoclimate model results is an 'anticyclonic/zonal' circulation regime characterized by increased influences from blocking 'highs' over the South Island during winter and an increase in zonal and trough synoptic types (with southerly to westerly quarter wind flow) during summer. These seasonal circulation traits would have generated lower mean annual temperatures, cooler than normal summer temperatures, and overall lower mean annual precipitation for New Zealand (particularly in the western South Island) at ˜21 ka. The anticyclonic/zonal time slice reconstruction presented in this study has different spatial traits than the late 20th Century and the early Little Ice Age signatures, suggesting more than one type of regional circulation pattern can drive Southern Alps glacial activity. This finding lends support to the hypothesis that temperature over precipitation change is more important as the primary modulator of Southern Alps ice advances. The RCRC approach also demonstrates some subtle advantages of integrating multi-proxy data within a palaeocirculation context for New Zealand, notably because this reconstruction technique enables direct comparisons to coarsely resolved palaeoclimate model outputs that do not have downscaled information.
NASA Astrophysics Data System (ADS)
Steffen, Holger; Wu, Patrick
2015-04-01
This poster will present the results of Steffen & Wu (2014). The sensitivity of GNSS measurements in Fennoscandia to nearby viscosity variations in the upper mantle is investigated using a three-dimensional finite element model of glacial isostatic adjustment (GIA). Based on the lateral viscosity structure inferred from seismic tomography and the location of the ice margin at the last glacial maximum (LGM), the GIA earth model is subdivided into four layers, where each of them contains an amalgamation of about 20 blocks of different shapes in the central area. The sensitivity kernels of the three velocity components at 10 selected GNSS stations are then computed for all the blocks. We find that GNSS stations within the formerly glaciated area are most sensitive to mantle viscosities below and in its near proximity, i.e., within about 250 km in general. However, this can be as large as 1000 km if the stations lie near the center of uplift. The sensitivity of all stations to regions outside the ice margin during the LGM is generally negligible. In addition, it is shown that prominent structures in the second (250-450 km depth) and third layers (450-550 km depth) of the upper mantle may be readily detected by GNSS measurements, while the viscosity in the first mantle layer below the lithosphere (70-250 km depth) along the Norwegian coast, which is related to lateral lithospheric thickness variation there, can also be detected but with limited sensitivity. For future investigations on the lateral viscosity structure, preference should be on GNSS stations within the LGM ice margin. But these stations can be grouped into clusters to improve the inference of viscosity in a specific area. However, the GNSS measurements used in such inversion should be weighted according to their sensitivity. Such weighting should also be applied when they are used in combination with other GIA data (e.g., relative sea-level and gravity data) for the inference of mantle viscosity. Reference: Steffen, H. and Wu, P.: The sensitivity of GNSS measurements in Fennoscandia to distinct three-dimensional upper-mantle structures, Solid Earth, 5, 557-567, doi:10.5194/se-5-557-2014, 2014.
A Million-Year Record of Glaciation in the Tropical Andes
NASA Astrophysics Data System (ADS)
Smith, J. A.; Seltzer, G. O.; Rodbell, D. T.; Farber, D. L.; Finkel, R. C.
2004-12-01
We present a longterm record of glaciation in the tropical Andes based on cosmogenic dating (10Be) of boulders on moraines. Well-preserved moraines in deglaciated valleys bordering the Junin Plain in central Peru ( ˜11° S, 76° W, 4000 m) were deposited during several glacial cycles extending back more than one million years before present (1 Myr BP). The presence of boulders with zero-erosion 10Be exposure ages >1 Myr constrains boulder erosion rates to relatively low values. For boulders at high altitudes, however, even low boulder erosion rates (0.3 to 0.5 m/Myr) make calculated old exposure ages markedly older [e.g., ˜20% older for a zero-erosion age of 400,000 10Be years (400 10Be kyr)]. Exposure ages recalculated with boulder erosion rates of 0.3 m/Myr straddle interglacial marine isotope stage (MIS) 11 ( ˜430-390 kyr BP), fall within glacial MIS 12 ( ˜480-430 kyr BP), but skip over glacial MIS 16 ( ˜670-630 kyr BP), perhaps the largest ice volume of the past 2 Myr. Increasing the erosion rate used in the calculations to 0.5 m/Myr moves ages into both MIS 11 and MIS 16. If we assume that the older Andean glaciations were indeed synchronous with global ice volume, our data suggest that boulder preservation cannot be treated as a simple linear process. Conversely, the data may be suggesting correctly that glaciation of the tropical Andes was not synchronous with the global glaciations as inferred from the marine isotope record. Our chronology for the last glacial maximum (LGM) in the region supports the idea of asynchrony between the global ice volume record and the terrestrial record of glaciation in the tropical Andes. The LGM in the Junin region of Peru and in the Cordillera Real of Bolivia (16° S 68° W) occurred ˜34 to 22 10Be kyr BP and was less extensive than older glaciations. Asynchrony between the LGM in the Northern Hemisphere ( ˜21 kyr BP) and the tropical Andes suggests that previous glaciations in the tropical Andes may have been similarly out of step.
Climate, herbivory, and fire controls on tropical African forest for the last 60ka
NASA Astrophysics Data System (ADS)
Ivory, Sarah J.; Russell, James
2016-09-01
The Last Glacial Maximum (LGM) in Africa was drier than today and was followed by rapid step-wise climate changes during the last deglacial period. In much of Africa, these changes led to a drastic reduction of lowland forest area during the LGM, followed by recolonization of the lowlands by forest and woodland in concert with regional warming and wetting. However, the history of southeastern African vegetation contrasts with that observed further north. In particular, forest expansion appears to have occurred in southeastern Africa during episodes of high-latitude northern hemisphere cooling. Although vegetation history in Africa is generally assumed to relate purely to climate, previous studies have not addressed potential feedbacks between climate, vegetation, and disturbance regimes (fire, herbivory) that may create tipping points in ecosystems. This climate-vegetation history has profound implications for our understanding of the modern architecture of lowland and highland forests, both thought to be at risk from future climate change. Here we present analyses of fossil pollen, charcoal, and Sporormiella (dung fungus) on a continuous 60 kyr record from central Lake Tanganyika, Southeast Africa, that illustrates the interplay of climate and disturbance regimes in shaping vegetation composition and structure. We observe that extensive forests dominated the region during the last glacial period despite evidence of decreased rainfall. At the end of the LGM, forest opening at ∼17.5 ka followed warming temperatures but preceded rising precipitation, suggesting that temperature-induced water stress and disturbance from fire and herbivory affected initial landscape transformation. Our Sporormiella record indicates that mega-herbivore populations increased at the early Holocene. This higher animal density increased plant species richness and encouraged landscape heterogeneity until the mid-Holocene. At this time, regional drying followed by the onset of the Iron Age in the late Holocene resulted in expansion of thicket, more open woodland, and disturbance taxa that still characterize the landscape today. This climate-vegetation history has important implications for our understanding of the modern and future distribution of lowland and highland forests, which are at risk from future climate change.
The Impact of Water Loading on Estimates of Postglacial Decay Times in Hudson Bay
NASA Astrophysics Data System (ADS)
Han, H. K.; Gomez, N. A.
2016-12-01
Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations since the Last Glacial Maximum (LGM) has been contributing to sea level changes globally throughout the Holocene, especially in regions like the Canada that were heavily glaciated during the LGM. The spatial and temporal distribution of GIA and relative sea level change are attributed to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that relative sea level curves in previously glaciated regions follow an exponential-like form, and the post glacial decay times associated with that form have weak sensitivity to the details of the ice loading history (Andrews 1970, Walcott 1980, Mitrovica & Peltier 1995). Post glacial decay time estimates may therefore be used to constrain the Earth's structure and improve GIA predictions. However, estimates of decay times in Hudson Bay in the literature differ significantly due to a number of sources of uncertainty and bias (Mitrovica et al. 2000). Previous decay time analyses have not considered the potential bias that surface loading associated with Holocene sea level changes can introduce in decay time estimates derived from nearby relative sea level observations. We explore the spatial patterns of post glacial decay time predictions in previously glaciated regions, and their sensitivity to ice and water loading history. We compute post glacial sea level changes over the last deglaciation from 21ka to the modern associated with the ICE5G (Peltier, 2004) and ICE6G (Argus et al. 2014, Peltier et al. 2015) ice history models. We fit exponential curves to the modeled relative sea level changes, and compute maps of post glacial decay time predictions across North America and the Arctic. In addition, we decompose the modeled relative sea level changes into contributions from water and ice loading effects, and compute the impact of water loading redistribution since the LGM on present day decay times. We show that Holocene water loading in the Hudson Bay may introduce significant bias in decay time estimates and we highlight locations where biases are minimized.
The sedimentary evolution of the Celtic Sea during Marine Isotope Stages 1 and 2
NASA Astrophysics Data System (ADS)
Lockhart, Edward; Scourse, James; Van Landeghem, Katrien; Praeg, Daniel; Mellett, Claire; Huws, Dei; Saher, Margot; Benetti, Sara
2017-04-01
During the Last Glacial Maximum (LGM), the Celtic Sea was partially glaciated by the Irish Sea Ice Stream and is considered to have subsequently experienced a high-energy post-glacial transgression. The combination of these events resulted in the deposition, reworking and erosion of a wide range of sediment types to produce the upper stratigraphy of the shelf, including the world's largest submarine elongated ridges. These geomorphic features dominate the shelf and have been previously interpreted to have formed as a result of the tidal reworking of shelf deposits during transgression, despite not having been directly dated. Shelf-wide high-resolution geophysical data, and vibrocores, collected as part of the BRITICE-CHRONO Project, provide new information on relationships between seismic and shallow sedimentary units. A regionally extensive near-surface reflector, cored in several locations, correlates to a gravel/shell layer with an erosive base, unconformably overlying fine-grained LGM glacial sediments with undrained shear strengths in excess of 120 kPa, and in places exhibiting visibly deformed laminations. Geotechnical tests suggest these sediments to be over-consolidated, and we propose that these properties and the observed deformation can only be explained by subglacial reworking under a re-advancing Irish Sea Ice Stream, a scenario never before evidenced in reconstructions of Celtic Sea glaciation. Previous reconstructions propose a single advance-retreat cycle; therefore, a re-advance during a time of inferred retreat would represent a significant change in glacial dynamics. Seismic reflection profiles show that the regionally continuous gravel/shell layer appears to form an undulating palaeo-topography, possibly influenced by the geotechnical properties of the deposits below, on which the large surface ridges are formed. The presence of a regionally continuous reflection surface truncating LGM glacial sediments would suggest a significant erosion event after glacial deposition occurred, possibly representing transgression. This suggests that the large surface ridges may be of post-glacial tidal origin, but with significant sediment supply and morphological control influenced by the glaciation of the Celtic Sea.
Causations of phylogeographic barrier of some rocky shore species along the Chinese coastline.
Wang, Jie; Tsang, Ling Ming; Dong, Yun-Wei
2015-06-15
Substrate, ocean current and freshwater discharge are recognized as important factors that control the larval dispersal and recruitment of intertidal species. Life history traits of individual species will determine the differential responses to these physical factors, and hence resulting in contrasting phylogeography across the same biogeographic barrier. To determine how these factors affect genetic structure of rocky shore species along the China coast, a comparative phylogeographic study of four intertidal and subtidal species was conducted using mitochondrial and nuclear DNA by combining new sequences from Siphonaria japonica with previously published sequences from three species (Cellana toreuma, Sargassum horneri and Atrina pectinata). Analysis of molecular variance and pairwise ΦST revealed significant genetic differences between the Yellow Sea (YS) and the other two marginal seas (East China Sea, ECS and South China Sea, SCS) for rocky-shore species (S. japonica, C. toreuma, S. horneri), but not for muddy-shore species Atrina pectinata. Demographic history analysis proved that the population size of all these four species were persistent though the Last Glacial Maximum (LGM, ~20 ka BP). Migration analysis revealed that gene flow differentiated northward and southward migration for these four species. However, the inferred direction of gene flow using alternatively mitochondrial or nuclear markers was contradictory in S. japonica. It is concluded that there is a phylogeographical break at the Yangtze River estuary for the rocky shore species and the causation of the barrier is mainly due to the unsuitable substratum and freshwater discharge. All four intertidal and subtidal species appear to have persisted through the LGM in China, indicating the lower impact of LGM on intertidal and subtidal species than generally anticipated. The imbalanced gene flow between YS and ESCS groups for these four species could be explained by historical refugia. The discordance between mitochondrial and nuclear markers in the MIGRATE analysis of S. japonica prove the importance of employing multi-locus data in biogeographic study. Climate change, land reclamation and dam construction, which are changing substrate and hydrological conditions around Yangtze River estuary, will consequently affect the biogeographic pattern of intertidal species.
Feliciano, Daniel; Tolsma, Thomas O.; Farrell, Kristen B.; Aradi, Al; Di Pietro, Santiago M.
2018-01-01
During clathrin-mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott–Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G-actin) and a central-acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3-dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G-actin-binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G-actin-binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two-hybrid system, GST-pulldown, fluorescence polarization and pyrene-actin polymerization assays, we show that LGM binds G-actin and is necessary for normal Arp2/3-mediated actin polymerization in vitro. Live-cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G-actin-binding motif, WH2. These results establish a second G-actin-binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME. PMID:25615019
An Ocean Tale of Two Climates: Modern and Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Ferrari, R. M.
2014-12-01
In the present climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleo proxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum (LGM), resulting in an expansion of the volume occupied by Antarctic origin waters. I will argue that this rearrangement of deep water masses is dynamically connected to the expansion of summer sea ice around Antarctica. A simple theory will be introduced to suggest that these deep waters only came to the surface under summer sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. I will show that this unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass appear to be crucial in explaining the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales.
NASA Astrophysics Data System (ADS)
Thompson, R. S.; Anderson, K.; Pelltier, R.; Strickland, L. E.; Shafer, S. L.; Bartlein, P. J.
2013-12-01
Fossil plant remains preserved in a variety of geologic settings provide direct evidence of where individual species lived in the past, and there are long-established methods for paleoclimatic reconstructions based on comparisons between modern and past geographic ranges of plant species. In principle, these methods use relatively straightforward procedures that frequently result in what appear to be very precise estimates of past temperature and moisture conditions. The reconstructed estimates can be mapped for specific time slices for synoptic-scale reconstructions for data-model comparisons. Although paleobotanical data can provide apparently precise estimates of past climatic conditions, it is difficult to gauge the associated uncertainties. The estimates may be affected by the choice of modern calibration data, reconstruction methods employed, and whether the climatic variable under consideration is an important determinant of the distributions of the species being considered. For time-slice reconstructions, there are also issues involving the adequacy of the spatial coverage of the fossil data and the degree of variability through time. To examine some of these issues, we estimated annual precipitation and summer and winter temperatures for the Last Glacial Maximum (LGM, 21000 × 1000 yr BP), Middle Holocene (MH, 6000 × 500 yr BP), and Latest Holocene (LH, the last 500 yrs), based on the application of four quantitative approaches to paleobotanical assemblages preserved in packrat middens in the American Southwest. Our results indicate that historic variability and difficulties in interpolating climatic values to fossil sites may impose ranges of uncertainties of more than × 1°C for temperature and × 50 mm for annual precipitation. Climatic estimates based on modern midden assemblages generally fall within these ranges, although there may be biases that differ regionally. Samples of similar age and location provide similar climatic estimates, and the four approaches usually result in anomalies of the same sign, but with differing amplitudes. There is considerable variability among the anomalies for samples within each time slice, and different time slices have different geographic coverages of samples. The reconstructed temperature anomalies are similar between the MH and LH time slices, and generally fall within the uncertainties related to the modern climatic data. LGM anomalies were significantly colder, and for many samples exceeded -5°C in both winter and summer. There are what appear to be significant MH annual precipitation anomalies to the south (dry after 6.2 ka)and to the northwest (wet before 6.2 ka), but it may be misleading to compare these, given the differences in age. Positive annual precipitation anomalies for the LGM are more than 100 mm in the northwest, and smaller in the northeast and south.
North Atlantic Jet Variability in PMIP3 LGM Simulations
NASA Astrophysics Data System (ADS)
Hezel, P.; Li, C.
2017-12-01
North Atlantic jet variability in glacial climates has been shown inmodelling studies to be strongly influenced by upstream ice sheettopography. We analyze the results of 8 models from the PMIP3simulations, forced with a hybrid Laurentide Ice Sheet topography, andcompare them to the PMIP2 simulations which were forced with theICE-5G topography, to develop a general understanding of the NorthAtlantic jet and jet variability. The strengthening of the jet andreduced spatial variability is a robust feature of the last glacialmaximum (LGM) simulations compared to the pre-industrial state.However, the canonical picture of the LGM North Atlantic jet as beingmore zonal and elongated compared to pre-industrial climate states isnot a robust result across models, and may have arisen in theliterature as a function of multiple studies performed with the samemodel.
Dayan, Tamar; Goren, Menachem; Nadel, Dani; Hershkovitz, Israel
2018-01-01
Analysis of ca. 17,000 fish remains recovered from the late Upper Paleolithic/early Epi-Paleolithic (LGM; 23,000 BP) waterlogged site of Ohalo II (Rift Valley, Israel) provides new insights into the role of wetland habitats and the fish inhabiting them during the evolution of economic strategies prior to the agricultural evolution. Of the current 19 native fish species in Lake Kinneret (Sea of Galilee), eight species were identified at Ohalo II, belonging to two freshwater families: Cyprinidae (carps) and Cichlidae (St. Peter fish). Employing a large set of quantitative and qualitative criteria (NISP, species richness, diversity, skeletal element representation, fragmentation, color, spatial distribution, etc.), we demonstrate that the inhabitants of Ohalo II used their knowledge of the breeding behavior of different species of fish, for year-round intensive exploitation. PMID:29912923
Zohar, Irit; Dayan, Tamar; Goren, Menachem; Nadel, Dani; Hershkovitz, Israel
2018-01-01
Analysis of ca. 17,000 fish remains recovered from the late Upper Paleolithic/early Epi-Paleolithic (LGM; 23,000 BP) waterlogged site of Ohalo II (Rift Valley, Israel) provides new insights into the role of wetland habitats and the fish inhabiting them during the evolution of economic strategies prior to the agricultural evolution. Of the current 19 native fish species in Lake Kinneret (Sea of Galilee), eight species were identified at Ohalo II, belonging to two freshwater families: Cyprinidae (carps) and Cichlidae (St. Peter fish). Employing a large set of quantitative and qualitative criteria (NISP, species richness, diversity, skeletal element representation, fragmentation, color, spatial distribution, etc.), we demonstrate that the inhabitants of Ohalo II used their knowledge of the breeding behavior of different species of fish, for year-round intensive exploitation.
Gorgidze, L A; Vorob'ev, I A
2009-01-01
To make a comparative morphometric analysis of the nuclei and nucleoli of tumor cells in lymphogranulomatosis (LGM), diffuse large B-cell lymphoma (DLBCL) and anaplastic large cell lymphoma (ALCL) for differential diagnosis of these lymphomas. Biopsy material (lymph node biopsies) was frozen in hexane, fixed and stained, then microscopic pictures were made. Mean area of tumor cell nuclei in LGM was 97.25 +/- 68.77 mcm2, in DLBCL and ALCL--55.89 +/- 20.13 mcm2 and 70.31 +/- 34.64 mcm2, respectively. The area differences were significant (p < 0.001). Hodgkin's and Berezovsky-Rid-Sternberg cell bucleoli area was the largest (11.44 +/- 7.83 mcm2). The nucleoli of the former are larger than those of the latter. Mean area of the nucleoli in DLBCL was 3.05 +/- 1.58, in ALCL--5.53 +/- 4.94 mcm2. The differences are significant (p < 0.001). Nucleoli in Hodgkin 's cells are significantly larger than those in the tumor cells in ALCL and DLBCL and the nucleoli with the area more than 12 mcm2 can be used in differential diagnosis between LGM and DLBCL but not between LGM and ALCL.
Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.
Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A
2016-09-01
Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.
Zhang, Dabin; Yao, Pengwei; Na, Zhao; Cao, Weidong; Zhang, Suiqi; Li, Yangyang; Gao, Yajun
2016-01-01
Winter wheat (Triticum aestivum L.) monoculture is conventionally cultivated followed by two to three months of summer fallow in the Loess Plateau. To develop a sustainable cropping system, we conducted a six-year field experiment to investigate the effect of leguminous green manure (LGM) instead of bare fallow on the yield and water use efficiency (WUE) of winter wheat and the soil water balance (SWB) in different precipitation years in a semi-arid region of northwest China. Results confirmed that planting LGM crop consumes soil water in the fallow season can bring varied effects to the subsequent wheat. The effect is positive or neutral when the annual precipitation is adequate, so that there is no significant reduction in the soil water supplied to wheat. If this is not the case, the effect is negative. On average, the LGM crop increased wheat yield and WUE by 13% and 28%, respectively, and had considerable potential for maintaining the SWB (0–200 cm) compared with fallow management. In conclusion, cultivation of the LGM crop is a better option than fallow to improve the productivity and WUE of the next crop and maintain the soil water balance in the normal and wet years in the Loess Plateau. PMID:27225842
How might the North American ice sheet influence the northwestern Eurasian climate?
NASA Astrophysics Data System (ADS)
Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.
2015-10-01
It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the altitude of the American ice sheet leads to less total precipitation and snowfall and to colder temperatures over both the Scandinavian and the Barents and Kara sea sectors. We then compute the resulting annual surface mass balance over the Fennoscandian region from the simulated temperature and precipitation fields used to force an ice-sheet model. It clearly appears that the SMB is dominated by the ablation signal. In response to the summer cooling induced by the American ice-sheet albedo, high positive SMB values are obtained over the Eurasian region, leading thus to the growth of an ice sheet. On the contrary, the gradual increase of the American ice-sheet altitude induces more ablation over the Eurasian sector, hence limiting the growth of Fennoscandia. To test the robustness of our results with respect to the Eurasian ice sheet state, we carried out two additional LMDZ experiments with new boundary conditions involving both the American (flat or full LGM) and high Eurasian ice sheets. The most striking result is that the Eurasian ice sheet is maintained under full-LGM North American ice-sheet conditions, but loses ~ 10 % of its mass compared to the case in which the North American ice sheet is flat. These new findings qualitatively confirm the conclusions from our first series of experiments and suggest that the development of the Eurasian ice sheet may have been slowed down by the growth of the American ice sheet, offering thereby a new understanding of the evolution of Northern Hemisphere ice sheets throughout glacial-interglacial cycles.
Neotropical forest expansion during the last glacial period challenges refuge hypothesis.
Leite, Yuri L R; Costa, Leonora P; Loss, Ana Carolina; Rocha, Rita G; Batalha-Filho, Henrique; Bastos, Alex C; Quaresma, Valéria S; Fagundes, Valéria; Paresque, Roberta; Passamani, Marcelo; Pardini, Renata
2016-01-26
The forest refuge hypothesis (FRH) has long been a paradigm for explaining the extreme biological diversity of tropical forests. According to this hypothesis, forest retraction and fragmentation during glacial periods would have promoted reproductive isolation and consequently speciation in forest patches (ecological refuges) surrounded by open habitats. The recent use of paleoclimatic models of species and habitat distributions revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity is associated with historically stable forest areas. However, the role of the emerged continental shelf on the Atlantic Forest biodiversity hotspot of eastern South America during glacial periods has been ignored in the literature. Here, we combined results of species distribution models with coalescent simulations based on DNA sequences to explore the congruence between scenarios of forest dynamics through time and the genetic structure of mammal species cooccurring in the central region of the Atlantic Forest. Contrary to the FRH predictions, we found more fragmentation of suitable habitats during the last interglacial (LIG) and the present than in the last glacial maximum (LGM), probably due to topography. We also detected expansion of suitable climatic conditions onto the emerged continental shelf during the LGM, which would have allowed forests and forest-adapted species to expand. The interplay of sea level and land distribution must have been crucial in the biogeographic history of the Atlantic Forest, and forest refuges played only a minor role, if any, in this biodiversity hotspot during glacial periods.
Ocean-atmosphere forcing of South American tropical paleoclimate, LGM to present
NASA Astrophysics Data System (ADS)
Baker, P. A.; Fritz, S. C.; Dwyer, G. S.; Rigsby, C. A.; Silva, C. G.; Burns, S. J.
2012-12-01
Because of many recent terrestrial paleoclimatic and marine paleoceanographic records, late Quaternary South American tropical paleoclimate is as well understood as that anywhere in the world. While lessons learned from the recent instrumental record of climate are informative, this record is too short to capture much of the lower frequency variability encountered in the paleoclimate records and much of the observed paleoclimate is without modern analogue. This paleoclimate is known to be regionally variable with significant differences both north and south of the equator and between the western high Andes and eastern lowlands of the Amazon and Nordeste Brazil. Various extrinsic forcing mechanisms affected climate throughout the period, including global concentrations of GHGs, Northern Hemisphere ice sheet forcing, seasonal insolation forcing of the South American summer monsoon (SASM), millennial-scale Atlantic forcing, and Pacific forcing of the large-scale Walker circulation. The magnitude of the climate response to these forcings varied temporally, largely because of the varying amplitude of the forcing itself. For example, during the last glacial, large-amplitude north Atlantic forcing during Heinrich 1 and the LGM itself, led to wet (dry) conditions south (north) of the equator. During the Holocene, Atlantic forcing was lower amplitude, thus seasonal insolation forcing generally predominated with a weaker-than-normal SASM during the early Holocene resulting in dry conditions in the south-western tropics and wet conditions in the eastern lowlands and Nordeste; in the late Holocene seasonal insolation reached a maximum in the southern tropics and climate conditions reversed.
Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich Events
NASA Astrophysics Data System (ADS)
Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.
2017-12-01
The thickness of the ice-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea ice to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.
Dussex, Nicolas; von Seth, Johanna; Robertson, Bruce C; Dalén, Love
2018-04-19
Understanding how species respond to population declines is a central question in conservation and evolutionary biology. Population declines are often associated with loss of genetic diversity, inbreeding and accumulation of deleterious mutations, which can lead to a reduction in fitness and subsequently contribute to extinction. Using temporal approaches can help us understand the effects of population declines on genetic diversity in real time. Sequencing pre-decline as well as post-decline mitogenomes representing all the remaining mitochondrial diversity, we estimated the loss of genetic diversity in the critically endangered kākāpō ( Strigops habroptilus ). We detected a signal of population expansion coinciding with the end of the Pleistocene last glacial maximum (LGM). Also, we found some evidence for northern and southern lineages, supporting the hypothesis that the species may have been restricted to isolated northern and southern refugia during the LGM. We observed an important loss of neutral genetic diversity associated with European settlement in New Zealand but we could not exclude a population decline associated with Polynesian settlement in New Zealand. However, we did not find evidence for fixation of deleterious mutations. We argue that despite high pre-decline genetic diversity, a rapid and range-wide decline combined with the lek mating system, and life-history traits of kākāpō contributed to a rapid loss of genetic diversity following severe population declines.
Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide
NASA Technical Reports Server (NTRS)
Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker
2013-01-01
Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.
Using Paleo-climate Comparisons to Constrain Future Projections in CMIP5
NASA Technical Reports Server (NTRS)
Schmidt, G. A.; Annan, J D.; Bartlein, P. J.; Cook, B. I.; Guilyardi, E.; Hargreaves, J. C.; Harrison, S. P.; Kageyama, M.; LeGrande, A. N..; Konecky, B.;
2013-01-01
We present a description of the theoretical framework and best practice for using the paleo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to constrain future projections of climate using the same models. The constraints arise from measures of skill in hindcasting paleo-climate changes from the present over 3 periods: the Last Glacial Maximum (LGM) (21 thousand years before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (8501850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of paleo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitationtemperature or sea ice extent to indicate that models that produce the best agreement with paleoclimate information give demonstrably different future results than the rest of the models. We also find that some comparisons, for instance associated with model variability, are strongly dependent on uncertain forcing timeseries, or show time dependent behaviour, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the paleo-climate simulations to help inform the future projections and urge all the modeling groups to complete this subset of the CMIP5 runs.
NASA Astrophysics Data System (ADS)
Opazo, N. E.; Lambert, F.
2017-12-01
Mineral dust aerosols affect climate directly by changing the radiative balance of the Earth, and indirectly by acting as cloud condensation nuclei and by affecting biogeochemical cycles. The impact on marine biogeochemical cycles is primarily through the supply of micronutrients such as iron to nutrient-limited regions of the oceans. Iron fertilization of High Nutrient Low Chlorophyll (HNLC) regions of the oceans is thought to have significantly affected the carbon cycle on glacial-interglacial scales and contributed about one fourth of the 80-100 ppm lowering of glacial atmospheric CO2 concentrations.In this study, we quantify the effect of global dust fluxes on atmospheric CO2 using the cGENIE model, an Earth System Model of Intermediate Complexity with emphasis on the carbon cycle. Global Holocene and Last Glacial Maximum (LGM) dust flux fields were obtained from both dust model simulations and reconstructions based on observational data. The analysis was performed in two stages. In the first instance, we produced 8 global intermediate dust flux fields between Holocene and LGM and simulated the atmospheric CO2 drawdown due to these 10 dust levels. In the second stage, we only changed dust flux levels in specific HNLC regions to isolate the effect of these ocean basins. We thus quantify the contribution of the South Atlantic, the South Pacific, the North Pacific, and the Central Pacific HNLC regions to the total atmospheric CO2 difference due to iron fertilization of the Earth's oceans.
NASA Astrophysics Data System (ADS)
Ruiz-Fernández, Jesus; Oliva, Marc; García, Cristina
2013-04-01
The chronology for the deglaciation in the Cantabrian Range is still poorly understood. Several papers have proposed a maximum advance well before the LGM (Jiménez and Farias, 2002; Moreno et al. 2010; Serrano et al. 2012). The Western massif of Picos de Europa held a ice field of 50 km2. In this communication we present two cores collected in two glacial depressions in the frontal area of Enol Glacier that allow reconstructing the environment since the deglaciation of the massif. The first core (5.6 m long) was collected in the kame terrace of Belbin. This terrace was dammed by a lateral moraine corresponding to the phase of maximum expansion of Enol Glacier. Three clear layers are observed: the basal 2.5 m consists of grey clay with small gravel limestones; the second is 2 m thick and is composed of grey clays; the upper 1.1 m shows several paleosoils with abundant organic matter and charcoals. The based was dated at 14,810 ± 70 yr BP. This age represents a minimum age for the maximum expansion of Enol Glacier. The second core was collected in the glaciokarst depression of Vega del Bricial, located within a moraine complex corresponding to LGM. The core is 8 m long and looks very homogeneous. It consists of a succession of organic layers and slope deposits. Two radiocarbon dates were performed on the sediments at 8 and 2.8 m depth, resulting in 9,690 ± 260 and 3,420 ± 95 yr BP, respectively. Based on sedimentological and geomorphological evidences, we propose a chronology for the environmental changes occurred in this massif since the last glacial period. References Jiménez, M. and Farias, P., 2002. New radiometric and geomorphologic evidences of a Last Glacial Maximum older than 18 ka in SW European mountains: the example of Redes Natural Park (Cantabrian Mountains, NW Spain). Geodinamica Acta, 15, 93-101. Moreno, A., Valero, B. L., Jiménez, M., Domínguez, M. J., Mata, M. P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J. P. and Rico, M., 2010. The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Serrano, E., González-Trueba, J. J. and González-García, M., 2012. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quaternary Research, 78, 303-314.
NASA Astrophysics Data System (ADS)
DeCesare, M.; Bart, P. J.; Rosenheim, B. E.
2016-02-01
New multibeam and seismic data acquired during NBP1502 show that a back-stepping cluster containing at least four grounding zone wedges (GZWs) define a bathymetric saddle on the middle shelf of the Whales Deep paleo-ice-stream trough in eastern Ross Sea. Our synthesis of geophysical data with jumbo piston/kasten cores show that we penetrated diamict, sub-ice shelf and open marine sediments associated with four temporally distinct grounding events. A high number of well-preserved benthic and planktonic foraminifera were found in sediments we interpret to have been deposited in sub-ice shelf and open marine environments. A low number of similarly well-preserved benthic foraminifera were recovered from the underlying ice proximal diamict that was deposited on the GZW foreset. We tentatively propose that the pristine foraminifera are in situ and that these specimens provide a unique opportunity to constrain the retreat of grounded and floating ice from the eastern Ross Sea outer continental shelf. Our ongoing synthesis of new radiocarbon dates, stable isotope (δ18O and δ13C) and element/calcium ratios (e.g., Mg/Ca, B/Ca) will be presented.
Chronicles from the End of the Word: the Holocene climate variability in Tierra del Fuego
NASA Astrophysics Data System (ADS)
Waldmann, N.; Ariztegui, D.; Anselmetti, F.; Austin, J.; Moy, C.; Borromei, A.; Coronato, A.; Recasens, C.; Dunbar, R.; Martinez, M.; Olivera, D.
2008-12-01
Latest advances in the chronology and environmental importance of Antarctic paleoclimate records point towards a larger heterogeneity than previously thought. Thus, realistic inter-hemispheric correlations rely in the development of a tight array of well constrained records with a dense latitudinal coverage. Climatic records from southernmost Patagonia are hence critical corner-stones to link these Antarctic paleoclimatic archives with their South American counterparts. At 55° S on the Island of Tierra del Fuego, Lago Fagnano is located in one of the most substantially and extensively glaciated regions of southernmost South America during the Late Pleistocene. This elongated lake is the largest (~110 km long) and southernmost non-ice covered water body in the world. Existing on-shore geomorphological reconstructions combined with new lacustrine subsurface data, allowed us to better constrain the magnitude and chronology of the Fagnano glacier fluctuations since the LGM. The former Fagnano glacier flowed eastwards from the Darwin Cordillera fed by more than 50 tributary glaciers. The glacier spread over the low ranges and lowlands through three different lobes and was drained by four main outwash basins directly into the Atlantic Ocean. During the maximum ice-expansion, the ice-covered area was ca. 4000 km2 with a maximum length of ca. 132 km. A set of submerged frontal moraines covered by lacustrine infilling identified in the seismic survey suggests occasional eastward re-advances of the paleo-glacier within the overall westward deglaciation pattern. These re-advances may correspond to cold events such as the Antarctic Cold Reversal (ACR), the Huelmo- Mascardi Cold Event (HMCE) and/or the Younger Dryas Chronozone (YDC). The ongoing development of a robust age model blended with a multi-proxy dataset will potentially clarify remaining controversial issues dealing with the geographical extension and chronology of these cold episodes during the last deglaciation. A multi-proxy study of selected cores retrieved from the deepest part of the lacustrine basin allows characterizing the Holocene sedimentary record. Detailed petrophysical, sedimentological and geochemical studies of a complete laminated sequence reveal fluctuations in major and trace elements, as well as total organic matter content and palynological data suggesting an apparent cyclicity. These results provide a unique dataset that can be compared with other marine and continental archives to improve our understanding of the forcing mechanisms behind climate change and to validate the outcome of existing ocean and atmospheric climatic models for the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Sher, A. V.; Kuzmina, S. A.; Kuznetsova, T. V.; Sulerzhitsky, L. D.
2005-03-01
Multidisciplinary study of a key section on the Laptev Sea Coast (Bykovsky Peninsula, east Lena Delta) in 1998-2001 provides the most complete record of Middle and Late Weichselian environments in the East Siberian Arctic. The 40-m high Mamontovy Khayata cliff is a typical Ice Complex section built of icy silts with a network of large syngenetic polygonal ice wedges, and is richly fossiliferous. In combination with pollen, plant macrofossil and mammal fossils, a sequence of ca 70 insect samples provides a new interpretation of the environment and climate of the area between ca 50 and 12 ka. The large number of radiocarbon dates from the section, together with an extensive 14C database on mammal bones, allows chronological correlation of the various proxies. The Bykovsky record shows how climate change, and the Last Glacial Maximum in particular, affected terrestrial organisms such as insects and large grazing mammals. Both during the presumed "Karginsky Interstadial" (MIS 3) and the Sartanian Glacial (MIS 2), the vegetation remained a mosaic arctic grassland with relatively high diversity of grasses and herbs and dominance of xeric habitats: the tundra-steppe type. This biome was supported by a constantly very continental climate, caused by low sea level and enormous extension of shelf land. Variations within the broad pattern were caused mainly by fluctuations in summer temperature, related to global trends but overprinted by the effect of continentality. No major changes in humidity were observed nor were advances of modern-type forest or forest-tundra recorded, suggesting a major revision of the "Karginsky Interstadial" paradigm. The changing subtypes of the tundra-steppe environment were persistently favourable for mammalian grazers, which inhabited the shelf lowlands throughout the studied period. Mammal population numbers were lowered during the LGM, especially toward its end, and then flourished in a short, but impressive peak in the latest Weichselian, just before the collapse of the tundra-steppe biome. Throughout MIS 3 and MIS 2, the climate remained very favourable for the aggradation of permafrost. No events of regional permafrost degradation were observed in the continuous Bykovsky sequence until the very end of the Pleistocene.
NASA Astrophysics Data System (ADS)
Wu, D.; Chen, F.; Zhou, A.; Abbott, M. B.
2016-12-01
Variability of the Asian summer monsoon (ASM) significantly affects environment and hydrology conditions within its area of influence, as well as economic and social development. Thus it is important to investigate the variability of the ASM on various time-scales and to explore its underlying forcing mechanisms, in order to improve our ability to predict the long-term trends of regional and global climate. Northeastern Tibetan Plateau, a margin area of modern ASM, is sensitive to summer monsoon changes. Existing paleoclimate records from this region contain conflicting evidence for the timing of summer monsoon advance into this region: an early arrival pre-Younger Dryas or a late arrival at the beginning of the Holocene. In addition, it is also debated that whether the Holocene ASM maximum in this region occurred during the early Holocene or the middle Holocene. Here we present a high-resolution record of a 52-m drilling core from Lake Dalianhai in this region. Multiply geochemistry indexes were obtained from the sediment core. 22 AMS 14C data from plant remains and bulk organic matters illustrate that the upper 52 m core covered the whole period since the last glacial maximum (LGM). The results generally indicate that the Lake Dalianhai was occupied by very shallow water body with eolian sand surrounding the lake from 20 to 15 ka BP (1ka=1000 cal yr). With the beginning of the B/A warm period, the sedimentary sequence changed to grey lacustrine clay abruptly. The sedimentary environment was relatively stable under a high lake level state during the B/A period which was marked with fine mean grain size, and high exogenous detrital element content (such as Al, K, Ti and Rb), but with low organic matter content. This perhaps was caused by the increasing of ASM precipitation. Increased contents of element Ca, Sr, and Br, as well as TOC and TN, highlight the increase of ASM during the Holocene. However, reddish lacustrine clay with lower magnetic susceptibility and low TOC and TN content during the early Holocene may indicate lower lake level. The contents of Sr, Br, TOC and TN reached a higher status and carbonate carbon isotope decreased sharply and maintained low values since around 7ka BP, thus indicating the lake changed to another status.
Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.
2003-01-01
Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.
Bemis, B.E.; Spero, H.J.; Thunell, R.C.
2002-01-01
Species-specific paleotemperature equations were used to reconstruct a record of temperature from foraminiferal ??18O values over the last 25 kyr in the Southern California Bight. The equations yield similar temperatures for the ??18O values of Globigerina bulloides and Neogloboquadrina pachyderma. In contrast, applying a single paleotemperature equation to G. bulloides and N. pachyderma ??18O yields different temperatures, which has been used to suggest that these species record the surface-to-thermocline temperature gradient. In Santa Barbara Basin, an isotopically distinct morphotype of G. bulloides dominates during glacial intervals and yields temperatures that appear too cold when using a paleotemperature equation calibrated for the morphotype common today. When a more appropriate paleotemperature equation is used for glacial G. bulloides, we obtain more realistic glacial temperatures. Glacial-interglacial temperature differences (G-I ??T) calculated in the present study indicate significant cooling (??? 8-10??C) throughout the Southern California Bight during the last glacial maximum (LGM). The magnitude of glacial cooling varies from ???8??C near the middle of the Southern California Bight (Tanner Basin and San Nicolas Basin) to ???9??C in the north (Santa Barbara Basin) and ???9.5-10??C in the south (Velero Basin and No Name Basin). Our temperature calculations agree well with previous estimates based on the modern analog technique. In contrast, studies using N. pachyderma coiling ratios, U37k??? indices, and transfer functions esfimate considerably warmer LGM temperatures and smaller G-I ??T. ?? 2002 Elsevier Science B.V. All rights reserved.
Stratigraphic framework and lake level history of Lake Kivu, East African Rift
NASA Astrophysics Data System (ADS)
Wood, Douglas A.; Scholz, Christopher A.
2017-10-01
Sediment cores and seismic reflection data acquired from the eastern basin of Lake Kivu, Rwanda reveal extensive limnologic variations due to changes in regional climate and basin structure. The eastern basin of the lake contains a sedimentary wedge which is > 1.5 km in thickness on its western side, and basal sediments are estimated to be at least 1.5 million years old. Sediments are likely to be thicker and older than this in the northern, Congolese basin of the lake. Above the ∼300 m iosbath only a thin layer of Holocene sediments are observed indication that this may have been the lake's high stand prior to that time. There are at least three erosional unconformities interpreted as desiccation or near-desiccation events which are estimated to have occurred at ∼475 ka, ∼100 ka, and ∼20 ka; the two most recent of these low stages likely developed during the African Megadrought and Last Glacial Maximum (LGM) periods. Following the LGM, the water levels rose to form a ∼100 m deep lake with its surface ∼370 m below the current lake level. The lake remained near that level for several thousand years and during this time the Virunga Volcanic Province expanded. At ∼12.2 ka a change to wetter climate conditions rapidly filled the lake to spill out of the Bukavu Bay basin southward toward Lake Tanganyika. Tephra sampled from the cores show that there have been at least 24 large local volcanic events since the early Holocene lake transgression.
Cerezo, Maria; Quintáns, Beatriz; Zarrabeitia, Maria Teresa; Cuscó, Ivon; Lareu, Maria Victoria; García, Óscar; Pérez-Jurado, Luis; Carracedo, Ángel; Salas, Antonio
2009-01-01
Background R0 embraces the most common mitochondrial DNA (mtDNA) lineage in West Eurasia, namely, haplogroup H (∼40%). R0 sub-lineages are badly defined in the control region and therefore, the analysis of diagnostic coding region polymorphisms is needed in order to gain resolution in population and medical studies. Methodology/Principal Findings We sequenced the first hypervariable segment (HVS-I) of 518 individuals from different North Iberian regions. The mtDNAs belonging to R0 (∼57%) were further genotyped for a set of 71 coding region SNPs characterizing major and minor branches of R0. We found that the North Iberian Peninsula shows moderate levels of population stratification; for instance, haplogroup V reaches the highest frequency in Cantabria (north-central Iberia), but lower in Galicia (northwest Iberia) and Catalonia (northeast Iberia). When compared to other European and Middle East populations, haplogroups H1, H3 and H5a show frequency peaks in the Franco-Cantabrian region, declining from West towards the East and South Europe. In addition, we have characterized, by way of complete genome sequencing, a new autochthonous clade of haplogroup H in the Basque country, named H2a5. Its coalescence age, 15.6±8 thousand years ago (kya), dates to the period immediately after the Last Glacial Maximum (LGM). Conclusions/Significance In contrast to other H lineages that experienced re-expansion outside the Franco-Cantabrian refuge after the LGM (e.g. H1 and H3), H2a5 most likely remained confined to this area till present days. PMID:19340307
Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio
2012-01-01
The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species' ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.
Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio
2012-01-01
The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species’ ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model’s output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change. PMID:23272115
Viruel, Juan; Catalán, Pilar; Segarra-Moragues, José Gabriel
2014-01-01
The effects of Pleistocene glaciations and geographical barriers on the phylogeographic patterns of lowland plant species in Mediterranean-climate areas of Central Chile are poorly understood. We used Dioscorea humilis (Dioscoreaceae), a dioecious geophyte extending 530 km from the Valparaíso to the Bío-Bío Regions, as a case study to disentangle the spatio-temporal evolution of populations in conjunction with latitudinal environmental changes since the Last Inter-Glacial (LIG) to the present. We used nuclear microsatellite loci, chloroplast (cpDNA) sequences and environmental niche modelling (ENM) to construct current and past scenarios from bioclimatic and geographical variables and to infer the evolutionary history of the taxa. We found strong genetic differentiation at nuclear microsatellite loci between the two subspecies of D. humilis, probably predating the LIG. Bayesian analyses of population structure revealed strong genetic differentiation of the widespread D. humilis subsp. humilis into northern and southern population groups, separated by the Maipo river. ENM revealed that the ecological niche differentiation of both groups have been maintained up to present times although their respective geographical distributions apparently fluctuated in concert with the climatic oscillations of the Last Glacial Maximum (LGM) and the Holocene. Genetic data revealed signatures of eastern and western postglacial expansion of the northern populations from the central Chilean depression, whereas the southern ones experienced a rapid southward expansion after the LGM. This study describes the complex evolutionary histories of lowland Mediterranean Chilean plants mediated by the summed effects of spatial isolation caused by riverine geographical barriers and the climatic changes of the Quaternary.
Drowned reefs and antecedent karst topography, Au'au channel, S.E. Hawaiian Islands
Grigg, R.W.; Grossman, E.E.; Earle, S.A.; Gittings, S.R.; Lott, D.; McDonough, J.
2002-01-01
During the last glacial maximum (LGM), about 21,000 years ago, the Hawaiian Islands of Maui, Lanai, and Molokai were interconnected by limestone bridges, creating a super-island known as Maui-Nui. Approximately 120 m of sea-level rise during the Holocene Transgression flooded, and then drowned, these bridges separating the islands by inter-island channels. A new multibeam high-resolution bathymetric survey of the channels between the islands, coupled with observations and video-transects utilizing DeepWorker-2000 submersibles, has revealed the existence of numerous drowned reef features including concentric solution basins, solution ridges (rims), sand and sediment plains, and conical-shaped reef pinnacles. The concentric basins contain flat lagoon-like bottoms that are rimmed by steep-sided limestone walls. Undercut notches rim the basins at several depths, marking either sea-level still stands or paleo-lake levels. All of the solution basins shallower than 120 m were subaerial at the LGM, and at one stage or another may have been shallow shoreline lakes. Today, about 70 drowned reef pinnacles are scattered across the Maui-Lanai underwater bridge and all are situated in wave-sheltered positions. Most drowned during the interval between 14,000 and 10,000 years ago when sea-level rise averaged 15 mm/year. Virtually all of the surficial topography in the Au'au Channel today is a product of karst processes accentuated by marginal reef growth during the Holocene. Both the submerged basins and the drowned reefs represent an archive of sea-level and climate history in Hawaii during the late Quaternary.
Impacts of peatland and permafrost changes on the terrestrial carbon storage over the last 21 ka
NASA Astrophysics Data System (ADS)
Spahni, Renato; Stocker, Benjamin D.; Joos, Fortunat
2014-05-01
Paleoclimate records and global climate-carbon cycle models suggest a net increase in land carbon (C) storage between 300 and 700 Pg C (1 Pg C = 1015 g C) during the transition from the last glacial maximum (LGM), the Holocene up to the preindustrial period. Peat accumulation rate records imply an increase in peatland C of ~600 Pg C over the course of the Holocene. In high northern latitudes mineral and organic soils are subject to permafrost formation, which is believed to have been more extensive during glacial compared to interglacial periods. Soil C in permafrost regions represents the largest inert C pool on land at present. The spatio-temporal evolution, however, of C stocks in soils and vegetation remains poorly quantified and is uncertain. Here, the Land surface Processes and eXchanges (LPX-Bern) Dynamic Global Vegetation Model is applied in transient simulations to explore the evolution of permafrost, peatland and vegetation C over the last 21'000 years. The model is forced with temperature and precipitation output from the Trace-21ka climate simulation, and dynamically simulates the formation and disappearance of peatlands and permafrost soils, vegetation distribution and C stocks. Results indicate that peatlands and permfrost areas existed further south in the LGM, in agreement with available proxy information, and that their associated C was lost during the transition into the Holocene. The simulated loss of inert C is over-compensated by vegetation regrowth. The timing of the C relocation on land is compared to observational evidence from paleoclimate archives and estimates from ocean C inventory changes.
Neotropical forest expansion during the last glacial period challenges refuge hypothesis
Costa, Leonora P.; Loss, Ana Carolina; Rocha, Rita G.; Batalha-Filho, Henrique; Bastos, Alex C.; Quaresma, Valéria S.; Fagundes, Valéria; Paresque, Roberta; Passamani, Marcelo; Pardini, Renata
2016-01-01
The forest refuge hypothesis (FRH) has long been a paradigm for explaining the extreme biological diversity of tropical forests. According to this hypothesis, forest retraction and fragmentation during glacial periods would have promoted reproductive isolation and consequently speciation in forest patches (ecological refuges) surrounded by open habitats. The recent use of paleoclimatic models of species and habitat distributions revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity is associated with historically stable forest areas. However, the role of the emerged continental shelf on the Atlantic Forest biodiversity hotspot of eastern South America during glacial periods has been ignored in the literature. Here, we combined results of species distribution models with coalescent simulations based on DNA sequences to explore the congruence between scenarios of forest dynamics through time and the genetic structure of mammal species cooccurring in the central region of the Atlantic Forest. Contrary to the FRH predictions, we found more fragmentation of suitable habitats during the last interglacial (LIG) and the present than in the last glacial maximum (LGM), probably due to topography. We also detected expansion of suitable climatic conditions onto the emerged continental shelf during the LGM, which would have allowed forests and forest-adapted species to expand. The interplay of sea level and land distribution must have been crucial in the biogeographic history of the Atlantic Forest, and forest refuges played only a minor role, if any, in this biodiversity hotspot during glacial periods. PMID:26755597
Viruel, Juan; Catalán, Pilar; Segarra-Moragues, José Gabriel
2014-01-01
The effects of Pleistocene glaciations and geographical barriers on the phylogeographic patterns of lowland plant species in Mediterranean-climate areas of Central Chile are poorly understood. We used Dioscorea humilis (Dioscoreaceae), a dioecious geophyte extending 530 km from the Valparaíso to the Bío-Bío Regions, as a case study to disentangle the spatio-temporal evolution of populations in conjunction with latitudinal environmental changes since the Last Inter-Glacial (LIG) to the present. We used nuclear microsatellite loci, chloroplast (cpDNA) sequences and environmental niche modelling (ENM) to construct current and past scenarios from bioclimatic and geographical variables and to infer the evolutionary history of the taxa. We found strong genetic differentiation at nuclear microsatellite loci between the two subspecies of D. humilis, probably predating the LIG. Bayesian analyses of population structure revealed strong genetic differentiation of the widespread D. humilis subsp. humilis into northern and southern population groups, separated by the Maipo river. ENM revealed that the ecological niche differentiation of both groups have been maintained up to present times although their respective geographical distributions apparently fluctuated in concert with the climatic oscillations of the Last Glacial Maximum (LGM) and the Holocene. Genetic data revealed signatures of eastern and western postglacial expansion of the northern populations from the central Chilean depression, whereas the southern ones experienced a rapid southward expansion after the LGM. This study describes the complex evolutionary histories of lowland Mediterranean Chilean plants mediated by the summed effects of spatial isolation caused by riverine geographical barriers and the climatic changes of the Quaternary. PMID:25295517
Liu, Huatao; Wang, Wenjuan; Song, Gang; Qu, Yanhua; Li, Shou-Hsien; Fjeldså, Jon; Lei, Fumin
2012-01-01
An area of endemism (AOE) is a complex expression of the ecological and evolutionary history of a species. Here we aim to address the principal drivers of avian diversification in shaping patterns of endemism in China by integrating genetic, ecological, and distributional data on the Red-headed Tree Babbler (Stachyridopsis ruficeps), which is distributed across the eastern Himalayas and south China. We sequenced two mtDNA markers from 182 individuals representing all three of the primary AOEs in China. Phylogenetic inferences were used to reconstruct intraspecific phylogenetic relationships. Divergence time and population demography were estimated to gain insight into the evolutionary history of the species. We used Ecological niche modeling to predict species’ distributions during the Last Glacial Maximum (LGM) and in the present. Finally, we also used two quantitative tests, an identity test and background test to assess the similarity of ecological niche preferences between adjacent lineages. We found five primary reciprocally monophyletic clades, typically separated approximately 0.2–2.27 MYA, of which three were deeply isolated endemic lineages located in the three AOEs. All phylogroups were detected to have undergone population expansion during the past 0.3 MY. Niche models showed discontinuous habitats, and there were three barriers of less suitable habitat during the LGM and in modern times. Ecoclimatic niches may diverge significantly even over recent timescales, as each phylogroup had a unique distribution, and unique niche characteristics. Vicariant events associated with geographical and ecological barriers, glacial refuges and ecological differentiation may be the main drivers forming the pattern of endemism in China. PMID:23056441
Latest Word on Retreat of the West Antarctic Ice Sheet
NASA Technical Reports Server (NTRS)
Bindschadler, R.
2000-01-01
The West Antarctic ice sheet during the Last Glacial Maximum (LGM) is estimated to have been three times its present volume and to have extended close to the edge of the continental shelf Holocene retreat of this ice sheet in the Ross Sea began between 11,000 and 12,000 years ago. This history implies an average contribution of this ice sheet to sea level of 0.9 mm/a. Evidence of dateable past grounding line positions in the Ross sector are broadly consistent with a linear retreat model. However, inferred rates of retreat for some of these grounding line positions are not consistent with a linear retreat model. More rapid retreat approximately 7600 years ago and possible near-stability in the Ross Sea sector at present suggest a slow rate of initial retreat followed by a more rapid-than-average retreat during the late Holocene, returning to a near-zero rate of retreat currently. This model is also consistent with the mid-Holocene high stand observations of eustatic sea level. Recent compilation of Antarctic bed elevations (BEDMAP) illustrates that the LGM and present grounding lines occur in the shallowest waters, further supporting the model of a middle phase of rapid retreat bracketed by an older and a more recent phase of modest retreat. Extension of these hypotheses into the future make subsequent behavior of the West Antarctic ice sheet more difficult to predict but suggest that if it loses its hold on the present shallow bed, the final retreat of the ice sheet could be very rapid.
NASA Astrophysics Data System (ADS)
Balestra, B.; Ducassou, E.; Zarikian, C.; Bout-Roumazeilles, V.; Flores, J. A.; Paytan, A.
2017-12-01
We present preliminary micropaleontological and sedimentological data from IODP Site U1390 (Expedition 339), located in the central middle slope of the Gulf of Cadiz, since the last glaciation. This site has been targeted for reconstruction of regional paleo-circulation as it shows particularly high sedimentation rates, throughout the Holocene and the Last Glacial Maximum (LGM). We use micropaleontological and sedimentological proxies to understand the bottom current variations through time and the ecological conditions at the sea surface (planktonic foraminifer, pteropod and nannofossil assemblages), and the sea bottom (ostracod assemblages). Eleven samples, chosen at transitions of planktonic foraminifer assemblages, have been dated by AMS radiocarbon analyses. Preliminary results from benthic ostracod assemblages show variations in bottom water ventilation and food supply. Planktonic foraminifer assemblages clearly show the well-known cold events of this period such as the Younger Dryas and Heinrich stadial associated to coarser sediment, and warmer phases such as the Bölling-Allerød associated to muddy sediment. Other bio-events within the Holocene period are also recorded. The preservation of the coccolithophore assemblages is good to moderate. Coccolith abundances (expressed in coccoliths/gr of sediment) show higher values during the Holocene and generally are like assemblages previously reported for the same area. Implications for characterization of the Holocene, the last termination and LGM ecological conditions at high resolution and their potential fluctuations (i.e. amplitude and magnitude) under the influence of the lower core of the Mediterranean Outflow Water (MOW), with this multi proxy approach based on sedimentological, and paleontological data will be discussed.
Climate sensitivity, sea level and atmospheric carbon dioxide
Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker
2013-01-01
Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1°C for a 4 W m−2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3–4°C for a 4 W m−2 CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change. PMID:24043864
Cun, Yu-Zhi; Wang, Xiao-Quan
2010-09-01
The Himalaya-Hengduan Mountains region (HHM) in the southern and southeastern Qinghai-Tibetan Plateau (QTP) is considered an important reservoir and a differentiation center for temperate and alpine plants in the Cenozoic. To reveal how plants responded to the Quaternary climatic oscillations in the QTP, the phylogeographical histories of a few subalpine and alpine plants have been investigated, but nearly all studies used only uniparentally inherited cytoplasmic DNA markers, and only a couple of them included sampling from the Himalaya. In this study, range-wide genetic variation of the Himalayan hemlock (Tsuga dumosa), an important forest species in the HHM, was surveyed using DNA markers from three genomes. All markers revealed genetic depauperation in the Himalaya and richness in the Hengduan Mountains populations. Surprisingly, population differentiation of this wind-pollinated conifer is very high in all three genomes, with few common and many private nuclear gene alleles. These results, together with fossil evidence, clearly indicate that T. dumosa recolonized the Himalaya from the Hengduan Mountains before the Last Glacial Maximum (LGM), accompanied with strong founder effects, and the influence of the earlier glaciations on demographic histories of the QTP plants could be much stronger than that of the LGM. The strong population differentiation in T. dumosa could be attributed to restricted gene flow caused by the complicated topography in the HHM that formed during the uplift of the QTP, and thus sheds lights on the importance of geographical isolation in the development of high plant species diversity in this biodiversity hotspot. Copyright 2010 Elsevier Inc. All rights reserved.
A Signal, from Human mtDNA, of Postglacial Recolonization in Europe
Torroni, Antonio; Bandelt, Hans-Jürgen; Macaulay, Vincent; Richards, Martin; Cruciani, Fulvio; Rengo, Chiara; Martinez-Cabrera, Vicente; Villems, Richard; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Tolk, Helle-Viivi; Tambets, Kristiina; Forster, Peter; Karger, Bernd; Francalacci, Paolo; Rudan, Pavao; Janicijevic, Branka; Rickards, Olga; Savontaus, Marja-Liisa; Huoponen, Kirsi; Laitinen, Virpi; Koivumäki, Satu; Sykes, Bryan; Hickey, Eileen; Novelletto, Andrea; Moral, Pedro; Sellitto, Daniele; Coppa, Alfredo; Al-Zaheri, Nadia; Santachiara-Benerecetti, A. Silvana; Semino, Ornella; Scozzari, Rosaria
2001-01-01
Mitochondrial HVS-I sequences from 10,365 subjects belonging to 56 populations/geographical regions of western Eurasia and northern Africa were first surveyed for the presence of the T→C transition at nucleotide position 16298, a mutation which has previously been shown to characterize haplogroup V mtDNAs. All mtDNAs with this mutation were then screened for a number of diagnostic RFLP sites, revealing two major subsets of mtDNAs. One is haplogroup V proper, and the other has been termed “pre*V,” since it predates V phylogenetically. The rather uncommon pre*V tends to be scattered throughout Europe (and northwestern Africa), whereas V attains two peaks of frequency: one situated in southwestern Europe and one in the Saami of northern Scandinavia. Geographical distributions and ages support the scenario that pre*V originated in Europe before the Last Glacial Maximum (LGM), whereas the more recently derived haplogroup V arose in a southwestern European refugium soon after the LGM. The arrival of V in eastern/central Europe, however, occurred much later, possibly with (post-)Neolithic contacts. The distribution of haplogroup V mtDNAs in modern European populations would thus, at least in part, reflect the pattern of postglacial human recolonization from that refugium, affecting even the Saami. Overall, the present study shows that the dissection of mtDNA variation into small and well-defined evolutionary units is an essential step in the identification of spatial frequency patterns. Mass screening of a few markers identified using complete mtDNA sequences promises to be an efficient strategy for inferring features of human prehistory. PMID:11517423
Synthesis on Quaternary aeolian research in the unglaciated eastern United States
NASA Astrophysics Data System (ADS)
Markewich, Helaine W.; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.
2015-06-01
Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.
Climate sensitivity, sea level and atmospheric carbon dioxide.
Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker
2013-10-28
Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1(°)C for a 4 W m(-2) CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4(°)C for a 4 W m(-2) CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.
NASA Astrophysics Data System (ADS)
Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.
2017-12-01
Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.
NASA Astrophysics Data System (ADS)
Bendle, Jacob M.; Palmer, Adrian P.; Thorndycraft, Varyl R.; Matthews, Ian P.
2017-12-01
Glaciolacustrine varves offer the potential to construct continuous, annually-resolved chronologies for ice-sheet deglaciation, and improved understanding of glacier retreat dynamics. This paper investigates laminated glaciolacustrine sediments deposited around the waning margins of the Patagonian Ice Sheet, following the local Last Glacial Maximum (LGM). Detailed macro- and microfacies analyses confirm an annual (varve) structure within these sediments. The correlation of annual layers (varves) across five sites in eastern Lago Buenos Aires yields a 994 ± 36 varve-year (vyr) chronology and thickness record. The floating chronology has been anchored to the calendar-year timescale through identification of the Ho tephra (17,378 ± 118 cal a BP) in the varve sequences. Using a Bayesian age model to integrate the new varve chronology with published moraine ages, the onset of deglaciation at 46.5°S is dated to 18,086 ± 214 cal a BP. New age estimates for deglacial events are combined with high-resolution analysis of varve thickness trends, and new lithostratigraphic data on ice-margin position(s), to reconstruct ice-margin retreat rates for the earliest ca. 1000 years of ice-sheet demise. Glacier retreat rates were moderate (5.3-10.3 m yr-1) until 17,322 ± 115 cal a BP, but subsequently accelerated (15.4-18.0 m yr-1). Sustained influxes of ice-rafted debris (IRD) after 17,145 ± 122 cal a BP suggest retreat rates were enhanced by calving after ice contracted into deeper lake waters. Ice persisted in eastern Lago Buenos Aires until at least 16,934 ± 116 cal a BP, after which the glacier started to retreat towards the Patagonian mountains.
NASA Astrophysics Data System (ADS)
Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.
2017-12-01
The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (< 200 m water depth) developed along the northwestern Australian margin is influenced by the Australian Monsoon and Leeuwin Current (one of branch of the Indonesian Throughflow). The International Ocean Discovery Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) cyclohexanone 1,2-Bis(monobromoacetoxy) ethane [CA Reg. No. 3785-34-0] At a maximum level of 0.10 pound per ton... Methylenebisbutanethiolsulfonate Methylenebisthiocyanate 2-Nitrobutyl bromoacetate [CA Reg. No. 32815-96-6] At a maximum level of 0...)phosphonium sulfate (CAS Reg. No. 55566-30-8) Maximum use level of 84 mg/kg in the pulp slurry. The additive...
Code of Federal Regulations, 2012 CFR
2012-04-01
...) cyclohexanone 1,2-Bis(monobromoacetoxy) ethane [CA Reg. No. 3785-34-0] At a maximum level of 0.10 pound per ton... Methylenebisbutanethiolsulfonate Methylenebisthiocyanate 2-Nitrobutyl bromoacetate [CA Reg. No. 32815-96-6] At a maximum level of 0...)phosphonium sulfate (CAS Reg. No. 55566-30-8) Maximum use level of 84 mg/kg in the pulp slurry. The additive...
NASA Astrophysics Data System (ADS)
Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.
2014-05-01
In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice sheet reconstructions.
NASA Astrophysics Data System (ADS)
Chen, C. Y.; McGee, D.; Quade, J.
2015-12-01
Cave stalagmite records show strong evidence of abrupt changes in summer monsoons during Heinrich events, but we lack rigorous constraints on the amount of wetting or drying occurring in monsoon regions. Studies on shoreline deposits of closed-basin lakes can establish quantitative bounds on water balance changes through mapping-based estimates of lake volume variations. We present new dating constraints on lake level variations in Agua Caliente I and Laguna Loyoques, two closed-basin, high-altitude paleolakes on the Altiplano-Puna plateau of the Central Andes (23.1°S, 67.4°W, 4250 masl). Because this area receives >70% of its total annual precipitation during austral summer, the region is ideally suited to capture a pure response to changes in the South American summer monsoon (SASM). The plateau is home to several small (<40 km2) lakes surrounded by well-preserved paleoshorelines that indicate past wetter conditions. Agua Caliente I is unique, having multiple shorelines encrusted with biologically-mediated calcium carbonate "tufa" deposits. Initial U-Th dating of these massive shoreline tufas reveals that these deposits are dateable to within ±50 to 300 years due to high U concentrations and low initial Th content (as indicated by high 230Th/232Th). Our U-Th dates show that Agua Caliente I was greater in lake surface area during two periods: 17.5-14.5 kyrs BP, coincident with Heinrich Event 1 (HE1), and 24-23 kyrs BP, roughly coincident with the Last Glacial Maximum (LGM). At these times, Agua Caliente I also overflowed into a neighboring lake basin (Loyoques) through an 8-km long southeast-trending stream channel. Thus, during HE1 and the LGM, the lake was ~9 times larger in surface area relative to modern. Hydrologic modeling constrained by paleotemperature estimates is used to provide bounds for these past precipitation changes. We also tentatively explore physical mechanisms linking Heinrich events and the regional hydroclimate by comparing freshwater hosing experiments and transient climate simulations. Our results in Agua Caliente I and Laguna Loyoques act as a proof of concept, and lend us confidence in expanding our U-Th work to other shoreline tufas in the surrounding region to produce a more detailed, spatiotemporal record of water balance changes in South America.
Dalmaris, Eleftheria; Ramalho, Cristina E; Poot, Pieter; Veneklaas, Erik J; Byrne, Margaret
2015-11-01
A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia. Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM). A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction. Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Role of Southern Ocean stratification in glacial atmospheric CO2 reduction
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Oka, A.
2014-12-01
Paleoclimate proxy data at the glacial period shows high salinity of more than 37.0 psu in the deep South Atlantic. At the same time, data also indicate that the residence time of the water mass was more than 3000 years. These data implies that the stratification by salinity was stronger in the deep Southern Ocean (SO) in the Last Glacial Maximum (LGM). Previous studies using Ocean General Circulation Model (OGCM) fail to explain the low glacial atmospheric carbon dioxide (CO2) concentration at LGM. The reproducibility of salinity and water mass age is considered insufficient in these OGCMs, which may in turn affect the reproducibility of the atmospheric CO2concentration. In coarse-resolution OGCMs, The deep water is formed by unrealistic open-ocean deep convection in the SO. Considering these facts, we guessed previous studies using OGCM underestimated the salinity and water mass age at LGM. This study investigate the role of the enhanced stratification in the glacial SO on the variation of atmospheric CO2 concentration by using OGCM. In order to reproduce the recorded salinity of the deep water, relaxation of salinity toward value of recorded data is introduced in our OGCM simulations. It was found that deep water formation in East Antarctica is required for explaining the high salinity in the South Atlantic. In contrast, it is difficult to explain the glacial water mass age, even if we assume the situation vertical mixing is very weak in the SO. Contrary to previous estimate, the high salinity of the deep SO resulted in increase of Antarctic Bottom water (AABW) flow and decrease the residence time of carbon in the deep ocean, which increased atmospheric CO2 concentration. On the other hand, the weakening of the vertical mixing in the SO contributed to increase the vertical gradient of dissolved inorganic carbon (DIC), which decreased atmospheric CO2 concentration. Adding the contribution of the enhanced stratification in the glacial SO, we obtained larger reduction in atmospheric CO2 concentration than previous studies. However, we still fail to explain the full amplitude of recorded glacial reduction of atmospheric CO2 concentration. The carbonate compensation process, which is not incorporated in our simulations, might be required for further reduction in atmospheric CO2 concentration.
Hunters of the Ice Age: The biology of Upper Paleolithic people.
Holt, Brigitte M; Formicola, Vincenzo
2008-01-01
The Upper Paleolithic represents both the phase during which anatomically modern humans appeared and the climax of hunter-gatherer cultures. Demographic expansion into new areas that took place during this period and the diffusion of burial practices resulted in an unprecedented number of well-preserved human remains. This skeletal record, dovetailed with archeological, environmental, and chronological contexts, allows testing of hypotheses regarding biological processes at the population level. In this article, we review key studies about the biology of Upper Paleolithic populations based primarily on European samples, but integrating information from other areas of the Old World whenever possible. Data about cranial morphology, skeletal robusticity, stature, body proportions, health status, diet, physical activity, and genetics are evaluated in Late Pleistocene climatic and cultural contexts. Various lines of evidence delineate the Last Glacial Maximum (LGM) as a critical phase in the biological and cultural evolution of Upper Paleolithic populations. The LGM, a long phase of climatic deterioration culminating around 20,000 BP, had a profound impact on the environment, lifestyle, and behavior of human groups. Some of these effects are recorded in aspects of skeletal biology of these populations. Groups living before and after the LGM, Early Upper Paleolithic (EUP) and Late Upper Paleolithic (LUP), respectively, differ significantly in craniofacial dimensions, stature, robusticity, and body proportions. While paleopathological and stable isotope data suggest good health status throughout the Upper Paleolithic, some stress indicators point to a slight decline in quality of life in LUP populations. The intriguing and unexpected incidence of individuals affected by congenital disorders probably indicates selective burial practices for these abnormal individuals. While some of the changes observed can be explained through models of biocultural or environmental adaptation (e.g., decreased lower limb robusticity following decreased mobility; changes in body proportions along with climatic change), others are more difficult to explain. For instance, craniodental and upper limb robusticity show complex evolutionary patterns that do not always correspond to expectations. In addition, the marked decline in stature and the mosaic nature of change in body proportions still await clarifications. These issues, as well as systematic analysis of specific pathologies and possible relationships between genetic lineages, population movements and cultural complexes, should be among the goals of future research.
NASA Astrophysics Data System (ADS)
Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.
2004-12-01
The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary to what happens on the Antarctic Peninsula margin, the relation between the Quaternary sedimentation and the glacial - interglacial cycles are less evident in the lithofacies observed on the continental rise area. This characteristic suggests a different glacial dynamic along the Wilkes Land continental margin that is less sensitive to the small climatic changes, with respect to the western (Antarctic Peninsula) margin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model capturesmore » modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age - consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.« less
NASA Astrophysics Data System (ADS)
Romanovskaya, M.; Bessudnov, A. N.; Kuznetsova, T. V.; Sukhanova, T. V.; Krilkov, N. M.
2017-12-01
The study area belongs to the East European Plain. In paleoclimatic terms the northern limits of this area were covered by ice sheet during the Last Glacial Maximum (LGM) and the entire area was located within the permafrost zone of the Last Permafrost Maximum (LPM) according to the published maps. The results of our geological and geomorphologic exploration of the area have clearly shown that this area is an actively growing neo-tectonic structure. Geomorphologic study and modeling have revealed the presence of erosion-shaped surfaces of different age which were formed by neo-tectonic movements and the effects of climate fluctuations. The entire landscape of the area is a system of altitudinal steps. Each surface has its own complex of recent deposits, which closely related to climate change. The fluvial terraces of the rivers Don and Tikhaya Sosna were formed under the influence of the Don, Dnepr, Moscow and, Valdai Glaciations. There are many calcareous loess layers and paleosol layers in the Quaternary geological sections of the area. Radiocarbon dating of fossils and paleosol layers found at the archaeological site Divnogorie-9 located in loess-like loam parts of the section (50.9649ºN, 39.3031ºE) provides the age 12-14 ka BP. Our rock-magnetism studies of this section have shown that its formation was affected by regional paleoclimate. We believe that a decrease of the erosion basis during the LGM led to a deepening of the erosion network. Later on, when the climate warmed the powerful but short-lived water streams filled the ravines with thick proluvial deposits. The degradation of the permafrost after LPM within the study area apparently had no significant effects on its landscape formation, as evidenced by the very small number of ice-wedge pseudomorphs and specific morphological features reported for this area. This conclusion is also supported by the results of our carbon research of loess-like loam and paleosol layers. Thus the emerging picture of the landscape of the study area being formed by the work of exogenous agents and neo-tectonic movements and also reflects climatic fluctuations during the Pleistocene and Holocene.
Strain partitioning in southeastern Alaska: Is the Chatham Strait Fault active?
Brothers, Daniel; Elliott, Julie L.; Conrad, James E.; Haeussler, Peter J.; Kluesner, Jared
2018-01-01
A 1200 km-long transform plate boundary passes through southeastern Alaska and northwestern British Columbia and represents one of the most seismically active, but poorly understood continental margins of North America. Although most of the plate motion is accommodated by the right-lateral Queen Charlotte–Fairweather Fault (QCFF) System, which has produced at least six M > 7 earthquakes since 1920, seismic hazard assessments also include the Chatham Strait Fault (CSF) as a potentially active, 400 km-long strike slip fault that cuts northward through southeastern Alaska, connecting with the Eastern Denali Fault. Nearly the entire length of the CSF is submerged beneath Chatham Strait and Lynn Canal and has never been systematically imaged using high-resolution marine geophysical approaches. In this study we present an integrated analysis of new marine seismic reflectiondata acquired across Lynn Canal and tectonic block modeling constrained by data from continuous and campaign GPS sites. Seismic profiles cross the CSF at twelve locations spanning ∼50 km of fault length; they reveal thick (up to 300 m) packages of glaciomarine sedimentary facies emplaced on an unconformity surface that formed during the Last Glacial Maximum (LGM). Localized warping of post-LGM stratigraphy (∼13.9 kyr B.P. to present) appears to correlate with sediment drape on basement topography and current-controlled deposition. There is no evidence for an active fault along the axis of Lynn Canal in the seismic reflection data. Crustal block models constrained by GPS data allow, but do not require, a maximum slip rate of 2–3 mm/yr along the CSF; higher slip rates on the CSF result in significant misfit to GPS data in the surrounding region. Based on the combined marine geophysical and GPS observations, it is plausible that the CSF has not generated resolvable coseismic deformation in the last ∼13 ka and that the modern slip-rate is <1 mm/yr. We propose that models for strain transfer between the QCFF and the Denali Fault, and seismic hazard maps in general, may need to be reevaluated.
NASA Astrophysics Data System (ADS)
Franzese, A. M.; Goldstein, S. L.; Hemming, S. R.
2017-12-01
The Southern Hemisphere Westerly Winds are known to be important for climate due to their effects on the global carbon cycle and on the global thermohaline circulation (THC). Numerous proxy records have been interpreted to indicate significant glacial to interglacial changes in the SHWW. There is no clear consensus regarding their strength and position during the Last Glacial Maximum (LGM), though most observations are consistent with an equatorward displacement of the glacial wind belts. We test this hypothesis using geochemical provenance measurements of deep-sea sediments deposited along the Mid-Atlantic Ridge between 24°S and 37°S. In the central South Atlantic, dust can be delivered from South America via the Westerlies, or from Africa via the Trade Winds. The dust sources on South America and Africa have very different geochemical signatures, making it possible to distinguish between eolian transport via the Westerlies vs. the Trade Winds. Any northward shift in the Southern Hemisphere Westerlies should increase the northward extent of a South American provenance in sediments dominated by eolian sources. We measured major and trace element concentrations, and radiogenic isotopes of Ar, Sr, Nd, and Pb on the <5 μm lithogenic sediments from a latitudinal transect of cores along the flanks of the Mid-Atlantic Ridge. In general, the data point to an older continental provenance for the northernmost sites, and a much younger provenance for the southernmost sites, consistent with western Africa as the primary source of sediment in the north, and South American sediments being delivered to the south. Glacial sediments display a clear compositional boundary near 30°S, which likely reflects the boundary between the Westerlies and the Trade Winds. The data are therefore not consistent with northward shifted wind belts at the LGM. The observed variations in terrigenous sediment composition at these sites may, however, be consistent with an equatorward displacement of the SHWW through the deglaciation. The results may also point to changes in the continental source regions supplying dust to the atmosphere as the glaciers retreated.
Strain partitioning in Southeastern Alaska: Is the Chatham Strait Fault active?
NASA Astrophysics Data System (ADS)
Brothers, Daniel S.; Elliott, Julie L.; Conrad, James E.; Haeussler, Peter J.; Kluesner, Jared W.
2018-01-01
A 1200 km-long transform plate boundary passes through southeastern Alaska and northwestern British Columbia and represents one of the most seismically active, but poorly understood continental margins of North America. Although most of the plate motion is accommodated by the right-lateral Queen Charlotte-Fairweather Fault (QCFF) System, which has produced at least six M > 7 earthquakes since 1920, seismic hazard assessments also include the Chatham Strait Fault (CSF) as a potentially active, 400 km-long strike slip fault that cuts northward through southeastern Alaska, connecting with the Eastern Denali Fault. Nearly the entire length of the CSF is submerged beneath Chatham Strait and Lynn Canal and has never been systematically imaged using high-resolution marine geophysical approaches. In this study we present an integrated analysis of new marine seismic reflection data acquired across Lynn Canal and tectonic block modeling constrained by data from continuous and campaign GPS sites. Seismic profiles cross the CSF at twelve locations spanning ∼50 km of fault length; they reveal thick (up to 300 m) packages of glaciomarine sedimentary facies emplaced on an unconformity surface that formed during the Last Glacial Maximum (LGM). Localized warping of post-LGM stratigraphy (∼13.9 kyr B.P. to present) appears to correlate with sediment drape on basement topography and current-controlled deposition. There is no evidence for an active fault along the axis of Lynn Canal in the seismic reflection data. Crustal block models constrained by GPS data allow, but do not require, a maximum slip rate of 2-3 mm/yr along the CSF; higher slip rates on the CSF result in significant misfit to GPS data in the surrounding region. Based on the combined marine geophysical and GPS observations, it is plausible that the CSF has not generated resolvable coseismic deformation in the last ∼13 ka and that the modern slip-rate is <1 mm/yr. We propose that models for strain transfer between the QCFF and the Denali Fault, and seismic hazard maps in general, may need to be reevaluated.
Debris-covered glaciers during the LGM and Lateglacial at the eastern margin of the Alps
NASA Astrophysics Data System (ADS)
Seidl, Sabrina; Reitner, Jürgen M.; Wagreich, Michael
2013-04-01
We present the reconstruction of paleo-glaciers in the easternmost part of the Alps (Schneeberg mountain) with the main focus on sedimentology, chronology and glacial dynamics. The area is dominantly made up of limestone bedrock and hence characterized by steep slopes and cirques. Two juvenile moraine-systems can be deciphered based on geological mapping. The major system is characterized by an up to 60 m high latero-frontal dump moraine with a prominent breach-lobe moraine in a lateral position. It is regarded to represent the Last Glacial Maximum (LGM; Würm Pleniglacial). The other system is much smaller and was formed most probably during the Würm Lateglacial. The angular to subangular shape of the clasts and the abundant boulders on top of the ridges indicate a high portion of passive (Boulton, 1978) i.e. supraglacial and englacial transport of debris before deposition.Thus the model of a debris-covered glacier is favored to explain both landforms and as well the corresponding sediment facies. For the pleniglacial moraine such an assumption is backed by a low accumulation/ablation area ratio (AAR) of around 1:1 based on the reconstruction of the equilibrium line altitude (ELA) using the maximum elevation of lateral moraines (MELM; Lichtenecker, 1938). Furthermore as there is no indication of a former glacier snout glacio-fluvial processes should have played a limited role in sediment transport into the forefield. Such setting pinpoints to very cold-arid conditions, which are as well found in paleo-climate reconstructions of the eastern foreland (Frenzel et al. 1992). Boulton, G.S., 1978: Boulder shapes and grain-size distribution of debris as indicators of transport paths through a glacier and till genesis.- Sedimentology, 25, 773-799. Lichtenecker, N.,1938. Die gegenwärtige und die eiszeitliche Schneegrenze in den Ostalpen. In: Verhandlungen der III. Internationalen Quartär - Konferenz, Vienna, 1936, 141-147. Frenzel, B., Pecsi, M. & Velichko, A. A., 1992. Atlas of Paleoclimate and Paleoenvironments of the Northern Hemisphere: Late Pleistocene - Holocene. Geogr. Res. Institute, G. Fischer Verlag, Budapest-Stuttgart.
NASA Astrophysics Data System (ADS)
Jackson, M. S.; Kelly, M. A.; Russell, J. M.; Baber, M.; Loomis, S. E.
2014-12-01
The climate controls on past and present tropical glacier fluctuations are unclear. Here we present a chronology of past glacial extents in the Rwenzori Mountains (~1ºN, 30ºE), on the border of Uganda and the Democratic Republic of Congo, and compare this with local and regional paleoclimate records to infer the climate controls on glaciation. The Rwenzori Mountains host the most extensive glacial system in Africa and are composed of quartz-rich bedrock lithologies, enabling 10Be dating. Our dataset includes thirty 10Be ages of boulders on moraines estimated to have been deposited between the end of the last glacial period and early Holocene time. In the Mubuku Valley, eight 10Be ages of large (~50-150 m relief) lateral moraines that extend down to ~2000 m asl indicate that deposition occurred at ~23.4 ka (n=4) and ~20.1 ka (n=4), contemporaneously with the global Last Glacial Maximum (LGM). Local and regional paleoclimate records document dry, cool conditions in East Africa during this time. Therefore, we suggest that cooler temperatures were a primary influence on the LGM glacial extents. Upvalley from these samples, six 10Be ages of boulders on moraines (between 3450 and 3720 m asl) document stillstands or readvances of glacier ice at ~14.3 ka (n=2), ~13.2 ka (n=2), and ~11.1 ka (n=2). In the nearby Nyagumasani Valley sixteen 10Be ages of boulders on moraines at similar elevations (3870-4020 m asl) indicate stillstands or readvances at ~11.5 ka (n=4), ~10.6 ka (n=4), and ~10.5 ka (n=4). Local and regional paleoclimate records indicate dry conditions during Younger Dryas time, wet conditions during early Holocene time, and no significant late-glacial temperature reversal. Thus, the relationship between glacier advance and climate conditions during late-glacial time remains enigmatic. We continue to develop the moraine chronology in order to improve our interpretations of climate controls on glacier fluctuations during late-glacial to early Holocene time.
NASA Astrophysics Data System (ADS)
Takizawa, Mamoru; Takayanagi, Hideko; Yamamoto, Koshi; Abe, Osamu; Sasaki, Keiichi; Iryu, Yasufumi
2017-10-01
The δ13C and δ18O values of fossil brachiopod shells have been widely used as paleoenvironmental proxies. In this study, we investigated intrashell and intraspecific variations in the isotopic and minor element concentrations of well-preserved shells of the brachiopod Kikaithyris hanzawai (Yabe) from the last glacial period (∼20 ka [Last Glacial Maximum; LGM] and ∼70 ka [Marine Isotope Stage 4; MIS4]), collected in the Central Ryukyus, and used these data to estimate the paleoceanographic conditions (seawater temperature, concentration of dissolved inorganic carbon [DIC], and δ13C value of DIC [δ13CDIC]). The δ13C and δ18O profiles along the maximum growth axis, obtained from the inner shell surface, show three distinct intervals, corresponding to changes in shell morphology. These results suggest that the bulk isotopic compositions of brachiopods with complex shell morphologies are unsuitable for paleoenvironmental reconstructions. Nevertheless, there exists a specific shell portion with relatively small intrashell and intraspecific variations. The past seawater temperatures derived from the δ18O values of this portion are consistent with the alkenone- and planktic foraminiferal Mg/Ca-based past seawater temperatures reported in previous studies. The past δ13CDIC values estimated from the δ13C values of the specific shell portion are within the range of the past δ13CDIC values calculated from known atmospheric and oceanographic parameters. The past DIC concentrations reconstructed from the brachiopod-based δ13CDIC values are lower than the present concentrations in the East China Sea, which can be explained by low partial pressure of CO2 during the last glacial period. These results indicate that the δ13C and δ18O values obtained from K. hanzawai shells are potential paleoenvironmental indicators. The intrashell and intraspecific variations in the K. hanzawai shells are different for each minor element. Some anomalously high Mn and Fe concentrations in the shells are probably caused by metabolic factor(s), not by meteoric diagenesis. This suggests that the minor element concentrations are useful but not perfect for distinguishing diagenetically altered and unaltered portions of the shells of K. hanzawai in the studied succession.
Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma
NASA Astrophysics Data System (ADS)
Xiaoyu, DONG
2018-03-01
In this study, a novel approach to measure the absolute cytoplasmic Ca2+ concentration ([Ca2+]cyt) using the Ca2+ indicator fluo-3 AM was established. The parameters associated with the probe fluo-3 AM were optimized to accurately determine fluorescence intensity from the Ca2+-bound probe. Using three optimized parameters (final concentration of 6 mM probe, incubation time of 135 min, loading probe before plasma treatment), the maximum fluorescence intensity (F max = 527.8 a.u.) and the minimum fluorescence intensity (F min = 63.8 a.u.) were obtained in a saturated Ca2+ solution or a solution of lacking Ca2+. Correspondingly, the maximum [Ca2+]cyt induced by cold plasma was 1232.5 nM. Therefore, the Ca2+ indicator fluo-3 AM was successfully applied to measure the absolute [Ca2+]cyt in Saccharomyces cerevisiae stimulated by cold plasma at atmospheric air pressure.
Code of Federal Regulations, 2014 CFR
2014-04-01
...(monobromoacetoxy) ethane [CA Reg. No. 3785-34-0] At a maximum level of 0.10 pound per ton of dry weight fiber. Bis... Methylenebisthiocyanate 2-Nitrobutyl bromoacetate [CA Reg. No. 32815-96-6] At a maximum level of 0.15 pound per ton of dry.... No. 55566-30-8) Maximum use level of 84 mg/kg in the pulp slurry. The additive may also be added to...
NASA Astrophysics Data System (ADS)
Herget, Jürgen; Carling, Paul; Agatova, Anna; Batbaatar, Jigjidsurengiin; Borodavko, Pavel; Gillespie, Alan; Nepop, Roman
2017-07-01
Gribenski et al. (2016) investigated moraines of the Chagan-Uzun valley in the Russian Altai mountains, concluding from 18 cosmic-ray exposure ages that they slightly predated ∼19 ka, within MIS 2. The moraines extended below the highest stand of the Kuray/Chuja palaeolakes that gave rise to outburst floods down Chuja River. Gribenski et al. (2016) suggested that the ages from their lowest dated moraine may be minima due to shielding from cosmic-ray exposure by the lake waters for a few thousand years. They noted that their dating agrees with data from other palaeoglaciers in the region and throughout the Northern Hemisphere, and shows that the regional Last Glacial Maximum (LGM) in the Altai occurred during MIS 2.
First evidence of a Late Upper Palaeolithic human presence in Ireland
NASA Astrophysics Data System (ADS)
Dowd, Marion; Carden, Ruth F.
2016-05-01
The colonisation of North West Europe by humans and fauna following the Last Glacial Maximum (LGM) has been the subject of considerable discussion in recent decades and within multiple disciplines. Here we present new evidence that pushes back the date of human footfall in Ireland by up to 2500 cal BP to the Upper Palaeolithic. An assemblage of animal bones recovered from a cave in the west of Ireland during antiquarian excavations in 1903 included a butchered brown bear bone (patella) which was recently subjected to two independent radiocarbon dating processes; the resultant dates were in agreement: 12,810-12,590 cal BP and 12,810-12,685 cal BP. This find rewrites the antiquity of human occupation of Ireland and challenges the traditional paradigm that certain biota may have naturally colonised the island prior to human arrival.
Schumann, R. Randall; Pigati, Jeffrey S.
2017-01-01
We appreciate the thoughtful discussion offered by Pinter et al. (2017) because it gives us an opportunity to elucidate some of the main points of our study, address some apparent misinterpretations, and recapitulate one of our conclusions. Pinter et al.’s discussion emphasizes and reinforces some of the important concepts we presented but also raises questions regarding specific aspects of our study, including that: (1) base level is the dominant control on fluvial system change on Santa Rosa Island (SRI); (2) post-Last Glacial Maximum (LGM) fluvial aggradation on SRI occurred at uniform rates; and (3) the transition from aggradation to incision on SRI occurred during the last 500 to ≤150 years.
NASA Astrophysics Data System (ADS)
Schumann, R. Randall; Pigati, Jeffrey S.
2018-01-01
We appreciate the thoughtful discussion offered by Pinter et al. (2017) because it gives us an opportunity to elucidate some of the main points of our study, address some apparent misinterpretations, and recapitulate one of our conclusions. Pinter et al.'s discussion emphasizes and reinforces some of the important concepts we presented but also raises questions regarding specific aspects of our study, including that: (1) base level is the dominant control on fluvial system change on Santa Rosa Island (SRI); (2) post-Last Glacial Maximum (LGM) fluvial aggradation on SRI occurred at uniform rates; and (3) the transition from aggradation to incision on SRI occurred during the last 500 to ≤ 150 years.
NASA Astrophysics Data System (ADS)
Kadereit, Annette; Sauer, Daniela; Kühn, Peter; Herrmann, Ludger; Kösel, Michael; Miller, Christopher; Shinonaga, Taeko; Kreutzer, Sebastian; Starkovich, Britt
2015-04-01
The loess-paleosol profile Datthausen is situated on the penultimate-glacial (Würmian) terrace of the upper Danube River in southern Germany. The sequence of reworked, mostly sandy loess deposits exhibits brownish, loamy paleosols in its lower part and slightly de-carbonated and hydromorphic horizons in its upper part. The stratigraphic bisection is interpreted as the transition from the terrestrial Middle Pleniglacial (Middle Würmian) to the Upper Pleniglacial (Upper Würmian). This interpretation is supported by the observation that the upper two of the loamy paleosols show an olive tint and features of sediment reworking at the top (see Sauer et al. in this session). A similar stratigraphic pattern was observed in other central European loess-paleosol sections (Schönhals et al. 1964, E&G 15: 199-206) and was recently corroborated for, e.g., Nussloch on the Upper Rhine and Schwalbenberg II on the Middle Rhine (Antoine et al. 2009, QSR 28: 2955-2973; Schirmer 2012, E&G 61: 32-47). However, the chronometric position of the terrestrial Middle Pleniglacial to Upper Pleniglacial (MPG/UPG) transition is still under debate, as are the palaeoclimatic triggers controlling loess and soil formation. Valuable information hereon may be gained by matching the terrestrial chronologies with the marine and Greenland ice-core records. The chronometry of the Datthausen section is based on blue-light stimulated luminescence (BLSL) dating of small aliquots (ca. 200-500 grains) of quartz coarse grains (125-212 µm), using a single-aliquot regeneration (SAR) protocol (Murray & Wintle 2000, Rad. Meas. 32: 57-73) and a minimum-age model (Galbraith et al. 1999, Archaeometry 41: 339-364). Formation of the paleosols was likely promoted during the warmer Greenland Interstadials (GIS). Luminescence dating on samples taken from these paleosols determines the time of sediment deposition that preceded the soil formation in the respective sediment. We sampled two horizons below and three horizons above the MPG/UPG-boundary. A BLSL-age around ca. 37-35 ka for the lowermost sampled paleosol (6Bg5) suggests soil formation during a period matching GIS7 to GIS5. Therefore, the paleosol could conform to the Lohne Soil at Nussloch and Schwalbenberg II. A BLSL-age around ca. 29 ka for the uppermost MPG-palaeosol (5Bg4) may indicate soil formation during GIS4 or GIS3. Fragments of snail shells in the lowermost dated UPG-horizon (3Bw1) point to a reworked soil sediment. BLSL-dating yielded an age around ca. 26-27 ka. Therefore, at Datthausen the MPG/UPG transition appears to conform to the transition from marine/oxygen isotope stage (MIS/OIS) 3 to 2. De-carbonated horizon 2Bg1 (around ca. 23 ka) may possibly match GIS2. Hydromorphic horizon Cg2 (around ca. 22 ka) fits in a later period of the last glacial maximum (LGM). Correlations between the loess-paleosol sequence and ice-core records are challenging as the luminescence ages have uncertainties of ca. 10 % (1-sigma). Further, the sediments appear partially bleached and, partly affected by bio- or cryturbation. Overall, the chronometry fits to the field observations and the results of the pedological analyses, but the MPG/UPG transition appears to start slightly later than at Nussloch and Schwalbenberg II, where it precedes the MIS3/MIS2 boundary.
Daniels, M; Noble, M I; ter Keurs, H E; Wohlfart, B
1984-10-01
The relation between force and velocity was determined in sixteen trabeculae of rat right ventricle as a function of time during a twitch, of sarcomere length and of external Ca2+ concentration, [Ca2+]o. The trabeculae were studied in modified Krebs-Henseleit solution at 25 degrees C. Force was measured with a semiconductor strain gauge. Sarcomere length was measured with a laser diffraction system. A servomotor system was used in which control could be switched between sarcomere length, muscle length and force. Force-velocity relations were derived from load clamps and from contractions in which sarcomere length was initially held constant followed by a quick release and slower release of the sarcomeres at controlled velocity. Force-velocity relations were fitted by Hill's equation (Hill, 1938), (Po-P) b = (P+a) V, where P = force, V = velocity, Po = isometric force in mN/mm2 and a and b are constants. For [Ca2+]o = 2.5 mM, with both interventions the values (mean +/- S.D.) were: b = 1.00 +/- 0.45 micron/s; a = 9.52 +/- 5.60 mN/mm2; Vo measured = 13.6 +/- 3.0 micron/s; Vo calculated = 13.4 +/- 3.4 micron/s; Po measured = 96.5 +/- 25.0 mN/mm2; Po calculated = 119.3 +/- 34.5 mN/mm2. Vo rose with [Ca2+]o to a maximum at [Ca2+]o = 1.2 mM when Po was about 50% of maximum, while Po rose with [Ca2+]o to a maximum at above 2.5 mM. Vo rose with time during the twitch to a maximum at 25 ms following onset of contraction; Po was then about 50% of the maximum that was obtained at 120 ms. Vo increased with sarcomere length from zero at a sarcomere length of 1.6 micron to a maximum at 1.85 micron. Between 1.85 micron and 2.3 micron, Vo was constant. At 1.85 micron, Po was about 60% of maximum Po. These results are compatible with the hypothesis that Vo is more sensitive than Po to the amount of Ca2+ bound to the contractile proteins, and that Vo reaches a maximal value with an amount of Ca2+ bound to the contractile proteins at which Po has obtained only about 50% of its maximal value.
Preliminary biogeochemical assessment of EPICA LGM and Holocene ice samples
NASA Astrophysics Data System (ADS)
Bulat, S.; Alekhina, I.; Marie, D.; Wagenbach, D.; Raynaud, D.; Petit, J. R.
2009-04-01
We are investigating the biological content (biomass and microbial diversity of Aeolian origin) of EPICA ice core within the frame of EPICA Microbiology consortium*. Two ice core sections were selected from EPICA Dome C and Droning Maud Land, both from LGM and Holocene. Preliminary measurements of DOC (dissolved organic content) and microbial cell concentrations have been performed. Both analyses showed the very low biomass and ultra low DOC content. Trace DNA analyses are in a progress. The ice sections were decontaminated in LGGE cold and clean room facilities benefiting the protocol developed for Vostok ice core studies. The melt water was then shared between two party laboratories for a complementary approach in studying microbial content. Prior to biology the melt water was tested for chemical contaminant ions and organic acids, DOC and dust contents. The biological methods included all the spectra of appropriate molecular techniques (gDNA extraction, PCR, clone libraries and sequencing). As preliminary results, both LGM (well identified by dust fallout) and Holocene ice samples (EDC99 and EDML) proved to be extremely clear (i.e. pristine) in terms of biomass (less then 4 cells per ml) and DOC contents (less then 5 ppbC). There was no obvious difference between LGM and Holocene in cell counts, while LGM showed a bit high organic carbon content. The latter in terms of biology means ultra-oligotrophic conditions (i.e., no possibility for heterotrophic life style). In fact no metabolizing microbial cells or propagating populations are expected at these depths at temperature -38oC and lower (limiting life temperature threshold is -20°C). Nevertheless some life seeds brought in Antarctica with precipitation could be well preserved because the age is rather young (21 kyr and less). Trying to identify these aliens and document their distribution during last climate cycle the meltwater was concentrated about 1000 times down. The genomic DNA was extracted and very weak signals were possible to generate which are now under cloning. The signals were hard to reproduce because of rather low volume of samples. More ice volume is needed to get the biosignal stronger and reproducible. Meantime we are adjusting PCR and in addition testing DNA repair-enzyme cocktail in case of DNA damage. As a preliminary conclusion we would like to highlight the following. Both Holocene and LGM ice samples (EDC99 and EDML) are very clean in terms of Ultra low biomass and Ultra low DOC content. The most basal ice of EDC and EDML ice cores could help in assessing microbial biomass and diversity if present under the glacier at the ice-bedrock boundary. * The present-day consortium includes S. Bulat, I. Alekhina, P. Normand, D. Prieur, J-R. Petit and D. Raynaud (France) and E. Willerslev and J.P. Steffensen (Denmark)
Bathymetry in Petermann fjord from Operation IceBridge aerogravity
NASA Astrophysics Data System (ADS)
Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas
2015-07-01
Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.
Late Pleistocene temperature, hydrology, and glaciation in equatorial East Africa
NASA Astrophysics Data System (ADS)
Russell, J. M.; Verschuren, D.; Kelly, M. A.; Loomis, S. E.; Jackson, M. S.; Morrill, C.; S Sinninghe Damsté, J.; Doughty, A. M.; De Cort, G.; Olago, D.; Street-Perrott, F. A.
2016-12-01
In the coming century the world's high tropical mountains are predicted to experience a magnitude of climate change second only to the Arctic due to amplification of warming with elevation in the tropics. Proxy data suggest that substantial changes in tropical temperature and hydroclimate also occurred during the last deglaciation, the most recent time period when rising atmospheric CO2 concentrations caused large changes in global climate. Determining whether the rate of temperature change with elevation (the lapse rate) was different from today during the Last Glacial Maximum (LGM) is therefore critical to understanding the future of tropical mountain environments and resources. Here we present a new 25,000-year temperature reconstruction based upon organic geochemical analyses of sediment cores from Lake Rutundu (3,078 m asl), Mount Kenya, East Africa. Through comparison with regional reconstructions of lower elevation temperature, we show that LGM cooling was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our lapse rate reconstructions with equilibrium line altitude reconstructions from glacial moraines indicates that temperature, rather than precipitation, was the dominant control on tropical alpine glacier fluctuations at this time scale. Nevertheless, our results have important implications for the tropical hydrological cycle, as changes in the lapse rate are intimately linked with changes in atmospheric water vapour concentrations. Indeed, we attribute the steeper lapse rate to drying of the tropical ice-age atmosphere, a hypothesis supported by palaeoclimate models. However, comparison of our data to these simulations indicates that state-of-the-art models significantly underestimate tropical temperature changes at high elevation and therefore the lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than currently predicted.